Introduction to automatic asymptotics

BY JORIS VAN DER HOEVEN

 \mathbf{CNRS}

Université d'Orsay, France email: vdhoeven@math.u-psud.fr web: http://ultralix.polytechnique.fr/~vdhoeven

 \Leftrightarrow

MSRI, Berkeley, 16-10-1998

Motivation

Automatic asymptotics and transseries

- Asymptotics of non linear phenomena.
- Systematic theorie.
- Effective theory \Rightarrow emphasis on algebraic aspects.
- Analytic properties via via resummation.

Examples

- Asymptotics of the functional inverse of xe^x for $x \to \infty$. Needed for the study of Bell numbers.
- Asymptotic resolution of non linear differential equations like

$$f'f'' - f''^{2} - e^{e^{x}}f = e^{-x^{2}}.$$

Short history

Theory

- Newton (± 1670): formal power series, Newton polygon.
- Puiseux, Briot, Bouquet, Fine, Smith (1850–1900): extentions and refinements of Newton polygon method.
- − Hardy (1910–1911): generalized asymptotic scales, asymptotics of L-series \longrightarrow Hardy fields.
- -Écalle (1990–*): Transseries et resummation.

Algorithms

Shackell (1990-*): nested forms for exp-log functions.
 Example:

 $e^{\log^2 x e^{e^{\log^3 x(\pi+o(1))}}}$

- Shackell (1991): asymptotic expansions of exp-log functions and (incomplete) algorithm for Liouvillian functions.
- Gonnet, Gruntz (1992): expansions of exp-log functions.
- Richardson (1992–1996): exp-log constants.
- Salvy, Gruntz (1990–1996): implementations in MAPLE.

Outline

- **I.** Asymptotics of L-functions
- **II.** Transseries: an introduction

Asymptotics of L-functions

An L-function is a function f constructed from \mathbb{Q} and xby $+, -, \times, /, \exp, \log$ and algebraic functions.

Goal: find the expansion of f for $x \to \infty$ (if f is defined at ∞).

- The main problems Find a suitable asymptotic scale.
 - Avoid indefinite cancellations: ____

$$f = \frac{1}{1 - x^{-1} - e^{-x}} - \frac{1}{1 - x^{-1}} \quad (x \to \infty).$$

Grid-based series

Asymptotic scales

- S: ordered group (by ≺) of positive germs at infinity, stable under exponentiation by reals.
- S finitely generated by $B = \{b_1, \ldots, b_n\}$, if

$$S = \{ b_1^{\alpha_1} \cdots b_n^{\alpha_n} | \alpha_1, \dots, \alpha_n \in \mathbb{R} \},\$$

- B basis, if $1 \ll b_1 \ll \cdots \ll b_n$ and $\log b_1 \ll \cdots \ll \log b_n$.
- Example: $S = \{x^{\alpha} e^{x\beta} | \alpha, \beta \in \mathbb{R}\}.$
- **Grid-based series over a field** C- $C \llbracket S \rrbracket = C \llbracket b_1; \cdots; b_n \rrbracket$ field of series

$$f = \sigma_0 \varphi(\sigma_1, \ldots, \sigma_k),$$

where $\varphi \in C[[\sigma_1, \ldots, \sigma_k]], \sigma_0, \ldots, \sigma_k \in S$ and $\sigma_i \prec 1$ for $1 \leq i \leq k$.

- Example: $e^{x}(1-x^{-1}-x^{-x})^{-1} \in \mathbb{R}[x; e^{x}; x^{x}]$.

Lexicographical expansions

Lexicographical expansion of $f \in \mathbb{R} \llbracket b_1; \cdots; b_n \rrbracket$

$$f = \sum_{\alpha_n \in \mathbb{R}} f_{\alpha_n} b_n^{\alpha_n}$$

$$f_{\alpha_n,\ldots,\alpha_2} = \sum_{\alpha_1 \in \mathbb{R}} f_{\alpha_n,\ldots,\alpha_1} b_1^{\alpha_1}.$$

•

 $f_{\alpha_n,\ldots,\alpha_{i+1}}$ both in $\mathbb{R}\llbracket b_1;\cdots;b_i \rrbracket$ and $\mathbb{R}\llbracket b_1;\cdots;b_{i-1} \rrbracket \llbracket b_i \rrbracket$.

