Towards a model theory for transseries

by Matthias Aschenbrenner (UCLA)

Lou van den Dries (Univ. of Illinois @ Urbana-Champaign)
Joris van der Hoeven (CNRS, École polytechnique)

Luminy, 08/06/2015
http://www. $\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\text {MACS }}$. org
$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\cdots}+\cdots
$$

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{\mathrm{x}}+\frac{\mathrm{e}^{x}}{x}+\cdots}+\cdots
$$

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\cdots
$$

```
(x\succ1)
```

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\cdots}+\cdots
$$

$$
(x \succ 1)
$$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\cdots}+\cdots
$$

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\cdots
$$

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\mathrm{e}^{\sqrt{x}+\cdots}+\cdots
$$

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\mathrm{e}^{\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\cdots}+\cdots}
$$

$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\mathrm{e}^{\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+\cdots}}+\cdots}
$$

234567
$(x \succ 1)$

$$
\mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\frac{2}{\log x} \mathrm{e}^{\mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{x}+\frac{\mathrm{e}^{x}}{x^{2}}+\cdots}+\mathrm{e}^{\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+\cdots}}+\cdots}
$$

- Dahn \& Göring
- Écalle
- Detailed treatment in LNM 1888: "Transseries and Real Differential Algebra"

$$
\begin{aligned}
\frac{1}{1-x^{-1}-x^{-\mathrm{e}}} & =1+x^{-1}+x^{-2}+x^{-\mathrm{e}}+x^{-3}+x^{-\mathrm{e}-1}+\cdots \\
\frac{1}{1-x^{-1}+\mathrm{e}^{-x}} & =1+\frac{1}{x}+\frac{1}{x^{2}}+\cdots+\mathrm{e}^{-x}+2 \frac{\mathrm{e}^{-x}}{x}+\cdots+\mathrm{e}^{-2 x}+\cdots \\
-\mathrm{e}^{x} \int \frac{\mathrm{e}^{-x}}{x} & =\frac{1}{x}-\frac{1}{x^{2}}+\frac{2}{x^{3}}-\frac{6}{x^{4}}+\frac{24}{x^{5}}-\frac{120}{x^{6}}+\cdots \\
\Gamma(x) & =\frac{\sqrt{2 \pi} \mathrm{e}^{x(\log x-1)}}{x^{1 / 2}}+\frac{\sqrt{2 \pi} \mathrm{e}^{x(\log x-1)}}{12 x^{3 / 2}}+\frac{\sqrt{2 \pi} \mathrm{e}^{x(\log x-1)}}{288 x^{5 / 2}}+\cdots \\
\zeta(x) & =1+2^{-x}+3^{-x}+4^{-x}+\cdots \\
\varphi(x) & =\frac{1}{x}+\varphi\left(x^{\pi}\right)=\frac{1}{x}+\frac{1}{x^{\pi}}+\frac{1}{x^{\pi^{2}}}+\frac{1}{x^{\pi^{3}}}+\cdots \\
\psi(x) & =\frac{1}{x}+\psi\left(\mathrm{e}^{\log ^{2} x}\right)=\frac{1}{x}+\frac{1}{\mathrm{e}^{\log ^{2} x}}+\frac{1}{\mathrm{e}^{\log ^{4} x}}+\frac{1}{\mathrm{e}^{\log ^{8} x}}+\cdots
\end{aligned}
$$

Transseries are transfinite series

$$
\begin{aligned}
f & =\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m} \quad\left(\mathfrak{T}: \text { set of transmonomials, coefficients } f_{\mathfrak{m}} \in \mathbb{R}\right) \\
& =-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log _{x}}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11}+7+\frac{\pi}{x}+\frac{1}{x \log x}+\frac{1}{x(\log x)^{2}}+ \\
& =f_{\succ}+f_{\asymp}+f_{\swarrow} \\
f_{\succ} & =-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11} \\
f_{\asymp} & =7 \\
f_{\prec} & =\frac{\pi}{x}+\frac{1}{x \log x}+\frac{1}{x(\log x)^{2}}+\cdots
\end{aligned}
$$

Transseries are transfinite series

$$
\begin{aligned}
f & =\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m} \quad\left(\mathfrak{T}: \text { set of transmonomials, coefficients } f_{\mathfrak{m}} \in \mathbb{R}\right) \\
& =-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11}+7+\frac{\pi}{x}+\frac{1}{x \log x}+\frac{1}{x(\log x)^{2}} \\
& =f_{\succ}+f_{\asymp}+f_{\prec} \\
f_{\succ} & =-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11} \\
f_{\asymp} & =7 \\
f_{\prec} & =\frac{\pi}{x}+\frac{1}{x \log x}+\frac{1}{x(\log x)^{2}}+\cdots
\end{aligned}
$$

Transmonomials and exponential structure

$$
\begin{aligned}
\mathfrak{T} & =\exp \mathbb{T}_{\succ} \\
\mathbb{T}_{\succ} & =\left\{f \in \mathbb{T}^{\prime} f_{\succ}=f\right\} \\
\exp f & =\left(\exp f_{\succ}\right)\left(\exp f_{\asymp}\right)\left(\exp f_{\prec}\right) \\
\exp f_{\prec} & =1+f_{\prec}+1 / 2 f_{\prec}^{2}+1 / 6 f_{\prec}^{3}+\cdots .
\end{aligned}
$$

Differentiation

$$
\begin{aligned}
x^{\prime} & =1 \\
\left(\mathrm{e}^{f}\right)^{\prime} & =f^{\prime} \mathrm{e}^{f} \\
\left(\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}\right)^{\prime} & =\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}^{\prime}
\end{aligned}
$$

