Introduction to automatic asymptotics

CNRS

Université d'Orsay, France
email: vdhoeven@math.u-psud.fr
web: http://ultralix.polytechnique.fr/~vdhoeven
$\langle\infty$

MSRI, Berkeley, 16-10-1998

Motivation

Automatic asymptotics and transseries

- Asymptotics of non linear phenomena.
- Systematic theorie.
- Effective theory \Rightarrow emphasis on algebraic aspects.
- Analytic properties via via resummation.

Examples

- Asymptotics of the functional inverse of $x e^{x}$ for $x \rightarrow$ ∞. Needed for the study of Bell numbers.
- Asymptotic resolution of non linear differential equations like

$$
f^{\prime} f^{\prime \prime}-f^{\prime \prime 2}-e^{e^{x}} f=e^{-x^{2}}
$$

Short history

Theory

- Newton (± 1670): formal power series, Newton polygon.
- Puiseux, Briot, Bouquet, Fine, Smith (1850-1900): extentions and refinements of Newton polygon method.
- Hardy (1910-1911): generalized asymptotic scales, asymptotics of L-series \longrightarrow Hardy fields.
- Écalle (1990-*): Transseries et resummation.

Algorithms

- Shackell (1990-*): nested forms for exp-log functions. Example:

$$
e^{\log ^{2} x e^{\log ^{3} x(\pi+o(1))}}
$$

- Shackell (1991): asymptotic expansions of exp-log functions and (incomplete) algorithm for Liouvillian functions.
- Gonnet, Gruntz (1992): expansions of exp-log functions.
- Richardson (1992-1996): exp-log constants.
- Salvy, Gruntz (1990-1996): implementations in MAPLE.

Outline

I. Asymptotics of L-functions
 II. Transseries: an introduction

Asymptotics of L-functions

An L-function is a function f constructed from \mathbb{Q} and x by,,$+- \times, /$, exp, \log and algebraic functions.
Goal: find the expansion of f for $x \rightarrow \infty$ (if f is defined at ∞).

The main problems

- Find a suitable asymptotic scale.
- Avoid indefinite cancellations:

$$
f=\frac{1}{1-x^{-1}-e^{-x}}-\frac{1}{1-x^{-1}}(x \rightarrow \infty)
$$

Grid-based series

Asymptotic scales

- S : ordered group (by $<$) of positive germs at infinity, stable under exponentiation by reals.
- S finitely generated by $B=\left\{b_{1}, \ldots, b_{n}\right\}$, if

$$
S=\left\{b_{1}^{\alpha_{1}} \cdots b_{n}^{\alpha_{n}} \mid \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}\right\}
$$

$-B$ basis, if $1 \nless b_{1} \nless \cdots \nless b_{n}$ and $\log b_{1} \nless \cdots \nless \log b_{n}$.

- Example: $S=\left\{x^{\alpha} e^{x \beta} \mid \alpha, \beta \in \mathbb{R}\right\}$.

Grid-based series over a field C
$-C \llbracket S \rrbracket=C \llbracket b_{1} ; \cdots ; b_{n} \rrbracket$ field of series

$$
f=\sigma_{0} \varphi\left(\sigma_{1}, \ldots, \sigma_{k}\right),
$$

where $\varphi \in C\left[\left[\sigma_{1}, \ldots, \sigma_{k}\right]\right], \sigma_{0}, \ldots, \sigma_{k} \in S$ and $\sigma_{i} \nless 1$ for $1 \leqslant i \leqslant k$.

- Example: $e^{x}\left(1-x^{-1}-x^{-x}\right)^{-1} \in \mathbb{R} \llbracket x ; e^{x} ; x^{x} \rrbracket$.

