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Motivation

Motivation

Motivation

Motivation

Automatic asymptotics and transseries

� Asymptotics of non linear phenomena.

� Systematic theorie.

� E�ective theory ) emphasis on algebraic aspects.

� Analytic properties via via resummation.

Examples

� Asymptotics of the functional inverse of xe

x

for x !

1. Needed for the study of Bell numbers.

� Asymptotic resolution of non linear di�erential equa-

tions like

f

0

f

00

� f

00

2

� e

e

x

f = e

�x

2

:
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Short history

Short history

Short history

Short history

Theory

� Newton (� 1670): formal power series, Newton poly-

gon.

� Puiseux, Briot, Bouquet, Fine, Smith (1850{1900):

extentions and re�nements of Newton polygon method.

� Hardy (1910{1911): generalized asymptotic scales, asymp-

totics of L-series �! Hardy �elds.

�

�

Ecalle (1990{*): Transseries et resummation.

Algorithms

� Shackell (1990{*): nested forms for exp-log functions.

Example:

e

log

2

xe

e

log

3

x(�+o(1))

� Shackell (1991): asymptotic expansions of exp-log func-

tions and (incomplete) algorithm for Liouvillian func-

tions.

� Gonnet, Gruntz (1992): expansions of exp-log func-

tions.

� Richardson (1992{1996): exp-log constants.

� Salvy, Gruntz (1990{1996): implementations in MAPLE.
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Outline

Outline

Outline

Outline

I. Asymptotics of L-functions

II. Transseries: an introduction
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Asymptotics of L-functions

Asymptotics of L-functions

Asymptotics of L-functions

Asymptotics of L-functions

An L-function is a function f constructed from Q and x

by +;�;�; =; exp; log and algebraic functions.

Goal: �nd the expansion of f for x ! 1 (if f is de�ned

at 1).

f

Normal basis B = fb

1

; : : : ; b

n

g

Rewriting g 2 R[[b

1

; : : : ; b

n

]]

L

of f

n

�rst n terms of A.E. of f

The main problems

� Find a suitable asymptotic scale.

� Avoid inde�nite cancellations:

f =

1

1� x

�1

� e

�x

�

1

1� x

�1

(x!1):
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Grid-based series

Grid-based series

Grid-based series

Grid-based series

Asymptotic scales

� S: ordered group (by �� ) of positive germs at in�n-

ity, stable under exponentiation by reals.

� S �nitely generated by B = fb

1

; : : : ; b

n

g, if

S = fb

�

1

1

� � � b

�

n

n

j�

1

; : : : ; �

n

2 Rg;

� B basis, if 1 �� b

1

�� � � � �� b

n

and log b

1

�� � � � �� log b

n

.

� Example: S = fx

�

e

x�

j�; � 2 Rg.

Grid-based series over a �eld C

� C[[S]] = C[[b

1

; � � � ; b

n

]] �eld of series

f = �

0

'(�

1

; : : : ; �

k

);

where ' 2 C[[�

1

; : : : ; �

k

]], �

0

; : : : ; �

k

2 S and

�

i

�� 1 for 1 6 i 6 k.

� Example: e

x

(1� x

�1

� x

�x

)

�1

2 R[[x; e

x

;x

x

]].
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Lexicographical expansions

Lexicographical expansions

Lexicographical expansions

Lexicographical expansions

Lexicographical expansion of f 2 R [[b

1

; � � � ; b

n

]]

f =

X

�

n

2R

f

�

n

b

�

n

n

.

.

.

f

�

n

;::: ;�

2

=

X

�

1

2R

f

�

n

;::: ;�

1

b

�

1

1

:

f

�

n

;::: ;�

i+1

both in R[[b

1

; � � � ; b

i

]] and R[[b

1

; � � � ; b

i�1

]][[b

i

]].

Observation

For each � 2 R , there are only a �nite number of terms in

the expansion of f

�

n

;::: ;�

i+1

with exponent > � in b

i

.

Example

1

(1� x

�1

)(1� e

�x

)

= 1 + x

�1

+ x

�2

+ x

�3

+ � � �

+ e

�x

+ x

�1

e

�x

+ x

�2

e

�x

+ x

�3

e

�x

+ � � �

.

.

.
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Exact representations

Exact representations

Exact representations

Exact representations

Avoiding inde�nite cancellations

Expand lexicographically

f =

1

1� x

�1

� e

�x

�

1

1� x

�1

(x!1)

with respect to e

x

next x. Keep exact representations for

the coe�cients of the expansion in e

�x

.

