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< A success story

1 Successes of analyzable functions

e First order singular (but not too singular) systems.

e Real transseries and analyzable functions.

2 The quest of new successes

e Complex transseries and analyzable function.
e Multivariate case and o-minimality.

e Partial differential equations.

3 Limits

No comments.




Q@ Real transseries

e Accelero-summation and well-behaved averages.
e Ecalle's proof of Dulac’'s conjecture.

e Algorithm to solve any asymptotic algebraic differential equation

P(f)=0 (f<m).
Intermediate value theorem. Example:
P(f)=fT+e f3f"+T(logl(z)+1)=0
Extension to differential-difference equations

f(elog®) f7(2?) fqz) + e f(x)? + f(x+ 1) +logz=0.




L Well-ordered power series

e Totally ordered constant field C.
e Monomial group 91, with total ordering =.

e [Hahn 1907] Set of well-ordered series

C[[Pn]]={f: 9 — C|supp f is well-ordered}

forms a totally ordered field.
f=cpop(1+0f)

Canonical decomposition:




L Grid-based series

f grid-based <=4 my,...,m; <1 and n with
supp f C {my, ..., mp }*n.

C'[OMT C C[[9n]]: field of grid-based series.




1 Example

For f=x*+x+1+2"t+--, we have supp f C {x~'}* 22



@ Construction of the field of real transseries

3.1 Logarithmic transseries

Start with monomial group
L£=¢Eg={z (log x)* (loglog z)*?--- (log; )*": ap, ..., y € R}
and logarithm on RILI

log (cx®--logi"' z(146)) =
logc+ aglogx+ -+ aylogir1x+1og (1+9).




L Construction of the field of real transseries

3.2 Inductive step
Assume €&,, given, with logarithm on R[[Gn]]j.
¢, 1=expRICE,IT,
with
exp fT=expgle f2>yg.
Take
log (cel" (1+468))=logc+ fT+1log (1+4).

Inductive limit: T=C[I¢UE;U---1.

3.3 Example

e(1+1 4+ L 4.
e (3 w? )662.



& Series with complex coefficients

e For each m €I, select a set of “positive constants”
Pn={ceC|(Re(ce ) >0)V (Re(ce ) =0AIm(eyce =) >0)}.

o For fcCIIMI7, define f>0<=c; € Py
— C[IM is a totally ordered (strong) vector space.

— exp CIIMT T is a monomial group.
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< Construction of the field of complex transseries

e Many possible choices of the 0, and €:
o £— Lo
o &, — €, 0.
e Under the assumption that for all i > iy we have
o 0(logi+1m)=logo(log;m).
o Ga(log; m)=0.

the construction is unique modulo “turn-flips:

P Y fam o= > e o (fmeT ) m;

m m
Gy fum = > et (e ) eellosm)
m m

where 11(z) =z and t_1(2) =2Z.




Example of a complex transseries

Expansion of the exp-log function

z - - z
66 +zz_|_6ze )

= log (




< Example of a complex transseries

If e~ 1 and e¢ T'% = ¢’ then

f = e*+iz+log(l+4eli—De"iz)
_ ez+Z-Z+e(z‘—1)ez—z‘z+%€2(z‘—1)e~2—2¢z+_”E@[[Z;ez;eez+iz]]_

If e~ 1 and e¢ T'% < ¢'" then

f = iez+log(1+e(1_i)ez+iz)
— Z'ez+€(1—i)ez+iz+%€2(1—i)ez+2iz+_” E@[[Z;Gz;eez+iz]].

If e <1 and e'* =1, then

f = iz+log(1+ (e —1)+e el
= iz+ez+e_iz+(i—1)6(1_i)z—%e_2iz+---E(D[[z;ez]].

If e <1 and e'* < 1, then

f = log(l—l—(eiez—l)—l—eizeez)

_ i@z—eiz—f—(1—|—’I;)6(1+i)z—%€2iz—|—"'G(D[[Z;Gz]].



L Solving algebraic equations

3.3.1 The Puiseux theorem

Let A € K[[z]][F]*. Then

admits deg A solutions in K8[[2%]].

3.3.2 The Puiseux theorem for asymptotic algebraic equations [vdH 1997]

Let A € K[[z]][F]* and v € RU{—00}. Then
A(f) =0 (f==")

admits deg_ .. A solutions in K*8[[24]],

where deg_ . A is the Newton degree.



Newton degree

fN




Differential Newton degree

fN




< Solving algebraic differential equations b

T good candidate for an existentially closed H-field (without ordering):

Theorem 1. Consider an asymptotic algebraic differential equation

P(f)=0 (f<m) (1)

of Newton degree d, with coefficients in C[[by; ...; b, C T. Then there exist at least d

solutions when counting with multiplicities. Moreover, these solutions are all in C [[log; bq; ...,
log by;b1;...;0,11 for some l.

