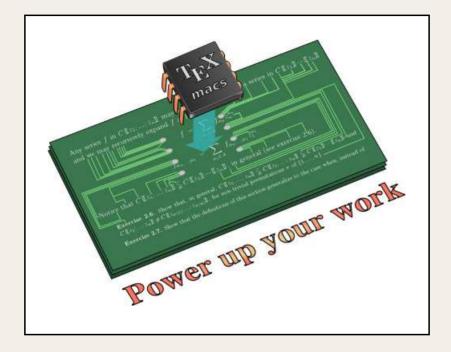
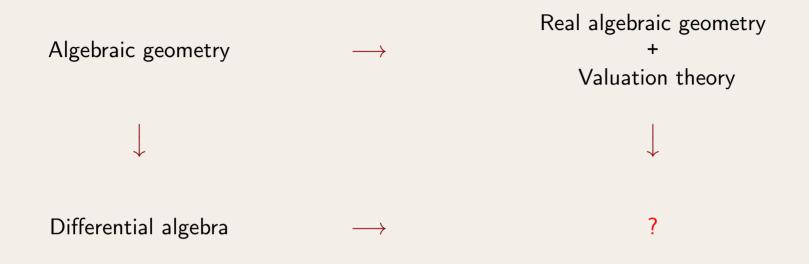
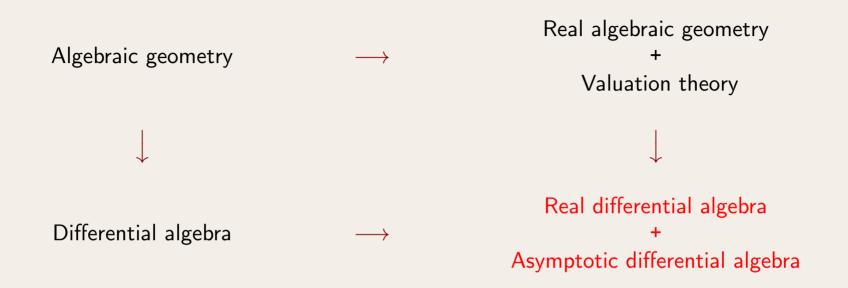
Hardy field solutions to algebraic differential equations



Joris van der Hoeven, Fields Institute 2009 $\texttt{http://www.TeX}_{MACS}.\texttt{org}$

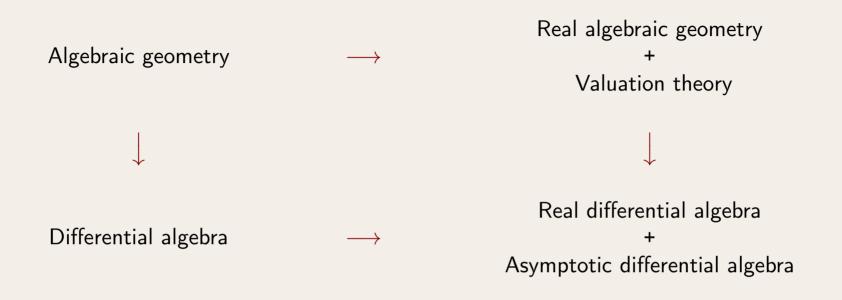


- Hardy fields: Hardy, Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, van den Dries, Rolin, etc.

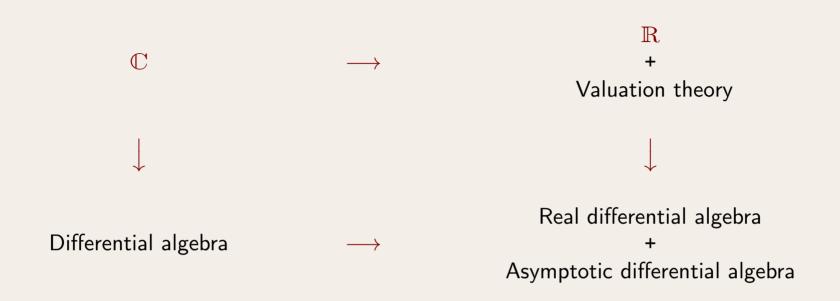


- Hardy fields: Hardy, Rosenlicht, Boshernitzan, Singer, etc.
- Pfaff systems: Khovanskii, Wilkie, van den Dries, Rolin, etc.