Lexicographical expansions

Lexicographical expansion of $f \in \mathbb{R} \mathbb{L} b_{1} ; \cdots ; b_{n} \mathbb{\rrbracket}$

$$
f=\sum_{\alpha_{n} \in \mathbb{R}} f_{\alpha_{n}} b_{n}^{\alpha_{n}}
$$

$$
f_{\alpha_{n}, \ldots, \alpha_{2}}=\sum_{\alpha_{1} \in \mathbb{R}} f_{\alpha_{n}, \ldots, \alpha_{1}} \alpha_{1}^{\alpha_{1}} .
$$

$f_{\alpha_{n}, \ldots, \alpha_{i+1}}$ both in $\mathbb{R} \llbracket b_{1} ; \cdots ; b_{i} \rrbracket$ and $\mathbb{R} \mathbb{L} b_{1} ; \cdots ; b_{i-1} \mathbb{\mathbb { L }} b_{i} \rrbracket$.

Observation

For each $\beta \in \mathbb{R}$, there are only a finite number of terms in the expansion of $f_{\alpha_{n}, \ldots, \alpha_{i+1}}$ with exponent $>\beta$ in b_{i}.

Example
$\frac{1}{\left(1-x^{-1}\right)\left(1-e^{-x}\right)}=1+x^{-1}+x^{-2}+x^{-3}+\cdots$

$$
+e^{-x}+x^{-1} e^{-x}+x^{-2} e^{-x}+x^{-3} e^{-x}+\cdots
$$

Exact representations

Avoiding indefinite cancellations

Expand lexicographically

$$
f=\frac{1}{1-x^{-1}-e^{-x}}-\frac{1}{1-x^{-1}}(x \rightarrow \infty)
$$

with respect to e^{x} next x. Keep exact representations for the coefficients of the expansion in e^{-x}.

Constant problem

Richardson: there exists a zero test for "L-constants" modulo:

Conjecture 1 (Schanuel) If $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$ are \mathbb{Q}-linearly independent, then

$$
\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left[\alpha_{1}, \cdots, \alpha_{n}, e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}\right] \geqslant n
$$

Germs at $+\infty$

VdH : the asymptotic zero test problem for L-functions at $+\infty$ reduces to the constant problem.

Theorem $1(\mathbf{V d H})$ There exists an asymptotic expansion algorithm for L-functions modulo Schanuel's conjecture.

Normal bases

L-series

$-\mathbb{R} \llbracket S \rrbracket^{L}$: series constructed from L-constants, monomials $b_{i}^{\alpha_{i}}$, the field operations and left composition of infinitesimal L-series by $\exp z, \log (1+z)$ or algebraic series.

- L-series are both expressions and series in $\mathbb{R} \llbracket S \rrbracket^{\text {conv }}$.
- Straightforward expansion algorithm for L-series.
- Iterated coefficients of L-series again L-series.

B normal basis if

B1. $b_{1}=\log _{l} x$ is an l-th iterated logarithm.
B2. $\log b_{i} \in \mathbb{R} \llbracket b_{1} ; \cdots ; b_{i-1} \rrbracket^{L}$ for all $i>1$.
Example:

$$
B=\left\{\log x, x, \exp \left[\frac{x}{\log x-1}\right]\right\},
$$

but not

$$
\left\{x, e^{e^{x}}\right\} \quad \text { nor } \quad\left\{x, e^{x+e^{-x^{2}}}, e^{x^{2}}\right\}
$$

The normal basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is constructed gradually during the execution of the expansion algorithm. Initially, $B=\{x\}$.