Observation

For each $\beta \in \mathbb{R}$, there are only a finite number of terms in the expansion of $f_{\alpha_n,\ldots,\alpha_{i+1}}$ with exponent $> \beta$ in b_i .

Example

$$\frac{1}{(1-x^{-1})(1-e^{-x})} = 1+x^{-1}+x^{-2}+x^{-3}+\cdots + e^{-x}+x^{-1}e^{-x}+x^{-2}e^{-x}+x^{-3}e^{-x}+\cdots$$

$$\vdots$$

Exact representations

Avoiding indefinite cancellations

Expand lexicographically

$$f = \frac{1}{1 - x^{-1} - e^{-x}} - \frac{1}{1 - x^{-1}} \ (x \to \infty)$$

with respect to e^x next x. Keep exact representations for the coefficients of the expansion in e^{-x} .

Constant problem

Richardson: there exists a zero test for "L-constants" modulo:

Conjecture 1 (Schanuel) If $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent, then

$$\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}[\alpha_1, \cdots, \alpha_n, e^{\alpha_1}, \cdots, e^{\alpha_n}] \geq n.$$

Germs at $+\infty$

VdH: the asymptotic zero test problem for L-functions at $+\infty$ reduces to the constant problem.

Theorem 1 (VdH) There exists an asymptotic expansion algorithm for L-functions modulo Schanuel's conjecture.

Normal bases

L-series

- $\mathbb{R}[S]^{L}$: series constructed from L-constants, monomials $b_i^{\alpha_i}$, the field operations and left composition of infinitesimal L-series by $\exp z$, $\log(1+z)$ or algebraic series.
- L-series are both expressions and series in $\mathbb{R} \llbracket S \rrbracket^{conv}$.
- Straightforward expansion algorithm for L-series.
- Iterated coefficients of L-series again L-series.

B normal basis if

- B1. $b_1 = \log_l x$ is an *l*-th iterated logarithm.
- B2. $\log b_i \in \mathbb{R} \llbracket b_1; \cdots; b_{i-1} \rrbracket^L$ for all i > 1.

Example:

$$B = \{ \log x, x, \exp[\frac{x}{\log x - 1}] \},\$$

but not

$$\{x, e^{e^x}\}$$
 nor $\{x, e^{x+e^{-x^2}}, e^{x^2}\}.$

The normal basis $B = \{b_1, \ldots, b_n\}$ is constructed gradually during the execution of the expansion algorithm. Initially, $B = \{x\}$.

ALGORITHM expand

INPUT: An L-function f.

OUTPUT: f rewritten as an L-series in $\mathbb{R}\llbracket b_1, \ldots, b_n \rrbracket^L$.

- case $f \in \mathbb{R}$ or f = x. Return f.
- case $f = g \Box h$, $\Box \in \{+, -, \times, /\}$. Return expand $(g) \Box$ expand(h).

case $f = \log(g)$. Set $g := \operatorname{expand}(g)$. Rewrite $g = cb_1^{\alpha_1} \cdots b_n^{\alpha_n}(1 + \varepsilon)$, where $c \in \mathbb{R}^*$ and $\varepsilon \prec 1$. If $\alpha_1 \neq 0$, add $\log b_1$ to B. Return $\log c + \alpha_1 \log b_1 + \cdots + \alpha_n b_n + \log(1 + \varepsilon)$.

case
$$f = \exp(g)$$
.
Set $g := \exp(g)$.
If $l = \lim g \in \mathbb{R}$, return $e^{l}e^{g-l}$.
Test whether $g \asymp \log b_i$ for some $2 \leqslant i \leqslant n$.
Yes \longrightarrow return $b_i^l \exp(e^{g-l\log b_i})$, where $l = \lim g/(\log b_i)$.
No \longrightarrow

```
Decompose g = g^{\uparrow} + g_0 + g^{\downarrow}, with g^{\uparrow} = g_{0,...,0}.
Add e^{|g^{\uparrow}|} to B.
Return (e^{|g^{\uparrow}|})^{\operatorname{sign}(g)} e^{g_0} e^{g^{\downarrow}}.
```

