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Motivations

Motivations

Motivations

Motivations

Automatic asymptotics.

� Automatic expansion of solutions to very general functional

equations.

� Generalized transseries expansions. Example:
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Oscillatory behaviour

� Classically, transseries expansions are limited to strongly

monotonic behaviour. Such transseries form a totally ordered

�eld.

� We will make a �rst step towards the treatment of functions

with explicit or hidden oscillatory behaviour.

Computation of limsups

Sign computations are important. Example:

Expand e

e

 x

(x!1):

And when  =  (x) oscillates? Example:

 (x) =

2 sinx

2

� sin(x

3

=(x� 1))

3 + sin ex

2

� sin(ex

2

+ 1)

:

�! How to compute lim inf

x!1

 (x) and lim sup

x!1

 (x)?
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Outline

Outline

Outline

Outline

I. Expansion of exp-log functions

II. A density theorem on the torus T

n

III. The algorithm
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I. Expansion of exp-log functions

I. Expansion of exp-log functions

I. Expansion of exp-log functions

I. Expansion of exp-log functions

De�nition. An exp-log function is a function built up from Q

and x, by the �eld operations, exponentiation and logarithm.

Asymptotic scales (x!1)

Asymptotic scale always generated by a normal basis B:

� B = fb

1

; � � � ;b

n

g is a set of positive in�nitesimals.

� log b

1

= o(log b

2

); � � � ; log b

n�1

= o(log b

n

).

� b

1

= (log

l times

� � � log x)

�1

.

� log b

i

admits an expansion w.r.t. b

1

; � � � ;b

i�1

, for all i > 1.

Example: B = flog

�1

x; x

�1

; x

�x

; e

�x

2

=(log x+1)

g.

Scale generated by B: log

��x

x

��

x

�
x

e

��x

2

=(log x+1)

.

Conjecture. (Schanuel) If �

1

; � � � ; �

n

are Q -linearly inde-

pendent complex numbers, then the transcendence degree of

Q [�

1

; � � � ; �

n

; e

�

1

; � � � ; e

�

n

] over Q is at least n.

Theorem. (Shackell, Richardson, VDH) Assume that Scha-

nuel's conjecture holds. Then there exists an algorithm to com-

pute the expansion at in�nity of any exp-log function w.r.t. a

normal basis B.
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Example 1

f(x) =

1

(1� x

�1

)(1� e

�x

)

�

1

1� x

�1

:

The algorithm computes B = fx

�1

; e

�x

g, and returns the expan-

sion

f(x) �

1

e

x

+

1

xe

x

+

1

x

2

e

x

+ � � �+

1

e

2x

+

1

xe

2x

+

1

x

2

e

2x

+ � � �+

.

.

.

Example 2

f(x) = log log(xe

xe

x

+ 1)� exp exp(log log x+

1

x

):

The algorithm yields

B = flog

�1

log x; log

�1

x; x

�1

; e

�x

; e

�xe

x

g;

with respect to which we can expand

f = b

�1

3

+ b

�1

2

+ log[1 + b

3

b

4

[b

�1

2

+ log(1 + b

3

b

5

)]]�

b

�1

3

exp[b

�1

2

expb

3

� b

�1

2

]:

For instance, we obtain the equivalent

f � �

1

2

b

�2

2

b

3

= �

log

2

x

2x

:

5



II. A density theorem on the torus

II. A density theorem on the torus

II. A density theorem on the torus

II. A density theorem on the torus

Image of t 7! (t;

p

2t) 2 T

2

= R

2

=Z

2

for t 2 [0; 10].

Theorem. (Kronecker) Let �

1

; � � � ; �

n

be Q -linearly inde-

pendent real numbers. Then (�

1

; � � � ; �

n

)R is dense on the n-

dimensional torus T

n

= R

n

=Z

n

.
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Image of t 7! (3t; t

2

) 2 T

2

for t 2 [0; 4].

Theorem. Assume that

� 1 �� f

1

�� � � � �� f

p

in�nitely large exp-log functions.

� �

i;j

> 0 (1 6 j 6 n

i

), such that �

i;1

; � � � ; �

i;n

i

are Q -linearly

independent for each i.

� g(x) = (f

1

(�

1;1

x); � � � ; f

1

(�

1;n

1

x); � � � ; f

p

(�

p;1

x); � � � ; f

p

(�

p;n

p

x)),

for x large.

Then im g is dense on T

n

, where n = n

1

+ � � �+ n

p

.
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Theorem. (Bohr, Sierpi�nski, Weyl) Let �

1

; � � � ; �

n

2 R be

Q -linearly independent numbers. Let

X = [a

1

; b

1

[� � � � � [a

n

; b

n

[� T

n

be an n-dimensional block on T

n

. Let

�(I;X) =

�(fx 2 Ij�x 2 Xg)

�(I)

;

for all intervals I of R , where � denotes the Lebesque mesure.

Then

lim

�(I)!1

�(I;X) = �(X);

uniformly in I.

