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Motivations

Automatic asymptotics.
— Automatic expansion of solutions to very general functional

equations.

— Generalized transseries expansions. Example:

1 2

@ —1 ze® =2 pe® ... Ve —1 zeVo ...
e +log™ " xe®+log™ “ xe® + £+ et +log™ " xeVT+ 4.

Oscillatory behaviour
— Classically, transseries expansions are limited to strongly

monotonic behaviour. Such transseries form a totally ordered
field.

— We will make a first step towards the treatment of functions

with explicit or hidden oscillatory behaviour.

Computation of limsups
Sign computations are important. Example:

Expand e (x — 0).

And when ¢ = 9(x) oscillates? Example:

_ 2sinz? —sin(z?/(z — 1))
3 +sinex? —sin(ex? + 1)

()

— How to compute liminf, . ¥ (z) and limsup,_, ¥ (x)?
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I. Expansion of exp-log functions

Definition. An exp-log function is a function built up from Q

and x, by the field operations, exponentiation and logarithm.

Asymptotic scales (z — o0)

Asymptotic scale always generated by a normal basis B:

— B ={061,---,0,} is a set of positive infinitesimals.

— log6; = o(log 62), -+ ,log 6,1 = 0(log 6,,).

l times 1

— 61 =(log --- logx)™".

— log 6; admits an expansion w.r.t. 61,---,0;_1, for all 7+ > 1,

Example: B = {log 'z, 271,z e~ /(ogzt1)},
Scale generated by B: log~®% =By =1¢e=0e"/(logz+1),

Conjecture. (Schanuel) If ay,---,a, are Q-linearly inde-
pendent complex numbers, then the transcendence degree of

x1

Qlag, -, ap, e, - e*] over Q is at least n.

Theorem. (Shackell, Richardson, VDH) Assume that Scha-
nuel’s conjecture holds. Then there exists an algorithm to com-
pute the expansion at infinity of any exp-log function w.r.t. a
normal basis B.



Example 1

1 1
o) = i i s 1ot

The algorithm computes B = {x~1,e~*}, and returns the expan-

sion

1 1 1
e Te r<e
S +oot
e2:1: x€2:r: x2€2m
Example 2

z 1
f(x) =loglog(ze®™ + 1) — expexp(loglogx + 5)

The algorithm yields
B = {log tlogz,log tx,z7 e"% e7% ),
with respect to which we can expand

f= 63_1 -+ 62_1 + log[l + 6364[62_1 + log(l + 6365)”—
65 ' exp[6, * exp 63 — 6, ']

For instance, we obtain the equivalent

log2 T

1 -9 L
fN_§62 05 = 2z



II. A density theorem on the torus

Image of t — ( )eT? = ]1%2/22 for t € [0, 10]

Theorem. (Kronecker) Let \i,---, A, be Q-linearly inde-
pendent real numbers. Then (A1,---, )R is dense on the n-
dimensional torus T™ = R™ /Z™.




Image of t — (3t,t2) € T? for t € [0, 4].

Theorem. Assume that

— 1< f1i < -+ <X fp infinitely large exp-log functions.

— X >0 (1 <7< ny), such that \j 1, -+, A n, are Q-linearly

independent for each 1.

_ g(l’) — (fl()‘l,lz)f o 7f1()‘1,n1x>7"' 7fp()‘P,1$)7' o 7fp()‘p,np$))7

for x large.

Then im g is dense on T, where n =ny + -+ +nyp.



Theorem. (Bohr, Sierpinski, Weyl) Let \1,--- , A\, € R be
Q-linearly independent numbers. Let

X = [al,bl[x e e X [an,bn[g "

be an n-dimensional block on T™. Let
p({x € I|Ax € X})
p(I) |
for all intervals I of R, where p denotes the Lebesque mesure.
Then

p(I, X) =

lim p(I, X) = p(X),
p(I)—o0

uniformly in 1.

Theorem. Let fi,---, f, and g be as before. Let
X = [al,bl[x cee X [an,bn[g "

be an n-dimensional block. Let

{2z € Ilg(fi"(x)) € X})
(1) ’

for all intervals I of R (sufficiently close to infinity). Then

pf,g(I,X) — ILL(

lim prq(1, X) = p(X),

p(I)—o0

uniformly, for intervals sufficiently close to infinity.