Differentiation

$$
\begin{aligned}
x^{\prime} & =1 \\
\left(e^{f}\right)^{\prime} & =f^{\prime} e^{f} \\
\left(\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}\right)^{\prime} & =\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}^{\prime}
\end{aligned}
$$

Ordering

$$
\begin{gathered}
f \geqslant 0 \Longleftrightarrow\left(\exists g \in \mathbb{T}, g^{2}=f\right) \Longleftrightarrow c(f) \geqslant 0 \\
c\left(-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11}+7+\frac{\pi}{x}+\frac{1}{x \log x}+\cdots\right)=-3
\end{gathered}
$$

Differentiation

$$
\begin{aligned}
x^{\prime} & =1 \\
\left(e^{f}\right)^{\prime} & =f^{\prime} e^{f} \\
\left(\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}\right)^{\prime} & =\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}^{\prime}
\end{aligned}
$$

Ordering

$$
\begin{gathered}
f \geqslant 0 \Longleftrightarrow\left(\exists g \in \mathbb{T}, g^{2}=f\right) \Longleftrightarrow c(f) \geqslant 0 \\
c\left(-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log ^{x}}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11}+7+\frac{\pi}{x}+\frac{1}{x \log x}+\cdots\right)=-3
\end{gathered}
$$

Valuation

$$
\begin{aligned}
\mathcal{O} & =\left\{f \in \mathbb{T}: \exists c \in \mathbb{R}^{>},|f| \leqslant c\right\} \\
\mathcal{O} & =\left\{f \in \mathbb{T}: \forall c \in \mathbb{R}^{>},|f|<c\right\} \\
\mathcal{O} / \mathcal{O} & \cong \mathbb{R}
\end{aligned}
$$

Differentiation

$$
\begin{aligned}
x^{\prime} & =1 \\
\left(\mathrm{e}^{f}\right)^{\prime} & =f^{\prime} \mathrm{e}^{f} \\
\left(\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}\right)^{\prime} & =\sum_{\mathfrak{m} \in \mathfrak{T}} f_{\mathfrak{m}} \mathfrak{m}^{\prime}
\end{aligned}
$$

Ordering

$$
\begin{gathered}
f \geqslant 0 \Longleftrightarrow\left(\exists g \in \mathbb{T}, g^{2}=f\right) \Longleftrightarrow c(f) \geqslant 0 \\
c\left(-3 \mathrm{e}^{\mathrm{e}^{x}}+\mathrm{e}^{\frac{\mathrm{e}^{x}}{\log x}+\frac{\mathrm{e}^{x}}{\log ^{2} x}+\frac{\mathrm{e}^{x}}{\log ^{3} x}+\cdots}-x^{11}+7+\frac{\pi}{x}+\frac{1}{x \log x}+\cdots\right)=-3
\end{gathered}
$$

Valuation

$$
\begin{aligned}
& \mathcal{O}=\left\{f \in \mathbb{T}: \exists c \in \mathbb{R}^{>},|f| \leqslant c\right\} \\
& \mathcal{O}=\left\{f \in \mathbb{T}: \forall c \in \mathbb{R}^{>},|f|<c\right\} \\
& \mathcal{O} / \mathcal{O} \cong \mathbb{R} \\
& v(f) \geqslant v(g) \Longleftrightarrow f \preccurlyeq g \Longleftrightarrow f \in \mathcal{O} g \\
& v(f)>v(g) \Longleftrightarrow f \prec g \Longleftrightarrow f \in \mathcal{O} g
\end{aligned}
$$

Basic closure properties

\mathbb{T} is Liouville closed (i.e. real closed, stable under integration and exponential integration).

Basic closure properties

\mathbb{T} is Liouville closed (i.e. real closed, stable under integration and exponential integration).
Factorization of linear differential operators [vdH]
Any linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into operators of order at most two.

Basic closure properties

\mathbb{T} is Liouville closed (i.e. real closed, stable under integration and exponential integration).
Factorization of linear differential operators [vdH]
Any linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into operators of order at most two.
Differential intermediate value theorem [vdH]
Given a differential polyonomial $P \in \mathbb{T}\{Y\}$ (i.e. $P=P\left(Y, Y^{\prime}, \ldots, Y^{(r)}\right)$) and $f<g$ in \mathbb{T} such that $P(f) P(g)<0$, there exists an $y \in \mathbb{T}$ with $f<y<g$ and $P(y)=0$.

Basic closure properties

\mathbb{T} is Liouville closed (i.e. real closed, stable under integration and exponential integration).
Factorization of linear differential operators [vdH]
Any linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into operators of order at most two.

Differential intermediate value theorem [vdH]
Given a differential polyonomial $P \in \mathbb{T}\{Y\}$ (i.e. $P=P\left(Y, Y^{\prime}, \ldots, Y^{(r)}\right)$) and $f<g$ in \mathbb{T} such that $P(f) P(g)<0$, there exists an $y \in \mathbb{T}$ with $f<y<g$ and $P(y)=0$.

Newtonianity [vdH], differential analogue of henselian fields
Any quasi-linear differential equation with asymptotic side-condition

$$
P(y)=0, \quad y \prec v
$$

admits a solution $(P \in \mathbb{T}\{Y\}, v \in \mathbb{T} \cup\{\infty\})$.

Basic closure properties

\mathbb{T} is Liouville closed (i.e. real closed, stable under integration and exponential integration).
Factorization of linear differential operators [vdH]
Any linear differential operator $L \in \mathbb{T}[\partial]$ can be factored into operators of order at most two.
Differential intermediate value theorem [vdH]
Given a differential polyonomial $P \in \mathbb{T}\{Y\}$ (i.e. $P=P\left(Y, Y^{\prime}, \ldots, Y^{(r)}\right)$) and $f<g$ in \mathbb{T} such that $P(f) P(g)<0$, there exists an $y \in \mathbb{T}$ with $f<y<g$ and $P(y)=0$.

