Preserving Syntactic Correctness
While Editing Mathematical Formulas

Joris van der Hoeven, Grégoire Lecerf, Denis Raux

CNRS, Ecole polytechnique

Kalamata, July 20, 2015
http://www.TgXvacs . org

Different levels of semantics 2/11

Code

: A
No semantics LATEX $a+bc$

Different levels of semantics 2/11

: Code
A
No semantics IATEX $atbes
Presentation MathML Specification

Presentation semantics .
Classical TEXyacs a+bxc

Different levels of semantics 2/11

: Code
A
No semantics IATEX $atbcs
: : Presentation MathML Specification
Presentation semantics :
Classical TEXyacs a+bxc

Syntax tree

Content semantics Content MathML (+a (Db c))

Different levels of semantics 2/11

: Code
A
No semantics IATEX $atbcs
: : Presentation MathML Specification
Presentation semantics :
Classical TEXyacs a+bxc

. Syntax tree
Content semantics Content MathML y
(+ a (xbc))
Annotated tree

Concept semantics OpenMath ,
+ commutative,

Different levels of semantics 2/11

: Code
A
No semantics IATEX $atbcs
: : Presentation MathML Specification
Presentation semantics :
Classical TEXyacs a+bxc

. Syntax tree
Content semantics Content MathML y
(+ a (*x bc))
. Annotated tree
Concept semantics OpenMath ,
+ commutative,

Full semantics Cogq, Hoal, ... Proof script

Different levels of semantics 2/11

: Code
A
No semantics IATEX $atbcs
: : Presentation MathML Specification
Presentation semantics :
Classical TEXyacs a+bxc

Experimental TEXacs

i G hanced
Various CAS systems rammar enhance

Syntactical semantics

. Syntax tree
Content semantics Content MathML y
(+ a (*x bc))
. Annotated tree
Concept semantics OpenMath ,
+ commutative,

Full semantics Cogq, Hoal, ... Proof script

Different types of mathematical texts 3/11

e Computer algebra formulas and programs

Restricted grammars; possibility to design ad hoc editors for a fixed grammar

Different types of mathematical texts 3/11

e Computer algebra formulas and programs

Restricted grammars; possibility to design ad hoc editors for a fixed grammar

e Formally correct mathematical texts

Flexible grammars; focus on proofs, not on presentation or readability

Different types of mathematical texts 3/11

e Computer algebra formulas and programs

Restricted grammars; possibility to design ad hoc editors for a fixed grammar

e Formally correct mathematical texts

Flexible grammars; focus on proofs, not on presentation or readability

e Informal, general purpose mathematical texts

Very flexible notations; emphasis on user friendliness for authors

Three editing levels inside TEXjacs, demo 4/11

Classical TEXyiacs

X1,2 =

—b++/b*—4ac
2a

Three editing levels inside TEXjacs, demo 4/11

Classical TEXyiacs

—b++/b*—4ac
2a

X1,2 =

Three editing levels inside TEXyacs, demo 4/11

Classical TEXyiacs

—b+b*—4ac
1,27 2a
A1
M =
An
. 1
B 1
1+ 1
1+ T
1+ T
14—

Three editing levels inside TEXyacs, demo 4/11

Semantically aware TEXyjacs

—b++/b*—4ac
2a

X1,2 =

Three editing levels inside TEXyacs, demo 4/11

Semantically aware TEXyjacs

X1,2 =

—b++/b*—4ac
2a

Three editing levels inside TEXjacs, demo 4/11

Semantically aware TEXyjacs

—b++/b*—4ac
2a

X1,2 =
A1
M =
An
1
Y= 1
1+ 1
1+
1
1+ 1
1+ —

Three editing levels inside TEXyacs, demo 4/11

Enforcing semantic correctness

X1,2 =

—b++/b*—4ac
2a

Three editing levels inside TEXjacs, demo 4/11

Enforcing semantic correctness

—b++/b*—4ac
2a

X1,2 =

Three editing levels inside TEXyacs, demo 4/11

Enforcing semantic correctness

—b++/b*—4ac
2a

X1,2 =
A1
M =
An
o= 1
o 1
1+ T
1+ T
1+ T
1+ —

Challenges 5/11

e Presentation oriented editing
— Making editor as graphical as possible
— Design efficient and easy to remember keyboard shortcuts

— Include powerful macro system for new notations

Challenges 5/11

e Presentation oriented editing
— Making editor as graphical as possible
— Design efficient and easy to remember keyboard shortcuts

— Include powerful macro system for new notations

e Checking syntactic correctness
— Design of a “universal grammar” for informal mathematical notations

— Compatability with macro system for the introduction of new notations

Challenges 5/11

e Presentation oriented editing
— Making editor as graphical as possible
— Design efficient and easy to remember keyboard shortcuts

— Include powerful macro system for new notations

e Checking syntactic correctness
— Design of a “universal grammar” for informal mathematical notations

— Compatability with macro system for the introduction of new notations

e Enforcing syntactic correctness while editing
— How to add/remove “transient markup” in order to maintain correctness?
— Guarantee same editing behaviour as for the presentation oriented mode

— Guarantee correctness for all editing operations

|deal scheme to preserve correctness 6/11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

|deal scheme to preserve correctness 6/11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Problems

e Writing the procedure “correct” is non trivial

|deal scheme to preserve correctness 6/11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Problems

e Writing the procedure “correct” is non trivial

e How to select “best” correction among all possible corrections

|deal scheme to preserve correctness 6/11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Problems
e Writing the procedure “correct” is non trivial
e How to select “best” correction among all possible corrections

e Strict application violates transparency w.r.t. presentation oriented editing:

a+i] — a+
a—+|

Multiple correction schemes 7/11

1. V editing action, determine a list of eligible correction schemes.
2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Multiple correction schemes 7/11

1. V editing action, determine a list of eligible correction schemes.
2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges

e Design suitable correction schemes for the most common editing actions.

