# On a conjecture of Hardy 

$\infty$

## By Joris van der Hoeven

Addr.: Dépt. de Math., Université d'Orsay, France
: LIX, École polytechnique, France
Email: Joris.Vanderhoeven@math.u-psud.fr
: vdhoeven@lix.polytechnique.fr
Web : http://lix.polytechnique.fr:80/~vdhoeven/
$\infty$

Berlin, 24-8-1998

## The conjecture

## L-functions

- An L-function is a function constructed from $\mathbb{R}$ and $x$ by ,,$+- \times, /$, exp, log and algebraic functions. Example:

$$
\frac{\exp e^{e^{x} \log ^{24} x+x}}{\log ^{8} \log x+e^{x}}+e^{x^{x} \log ^{1998} x}
$$

- Hardy: germs of L-functions at $\infty$ form a totally ordered field.
- Many functions can be expanded w.r.t. scale of L-functions.
- Hardy: solutions to $E(x+1)=e^{E(x)}$ grow faster than every iterated exponential.


## Question

- Is there an L-function, asymptotic to $(\log x \log \log x)^{i n v}$ ?
- Liouville: $(\log x \log \log x)^{i n v}$ is not equal to an L-function.


## Grid-based series

## Asymptotic scales

$-S$ : ordered group (by $\nless$ ) of positive germs at infinity, stable under exponentiation by reals.

- $S$ finitely generated by $B=\left\{b_{1}, \ldots, b_{n}\right\}$, if

$$
S=\left\{b_{1}^{\alpha_{1}} \cdots b_{n}^{\alpha_{n}} \mid \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}\right\}
$$

$-B$ base, if $1 \nless b_{1} \nless \cdots \nless b_{n}$ and $\log b_{1} \nless \cdots \nless \log b_{n}$.

- Example: $S=\left\{x^{\alpha} e^{x \beta} \mid \alpha, \beta \in \mathbb{R}\right\}$.


## Grid-based series over field $C$

$-C \llbracket S \rrbracket=C \llbracket b_{1} ; \cdots ; b_{n} \rrbracket$ field of series

$$
f=\sigma_{0} \varphi\left(\sigma_{1}, \ldots, \sigma_{k}\right),
$$

where $\varphi \in C\left[\left[\sigma_{1}, \ldots, \sigma_{k}\right]\right], \sigma_{0}, \ldots, \sigma_{k} \in S$ and $\sigma_{i} \nless 1$ for $1 \leqslant i \leqslant k$.

- Example: $e^{x}\left(1-x^{-1}-x^{-x}\right)^{-1} \in \mathbb{R} \llbracket x ; e^{x} ; x^{x} \rrbracket$.
$-\mathbb{R} \llbracket S \rrbracket^{\text {conv }}$ : subfield of convergent series (i.e. $\varphi$ convergent).


## Lexicographical expansions

Lexicographical expansion of $f \in \mathbb{R} \llbracket b_{1} ; \cdots ; b_{n} \rrbracket$

$$
\begin{aligned}
f & =\sum_{\alpha_{n} \in \mathbb{R}} f_{\alpha_{n}} b_{n}^{\alpha_{n}} \\
& \vdots \\
f_{\alpha_{n}, \ldots, \alpha_{2}} & =\sum_{\alpha_{1} \in \mathbb{R}} f_{\alpha_{n}, \ldots, \alpha_{1}} b_{1}^{\alpha_{1}} .
\end{aligned}
$$

$f_{\alpha_{n}, \cdots, \alpha_{i+1}}$ both in $\mathbb{R}\left[b_{1} ; \cdots ; b_{i}\right]$ and $\mathbb{R}\left[b_{1} ; \cdots ; b_{i-1}\right]\left[b_{i}\right]$.

$$
\begin{aligned}
\frac{1}{\left(1-x^{-1}\right)\left(1-e^{-x}\right)} & =1+x^{-1}+x^{-2}+x^{-3}+\cdots \\
& +e^{-x}+x^{-1} e^{-x}+x^{-2} e^{-x}+x^{-3} e^{-x}+\cdots
\end{aligned}
$$