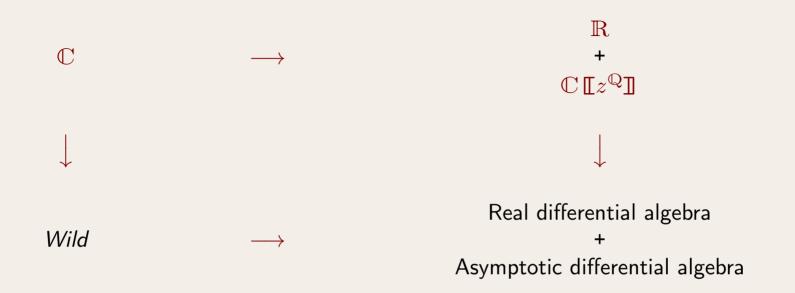
- LNM 1888: Transseries and Real Differential Algebra
- Other work on http://www.math.u-psud.fr/~vdhoeven

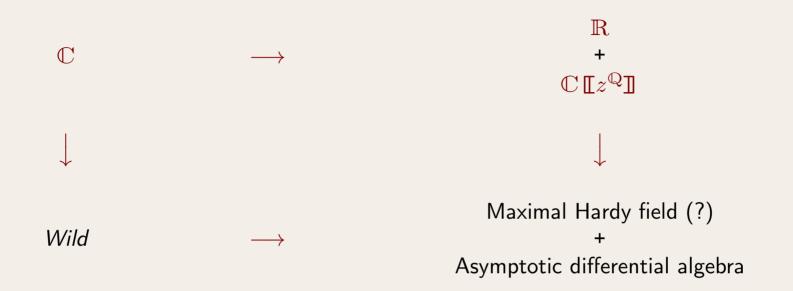


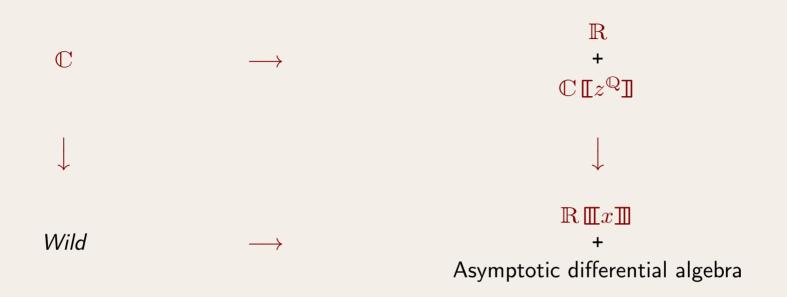
Sufficiently closed models

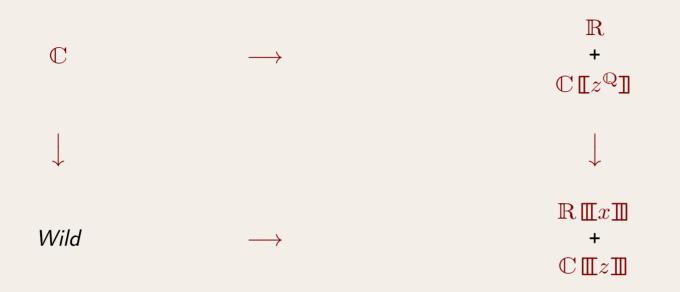


Sufficiently closed models

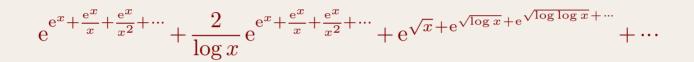




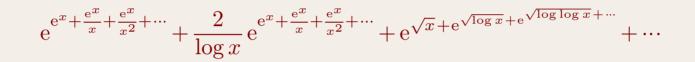




 $(x \succ 1)$



$(x \succ 1)$



- Dahn & Göring
- Écalle

$$\begin{aligned} \frac{1}{1-x^{-1}-x^{-e}} &= 1+x^{-1}+x^{-2}+x^{-e}+x^{-3}+x^{-e-1}+\cdots \\ \frac{1}{1-x^{-1}-e^{-x}} &= 1+\frac{1}{x}+\frac{1}{x^2}+\cdots+e^{-x}+2\frac{e^{-x}}{x}+\cdots+e^{-2x}+\cdots \\ -e^x\int\frac{e^{-x}}{x} &= \frac{1}{x}-\frac{1}{x^2}+\frac{2}{x^3}-\frac{6}{x^4}+\frac{24}{x^5}-\frac{120}{x^6}+\cdots \\ \Gamma(x) &= \frac{\sqrt{2\pi}e^{x(\log x-1)}}{x^{1/2}}+\frac{\sqrt{2\pi}e^{x(\log x-1)}}{12x^{3/2}}+\frac{\sqrt{2\pi}e^{x(\log x-1)}}{288x^{5/2}}+\cdots \\ \zeta(x) &= 1+2^{-x}+3^{-x}+4^{-x}+\cdots \\ \varphi(x) &= \frac{1}{x}+\varphi(x^{\pi})=\frac{1}{x}+\frac{1}{x^{\pi}}+\frac{1}{x^{\pi^2}}+\frac{1}{x^{\pi^3}}+\frac{1}{e^{\log^4 x}}+\frac{1}{e^{\log^8 x}}+\cdots \\ \psi(x) &= \frac{1}{x}+\psi(e^{\log^2 x})=\frac{1}{x}+\frac{1}{e^{\log^2 x}}+\frac{1}{e^{\log^4 x}}+\frac{1}{e^{\log^8 x}}+\cdots \end{aligned}$$

- $\mathbb{T} = \mathbb{R} \llbracket \mathfrak{T} \rrbracket$, where \mathfrak{T} is a totally ordered monomial group.
- $\mathbb{R} \llbracket \mathfrak{T} \rrbracket$: series $f = \sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m} \in \mathbb{R} \llbracket \mathfrak{T} \rrbracket$ with grid-based support:

supp $f \subseteq {\mathfrak{m}_1, ..., \mathfrak{m}_m}^* \mathfrak{n}, \qquad \mathfrak{m}_1, ..., \mathfrak{m}_m \prec 1$

- \mathbb{T} is a totally ordered, real closed field.