Newtonianity [vdH], differential analogue of henselian fields
Any quasi-linear differential equation with asymptotic side-condition

$$
P(y)=0, \quad y \prec v
$$

admits a solution $(P \in \mathbb{T}\{Y\}, v \in \mathbb{T} \cup\{\infty\})$.

Definition. Let K be an ordered differential field and denote

$$
\begin{aligned}
C & =\left\{c \in K: c^{\prime}=0\right\} \\
\mathcal{O} & =\{a \in K:|a| \leqslant c \text { for some } c \in C\} \\
\mathcal{O} & =\{a \in K:|a|<c \text { for all } c>0 \text { in } C\} .
\end{aligned}
$$

K is an H-field if:
H1. For all $a \in K$, if $a>C$, then $a^{\prime}>0$.
H2. $\mathcal{O}=C+\mathcal{O}$.
The derivation ∂ is said to be small, if $\partial \mathcal{O} \subseteq \mathcal{O}$.

Definition. Let K be an ordered differential field and denote

$$
\begin{aligned}
C & =\left\{c \in K: c^{\prime}=0\right\} \\
\mathcal{O} & =\{a \in K:|a| \leqslant c \text { for some } c \in C\} \\
\mathcal{O} & =\{a \in K:|a|<c \text { for all } c>0 \text { in } C\} .
\end{aligned}
$$

K is an H-field if:
H1. For all $a \in K$, if $a>C$, then $a^{\prime}>0$.
H2. $\mathcal{O}=C+\mathcal{O}$.
The derivation ∂ is said to be small, if $\partial \mathcal{O} \subseteq \mathcal{O}$.

Examples.

- \mathbb{T} and various of its variants (grid-based, well-based, ...).

Definition. Let K be an ordered differential field and denote

$$
\begin{aligned}
C & =\left\{c \in K: c^{\prime}=0\right\} \\
\mathcal{O} & =\{a \in K:|a| \leqslant c \text { for some } c \in C\} \\
\mathcal{O} & =\{a \in K:|a|<c \text { for all } c>0 \text { in } C\} .
\end{aligned}
$$

K is an H-field if:
H1. For all $a \in K$, if $a>C$, then $a^{\prime}>0$.
H2. $\mathcal{O}=C+\mathcal{O}$.
The derivation ∂ is said to be small, if $\partial \mathcal{O} \subseteq \mathcal{O}$.

Examples.

- \mathbb{T} and various of its variants (grid-based, well-based, ...).
- Hardy fields.

Definition. Let K be an ordered differential field and denote

$$
\begin{aligned}
C & =\left\{c \in K: c^{\prime}=0\right\} \\
\mathcal{O} & =\{a \in K:|a| \leqslant c \text { for some } c \in C\} \\
\mathcal{O} & =\{a \in K:|a|<c \text { for all } c>0 \text { in } C\} .
\end{aligned}
$$

K is an H-field if:
H1. For all $a \in K$, if $a>C$, then $a^{\prime}>0$.
H2. $\mathcal{O}=C+\mathcal{O}$.
The derivation ∂ is said to be small, if $\partial \mathcal{O} \subseteq \mathcal{O}$.

Examples.

- \mathbb{T} and various of its variants (grid-based, well-based, ...).
- Hardy fields.
- Differential fields of accelero-summable transseries.

Definition. Let K be an ordered differential field and denote

$$
\begin{aligned}
C & =\left\{c \in K: c^{\prime}=0\right\} \\
\mathcal{O} & =\{a \in K:|a| \leqslant c \text { for some } c \in C\} \\
\mathcal{O} & =\{a \in K:|a|<c \text { for all } c>0 \text { in } C\} .
\end{aligned}
$$

K is an H-field if:
H1. For all $a \in K$, if $a>C$, then $a^{\prime}>0$.
H2. $\mathcal{O}=C+\mathcal{O}$.
The derivation ∂ is said to be small, if $\partial \mathcal{O} \subseteq \mathcal{O}$.

Examples.

- \mathbb{T} and various of its variants (grid-based, well-based, ...).
- Hardy fields.
- Differential fields of accelero-summable transseries.
- Transserial Hardy fields

Differentially valued fields [Rosenlicht]
A d-valued field is a valued differential field such that
DV1. $a^{\prime} b \in b^{\prime} \mathcal{O}$ for all $a, b \in \mathcal{O}$.
DV2. $\mathcal{O}=C+0$.
Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...

Differentially valued fields [Rosenlicht]
A d-valued field is a valued differential field such that
DV1. $a^{\prime} b \in b^{\prime} \mathcal{O}$ for all $a, b \in \mathcal{O}$.
DV2. $\mathcal{O}=C+\mathcal{O}$.
Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...
Complex transseries

- $\mathbb{T}[i]$ is algebraically closed.
- Zeros of $L \in \mathbb{T}[i][\partial]$ of order r form a subspace of $\mathbb{C}\left[\left[e^{\mathbb{T}} \succ^{[i]}\right]\right]$ of dimension r.
- Any $P \in \tilde{\mathbb{T}}\{Y\} \backslash \mathbb{C}$ admits a zero in $\tilde{\mathbb{T}}$.

Differentially valued fields [Rosenlicht]
A d-valued field is a valued differential field such that
DV1. $a^{\prime} b \in b^{\prime} \mathcal{O}$ for all $a, b \in \mathcal{O}$.
DV2. $\mathcal{O}=C+\mathcal{O}$.
Also: pre-H-fields, pre-d-valued fields, asymptotic fields, ...

