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• Dahn & Göring

• Écalle

• Detailed treatment in LNM 1888: “Transseries and Real Differential Algebra”
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1

1− x−1− x−e = 1+ x−1+ x−2+ x−e+ x−3+ x−e−1+ ···
1

1− x−1+ e−x = 1+
1

x
+

1

x 2 + ···+e−x +2
e−x

x
+ ···+e−2x + ···

−ex
∫ e−x

x
=

1

x
− 1

x 2 +
2

x 3 −
6

x 4 +
24

x 5 −
120

x 6 + ···

Γ(x) =
2 p

√
ex (log x −1)

x 1/2
+

2 p
√

ex (log x −1)

12 x 3/2
+

2 p
√

ex (log x −1)

288 x 5/2
+ ···

ζ(x) = 1+2−x +3−x +4−x + ···
ϕ(x) =

1

x
+ ϕ(xπ)=

1

x
+

1

xπ
+

1

xπ2 +
1

xπ3 + ···

ψ(x) =
1

x
+ ψ(elog

2 x)=
1

x
+

1

elog
2 x
+

1

elog
4 x
+

1

elog
8 x
+ ···
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Transmonomials and exponential structure

T = expT≻

T≻ = {f ∈T: f≻= f }
exp f = (exp f≻) (exp f≍) (exp f≺)

exp f≺ = 1+ f≺+ /1 2 f≺
2+ /1 6 f≺

3 + ···.
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=−3

Valuation

O = {f ∈T: ∃c ∈R>, |f |6 c }
O = {f ∈T: ∀c ∈R>, |f |< c }

O/O =∼ R

v(f )> v(g) ⇐⇒ f 4 g ⇐⇒ f ∈O g

v(f )> v(g) ⇐⇒ f ≺ g ⇐⇒ f ∈ O g
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The derivation ∂ is said to be small , if ∂ O⊆ O.
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Definition. Let K be an ordered differential field and denote

C = {c ∈K : c ′=0}
O = {a∈K : |a|6 c for some c ∈C }
O = {a∈K : |a|< c for all c > 0 in C }.

K is an H-field if:

H1. For all a∈K , if a>C , then a′> 0.

H2. O=C +O.

The derivation ∂ is said to be small , if ∂ O⊆ O.

Examples.

• T and various of its variants (grid-based, well-based, ...).

• Hardy fields.

• Differential fields of accelero-summable transseries.

• Transserial Hardy fields
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A d-valued field is a valued differential field such that

DV1. a′ b ∈ b ′O for all a, b ∈ O.
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Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...



Beyond H-fields 8/22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Differentially valued fields [Rosenlicht]

A d-valued field is a valued differential field such that

DV1. a′ b ∈ b ′O for all a, b ∈ O.

DV2. O=C + O.

Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...

Complex transseries

• T[i] is algebraically closed.

• Zeros of L∈T[i][∂] of order r form a subspace of C[[eT≻[i]]] of dimension r .

• Any P ∈ T̃{Y } \C admits a zero in T̃.



Beyond H-fields 8/22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Differentially valued fields [Rosenlicht]

A d-valued field is a valued differential field such that

DV1. a′ b ∈ b ′O for all a, b ∈ O.

DV2. O=C + O.

Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...

Complex transseries

• T[i] is algebraically closed.

• Zeros of L∈T[i][∂] of order r form a subspace of C[[eT≻[i]]] of dimension r .

• Any P ∈ T̃{Y } \C admits a zero in T̃.

Differentially closed fields?

K is d-closed if for every P ∈ K {Y } of order r and Q ∈ K {Y } of order s < r , there exists
an y ∈K with P(y)= 0 and Q(y)=/ 0.

Unfortunately [Rosenlicht]: d-closed d-valued fields do not exist.
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• Following Robinson: systematically study the extension theory of H-fields K .

• It suffices to study extensions of K by one element y at a time.

• Reduces to studying the behaviour of differential polynomials P ∈K {Y } at y .

• This was done in my book LNM 1888 for K =Tgb.

• Generalize this theory to arbitrary H-fields.

• Main obstruction: problem with gaps

g =
1

x log x log log x ··· .

Indeed: should we have
∫

g≻ 1 or
∫

g≺ 1 in extensions?
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Systematic study of asymptotic d-algebraic equations

P(y)= 0, y ≺ v ,

where P ∈K {Y } and ϕ∈K . For example:

e−ex y2 y ′′+ y2− 2 x y y ′− 7 e−x y ′− 4+
1

log x
=0, y ≺ x .
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x

/ex . In general: equalizer theorem.
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The slopes correspond to dominant monomials of candidate solutions. Two kinds:

Approximate solutions of algebraic type. y =±2+ ···

e−ex y2 y ′′+ y2− 2 x y y ′− 7 e−x y ′− 4+
1

log x
=0, y ≺ x .