Constant problem

Richardson: there exists a zero test for \L-constants"

modulo:

Conjecture 1 (Schanuel) If �

1

; � � � ; �

n

2 C are Q -linearly

independent, then

tr deg

Q

Q [�

1

; � � � ; �

n

; e

�

1

; � � � ; e

�

n

] > n:

Germs at +1

VdH: the asymptotic zero test problem for L-functions at

+1 reduces to the constant problem.

Theorem 1 (VdH) There exists an asymptotic expan-

sion algorithm for L-functions modulo Schanuel's conjec-

ture.
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Normal bases

Normal bases

Normal bases

Normal bases

L-series

� R[[S]]

L

: series constructed from L-constants, mono-

mials b

�

i

i

, the �eld operations and left composition of

in�nitesimal L-series by exp z, log(1 + z) or algebraic

series.

� L-series are both expressions and series in R[[S]]

conv

.

� Straightforward expansion algorithm for L-series.

� Iterated coe�cients of L-series again L-series.

B normal basis if

B1. b

1

= log

l

x is an l-th iterated logarithm.

B2. log b

i

2 R[[b

1

; � � � ; b

i�1

]]

L

for all i > 1.

Example:

B = flog x; x; exp[

x

log x�1

]g;

but not

fx; e

e

x

g nor fx; e

x+e

�x

2

; e

x

2

g:

The normal basis B = fb

1

; : : : ; b

n

g is constructed gradu-

ally during the execution of the expansion algorithm. Ini-

tially, B = fxg.
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Algorithm expand

Input: An L-function f .

Output: f rewritten as an L-series in R[[b

1

; : : : ; b

n

]]

L

.

case f 2 R or f = x.

Return f .

case f = g � h; � 2 f+;�;�; =g.

Return expand(g) � expand(h).

case f = log(g).

Set g := expand(g).

Rewrite g = cb

�

1

1

� � � b

�

n

n

(1 + "), where c 2 R

�

and

" �� 1.

If �

1

6= 0, add log b

1

to B.

Return log c+ �

1

log b

1

+ � � �+ �

n

b

n

+ log(1 + ").

case f = exp(g).

Set g := expand(g).

If l = lim g 2 R , return e

l

e

g�l

.

Test whether g � log b

i

for some 2 6 i 6 n.

Yes�! return b

l

i

expand(e

g�l log b

i

), where l = lim g=(log b

i

).

No �!

Decompose g = g

"

+ g

0

+ g

#

, with g

"

= g

0;::: ;0

.

Add e

jg

"

j

to B.

Return (e

jg

"

j

)

sign(g)

e

g

0

e

g

#

.
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case f = '(g), with ' algebraic.

Set g := expand(g) and l := lim g.

jlj=1) return expand( (g

�1

)), where  (z)

def

='(z

�1

).

l 6= 0) return expand( (g�l)), where  (z)

def

='(z+l).

Rewrite '(z)=z

�

 (z

�

) with �2Q ; �2Q

�

+

,  2R [[z]].

 6= 1 ) return expand(g

�

) (expand(g

�

)).

Rewrite g = c�(1 + "), with c 2 R

�

; � 2 S et " �� 1.

Return c

�

�

�

[(1 + z)

�

� "].
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Example 1

Example 1

Example 1

Example 1

f =

1

1� x

�1

� e

�x

�

1

1� x

�1

:

Initialization: B = fb

1

; � � � ; b

n

g := fxg.

e

�x

: since �x 6� log b

1

, insert b

2

:= e

x

 B, whence

B := fx; e

x

g:

f is rewrittent as

f =

1

1� b

�1

1

� b

�1

2

�

1

1� b

�1

1

:

Expansion of f

We �rst expand with respecto to b

2

:

f =

�

1

1� b

�1

1

�

1

1� b

�1

1

�

+

b

�1

2

(1� b

�1

1

)

2

+

b

�2

2

(1� b

�1

1

)

3

+ � � � :

The cancellation (1� b

�1

1

)

�1

� (1� b

�1

1

)

�1

= 0 is detected sym-

bolically.

Transseries for f

f = e

�x

+ 2x

�1

e

�x

+ 3x

�2

e

�x

+ � � �

+ e

�2x

+ 3x

�1

e

�2x

+ 6x

�2

e

�2x

+ � � �

+ e

�3x

+ 4x

�1

e

�3x

+ 10x

�2

e

�3x

+ � � �

+ � � � :
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Example 2

Example 2

Example 2

Example 2

f = log log(xe

xe

x

+ 1)� exp exp(log log x+

1

x

)

Initialization: B = fb

1

; � � � ; b

n

g := fxg.

e

x

: since x 6� log b

1

, insertion e

x

 B, whence

B := fx; e

x

g:

e

xe

x

: Test whether xe

x

= b

1

b

2

� log b

2

= b

1

= x.