 $\begin{array}{ll} \text{case} & f = \varphi(g), \, \text{with} \; \varphi \; \text{algebraic.} \\ & \text{Set} \; g := \operatorname{expand}(g) \; \text{and} \; l := \lim g. \\ & |l| = \infty \Rightarrow \operatorname{return} \operatorname{expand}(\psi(g^{-1})), \, \text{where} \; \psi(z) \stackrel{\text{def}}{=} \varphi(z^{-1}). \\ & l \neq 0 \Rightarrow \operatorname{return} \operatorname{expand}(\psi(g - l)), \, \text{where} \; \psi(z) \stackrel{\text{def}}{=} \varphi(z + l). \end{array}$

Rewrite $\varphi(z) = z^{\alpha} \psi(z^{\beta})$ with $\alpha \in \mathbb{Q}, \beta \in \mathbb{Q}_{+}^{*}, \psi \in \mathbb{R}[[z]]$. $\psi \neq 1 \Rightarrow \text{return expand}(g^{\alpha})\psi(\text{expand}(g^{\beta}))$. Rewrite $g = c\sigma(1 + \varepsilon)$, with $c \in \mathbb{R}^{*}, \sigma \in S$ et $\varepsilon \prec 1$. Return $c^{\alpha}\sigma^{\alpha}[(1 + z)^{\alpha} \circ \varepsilon]$.

Example 1

$$f = \frac{1}{1 - x^{-1} - e^{-x}} - \frac{1}{1 - x^{-1}}.$$

Initialization: $B = \{b_1, \cdots, b_n\} := \{x\}.$

 e^{-x} : since $-x \not\asymp \log b_1$, insert $b_2 := e^x \rightsquigarrow B$, whence

$$B := \{x, e^x\}.$$

f is rewrittent as

$$f = \frac{1}{1 - b_1^{-1} - b_2^{-1}} - \frac{1}{1 - b_1^{-1}}$$

Expansion of f

We first expand with respect tto b_2 :

$$f = \left(\frac{1}{1 - b_1^{-1}} - \frac{1}{1 - b_1^{-1}}\right) + \frac{b_2^{-1}}{(1 - b_1^{-1})^2} + \frac{b_2^{-2}}{(1 - b_1^{-1})^3} + \cdots$$

The cancellation $(1 - b_1^{-1})^{-1} - (1 - b_1^{-1})^{-1} = 0$ is detected symbolically.

Transseries for f

$$f = e^{-x} + 2x^{-1}e^{-x} + 3x^{-2}e^{-x} + \cdots$$

+ $e^{-2x} + 3x^{-1}e^{-2x} + 6x^{-2}e^{-2x} + \cdots$
+ $e^{-3x} + 4x^{-1}e^{-3x} + 10x^{-2}e^{-3x} + \cdots$
+ \cdots .

Example 2

$$f = \log \log (xe^{xe^x} + 1) - \exp \exp(\log \log x + \frac{1}{x})$$

Initialization: $B = \{b_1, \cdots, b_n\} := \{x\}.$

 e^x : since $x \not\simeq \log b_1$, insertion $e^x \rightsquigarrow B$, whence

 $B := \{x, e^x\}.$

 e^{xe^x} : Test whether $xe^x = b_1b_2 \approx \log b_2 = b_1 = x$. No, so $e^{xe^x} \rightsquigarrow B$ and

$$B := \{x, e^x, e^{xe^x}\}.$$

 $\log(xe^{xe^x} + 1)$: We have $xe^{xe^x} + 1 = b_1b_3 + 1$. The exponent of b_1 in b_1b_3 does not vanish, so $\log x \rightsquigarrow B$. We get

 $B := \{\log x, x, e^x, e^{xe^x}\}$

and

$$\log(xe^{xe^x} + 1) = b_2b_3 + b_1 + \log(1 + b_2^{-1}b_4^{-1}).$$

 $\log \log (xe^{xe^x} + 1)$: treated similarly. *B* remains invariant and

$$\log \log (xe^{xe^x} + 1) = b_2 + b_1 + \log [1 + b_2^{-1}b_3^{-1}[b_1 + \log(1 + b_2^{-1}b_4^{-1})]]$$

 $\log x: \log x = b_1.$

 $\log \log x$: Insertion $\log \log x \rightsquigarrow B$;

$$B := \{ \log \log x, \log x, x, e^x, e^{xe^x} \}.$$

 $\frac{\exp(\log\log x + x^{-1})}{\log\log x + x^{-1}} = b_1 + b_3^{-1} \to \infty.$ We have $b_1 \asymp \log b_2$, whence:

$$\exp(\log\log x + \frac{1}{x}) = b_2 e^{b_3^{-1}},$$

avec $b_3^{-1} \to 0$.

