A new zero-test for formal power series

 $\infty \infty \infty$

BY JORIS VAN DER HOEVEN C.N.R.S., Université Paris-Sud ISSAC' 02, Lille, 10/7/2002

 $\infty \infty \infty$

Written using GNU $T_{E}X_{MACS}$ (www.texmacs.org)

Testing functional identities

- $\sin^2 x + \cos^2 x = 1$
- $\log(x^{x^x} + e^{x\log x}) x^x\log x = \log(1 + x^{x(1-x^{x-1})})$

functional identities = constant identities + power series identities

Testing constant identities

•
$$\sqrt[3]{\frac{5}{\sqrt{32/5}} - \frac{5}{\sqrt{27/5}}} = (1 + \sqrt[5]{3} - \sqrt[5]{9}) / \sqrt[5]{25}}$$

• $\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x = \sqrt{\pi}$

Testing power series identities

- $Q \in \mathcal{R}[F, F'..., F^{(r)}] \subseteq \mathcal{R}\{F\}, \ \mathcal{R} = \mathcal{K}[z], \ Q \notin \mathcal{R}$
- $f \in \mathcal{K}[[z]]$ such that $Q(f, f', ..., f^{(r)}) = 0$
- Given $P \in \mathcal{R}{F}$, do we have P(f) = 0?
- Towers: replace \mathcal{R} by $\mathcal{R}[f, ..., f^{(r)}, S_Q(f)^{-1}]$ and continue.

Structural approches.

Ax, Risch, Richardson

Bounding the valuation.

Khovanskii, Shackell/vdH, witness conjectures

Model theoretical approach.

Dedef/Lipschitz

Groebner bases and saturation.

Shackell, Péladan-Germa/vdH

Varying the initial conditions.

Péladan-Germa

Generalized solution approach.

Shackell, Shackell/vdH, vdH

- 1. Ensure that $\frac{\partial Q}{\partial F^{(i)}}(f) \neq 0$ for some $i \in \{0, ..., r\}$ (modulo replacing Q by $\frac{\partial Q}{\partial F^{(i)}}$)
- 2. Work with derivation $\delta = \frac{z \partial}{\partial z}$ and reduce to the case when

$$Q = L F + z M$$

with $L \in \mathcal{K}[\delta]$ and $M \in \mathcal{R}\{F\}$ (modulo a transformation $f \to f_0 + \dots + f_k z^k + \tilde{f} z^{k+1}$)

3. We now have a recurrence relation for the coefficients of f:

$$f_k = -\frac{1}{\Lambda(k)} (M(f))_{k-1},$$

where $\Lambda \in \mathcal{K}[k]$ is obtained by substituting $\delta \rightarrow k$ in L

4. Let s be the largest root of Λ in $\mathbb N$

f unique solution to Q(f) = 0 with fixed $f_0, ..., f_s$

Algorithm $P \equiv 0$

INPUT: a differential polynomial $P \in \mathcal{R}{F}$ OUTPUT: true if and only if $P \equiv 0$

Step 1 [Initialize]

H := 1, R := P, reducing := true

Step 2 [Reduction]

while reducing [invariant: $H \neq 0$ and $P \equiv 0 \Leftrightarrow R \equiv 0$]

```
 \begin{array}{lll} \text{if} & R \in \mathcal{R} & \text{then return } R = 0 \\ \text{else if } I_R \equiv 0 & \text{then } R := R - I_R V_R \\ \text{else if } S_R \equiv 0 & \text{then } H := I_R H, R := R \operatorname{rem} S_R \\ \text{else if } Q \operatorname{rem} R \neq 0 & \text{then } H := I_R S_R H, R := Q \operatorname{rem} R \\ \text{else } & H := I_R S_R H, \operatorname{reducing} := \operatorname{false} \\ \end{array}
```

[Final test]

let k be minimal with $\deg_{\prec z^k} H_{+f_0+\dots+f_k z^k} = 0$ $k := \max \{k, s\}$ return $\deg_{\prec z^k} R_{+f_0+\dots+f_k z^k} \neq 0$

The Puiseux theorem

Let $A \in \mathcal{K}[[z]][F]^*$. Then

A(f) = 0

admits $\deg A$ solutions in $\mathcal{K}^{\mathrm{alg}}[[z^{\mathbb{Q}}]]$.

The Puiseux theorem for asymptotic algebraic equations [vdH 1997] Let $A \in \mathcal{K}[[z]][F]^*$ and $\nu \in \mathbb{R} \cup \{-\infty\}$. Then

 $A(f) = 0 \qquad (f \prec z^{\nu})$

admits $\deg_{\prec z^{\nu}} A$ solutions in $\mathcal{K}^{\mathrm{alg}}[[z^{\mathbb{Q}}]]$, where $\deg_{\prec z^{\nu}} A$ is the Newton degree.

Differential Newton degree

1 Logarithmic transseries

Generalized series in z, $\log z$, $\log \log z$, ..., $\log_l z$ for some lExample: $z + (\log z) z + 2! (\log z)^2 z^2 + 3! (\log z)^3 z^3 + \cdots$ Notation: \mathbb{L} field of grid-based logarithmic transseries

2 Theorem for the resolution of aade's in \mathbb{L} [vdH 2001] Let $A \in \mathbb{L}{F}$ and $\nu \in \mathbb{R} \cup {-\infty}$. Then

 $A(f) = 0 \qquad (f \prec z^{\nu})$

admits at least $\deg_{\prec z^{\nu}} A$ solutions in \mathbb{L} .

3 Also

- There exist no solutions if $\deg_{\prec z^{\nu}} A = 0$.
- f remains the unique solution to Q(f) = 0 in \mathbb{L} modulo $\prec z^s$.

4 Negative case

If $\deg_{\prec z^k} R_{+f_0+\dots+f_k z^k} = 0$, then $R \not\equiv 0$ and $P \not\equiv 0$.

5 Positive case

- Assume that $\deg_{\prec z^k} R_{+f_0+\dots+f_k z^k} \neq 0.$
- There exists an $\tilde{f} \in \mathbb{L}$ with $R(\tilde{f}) = 0$ and $\tilde{f} f \prec z^k$.
- Since $Q \operatorname{rem} R = 0$ and $I_R S_R | H$, we have a relation of the form

$$H^{\beta}Q = X_0 R + \dots + X_t R^{(t)}.$$

- Since $R(\tilde{f}) = 0$ and $H(\tilde{f}) \neq 0$, we have $Q(\tilde{f}) = 0$.
- But f was the unique solution to Q(f) = 0 modulo $\prec z^s$.
- Hence $f = \tilde{f}$ and $R \equiv P \equiv 0$.

- Differential equations of arbitrary order.
- Accomodates divergent power series solutions and "divergence does not get worse during the algorithm".
- Better understanding of previous work by Shackell using the differential algebra setting.
- More efficient?
 Witness conjectures...
- Generalizations to partial differential equations?

(convergent case)

In order to test whether P(f) = 0, it suffices to test whether

 $P(f)_0 = \cdots = P(f)_{\varpi(\sigma)} = 0,$

where

- σ is the "total input size" (in order to describe the problem).
- The witness function $\varpi(\sigma)$ is linear (probably $\varpi(\sigma) = 2 \sigma$ is OK).