# Hardy field solutions to algebraic differential equations



Joris van der Hoeven, Pisa 2007 http://www.TEXmacs.org



## A missing subject?





- Hardy fields: Hardy, Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, van den Dries, Rolin, etc.



#### A missing subject?





- Hardy fields: Hardy, Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, van den Dries, Rolin, etc.



#### A missing subject?





- LNM 1888: Transseries and Real Differential Algebra
- Other work on http://www.math.u-psud.fr/~vdhoeven







\_\_\_\_\_

Real algebraic geometry

+

Valuation theory

Differential algebra —

Real differential algebra

+

Asymptotic differential algebra



Differential algebra

# Sufficiently closed models





Real differential algebra + Asymptotic differential algebra



































 $\mathbb{C}$ 

 $\longrightarrow$ 

 $\mathbb{R} \\ + \\ \mathbb{C} \llbracket z^{\mathbb{Q}} \rrbracket$ 

Wild

 $\longrightarrow$ 

 $\mathbb{R} \, [\![ x ]\!] \\ + \\ \mathbb{C} \, [\![ z ]\!]$ 



#### What is a transseries?



 $(x \succ 1)$ 

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + \dots}}} + \dots$$



## What is a transseries?



 $(x \succ 1)$ 

$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \frac{2}{\log x} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + e^{\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + \dots}}} + \dots$$

- Dahn & Göring
- Écalle



#### **Examples of transseries**



$$\frac{1}{1-x^{-1}-x^{-e}} = 1+x^{-1}+x^{-2}+x^{-e}+x^{-3}+x^{-e-1}+\cdots$$

$$\frac{1}{1-x^{-1}-e^{-x}} = 1+\frac{1}{x}+\frac{1}{x^2}+\cdots+e^{-x}+2\frac{e^{-x}}{x}+\cdots+e^{-2x}+\cdots$$

$$-e^x\int\frac{e^{-x}}{x} = \frac{1}{x}-\frac{1}{x^2}+\frac{2}{x^3}-\frac{6}{x^4}+\frac{24}{x^5}-\frac{120}{x^6}+\cdots$$

$$\Gamma(x) = \frac{\sqrt{2\pi}\,e^{x(\log x-1)}}{x^{1/2}}+\frac{\sqrt{2\pi}\,e^{x(\log x-1)}}{12\,x^{3/2}}+\frac{\sqrt{2\pi}\,e^{x(\log x-1)}}{288\,x^{5/2}}+\cdots$$

$$\zeta(x) = 1+2^{-x}+3^{-x}+4^{-x}+\cdots$$

$$\varphi(x) = \frac{1}{x}+\varphi(x^\pi)=\frac{1}{x}+\frac{1}{x^\pi}+\frac{1}{x^{\pi^2}}+\frac{1}{x^{\pi^3}}+\cdots$$

$$\psi(x) = \frac{1}{x}+\psi(e^{\log^2 x})=\frac{1}{x}+\frac{1}{e^{\log^2 x}}+\frac{1}{e^{\log^4 x}}+\frac{1}{e^{\log^8 x}}+\cdots$$



#### The field ${\mathbb T}$ of grid-based transseries



- $\mathbb{T} = \mathbb{R} \llbracket \mathfrak{T} \rrbracket$ , where  $\mathfrak{T}$  is a totally ordered monomial group.
- $\mathbb{R} \, \llbracket \mathfrak{T} \rrbracket$ : series  $f = \sum_{\mathfrak{m} \in \mathfrak{T}} \, f_{\mathfrak{m}} \, \mathfrak{m} \in \mathbb{R} \, \llbracket \mathfrak{T} \rrbracket$  with **grid-based support**:

supp 
$$f \subseteq {\{\mathfrak{m}_1, ..., \mathfrak{m}_m\}^* \mathfrak{n}}, \qquad \mathfrak{m}_1, ..., \mathfrak{m}_m \prec 1$$

- T is a totally ordered, real closed field.
- $\mathbb{T}$  is stable under exp,  $\log$ ,  $\partial$ ,  $\int$ ,  $\circ$  and inv.





**Theorem.** (2000) Given  $P \in \mathbb{T}\{F\}$  and  $f < g \in \mathbb{T}$  with P(f) P(g) < 0. Then there exists an  $h \in \mathbb{T}$  with f < h < g and P(h) = 0.