Algorithm expand

Input: An L-function f.
Output: f rewritten as an L-series in $\mathbb{R} \llbracket b_{1}, \ldots, b_{n} \rrbracket^{L}$.
case $f \in \mathbb{R}$ or $f=x$.
Return f.
case $f=g \square h, \quad \square \in\{+,-, \times, /\}$.
Return $\operatorname{expand}(g) \square \operatorname{expand}(h)$.
case $f=\log (g)$.
Set $g:=\operatorname{expand}(g)$.
Rewrite $g=c b_{1}^{\alpha_{1}} \cdots b_{n}^{\alpha_{n}}(1+\varepsilon)$, where $c \in \mathbb{R}^{*}$ and $\varepsilon \nless 1$.
If $\alpha_{1} \neq 0$, add $\log b_{1}$ to B.
Return $\log c+\alpha_{1} \log b_{1}+\cdots+\alpha_{n} b_{n}+\log (1+\varepsilon)$.
case $f=\exp (g)$.
Set $g:=\operatorname{expand}(g)$.
If $l=\lim g \in \mathbb{R}$, return $e^{l} e^{g-l}$.
Test whether $g \asymp \log b_{i}$ for some $2 \leqslant i \leqslant n$.
Yes \longrightarrow return $b_{i}^{l} \operatorname{expand}\left(e^{g-l \log b_{i}}\right)$, where $l=\lim g /\left(\log b_{i}\right)$.
No \longrightarrow
Decompose $g=g^{\uparrow}+g_{0}+g^{\downarrow}$, with $g^{\uparrow}=g_{0, \ldots, 0}$. Add $e^{\left|g^{\uparrow}\right|}$ to B.
Return $\left(e^{\left|g^{\uparrow}\right|} \mid\right)^{\operatorname{sign}(g)} e^{g_{0}} e^{g^{\downarrow}}$.
case $f=\varphi(g)$, with φ algebraic.
Set $g:=\operatorname{expand}(g)$ and $l:=\lim g$.
$|l|=\infty \Rightarrow \operatorname{return} \operatorname{expand}\left(\psi\left(g^{-1}\right)\right)$, where $\psi(z) \stackrel{\text { def }}{=} \varphi\left(z^{-1}\right)$.
$l \neq 0 \Rightarrow$ return $\operatorname{expand}(\psi(g-l))$, where $\psi(z) \stackrel{\text { def }}{=} \varphi(z+l)$.

Rewrite $\varphi(z)=z^{\alpha} \psi\left(z^{\beta}\right)$ with $\alpha \in \mathbb{Q}, \beta \in \mathbb{Q}_{+}^{*}, \psi \in \mathbb{R}[[z]]$. $\psi \neq 1 \Rightarrow \operatorname{return} \operatorname{expand}\left(g^{\alpha}\right) \psi\left(\operatorname{expand}\left(g^{\beta}\right)\right)$.
Rewrite $g=c \sigma(1+\varepsilon)$, with $c \in \mathbb{R}^{*}, \sigma \in S$ et $\varepsilon \nless 1$. Return $c^{\alpha} \sigma^{\alpha}\left[(1+z)^{\alpha} \circ \varepsilon\right]$.

$$
f=\frac{1}{1-x^{-1}-e^{-x}}-\frac{1}{1-x^{-1}} .
$$

Initialization: $B=\left\{b_{1}, \cdots, b_{n}\right\}:=\{x\}$.
$e^{-x}:$ since $-x \nprec \log b_{1}$, insert $b_{2}:=e^{x} \rightsquigarrow B$, whence

$$
B:=\left\{x, e^{x}\right\} .
$$

f is rewrittent as

$$
f=\frac{1}{1-b_{1}^{-1}-b_{2}^{-1}}-\frac{1}{1-b_{1}^{-1}} .
$$

Expansion of f

We first expand with respecto to b_{2} :

$$
f=\left(\frac{1}{1-b_{1}^{-1}}-\frac{1}{1-b_{1}^{-1}}\right)+\frac{b_{2}^{-1}}{\left(1-b_{1}^{-1}\right)^{2}}+\frac{b_{2}^{-2}}{\left(1-b_{1}^{-1}\right)^{3}}+\cdots .
$$

The cancellation $\left(1-b_{1}^{-1}\right)^{-1}-\left(1-b_{1}^{-1}\right)^{-1}=0$ is detected symbolically.

Transseries for f

$$
\begin{aligned}
f & =e^{-x}+2 x^{-1} e^{-x}+3 x^{-2} e^{-x}+\cdots \\
& +e^{-2 x}+3 x^{-1} e^{-2 x}+6 x^{-2} e^{-2 x}+\cdots \\
& +e^{-3 x}+4 x^{-1} e^{-3 x}+10 x^{-2} e^{-3 x}+\cdots \\
& +\cdots .
\end{aligned}
$$

Example 2

$$
f=\log \log \left(x e^{x e^{x}}+1\right)-\exp \exp \left(\log \log x+\frac{1}{x}\right)
$$