• Natural analogue of usual Newton polygon method.

• Slopes can be read off from the Newton diagram modulo “adjustments”,
e.g. y ′=ee

x

implies y ∼ ee
x

/ex . In general: equalizer theorem.

Approximate solutions of differential type. y = c x
√

+ ···

e−ex y2 y ′′+ y2− 2 x y y ′− 7 e−x y ′− 4+
1

log x
=0, y ≺ x .

Cancellation in homogeneous component y2− 2 x y y ′=
(

1− 2 x
y ′

y

)

y 2  Riccati equation

1− 2 x y †=0,

whence y †= /1 2 x and y ≍ x
√

.
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Refinements. Given an approximate solution y ∼ ϕ, performing the refinement

y = ϕ+ ỹ , ỹ ≺ ϕ
leads to a new asymptotic differential equation in ỹ . Example: y =2+ ỹ , ỹ ≺ 1 transforms
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into
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Refinements. Given an approximate solution y ∼ ϕ, performing the refinement

y = ϕ+ ỹ , ỹ ≺ ϕ
leads to a new asymptotic differential equation in ỹ . Example: y =2+ ỹ , ỹ ≺ 1 transforms

e−ex y2 y ′′+ y 2− 2 x y y ′− 7 e−x y ′− 4+
1

log x
=0, y ≺ x

into

e−ex ỹ 2 ỹ ′′+ ỹ 2− 2 x ỹ ỹ ′+4 e−ex ỹ +4 ỹ − (4 x +7 e−x) ỹ ′+4 e−ex ỹ ′′+
1

log x
=0, ỹ ≺ 1

Newton degree. [analogue of Weierstrass degree] Abscissa of highest slope of Newton dia-
gram which satisfies the asymptotic side condition (e.g. two in our example).

• Newton degree can only decrease during refinements.

• If Newton degree is one, then the equation is said to be quasi-linear . In that case, it
admits at least one transseries solution.

• Using a suitable generalization of Tschirnhausen transforms, one may reach a quasi-linear
equation after only a finite number of refinements.
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Reduce general asymptotic side condition y ≺ v to the case when v =1:

(P(y)= 0, y ≺ v)⇐⇒ (P×v (ỹ )=P(ỹ v)= 0, ỹ ≺ 1), ỹ = y /v
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Multiplicative conjugation

Reduce general asymptotic side condition y ≺ v to the case when v =1:

(P(y)= 0, y ≺ v)⇐⇒ (P×v (ỹ )=P(ỹ v)= 0, ỹ ≺ 1), ỹ = y /v

Dominant part

Consider P ∈T{Y } as a series P =
∑

m∈T
Pmm, with Pm∈R{Y }.

Then DP =D(P) is the “leading coefficient” of P .

D

(

3

1− e−x
Y 2Y ′− 1

x
Y 2+(Y ′)2+e−x

)

= 3Y 2+(Y ′)2.

Requires a cross section of the value group inside K for a general H-field.

Compositional conjugation

Replacing the derivation ∂ by a new derivation ∂̃= φ−1 ∂.
Corresponds to a postcomposition ỹ = y ◦ u.
We typically want to take φ as small as possible, while preserving the smallness of ∂̃.
Notation: K φ: the field K with derivation ∂̃, Pφ: the counterpart of P ∈K {Y } in K φ{Y }.
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3

1− e−x
Y 2Y ′− 1

x
Y 2+(Y ′)2+e−x →→→→→→→→→→→→D 3Y 2Y ′+(Y ′)2

←
− Y = Ỹ ◦ log

3

(1− e−x) x
(Ỹ 2

Ỹ
′
) ◦ log− 1

x
Ỹ

2 ◦ log+ (Ỹ
′
)2 ◦ log
x2

+e−x →→→→→→→→→→→→D 3 Ỹ 2
Ỹ

′− Ỹ

←
− Ỹ = Ỹ̃ ◦ log

3

(1− e−x) x log x
(Ỹ̃

2
Ỹ̃

′
) ◦ log2− 1

x
Ỹ̃

2 ◦ log2+
(

Ỹ̃
′)2 ◦ log2

x2 log2 x
+e−x →→→→→→→→→→→→D − Ỹ̃

Theorem. For any P ∈Tgb{Y } \ {0}, there exists an N ∈R[Y ] (Y ′)N with

DP φ = N ,

for any φ=
1

x ℓ1 ℓ2 ··· ℓl −1 x
= ℓl

′ with l sufficiently large, where ℓk = log ◦ ...k× ◦ log.
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The following special cuts will play a crucial role:

