Multiple precision floating point arithmetic on SIMD processors

Joris van der Hoeven

CNRS, École polytechnique

London, July 24, 2017 http://www.T_EX_{MACS}.org

Theoretical efficiency of multiple precision floating point arithmetic

- Mainly boils down to the complexity M(k) of k-"word" multiplication.
- For small k, we have $M(k) \approx \alpha k^2$ for some constant α .
- For large k, we have $M(k) = O(k \log k 8^{\log^* k})$: Harvey–vdH–Lecerf, J. of Complexity 2016.

2/12

• For $10 \leq k \leq 1000$, intermediate regimes apply: Karatsuba, Toom–Cook, etc.

Theoretical efficiency of multiple precision floating point arithmetic

- Mainly boils down to the complexity M(k) of k-"word" multiplication.
- For small k, we have $M(k) \approx \alpha k^2$ for some constant α .
- For large k, we have $M(k) = O(k \log k 8^{\log^* k})$: Harvey–vdH–Lecerf, J. of Complexity 2016.

2/12

• For $10 \leq k \leq 1000$, intermediate regimes apply: Karatsuba, Toom–Cook, etc.

Theoretical efficiency of multiple precision floating point arithmetic

- Mainly boils down to the complexity M(k) of k-"word" multiplication.
- For small k, we have $M(k) \approx \alpha k^2$ for some constant α .
- For large k, we have $M(k) = O(k \log k 8^{\log^* k})$: Harvey–vdH–Lecerf, J. of Complexity 2016.
- For $10 \leq k \leq 1000$, intermediate regimes apply: Karatsuba, Toom–Cook, etc.

How does this translate in practice?

• How to minimize α for small $k \leq 10$?

Theoretical efficiency of multiple precision floating point arithmetic

- Mainly boils down to the complexity M(k) of k-"word" multiplication.
- For small k, we have $M(k) \approx \alpha k^2$ for some constant α .
- For large k, we have $M(k) = O(k \log k 8^{\log^* k})$: Harvey–vdH–Lecerf, J. of Complexity 2016.
- For $10 \leq k \leq 1000$, intermediate regimes apply: Karatsuba, Toom–Cook, etc.

- How to minimize α for small $k \leq 10$?
- How does α depend on the architecture?

Theoretical efficiency of multiple precision floating point arithmetic

- Mainly boils down to the complexity M(k) of k-"word" multiplication.
- For small k, we have $M(k) \approx \alpha k^2$ for some constant α .
- For large k, we have $M(k) = O(k \log k 8^{\log^* k})$: Harvey–vdH–Lecerf, J. of Complexity 2016.

2/12

• For $10 \leq k \leq 1000$, intermediate regimes apply: Karatsuba, Toom–Cook, etc.

- How to minimize α for small $k \leq 10$?
- How does α depend on the architecture?
- What about SIMD-style vectorization?

Theoretical efficiency of multiple precision floating point arithmetic

- Mainly boils down to the complexity M(k) of k-"word" multiplication.
- For small k, we have $M(k) \approx \alpha k^2$ for some constant α .
- For large k, we have $M(k) = O(k \log k 8^{\log^* k})$: Harvey–vdH–Lecerf, J. of Complexity 2016.

2/12

• For $10 \leq k \leq 1000$, intermediate regimes apply: Karatsuba, Toom–Cook, etc.

- How to minimize α for small $k \leq 10$?
- How does α depend on the architecture?
- What about SIMD-style vectorization?
- To what extent do additions and subtractions matter?

The issues

• What are the available word sizes μ in bits?

The issues

- What are the available word sizes μ in bits?
- What is the available SIMD width w for the best word size μ ?

3/12

The issues

- What are the available word sizes μ in bits?
- What is the available SIMD width w for the best word size μ ?

Efficiency $\propto \, \mu^2 \, {\it w}$

3/12

The issues

- What are the available word sizes μ in bits?
- What is the available SIMD width w for the best word size μ ?