- \mathbb{T} is stable under exp, log, ∂ , \int , \circ and ^{inv}.

- Calculus with **cuts** $\hat{f} \in \hat{\mathbb{T}}$.
- Classification of cuts and behaviour of P(f) near a cut.
- Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

- Calculus with **cuts** $\hat{f} \in \hat{\mathbb{T}}$.
- Classification of cuts and behaviour of P(f) near a cut.
- Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Corollary. Any $P \in \mathbb{T}{F}$ of odd degree admits a root in \mathbb{T} .

- Calculus with **cuts** $\hat{f} \in \hat{\mathbb{T}}$.
- Classification of cuts and behaviour of P(f) near a cut.
- Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Example. The following equation admits a solution in \mathbb{T} :

$$\frac{1}{x} f'''(f')^2 f^{24} + e^x (f'')^{27} - \Gamma(\Gamma(\log x)) f^2 = \frac{e^{e^x + x^2}}{\Gamma(e^x + x)}.$$

- Calculus with **cuts** $\hat{f} \in \hat{\mathbb{T}}$.
- Classification of cuts and behaviour of P(f) near a cut.
- Newton polygon method for shrinking interval on which a sign change occurs and whose end-points are cuts.

Corollary. Any monic $L \in \mathbb{T}[\partial]$ admits a factorization with factors

 $\partial - a$ or

 $\partial^2 - \left(2\,a + b^\dagger\right)\partial + \left(a^2 + b^2 - a' + a\,b^\dagger\right) = \left(\partial - \left(a - b\,\mathbf{i} + b^\dagger\right)\right)\left(\partial - \left(a + b\,\mathbf{i}\right)\right)$

Theorem. (2001) Every asymptotic differential equation over \mathbb{T} of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Theorem. (2001) Every asymptotic differential equation over \mathbb{T} of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Warning. \mathbb{T} is not differentially algebraically closed

 $\begin{array}{rcl} f^{3} + (f')^{2} + f &=& 0 \\ f^{3} + f &\neq& 0 \end{array}$

 \rightarrow Desingularization of vector fields (Cano, Panazzolo, ...)