 $\exp\exp(\log\log x + 1/x)$: $b_2 e^{b_3^{-1}} \approx \log b_3$ and

$$\exp \exp(\log \log x + \frac{1}{x}) = b_3 \exp[b_2 \exp b_3^{-1} - b_2],$$

with $b_2 \exp b_3^{-1} - b_2 \to 0$.

Expansion for f:

$$f = b_3 + b_2 + \log[1 + b_3^{-1}b_4^{-1}[b_2 + \log(1 + b_3^{-1}b_5^{-1})]] - b_3 \exp[b_2 \exp b_3^{-1} - b_2],$$

$$f = -\frac{\log^2 x}{2x} - \frac{\log x}{2x} - \frac{\log^3 x}{6x^2} - \frac{\log^2 x}{2x^2} + O\left(\frac{\log x}{x^2}\right).$$

Transseries: an introduction

Theorem: VdH/Marker, Macintyre, van den Dries

The asymptotic inverse of $\log x \log \log x$ is not asymptotic to an L-function.

Goal

Construct a formal field of grid-based series $\mathbb{R}[[x]] = \mathbb{R}[[U]]$ with an exponential exp : $\mathbb{R}[[x]] \to \mathbb{R}[[x]]$ and a logarithm $\log : \mathbb{R}[[x]]_*^+ \to \mathbb{R}[[x]]$.

Analysis: through resummation.

Examples

$$f_{1} = 1 + x^{-1} + x^{-2} + \dots +$$

$$e^{-x} + x^{-1}e^{-x} + \dots +$$

$$e^{-2x} + \dots +$$

$$f_{2} = -\frac{e^{-x^{2}}}{2x} + \frac{e^{-x^{2}}}{4x^{3}} - \frac{e^{-x^{2}}}{8x^{5}} + \dots$$

$$e^{-3x^{2}} + e^{-3x^{2}}$$

$$-\frac{e^{-6x}}{6x} + \frac{1}{36x^3} - \cdots$$
$$-\frac{e^{-5x^2}}{10x} + \cdots$$

$$f_3 = \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^4} + \dots + \frac{1}{e^{\log^2 x}} + \frac{1}{e^{2\log^2 x}} + \frac{2}{e^{\log^2 x}} + \frac{2}{e^{8\log^2 x}} \dots + \frac{1}{e^{\log^4 x}} + \dots$$

Idea behind construction

Closure under exponentiation

Starting with $\mathbb{R}\llbracket E_0 \rrbracket = \mathbb{R}\llbracket x^{-\mathbb{R}} \rrbracket$, construct a sequence

 $\mathbb{R}\llbracket E_0 \rrbracket \hookrightarrow \mathbb{R}\llbracket E_1 \rrbracket \hookrightarrow \mathbb{R}\llbracket E_2 \rrbracket \hookrightarrow \cdots$

of fields, such that the exponential of each element in $\mathbb{R}\llbracket E_i \rrbracket$ is defined by $\mathbb{R}\llbracket E_{i+1} \rrbracket$. Direct limit \longrightarrow the field $\mathbb{R}^{alog} \llbracket x \rrbracket = \mathbb{R}\llbracket L_0 \rrbracket$ of alogarithmic transseries with a total exponentiation.

Closure under logarithm

Next, construct a second sequence

$$\mathbb{R}\llbracket L_0 \rrbracket \hookrightarrow \mathbb{R}\llbracket L_1 \rrbracket \hookrightarrow \mathbb{R}\llbracket L_2 \rrbracket \hookrightarrow \cdots$$

of fields, such that the logarithm of each element in $\mathbb{R}\llbracket L_i \rrbracket_*^+$ is defined in $\mathbb{R}\llbracket L_{i+1} \rrbracket$. Direct limit $\longrightarrow \mathbb{R}\llbracket x \rrbracket$.