� � �

Theorem. Let f

1

; � � � ; f

p

and g be as before. Let

X = [a

1

; b

1

[� � � � � [a

n

; b

n

[� T

n

be an n-dimensional block. Let

�

f;g

(I;X) =

�(fx 2 Ijg(f

inv

1

(x)) 2 Xg)

�(I)

;

for all intervals I of R (su�ciently close to in�nity). Then

lim

�(I)!1

�

f;g

(I;X) = �(X);

uniformly, for intervals su�ciently close to in�nity.
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III. The algorithm

III. The algorithm

III. The algorithm

III. The algorithm

Lemma. Let 1 �� f

1

�� � � � �� f

p

be exp-log functions at in-

�nity. Let �

i;j

> 0 (1 6 j 6 n

i

) be such that �

i;1

; � � � ; �

i;n

i

are

Q -linearly independent for each i. Denote U = fx +

p

�1 y 2

C jx

2

+ y

2

= 1g and n = n

1

+ � � � + n

p

. Let ' be a continuous

function from U

n

into R and let

 (x) = '(e

p

�1 �

1;1

f

1

(x)

; � � � ; e

p

�1 �

p;n

p

f

p

(x)

):

Then

lim sup

x!1

 (x) = sup

x2U

n

'(x):
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Theorem. Let F

1

; � � � ; F

q

be exp-log functions at in�nity. Let

' : U

q

! R a real algebraic function, where we consider U

q

as a

real algebraic variety. Assume that we have an oracle to test the

Q -linear dependence of exp-log constants. Then there exists an

algorithm to compute the limsup of

 (x) = '(e

p

�1 F

1

(x)

; � � � ; e

p

�1 F

q

(x)

):

Idea. Reduce to the case of the lemma modulo linear combina-

tions of the F

i

's, using the rule e

a+b

= e

a

e

b

to rewrite '.

Step 1. Expand F

1

; � � � ; F

q

and order F

1

�� � � � �� F

q

.

Step 2. Reduce to the case when F

i

� F

j

) F

i

= �F

j

.

Step 3. Eliminate bounded F

i

's (these tend to constants).

Step 4. Compute constants �

i;j

and 1 �� f

1

�� � � � �� f

p

, such

that each F

l

has the form F

l

= �

i;j

f

i

.

Step 5. Reduce to the case when �

i;1

� � ��

i;n

i

are Q -linearly in-

dependent for each i.

Step 6. Apply lemma.
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Example

 (x) =

2 sinx

2

� sin(x

3

=(x� 1))

3 + sin ex

2

� sin(ex

2

+ 1)

:

Step 1. Expansion:

x

2

= x

2

;

x

3

=(x� 1) = x

2

+ x+ � � � ;

ex

2

= ex

2

;

ex

2

+ 1 = ex

2

+ 1:

Step 2. Make F

i

's homothetic: rewrite

x

3

=(x� 1) = x

2

+ x

2

=(x� 1)

and

e

p

�1 x

3

=(x�1)

= e

p

�1 x

2

e

p

�1 x

2

=(x�1)

;

which corresponds to the rewriting

sin

x

3

x� 1

= sinx

2

cos

x

2

x� 1

+ sin

x

2

x� 1

cosx

2

;

if we consider real and imaginary parts.

Also rewrite

ex

2

+ 1 = (ex

2

) + (1)

and

e

p

�1 (ex

2

+1)

= e

p

�1 ex

2

e

p

�1

;

which corresponds to the rewriting

sin(ex

2

+ 1) = sin ex

2

cos 1 + sin 1 cos ex

2

:
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Step 5. Eliminate Q -linear dependencies: nothing to be done.

Step 6. At this stage, we have

'(a; â; b;

^

b; c; ĉ) =

2a� aĉ� câ

3 + b� b cos 1�

^

b sin 1

with

a = sinx

2

; â = cosx

2

;

b = sin ex

2

;

^

b = cos ex

2

;

c = sin(x

2

(x� 1)); ĉ = cos(x

2

(x� 1)):

The maximum of ' on U

3

is attained for

a = 1; â = 0; b = �1=2;

^

b =

p

3=2; c = 0; ĉ = �1:

Hence

lim sup

x!1

 (x) =

6

5 + cos 1�

p

3 sin 1

= l:

lim inf

x!1

 (x) =

�6

5 + cos 1�

p

3 sin 1

= �l:

50

x

 (x)

l

0

�l
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Conclusion

Conclusion

Conclusion

Conclusion

Main ideas

� Oscillating components �! parameters.

� Density theorems �! constraints satis�ed by parameters.

Generalizations

� Exp-log functions �! any class of strongly monotonic func-

tions with automatic expansion algorithm.

� Algebraic functions �! any class of functions with e�ective

maximum computation.

� Complete asymptotic expansions.
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Complete expansions

Complete expansions

Complete expansions

Complete expansions

Oscillating components �! parameters

f(x) = exp exp(x sinx)

Leads to three cases:

f(x) =

8

>

>

<

>

>

:

1 + e

x sinx

+ � � � (sinx < 0; sinx �� x

�1

);

e

e

x sin x

(sinx �� x

�1

);

e

e

x sin x

(sinx > 0; sinx �� x

�1

):

Degenerate case

No constraint checking \possible" for parameters:

3� sinx� sinx

2

� sinx

3

>

1

1

e

x

?

Linked to Diophantine approximation:

2� sinx� sin ex

2

>

1

1

�(x+ 2)

:

�! intuitionistic approach: constraints may very well be unde-

cidable. If they are to hard to check, let them like they are.

Other example

f(x) = exp exp((sin 10

10

10

10

)x):
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