Complex transseries

- $\mathbb{T}[i]$ is algebraically closed.
- Zeros of $L \in \mathbb{T}[i][\partial]$ of order r form a subspace of $\mathbb{C}\left[\left[\mathrm{e}^{\mathbb{T}} \succ[\mathrm{i}]\right]\right]$ of dimension r.
- Any $P \in \tilde{\mathbb{T}}\{Y\} \backslash \mathbb{C}$ admits a zero in $\tilde{\mathbb{T}}$.

Differentially closed fields?

K is d-closed if for every $P \in K\{Y\}$ of order r and $Q \in K\{Y\}$ of order $s<r$, there exists an $y \in K$ with $P(y)=0$ and $Q(y) \neq 0$.

Unfortunately [Rosenlicht]: d-closed d-valued fields do not exist.

- Following Robinson: systematically study the extension theory of H-fields K.
- Following Robinson: systematically study the extension theory of H-fields K . - It suffices to study extensions of K by one element y at a time.
- Following Robinson: systematically study the extension theory of H-fields K .
- It suffices to study extensions of K by one element y at a time.
- Reduces to studying the behaviour of differential polynomials $P \in K\{Y\}$ at y.
- Following Robinson: systematically study the extension theory of H-fields K .
- It suffices to study extensions of K by one element y at a time.
- Reduces to studying the behaviour of differential polynomials $P \in K\{Y\}$ at y.
- This was done in my book LNM 1888 for $K=\mathbb{T}^{\mathrm{gb}}$.
- Following Robinson: systematically study the extension theory of H-fields K.
- It suffices to study extensions of K by one element y at a time.
- Reduces to studying the behaviour of differential polynomials $P \in K\{Y\}$ at y.
- This was done in my book LNM 1888 for $K=\mathbb{T}^{\mathrm{gb}}$.
- Generalize this theory to arbitrary H-fields.
- Following Robinson: systematically study the extension theory of H-fields K.
- It suffices to study extensions of K by one element y at a time.
- Reduces to studying the behaviour of differential polynomials $P \in K\{Y\}$ at y.
- This was done in my book LNM 1888 for $K=\mathbb{T}^{\mathrm{gb}}$.
- Generalize this theory to arbitrary H-fields.
- Main obstruction: problem with gaps

$$
\gamma=\frac{1}{x \log x \log \log x \cdots}
$$

Indeed: should we have $\int \gamma \succ 1$ or $\int \curlyvee \prec 1$ in extensions?

Systematic study of asymptotic d-algebraic equations

$$
P(y)=0, \quad y \prec v,
$$

where $P \in K\{Y\}$ and $\varphi \in K$. For example:

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{2} y^{\prime \prime}+y^{2}-2 x y y^{\prime}-7 \mathrm{e}^{-x} y^{\prime}-4+\frac{1}{\log x}=0, \quad y \prec x
$$

The slopes correspond to dominant monomials of candidate solutions. Two kinds: Approximate solutions of algebraic type. $y= \pm 2+\cdots$

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{2} y^{\prime \prime}+y^{2}-2 x y y^{\prime}-7 \mathrm{e}^{-x} y^{\prime}-4+\frac{1}{\log x}=0, \quad y \prec x .
$$

- Natural analogue of usual Newton polygon method.
- Slopes can be read off from the Newton diagram modulo "adjustments", e.g. $y^{\prime}=e^{e^{x}}$ implies $y \sim e^{e^{x}} / \mathrm{e}^{x}$. In general: equalizer theorem.

The slopes correspond to dominant monomials of candidate solutions. Two kinds:
Approximate solutions of algebraic type. $y= \pm 2+\cdots$

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{2} y^{\prime \prime}+y^{2}-2 x y y^{\prime}-7 \mathrm{e}^{-x} y^{\prime}-4+\frac{1}{\log x}=0, \quad y \prec x
$$

- Natural analogue of usual Newton polygon method.
- Slopes can be read off from the Newton diagram modulo "adjustments", e.g. $y^{\prime}=e^{e^{x}}$ implies $y \sim e^{e^{x}} / e^{x}$. In general: equalizer theorem.

Approximate solutions of differential type. $y=c \sqrt{x}+\cdots$

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{2} y^{\prime \prime}+y^{2}-2 x y y^{\prime}-7 \mathrm{e}^{-x} y^{\prime}-4+\frac{1}{\log x}=0, \quad y \prec x .
$$

Cancellation in homogeneous component $y^{2}-2 x y y^{\prime}=\left(1-2 x \frac{y^{\prime}}{y}\right) y^{2} \rightsquigarrow$ Riccati equation

$$
1-2 x y^{\dagger}=0
$$

whence $y^{\dagger}=1 / 2 x$ and $y \asymp \sqrt{x}$.

