
Preserving Syntactic Correctness

While Editing Mathematical Formulas

Joris van der Hoeven, Grégoire Lecerf, Denis Raux

CNRS, École polytechnique

Kalamata, July 20, 2015

http://www.TeXmacs.org

Different levels of semantics 2/11

1 2 3 4 5 6 7 8 9 10 11

No semantics LATEX
Code
$a+bc$

Different levels of semantics 2/11

1 2 3 4 5 6 7 8 9 10 11

No semantics LATEX
Code
$a+bc$

Presentation semantics
Presentation MathML
Classical TEXMACS

Specification
a+b*c

Different levels of semantics 2/11

1 2 3 4 5 6 7 8 9 10 11

No semantics LATEX
Code
$a+bc$

Presentation semantics
Presentation MathML
Classical TEXMACS

Specification
a+b*c

Content semantics Content MathML
Syntax tree

(+ a (* b c))

Different levels of semantics 2/11

1 2 3 4 5 6 7 8 9 10 11

No semantics LATEX
Code
$a+bc$

Presentation semantics
Presentation MathML
Classical TEXMACS

Specification
a+b*c

Content semantics Content MathML
Syntax tree

(+ a (* b c))

Concept semantics OpenMath
Annotated tree

+ commutative, ...

Different levels of semantics 2/11

1 2 3 4 5 6 7 8 9 10 11

No semantics LATEX
Code
$a+bc$

Presentation semantics
Presentation MathML
Classical TEXMACS

Specification
a+b*c

Content semantics Content MathML
Syntax tree

(+ a (* b c))

Concept semantics OpenMath
Annotated tree

+ commutative, ...

Full semantics Coq, Hol, ... Proof script

Different levels of semantics 2/11

1 2 3 4 5 6 7 8 9 10 11

No semantics LATEX
Code
$a+bc$

Presentation semantics
Presentation MathML
Classical TEXMACS

Specification
a+b*c

Syntactical semantics
Experimental TEXMACS
Various CAS systems

Grammar enhanced

Content semantics Content MathML
Syntax tree

(+ a (* b c))

Concept semantics OpenMath
Annotated tree

+ commutative, ...

Full semantics Coq, Hol, ... Proof script

Different types of mathematical texts 3/11

1 2 3 4 5 6 7 8 9 10 11

• Computer algebra formulas and programs

Restricted grammars; possibility to design ad hoc editors for a fixed grammar

Different types of mathematical texts 3/11

1 2 3 4 5 6 7 8 9 10 11

• Computer algebra formulas and programs

Restricted grammars; possibility to design ad hoc editors for a fixed grammar

• Formally correct mathematical texts

Flexible grammars; focus on proofs, not on presentation or readability

Different types of mathematical texts 3/11

1 2 3 4 5 6 7 8 9 10 11

• Computer algebra formulas and programs

Restricted grammars; possibility to design ad hoc editors for a fixed grammar

• Formally correct mathematical texts

Flexible grammars; focus on proofs, not on presentation or readability

• Informal, general purpose mathematical texts

Very flexible notations; emphasis on user friendliness for authors

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Classical TEXMACS

x1,2=
−b± b2− 4 a c

√

2 a

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Classical TEXMACS

x1,2=
−b± b2− 4 a c

√

2 a

M =

λ1

···
λn

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Classical TEXMACS

x1,2=
−b± b2− 4 a c

√

2 a

M =

λ1

···
λn

ϕ=
1

1+
1

1+
1

1+
1

1+
1

1+ ···

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Semantically aware TEXMACS

x1,2=
−b± b2− 4 a c

√

2 a

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Semantically aware TEXMACS

x1,2=
−b± b2− 4 a c

√

2 a

M =

λ1

···
λn

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Semantically aware TEXMACS

x1,2=
−b± b2− 4 a c

√

2 a

M =

λ1

···
λn

ϕ=
1

1+
1

1+
1

1+
1

1+
1

1+ ···

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Enforcing semantic correctness

x1,2=
−b± b2− 4 a c

√

2 a

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Enforcing semantic correctness

x1,2=
−b± b2− 4 a c

√

2 a

M =

λ1

···
λn

Three editing levels inside TEXMACS, demo 4/11

1 2 3 4 5 6 7 8 9 10 11

Enforcing semantic correctness

x1,2=
−b± b2− 4 a c

√

2 a

M =

λ1

···
λn

ϕ=
1

1+
1

1+
1

1+
1

1+
1

1+ ···

Challenges 5/11

1 2 3 4 5 6 7 8 9 10 11

• Presentation oriented editing

− Making editor as graphical as possible

− Design efficient and easy to remember keyboard shortcuts

− Include powerful macro system for new notations

Challenges 5/11

1 2 3 4 5 6 7 8 9 10 11

• Presentation oriented editing

− Making editor as graphical as possible

− Design efficient and easy to remember keyboard shortcuts

− Include powerful macro system for new notations

• Checking syntactic correctness

− Design of a “universal grammar” for informal mathematical notations

− Compatability with macro system for the introduction of new notations

Challenges 5/11

1 2 3 4 5 6 7 8 9 10 11

• Presentation oriented editing

− Making editor as graphical as possible

− Design efficient and easy to remember keyboard shortcuts

− Include powerful macro system for new notations

• Checking syntactic correctness

− Design of a “universal grammar” for informal mathematical notations

− Compatability with macro system for the introduction of new notations

• Enforcing syntactic correctness while editing

− How to add/remove “transient markup” in order to maintain correctness?