Construction of $\mathbb{R}\llbracket E_1 \rrbracket$

Each series $f \in \mathbb{R} \llbracket x^{-1} \rrbracket$ can be decomposed as

$$f = f^{\uparrow} + f^{c} + f^{\downarrow} =$$

$$\sum_{\alpha < 0} f_{\alpha} x^{-\alpha} + f_{0} + \sum_{\alpha > 0} f_{\alpha} x^{-\alpha}.$$

We take

$$E_1 = x^{-\mathbb{R}} \exp \mathbb{R} \llbracket x^{-1} \rrbracket.$$

So each $f \in \mathbb{R}[x^{-1}]$ can be written as

$$f = \sum_{\substack{\alpha \\ g = \sum_{\beta < 0} g_{\beta} x^{-\beta}}} f_{x^{-\alpha} e^{g}} x^{-\alpha} e^{g}.$$

We take the lexicographical ordering on E_1 :

$$x^{-\alpha}e^g \prec 1 \Leftrightarrow g < 0 \lor (g = 0 \land \alpha > 0).$$

For each $f \in \mathbb{R} \llbracket x^{-1} \rrbracket$:

$$\exp f = \exp f^{\uparrow} + \exp f^c \exp f^{\downarrow}.$$

Construction of $\mathbb{R}\llbracket E_{i+1} \rrbracket$

Each series $f \in \mathbb{R}\llbracket E_i \rrbracket$ can be decomposed as

$$f = f^{\uparrow} + f^{c} + f^{\downarrow} =$$
$$\sum_{\mathfrak{u} \not\gg 1} f_{\mathfrak{u}}\mathfrak{u} + f_{1} + \sum_{\mathfrak{u} \prec 1} f_{\mathfrak{u}}\mathfrak{u}$$

We take

$$E_{i+1} = x^{-\mathbb{R}} \exp \mathbb{R} \llbracket E_i \rrbracket,$$

with the lexicographical ordering. Finally,

$$L_0 = E_\infty = E_0 \cup E_1 \cup E_2 \cup \cdots.$$

Construction of $\mathbb{R}\llbracket L_1 \rrbracket$

We know how to construct $\mathbb{R}^{alog} \amalg x \amalg$. Formally, we can also construct $\mathbb{R}^{alog} \amalg \log x \amalg$. Question: how to embed

$$\mathbb{R}^{alog} \amalg x \amalg \hookrightarrow \mathbb{R}^{alog} \amalg \log x \amalg.$$

Consider the formal isomorphism

$$\mathbb{R}^{a\log} \blacksquare x \blacksquare \to \mathbb{R}^{a\log} \blacksquare \log x \blacksquare .$$

$$f \mapsto f \circ \log .$$

The embedding ι restricted to $\mathbb{R}\llbracket E_0 \rrbracket$ is given by

$$\iota(x^{\alpha}) = \exp(\alpha \log x) \in \mathbb{R} \llbracket E_1 \circ \log \rrbracket$$

on monomials and extended by linearity. For $x^{\alpha}e^{f} \in \mathbb{R}\llbracket E_{i} \rrbracket$:

$$\iota(x^{\alpha}e^{f}) = \exp(\alpha \log x + \iota(f)) \in \mathbb{R} \llbracket E_{i+1} \circ \log \mathbb{J},$$

and we again extend by linearity.

Construction de $\mathbb{R} \llbracket x \rrbracket$

We take the inductive sequence of the sequence

$$\mathbb{R}\llbracket x \rrbracket \hookrightarrow \mathbb{R}\llbracket \log x \rrbracket \hookrightarrow \mathbb{R}\llbracket \log_2 x \rrbracket \hookrightarrow \cdots$$

Remark

Alternatively, one first closes under log and next under exp.

Structure theorem

$B \subseteq \coprod$ normal basis if

- B1. $b_1 = \log_l x$ is an *l*-th iterated logarithm.
- B2. $\log b_i \in \mathbb{R} \llbracket b_1; \cdots; b_{i-1} \rrbracket$ for all i > 1.