- 1. Calculus with **cuts**  $\hat{f} \in \hat{\mathbb{T}}$ .
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.





**Theorem.** (2000) Given  $P \in \mathbb{T}\{F\}$  and  $f < g \in \mathbb{T}$  with P(f) P(g) < 0. Then there exists an  $h \in \mathbb{T}$  with f < h < g and P(h) = 0.

- 1. Calculus with **cuts**  $\hat{f} \in \hat{\mathbb{T}}$ .
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

**Corollary.** Any  $P \in \mathbb{T}\{F\}$  of odd degree admits a root in  $\mathbb{T}$ .





**Theorem.** (2000) Given  $P \in \mathbb{T}\{F\}$  and  $f < g \in \mathbb{T}$  with P(f) P(g) < 0. Then there exists an  $h \in \mathbb{T}$  with f < h < g and P(h) = 0.

- 1. Calculus with **cuts**  $\hat{f} \in \hat{\mathbb{T}}$ .
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

**Example.** The following equation admits a solution in  $\mathbb{T}$ :

$$\frac{1}{x}f'''(f')^2 f^{24} + e^x (f'')^{27} - \Gamma(\Gamma(\log x)) f^2 = \frac{e^{e^x + x^2}}{\Gamma(e^x + x)}.$$





**Theorem.** (2000) Given  $P \in \mathbb{T}\{F\}$  and  $f < g \in \mathbb{T}$  with P(f) P(g) < 0. Then there exists an  $h \in \mathbb{T}$  with f < h < g and P(h) = 0.

- 1. Calculus with **cuts**  $\hat{f} \in \hat{\mathbb{T}}$ .
- 2. Classification of cuts and behaviour of P(f) near a cut.
- 3. Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

**Corollary.** Any monic  $L \in \mathbb{T}[\partial]$  admits a factorization with factors

$$\partial - a$$
 or

$$\partial^2 - (2 \, a + b^{\dagger}) \, \partial + (a^2 + b^2 - a' + a \, b^{\dagger}) = (\partial - (a - b \, \mathbf{i} + b^{\dagger})) \, (\partial - (a + b \, \mathbf{i}))$$



#### **Complex transseries**



**Theorem.** (2001) Every asymptotic differential equation over  $\mathbb{T}$  of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.



#### **Complex transseries**



**Theorem.** (2001) Every asymptotic differential equation over  $\mathbb{T}$  of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Warning. T is not differentially algebraically closed

$$f^3 + (f')^2 + f = 0$$
$$f^3 + f \neq 0$$

→ Desingularization of vector fields (Cano, Panazzolo, ...)



#### **Complex transseries**



**Theorem.** (2001) Every asymptotic differential equation over  $\mathbb{T}$  of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

**Corollary.** T is Picard-Vessiot closed.

**Remark.** ∃ algorithm for computing the solutions of a given equation.

**Remark.** Zero-test algorithm for polynomials in power series solutions to algebraic differential equations.

#### Real transseries solutions $\rightarrow$ analytic germs



#### 1: Accelero-summation

#### 2: Transserial Hardy fields

$$\mathbb{T} \ \supseteq \ \mathcal{T} \overset{
ho}{\hookrightarrow} \ \mathcal{G}$$

•  $\mathcal{G}$ : ring of infinitely differentiable real germs at  $+\infty$ .



# Real transseries solutions $\rightarrow$ analytic germs



#### 1: Accelero-summation

| Advantages                                                                                                           | Disadvantages                                         |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Canonical after choosing average Preserves composition Classification local vector fields Differential Galois theory | Requires many different tools<br>Not yet written down |

#### 2: Transserial Hardy fields

| Advantages                                    | Disadvantages                  |
|-----------------------------------------------|--------------------------------|
| Less hypotheses on coefficients               | Not canonical                  |
| Might generalize to other models Written down | No preservation of composition |





A **transserial Hardy** field is a differential subfield  $\mathcal{T}$  of  $\mathbb{T}$ , together with a monomorphism  $\rho: \mathcal{T} \to \mathcal{G}$  of ordered differential  $\mathbb{R}$ -algebras, such that

**TH1.** 
$$\forall f \in \mathcal{T}$$
: supp  $f \subseteq \mathcal{T}$ .

**TH2.** 
$$\forall f \in \mathcal{T}$$
:  $f_{\prec} \in \mathcal{T}$ .

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

**TH3.** 
$$\exists d \in \mathbb{Z}$$
:  $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$ :  $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$ .

