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< Definitions

e Linear differential operator L=0"+ L, _1 0" '+ --- 4+ Lo € Q(2)[9]
e Fundamental system of solutions h = (hq,...,h,) to Lh=0
e Picard-Vessiot extension K= Q(2){h1, ..., h,}

e G ={differential automorphisms o: K — K over Q(z)}

A

[ Ma,h: M e GLT(Q) such that oh; = Mz’,l hy+ - —f—MZ"T h,
o Grn={M, noe€Gr} Zariski closed algebraic matrix group

e Galois correspondence



L Examples

L=0-1

Fundamental system of solutions h = (e*)
Grn=((a):a € Q7)

L=0°+2710

Fundamental system of solutions h = (log 2, 1)

gL,h:<<(1) 2fi>ia€®)



L Examples (continued)

|

L=0°+14+z"Ho+z"1

Fundamental system of solutions h = (%4-%4-%4_%4_ e )
gL,h:<((1) Z):aEQ,bEQ#>

L=AB

Fundamental system of solutions h = (B~ ' h 4, hp)

_ [ 9Aa,h4 *
gL,h—( 0 gB,hB>

L <~— Gy,

h'+h=z"1



& Outline %ﬁ‘

Important properties of L and solutions of Lh=0 +— gy,
— All solutions are algebraic

— All solutions are linear combinations of exponentials

— Existence of Liouvillian solutions

— Existence of factorizations

— Integrability of Hamiltonian vector fields

1. Effective Ramis density theorem: G, is generated as a closed linear algebraic group by a
finite number of matrices (monodromy and Stokes matrices and generators of the local
exponential groups).

2. The entries of the matrices in 1. are computable complex numbers (with fast approxima-
tion algorithms).

3. Reduce computations of /with G, to linear algebra



< Outline %ﬁ‘

Important properties of L and solutions of Lh=0 +— gy,

e How to compute Gy, ?

e How to check special properties of G, (e.g. factorization) 7

1. Effective Ramis density theorem: G is generated as a closed linear algebraic group by a
finite number of matrices (monodromy and Stokes matrices and generators of the local

exponential groups).

2. The entries of the matrices in 1. are computable complex numbers (with fast approxima-
tion algorithms).

3. Reduce computations of /with G, to linear algebra
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@ Schlesinger density theorem &»

Fundamental system of formal solutions h" at 0 of the form

h:( Z ho(21/%) logiz) 20 P70

0i<r
Three types of points z € C:
1. Non singular points (basis h* of convergent power series solutions)
2. Regular singular points (basis h* of convergent solutions with logs)

3. Irregular singular points (basis h* with divergent or exponential els)

Schlesinger: in absence of irregular singular points (also consider z = oc), the monodromy
matrices generate G,



&P Effective Ramis density theorem g?‘

Extra matrices
Local exponential group «— @Q-linear relations between exponential parts
Stokes matrices «— divergent counterpart of monodromy matrices

Resummation

FO=BAO=1+C+C+ 4=
A 0if oo 0—7C
=)= | f=pd

Stokes matrix at  =0: “change” between £0+f and £0—f



U Effective Ramis density theorem %@‘

Extra matrices
Local exponential group «— @Q-linear relations between exponential parts

Stokes matrices «— divergent counterpart of monodromy matrices

Accelero-summation (Ecalle)

f f
B \L Tﬁep
Z1l Zp
fi 7 fo — o — [ fn

p—1
Z1—>29 Az 1—>zp



U Fast evaluation of holonomic functions

e Brent (e), Chudnovsky?, Karatsuba, VdH, Haible-Papanikolaou
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U Fast evaluation of holonomic functions

e Brent (e), Chudnovsky?, Karatsuba, VdH, Haible-Papanikolaou
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&

Complexity results

e VdH-97: certified continuation along non singular paths

e VdH-98: regular singular connection matrices

e VdH-05: irregular singular connection matrices

Idea: initial conditions w.r.t. canonical basis of solutions

series of type

evaluation in z € Q)

evaluation in general z

> (Zgﬁ 2" O(M (n)logn) O(M (n)log nloglogn)
Do d 2" O(M(n)log®n) |O(M(n)log®nloglogn)
S o fa(n) 2| O(M(n)log®n) O(M (n)log>n)




< Factorization of differential operators

Compute generators My, ..., M,, of G; at a non-singular point

Fix a precision p for zero-testing

Try to compute a non-trivial invariant subspace V' of for M, ..., M,,
If no such V' exists then return “fail”

From V, reconstruct a candidate factorization L=A B

If L= A B holds, then return (A, B)

. Double the precision and go to step 3

Better complexity than van Hoeij, Cluzeau, etc. 777



& Differential Galois groups

..., Kovacic, Singer, Ulmer, van Hoeij & Weil, Singer & Compoint, ...

G=FeF (VN € F,Ner=e~ N)

Ingredients:
1. Computation of (M) for a single matrix
2. Testing whether M € F e* for given F and £



< The algorithm

Step 1. [Initialize algorithm]
Compute (M;) = F; e~ for each i € {1,...,m}
Let F:=F1U--UF,, (notice that 1 € F)
Let £:=Lie(L1+ -+ L)

Step 2. [Closure]
While there exists an N € 7\ {1} with NLCN-1Z L
Let £:=Lie(L+NLN1)
While there exists an N € F\ {1} with N €e* set F:=F \{N}
While there exists NV € 72 with N ¢ Fe* do
Compute (N) = F'er’
If £'Z L then set £:=Lie(L+ L), quit loop and repeat step 2
Otherwise, set F:=FU{N }
Return F e~



5y Faster computations with the discrete part @‘

More compact representation of elements in H = Q/e£
e Reduce to the case when G C Norm(e%)®
e First basis element M = B; =eX with
— MefeH
— M e* generates (eXNG)/e”
— M has maximal order ¢ with these properties
o Set H':={NeH:[M,N|]=0}, L:=LdCX, so that

H={1,...,MI~ 1} H'/e*".
e Other basis elements Bo, ..., B, by induction, with

1Bl < <[|Bbllc



L Non commutative basis reduction

e |If [B;, B;] =0 reduce using LLL.
o If [Bi, B;]#0, then ||[B;, B;]||c=O(||Billz||Bj||z) ~» new elements