Initialization: $B=\left\{b_{1}, \cdots, b_{n}\right\}:=\{x\}$.
$e^{x}:$ since $x \nprec \log b_{1}$, insertion $e^{x} \rightsquigarrow B$, whence

$$
B:=\left\{x, e^{x}\right\}
$$

$e^{x e^{x}}$: Test whether $x e^{x}=b_{1} b_{2} \asymp \log b_{2}=b_{1}=x$.
No, so $e^{x e^{x}} \rightsquigarrow B$ and

$$
B:=\left\{x, e^{x}, e^{x e^{x}}\right\} .
$$

$\log \left(x e^{x e^{x}}+1\right)$: We have $x e^{x e^{x}}+1=b_{1} b_{3}+1$.
The exponent of b_{1} in $b_{1} b_{3}$ does not vanish, so $\log x \rightsquigarrow B$.
We get

$$
B:=\left\{\log x, x, e^{x}, e^{x e^{x}}\right\}
$$

and

$$
\log \left(x e^{x e^{x}}+1\right)=b_{2} b_{3}+b_{1}+\log \left(1+b_{2}^{-1} b_{4}^{-1}\right) .
$$

$\log \log \left(x e^{x e^{x}}+1\right)$: treated similarly. B remains invariant and

$$
\log \log \left(x e^{x e^{x}}+1\right)=b_{2}+b_{1}+\log \left[1+b_{2}^{-1} b_{3}^{-1}\left[b_{1}+\log \left(1+b_{2}^{-1} b_{4}^{-1}\right)\right]\right] .
$$

$\log x: \log x=b_{1}$.
$\log \log x:$ Insertion $\log \log x \rightsquigarrow B ;$

$$
B:=\left\{\log \log x, \log x, x, e^{x}, e^{x e^{x}}\right\} .
$$

$\exp \left(\log \log x+x^{-1}\right): \log \log x+x^{-1}=b_{1}+b_{3}^{-1} \rightarrow \infty$.
We have $b_{1} \asymp \log b_{2}$, whence:

$$
\exp \left(\log \log x+\frac{1}{x}\right)=b_{2} e^{b_{3}^{-1}},
$$

avec $b_{3}^{-1} \rightarrow 0$.
$\exp \exp (\log \log x+1 / x): b_{2} e^{b_{3}^{-1}} \asymp \log b_{3}$ and

$$
\exp \exp \left(\log \log x+\frac{1}{x}\right)=b_{3} \exp \left[b_{2} \exp b_{3}^{-1}-b_{2}\right],
$$

with $b_{2} \exp b_{3}^{-1}-b_{2} \rightarrow 0$.

Expansion for f :

$$
\begin{aligned}
f & =b_{3}+b_{2}+\log \left[1+b_{3}^{-1} b_{4}^{-1}\left[b_{2}+\log \left(1+b_{3}^{-1} b_{5}^{-1}\right)\right]\right] \\
& -b_{3} \exp \left[b_{2} \exp b_{3}^{-1}-b_{2}\right],
\end{aligned}
$$

$$
f=-\frac{\log ^{2} x}{2 x}-\frac{\log x}{2 x}-\frac{\log ^{3} x}{6 x^{2}}-\frac{\log ^{2} x}{2 x^{2}}+O\left(\frac{\log x}{x^{2}}\right)
$$

Transseries: an introduction

Theorem: VdH/Marker, Macintyre, van den Dries The asymptotic inverse of $\log x \log \log x$ is not asymptotic to an L-function.

Goal

Construct a formal field of grid-based series $\mathbb{R} \llbracket x \mathbb{\rrbracket}=\mathbb{R} \llbracket \amalg \rrbracket$ with an exponential exp : $\mathbb{R} \mathbb{I} x \mathbb{\mathbb { l }} \rightarrow \mathbb{R} \mathbb{I} x \mathbb{\mathbb { l }}$ and a logarithm $\log : \mathbb{R} \mathbb{M} x \mathbb{\rrbracket}_{*}^{+} \rightarrow \mathbb{R} \mathbb{M} x \mathbb{\mathbb { l }}$.
Analysis: through resummation.