**TH4.** 
$$\mathfrak{T} \cap \mathcal{T}$$
 is stable under taking real powers.

**TH5.** 
$$\forall f \in \mathcal{T}^{>}$$
:  $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$ .

Example. 
$$\mathcal{T} = \mathbb{R}\{\{x^{-1}\}\}.$$





A **transserial Hardy** field is a differential subfield  $\mathcal{T}$  of  $\mathbb{T}$ , together with a monomorphism  $\rho: \mathcal{T} \to \mathcal{G}$  of ordered differential  $\mathbb{R}$ -algebras, such that

**TH1.** 
$$\forall f \in \mathcal{T}$$
: supp  $f \subseteq \mathcal{T}$ .

**TH2.** 
$$\forall f \in \mathcal{T}$$
:  $f_{\prec} \in \mathcal{T}$ .

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

$$\frac{x e^{x}}{1 - x^{-1} - e^{-x}}$$

$$x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots$$

**TH3.** 
$$\exists d \in \mathbb{Z}$$
:  $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$ :  $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$ .

**TH4.**  $\mathfrak{T} \cap \mathcal{T}$  is stable under taking real powers.

**TH5.** 
$$\forall f \in \mathcal{T}^{>}$$
:  $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$ .

Example. 
$$\mathcal{T} = \mathbb{R}\{\{x^{-1}\}\}$$
.





A **transserial Hardy** field is a differential subfield  $\mathcal{T}$  of  $\mathbb{T}$ , together with a monomorphism  $\rho: \mathcal{T} \to \mathcal{G}$  of ordered differential  $\mathbb{R}$ -algebras, such that

**TH1.** 
$$\forall f \in \mathcal{T}$$
: supp  $f \subseteq \mathcal{T}$ .

**TH2.** 
$$\forall f \in \mathcal{T}$$
:  $f_{\prec} \in \mathcal{T}$ .

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

$$\left(\frac{x e^{x}}{1 - x^{-1} - e^{-x}}\right)_{\prec}$$

$$x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots$$

**TH3.** 
$$\exists d \in \mathbb{Z}$$
:  $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$ :  $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$ .

**TH4.**  $\mathfrak{T} \cap \mathcal{T}$  is stable under taking real powers.

**TH5.** 
$$\forall f \in \mathcal{T}^{>}$$
:  $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$ .

Example. 
$$\mathcal{T} = \mathbb{R}\{\{x^{-1}\}\}$$
.





A **transserial Hardy** field is a differential subfield  $\mathcal{T}$  of  $\mathbb{T}$ , together with a monomorphism  $\rho: \mathcal{T} \to \mathcal{G}$  of ordered differential  $\mathbb{R}$ -algebras, such that

**TH1.** 
$$\forall f \in \mathcal{T}$$
: supp  $f \subseteq \mathcal{T}$ .

**TH2.** 
$$\forall f \in \mathcal{T}$$
:  $f_{\prec} \in \mathcal{T}$ .

$$f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

**TH3.** 
$$\exists d \in \mathbb{Z}$$
:  $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$ :  $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$ .

**TH4.** 
$$\mathfrak{T} \cap \mathcal{T}$$
 is stable under taking real powers.

**TH5.** 
$$\forall f \in \mathcal{T}^{>}$$
:  $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$ .

Example. 
$$\mathcal{T} = \mathbb{R}\{\{x^{-1}\}\}.$$



#### **Elementary extensions**



**Definitions.**  $\mathcal{T}$  transserial Hardy field,  $f \in \mathbb{T}$ ,  $\hat{f} \in \mathcal{G}$ 

$$f \sim \hat{f} \iff (\exists \varphi \in \mathcal{T}: \ f \sim_{\mathbb{T}} \varphi \sim_{\mathcal{G}} \hat{f})$$

$$f \ asympt. \ equiv. \ \text{to} \ \hat{f} \ \text{over} \ \mathcal{T} \iff (\forall \varphi \in \mathcal{T}: \ f - \varphi \sim \hat{f} - \varphi)$$

$$f \ diff. \ equiv. \ \text{to} \ \hat{f} \ \text{over} \ \mathcal{T} \iff (\forall P \in \mathcal{T} \{F\}: \ P(f) = 0 \Leftrightarrow P(\hat{f}) = 0)$$

