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- k: a field

» K:=Kk(Ry,...,Rq): rational functions in ky,..., Ry over Kk

'''''

* Sky-.-, Sk, Shift operators Sp:Rj—> Rj+1

+ Q=K[Sg,...,Sk,]: algebra generated by Sg, ..., Sk,

Definition

'''''

vector space for the ideal
annga = {weQ:wa=0}.
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- k: a field
» K:=Kk(xy,...,Xg): rational functions in x;,..., x4 over k
* Oy,...,0x,; partial derivations 9,.=9/ 9,

+ @=K[dy,...,0x,]: algebra generated by 9,..., 9,
Definition

A function f(xs,...,Xy) is D-finite if Q /annq fis a finite-dimensional vector
space for the ideal

anng f = {weQ:wf=0}.
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Proposition (systems point of view)

A function f is D-finite iff there exist functions g,=f,...,g, and matrices
M,,...,M e K™" such that, for R=1,...,d, we have

anQT g1
: = Mk 3§
angr gl’

Proposition (linear operator point of view)
A function f is D-finite iff for each k=1,...,d, there exists a linear differ-
ential operator Ly¢[K[9,,] with

ka = 0.
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Given: a D-finite function f(u,x) and an “admissible” contour €

Wanted: a D-finite representation for F(u):= f% flu,x)dx

Challenge: find a relation

@)aﬁ++@)f = a,‘%

Telescoper Certificate




Part I

Introduction to the reduction-based approach
From now on we will focus on the differential setting



Short history creative telescoping 15126

- Precursors

Fasenmyer [1945], Verbaeten ['76], Gosper ['78]: hypergeometric case
van der Poorten [1979]: coined the name (Apéry's proof that {(3) ¢ Q)



Short history creative telescoping 15126

- Precursors

Fasenmyer [1945], Verbaeten ['76], Gosper ['78]: hypergeometric case
van der Poorten [1979]: coined the name (Apéry's proof that {(3) ¢ Q)

- Early approaches (see survey by Chyzak [2014])

Zeilberger [1990,...] and collaborators (Wilf, Almkvist, ...)
Takayama [1992]: holonomic functions

Chyzak [1998, 2000]: systematic Ore setting

Koutschan [2009]: faster algorithms



Short history creative telescoping 15126

- Precursors

Fasenmyer [1945], Verbaeten ['76], Gosper ['78]: hypergeometric case
van der Poorten [1979]: coined the name (Apéry's proof that {(3) ¢ Q)

- Early approaches (see survey by Chyzak [2014])

Zeilberger [1990,...] and collaborators (Wilf, Almkvist, ...)
Takayama [1992]: holonomic functions

Chyzak [1998, 2000]: systematic Ore setting

Koutschan [2009]: faster algorithms

- Reduction-based approach

Geddes-Le-Li [2004]: suggestion

Bostan—-Chen-Chyzak-Li [2010]: bivariate functions, complexity
Bostan, Chen, Chyzak, Dumont, Lairez, Li, Xin [2012-2016]: special cases
Chen, van Hoeij, Kauers, Koutschan [2016]: Fuchsian case

van der Hoeven [2017]: general differential case
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From now on we will assume that Kk is algebraically closed

Key idea: which “part” of a rational function can we naturally integrate?
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From now on we will assume that Kk is algebraically closed

Key idea: which “part” of a rational function can we naturally integrate?

|]((X) > f = fest* Zf(ook)x +Z Z (X Og))k

R21 ok R21
f(o,k) f(m)
fcst Zfook)x Z Z (X—G)k Z
k21 oek k=2
[ﬂ Hermite {f}&irmlte
Hermite reduction of f Remainder

Note: the operator f — [flhermite IS @ k-linear projection
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- Let f(u,x)eQ(u,x)
- Take k:=Q(u)*®

- Regard f as a univariate rational function in k(x)

