# On the computation of limsups 

$\langle x\rangle$

By Joris van der Hoeven
Lab. : LIX, École polytechnique, France
Email: vdhoeven@lix.polytechnique.fr
Web : http://lix.polytechnique.fr:80/~vdhoeven/
$x>$

MEGA'96, 6-6-1996, Eindhoven

## Motivations

## Automatic asymptotics.

- Automatic expansion of solutions to very general functional equations.
- Generalized transseries expansions. Example:

$$
e^{e^{x}+\log ^{-1} x e^{x}+\log ^{-2} x e^{x}+\cdots}+e^{e^{\sqrt{x}}+\log ^{-1} x e^{\sqrt{x}}+\cdots}+\cdots
$$

## Oscillatory behaviour

- Classically, transseries expansions are limited to strongly monotonic behaviour. Such transseries form a totally ordered field.
- We will make a first step towards the treatment of functions with explicit or hidden oscillatory behaviour.


## Computation of limsups

Sign computations are important. Example:

$$
\text { Expand } \quad e^{e^{\psi x}} \quad(x \rightarrow \infty) .
$$

And when $\psi=\psi(x)$ oscillates? Example:

$$
\psi(x)=\frac{2 \sin x^{2}-\sin \left(x^{3} /(x-1)\right)}{3+\sin e x^{2}-\sin \left(e x^{2}+1\right)}
$$

$\longrightarrow$ How to compute $\liminf _{x \rightarrow \infty} \psi(x)$ and $\lim \sup _{x \rightarrow \infty} \psi(x) ?$

## Outline

## I. Expansion of exp-log functions

 II. A density theorem on the torus $T^{n}$ III. The algorithm
## I. Expansion of exp-log functions

Definition. An exp-log function is a function built up from $\mathbb{Q}$ and $x$, by the field operations, exponentiation and logarithm.

Asymptotic scales $(x \rightarrow \infty)$
Asymptotic scale always generated by a normal basis $B$ :
$-B=\left\{\sigma_{1}, \cdots, \sigma_{n}\right\}$ is a set of positive infinitesimals.
$-\log \sigma_{1}=o\left(\log \sigma_{2}\right), \cdots, \log \sigma_{n-1}=o\left(\log \sigma_{n}\right)$.
$-\sigma_{1}=\left(\log { }^{l \text { times }} \log x\right)^{-1}$.
$-\log \sigma_{i}$ admits an expansion w.r.t. $\sigma_{1}, \cdots, \sigma_{i-1}$, for all $i>1$.
Example: $B=\left\{\log ^{-1} x, x^{-1}, x^{-x}, e^{-x^{2} /(\log x+1)}\right\}$.
Scale generated by $B: \log ^{-\alpha x} x^{-\beta} x^{-\gamma x} e^{-\delta x^{2} /(\log x+1)}$.

Conjecture. (Schanuel) If $\alpha_{1}, \cdots, \alpha_{n}$ are $\mathbb{Q}$-linearly independent complex numbers, then the transcendence degree of $\mathbb{Q}\left[\alpha_{1}, \cdots, \alpha_{n}, e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}\right]$ over $\mathbb{Q}$ is at least $n$.

Theorem. (Shackell, Richardson, VDH) Assume that Schanuel's conjecture holds. Then there exists an algorithm to compute the expansion at infinity of any exp-log function w.r.t. a normal basis $B$.

$$
f(x)=\frac{1}{\left(1-x^{-1}\right)\left(1-e^{-x}\right)}-\frac{1}{1-x^{-1}} .
$$

The algorithm computes $B=\left\{x^{-1}, e^{-x}\right\}$, and returns the expansion

$$
\begin{aligned}
f(x) \approx & \frac{1}{e^{x}}+\frac{1}{x e^{x}}+\frac{1}{x^{2} e^{x}}+\cdots+ \\
& \frac{1}{e^{2 x}}+\frac{1}{x e^{2 x}}+\frac{1}{x^{2} e^{2 x}}+\cdots+
\end{aligned}
$$

## Example 2

$$
f(x)=\log \log \left(x e^{x e^{x}}+1\right)-\exp \exp \left(\log \log x+\frac{1}{x}\right)
$$

The algorithm yields

$$
B=\left\{\log ^{-1} \log x, \log ^{-1} x, x^{-1}, e^{-x}, e^{-x e^{x}}\right\}
$$

with respect to which we can expand

$$
\begin{aligned}
f= & \sigma_{3}^{-1}+\sigma_{2}^{-1}+\log \left[1+\sigma_{3} \sigma_{4}\left[\sigma_{2}^{-1}+\log \left(1+\sigma_{3} \sigma_{5}\right)\right]\right]- \\
& \sigma_{3}^{-1} \exp \left[\sigma_{2}^{-1} \exp \sigma_{3}-\sigma_{2}^{-1}\right] .
\end{aligned}
$$

For instance, we obtain the equivalent

$$
f \sim-\frac{1}{2} \sigma_{2}^{-2} \sigma_{3}=-\frac{\log ^{2} x}{2 x} .
$$

## II. A density theorem on the torus



Theorem. (Kronecker) Let $\lambda_{1}, \cdots, \lambda_{n}$ be $\mathbb{Q}$-linearly independent real numbers. Then $\overline{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \mathbb{R}}$ is dense on the $n$ dimensional torus $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$.