− Guarantee same editing behaviour as for the presentation oriented mode

− Guarantee correctness for all editing operations

Ideal scheme to preserve correctness 6/11

1 2 3 4 5 6 7 8 9 10 11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Ideal scheme to preserve correctness 6/11

1 2 3 4 5 6 7 8 9 10 11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Problems

• Writing the procedure “correct” is non trivial

Ideal scheme to preserve correctness 6/11

1 2 3 4 5 6 7 8 9 10 11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Problems

• Writing the procedure “correct” is non trivial

• How to select “best” correction among all possible corrections

Ideal scheme to preserve correctness 6/11

1 2 3 4 5 6 7 8 9 10 11

1. Write a procedure “correct”, taking any formula on input and returning
its correction, modulo inserting/removing transient markup only.

2. For each editing operation, apply the procedure “correct” to all modified
formulas in all documents.

Problems

• Writing the procedure “correct” is non trivial

• How to select “best” correction among all possible corrections

• Strict application violates transparency w.r.t. presentation oriented editing:

a+�| →→→→→→→→→→→→

_

a+��|

a+�|�

Multiple correction schemes 7/11

1 2 3 4 5 6 7 8 9 10 11

1. ∀ editing action, determine a list of eligible correction schemes.

2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Multiple correction schemes 7/11

1 2 3 4 5 6 7 8 9 10 11

1. ∀ editing action, determine a list of eligible correction schemes.

2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges

• Design suitable correction schemes for the most common editing actions.

Multiple correction schemes 7/11

1 2 3 4 5 6 7 8 9 10 11

1. ∀ editing action, determine a list of eligible correction schemes.

2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges

• Design suitable correction schemes for the most common editing actions.

• Completeness (so that step 3 is never reached).

Multiple correction schemes 7/11

1 2 3 4 5 6 7 8 9 10 11

1. ∀ editing action, determine a list of eligible correction schemes.

2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges

• Design suitable correction schemes for the most common editing actions.

• Completeness (so that step 3 is never reached).

• Compatibility with “undo/redo” mechanism.

Multiple correction schemes 7/11

1 2 3 4 5 6 7 8 9 10 11

1. ∀ editing action, determine a list of eligible correction schemes.

2. Try each eligible correction scheme until obtaining a correct formula.

3. If no schemes succeeded, then cancel the editing action.

Challenges

• Design suitable correction schemes for the most common editing actions.

• Completeness (so that step 3 is never reached).

• Compatibility with “undo/redo” mechanism.

• Correctness under all circumstances (e.g. editing operations that modify several formulas).

Examples 8/11

1 2 3 4 5 6 7 8 9 10 11

• Remove transient markup around cursor
• Apply insertion
• Insert transient box at cursor position if needed

Basic insertion scheme

| →→→→→→→→→→

A

a| →→→→→→→→→→→→

+

a+|� →→→→→→→→→→

B

a+ b|

Examples 8/11

1 2 3 4 5 6 7 8 9 10 11

• Remove transient markup around cursor
• Apply insertion
• Insert transient box at cursor position if needed

Basic insertion scheme

| →→→→→→→→→→

A

a| →→→→→→→→→→→→

+

a+|� →→→→→→→→→→

B

a+ b|

• Move to the left of transient markup around cursor
• Apply insertion
• Insert transient box at cursor position if needed

Starting a prime or right script after a transient box

x +�| →→→→→→→→→→→→→→→→

_1

x +|� →→→→→→→→→→→→→→→→
_2

x +|� →→→→→→→→→→→→→→→→

_3

x +|� �

Examples (continued) 9/11

1 2 3 4 5 6 7 8 9 10 11

• Remove transient markup around cursor
• Insert transient “explicit spaces” before and after the cursor
• Perform the insertion
• Add further transient boxes if needed

Insert content in the middle of an operator

arc|sin →→→→→→→→→→→→→→→→→→→→→→

%F1

arc_|_sin →→→→→→→→→→→→→→→→→→→→→→

%F2

arc_
|
_sin →→→→→→→→→→→→→→→→→→→→→→

%F3

arc_
|�

�

_sin

Examples (continued) 9/11

1 2 3 4 5 6 7 8 9 10 11

• Remove transient markup around cursor
• Insert transient “explicit spaces” before and after the cursor
• Perform the insertion
• Add further transient boxes if needed