Corollary 2. The field of complex transseries is Picard-Vessiot closed (but not differentially
closed).

Theorem 3. There exists an algorithm to find the general solution to (1) in the field of
complex transseries (which depends on parameters satisfying real algebraic constraints). The

logarithmic depth of this general solution is uniformly bounded in terms of the complexity of
the equation.



@ The problem of zero testing

3.3.3 Testing functional identities

2

e sin?x+coslxr=1

o log(z” +e®l8) — z7log x =log (1 +2*(1—*" 1)

functional identities = constant identities + power series identities
3.3.4 Testing constant identities
e 3/3/32/5-3/27/5=(1+V3-V0) /25
e [ e~ dz=+/7

3.3.5 Testing power series identities

e QER[F,F'...F"CR{F}, R=K[2], Q¢ R

o feKk|[z]] such that Q(f, f',...., f")=0

e Given PeR{F}, do we have P(f)=07

e Towers: replace R by R[f,..., f"), So(f)~'] and continue.



L Preparation of the equation

1. Ensure that -2 (f)#0 for some i € {0,...,7}

oF(®)
(modulo replacing @ by 82%))
29

2. Work with derivation § = and reduce to the case when

0z

Q=LF+:M

with L € K[6] and M € R{F}

(modulo a transformation f— fo+ -+ fr 2" + f2F11)

3. We now have a recurrence relation for the coefficients of f:

where A € K[k]| is obtained by substituting  — k in L

4. Let s be the largest root of A in N
f unique solution to Q( f)=0 with fixed fo,..., fs




@ A new algorithm for zero-testing

Algorithm P=0
INPUT: a differential polynomial P € R{F'}

OuTpPUT: true if and only if P=0

Step 1 [Initialize]
H:=1, R:= P, reducing :=true

Step 2 [Reduction]
while reducing [invariant: H #0 and P=0< R=0]

if ReR then return R=0

else if Ir=0 then R:=R—1Ir Vg

else if Sp=0 then H:.=IpH,R:= Rrem Sg

else if Qrem R#+0 then H:=IpSp H,R:= Qrem R
else H :=1r Sk H,reducing := false

[Final test]

let & be minimal with deg_ .« H s 4.4 7, »=0
k:=max{k,s}

return deg_ .« Ry 4.4 f, .+ 70



L Sketch of the proof

3.3.6 Negative case

If deg v Ry fo4q f2x =0, then RZ£0 and P #£0.

3.3.7 Positive case

e Assume that deg_.x R f 4.t f,.5 7 0.

o There exists an f €L with R(f)=0and f— f < z".

e f is the unique solution in I to Q(f)=0 modulo < z°.

o k is sufficiently big, such that H(f)#0 for all f with f — f < zF.

e Since Qrem R=0 and Ir Sg|H, we have a relation of the form
HPQ=XoR+ -+ X;RW.

o Since R(f)=0and H(f)#0, we have Q(f)=0.
e But f was the unique solution to Q(f) =0 modulo < 2%.
e Hence f=fand R=P=0.



< The witness conjecture for exp-log constants

EXPT set of exp-log constant expressions.
o :E%¥PT 5 £ value of exp-log expression as exp-log constant.
o 5:E9P" — N size of exp-log expression.

ETPY set of f € £°¥PT such that for each subexpression of ¢9 of f, we have |g|<1.

Conjecture 4. There exists a witness function w(s) = K s, such that

f=0 = |fl<e s

for all f e &P,



< Generating function analogues

3.4 Exp-log case

e K][z]] ring of power series over a constant field.
o E°¥PT expressions build from K, z, 4+, x,1/(1+),log(1+-) and exp.

o EUPT £ C K|[z]] value of exp-log expression as power series.

Conjecture 5. There exists a witness function w(s) = K s, such that

f=0 = v(f)>m(s(f))
for all f € £PT,

3.5 Differentially algebraic case

Conjecture 6. There exists a witness function w(s) = K s, such that
P(f)=0 < v(P(f))>w(s(Problem)),

where s(Problem) is the “total input size” (in order to describe the problem).



@

The multiple Stokes phenomenon

Consider the linear differential equation

Four types of regions:

P (N

e(l—i)z - 1 e(l—i)z 1
1+i)z
66( ) — 1 Rq R
1+i)z
66( ) <1 Rs Ry




Numerical example of the multiple Stokes phenomenon

f//:ez f/_|_e(2—|—i)zf_|_ 1




< Towards parallel resummation?

4 Accelero-summation

f(z)=F(z1) f(z) = f(2)
1B Tz
ey B fG)

5 Parallel summation

~

Ve \
F2) = Ftr o zn) 25 F(ClrC) =5 f(z1s ) = F(2)
\ Ve
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