## Canonical decomposition

$$
f=f^{\uparrow}+f^{c}+f^{\downarrow}=\sum_{\sigma \nsim 1} f_{s}+f_{1}+\sum_{\sigma \nless 1} f_{s}
$$

Lexicographically,

$$
\begin{aligned}
f^{\uparrow} & =\sum_{\alpha_{n}>0} f_{\alpha_{n}} b_{n}^{\alpha_{n}}+\cdots+\sum_{\alpha_{1}>0} f_{0, \ldots, 0, \alpha_{1}} b_{0}^{\alpha_{1}} \\
f^{c} & =f_{0, \ldots, 0} \\
f^{\downarrow} & =\sum_{\alpha_{n}<0} f_{\alpha_{n}} b_{n}^{\alpha_{n}}+\cdots+\sum_{\alpha_{1}<0} f_{0, \ldots, 0, \alpha_{1}} b_{0}^{\alpha_{1}}
\end{aligned}
$$

Example:

$$
\left[\frac{x^{100} e^{x}}{\left(1-x^{-1}\right)\left(1-e^{-x}\right)}\right]^{\uparrow}=\frac{x^{100} e^{x}}{1-x^{-1}}+x^{100}+x^{99}+\cdots+x
$$

## Canonical bases

## L-series

$-\mathbb{R} \llbracket S \rrbracket^{L}$ : series constructed from $\mathbb{R}$, monomials $b_{i}^{\alpha_{i}}$, the field operations and left composition of infinitesimal L-series by $\exp z, \log (1+z)$ or algebraic series.

- L-series are both expressions and convergent series in $\mathbb{R} \llbracket S \rrbracket^{\text {conv }}$.
- Straightforward expansion algorithm for L-series.
- Iterated coefficients of L-series again L-series.
- If $f$ is an L-series, then so are $f^{\uparrow}, f^{c}, f^{\downarrow}$.


## $B$ canonical base if

B1. $b_{1}=\log _{l} x$ is an $l$-th iterated logarithm.
B2. $\log b_{i} \in \mathbb{R} \llbracket b_{1} ; \cdots ; b_{i-1} \rrbracket^{L}$ et $\left(\log b_{i}\right)^{\uparrow}=\log b_{i}$, for all $i>1$.
Example:

$$
B=\left\{\log x, x, \exp \left[\frac{x}{\log x-1}\right]\right\},
$$

but not

$$
\left\{x, e^{e^{x}}\right\} \quad \text { nor } \quad\left\{x, e^{x+x^{-1}}, e^{x^{2}}\right\} .
$$

$B$ : dynamic canonical base containing $x$.