Examples

$$
\begin{aligned}
f_{1}= & 1+x^{-1}+x^{-2}+\cdots+ \\
& e^{-x}+x^{-1} e^{-x}+\cdots+ \\
& e^{-2 x}+\cdots \cdots \\
f_{2}= & -\frac{e^{-x^{2}}}{2 x}+\frac{e^{-x^{2}}}{4 x^{3}}-\frac{e^{-x^{2}}}{8 x^{5}}+\cdots \\
& -\frac{e^{-3 x^{2}}}{6 x}+\frac{e^{-3 x^{2}}}{36 x^{3}}-\cdots \\
& -\frac{e^{-5 x^{2}}}{10 x}+\cdots \cdots \\
f_{3}= & \frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{4}}+\cdots+ \\
& \frac{1}{e^{\log ^{2} x}}+\frac{1}{e^{2 \log ^{2} x}}+\frac{2}{e^{\log ^{2} x}}+\frac{2}{e^{8 \log ^{2} x}} \cdots
\end{aligned}
$$

Idea behind construction

Closure under exponentiation

Starting with $\mathbb{R} \llbracket E_{0} \rrbracket=\mathbb{R} \llbracket x^{-\mathbb{R}} \rrbracket$, construct a sequence

$$
\mathbb{R} \mathbb{L} E_{0} \rrbracket \hookrightarrow \mathbb{R} \llbracket E_{1} \rrbracket \hookrightarrow \mathbb{R} \llbracket E_{2} \rrbracket \hookrightarrow \cdots
$$

of fields, such that the exponential of each element in $\mathbb{R} \mathbb{L} E_{i} \rrbracket$ is defined by $\mathbb{R} \llbracket E_{i+1} \mathbb{\rrbracket}$. Direct limit \longrightarrow the field $\mathbb{R}^{\text {alog }} \mathbb{K} x \mathbb{\mathbb { l }}=$ $\mathbb{R} \llbracket L_{0} \rrbracket$ of alogarithmic transseries with a total exponentiation.

Closure under logarithm

Next, construct a second sequence

$$
\mathbb{R} \llbracket L_{0} \rrbracket \hookrightarrow \mathbb{R} \llbracket L_{1} \rrbracket \hookrightarrow \mathbb{R} \llbracket L_{2} \rrbracket \hookrightarrow \cdots
$$

of fields, such that the logarithm of each element in $\mathbb{R} \mathbb{C} L_{i} \mathbb{D}_{*}^{+}$is defined in $\mathbb{R} \mathbb{C} L_{i+1} \mathbb{\rrbracket}$. Direct limit $\longrightarrow \mathbb{R} \mathbb{L} x \mathbb{\rrbracket}$.

Construction of $\mathbb{R} \llbracket E_{1} \rrbracket$
Each series $f \in \mathbb{R} \llbracket x^{-1} \rrbracket$ can be decomposed as

$$
\begin{aligned}
& f=f^{\uparrow} \quad+f^{c}+\quad f^{\downarrow}= \\
& \sum_{\alpha<0} f_{\alpha} x^{-\alpha}+f_{0}+\sum_{\alpha>0} f_{\alpha} x^{-\alpha} .
\end{aligned}
$$

We take

$$
E_{1}=x^{-\mathbb{R}} \exp \mathbb{R} \llbracket x^{-1} \rrbracket .
$$

So each $f \in \mathbb{R} \llbracket x^{-1} \rrbracket$ can be written as

$$
f=\sum_{\substack{\alpha \\ g=\sum_{\beta<0} g_{\beta} x^{-\beta}}} f_{x^{-\alpha} e^{g} g} x^{-\alpha} e^{g} .
$$