II1. The algorithm

Lemma. Letl < fi < -+ < f, be exp-log functions at in-
finity. Let X\; j > 0 (1 < j < n;) be such that X\j1, -+, Ain, are
Q-linearly independent for each i. Denote U = {x + /-1y €
Clz? +y* =1} and n = ny +--- +n,. Let ¢ be a continuous

function from U™ into R and let
w(x) — QO(G\/_—l )\1,1f1($), . ,6\/_—1 Ap,npfp($)>.

Then
limsup¢(z) = sup ¢(x).

r—r 00 xcUn



Theorem. Let I, - -, F, be exp-log functions at infinity. Let
©:U? — R a real algebraic function, where we consider U? as a
real algebraic variety. Assume that we have an oracle to test the
Q-linear dependence of exp-log constants. Then there exists an

algorithm to compute the limsup of

W(z) = gp(e\/__l Fl(ffc)7 . 76\/—_1 Fq(w)).

Idea. Reduce to the case of the lemma modulo linear combina-
tions of the Fj’s, using the rule et = e%e® to rewrite ¢.

Step 1. Expand Fi,---,F; and order F; X --- X F.
Step 2. Reduce to the case when F; < F; = F; = \F}.
Step 3. Eliminate bounded Fj;’s (these tend to constants).

Step 4. Compute constants A; ; and 1 < f; < -+ <K fp, such
that each F; has the form F; = A; ; f.

Step 5. Reduce to the case when A; 1 ---\; ,, are Q-linearly in-
dependent for each 2.

Step 6. Apply lemma.
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Example

_ 2sinz? —sin(z?/(z — 1))
3 +sinexr? —sin(ex? +1)

()
Step 1. Expansion:

2?2 = 2%
2 /(x—1) = 2*+x+ -
er® = ex?
ex’ +1 = ex®+1.

Step 2. Make F;’s homothetic: rewrite
23 )(x—1)=2* +2%/(x — 1)

and
e\/—_l z® /(x—1) _ 6\/—_1 m2e\/—_1 132/(313—1)7

which corresponds to the rewriting

23 o, 72 . 22 ,
= sin x“ cos -+ sin cos T”,
r—1 r—1 r—1

sin
if we consider real and imaginary parts.

Also rewrite
ex® +1 = (ex®) + (1)
and
VI (e 1) _ (v=Tea? (V=T
which corresponds to the rewriting

2 2

sin(ex?® + 1) = sin ex? cos 1 + sin 1 cos ex?.
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Step 5. Eliminate Q-linear dependencies: nothing to be done.

Step 6. At this stage, we have

2a — ac — ca

e(a,a,b,b,c, ¢) = —
34+b—bcosl —bsinl
with
i 2 A 2.
a=sinz , 4= CcosSx”;
b = sin ex? , b= cosex?;

The maximum of ¢ on U? is attained for

a=1,a=00b=-1/2b=+3/2,¢=0,¢=—1.

Hence
limsupy(z) = 0 =1
a:—)oop 54+ cosl—+/3 sinl .
—6
liminf ¥ () = = —[.
T —>00 @D( ) 5+cosl—\/§sin1

y 1n|HH|M.|.W
[TVTTIRRER
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Conclusion

Main ideas
— Oscillating components — parameters.

— Density theorems — constraints satisfied by parameters.

Generalizations
— Exp-log functions — any class of strongly monotonic func-

tions with automatic expansion algorithm.

— Algebraic functions — any class of functions with effective

maximum computation.

— Complete asymptotic expansions.
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Complete expansions

Oscillating components — parameters

f(x) = expexp(xsinx)

Leads to three cases:

( 1_|_€xsin£L‘_|_... (Sinx<0,Siﬂ.ﬂlﬁ»$_1);
f(z) = ec” " (sinz X o7 1);
\ eemsinm (Sln,’I,' > O,Sinx S 33_1>-

Degenerate case
No constraint checking “possible” for parameters:

2 ].

3—sinx —sinz? — sinx® >4 —m?
e

Linked to Diophantine approximation:

1

2 — si — si Z2 S —
sinx — sinex” > Mz 1 2)

— intuitionistic approach: constraints may very well be unde-
cidable. If they are to hard to check, let them like they are.

Other example

f(x) = exp exp((sin 10101010 )x).
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