Efficiency $\propto \mu^2 w$

• Is (efficient) hardware integer arithmetic available? If so,

 $\mathsf{Efficiency}_{\mathbb{Z}} \approx \left(\frac{64}{53}\right)^2 \mathsf{Efficiency}_{\mathbb{F}} \approx 1.5 \,\mathsf{Efficiency}_{\mathbb{F}}.$

- What are the available word sizes μ in bits?
- What is the available SIMD width w for the best word size μ ?

Efficiency $\propto\,\mu^2\,{\it w}$

• Is (efficient) hardware integer arithmetic available? If so,

$$\mathsf{Efficiency}_{\mathbb{Z}} \approx \left(\frac{64}{53}\right)^2 \mathsf{Efficiency}_{\mathbb{F}} \approx 1.5 \,\mathsf{Efficiency}_{\mathbb{F}}.$$

Currently

- $\mu = 53$ and w = 4 on AVX2-enabled processors. No efficient 64-bit integer arithmetic.
- $\mu = 24$ and $16 \le w \le 64$ on cheap GPUs. No efficient 32-bit integer arithmetic.
- $\mu = 53$ and $16 \le w \le 64$ on expensive GPUs. No efficient 64-bit integer arithmetic.
- FGPAs: not considered here.

1 2 3 <u>4</u> 5 6 7 8 9 10 11 12

Notation: $\ensuremath{\mathbb{F}}$ is the set of hardware floating point numbers

Floating point expansions

• Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

Separate treatment of mantissas and exponents

• Standard representation $x = m 2^e$ with $m = m_0 + m_1 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

- Standard representation $x = m 2^e$ with $m = m_0 + m_1 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$
- Fixed-point arithmetic operations on the mantissas m

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

- Standard representation $x = m 2^e$ with $m = m_0 + m_1 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$
- Fixed-point arithmetic operations on the mantissas m
- Very efficient for large k (cf. GMP and MPFR libraries)

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

- Standard representation $x = m 2^e$ with $m = m_0 + m_1 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$
- Fixed-point arithmetic operations on the mantissas *m*
- Very efficient for large k (cf. GMP and MPFR libraries)
- However: GMP and MPFR are currently not vectorized and very inefficient for small k

1 2 3 <u>4</u> 5 6 7 8 9 10 11 12

Notation: ${\mathbb F}$ is the set of hardware floating point numbers

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

- Standard representation $x = m 2^e$ with $m = m_0 + m_1 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$
- Fixed-point arithmetic operations on the mantissas *m*
- Very efficient for large k (cf. GMP and MPFR libraries)
- However: GMP and MPFR are currently not vectorized and very inefficient for small k
- Efficiency for small and medium k?

Floating point expansions

- Based on an exact representation $x = x_1 + \dots + x_k$ with $x_1, \dots, x_k \in \mathbb{F}$
- Exploit error-free transformations when doing operations
- Efficient for k = 2, k = 3, and k = 4 (cf. QD library by Bailey et al.)
- Muller–Popescu–Tang, ARITH 2016, "op-count" $M(k) \leq \frac{13}{2}k^2 + \frac{45}{2}k + 67$

- Standard representation $x = m 2^e$ with $m = m_0 + m_1 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$
- Fixed-point arithmetic operations on the mantissas m
- Very efficient for large k (cf. GMP and MPFR libraries)
- However: GMP and MPFR are currently not vectorized and very inefficient for small k
- Efficiency for small and medium k?
- SIMD-style vectorization?

1 2 3 4 <u>5</u> 6 7 8 9 10 11 12

Idea (vdH-Lecerf, ARITH 2015): use redundant representation with "nail bits":

$$x = m 2^{e}$$

$$m = m_{0} + m_{1} 2^{-p} + \dots + m_{k-1} 2^{-(k-1)p}$$

$$p = \mu - \delta$$

$$\delta \approx 4, \text{ suitable number of "nail bits"}$$

$$m_{i} \in \mathbb{Z} 2^{-p}$$

Thus: $|m| < 2^{\delta}$ and $m \in \mathbb{Z} 2^{-kp}$.