Image of $t \mapsto \overline{\left(3 t, t^{2}\right)} \in T^{2}$ for $t \in[0,4]$.

Theorem. Assume that
$-1 \nless f_{1} \nless \cdots \nless f_{p}$ infinitely large exp-log functions.
$-\lambda_{i, j}>0\left(1 \leqslant j \leqslant n_{i}\right)$, such that $\lambda_{i, 1}, \cdots, \lambda_{i, n_{i}}$ are $\mathbb{Q}$-linearly independent for each $i$.

$$
\begin{aligned}
& -g(x)=\left(f_{1}\left(\lambda_{1,1} x\right), \cdots, f_{1}\left(\lambda_{1, n_{1}} x\right), \cdots, f_{p}\left(\lambda_{p, 1} x\right), \cdots, f_{p}\left(\lambda_{p, n_{p}} x\right)\right), \\
& \quad \text { for x large. }
\end{aligned}
$$

Then $\overline{\operatorname{im} g}$ is dense on $T^{n}$, where $n=n_{1}+\cdots+n_{p}$.

Theorem. (Bohr, Sierpiński, Weyl) Let $\lambda_{1}, \cdots, \lambda_{n} \in \mathbb{R}$ be $\mathbb{Q}$-linearly independent numbers. Let

$$
X=\left[a_{1}, b_{1}\left[\times \cdots \times\left[a_{n}, b_{n}\left[\subseteq T^{n}\right.\right.\right.\right.
$$

be an n-dimensional block on $T^{n}$. Let

$$
\rho(I, X)=\frac{\mu(\{x \in I \mid \boldsymbol{\lambda} x \in X\})}{\mu(I)},
$$

for all intervals $I$ of $\mathbb{R}$, where $\mu$ denotes the Lebesque mesure. Then

$$
\lim _{\mu(I) \rightarrow \infty} \rho(I, X)=\mu(X)
$$

uniformly in $I$.

Theorem. Let $f_{1}, \cdots, f_{p}$ and $g$ be as before. Let

$$
X=\left[a_{1}, b_{1}\left[\times \cdots \times\left[a_{n}, b_{n}\left[\subseteq T^{n}\right.\right.\right.\right.
$$

be an n-dimensional block. Let

$$
\rho_{f, g}(I, X)=\frac{\mu\left(\left\{x \in I \mid g\left(f_{1}^{i n v}(x)\right) \in X\right\}\right)}{\mu(I)},
$$

for all intervals I of $\mathbb{R}$ (sufficiently close to infinity). Then

$$
\lim _{\mu(I) \rightarrow \infty} \rho_{f, g}(I, X)=\mu(X),
$$

uniformly, for intervals sufficiently close to infinity.

## IIII. The algorithm

Lemma. Let $1 \nless f_{1} \preccurlyeq \cdots \nless f_{p}$ be exp-log functions at infinity. Let $\lambda_{i, j}>0\left(1 \leqslant j \leqslant n_{i}\right)$ be such that $\lambda_{i, 1}, \cdots, \lambda_{i, n_{i}}$ are $\mathbb{Q}$-linearly independent for each $i$. Denote $U=\{x+\sqrt{-1} y \in$ $\left.\mathbb{C} \mid x^{2}+y^{2}=1\right\}$ and $n=n_{1}+\cdots+n_{p}$. Let $\varphi$ be a continuous function from $U^{n}$ into $\mathbb{R}$ and let

$$
\psi(x)=\varphi\left(e^{\sqrt{-1}} \lambda_{1,1} f_{1}(x), \cdots, e^{\sqrt{-1}} \lambda_{p, n_{p}} f_{p}(x)\right) .
$$

Then

$$
\limsup _{x \rightarrow \infty} \psi(x)=\sup _{\boldsymbol{x} \in U^{n}} \varphi(\boldsymbol{x}) .
$$

Theorem. Let $F_{1}, \cdots, F_{q}$ be exp-log functions at infinity. Let $\varphi: U^{q} \rightarrow \mathbb{R}$ a real algebraic function, where we consider $U^{q}$ as a real algebraic variety. Assume that we have an oracle to test the $\mathbb{Q}$-linear dependence of exp-log constants. Then there exists an algorithm to compute the limsup of

$$
\psi(x)=\varphi\left(e^{\sqrt{-1} F_{1}(x)}, \cdots, e^{\sqrt{-1} F_{q}(x)}\right)
$$

Idea. Reduce to the case of the lemma modulo linear combinations of the $F_{i}$ 's, using the rule $e^{a+b}=e^{a} e^{b}$ to rewrite $\varphi$.

