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Motivation

Automatic asymptotics and transseries
— Asymptotics of non linear phenomena.

— Systematic theorie.
— Effective theory = emphasis on algebraic aspects.

— Analytic properties via via resummation.

Examples
— Asymptotics of the functional inverse of ze” for z —

00. Needed for the study of Bell numbers.

— Asymptotic resolution of non linear differential equa-

tions like

xr

F f//2 e f = T



Short history

Theory
— Newton (£ 1670): formal power series, Newton poly-

gon.

— Puiseux, Briot, Bouquet, Fine, Smith (1850-1900):
extentions and refinements of Newton polygon method.

— Hardy (1910-1911): generalized asymptotic scales, asymp-
totics of L-series — Hardy fields.

— Ecalle (1990—*): Transseries et resummation.

Algorithms
— Shackell (1990—*): nested forms for exp-log functions.

Example:

Jlog? peelos” e(mo(D)

— Shackell (1991): asymptotic expansions of exp-log func-
tions and (incomplete) algorithm for Liouvillian func-

tions.

— Gonnet, Gruntz (1992): expansions of exp-log func-

tions.
— Richardson (1992-1996): exp-log constants.

— Salvy, Gruntz (1990-1996): implementations in MAPLE.



Outline

I. Asymptotics of L-functions

II. 'Transseries: an introduction



Asymptotics of L-functions

An L-function is a function f constructed from Q and =z
by +, —, X, /,exp,log and algebraic functions.

Goal: find the expansion of f for x — oo (if f is defined
at 00).

n

|

Normal basis B = {by,... ,b,}
Rewriting g € RIby,...,b,T% of f

l

first n terms of A.E. of f

The main problems
— Find a suitable asymptotic scale.

— Avoid indefinite cancellations:

1 1
le—:z:—l— 11—z ! (= o).




Grid-based series

Asymptotic scales
— S: ordered group (by =K ) of positive germs at infin-

ity, stable under exponentiation by reals.
— S finitely generated by B = {by,... ,b,}, if

S = {b% - by, ... oy € R},

— Bbasis,ifl < by < --- K byandlogb; < --- < logb,.

— Example: S = {z%*"|a, 3 € R}.

Grid-based series over a field C
— CILST =C1Mby;--- ;b1 field of series

f = OO(p(Ul,... ,O'k),

where ¢ € Clloy,... ,0k]], 00,... ,0k €S and
o; <X 1lforl <<k

— Example: e®(1 — 27! —27%)"! € R[Lx; e®; 2*].



Lexicographical expansions

Lexicographical expansion of f € R[by;--- ;b,1
f — Z fanbf:"
oan€ER

f@npn,ag — j{: fanr”,alb?lo

a1 €ER

f&nrn,ai+1tﬂﬂﬂlﬂlﬁgmb1;°°°;bi] axuiﬂ%ﬁbl;---;bﬁ_lﬂ Ebi]-

Observation
For each 8 € R, there are only a finite number of terms in

the expansion of f,, ... a;;, With exponent > [ in b;.

Example
1

T -1 -2 -3 ..
(1—x—1)(1—e—$) +xr "+ “+x T+

+ e T4 leT e e 4



Exact representations

Avoiding indefinite cancellations
Expand lexicographically

1 1
le—a:—l— 11—zt (z = o)

with respect to e* next x. Keep exact representations for

T

the coeflicients of the expansion in e™%.

Constant problem
Richardson: there exists a zero test for “L-constants”
modulo:

Conjecture 1 (Schanuel) Ifay,--- ,a, € C are Q-linearly
independent, then

trdegg Qlay, -+, an, e, - e > n.

Germs at +oo
VdH: the asymptotic zero test problem for L-functions at
+00 reduces to the constant problem.

Theorem 1 (VAH) There exists an asymptotic expan-
siton algorithm for L-functions modulo Schanuel’s conjec-
ture.



Normal bases

L-series

— REISTE: series constructed from L-constants, mono-
mials b;", the field operations and left composition of
infinitesimal L-series by exp z, log(1 + z) or algebraic

series.
— L-series are both expressions and series in R[ST “°™".
— Straightforward expansion algorithm for L-series.
— Iterated coefficients of L-series again L-series.
B normal basis if

Bl. by = log; z is an [-th iterated logarithm.

B2. logb; € RIby;--- ;b;_11* for all i > 1.

Example:
B = {logz, z, exp|;7—]}
but not ] .
{z,e® } nor {z, et e}
The normal basis B = {b1,...,b,} is constructed gradu-

ally during the execution of the expansion algorithm. Ini-
tially, B = {z}.