Efficient non-normalized arithmetic ...

1 2 3 4 5 <u>6</u> 7 8 9 10 11 12

Operation counts

• Multiplication: $5\binom{k}{2} + 1 = \frac{5}{2}k^2 - \frac{5}{2}k + 1$

Operation counts

- Multiplication: $5\binom{k}{2} + 1 = \frac{5}{2}k^2 \frac{5}{2}k + 1$
- Carry-normalization: 4k 4

Operation counts

- Multiplication: $5\binom{k}{2} + 1 = \frac{5}{2}k^2 \frac{5}{2}k + 1$
- Carry-normalization: 4k 4
- Total: $\frac{5}{2}k^2 + \frac{3}{2}k 3$

Operation counts

- Multiplication: $5\binom{k}{2} + 1 = \frac{5}{2}k^2 \frac{5}{2}k + 1$
- Carry-normalization: 4k 4
- Total: $\frac{5}{2}k^2 + \frac{3}{2}k 3$
- Remember: $\frac{13}{2}k^2 + \frac{45}{2}k + 67$

Main problem: putting arguments under a common exponent (e.g. $0.7 \times 2^{-7} + 0.8 \times 2^{-12}$)

Main problem: putting arguments under a common exponent(e.g. $0.7 \times 2^{-7} + 0.8 \times 2^{-12}$) \rightsquigarrow how to shift mantissas efficiently?(e.g. $0.8 \times 2^{-12} = 0.025 \times 2^{-7}$)

Main problem: putting arguments under a common exponent (e.g. $0.7 \times 2^{-7} + 0.8 \times 2^{-12}$)

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

(e.g. $0.8 \times 2^{-12} = 0.025 \times 2^{-7}$)

Main problem: putting arguments under a common exponent (e.g. $0.7 \times 2^{-7} + 0.8 \times 2^{-12}$)

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

Decomposition of a shift by s bits

(e.g. $0.8 \times 2^{-12} = 0.025 \times 2^{-7}$)

Main problem: putting arguments under a common exponent (e.,

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

Decomposition of a shift by s bits

• as a long shift by $\sigma = \lfloor s / p \rfloor$ words

Main problem: putting arguments under a common exponent

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

Decomposition of a shift by s bits

- as a long shift by $\sigma = \lfloor s / p \rfloor$ words
- and a short shift by $s' = s \sigma p < p$ bits

Main problem: putting arguments under a common exponent

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

Decomposition of a shift by s bits

- as a long shift by $\sigma = \lfloor s / p \rfloor$ words
- and a short shift by $s' = s \sigma p < p$ bits
- This should be done using SIMD vector instructions

Main problem: putting arguments under a common exponent (

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

Decomposition of a shift by s bits

- as a long shift by $\sigma = \lfloor s / p \rfloor$ words
- and a short shift by $s' = s \sigma p < p$ bits
- This should be done using SIMD vector instructions

Main design decisions to be made

Work with arbitrary exponents (à la MPFR) or multiples of p (à la GMP)?

Main problem: putting arguments under a common exponent

- \rightsquigarrow how to shift mantissas efficiently?
- \rightsquigarrow how to perform "dot normalization"?

Decomposition of a shift by s bits

- as a long shift by $\sigma = \lfloor s / p \rfloor$ words
- and a short shift by $s' = s \sigma p < p$ bits
- This should be done using SIMD vector instructions

Main design decisions to be made

- Work with arbitrary exponents (à la MPFR) or multiples of p (à la GMP)?
- Numbers in an SIMD vector share the same exponent or not?