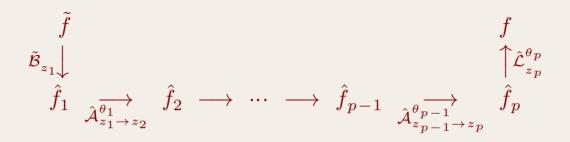
Theorem. (2001) Every asymptotic differential equation over \mathbb{T} of Newton degree d admits at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.

Remark. \exists algorithm for computing the solutions of a given equation.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential equations.

1: Accelero-summation



2: Transserial Hardy fields

$$\mathbb{T} \supseteq \mathcal{T} \stackrel{
ho}{\hookrightarrow} \mathcal{G}$$

• \mathcal{G} : ring of infinitely differentiable real germs at $+\infty$.

1: Accelero-summation

Canonical after choosing average Preserves composition Classification local vector fields Differential Galois theoryRequires many different tools Not yet written down2: Transserial Hardy fieldsDisadvantagesAdvantagesDisadvantagesLess hypotheses on coefficients Might generalize to other modelsNot preservation of composition	Advantages	Disadvantages
AdvantagesDisadvantagesLess hypotheses on coefficientsNot canonicalMight generalize to other modelsNo preservation of composition	Preserves composition Classification local vector fields	
Less hypotheses on coefficients Not canonical Might generalize to other models No preservation of composition	2: Transserial Hardy fields	
Might generalize to other models No preservation of composition	Advantages	Disadvantages
Written down		

TH1. $\forall f \in \mathcal{T}$: supp $f \subseteq \mathcal{T}$.

TH2. $\forall f \in \mathcal{T}: f_{\prec} \in \mathcal{T}.$

 $f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$

TH3. $\exists d \in \mathbb{Z}$: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4. $\mathfrak{T} \cap \mathcal{T}$ is stable under taking real powers.

TH5. $\forall f \in \mathcal{T}^{>}$: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

TH1. $\forall f \in \mathcal{T}$: supp $f \subseteq \mathcal{T}$. **TH2.** $\forall f \in \mathcal{T}$: $f_{\prec} \in \mathcal{T}$. $f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$

$$\begin{array}{c} x e^{x} \\ \hline 1 - x^{-1} - e^{-x} \\ \parallel \\ x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots \end{array}$$

TH3. $\exists d \in \mathbb{Z}$: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4. $\mathfrak{T} \cap \mathcal{T}$ is stable under taking real powers.

TH5. $\forall f \in \mathcal{T}^{>}$: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

TH1. $\forall f \in \mathcal{T}$: supp $f \subseteq \mathcal{T}$.**TH2.** $\forall f \in \mathcal{T}$: $f_{\prec} \in \mathcal{T}$. $f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$

$$\begin{pmatrix} x e^{x} \\ \overline{1 - x^{-1} - e^{-x}} \end{pmatrix}_{\prec} \\ \| \\ x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots$$

TH3. $\exists d \in \mathbb{Z}$: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4. $\mathfrak{T} \cap \mathcal{T}$ is stable under taking real powers.

TH5. $\forall f \in \mathcal{T}^{>}$: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

TH1. $\forall f \in \mathcal{T}$: supp $f \subseteq \mathcal{T}$.

TH2. $\forall f \in \mathcal{T}: f_{\prec} \in \mathcal{T}.$

 $f_{\prec} = \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$

TH3. $\exists d \in \mathbb{Z}$: $\forall \mathfrak{m} \in \mathfrak{T} \cap \mathcal{T}$: $\log \mathfrak{m} \in \mathcal{T} + \mathbb{R} \log_d x$.

TH4. $\mathfrak{T} \cap \mathcal{T}$ is stable under taking real powers.

TH5. $\forall f \in \mathcal{T}^{>}$: $\log f \in \mathcal{T} \Rightarrow \rho(\log f) = \log \rho(f)$.