Multiple correction schemes 7/11

1. V editing action, determine a list of eligible correction schemes.
2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges
e Design suitable correction schemes for the most common editing actions.

e Completeness (so that step 3 is never reached).

Multiple correction schemes 7/11

1. V editing action, determine a list of eligible correction schemes.
2. Try each eligible correction scheme until obtaining a correct formula.
3. If no schemes succeeded, then cancel the editing action.

Challenges

e Design suitable correction schemes for the most common editing actions.
e Completeness (so that step 3 is never reached).

e Compatibility with “undo/redo” mechanism.

Multiple correction schemes 7/11

1. V editing action, determine a list of eligible correction schemes.

2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges

e Design suitable correction schemes for the most common editing actions.
e Completeness (so that step 3 is never reached).

e Compatibility with “undo/redo” mechanism.

e Correctness under all circumstances (e.g. editing operations that modify several formulas).

Examples 8/11

Basic insertion scheme

e Remove transient markup around cursor
e Apply insertion
e Insert transient box at cursor position if needed

Examples 8/11

e Remove transient markup around cursor
e Apply insertion
e Insert transient box at cursor position if needed

Starting a prime or right script after a transient box

e Move to the left of transient markup around cursor
e Apply insertion

e Insert transient box at cursor position if needed

X+ — x4+ — xH — X

Examples (continued)

Insert content in the middle of an operator

9/11

Remove transient markup around cursor

Insert transient “explicit spaces” before and after the cursor
Perform the insertion

Add further transient boxes if needed

: xFy : XF> : XF3
argsin —— arc|sin —— arc‘'sin —

arc — sin

Examples (continued) 9/11

Insert content in the middle of an operator

Remove transient markup around cursor

Insert transient “explicit spaces” before and after the cursor
Perform the insertion

Add further transient boxes if needed

: xFy : XF> ‘ : XF3 ‘ :
argsin —— arc|sin —— arc‘'sin —— arc — sin

Removal of actual infix operators

Remove transient markup around cursor

Perform the deletion

Add transient version of the deleted infix operator after the cursor
Add further transient boxes if needed

a+lb N ab N a+b

Remaining problems and challenges

e Informal content

Z = {iel:fi(x)=0and gi(x) =0 almost everywhere}
= {icl:(f+ g?)(x)=0 almost everywhere}.

Remaining problems and challenges

e Informal content

Z = {iel:fi(x)=0and gi(x) =0 almost everywhere}
= {icl:(f+ g?)(x)=0 almost everywhere}.

e Missing schemes for “weird”’ editing operations

4 — a] = aH = a—+]| —> a+h

a a | a o+ a i+ a+0ob

Remaining problems and challenges

e Informal content

Z = {iel:fi(x)=0and gi(x) =0 almost everywhere}
= {icl:(f+ g?)(x)=0 almost everywhere}.

e Missing schemes for “weird”’ editing operations

A ~ ~ — A B N
i — a = a-H — a+]| —> a+h
N — —
a a | a+| a o+ a“+b

e Wildly varying notations for quantified expressions

Vx,dy, P(x,y)
Vx3dy: P(x,y)
(Vx)(3y)P(x, y)

Vx,[0 —— Vx,d

Remaining problems and challenges (continued)

e Implicit zeros and such

A1
() versus
A

n

Remaining problems and challenges (continued)

e Implicit zeros and such

A1
() versus
A

e How permissive should the universal grammar be?

n

fo, = foz"+fop12"
Lxr(g) = L(fg)

Remaining problems and challenges (continued)

e Implicit zeros and such

A1
() versus
A

e How permissive should the universal grammar be?

n

fo, = foz"+fop12"
Lxr(g) = L(fg)

e Undoing “save the current selection as an image”

Remaining problems and challenges (continued)

e Implicit zeros and such

A1
() versus
A

e How permissive should the universal grammar be?

n

fo, = foz"+fop12"
Lxr(g) = L(fg)

e Undoing “save the current selection as an image”

e Increased semantics? Replace y by a+binx-y ~» x-a+bor x-(a+ b)?

Remaining problems and challenges (continued)

e Implicit zeros and such

A1
() versus
A

e How permissive should the universal grammar be?

n

fo, = foz"+fop12"
Lxr(g) = L(fg)

e Undoing “save the current selection as an image”
e Increased semantics? Replace y by a+binx-y ~» x-a+bor x-(a+ b)?
e Unclear semantics for certain expressions

Differences between a+ bc—d and a+ bcy yield a+ bc — dy in versioning tool.