Refinements. Given an approximate solution $y \sim \varphi$, performing the refinement

$$
y=\varphi+\tilde{y}, \quad \tilde{y} \prec \varphi
$$

leads to a new asymptotic differential equation in \tilde{y}. Example: $y=2+\tilde{y}, \tilde{y} \prec 1$ transforms

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{2} y^{\prime \prime}+y^{2}-2 x y y^{\prime}-7 \mathrm{e}^{-x} y^{\prime}-4+\frac{1}{\log x}=0, \quad y \prec x
$$

into

$$
\mathrm{e}^{-\mathrm{e}^{x}} \tilde{y}^{2} \tilde{y}^{\prime \prime}+\tilde{y}^{2}-2 x \tilde{y} \tilde{y}^{\prime}+4 \mathrm{e}^{-\mathrm{e}^{x}} \tilde{y}+4 \tilde{y}-\left(4 x+7 \mathrm{e}^{-x}\right) \tilde{y}^{\prime}+4 \mathrm{e}^{-\mathrm{e}^{x}} \tilde{y}^{\prime \prime}+\frac{1}{\log x}=0, \tilde{y} \prec 1
$$

Refinements. Given an approximate solution $y \sim \varphi$, performing the refinement

$$
y=\varphi+\tilde{y}, \quad \tilde{y} \prec \varphi
$$

leads to a new asymptotic differential equation in \tilde{y}. Example: $y=2+\tilde{y}, \tilde{y} \prec 1$ transforms

$$
\mathrm{e}^{-\mathrm{e}^{x}} y^{2} y^{\prime \prime}+y^{2}-2 x y y^{\prime}-7 \mathrm{e}^{-x} y^{\prime}-4+\frac{1}{\log x}=0, \quad y \prec x
$$

into

$$
\mathrm{e}^{-\mathrm{e}^{x}} \tilde{y}^{2} \tilde{y}^{\prime \prime}+\tilde{y}^{2}-2 x \tilde{y} \tilde{y}^{\prime}+4 \mathrm{e}^{-\mathrm{e}^{x}} \tilde{y}+4 \tilde{y}-\left(4 x+7 \mathrm{e}^{-x}\right) \tilde{y}^{\prime}+4 \mathrm{e}^{-\mathrm{e}^{x}} \tilde{y}^{\prime \prime}+\frac{1}{\log x}=0, \tilde{y} \prec 1
$$

Newton degree. [analogue of Weierstrass degree] Abscissa of highest slope of Newton diagram which satisfies the asymptotic side condition (e.g. two in our example).

- Newton degree can only decrease during refinements.
- If Newton degree is one, then the equation is said to be quasi-linear. In that case, it admits at least one transseries solution.
- Using a suitable generalization of Tschirnhausen transforms, one may reach a quasi-linear equation after only a finite number of refinements.

Multiplicative conjugation

Reduce general asymptotic side condition $y \prec v$ to the case when $v=1$:

$$
(P(y)=0, y \prec v) \Longleftrightarrow\left(P_{\times v}(\tilde{y})=P(\tilde{y} v)=0, \tilde{y} \prec 1\right), \quad \tilde{y}=y / v
$$

Multiplicative conjugation

Reduce general asymptotic side condition $y \prec v$ to the case when $v=1$:

$$
(P(y)=0, y \prec v) \Longleftrightarrow\left(P_{\times v}(\tilde{y})=P(\tilde{y} v)=0, \tilde{y} \prec 1\right), \quad \tilde{y}=y / v
$$

Dominant part

Consider $P \in \mathbb{T}\{Y\}$ as a series $P=\sum_{\mathfrak{m} \in \mathfrak{T}} P_{\mathfrak{m}} \mathfrak{m}$, with $P_{\mathfrak{m}} \in \mathbb{R}\{Y\}$.
Then $D_{P}=D(P)$ is the "leading coefficient" of P.

$$
D\left(\frac{3}{1-\mathrm{e}^{-x}} Y^{2} Y^{\prime}-\frac{1}{x} Y^{2}+\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x}\right)=3 Y^{2}+\left(Y^{\prime}\right)^{2}
$$

Requires a cross section of the value group inside K for a general H-field.

Multiplicative conjugation

Reduce general asymptotic side condition $y \prec v$ to the case when $v=1$:

$$
(P(y)=0, y \prec v) \Longleftrightarrow\left(P_{\times v}(\tilde{y})=P(\tilde{y} v)=0, \tilde{y} \prec 1\right), \quad \tilde{y}=y / v
$$

Dominant part

Consider $P \in \mathbb{T}\{Y\}$ as a series $P=\sum_{\mathfrak{m} \in \mathfrak{T}} P_{\mathfrak{m}} \mathfrak{m}$, with $P_{\mathfrak{m}} \in \mathbb{R}\{Y\}$.
Then $D_{P}=D(P)$ is the "leading coefficient" of P.

$$
D\left(\frac{3}{1-\mathrm{e}^{-x}} Y^{2} Y^{\prime}-\frac{1}{x} Y^{2}+\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x}\right)=3 Y^{2}+\left(Y^{\prime}\right)^{2}
$$

Requires a cross section of the value group inside K for a general H-field.

Compositional conjugation

Replacing the derivation ∂ by a new derivation $\tilde{\partial}=\phi^{-1} \partial$. Corresponds to a postcomposition $\tilde{y}=y \circ u$.
We typically want to take ϕ as small as possible, while preserving the smallness of $\tilde{\partial}$. Notation: K^{ϕ} : the field K with derivation $\tilde{\partial}, P^{\phi}$: the counterpart of $P \in K\{Y\}$ in $K^{\phi}\{Y\}$.

$$
\begin{array}{cc}
\frac{3}{1-\mathrm{e}^{-x}} Y^{2} Y^{\prime}-\frac{1}{x} Y^{2}+\left(Y^{\prime}\right)^{2}+\mathrm{e}^{-x} & \xrightarrow{D} 3 Y^{2} Y^{\prime}+\left(Y^{\prime}\right)^{2} \\
\downarrow Y=\tilde{Y} \circ \log & \\
\frac{3}{\left(1-\mathrm{e}^{-x}\right) x}\left(\tilde{Y}^{2} \tilde{Y}^{\prime}\right) \circ \log -\frac{1}{x} \tilde{Y}^{2} \circ \log +\frac{\left(\tilde{Y}^{\prime}\right)^{2} \circ \log }{x^{2}}+\mathrm{e}^{-x} & \xrightarrow{D} 3 \tilde{Y}^{2} \tilde{Y}^{\prime}-\tilde{Y} \\
\frac{\downarrow \tilde{Y}=\tilde{Y} \circ \log }{\left(1-\mathrm{e}^{-x}\right) \times \log x}\left(\tilde{Y}^{2} \tilde{Y}^{\prime}\right) \circ \log _{2}-\frac{1}{x} \tilde{Y}^{2} \circ \log _{2}+\frac{\left(\tilde{Y}^{\prime}\right)^{2} \circ \log _{2}}{x^{2} \log ^{2} x}+\mathrm{e}^{-x} & \xrightarrow{D}-\tilde{Y}
\end{array}
$$