ALGORITHM expand

INPUT: An L-function f.

OuTPUT: f rewritten as an L-series in R[bq,... ,b,1 L

case f € Ror f = x.
Return f.

case f=¢g0Oh, Oe{+,—,x,/}
Return expand(g) O expand(h).

case f =log(g).
Set g := expand(g).
Rewrite g = ¢b{* ---b%"(1 + €), where ¢ € R* and
e < 1.
If a; #0, add logby to B.
Return log ¢+ a; logby + - - - + a by, + log(1 + €).

case f =exp(g).
Set g := expand(g).
If ] =limg € R, return e'ed".
Test whether g < log b; for some 2 <7 < n.
Yes — return blexpand(ed—'1°8%) where | = lim g/(log b;).
No —

Decompose g = g1 + go + g+, with ¢T = go.. 0.
Add e|9T| to B.
l

Return (e|g}r | )sign(g) e90e9"
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case f = p(g), with ¢ algebraic.
Set g := expand(g) and [ := lim g.
1| =00 = return expand(¢)(g 1)), where ¢(2) = (2~ 1).
| # 0 = return expand (¢ (g—1)), where 1(2) = p(z+1).

Rewrite ¢(z) =2%(2°) with a€Q, B€Q*, Y € R[[2]].
Y # 1 = return expand(g®)y(expand(g°)).

Rewrite g = co(1 +¢), withc e R*,0 € Set ¢ < 1.
Return c¢®o®[(1 4 2)* o ¢].

11



Example 1

1 1
f_l—a:—l— C1—g U

Initialization: B = {by,--- ,b,} :={x}.

— X

: since —x % log by, insert by := €* ~» B, whence

B :={z,e"}.

€

f is rewrittent as

f 1 1

T e e

Expansion of f
We first expand with respecto to bs:

1 1 by b, 2
= = + + +o
d (1 —bt 1- b;1> (=077 (=67
The cancellation (1 —b;1)™' — (1 — b, 1)~ = 0 is detected sym-
bolically.

Transseries for f

e T4+ 2 le 4 3 2T 4 ...

-
I

6_23: _|_ 3.T_1€_2$ _|_ 651,’_26_296 _|_ e

6—333 + 4$—16—3w + 10x—26—3m 4o

+ 4+ +
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Example 2

z 1
f =loglog(xe®® + 1) — expexp(loglogz + 5)

Initialization: B = {b1,---,b,} := {z}.

€T

e”: since = %4 log by, insertion e® ~» B, whence

B :={z,e"}.
e . Test whether ze® = byby < logby = b1 = .
No, so e*¢" ~» B and
B:={z, €%, e* }.
log(ze®™” 4 1): We have ze®® + 1 = bibs + 1.
The exponent of by in b1b3 does not vanish, so logz ~~ B.

We get
B :={logx,x,e”, e””ew}

and

log(xe®®” + 1) = babs + by + log(1 + by b t).

log log(ze™ +1): treated similarly. B remains invariant
and

log log(ze® +1) = by4by+log[1+by b3 by +log(14by 1o 1)]].
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log x: logx = by.
log log z: Insertion loglog x ~~ B;

B :={loglog z,log x, x, e”, e }

exp(loglogz + 27 1): loglogz + 27! = by + b3 ' — 0.
We have b; =< log b, whence:

exp(loglogz + I) = boels
avec by - — 0.
expexp(loglog z + 1/2): bee®s =< logbs and
exp exp(loglog x + %) — by explby exp by ' — by],

with by exp by b — by — 0.

Expansion for f:

f = bz +by+log[l+ b3 by [ba +log(1+ b3 b5 )]
—  byexplbyexpbz ' — bol,

f=

2x 2x 622 212

_10g2a: logz log®x 10g2a:+0(10ga:>
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Transseries: an introduction

Theorem: VdH /Marker, Macintyre, van den Dries

The asymptotic inverse of log x loglog = is not asymptotic to an
L-function.

Goal

Construct a formal field of grid-based series R[[Lxll = RIIL]
with an exponential exp : RILxll — RIxIl and a logarithm
log : RMzIl] — RMzI.

Analysis: through resummation.