gT =
1

ℓ0 ℓ1 ℓ2 ···
(∀n, (1/ℓn)′≺gT≺ ℓn′ )

lT =
1

ℓ0
+

1

ℓ0 ℓ1
+

1

ℓ0 ℓ1 ℓ2
+ ··· = − g

T

†

wT =
1

ℓ0
2
+

1

ℓ0
2 ℓ1

2
+

1

ℓ0
2 ℓ1

2 ℓ2
2
+ ··· = − lT

2 − 2 lT
′

Even though gT, lT and wT are not in T, the sets

Γ(T) = {a∈T: a< gT}
Λ(T) = {a∈T: a< lT}
Ω(T) = {a∈T: a<wT}

are definable subsets of T. For instance,

Γ(T) = {a∈T: ∀b ∈T, b≻ 1⇒ a=/ b†}
= {−a′: a∈T, a> 0}.

In other words, gT, lT and wT are definable cuts in T.
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Gaps

g= gK ∈K , but
∫

g∈/ K . In other words, for all a∈K with a≻ 1, we have

a†≻ g≻ (1/a)′.

Theorem. (AvdD) If K admits a gap g, then K admits exactly two “Liouville closures”.
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Gaps

g= gK ∈K , but
∫

g∈/ K . In other words, for all a∈K with a≻ 1, we have

a†≻ g≻ (1/a)′.

Theorem. (AvdD) If K admits a gap g, then K admits exactly two “Liouville closures”.

Indirect gaps

K admits no gap (i.e. K is g-free), but l∈K is such that for all a∈K with a≻ 1, we have

−a††< l<−(1/a)′†.

In general

Each of the following cases can occur:

g∈K
g∈/ K ∧ l∈K
l∈/ K ∧ w∈K
w∈/ K
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Definition

ω=ωK :K→K , ω(z) :=−2 z ′− z2,

w∈K , if for all a≻ 1 in K , we have

w−ω(a††)≺ (a†)2.

K is w-free if

∀a, ∃b, [b≻ 1∧ a−ω(b††)< (b†)2].
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Definition

ω=ωK :K→K , ω(z) :=−2 z ′− z2,

w∈K , if for all a≻ 1 in K , we have

w−ω(a††)≺ (a†)2.

K is w-free if

∀a, ∃b, [b≻ 1∧ a−ω(b††)< (b†)2].

Examples

• T is w-free.

• If K has asymptotic integration and K is a union of H-subfields, each of which has
a smallest comparability class, then K is w-free.

• There exist Liouville-closed H-fields that are not w-free.
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Differential Newton polynomials

Theorem. If K is w-free, then we can define NP for any P ∈K {Y }, and NP ∈C [Y ] (Y ′)N.
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Differential Newton polynomials

Theorem. If K is w-free, then we can define NP for any P ∈K {Y }, and NP ∈C [Y ] (Y ′)N.

Differentially algebraic extensions

Theorem. If L is a d-algebraic extension of an w-free H-field K, then L is w-free.

Relation with theorem of Écalle

Let l= 1

x
+

1

x ℓ1
+

1

x ℓ1 ℓ2
+ ··· and P ∈R{Y }\R. Then the first ω terms of P(l) either “behave”

like l or like w.

In particular, we cannot have P(l)=
1

x n +
1

x n ℓ1
n +

1

x n ℓ1
n ℓ2

n + ··· for n> 3.
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Differential Newton polynomials

Theorem. If K is w-free, then we can define NP for any P ∈K {Y }, and NP ∈C [Y ] (Y ′)N.

Differentially algebraic extensions

Theorem. If L is a d-algebraic extension of an w-free H-field K, then L is w-free.

Relation with theorem of Écalle

Let l= 1

x
+

1

x ℓ1
+

1

x ℓ1 ℓ2
+ ··· and P ∈R{Y }\R. Then the first ω terms of P(l) either “behave”

like l or like w.

In particular, we cannot have P(l)=
1

x n +
1

x n ℓ1
n +

1

x n ℓ1
n ℓ2

n + ··· for n> 3.

Relation with second order linear differential equations

y ′′=−y has no non-zero solution y ∈T.

y ′′= x y has two R-linearly independent solutions in T.

In general, 4 y ′′+ f y =0 has a non-zero solution if and only if f <w.
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Definition (for w-free H-field K )

Every P ∈K {Y } with degNP =1 admits a zero in O.
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Definition (for w-free H-field K )

Every P ∈K {Y } with degNP =1 admits a zero in O.