**Lemma.** Let  $f \in \mathbb{T} \setminus \mathcal{T}$  and  $\hat{f} \in \mathcal{G} \setminus \mathcal{T}$  be such that

- i. f is a serial cut over  $\mathcal{T}$ .
- ii. f and  $\hat{f}$  are asymptotically equivalent over  $\mathcal{T}$ .
- iii. f and  $\hat{f}$  are differentially equivalent over  $\mathcal{T}$ .
- Then  $\exists !$  transserial Hardy field extension  $\rho : \mathcal{T}\langle f \rangle \to \mathcal{G}$  with  $\rho(f) = \hat{f}$ .



#### **Basic extension theorems**



**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field. Then its real closure  $\mathcal{T}^{rcl}$  admits a unique transserial Hardy field structure which extends the one of  $\mathcal{T}$ .

**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field and let  $\varphi \in \mathcal{T}_{\succ}$  be such that  $e^{\varphi} \notin \mathcal{T}$ . Then the set  $\mathcal{T}(e^{\mathbb{R}\varphi})$  carries the structure of a transserial Hardy field for the unique differential morphism  $\rho: \mathcal{T}(e^{\mathbb{R}\varphi}) \to \mathcal{G}$  over  $\mathcal{T}$  with  $\rho(e^{\lambda \varphi}) = e^{\lambda \rho(\varphi)}$  for all  $\lambda \in \mathbb{R}$ .

**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field of depth  $d < \infty$ . Then  $\mathcal{T}((\log_d x)^\mathbb{R})$  carries the structure of a transserial Hardy field for the unique differential morphism  $\rho: \mathcal{T}((\log_d x)^\mathbb{R}) \to \mathcal{G}$  over  $\mathcal{T}$  with  $\rho((\log_d x)^\lambda) = (\log_d x)^\lambda$  for all  $\lambda \in \mathbb{R}$ .



## Differential equations (main ideas)



#### Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{e^x} = 0$$

**Step 2.** Put equation in integral form

$$f = \int \left(\frac{x}{e^x} + f^2\right)$$

Step 3. Integral transseries solution



### Differential equations (main ideas)



#### Step 1. A given algebraic differential equation

$$f^2 - e^x f' + \frac{e^{2x}}{x} = 0$$

**Step 2.** Put equation in integral form

$$f = \int \left( \frac{e^x}{x} + \frac{f^2}{e^x} \right)$$

**Step 3.** Integrate from a fixed point  $x_0 < \infty$ 



#### Differential equations (main ideas)



Step 1. A general algebraic differential equation

$$P(f) = 0$$

**Step 2.** Equation in split-normal form

$$(\partial - \varphi_1) \cdots (\partial - \varphi_r) f = P(f)$$
 with  $P(f)$  small

Attention:  $\varphi_1, ..., \varphi_r \in \mathcal{T}[i]$ , even though  $(\partial - \varphi_1) \cdots (\partial - \varphi_r) \in \mathcal{T}[\partial]$ .

**Step 3.** Solve the split-normal equation using the fixed-point technique.



#### Continuous right-inverses (first order)



**Lemma.** The operator  $J = (\partial - \varphi)_{x_0}^{-1}$ , defined by

$$(Jf)(x) = \begin{cases} e^{\Phi(x)} \int_{-\infty}^{x} e^{-\Phi(t)} f(t) dt & (repulsive \ case) \\ e^{\Phi(x)} \int_{-x_0}^{x} e^{-\Phi(t)} f(t) dt & (attractive \ case) \end{cases}$$

and

$$\Phi(x) = \begin{cases} \int_{-\infty}^{x} \varphi(t) dt & (repulsive \ case) \\ \int_{-x_0}^{x} \varphi(t) dt & (attractive \ case) \end{cases}$$

is a continuous right-inverse of  $L = \partial - \varphi$  on  $\mathcal{G}^{\bowtie}[i]$ , with

$$|||J||_{x_0} \leqslant \left\| \frac{1}{\operatorname{Re} \varphi} \right\|_{x_0}$$