Definitions. \mathcal{T} transserial Hardy field, $f \in \mathbb{T}$, $\hat{f} \in \mathcal{G}$

$$f \sim \hat{f} \quad \Longleftrightarrow \quad (\exists \varphi \in \mathcal{T} \colon f \sim_{\mathbb{T}} \varphi \sim_{\mathcal{G}} \hat{f})$$

 $f \text{ asympt. equiv. to } \hat{f} \text{ over } \mathcal{T} \iff (\forall \varphi \in \mathcal{T}: f - \varphi \sim \hat{f} - \varphi)$

 $f \text{ diff. equiv. to } \hat{f} \text{ over } \mathcal{T} \iff (\forall P \in \mathcal{T} \{F\}: P(f) = 0 \Leftrightarrow P(\hat{f}) = 0)$

Lemma. Let $f \in \mathbb{T} \setminus \mathcal{T}$ and $\hat{f} \in \mathcal{G} \setminus \mathcal{T}$ be such that

- f is a serial cut over \mathcal{T} .
- f and \hat{f} are asymptotically equivalent over \mathcal{T} .
- f and \hat{f} are differentially equivalent over \mathcal{T} .

Then $\exists !$ transserial Hardy field extension $\rho: \mathcal{T}\langle f \rangle \to \mathcal{G}$ with $\rho(f) = \hat{f}$.

Definitions. \mathcal{T} transserial Hardy field, $f \in \mathbb{T}$, $\hat{f} \in \mathcal{G}$

$$f \sim \hat{f} \quad \Longleftrightarrow \quad (\exists \varphi \in \mathcal{T} \colon f \sim_{\mathbb{T}} \varphi \sim_{\mathcal{G}} \hat{f})$$

 $f \text{ asympt. equiv. to } \hat{f} \text{ over } \mathcal{T} \iff (\forall \varphi \in \mathcal{T}: f - \varphi \sim \hat{f} - \varphi)$

 $f \text{ diff. equiv. to } \hat{f} \text{ over } \mathcal{T} \iff (\forall P \in \mathcal{T} \{F\}: P(f) = 0 \Leftrightarrow P(\hat{f}) = 0)$

Lemma. Let $f \in \mathbb{T} \setminus \mathcal{T}$ and $\hat{f} \in \mathcal{G} \setminus \mathcal{T}$ be such that

- f is a serial cut over \mathcal{T} .
- f and \hat{f} are asymptotically equivalent over \mathcal{T} .
- f and \hat{f} are differentially equivalent over \mathcal{T} .

Then $\exists !$ transserial Hardy field extension $\rho: \mathcal{T}\langle f \rangle \to \mathcal{G}$ with $\rho(f) = \hat{f}$.

Theorem. Let \mathcal{T} be a transserial Hardy field. Then its real closure \mathcal{T}^{rcl} admits a unique transserial Hardy field structure which extends the one of \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field and let $\varphi \in \mathcal{T}_{\succ}$ be such that $e^{\varphi} \notin \mathcal{T}$. Then the set $\mathcal{T}(e^{\mathbb{R}\varphi})$ carries the structure of a transserial Hardy field for the unique differential morphism $\rho: \mathcal{T}(e^{\mathbb{R}\varphi}) \to \mathcal{G}$ over \mathcal{T} with $\rho(e^{\lambda\varphi}) = e^{\lambda\rho(\varphi)}$ for all $\lambda \in \mathbb{R}$.

Theorem. Let \mathcal{T} be a transserial Hardy field of depth $d < \infty$. Then $\mathcal{T}((\log_d x)^{\mathbb{R}})$ carries the structure of a transserial Hardy field for the unique differential morphism $\rho: \mathcal{T}((\log_d x)^{\mathbb{R}}) \to \mathcal{G}$ over \mathcal{T} with $\rho((\log_d x)^{\lambda}) = (\log_d x)^{\lambda}$ for all $\lambda \in \mathbb{R}$.

Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{\mathrm{e}^x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{x}{\mathrm{e}^x} + f^2\right)$$

Step 3. Integral transseries solution

Step 1. A given algebraic differential equation

$$f^2 - e^x f' + \frac{e^{2x}}{x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{\mathrm{e}^x}{x} + \frac{f^2}{\mathrm{e}^x}\right)$$

Step 3. Integrate from a fixed point $x_0 < \infty$

Step 1. A general algebraic differential equation

P(f) = 0

Step 2. Equation in split-normal form

$$(\partial - \varphi_1) \cdots (\partial - \varphi_r) f = P(f)$$
 with $P(f)$ small

Attention: $\varphi_1, ..., \varphi_r \in \mathcal{T}[i]$, even though $(\partial - \varphi_1) \cdots (\partial - \varphi_r) \in \mathcal{T}[\partial]$.