Confining the remainders

- Let 3:={0y,...,05}:=Sing(f) €k be the finite set of singularities of f

. LetﬂV\:=[k[x L L ]

'X-0¢"""" X-0s
» Both [-]uermite @and 9, map M into itself

- We have
k k

{N}Hermite = X—_O1+“.+X—OS'

so dimg {M}yermite= | Z | <00; we say that []hermite IS confined on M
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Integration of bivariate rational functions

Finding a linear combination

With r:=dimg {M}yermite, COMpute a non trivial relation

Co {f}Hermite +C1 {auf}Hermite oot Cr{aZf}Hermite = 0,

where ¢y, €y, ..., Cr€ K.

Victory!
By k-linearity, we have {wf}yermite =0 for

W = Co+CqOy+ -+ +Croy,
whence

wWf = [Wflhermite € OxIM.
More parameters

Same argument with respect to each parameter uj,..., Us

18/26
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Confined reductions for the general o-finite case
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The setup

The system of essentially ordinary differential equations

(%] (%)
oo, | =4l |
Yr Yr

Generalization of M ?

- Y:={0y,...,05}:={0€C:¢p(0) =0}

1 1 1

.« M:= [k[x,x_m,...,x_os]yﬁ---+Ik[x,x_m,..

- M is closed under 9, and 9,

pelk[x], A

°? x-og:l)/r
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The system of essentially ordinary differential equations

Y1 )4 ; ; ; ;
yl’ yr \ | \ )
Generalization of M ?

- Y:={0y,...,05}:={0€C:¢p(0) =0}

« M:= [I<|:X1ng1r""xjos]y1+.”+H([X’XJO1’°'°’X:|05]yr

- M is closed under 9, and 9,

Problem

Show that dimM/Imd, <o and construct a confined reduction [-] on M
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Local problem

Given: (fi,...,f;) € k|x]" of sufficiently large degree

Can we find (gy,...,g,) € K[x]" with 0,(g V1 + -+ g,V,) =fiya+ -+ v, ?
Idea

. Y= (y1] —> Ty for a matrix T and work coefficient by coefficient
Ve

« Tek()™[x,x']"", i: formal integer parameter, Ce k(i)'

(CX'T) y+Cx'Topy
CX'(¢TTA+T +ix ' T)y

-

u

(CxiTy)’

+ Uinvolves x™' and parameter i, so Ue k(i)™"[x,x """



Goal: given A=A x'+ e K[x]"™", find Cx'e k[x]™" with

(CX'Ty)' = Cx'Uy = Ay+---
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Head choppers

Goal: given A=Ax'+---ek[x]"™", find Cx'e k[x]"™" with
(CX'Ty) = CX'Uy = Ay+--
Writing U= Ugx?+---, we get
(CX'Ty) = (CUsx? 4o )y = (X' +--)y

Head chopper
T is a head chopper if Use k(i)™ is an invertible matrix
= for almost all [, we may take

i =1l-d, C = UjN
and recursively define

[Ay] = [(A-CX'U)y]

22/26



Finding head choppers

(CX'Ty) = CxX'Uy = Cx' (¢ TA+T +ix ' T)y

Repeatedly use two transformations

Ud=

([« *
*
* *

*

* * *
\

*
*
*
*

*

*
*

)

/

(T,U) = (T,JU)
J€ Gl—r(l]((i))

(T,U) = (AT,AU)
(= \

(Z°T)(x,1)=x°T(x,i + 6)

23/26
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We have constructed a confined reduction []e: X K[x]""y — x K[x]"™
y

Tail reduction

For each g;e3, D-finiteness preserved under x <=

X - 0j

—> confined reduction [']Gi:xjo,- I]([X_‘lai]‘lxr% ﬁ[l([ﬁ]”
Gluing

IAY] = Acsty + [Neo) Voo * [Noy Yoy + -+ + [ Aoy Vo,
Theorem

There exists a computable confined reduction [-]:IM — IM.
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