#### Continuous right-inverses (higher order)



**Lemma.** Given a split-normal operator

$$L = (\partial - \varphi_1) \cdots (\partial - \varphi_r), \tag{1}$$

with a factorwise right-inverse  $L^{-1} = J_r \cdots J_1$ , the operator

$$\mathfrak{v}^{\nu}J_{r}\cdots J_{1}:\mathcal{G}_{x_{0}}^{\preccurlyeq}[\mathrm{i}] \rightarrow \mathcal{G}_{x_{0};r}^{\preccurlyeq}[\mathrm{i}]$$

is a continuous operator for every  $\nu > r \sigma_L$ . Here  $\mathcal{G}_{x_0;r}^{\preccurlyeq}[i]$  carries the norm

$$||f||_{x_0;r} = \max\{||f||_{x_0},...,||f^{(r)}||_{x_0}\}.$$

**Lemma.** If  $L \in \mathcal{T}[\partial]$  and the splitting (1) (formally) preserves realness, then  $J_r \cdots J_1$  preserves realness in the sense that it maps  $\mathcal{G}_{x_0}^{\prec}$  into itself.



#### Non-linear equations



**Theorem.** Consider a split-monic equation

$$Lf = P(f), \quad f \prec 1,$$

and let  $\nu$  be such that r  $\sigma_L < \nu < v_P$ . Then for any sufficiently large  $x_0$ , there exists a continuous factorwise right-inverse  $J_{r, \ltimes v^{\nu}} \cdots J_{1, \ltimes v^{\nu}}$  of  $L_{\ltimes v^{\nu}}$ , such that the operator

$$\Xi: f \longmapsto (J_r \cdots J_1)(P(f))$$

admits a unique fixed point

$$f = \lim_{n \to \infty} \Xi^{(n)}(0) \in \mathcal{B}(\mathcal{G}_{x_0;r}^{\preccurlyeq}, \frac{1}{2}).$$



#### Preservation of asymptotics



**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field of span  $\mathfrak{v} \succeq e^x$ . Consider a monic split-normal quasi-linear equation

$$Lf = P(f), \quad f < 1, \tag{2}$$

over  $\mathcal{T}$  without solutions in  $\mathcal{T}$ . Assume that one of the following holds:

- a)  $\mathcal{T}$  is (1,1,1)-differentially closed in  $\mathbb{T}_{\underline{\prec} v}$  and (2) is first order.
  - i.e.  $\mathcal{T}$  is closed under the resolution of linear first order equations.
- b)  $\mathcal{T}[i]$  is (1,1,1)-differentially closed in  $\mathbb{T}[i]_{\ll_{\mathfrak{v}}}$ .

Then there exist solutions  $f \in \mathcal{G}$  and  $\tilde{f} \in \hat{\mathcal{T}}$  to (2), such that f and  $\tilde{f}$  are asymptotically equivalent over  $\mathcal{T}$ .

# (A)

#### First order extensions



**Lemma.** Let  $L = \partial - \varphi \in \mathcal{T}[\partial]$  be a normal operator. Let  $\tilde{f} \in \hat{\mathcal{T}}^{\preccurlyeq}$  and  $g \in \mathcal{T}^{\preccurlyeq}$  be such that  $\tilde{f}$  is transcendental over  $\mathcal{T}$  and  $L \tilde{f} = g$ . Then there exists an  $f \in \mathcal{G}^{\preccurlyeq}$  with Lf = g, such that f and  $\tilde{f}$  are both differentially and asymptotically equivalent over  $\mathcal{T}$ .

**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field. Let  $\mathcal{T}^{\mathrm{fo}} \supseteq \mathcal{T}$  be the smallest differential subfield of  $\mathbb{T}$ , such that for any  $P \in \mathcal{T}^{\mathrm{fo}} \{F\}^{\neq}$  with  $r_P \leqslant 1$  and  $f \in \mathbb{T}$  we have  $P(f) = 0 \Rightarrow f \in \mathcal{T}^{\mathrm{fo}}$ . Then the transserial Hardy field structure of  $\mathcal{T}$  can be extended to  $\mathcal{T}^{\mathrm{fo}}$ .