Step 1. Expand $F_{1}, \cdots, F_{q}$ and order $F_{1} \npreceq \cdots \npreceq F_{q}$.
Step 2. Reduce to the case when $F_{i} \asymp F_{j} \Rightarrow F_{i}=\lambda F_{j}$.
Step 3. Eliminate bounded $F_{i}$ 's (these tend to constants).
Step 4. Compute constants $\lambda_{i, j}$ and $1 \nless f_{1} \nless \cdots \nless f_{p}$, such that each $F_{l}$ has the form $F_{l}=\lambda_{i, j} f_{i}$.
Step 5. Reduce to the case when $\lambda_{i, 1} \cdots \lambda_{i, n_{i}}$ are $\mathbb{Q}$-linearly independent for each $i$.
Step 6. Apply lemma.

$$
\psi(x)=\frac{2 \sin x^{2}-\sin \left(x^{3} /(x-1)\right)}{3+\sin e x^{2}-\sin \left(e x^{2}+1\right)}
$$

Step 1. Expansion:

$$
\begin{aligned}
x^{2} & =x^{2} \\
x^{3} /(x-1) & =x^{2}+x+\cdots ; \\
e x^{2} & =e x^{2} ; \\
e x^{2}+1 & =e x^{2}+1 .
\end{aligned}
$$

Step 2. Make $F_{i}$ 's homothetic: rewrite

$$
x^{3} /(x-1)=x^{2}+x^{2} /(x-1)
$$

and

$$
e^{\sqrt{-1} x^{3} /(x-1)}=e^{\sqrt{-1} x^{2}} e^{\sqrt{-1} x^{2} /(x-1)}
$$

which corresponds to the rewriting

$$
\sin \frac{x^{3}}{x-1}=\sin x^{2} \cos \frac{x^{2}}{x-1}+\sin \frac{x^{2}}{x-1} \cos x^{2}
$$

if we consider real and imaginary parts.
Also rewrite

$$
e x^{2}+1=\left(e x^{2}\right)+(1)
$$

and

$$
e^{\sqrt{-1}\left(e x^{2}+1\right)}=e^{\sqrt{-1} e x^{2}} e^{\sqrt{-1}}
$$

which corresponds to the rewriting

$$
\sin \left(e x^{2}+1\right)=\sin e x^{2} \cos 1+\sin 1 \cos e x^{2}
$$

Step 5. Eliminate $\mathbb{Q}$-linear dependencies: nothing to be done.

Step 6. At this stage, we have

$$
\varphi(a, \hat{a}, b, \hat{b}, c, \hat{c})=\frac{2 a-a \hat{c}-c \hat{a}}{3+b-b \cos 1-\hat{b} \sin 1}
$$

with

$$
\begin{array}{lll}
a=\sin x^{2} \\
b=\sin e x^{2} & , & \hat{a}=\cos x^{2} \\
c=\sin \left(x^{2}(x-1)\right), & \hat{b}=\cos e x^{2} \\
=\cos \left(x^{2}(x-1)\right) .
\end{array}
$$

The maximum of $\varphi$ on $U^{3}$ is attained for

$$
a=1, \hat{a}=0, b=-1 / 2, \hat{b}=\sqrt{3} / 2, c=0, \hat{c}=-1 .
$$

## Hence

$$
\begin{aligned}
\limsup _{x \rightarrow \infty} \psi(x) & =\frac{6}{5+\cos 1-\sqrt{3} \sin 1}=l \\
\liminf _{x \rightarrow \infty} \psi(x) & =\frac{-6}{5+\cos 1-\sqrt{3} \sin 1}=-l
\end{aligned}
$$



## Conclusion

## Main ideas

- Oscillating components $\longrightarrow$ parameters.
- Density theorems $\longrightarrow$ constraints satisfied by parameters.

Generalizations

- Exp-log functions $\longrightarrow$ any class of strongly monotonic functions with automatic expansion algorithm.
- Algebraic functions $\longrightarrow$ any class of functions with effective maximum computation.
- Complete asymptotic expansions.


## Complete expansions

## Oscillating components $\longrightarrow$ parameters

$$
f(x)=\exp \exp (x \sin x)
$$

Leads to three cases:

$$
f(x)= \begin{cases}1+e^{x \sin x}+\cdots \quad\left(\sin x<0, \sin x \nsucc x^{-1}\right) \\ e^{e^{x \sin x}} & \left(\sin x \npreceq x^{-1}\right) \\ e^{e^{x \sin x}} & \left(\sin x>0, \sin x \nsucc x^{-1}\right)\end{cases}
$$

## Degenerate case

No constraint checking "possible" for parameters:

$$
3-\sin x-\sin x^{2}-\sin x^{3} \geqslant_{\infty} \frac{1}{e^{x}} ?
$$

Linked to Diophantine approximation:

$$
2-\sin x-\sin e x^{2} \geqslant_{\infty} \frac{1}{\Gamma(x+2)}
$$

$\longrightarrow$ intuitionistic approach: constraints may very well be undecidable. If they are to hard to check, let them like they are.

Other example

$$
f(x)=\exp \exp \left(\left(\sin 10^{10^{10^{10}}}\right) x\right)
$$