No, so e

xe

x

 B and

B := fx; e

x

; e

xe

x

g:

log(xe

xe

x

+ 1): We have xe

xe

x

+ 1 = b

1

b

3

+ 1.

The exponent of b

1

in b

1

b

3

does not vanish, so log x B.

We get

B := flog x; x; e

x

; e

xe

x

g

and

log(xe

xe

x

+ 1) = b

2

b

3

+ b

1

+ log(1 + b

�1

2

b

�1

4

):

log log(xe

xe

x

+ 1): treated similarly. B remains invariant

and

log log(xe

xe

x

+1) = b

2

+b

1

+log[1+b

�1

2

b

�1

3

[b

1

+log(1+b

�1

2

b

�1

4

)]]:
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log x: log x = b

1

.

log log x: Insertion log log x B;

B := flog log x; log x; x; e

x

; e

xe

x

g:

exp(log log x+ x

�1

): log log x+ x

�1

= b

1

+ b

�1

3

!1.

We have b

1

� log b

2

, whence:

exp(log log x+

1

x

) = b

2

e

b

�1

3

;

avec b

�1

3

! 0.

exp exp(log log x+ 1=x): b

2

e

b

�1

3

� log b

3

and

exp exp(log log x+

1

x

) = b

3

exp[b

2

exp b

�1

3

� b

2

];

with b

2

exp b

�1

3

� b

2

! 0.

Expansion for f :

f = b

3

+ b

2

+ log[1 + b

�1

3

b

�1

4

[b

2

+ log(1 + b

�1

3

b

�1

5

)]]

� b

3

exp[b

2

exp b

�1

3

� b

2

];

f = �

log

2

x

2x

�

log x

2x

�

log

3

x

6x

2

�

log

2

x

2x

2

+O

�

log x

x

2

�

.
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Transseries: an introduction

Transseries: an introduction

Transseries: an introduction

Transseries: an introduction

Theorem: VdH/Marker, Macintyre, van den Dries

The asymptotic inverse of log x log log x is not asymptotic to an

L-function.

Goal

Construct a formal �eld of grid-based series R[[[x]]] = R[[C]]

with an exponential exp : R[[[x]]] ! R[[[x]]] and a logarithm

log : R[[[x]]]

+

�

! R[[[x]]].

Analysis: through resummation.

Examples

f

1

= 1 + x

�1

+ x

�2

+ � � �+

e

�x

+ x

�1

e

�x

+ � � �+

e

�2x

+ � � � � � �

f

2

= �

e

�x

2

2x

+

e

�x

2

4x

3

�

e

�x

2

8x

5

+ � � �

�

e

�3x

2

6x

+

e

�3x

2

36x

3

� � � �

�

e

�5x

2

10x

+ � � � � � �

f

3

=

1

x

+

1

x

2

+

1

x

4

+ � � �+

1

e

log

2

x

+

1

e

2 log

2

x

+

2

e

log

2

x

+

2

e

8 log

2

x

� � �

1

e

log

4

x

+ � � � � � �
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Idea behind construction

Idea behind construction

Idea behind construction

Idea behind construction

Closure under exponentiation

Starting with R[[E

0

]] = R[[x

�R

]], construct a sequence

R[[E

0

]] ,! R[[E

1

]] ,! R[[E

2

]] ,! � � �

of �elds, such that the exponential of each element in R[[E

i

]]

is de�ned by R[[E

i+1

]]. Direct limit �! the �eld R

alog

[[[x]]] =

R[[L

0

]] of alogarithmic transseries with a total exponentiation.

Closure under logarithm

Next, construct a second sequence

R[[L

0

]] ,! R[[L

1

]] ,! R[[L

2

]] ,! � � �

of �elds, such that the logarithm of each element in R[[L

i

]]

+

�

is

de�ned in R[[L

i+1

]]. Direct limit �! R[[[x]]].
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Construction of R[[E

1

]]

Each series f 2 R[[x

�1

]] can be decomposed as

f = f

"

+ f

c

+ f

#

=

P

�<0

f

�

x

��

+ f

0

+

P

�>0

f

�

x

��

:

We take

E

1

= x

�R

expR[[x

�1

]]:

So each f 2 R[[x

�1

]] can be written as

f =

X

�

g=

P

�<0

g

�

x

��

f

x

��

e

g
x

��

e

g

:

We take the lexicographical ordering on E

1

:

x

��

e

g

�� 1, g < 0 _ (g = 0 ^ � > 0):

For each f 2 R[[x

�

1]]:

exp f = exp f

"

+ exp f

c

exp f

#

:

Construction of R[[E

i+1

]]

Each series f 2 R[[E

i

]] can be decomposed as

f = f

"

+ f

c

+ f

#

=

P

c �� 1

f

c

c + f

1

+

P

c �� 1

f

c

c:

We take

E

i+1

= x

�R

exp R[[E

i

]];

with the lexicographical ordering. Finally,

L

0

= E

1

= E

0

[ E

1

[ E

2

[ � � � :
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Construction of R[[L

1

]]

We know how to construct R

alog

[[[x]]].