We take the lexicographical ordering on E_{1} :

$$
x^{-\alpha} e^{g} \nless 1 \Leftrightarrow g<0 \vee(g=0 \wedge \alpha>0) .
$$

For each $f \in \mathbb{R} \llbracket x^{-} 1 \rrbracket$:

$$
\exp f=\exp f^{\uparrow}+\exp f^{c} \exp f^{\downarrow}
$$

Construction of $\mathbb{R} \llbracket E_{i+1} \rrbracket$
Each series $f \in \mathbb{R} \llbracket E_{i} \rrbracket$ can be decomposed as

$$
\begin{array}{rlrl}
f= & f^{\uparrow} & +f^{c}+c \quad f^{\downarrow}= \\
& \sum_{\mathrm{L} \nsucc 1} f_{\text {ЦЦ }}+f_{1}+\sum_{\mathrm{u} \nless 1} f_{\mathrm{L}} .
\end{array}
$$

We take

$$
E_{i+1}=x^{-\mathbb{R}} \exp \mathbb{R} \llbracket E_{i} \rrbracket
$$

with the lexicographical ordering. Finally,

$$
L_{0}=E_{\infty}=E_{0} \cup E_{1} \cup E_{2} \cup \cdots .
$$

Construction of $\mathbb{R} \llbracket L_{1} \rrbracket$

We know how to construct $\mathbb{R}^{\text {alog }} \mathbb{I} x \mathbb{I}$.
Formally, we can also construct $\mathbb{R}^{\text {alog }} \mathbb{I} \log x \mathbb{\mathbb { D }}$.
Question: how to embed

$$
\mathbb{R}^{\text {alog }} \mathbb{I} x \mathbb{\mathbb { l }} \hookrightarrow \mathbb{R}^{\text {alog }} \mathbb{I} \log x \mathbb{\mathbb { l }}
$$

Consider the formal isomorphism

$$
\begin{aligned}
\mathbb{R}^{a l o g} \mathbb{L} x \mathbb{I} & \rightarrow \mathbb{R}^{a l o g} \mathbb{I} \log x \mathbb{1} . \\
f & \mapsto f \circ \log .
\end{aligned}
$$

The embedding ι restricted to $\mathbb{R} \mathbb{L} E_{0} \rrbracket$ is given by

$$
\iota\left(x^{\alpha}\right)=\exp (\alpha \log x) \in \mathbb{R} \mathbb{L} E_{1} \circ \log \mathbb{\rrbracket}
$$

on monomials and extended by linearity. For $x^{\alpha} e^{f} \in \mathbb{R} \llbracket E_{i} \rrbracket$:

$$
\iota\left(x^{\alpha} e^{f}\right)=\exp (\alpha \log x+\iota(f)) \in \mathbb{R} \mathbb{L} E_{i+1} \circ \log \mathbb{1},
$$

and we again extend by linearity.

Construction de $\mathbb{R} \llbracket x \mathbb{\rrbracket}$

We take the inductive sequence of the sequence

$$
\mathbb{R} \llbracket x \rrbracket \hookrightarrow \mathbb{R} \llbracket \log x \rrbracket \hookrightarrow \mathbb{R} \llbracket \log _{2} x \rrbracket \hookrightarrow \cdots .
$$

Remark

Alternatively, one first closes under log and next under exp.

Structure theorem

$B \subseteq \amalg$ normal basis if

B1. $b_{1}=\log _{l} x$ is an l-th iterated logarithm.
B2. $\log b_{i} \in \mathbb{R} \llbracket b_{1} ; \cdots ; b_{i-1} \rrbracket$ for all $i>1$.

Theorem 2 (Structure theorem) Let f be a transseries and let B_{0} be a normal basis. Then there exists a normal basis $B \supseteq$ B_{0}, such that $f \in \mathbb{R} \llbracket B \rrbracket$.

Closure properties

$\mathbb{R} \mathbb{I} x \mathbb{\mathbb { l }}$ closed under

- Differentiation.
- Integration.
- Functional composition.
- Functional inversion.