1 2 3 4 5 6 7 8 9 10 11 12

Idea: any shift by $\sigma = \sigma_0 + \sigma_1 2 + \dots + \sigma_{\ell-1} 2^{\ell-1}$ words with $\sigma_i \in \{0, 1\}$

decomposes as ℓ special shifts by $\sigma_i 2^i \in \{0, 2^i\}$ words (done using blend instruction)

								Shift by	σ_0	σ_1	σ_2
$m_{0,0}$	$m_{0,1}$	<i>m</i> _{0,2}	<i>m</i> _{0,3}	<i>m</i> _{0,4}	<i>m</i> _{0,5}	<i>m</i> _{0,6}	<i>m</i> _{0,7}	3	1	1	0
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	$m_{1,4}$	$m_{1,5}$	$m_{1,6}$	<i>m</i> _{1,7}	2	0	1	0
<i>m</i> _{2,0}	$m_{2,1}$	$m_{2,2}$	<i>m</i> _{2,3}	<i>m</i> _{2,4}	<i>m</i> _{2,5}	$m_{2,6}$	<i>m</i> _{2,7}	5	1	0	1
<i>m</i> _{3,0}	<i>m</i> _{3,1}	<i>m</i> _{3,2}	<i>m</i> _{3,3}	<i>m</i> _{3,4}	<i>m</i> _{3,5}	<i>m</i> _{3,6}	<i>m</i> _{3,7}	11	1	1	1
$m_{4,0}$	$m_{4,1}$	$m_{4,2}$	<i>m</i> _{4,3}	$m_{4,4}$	$m_{4,5}$	$m_{4,6}$	<i>m</i> _{4,7}	0	0	0	0
$m_{5,0}$	$m_{5,1}$	$m_{5,2}$	<i>m</i> _{5,3}	$m_{5,4}$	$m_{5,5}$	$m_{5,6}$	<i>m</i> _{5,7}	4	0	0	1
<i>m</i> _{6,0}	$m_{6,1}$	<i>m</i> _{6,2}	<i>m</i> _{6,3}	<i>m</i> _{6,4}	<i>m</i> _{6,5}	<i>m</i> _{6,6}	<i>m</i> _{6,7}	4	0	0	1
$m_{7,0}$	$m_{7,1}$	<i>m</i> _{7,2}	<i>m</i> _{7,3}	<i>m</i> _{7,4}	$m_{7,5}$	<i>m</i> _{7,6}	<i>m</i> _{7,7}	6	0	1	1

Operation count: $k \log_2 k$

1 2 3 4 5 6 7 8 <u>9</u> 10 11 12

Idea: any shift by $\sigma = \sigma_0 + \sigma_1 2 + \dots + \sigma_{\ell-1} 2^{\ell-1}$ words with $\sigma_i \in \{0, 1\}$

decomposes as ℓ special shifts by $\sigma_i 2^i \in \{0, 2^i\}$ words (done using blend instruction)

								Jint
0	$m_{0,0}$	$m_{0,1}$	<i>m</i> _{0,2}	<i>m</i> _{0,3}	<i>m</i> _{0,4}	<i>m</i> 0,5	<i>m</i> 0,6	3
$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	$m_{1,4}$	$m_{1,5}$	$m_{1,6}$	$m_{1,7}$	2
0	$m_{2,0}$	$m_{2,1}$	<i>m</i> _{2,2}	<i>m</i> _{2,3}	<i>m</i> _{2,4}	$m_{2,5}$	<i>m</i> _{2,6}	5
0	<i>m</i> _{3,0}	<i>m</i> _{3,1}	<i>m</i> _{3,2}	<i>m</i> _{3,3}	<i>m</i> _{3,4}	<i>m</i> _{3,5}	<i>m</i> _{3,6}	11
<i>m</i> _{4,0}	$m_{4,1}$	<i>m</i> _{4,2}	<i>m</i> _{4,3}	<i>m</i> _{4,4}	$m_{4,5}$	<i>m</i> _{4,6}	<i>m</i> _{4,7}	0
$m_{5,0}$	$m_{5,1}$	$m_{5,2}$	$m_{5,3}$	<i>m</i> _{5,4}	$m_{5,5}$	$m_{5,6}$	$m_{5,7}$	4
<i>m</i> _{6,0}	$m_{6,1}$	<i>m</i> _{6,2}	<i>m</i> _{6,3}	<i>m</i> _{6,4}	<i>m</i> _{6,5}	$m_{6,6}$	<i>m</i> _{6,7}	4
<i>m</i> _{7,0}	$m_{7,1}$	<i>m</i> _{7,2}	<i>m</i> _{7,3}	<i>m</i> _{7,4}	$m_{7,5}$	<i>m</i> _{7,6}	<i>m</i> _{7,7}	6