Examples

fi=l4at4+z72+- 4
et +a e 4+

6_233 _|_ ......
2 2 2
_ e " e ® e ®
f2 — 2T + 43 8x5 +
. 6—3:02 6—3:02
6x 36x3
—5x
— 102 _|_ ......
1 1 1
f3—;‘|—p‘|—y—|—"'—|—
1 1 2 2
log2 T —|_ e2 log2 T —|_ elog2 T —|_ eS8 log2 T
1
el s _|_ ......
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Idea behind construction

Closure under exponentiation
Starting with RLEy] = RLz X1, construct a sequence

RIE] — RLE;D — RLE2] < - -

of fields, such that the exponential of each element in RI[F;]l

is defined by RLE;,11. Direct limit — the field R¥°9 [[z1l =
RI Lol of alogarithmic transseries with a total exponentiation.

Closure under logarithm

Next, construct a second sequence
RILLol < RLL1 1 <= RLL2I < ---

of fields, such that the logarithm of each element in R[ L1 i
defined in RLCL;+11. Direct limit — R x1.

n
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Construction of R[E;]
Each series f € RLz '] can be decomposed as
f=1r + f° 4+ fr=
za<o fox™ + fo + Za>0 fax™c.

We take
Ei =z RexpRIz 7.

So each f € RLz '] can be written as

[ = Z Jo—aesx “eY.
g=Zg<O; gsz?
We take the lexicographical ordering on Ej:
7% K1 g<0V (g=0 A a>0).
For each f e R[x~1]1:
exp f = exp f1 + exp fCexp f+.

Construction of R[F;, ]
Each series f € RLE;] can be decomposed as

fo=f + fC+ fr=
zu»yfun + fi + Zu«yfuﬂ-

We take
Ei_|_1 = iE_R epr[[Ez]] ;

with the lexicographical ordering. Finally,

Lo=F. =E,UE,UE,U---.

17



Construction of R[ L]
We know how to construct R*°9 [[210.
Formally, we can also construct R*°9 [[ log «1I.

Question: how to embed
R°9 [[2T] — R [ log =10
Consider the formal isomorphism

R¥I Mzl — R*9[Tlogzl.
f — folog.

The embedding ¢ restricted to RLEy]l is given by
v(x®) = exp(alogz) € RLE; ologl
on monomials and extended by linearity. For z%e/ € R[E;]1:
W(x%e’) = exp(alogz + u(f)) € R[E;;1 ologT,

and we again extend by linearity.

Construction de Rzl

We take the inductive sequence of the sequence

Rzl — RLlogall — RMlogs ] — ---.

Remark
Alternatively, one first closes under log and next under exp.
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Structure theorem

B C II normal basis if

Bl. by = log; « is an [-th iterated logarithm.

B2. logb; € R[by;--- ;b;—11 for all ¢ > 1.

Theorem 2 (Structure theorem) Let f be a transseries and

let By be a normal basis. Then there exists a normal basis B D
By, such that f € RLCB].

Closure properties

RIIxzIl closed under

— Differentiation.
— Integration.
— Functional composition.

— Functional inversion.

19



Derivation with respect to «

Case f € R[LEp]

f — (Zfoz ) — xl ROéfal’_a.
ac

a€eR
Case f €e R[Fy 11 (kK=0,1,---)

/

fh= Z full | = Z fu(logm)'m.

ncx—R exp(R[[Ek]] T) U;Eexp(RI]:Ek]] T)

f" is well defined:

suppf C m Pooemy P=11 =

supp f° C (supp logm U---Usupp logm,)IL.
General case

Extend the derivation to R[Ix1l using

f’ologa:

(fologa) = —

Yes, we got a derivation
Linearity: trivial.
Observation: (ef)’ = f’e/ for transmonomials e/ .

Hence, for transmonomials e/, e9:
(efe9) = (e 19) = (f+g) el ™9 = flefedtg'efed = (ef) eI4ef (e9).

General case: bilinearity.
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Linear differential equations

Lh=L.h") +... 4+ Lyh = 0.

Classical result: Ly,..., L, € C[[z]]

4 basis of formal solutions of the form
h=(he_1log" ' 2 4 -+ hg)eel (V=)

where p € N* hg, ..., h,. € C[[¥/2]],a« € C and
P € C[V z~1] without constant term.

Generalization: Lg,..., L, € C*°9 []l
Notation: C*°9 [[x1] = R*°9 [[z1 + iR*°9 [[z10.
4 basis of formal solutions of the form

h=(hp_ilog" ‘& +- 4 ho)e?,

where hg, ..., h, € C¥°9 [[z]] and ¢ € iR*°9 [[z]].

Algebraic differential equations

Intermediate value theorem
P: algebraic differential polynomial with coefficients in R[Lz1l .

Assume that P(f) <0 and P(g) > 0 for f < g in R[[z10.
Then dh € RIx1l with f < h < g and P(h) = 0.
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