Step 3. Solve the split-normal equation using the fixed-point technique.

Lemma. The operator $J = (\partial - \varphi)_{x_0}^{-1}$, defined by

$$(Jf)(x) = \begin{cases} e^{\Phi(x)} \int_{-\infty}^{x} e^{-\Phi(t)} f(t) dt & (repulsive \ case) \\ e^{\Phi(x)} \int_{-x_0}^{x} e^{-\Phi(t)} f(t) dt & (attractive \ case) \end{cases}$$

and

$$\Phi(x) = \begin{cases} \int_{-\infty}^{x} \varphi(t) dt & (repulsive \ case) \\ \int_{-x_0}^{x} \varphi(t) dt & (attractive \ case) \end{cases}$$

is a continuous right-inverse of $L = \partial - \varphi$ on $\mathcal{G}_{x_0}^{\preccurlyeq}[\mathbf{i}]$, with

$$\||J\||_{x_0} \leqslant \left\|\frac{1}{\operatorname{Re}\varphi}\right\|_{x_0}$$

Lemma. Given a split-normal operator

$$L = (\partial - \varphi_1) \cdots (\partial - \varphi_r), \tag{1}$$

with a factorwise right-inverse $L^{-1} = J_r \cdots J_1$, the operator

$$\mathfrak{p}^{\nu}J_{r}\cdots J_{1}:\mathcal{G}_{x_{0}}^{\preccurlyeq}[\mathrm{i}]
ightarrow\mathcal{G}_{x_{0};r}^{\preccurlyeq}[\mathrm{i}]$$

is a continuous operator for every $\nu > r \sigma_L$. Here $\mathcal{G}_{x_0;r}^{\preccurlyeq}[i]$ carries the norm

$$||f||_{x_0;r} = \max\{||f||_{x_0}, \dots, ||f^{(r)}||_{x_0}\}.$$

Lemma. If $L \in \mathcal{T}[\partial]$ and the splitting (1) (formally) preserves realness, then $J_r \cdots J_1$ preserves realness in the sense that it maps $\mathcal{G}_{x_0}^{\preccurlyeq}$ into itself.

Theorem. Consider a split-monic equation

 $Lf = P(f), \quad f \prec 1,$

and let ν be such that $r \sigma_L < \nu < v_P$. Then for any sufficiently large x_0 , there exists a continuous factorwise right-inverse $J_{r, \ltimes v^{\nu}} \cdots J_{1, \ltimes v^{\nu}}$ of $L_{\ltimes v^{\nu}}$, such that the operator

 $\Xi: f \longmapsto (J_r \cdots J_1)(P(f))$

admits a unique fixed point

$$f = \lim_{n \to \infty} \Xi^{(n)}(0) \in \mathcal{B}(\mathcal{G}_{x_0;r}^{\preccurlyeq}, \frac{1}{2}).$$

Theorem. Let \mathcal{T} be a transserial Hardy field of span $v \succeq e^x$. Consider a monic split-normal quasi-linear equation

$$Lf = P(f), \quad f \prec 1, \tag{2}$$

over \mathcal{T} without solutions in \mathcal{T} . Assume that one of the following holds:

• \mathcal{T} is (1,1,1)-differentially closed in $\mathbb{T}_{\prec v}$ and (2) is first order.

i.e. T is closed under the resolution of linear first order equations.

• $\mathcal{T}[i]$ is (1, 1, 1)-differentially closed in $\mathbb{T}[i]_{\preceq v}$.

Then there exist solutions $f \in \mathcal{G}$ and $\tilde{f} \in \hat{\mathcal{T}}$ to (2), such that f and \tilde{f} are asymptotically equivalent over \mathcal{T} .