Formally, we can also construct R

alog

[[[ log x]]].

Question: how to embed

R

alog

[[[x]]] ,! R

alog

[[[ log x]]]:

Consider the formal isomorphism

R

alog

[[[x]]] ! R

alog

[[[ log x]]]:

f 7! f � log :

The embedding � restricted to R[[E

0

]] is given by

�(x

�

) = exp(� log x) 2 R[[E

1

� log ]]

on monomials and extended by linearity. For x

�

e

f

2 R[[E

i

]]:

�(x

�

e

f

) = exp(� log x+ �(f)) 2 R[[E

i+1

� log ]];

and we again extend by linearity.

Construction de R[[[x]]]

We take the inductive sequence of the sequence

R[[x]] ,! R[[ log x]] ,! R[[ log

2

x]] ,! � � � :

Remark

Alternatively, one �rst closes under log and next under exp.
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Structure theorem

Structure theorem

Structure theorem

Structure theorem

B � C normal basis if

B1. b

1

= log

l

x is an l-th iterated logarithm.

B2. log b

i

2 R[[b

1

; � � � ; b

i�1

]] for all i > 1.

Theorem 2 (Structure theorem) Let f be a transseries and

let B

0

be a normal basis. Then there exists a normal basis B �

B

0

, such that f 2 R[[B]].

Closure properties

Closure properties

Closure properties

Closure properties

R [[[x]]] closed under

� Di�erentiation.

� Integration.

� Functional composition.

� Functional inversion.
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Derivation with respect to x

Derivation with respect to x

Derivation with respect to x

Derivation with respect to x

Case f 2 R[[E

0

]]

f

0

=

 

X

�2R

f

�

x

��

!

0

=

�1

x

X

�2R

�f

�

x

��

:

Case f 2 R[[E

k+1

]] (k = 0; 1; � � � )

f

0

=

0

B

@

X

c2x

�R

exp(R [[E

k

]]

"

)

f

c

c

1

C

A

0

=

X

c2exp(R[[E

k

]]

"

)

f

c

(log c)

0

c:

f

0

is well de�ned:

supp f � c

N�p

1

� � �c

N�p

n

= C )

supp f

0

� (supp log c

1

[ � � � [ supp log c

n

)C:

General case

Extend the derivation to R[[[x]]] using

(f � log x)

0

=

f

0

� log x

x

:

Yes, we got a derivation

Linearity: trivial.

Observation: (e

f

)

0

= f

0

e

f

for transmonomials e

f

.

Hence, for transmonomials e

f

; e

g

:

(e

f

e

g

)

0

= (e

f+g

)

0

= (f+g)

0

e

f+g

= f

0

e

f

e

g

+g

0

e

f

e

g

= (e

f

)

0

e

g

+e

f

(e

g

)

0

:

General case: bilinearity.
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Linear di�erential equations

Linear di�erential equations

Linear di�erential equations

Linear di�erential equations

Lh = L

r

h

(r)

+ � � �+ L

0

h = 0:

Classical result: L

0

; : : : ; L

r

2 C [[z]]

9 basis of formal solutions of the form

h = (h

r�1

log

r�1

z + � � �+ h

0

)e

�z

e

P (

p

p

z

�1

)

;

where p 2 N

�

; h

0

; : : : ; h

r

2 C [[

p

p

z]]; � 2 C and

P 2 C [

p

p

z

�1

] without constant term.

Generalization: L

0

; : : : ; L

r

2 C

alog

[[[x]]]

Notation: C

alog

[[[x]]] = R

alog

[[[x]]]+ iR

alog

[[[x]]].

9 basis of formal solutions of the form

h = (h

r�1

log

r�1

x+ � � �+ h

0

)e

'

;

where h

0

; : : : ; h

r

2 C

alog

[[[x]]] and ' 2 iR

alog

[[[x]]].

Algebraic di�erential equations

Algebraic di�erential equations

Algebraic di�erential equations

Algebraic di�erential equations

Intermediate value theorem

P : algebraic di�erential polynomial with coe�cients in R[[[x]]].

Assume that P (f) < 0 and P (g) > 0 for f < g in R[[[x]]].

Then 9h 2 R[[[x]]] with f < h < g and P (h) = 0.
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