On differential Galois groups

Gecko meeting, Toulouse 2006 http://www.T_EX_{MACS}.org

S

Definitions

- Linear differential operator $L = \partial^r + L_{r-1} \partial^{r-1} + \dots + L_0 \in \hat{\mathbb{Q}}(z)[\partial]$
- Fundamental system of solutions $\boldsymbol{h}=(h_1,...,h_r)$ to Lh=0
- Picard-Vessiot extension $\mathcal{K} = \hat{\mathbb{Q}}(z)\{h_1, ..., h_r\}$
- $\mathcal{G}_L = \{ \text{differential automorphisms } \sigma \colon \mathcal{K} \to \mathcal{K} \text{ over } \hat{\mathbb{Q}}(z) \}$
- $M_{\sigma,h} = M \in GL_r(\hat{\mathbb{Q}})$ such that $\sigma h_i = M_{i,1} h_1 + \cdots + M_{i,r} h_r$
- $\mathcal{G}_{L,h} = \{M_{\sigma,h} : \sigma \in \mathcal{G}_L\}$ Zariski closed algebraic matrix group
- Galois correspondence

Examples

•
$$L = \partial - 1$$

Fundamental system of solutions $\mathbf{h} = (e^z)$

$$\mathcal{G}_{L,\boldsymbol{h}} = ((a): a \in \hat{\mathbb{Q}}^{\neq})$$

•
$$L = \partial^2 + z^{-1} \partial$$

Fundamental system of solutions $h = (\log z, 1)$

$$\mathcal{G}_{L,\boldsymbol{h}} = \left(\begin{pmatrix} 1 & 2 \pi i \\ 0 & 1 \end{pmatrix} : a \in \hat{\mathbb{Q}} \right)$$

$$\left(\begin{array}{c} \log z + a \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 & a \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} \log z \\ 1 \end{array}\right)$$

Examples (continued)

•
$$L = \partial^2 + (1+z^{-1}) \partial + z^{-1}$$

(differentiate $h' + h = z^{-1}$)

Fundamental system of solutions $\mathbf{h} = (\frac{1}{z} + \frac{1}{z^2} + \frac{2}{z^3} + \frac{6}{z^4} + \cdots, e^{-z})$

$$\mathcal{G}_{L,h} = \left(\begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} : a \in \hat{\mathbb{Q}}, b \in \hat{\mathbb{Q}}^{\neq} \right)$$

 \bullet L = AB

Fundamental system of solutions $\mathbf{h} = (B^{-1} \mathbf{h}_A, \mathbf{h}_B)$

$$\mathcal{G}_{L,oldsymbol{h}} = \left(egin{array}{cc} \mathcal{G}_{A,oldsymbol{h}_A} & * \ 0 & \mathcal{G}_{B,oldsymbol{h}_B} \end{array}
ight)$$

L factors $\iff \mathcal{G}_L$ admits a non-trivial invariant subspace

Outline

Important properties of L and solutions of $Lh = 0 \iff \mathcal{G}_L$

- All solutions are algebraic
- All solutions are linear combinations of exponentials
- Existence of Liouvillian solutions
- Existence of factorizations
- Integrability of Hamiltonian vector fields
 - 1. Effective Ramis density theorem: \mathcal{G}_L is generated as a closed linear algebraic group by a finite number of matrices (monodromy and Stokes matrices and generators of the local exponential groups).
 - 2. The entries of the matrices in 1. are computable complex numbers (with fast approximation algorithms).
 - 3. Reduce computations of/with \mathcal{G}_L to linear algebra

Outline

Important properties of L and solutions of $Lh = 0 \iff \mathcal{G}_L$

- How to compute \mathcal{G}_L ?
- How to check special properties of \mathcal{G}_L (e.g. factorization) ?
 - 1. Effective Ramis density theorem: \mathcal{G}_L is generated as a closed linear algebraic group by a finite number of matrices (monodromy and Stokes matrices and generators of the local exponential groups).
- 2. The entries of the matrices in 1. are computable complex numbers (with fast approximation algorithms).
- 3. Reduce computations of/with \mathcal{G}_L to linear algebra

Schlesinger density theorem

Fundamental system of formal solutions h^0 at 0 of the form

$$h = \left(\sum_{0 \leqslant i < r} h_r(z^{1/k}) \log^i z\right) z^{\sigma} e^{P(z^{-1/k})}$$

Three types of points $z \in \mathbb{C}$:

- 1. Non singular points (basis h^z of convergent power series solutions)
- 2. Regular singular points (basis h^z of convergent solutions with logs)
- 3. Irregular singular points (basis h^z with divergent or exponential els)

Schlesinger: in absence of irregular singular points (also consider $z = \infty$), the monodromy matrices generate \mathcal{G}_L

Effective Ramis density theorem

Extra matrices

Local exponential group $\longleftrightarrow \mathbb{Q}$ -linear relations between exponential parts

Stokes matrices \(\lorsigma\) divergent counterpart of monodromy matrices

Resummation

$$\tilde{f} = \frac{1}{z} + \frac{1}{z^2} + \frac{2}{z^3} + \frac{6}{z^4} + \cdots$$

$$\hat{f}(\zeta) = (\tilde{\mathcal{B}}f)(\zeta) = 1 + \zeta + \zeta^2 + \zeta^3 + \cdots = \frac{1}{1 - \zeta}$$

$$f(z) = (\mathcal{L}_{\theta}\hat{f})(z) = \int_0^{e^{i\theta}\infty} \frac{e^{-z\zeta}}{1 - \zeta} d\zeta$$