Derivation with respect to x

Case $f \in \mathbb{R} \mathbb{L} E_{0} \rrbracket$

$$
f^{\prime}=\left(\sum_{\alpha \in \mathbb{R}} f_{\alpha} x^{-\alpha}\right)^{\prime}=\frac{-1}{x} \sum_{\alpha \in \mathbb{R}} \alpha f_{\alpha} x^{-\alpha} .
$$

Case $f \in \mathbb{R} \llbracket E_{k+1} \rrbracket \quad(k=0,1, \cdots)$

$$
f^{\prime}=\left(\sum_{\mathbb{u} \in x^{-\mathbb{R}} \exp \left(\mathbb{R}\left[E_{k} \mathbb{I}^{\dagger}\right)\right.} f_{\mathrm{u} \amalg}\right)^{\prime}=\sum_{\mathrm{u} \in \exp \left(\mathbb{R}\left[E_{k} \mathbb{\square}^{\dagger}\right)\right.} f_{\mathrm{u}}(\log \text { п) })^{\prime} \text {. }
$$

f^{\prime} is well defined:

$$
\begin{aligned}
\operatorname{supp} f & \subseteq \mathrm{~K}_{1}^{\mathbb{N}-p} \cdots \mathrm{~K}_{n}^{\mathbb{N}-p}=\amalg \Rightarrow \\
\operatorname{supp} f^{\prime} & \subseteq\left(\operatorname{supp} \log \amalg_{1} \cup \cdots \cup \operatorname{supp} \log \amalg_{n}\right) \amalg .
\end{aligned}
$$

General case

Extend the derivation to $\mathbb{R} \mathbb{4} x \mathbb{\mathbb { 1 }}$ using

$$
(f \circ \log x)^{\prime}=\frac{f^{\prime} \circ \log x}{x} .
$$

Yes, we got a derivation
Linearity: trivial.
Observation: $\left(e^{f}\right)^{\prime}=f^{\prime} e^{f}$ for transmonomials e^{f}.
Hence, for transmonomials e^{f}, e^{g} :
$\left(e^{f} e^{g}\right)^{\prime}=\left(e^{f+g}\right)^{\prime}=(f+g)^{\prime} e^{f+g}=f^{\prime} e^{f} e^{g}+g^{\prime} e^{f} e^{g}=\left(e^{f}\right)^{\prime} e^{g}+e^{f}\left(e^{g}\right)^{\prime}$.
General case: bilinearity.

Linear differential equations

$$
L h=L_{r} h^{(r)}+\cdots+L_{0} h=0 .
$$

Classical result: $L_{0}, \ldots, L_{r} \in \mathbb{C}[[z]]$
\exists basis of formal solutions of the form

$$
h=\left(h_{r-1} \log ^{r-1} z+\cdots+h_{0}\right) e^{\alpha z} e^{P\left(\sqrt[p]{z^{-1}}\right)},
$$

where $p \in \mathbb{N}^{*}, h_{0}, \ldots, h_{r} \in \mathbb{C}[[\sqrt[p]{z}]], \alpha \in \mathbb{C}$ and $P \in \mathbb{C}\left[\sqrt[p]{z^{-1}}\right]$ without constant term.

Generalization: $L_{0}, \ldots, L_{r} \in \mathbb{C}^{\text {alog }} \mathbb{I} x \mathbb{\rrbracket}$

Notation: $\mathbb{C}^{\text {alog }} \mathbb{I} x \mathbb{1}=\mathbb{R}^{\text {alog }} \mathbb{I} x \mathbb{\mathbb { 1 }}+i \mathbb{R}^{a l o g} \mathbb{I} x \mathbb{\mathbb { l }}$.
\exists basis of formal solutions of the form

$$
h=\left(h_{r-1} \log ^{r-1} x+\cdots+h_{0}\right) e^{\varphi},
$$

where $h_{0}, \ldots, h_{r} \in \mathbb{C}^{\text {alog }} \mathbb{[} x \mathbb{\rrbracket}$ and $\varphi \in i \mathbb{R}^{\text {alog }} \mathbb{[} x \mathbb{I}$.

Algebraic differential equations

Intermediate value theorem

P : algebraic differential polynomial with coefficients in $\mathbb{R} \mathbb{I} x \mathbb{\mathbb { 1 }}$. Assume that $P(f)<0$ and $P(g)>0$ for $f<g$ in $\mathbb{R} \mathbb{I} x \mathbb{\mathbb { l }}$.
Then $\exists h \in \mathbb{R} \mathbb{I} x \mathbb{\mathbb { I }}$ with $f<h<g$ and $P(h)=0$.