Algorithm expand
Input: An L-function $f$.
OUTPuT: $f$ rewritten as an L-series in $\mathbb{R} \llbracket S \rrbracket^{L}$.
case $f \in \mathbb{R}$ or $f=x$.
Return $f$.
case $f=g \square h, \quad \square \in\{+,-, \times, /\}$.
Return $\operatorname{expand}(g) \square \operatorname{expand}(h)$.
case $f=\log (g)$.
Set $g:=\operatorname{expand}(g)$.
Rewrite $g=c b_{1}^{\alpha_{1}} \cdots b_{n}^{\alpha_{n}}(1+\varepsilon)$, where $c \in \mathbb{R}^{*}$ and $\varepsilon \nless 1$.
If $\alpha_{1} \neq 0$, add $\log b_{1}$ to $B$.
Return $\log c+\alpha_{1} \log b_{1}+\cdots+\alpha_{n} b_{n}+\log (1+\varepsilon)$.
case $f=\exp (g)$.
Set $g:=\operatorname{expand}(g)$.
If $l=\lim g \in \mathbb{R}$, return $e^{l} e^{g-l}$.
Test whether $g \asymp \log b_{i}$ for some $2 \leqslant i \leqslant n$.
Yes $\longrightarrow$ return $b_{i}^{l} \operatorname{expand}\left(e^{g-l \log b_{i}}\right)$, where $l=\lim g /\left(\log b_{i}\right)$.
No $\longrightarrow$ add $e^{\left|g^{\dagger}\right|}$ to $B$ and return $\left(e^{\left|g^{\dagger}\right|}\right) \operatorname{sign}(g) e^{g_{0}} e^{g^{\downarrow}}$.
case $f=\varphi(g)$, with $\varphi$ algebraic.
Set $g:=\operatorname{expand}(g)$ and $l:=\lim g$.
If $|l|=\infty$, return $\operatorname{expand}\left(\psi\left(g^{-1}\right)\right)$, where $\psi(z) \stackrel{\text { def }}{=} \varphi\left(z^{-1}\right)$.
If $l \neq 0$, return $\operatorname{expand}(\psi(g-l))$, où $\psi(z) \stackrel{\text { def }}{=} \varphi(z+l)$.
Rewrite $\varphi(z)=z^{\alpha} \psi\left(z^{\beta}\right)$, with $\alpha \in \mathbb{Q}, \beta \in \mathbb{Q}_{+}^{*}$ et $\psi \in \mathbb{R}[[z]]$.
If $\psi \neq 1$, return $\operatorname{expand}\left(g^{\alpha}\right) \psi\left(\operatorname{expand}\left(g^{\beta}\right)\right)$.
Rewrite $g=c \sigma(1+\varepsilon)$, with $c \in \mathbb{R}^{*}, \sigma \in S$ et $\varepsilon \nless 1$.
Return $c^{\alpha} \sigma^{\alpha}\left[(1+z)^{\alpha} \circ \varepsilon\right]$.

Theorem. Let $f$ be an L-function and $B_{0}$ a canonical base containing $x$. Then there exists a canonical base $B=\left\{b_{1}, \ldots, b_{n}\right\} \supseteq$ $B_{0}$, such that $f$ can be rewritten as an $L$-series in $\mathbb{R} \llbracket S \rrbracket^{L}$.

## Proof of the conjecture

Assume $g=(\log x \log \log x)^{i n v} \asymp f$ for an L-function $f$. There exists $B \supseteq\{\log \log x, \log x, x\}$, such that $\log f \in \mathbb{R} \llbracket S \rrbracket^{L}$. Moreover, $(\log f)^{\uparrow}$ is an L-function.
Classical convergent expansion for $\log \log g=\left(x e^{x}\right)^{i n v}$ :
$\log \log g=\log x-\log \log x+\frac{\log \log x}{\log x}+\cdots=\log x+\sum_{n=0}^{\infty} \frac{g_{n}}{\log ^{n} x}$,
with coefficients $g_{n} \in \mathbb{R}[\log \log x]$. Hence

$$
\log \log g \in \mathbb{R} \llbracket \log \log x ; \log x \rrbracket^{c o n v}
$$

and

$$
\log g=\frac{x}{\log x} \exp g^{\downarrow} \in \frac{x}{\log x} \mathbb{R} \llbracket \log \log x ; \log x \rrbracket^{\text {conv }}
$$

is such that

$$
(\log g)^{\uparrow}=\log g
$$

Thus $\log f$ and $\log g$ are both in $\mathbb{R} \llbracket S \rrbracket^{c o n v}$ and

$$
e^{\varphi} \asymp e^{\psi} \Leftrightarrow \varphi^{\uparrow}=\psi^{\uparrow},
$$

for $\varphi, \psi \in \mathbb{R} \llbracket S \rrbracket^{c o n v}$. Hence

$$
f \asymp g \Rightarrow(\log f)^{\uparrow}=(\log g)^{\uparrow}=\log g
$$

whence $(\log f)^{\uparrow}=\log g$ and $g=\exp (\log g)$ are L-functions. Contradiction with Liouville's result.