Shift by $\sigma_0 \sigma_1 \sigma_2$

1

0

1 2 3 4 5 6 7 8 <u>9</u> 10 11 12

Idea: any shift by $\sigma = \sigma_0 + \sigma_1 2 + \dots + \sigma_{\ell-1} 2^{\ell-1}$ words with $\sigma_i \in \{0, 1\}$

decomposes as ℓ special shifts by $\sigma_i 2^i \in \{0, 2^i\}$ words (done using blend instruction)

								Shint by
0	0	0	$m_{0,0}$	$m_{0,1}$	<i>m</i> _{0,2}	<i>m</i> _{0,3}	<i>m</i> _{0,4}	3
0	0	$m_{1,0}$	$m_{1,1}$	<i>m</i> _{1,2}	$m_{1,3}$	$m_{1,4}$	$m_{1,5}$	2
0	$m_{2,0}$	$m_{2,1}$	$m_{2,2}$	<i>m</i> _{2,3}	<i>m</i> _{2,4}	$m_{2,5}$	<i>m</i> _{2,6}	5
0	0	0	<i>m</i> _{3,0}	<i>m</i> _{3,1}	<i>m</i> _{3,2}	<i>m</i> _{3,3}	<i>m</i> _{3,4}	11
$m_{4,0}$	$m_{4,1}$	$m_{4,2}$	<i>m</i> _{4,3}	$m_{4,4}$	$m_{4,5}$	$m_{4,6}$	$m_{4,7}$	0
$m_{5,0}$	$m_{5,1}$	$m_{5,2}$	$m_{5,3}$	$m_{5,4}$	$m_{5,5}$	$m_{5,6}$	$m_{5,7}$	4
$m_{6,0}$	$m_{6,1}$	<i>m</i> _{6,2}	<i>m</i> _{6,3}	<i>m</i> _{6,4}	$m_{6,5}$	$m_{6,6}$	<i>m</i> _{6,7}	4
0	0	<i>m</i> _{7,0}	$m_{7,1}$	<i>m</i> _{7,2}	<i>m</i> _{7,3}	<i>m</i> _{7,4}	<i>m</i> _{7,5}	6

Shift by $\sigma_0 \sigma_1 \sigma_2$

Idea: any shift by $\sigma = \sigma_0 + \sigma_1 2 + \dots + \sigma_{\ell-1} 2^{\ell-1}$ words with $\sigma_i \in \{0, 1\}$

decomposes as ℓ special shifts by $\sigma_i 2^i \in \{0, 2^i\}$ words (done using blend instruction)

0	0	0	$m_{0,0}$	$m_{0,1}$	$m_{0,2}$	<i>m</i> _{0,3}	<i>m</i> _{0,4}
0	0	$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	$m_{1,4}$	$m_{1,5}$
0	0	0	0	0	$m_{2,0}$	$m_{2,1}$	<i>m</i> _{2,2}
0	0	0	0	0	0	0	<i>m</i> _{3,0}
$m_{4,0}$	$m_{4,1}$	$m_{4,2}$	<i>m</i> _{4,3}	<i>m</i> _{4,4}	<i>m</i> _{4,5}	<i>m</i> _{4,6}	<i>m</i> _{4,7}
<i>m</i> _{4,0}	<i>m</i> _{4,1} 0	<i>m</i> _{4,2} 0	<i>m</i> _{4,3} 0	<i>m</i> _{4,4} <i>m</i> _{5,0}	<i>m</i> _{4,5} <i>m</i> _{5,1}	<i>m</i> _{4,6} <i>m</i> _{5,2}	<i>m</i> _{4,7} <i>m</i> _{5,3}
,							