Lemma. Let $L = \partial - \varphi \in \mathcal{T}[\partial]$ be a normal operator. Let $\tilde{f} \in \hat{\mathcal{T}}^{\preccurlyeq}$ and $g \in \mathcal{T}^{\preccurlyeq}$ be such that \tilde{f} is transcendental over \mathcal{T} and $L \tilde{f} = g$. Then there exists an $f \in \mathcal{G}^{\preccurlyeq}$ with L f = g, such that f and \tilde{f} are both differentially and asymptotically equivalent over \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field. Let $\mathcal{T}^{fo} \supseteq \mathcal{T}$ be the smallest differential subfield of \mathbb{T} , such that for any $P \in \mathcal{T}^{fo} \{F\}^{\neq}$ with $r_P \leq 1$ and $f \in \mathbb{T}$ we have $P(f) = 0 \Rightarrow f \in \mathcal{T}^{fo}$. Then the transserial Hardy field structure of \mathcal{T} can be extended to \mathcal{T}^{fo} .

Proof. As long as $\mathcal{T}^{\text{fo}} \neq \mathcal{T}$:

- Close off under \exp , \log and algebraic equations.
- Choose $P \in \mathcal{T}\{F\}^{\neq}$, $r_P = 1$, $f \in \mathbb{T}$, P(f) = 0 such that P has minimal "complexity" (r_P, d_P, t_P) and apply the previous results.

Lemma. Let $L = \partial - \varphi \in \mathcal{T}[\mathbf{i}][\partial]$ be a normal operator. Let $\tilde{f} \in \hat{\mathcal{T}}[\mathbf{i}]^{\preccurlyeq}$ and $g \in \mathcal{T}[\mathbf{i}]^{\preccurlyeq}$ be such that Re \tilde{f} has order 2 over \mathcal{T} and $L \tilde{f} = g$. Then there exists an $f \in \mathcal{G}^{\preccurlyeq}[\mathbf{i}]$ with L f = g, such that Re f and Re \tilde{f} are both differentially and asymptotically equivalent over \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field. Let $\mathcal{T}^{\text{dalg}} \supseteq \mathcal{T}$ be the smallest differential subfield of \mathbb{T} , such that for any $P \in \mathcal{T}^{\text{dalg}} \{F\}^{\neq}$ and $f \in \mathbb{T}$ we have $P(f) = 0 \Rightarrow f \in \mathcal{T}^{\text{dalg}}$. Then the transserial Hardy field structure of \mathcal{T} can be extended to $\mathcal{T}^{\text{dalg}}$.

Corollary. There exists a transserial Hardy field \mathcal{T} , such that for any $P \in \mathcal{T}{F}$ and $f, g \in \mathcal{T}$ with f < g and P(f) P(g) < 0, there exists a $h \in \mathcal{T}$ with f < h < g and P(h) = 0.

Corollary. There exists a transserial Hardy field \mathcal{T} , such that $\mathcal{T}[i]$ is weakly differentially closed.

Corollary. There exists a differentially Henselian transserial Hardy field \mathcal{T} , i.e., such that any quasi-linear differential equation over \mathcal{T} admits a solution in \mathcal{T} .

Theorem. Let \mathcal{T} be a transserial Hardy field and \mathcal{H} a differentially algebraic Hardy field extension of \mathcal{T} , such that \mathcal{H} is differentially Henselian and stable under exponentiation. Then there exists a transserial Hardy field structure on \mathcal{H} which extends the structure on \mathcal{T} .

Corollary. Let \mathcal{T} be a transserial Hardy field and \mathcal{H} a differentially algebraic Hardy field extension of \mathcal{T} , such that \mathcal{H} is differentially Henselian. Assume that \mathcal{H} admits no non-trivial algebraically differential Hardy field extensions. Then \mathcal{H} satisfies the differential intermediate value property.

Theorem. (Boshernitzan 1987) Any solution of the equation

$$f'' + f = e^{x^2}$$

is contained in a Hardy field. However, none of these solutions is contained in the intersection of all maximal Hardy fields.

Open problems

- Embeddability of Hardy fields in differentially Henselian Hardy fields.
- Do maximal Hardy fields satisfy the intermediate value property?
- Restricted analytic (instead of algebraic) differential equations.
- Preservation of composition:
 - $\circ \quad f(x+\varepsilon), \text{ small } \varepsilon: \text{ expand}.$
 - $f(qx + \varepsilon)$: expand, but more intricate.
 - $\circ \quad f(\varphi(x)), \varphi \succ x: \text{ abstract nonsense.}$