Insert content in the middle of an operator

arc|sin →→→→→→→→→→→→→→→→→→→→→→

%F1

arc_|_sin →→→→→→→→→→→→→→→→→→→→→→

%F2

arc_
|
_sin →→→→→→→→→→→→→→→→→→→→→→

%F3

arc_
|�

�

_sin

• Remove transient markup around cursor
• Perform the deletion
• Add transient version of the deleted infix operator after the cursor
• Add further transient boxes if needed

Removal of actual infix operators

a+|b →→→→→→→→→→→→→→→→

+1

a|b →→→→→→→→→→→→→→→→

+2

a|+ b

Remaining problems and challenges 10/11

1 2 3 4 5 6 7 8 9 10 11

• Informal content

Z = {i ∈ I : fi(x)= 0 and gi(x)= 0 almost everywhere}

= {i ∈ I : (fi
2+ gi

2)(x)= 0 almost everywhere}.

Remaining problems and challenges 10/11

1 2 3 4 5 6 7 8 9 10 11

• Informal content

Z = {i ∈ I : fi(x)= 0 and gi(x)= 0 almost everywhere}

= {i ∈ I : (fi
2+ gi

2)(x)= 0 almost everywhere}.

• Missing schemes for “weird” editing operations

a| →→→→→→→→→→→→→→→→→→

%^

a |̂ →→→→→→→→→→→→

+

a+|ˆ →→→→→→→→→→→→→→→→

�

a +̂| →→→→→→→→→→

B

a +̂ b|

a| a_|�̂ a_�+|� a_�+�| a_�+�_b

Remaining problems and challenges 10/11

1 2 3 4 5 6 7 8 9 10 11

• Informal content

Z = {i ∈ I : fi(x)= 0 and gi(x)= 0 almost everywhere}

= {i ∈ I : (fi
2+ gi

2)(x)= 0 almost everywhere}.

• Missing schemes for “weird” editing operations

a| →→→→→→→→→→→→→→→→→→

%^

a |̂ →→→→→→→→→→→→

+

a+|ˆ →→→→→→→→→→→→→→→→

�

a +̂| →→→→→→→→→→

B

a +̂ b|

a| a_|�̂ a_�+|� a_�+�| a_�+�_b

• Wildly varying notations for quantified expressions

∀x , ∃y ,P(x , y)
∀x∃y :P(x , y)

(∀x)(∃y)P(x , y)
···

∀x ,|� →→→ →

çE å å

∀x , ∃|�,�

Remaining problems and challenges (continued) 11/11

1 2 3 4 5 6 7 8 9 10 11

• Implicit zeros and such

(

� �

� �

)

versus

λ1

···
λn

Remaining problems and challenges (continued) 11/11

1 2 3 4 5 6 7 8 9 10 11

• Implicit zeros and such

(

� �

� �

)

versus

λ1

···
λn

• How permissive should the universal grammar be?

fn; = fn z
n + fn+1 z

n+1+ ···

L×f (g) = L(f g)

fn| →→→→→→→→

;

???

Remaining problems and challenges (continued) 11/11

1 2 3 4 5 6 7 8 9 10 11

• Implicit zeros and such

(

� �

� �

)

versus

λ1

···
λn

• How permissive should the universal grammar be?

fn; = fn z
n + fn+1 z

n+1+ ···

L×f (g) = L(f g)

fn| →→→→→→→→

;

???

• Undoing “save the current selection as an image”

Remaining problems and challenges (continued) 11/11

1 2 3 4 5 6 7 8 9 10 11

• Implicit zeros and such

(

� �

� �

)

versus

λ1

···
λn

• How permissive should the universal grammar be?

fn; = fn z
n + fn+1 z

n+1+ ···

L×f (g) = L(f g)

fn| →→→→→→→→

;

???

• Undoing “save the current selection as an image”

• Increased semantics? Replace y by a+ b in x · y x · a+ b or x · (a+ b)?

Remaining problems and challenges (continued) 11/11

1 2 3 4 5 6 7 8 9 10 11

• Implicit zeros and such

(

� �

� �

)

versus

λ1

···
λn

• How permissive should the universal grammar be?

fn; = fn z
n + fn+1 z

n+1+ ···

L×f (g) = L(f g)

fn| →→→→→→→→

;

???

• Undoing “save the current selection as an image”

• Increased semantics? Replace y by a+ b in x · y x · a+ b or x · (a+ b)?

• Unclear semantics for certain expressions

Differences between a+ b c − d and a+ b c y yield a+ b c − d y in versioning tool.