Idea: any shift by $\sigma = \sigma_0 + \sigma_1 2 + \dots + \sigma_{\ell-1} 2^{\ell-1}$ words with $\sigma_i \in \{0, 1\}$

decomposes as ℓ special shifts by $\sigma_i 2^i \in \{0, 2^i\}$ words (done using blend instruction)

0	0	0	<i>m</i> _{0,0}	$m_{0,1}$	<i>m</i> _{0,2}	<i>m</i> _{0,3}	<i>m</i> _{0,4}
0	0	$m_{1,0}$	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$	$m_{1,4}$	$m_{1,5}$
0	0	0	0	0	$m_{2,0}$	$m_{2,1}$	<i>m</i> _{2,2}
0	0	0	0	0	0	0	<i>m</i> _{3,0}
$m_{4,0}$	$m_{4,1}$	$m_{4,2}$	<i>m</i> _{4,3}	$m_{4,4}$	$m_{4,5}$	$m_{4,6}$	<i>m</i> _{4,7}
0	0	0	0	m	m	m	m
0	0	0	0	$m_{5,0}$	$m_{5,1}$	$m_{5,2}$	$m_{5,3}$
0	0	0	0	$m_{6,0}$	$m_{5,1}$ $m_{6,1}$	m _{5,2}	m _{5,3}

Similar to carry-normalization

Operation count: 4k - 1

Similar to carry-normalization

Operation count: 4 k - 1

Note

One addition r = x + y requires

- One general right shift for x (put under common exponent)
- One general right shift for *y* (put under common exponent)
- One fixed-point addition
- One general left shift for *r* (dot normalization)

Base 2

	k	2	3	4	5	6	7	8	9	10	11	12
+	Individual exponents	51	84	108	150	177	204	231	288	318	348	378
	Shared exponents	55	79	103	127	151	175	199	223	247	271	295
\sim	Individual exponents	31	35	54	78	107	141	180	224	273	327	386
\times	Shared exponents	32	36	55	79	108	142	181	225	274	328	387
\times	FP expansions	138	193	261	342	436	543	663	796	942	1101	1273

Base 2^p

	k-1	2	3	4	5	6	7	8	9	10	11	12
+	Individual exponents	31	49	67	92	107	122	147	183	201	219	237
土	Shared exponents	31	43	55	67	79	91	103	115	127	139	151
	Individual exponents	40	61	87	118	154	195	241	292	348	409	475
\times	Shared exponents	41	62	88	119	155	196	242	293	349	410	476
\times	FP expansions	138	193	261	342	436	543	663	796	942	1101	1273

1 2 3 4 5 6 7 8 9 10 11 <u>12</u>

12/12

Conclusion

• ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic

We were able to achieve $\alpha \leqslant 2$ for practical FFT computations

This was really our best case situation

Conclusion

• ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic We were able to achieve $\alpha \leq 2$ for practical FFT computations

This was really our best case situation

• ARITH 2017: we expect our approach to outperform floating point expansions for $k \ge 5$ This holds for any of the known approaches: Priest, Bailey, Muller–Popescu–Tang, ...

Although this is really our worst case situation

Conclusion

• ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic We were able to achieve $\alpha \leq 2$ for practical FFT computations

This was really our best case situation

ARITH 2017: we expect our approach to outperform floating point expansions for k≥5
This holds for any of the known approaches: Priest, Bailey, Muller–Popescu–Tang, …
Although this is really our worst case situation

Perspectives

- To make better use of our arithmetic, one should implement dedicated functions for
 - Sums $x_1 + \cdots + x_t$ of several numbers
 - Important specific operations: FFT, matrix multiplication, etc.
 - Etc.
- Can compilers use such optimized routines automatically when possible?