Theorem. For any $P \in \mathbb{T}^{\mathrm{gb}}\{Y\} \backslash\{0\}$, there exists an $N \in \mathbb{R}[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$ with

$$
D_{P^{\phi}}=N,
$$

The following special cuts will play a crucial role:

$$
\begin{aligned}
& \gamma_{\mathbb{T}}=\frac{1}{\ell_{0} \ell_{1} \ell_{2} \cdots} \quad\left(\forall n,\left(1 / \ell_{n}\right)^{\prime} \prec \gamma_{\mathbb{T}} \prec \ell_{n}^{\prime}\right) \\
& \lambda_{\mathbb{T}}=\frac{1}{\ell_{0}}+\frac{1}{\ell_{0} \ell_{1}}+\frac{1}{\ell_{0} \ell_{1} \ell_{2}}+\cdots=-\gamma_{\mathbb{T}}^{\dagger} \\
& \omega_{\mathbb{T}}=\frac{1}{\ell_{0}^{2}}+\frac{1}{\ell_{0}^{2} \ell_{1}^{2}}+\frac{1}{\ell_{0}^{2} \ell_{1}^{2} \ell_{2}^{2}}+\cdots=-\lambda_{\mathbb{T}}^{2}-2 \lambda_{\mathbb{T}}^{\prime}
\end{aligned}
$$

Even though $\gamma_{\mathbb{T}}, \lambda_{\mathbb{T}}$ and $\omega_{\mathbb{T}}$ are not in \mathbb{T}, the sets

$$
\begin{aligned}
& \Gamma(\mathbb{T})=\left\{a \in \mathbb{T}: a<\gamma_{\mathbb{T}}\right\} \\
& \Lambda(\mathbb{T})=\left\{a \in \mathbb{T}: a<\lambda_{\mathbb{T}}\right\} \\
& \Omega(\mathbb{T})=\left\{a \in \mathbb{T}: a<\omega_{\mathbb{T}}\right\}
\end{aligned}
$$

are definable subsets of \mathbb{T}. For instance,

$$
\begin{aligned}
\Gamma(\mathbb{T}) & =\left\{a \in \mathbb{T}: \forall b \in \mathbb{T}, b \succ 1 \Rightarrow a \neq b^{\dagger}\right\} \\
& =\left\{-a^{\prime}: a \in \mathbb{T}, a \geqslant 0\right\}
\end{aligned}
$$

In other words, $\gamma_{\mathbb{T}}, \lambda_{\mathbb{T}}$ and $\omega_{\mathbb{T}}$ are definable cuts in \mathbb{T}.

Gaps

$\gamma=\gamma K \in K$, but $\int \gamma \notin K$. In other words, for all $a \in K$ with $a \succ 1$, we have

$$
a^{\dagger} \succ \gamma \succ(1 / a)^{\prime} .
$$

Theorem. (AvdD) If K admits a gap γ, then K admits exactly two "Liouville closures".

Gaps

$\gamma=\gamma K \in K$, but $\int \gamma \notin K$. In other words, for all $a \in K$ with $a \succ 1$, we have

$$
a^{\dagger} \succ \gamma \succ(1 / a)^{\prime} .
$$

Theorem. (AvdD) If K admits a gap γ, then K admits exactly two "Liouville closures".

Indirect gaps

K admits no gap (i.e. K is γ-free), but $\lambda \in K$ is such that for all $a \in K$ with $a \succ 1$, we have

$$
-a^{\dagger \dagger}<\lambda<-(1 / a)^{\prime \dagger} .
$$

Gaps

$\gamma=\gamma K \in K$, but $\int \gamma \notin K$. In other words, for all $a \in K$ with $a \succ 1$, we have

$$
a^{\dagger} \succ \gamma \succ(1 / a)^{\prime} .
$$

Theorem. (AvdD) If K admits a gap γ, then K admits exactly two "Liouville closures".

Indirect gaps

K admits no gap (i.e. K is γ-free), but $\lambda \in K$ is such that for all $a \in K$ with $a \succ 1$, we have

$$
-a^{\dagger \dagger}<\lambda<-(1 / a)^{\prime \dagger}
$$

In general
Each of the following cases can occur:

$$
\begin{array}{ll}
& \gamma \in K \\
\gamma \notin K & \wedge \\
\lambda \in K \\
\lambda \notin K & \wedge \\
\omega \notin K &
\end{array}
$$

Definition

$$
\omega=\omega_{K}: K \rightarrow K, \quad \omega(z):=-2 z^{\prime}-z^{2}
$$

$\omega \in K$, if for all $a \succ 1$ in K, we have

$$
\omega-\omega\left(a^{\dagger \dagger}\right) \prec\left(a^{\dagger}\right)^{2} .
$$

K is ω-free if

$$
\forall a, \exists b,\left[b \succ 1 \wedge a-\omega\left(b^{\dagger \dagger}\right) \succcurlyeq\left(b^{\dagger}\right)^{2}\right] .
$$

Definition

$$
\omega=\omega_{K}: K \rightarrow K, \quad \omega(z):=-2 z^{\prime}-z^{2}
$$

$\omega \in K$, if for all $a \succ 1$ in K, we have

$$
\omega-\omega\left(a^{\dagger \dagger}\right) \prec\left(a^{\dagger}\right)^{2} .
$$

K is ω-free if

$$
\forall a, \exists b,\left[b \succ 1 \wedge a-\omega\left(b^{\dagger \dagger}\right) \succcurlyeq\left(b^{\dagger}\right)^{2}\right] .
$$

Examples

- \mathbb{T} is ω-free.
- If K has asymptotic integration and K is a union of H-subfields, each of which has a smallest comparability class, then K is ω-free.
- There exist Liouville-closed H -fields that are not ω-free.