Theorem. If K is an H-field, ∂K = K, and K is a directed union of spherically complete

H-subfields, each having a smallest comparability class, then K is newtonian.
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Definition (for w-free H-field K )

Every P ∈K {Y } with degNP =1 admits a zero in O.

Theorem. If K is an H-field, ∂K = K, and K is a directed union of spherically complete

H-subfields, each having a smallest comparability class, then K is newtonian.

Theorem. If K is a newtonian H-field with divisible value group, then K has no proper

immediate d-algebraic H-field extension.

Corollary. Let K be a real closed newtonian H-field. Then

1. Each d-polynomial in K [i]{Y } of positive degree has a zero in K [i].

2. Each linear differential operator in K [i][∂] of positive order is a composition of such

operators of order 1.

3. Each linear differential operator in K [∂] of positive order is a composition of such operators

of order 1 and order 2.
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Theorem. If K is an w-free H-field with divisible value group, then K has an immediate

d-algebraic newtonian H-field extension, and any such extension embeds over K into every

w-free newtonian H-field extension of K.
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Theorem. If K is an w-free H-field with divisible value group, then K has an immediate

d-algebraic newtonian H-field extension, and any such extension embeds over K into every

w-free newtonian H-field extension of K.

Theorem. If K is an w-free H-field, then K has a d-algebraic newtonian Liouville closed H-field

extension that embeds over K into every w-free newtonian Liouville closed H-field extension

of K.
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The theory

L = {0, 1,+,−, · , ∂ ,6,4}
T nl = theory of newtonian (w-free) Liouville closed H-fields
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The theory

L = {0, 1,+,−, · , ∂ ,6,4}
T nl = theory of newtonian (w-free) Liouville closed H-fields

Switchmen predicates

L I,Λ,Ω
ι =L∪{ι, I ,Λ,Ω} and TI,Λ,Ω

nl,ι is T nl with additional axioms

a=/ 0 =⇒ a ι(a)= 1

a=0 =⇒ ι(a)= 0

I(a) ⇐⇒ [∃y , (a4 y ′∧ y 4 1)] ⇐⇒ [a=0∨ (a=/ 0∧¬Λ(−a†))]
Λ(a) ⇐⇒ ∃y , (y ≻ 1∧ a=−y ††)

Ω(a) ⇐⇒ ∃y , (y =/ 0∧ 4 y ′′+ a y =0)

Assume that K contains a gap g and that Φ∈ L!K such that Φ′=g.

Then we must have Φ4 1 if I(g) and Φ≻ 1 otherwise.

Λ and Ω control what happens when adjoining g and l with g†=−l and ω(l)=w.
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LΛ,Ω
ι =L∪{ι,Λ,Ω} and TΛ,Ω

nl,ι is T nl with above additional axioms for ι,Λ and Ω.

Theorem. The theory TΛ,Ω
nl,ι

admits elimination of quantifiers.
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with small derivation. Then Tsmall
nl is complete (and thus decidable) and model complete.

Every H-field with small derivation can be embedded into some model of Tsmall
nl .
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nl be the L-theory whose models are the newtonian Liouville closed H-fields

with small derivation. Then Tsmall
nl is complete (and thus decidable) and model complete.

Every H-field with small derivation can be embedded into some model of Tsmall
nl .

Corollary. Let K be a newtonian Liouville closed H-field. Then:

1. K is o-minimal at infinity: if X ⊆ K is definable in K, then for some a ∈ K, either

(a,+∞)⊆K, or (a,+∞)∩K =∅.

2. If X ⊆K n is definable in K, then X ∩ C n is semialgebraic in the sense of the real closed

constant field C of K.

3. K has NIP.
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LΛ,Ω
ι =L∪{ι,Λ,Ω} and TΛ,Ω

nl,ι is T nl with above additional axioms for ι,Λ and Ω.

Theorem. The theory TΛ,Ω
nl,ι

admits elimination of quantifiers.

Theorem. Let Tsmall
nl be the L-theory whose models are the newtonian Liouville closed H-fields

with small derivation. Then Tsmall
nl is complete (and thus decidable) and model complete.

Every H-field with small derivation can be embedded into some model of Tsmall
nl .

Corollary. Let K be a newtonian Liouville closed H-field. Then:

1. K is o-minimal at infinity: if X ⊆ K is definable in K, then for some a ∈ K, either

(a,+∞)⊆K, or (a,+∞)∩K =∅.

2. If X ⊆K n is definable in K, then X ∩ C n is semialgebraic in the sense of the real closed

constant field C of K.

3. K has NIP.

Theorem. If K is a newtonian Liouville closed H-field, then K has no proper d-algebraic

H-field extension with the same constant field.