Stokes matrix at $\theta=0$: "change" between $\mathcal{L}_{0^+}\hat{f}$ and \mathcal{L}_{0^-}

Effective Ramis density theorem

Extra matrices

Local exponential group $\longleftrightarrow \mathbb{Q}$ -linear relations between exponential parts

Stokes matrices \(\lorsigma\) divergent counterpart of monodromy matrices

Accelero-summation (Écalle)

Fast evaluation of holonomic functions

• Brent (e), Chudnovsky², Karatsuba, VdH, Haible-Papanikolaou

Fast evaluation of holonomic functions

Brent (e), Chudnovsky², Karatsuba, VdH, Haible-Papanikolaou

$$\begin{pmatrix} f_{n+1} \\ \vdots \\ f_{n+r} \end{pmatrix} = M_n \begin{pmatrix} f_n \\ \vdots \\ f_{n+r-1} \end{pmatrix}$$

Complexity results

• VdH-97: certified continuation along non singular paths

• VdH-98: regular singular connection matrices

• VdH-05: irregular singular connection matrices

Idea: initial conditions w.r.t. canonical basis of solutions

series of type	evaluation in $z \in \hat{\mathbb{Q}}$	evaluation in general z
$\sum_{n=0}^{\infty} \frac{f_n}{(n!)^{\kappa}} z^n$	$O(M(n)\log n)$	$O(M(n)\log n\log\log n)$
$\sum_{n=0}^{\infty} f_n z^n$	$O(M(n)\log^2 n)$	$O(M(n)\log^2 n\log\log n)$
$\sum_{n=0}^{\infty} f_n(n!)^{\kappa} z^n$	$O(M(n)\log^3 n)$	$O(M(n)\log^3 n)$

Factorization of differential operators

- 1. Compute generators $M_1, ..., M_m$ of \mathcal{G}_L at a non-singular point
- 2. Fix a precision p for zero-testing
- 3. Try to compute a non-trivial invariant subspace V of for $M_1,...,M_m$
- 4. If no such V exists then return "fail"
- 5. From V, reconstruct a candidate factorization L = AB
- 6. If L = AB holds, then return (A, B)
- 7. Double the precision and go to step 3

Better complexity than van Hoeij, Cluzeau, etc. ???

Differential Galois groups

..., Kovacic, Singer, Ulmer, van Hoeij & Weil, Singer & Compoint, ...

$$\mathcal{G} = \mathcal{F} e^{\mathcal{L}}$$
 $(\forall N \in \mathcal{F}, N e^{\mathcal{L}} = e^{\mathcal{L}} N)$

Ingredients:

- 1. Computation of $\langle M \rangle$ for a single matrix
- 2. Testing whether $M \in \mathcal{F} e^{\mathcal{L}}$ for given \mathcal{F} and \mathcal{L}

The algorithm

Step 1. [Initialize algorithm]

Compute
$$\langle M_i \rangle = \mathcal{F}_i e^{\mathcal{L}_i}$$
 for each $i \in \{1, ..., m\}$
Let $\mathcal{F} := \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_m$ (notice that $1 \in \mathcal{F}$)
Let $\mathcal{L} := \text{Lie}(\mathcal{L}_1 + \cdots + \mathcal{L}_m)$

Step 2. [Closure]

```
While there exists an N \in \mathcal{F} \setminus \{1\} with N\mathcal{L} N^{-1} \not\subseteq \mathcal{L} Let \mathcal{L} := \operatorname{Lie}(\mathcal{L} + N\mathcal{L} N^{-1}) While there exists an N \in \mathcal{F} \setminus \{1\} with N \in \operatorname{e}^{\mathcal{L}} set \mathcal{F} := \mathcal{F} \setminus \{N\} While there exists N \in \mathcal{F}^2 with N \notin \mathcal{F} \operatorname{e}^{\mathcal{L}} do Compute \langle N \rangle = \mathcal{F}' \operatorname{e}^{\mathcal{L}'} If \mathcal{L}' \not\subseteq \mathcal{L} then set \mathcal{L} := \operatorname{Lie}(\mathcal{L} + \mathcal{L}'), quit loop and repeat step 2 Otherwise, set \mathcal{F} := \mathcal{F} \cup \{N\}
```


Faster computations with the discrete part

More compact representation of elements in $\mathcal{H} = \mathcal{G} / e^{\mathcal{L}}$

- Reduce to the case when $\mathcal{G} \subseteq \operatorname{Norm}(e^{\mathcal{L}})^o$
- First basis element $M = B_1 = e^X$ with
 - $-Me^{\mathcal{L}} \in \mathcal{H}$
 - $-M e^{\mathcal{L}}$ generates $(e^{\mathbb{C} X} \cap \mathcal{G})/e^{\mathcal{L}}$
 - M has maximal order q with these properties
- Set $\mathcal{H}' := \{ N \in \mathcal{H} : [M, N] = 0 \}$, $\mathcal{L}' := \mathcal{L} \oplus \mathbb{C} X$, so that

$$\mathcal{H} = \{1, ..., M^{q-1}\} \mathcal{H}' / e^{\mathcal{L}'}.$$

• Other basis elements $B_2, ..., B_b$ by induction, with

$$||B_1||_{\mathcal{L}} \leqslant \cdots \leqslant ||B_b||_{\mathcal{L}}$$

Non commutative basis reduction

- If $[B_i, B_j] = 0$ reduce using LLL.
- If $[B_i, B_j] \neq 0$, then $||[B_i, B_j]||_{\mathcal{L}} = O(||B_i||_{\mathcal{L}} ||B_j||_{\mathcal{L}}) \rightsquigarrow$ new elements