Differential Newton polynomials

Theorem. If K is ω-free, then we can define N_{P} for any $P \in K\{Y\}$, and $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.

Differential Newton polynomials
Theorem. If K is ω-free, then we can define N_{P} for any $P \in K\{Y\}$, and $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.

Differentially algebraic extensions
Theorem. If L is a d-algebraic extension of an ω-free H-field K, then L is ω-free.

Differential Newton polynomials

Theorem. If K is ω-free, then we can define N_{P} for any $P \in K\{Y\}$, and $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.

Differentially algebraic extensions

Theorem. If L is a d-algebraic extension of an ω-free H-field K, then L is ω-free.

Relation with theorem of Écalle

Let $\lambda=\frac{1}{x}+\frac{1}{x \ell_{1}}+\frac{1}{x \ell_{1} \ell_{2}}+\cdots$ and $P \in \mathbb{R}\{Y\} \backslash \mathbb{R}$. Then the first ω terms of $P(\lambda)$ either "behave" like λ or like ω.

In particular, we cannot have $P(\lambda)=\frac{1}{x^{n}}+\frac{1}{x^{n} \ell_{1}^{n}}+\frac{1}{x^{n} \ell_{1}^{\ell} \ell_{2}^{n}}+\cdots$ for $n \geqslant 3$.

Differential Newton polynomials

Theorem. If K is ω-free, then we can define N_{P} for any $P \in K\{Y\}$, and $N_{P} \in C[Y]\left(Y^{\prime}\right)^{\mathbb{N}}$.

Differentially algebraic extensions

Theorem. If L is a d-algebraic extension of an ω-free H-field K, then L is ω-free.

Relation with theorem of Écalle

Let $\lambda=\frac{1}{x}+\frac{1}{x \ell_{1}}+\frac{1}{x \ell_{1} \ell_{2}}+\cdots$ and $P \in \mathbb{R}\{Y\} \backslash \mathbb{R}$. Then the first ω terms of $P(\lambda)$ either "behave" like λ or like ω.

In particular, we cannot have $P(\lambda)=\frac{1}{x^{n}}+\frac{1}{x^{n} \ell_{1}^{n}}+\frac{1}{x^{n} \ell_{1}^{n} \ell_{2}^{n}}+\cdots$ for $n \geqslant 3$.

Relation with second order linear differential equations
$y^{\prime \prime}=-y$ has no non-zero solution $y \in \mathbb{T}$.
$y^{\prime \prime}=x y$ has two \mathbb{R}-linearly independent solutions in \mathbb{T}.
In general, $4 y^{\prime \prime}+f y=0$ has a non-zero solution if and only if $f<\omega$.

Definition (for ω-free H -field K)
Every $P \in K\{Y\}$ with $\operatorname{deg} N_{P}=1$ admits a zero in \mathcal{O}.

Definition (for ω-free H -field K)
Every $P \in K\{Y\}$ with $\operatorname{deg} N_{P}=1$ admits a zero in \mathcal{O}.

Theorem. If K is an H-field, $\partial K=K$, and K is a directed union of spherically complete H-subfields, each having a smallest comparability class, then K is newtonian.

Definition (for ω-free H -field K)
Every $P \in K\{Y\}$ with $\operatorname{deg} N_{P}=1$ admits a zero in \mathcal{O}.

Theorem. If K is an H-field, $\partial K=K$, and K is a directed union of spherically complete H-subfields, each having a smallest comparability class, then K is newtonian.

Theorem. If K is a newtonian H-field with divisible value group, then K has no proper immediate d-algebraic H-field extension.

Definition (for ω-free H -field K)
Every $P \in K\{Y\}$ with $\operatorname{deg} N_{P}=1$ admits a zero in \mathcal{O}.

Theorem. If K is an H-field, $\partial K=K$, and K is a directed union of spherically complete H-subfields, each having a smallest comparability class, then K is newtonian.

Theorem. If K is a newtonian H-field with divisible value group, then K has no proper immediate d-algebraic H -field extension.

Corollary. Let K be a real closed newtonian H-field. Then

1. Each d-polynomial in $K[i]\{Y\}$ of positive degree has a zero in $K[i]$.
2. Each linear differential operator in $K[i][\partial]$ of positive order is a composition of such operators of order 1.
3. Each linear differential operator in $K[\partial]$ of positive order is a composition of such operators of order 1 and order 2.

Theorem. If K is an ω-free H-field with divisible value group, then K has an immediate d-algebraic newtonian H-field extension, and any such extension embeds over K into every ω-free newtonian H-field extension of K.

Theorem. If K is an ω-free H-field with divisible value group, then K has an immediate d-algebraic newtonian H-field extension, and any such extension embeds over K into every ω-free newtonian H-field extension of K.

Theorem. If K is an ω-free H-field, then K has a d-algebraic newtonian Liouville closed H-field extension that embeds over K into every ω-free newtonian Liouville closed H-field extension of K.