#### **Proof.** As long as $\mathcal{T}^{\text{fo}} \neq \mathcal{T}$ :

- Close off under exp, log and algebraic equations.
- Choose  $P \in \mathcal{T}\{F\}^{\neq}$ ,  $r_P = 1$ ,  $f \in \mathbb{T}$ , P(f) = 0 such that P has minimal "complexity"  $(r_P, d_P, t_P)$  and apply the lemma.



#### Higher order extensions



**Lemma.** Let  $L = \partial - \varphi \in \mathcal{T}[i][\partial]$  be a normal operator. Let  $\tilde{f} \in \hat{\mathcal{T}}[i]^{\preccurlyeq}$  and  $g \in \mathcal{T}[i]^{\preccurlyeq}$  be such that  $\operatorname{Re} \tilde{f}$  has order 2 over  $\mathcal{T}$  and  $L \tilde{f} = g$ . Then there exists an  $f \in \mathcal{G}^{\preccurlyeq}[i]$  with Lf = g, such that  $\operatorname{Re} f$  and  $\operatorname{Re} \tilde{f}$  are both differentially and asymptotically equivalent over  $\mathcal{T}$ .

**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field. Let  $\mathcal{T}^{\mathrm{dalg}} \supseteq \mathcal{T}$  be the smallest differential subfield of  $\mathbb{T}$ , such that for any  $P \in \mathcal{T}^{\mathrm{dalg}}\{F\}^{\neq}$  and  $f \in \mathbb{T}$  we have  $P(f) = 0 \Rightarrow f \in \mathcal{T}^{\mathrm{dalg}}$ . Then the transserial Hardy field structure of  $\mathcal{T}$  can be extended to  $\mathcal{T}^{\mathrm{dalg}}$ .



#### **Applications**



**Corollary.** There exists a transserial Hardy field  $\mathcal{T}$ , such that for any  $P \in \mathcal{T}\{F\}$  and  $f, g \in \mathcal{T}$  with f < g and P(f) P(g) < 0, there exists a  $h \in \mathcal{T}$  with f < h < g and P(h) = 0.

**Corollary.** There exists a transserial Hardy field  $\mathcal{T}$ , such that  $\mathcal{T}[i]$  is weakly differentially closed.

**Corollary.** There exists a differentially Henselian transserial Hardy field  $\mathcal{T}$ , i.e., such that any quasi-linear differential equation over  $\mathcal{T}$  admits a solution in  $\mathcal{T}$ .



#### A partial inverse



**Theorem.** Let  $\mathcal{T}$  be a transserial Hardy field and  $\mathcal{H}$  a differentially algebraic Hardy field extension of  $\mathcal{T}$ , such that  $\mathcal{H}$  is differentially Henselian and stable under exponentiation. Then there exists a transserial Hardy field structure on  $\mathcal{H}$  which extends the structure on  $\mathcal{T}$ .

**Corollary.** Let  $\mathcal{T}$  be a transserial Hardy field and  $\mathcal{H}$  a differentially algebraic Hardy field extension of  $\mathcal{T}$ , such that  $\mathcal{H}$  is differentially Henselian. Assume that  $\mathcal{H}$  admits no non-trivial algebraically differential Hardy field extensions. Then  $\mathcal{H}$  satisfies the differential intermediate value property.

Theorem. (Boshernitzan 1987) Any solution of the equation

$$f'' + f = e^{x^2}$$

is contained in a Hardy field. However, none of these solutions is contained in the intersection of all maximal Hardy fields.

#### **Open questions**



- 1. Embeddability of Hardy fields in differentially Henselian Hardy fields.
- 2. Do maximal Hardy fields satisfy the intermediate value property?
- 3. Restricted analytic (instead of algebraic) differential equations.
- 4. Preservation of composition:
  - a.  $f(x+\varepsilon)$ , small  $\varepsilon$ : expand.
  - b.  $f(qx+\varepsilon)$ : expand, but more intricate.
  - c.  $f(\varphi(x)), \varphi \succ x$ : abstract nonsense.