Theorem 2 (Structure theorem) Let f be a transseries and let B_0 be a normal basis. Then there exists a normal basis $B \supseteq B_0$, such that $f \in \mathbb{R}\llbracket B \rrbracket$.

Closure properties

$\mathbb{R} \llbracket x \rrbracket$ closed under

- Differentiation.
- Integration.
- Functional composition.
- Functional inversion.

Derivation with respect to x

Case $f \in \mathbb{R}\llbracket E_0 \rrbracket$

$$f' = \left(\sum_{\alpha \in \mathbb{R}} f_{\alpha} x^{-\alpha}\right)' = \frac{-1}{x} \sum_{\alpha \in \mathbb{R}} \alpha f_{\alpha} x^{-\alpha}.$$

Case $f \in \mathbb{R}\llbracket E_{k+1} \rrbracket$ $(k = 0, 1, \cdots)$

$$f' = \left(\sum_{\mathbf{u} \in x^{-\mathbb{R}} \exp(\mathbb{R}\llbracket E_k \rrbracket^{\uparrow})} f_{\mathbf{u}} \mathbf{u}\right)' = \sum_{\mathbf{u} \in \exp(\mathbb{R}\llbracket E_k \rrbracket^{\uparrow})} f_{\mathbf{u}} (\log \mathbf{u})' \mathbf{u}.$$

f' is well defined:

$$\sup f \subseteq \mathfrak{u}_1^{\mathbb{N}-p} \cdots \mathfrak{u}_n^{\mathbb{N}-p} = \mathfrak{U} \implies$$
$$\operatorname{supp} f' \subseteq (\operatorname{supp} \log \mathfrak{u}_1 \cup \cdots \cup \operatorname{supp} \log \mathfrak{u}_n) \mathfrak{U}.$$

General case

Extend the derivation to $\mathbb{R} \blacksquare x \blacksquare$ using

$$(f \circ \log x)' = \frac{f' \circ \log x}{x}$$

Yes, we got a derivation

Linearity: trivial. Observation: $(e^f)' = f'e^f$ for transmonomials e^f . Hence, for transmonomials e^f, e^g :

$$(e^{f}e^{g})' = (e^{f+g})' = (f+g)'e^{f+g} = f'e^{f}e^{g} + g'e^{f}e^{g} = (e^{f})'e^{g} + e^{f}(e^{g})'.$$

General case: bilinearity.

Linear differential equations

$$Lh = L_r h^{(r)} + \dots + L_0 h = 0.$$

Classical result: $L_0, \ldots, L_r \in \mathbb{C}[[z]]$ \exists basis of formal solutions of the form

$$h = (h_{r-1} \log^{r-1} z + \dots + h_0) e^{\alpha z} e^{P(\sqrt[p]{z^{-1}})},$$

where $p \in \mathbb{N}^*, h_0, \ldots, h_r \in \mathbb{C}[[\sqrt[p]{z}]], \alpha \in \mathbb{C}$ and $P \in \mathbb{C}[\sqrt[p]{z^{-1}}]$ without constant term.

Generalization: $L_0, \ldots, L_r \in \mathbb{C}^{alog} \llbracket x \rrbracket$ Notation: $\mathbb{C}^{alog} \llbracket x \rrbracket = \mathbb{R}^{alog} \llbracket x \rrbracket + i \mathbb{R}^{alog} \llbracket x \rrbracket$. \exists basis of formal solutions of the form

$$h = (h_{r-1}\log^{r-1}x + \dots + h_0)e^{\varphi},$$

where $h_0, \ldots, h_r \in \mathbb{C}^{alog} \blacksquare x \blacksquare$ and $\varphi \in i \mathbb{R}^{alog} \blacksquare x \blacksquare$.

Algebraic differential equations

Intermediate value theorem

P: algebraic differential polynomial with coefficients in $\mathbb{R} \amalg x \rrbracket$. Assume that P(f) < 0 and P(g) > 0 for f < g in $\mathbb{R} \amalg x \rrbracket$. Then $\exists h \in \mathbb{R} \amalg x \rrbracket$ with f < h < g and P(h) = 0.