The theory

$$
\begin{aligned}
\mathcal{L} & =\{0,1,+,-, \cdot, \partial, \leqslant, \preccurlyeq\} \\
T^{\mathrm{nl}} & =\text { theory of newtonian }(\omega \text {-free }) \text { Liouville closed } H \text {-fields }
\end{aligned}
$$

The theory

$$
\begin{aligned}
\mathcal{L} & =\{0,1,+,-, \cdot, \partial, \leqslant, \preccurlyeq\} \\
T^{\mathrm{nl}} & =\text { theory of newtonian }(\omega \text {-free }) \text { Liouville closed } H \text {-fields }
\end{aligned}
$$

Switchmen predicates

$L_{\mathrm{l}, \Lambda, \Omega}^{\iota}=\mathcal{L} \cup\{\iota, l, \Lambda, \Omega\}$ and $T_{\mathrm{l}, \Lambda, \Omega}^{\mathrm{nl}, \iota}$ is T^{nl} with additional axioms

$$
\begin{aligned}
a \neq 0 & \Longleftrightarrow a \iota(a)=1 \\
a=0 & \Longleftrightarrow \iota(a)=0 \\
\mathrm{I}(a) & \Longleftrightarrow\left[\exists y,\left(a \preccurlyeq y^{\prime} \wedge y \preccurlyeq 1\right)\right] \Longleftrightarrow\left[a=0 \vee\left(a \neq 0 \wedge \neg \wedge\left(-a^{\dagger}\right)\right)\right] \\
\Lambda(a) & \Longleftrightarrow \exists y,\left(y \succ 1 \wedge a=-y^{\dagger \dagger}\right) \\
\Omega(a) & \Longleftrightarrow \exists y,\left(y \neq 0 \wedge 4 y^{\prime \prime}+a y=0\right)
\end{aligned}
$$

Assume that K contains a gap γ and that $\Phi \in L \supsetneq K$ such that $\Phi^{\prime}=\gamma$.
Then we must have $\Phi \preccurlyeq 1$ if $\mathrm{I}(\gamma)$ and $\Phi \succ 1$ otherwise.
Λ and Ω control what happens when adjoining γ and λ with $\gamma^{\dagger}=-\lambda$ and $\omega(\lambda)=\omega$.
$L_{\Lambda, \Omega}^{\iota}=\mathcal{L} \cup\{\iota, \Lambda, \Omega\}$ and $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ is T^{nl} with above additional axioms for ι, Λ and Ω.
Theorem. The theory $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ admits elimination of quantifiers.
$L_{\Lambda, \Omega}^{\iota}=\mathcal{L} \cup\{\iota, \Lambda, \Omega\}$ and $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ is T^{nl} with above additional axioms for ι, Λ and Ω.
Theorem. The theory $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ admits elimination of quantifiers.

Theorem. Let $T_{\text {small }}^{\mathrm{nl}}$ be the L-theory whose models are the newtonian Liouville closed H-fields with small derivation. Then $T_{\mathrm{sma}}^{\mathrm{nl}}$ is complete (and thus decidable) and model complete. Every H-field with small derivation can be embedded into some model of $T_{\mathrm{small}}^{\mathrm{nl}}$.
$L_{\Lambda, \Omega}^{\iota}=\mathcal{L} \cup\{\iota, \Lambda, \Omega\}$ and $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ is T^{nl} with above additional axioms for ι, Λ and Ω.

Theorem. The theory $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ admits elimination of quantifiers.

Theorem. Let $T_{\text {small }}^{\mathrm{nl}}$ be the L-theory whose models are the newtonian Liouville closed H-fields with small derivation. Then $T_{\mathrm{small}}^{\mathrm{nl}}$ is complete (and thus decidable) and model complete. Every H-field with small derivation can be embedded into some model of $T_{\text {small }}^{\mathrm{nl}}$.

Corollary. Let K be a newtonian Liouville closed H-field. Then:

1. K is o-minimal at infinity: if $X \subseteq K$ is definable in K, then for some $a \in K$, either $(a,+\infty) \subseteq K$, or $(a,+\infty) \cap K=\varnothing$.
2. If $X \subseteq K^{n}$ is definable in K, then $X \cap C^{n}$ is semialgebraic in the sense of the real closed constant field C of K.
3. K has NIP.
$L_{\Lambda, \Omega}^{\iota}=\mathcal{L} \cup\{\iota, \Lambda, \Omega\}$ and $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ is T^{nl} with above additional axioms for ι, Λ and Ω.

Theorem. The theory $T_{\Lambda, \Omega}^{\mathrm{nl}, \iota}$ admits elimination of quantifiers.

Theorem. Let $T_{\text {small }}^{\mathrm{nl}}$ be the L-theory whose models are the newtonian Liouville closed H-fields with small derivation. Then $T_{\mathrm{small}}^{\mathrm{nl}}$ is complete (and thus decidable) and model complete. Every H-field with small derivation can be embedded into some model of $T_{\text {small }}^{\mathrm{nl}}$.

Corollary. Let K be a newtonian Liouville closed H-field. Then:

1. K is o-minimal at infinity: if $X \subseteq K$ is definable in K, then for some $a \in K$, either $(a,+\infty) \subseteq K$, or $(a,+\infty) \cap K=\varnothing$.
2. If $X \subseteq K^{n}$ is definable in K, then $X \cap C^{n}$ is semialgebraic in the sense of the real closed constant field C of K.
3. K has NIP.

Theorem. If K is a newtonian Liouville closed H-field, then K has no proper d-algebraic H-field extension with the same constant field.

