Toward a unification of infinities

Joris van der Hoeven

CNRS, École polytechnique
with Vincent Bagayoko, Mickael Schmeling, Elliot Kaplan, Lou van den Dries

Mini-workshop on Transseries and Dynamical Systems
Fields institute, Toronto
June 1, 2022

- Dubois-Reymond (1870)
"calculus of infinities"

Regular growth rates at infinity

- Dubois-Reymond (1870)
"calculus of infinities"
- Hausdorff (1906-1909)
subfields of field of germs of continuous functions at infinity

Regular growth rates at infinity

- Dubois-Reymond (1870)
"calculus of infinities"
- Hausdorff (1906-1909)
subfields of field of germs of continuous functions at infinity
- Hardy (1910-1911)
logarithmico-exponential functions

Regular growth rates at infinity

- Dubois-Reymond (1870)
"calculus of infinities"
- Hausdorff (1906-1909)
subfields of field of germs of continuous functions at infinity
- Hardy (1910-1911)
logarithmico-exponential functions
- Bourbaki (1961)

Hardy fields

Regular growth rates at infinity

- Dubois-Reymond (1870)
"calculus of infinities"
- Hausdorff (1906-1909)
subfields of field of germs of continuous functions at infinity
- Hardy (1910-1911)
logarithmico-exponential functions
- Bourbaki (1961)

Hardy fields

- Dahn-Göring (1984), Écalle (1992)

Transseries

What is regular growth?

Hausdorff fields

Subfields of the ring G^{0} of germs of continuous functions at infinity

What is regular growth?

Hausdorff fields

Subfields of the ring G^{0} of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring C^{1} of germs of C^{1} functions at infinity

What is regular growth?

Hausdorff fields

Subfields of the ring G^{0} of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring C^{1} of germs of C^{1} functions at infinity

Hardy field shadows of \boldsymbol{o}-minimal structures

Germs of definable functions at infinity in some 0 -minimal structure

What is regular growth?

Hausdorff fields

Subfields of the ring G^{0} of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring G^{1} of germs of C^{1} functions at infinity

Hardy field shadows of \boldsymbol{o}-minimal structures

Germs of definable functions at infinity in some 0 -minimal structure

Formal germs constructed using primitives that preserve regular growth
Transseries: constructed from $x>1$ and \mathbb{R} using \sum, exp, log
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, \log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of x as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, \log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of x as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, \log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\mathrm{e}^{\mathrm{e}^{/ 3}}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of x as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\mathrm{e}^{\mathrm{z} / 3}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+24 x^{-4}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of x as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

x : positive infinite indeterminate
f_{m} : coefficent
\mathfrak{m} : transmonomial
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, \log and infinite summation

$$
\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

x : positive infinite indeterminate
f_{m} : coefficent
\mathfrak{m} : transmonomial

$$
\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]
$$

$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, \log and infinite summation

$$
\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

x : positive infinite indeterminate
f_{m} : coefficent
\mathfrak{m} : transmonomial

$$
\begin{aligned}
\mathbb{T} & =\mathbb{R}[[\mathfrak{M}]] \\
\mathfrak{M} & =\exp \mathbb{T}> \\
\mathbb{T}_{\succ} & =\{f \in \mathbb{T}: \operatorname{supp} f>1\}
\end{aligned}
$$

$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, \log and infinite summation

$$
\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

x : positive infinite indeterminate $\quad f_{\mathrm{m}}$: coefficent \mathfrak{m} : transmonomial

$$
\begin{aligned}
\mathbb{T} & =\mathbb{R}[[\mathfrak{M}]] \\
\mathfrak{M} & =\exp \mathbb{T}> \\
\mathbb{T} & =\{f \in \mathbb{T}: \operatorname{supp} f>1\} \\
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots} & \in \mathfrak{M} \\
\mathrm{e}^{x}, \mathrm{e}^{x / 2}, \ldots & >1
\end{aligned}
$$

Missing growth rates

vdH (1997), vdDries-Macintyre-Marker (1997)

$(\log x \log \log x)^{\operatorname{inv}}$ cannot be expanded w.r.t. the scale of exp-log functions

Missing growth rates

vdH (1997), vdDries-Macintyre-Marker (1997)
$(\log x \log \log x)^{\text {inv }}$ cannot be expanded w.r.t. the scale of exp-log functions
duBois-Reymond, Hardy, Kneser, ...
There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

Missing growth rates

vdH (1997), vdDries-Macintyre-Marker (1997)
$(\log x \log \log x)^{\operatorname{inv}}$ cannot be expanded w.r.t. the scale of exp-log functions
duBois-Reymond, Hardy, Kneser, ...
There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"
vdH (1997)
No ordinary transseries solutions of

$$
f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}
$$

Missing growth rates

vdH (1997), vdDries-Macintyre-Marker (1997)

$(\log x \log \log x)^{\text {inv }}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"
vdH (1997)
No ordinary transseries solutions of

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{f(\log \log x)}}
$$

Missing growth rates

vdH (1997), vdDries-Macintyre-Marker (1997)

$(\log x \log \log x)^{\text {inv }}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log ^{2} x}+\mathrm{e}^{\left.\sqrt{\log \log _{8}+}+\mathrm{c}^{\left(\log _{8} \log \log x\right.}\right)}}
$$

Missing growth rates

vdH (1997), vdDries-Macintyre-Marker (1997)
$(\log x \log \log x)^{\operatorname{inv}}$ cannot be expanded w.r.t. the scale of exp-log functions
duBois-Reymond, Hardy, Kneser, ...
There exist "regular" functions that grow faster than $x, \mathrm{e}^{x}, \mathrm{e}^{\mathrm{e}^{x}}, \ldots$

$$
E_{\omega}(x+1)=\mathrm{e}^{E_{\omega}(x)}
$$

\longrightarrow Écalle's "Grand Cantor"
vdH (1997)
No ordinary transseries like

$$
f(x)=\sqrt{x}+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log \log x}+\mathrm{e} \cdot}}
$$

- Cantor (1870)
ordinal calculus $0,1,2, \ldots, \omega, \omega+1, \ldots, \omega 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}, \ldots$
- Cantor (1870)
ordinal calculus $0,1,2, \ldots, \omega, \omega+1, \ldots, \omega 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}, \ldots$
- Robinson (1961)
non-standard analysis
- Cantor (1870)
ordinal calculus $0,1,2, \ldots, \omega, \omega+1, \ldots, \omega 2, \ldots, \omega^{2}, \ldots, \omega^{\omega}, \ldots$
- Robinson (1961)
non-standard analysis
- Conway (1976)
surreal numbers

Surreal numbers

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Definition using sign sequences

- A surreal number x is a sequence $(x[\beta])_{\beta<\alpha} \in\{-,+\}^{\alpha}$ for some ordinal $\ell_{x}:=\alpha \in$ On
- Lexicographical ordering on such sequences (modulo completion with zeros)

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Definition using sign sequences

- A surreal number x is a sequence $(x[\beta])_{\beta<\alpha} \in\{-,+\}^{\alpha}$ for some ordinal $\ell_{x}:=\alpha \in$ On
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$
x \sqsubseteq y \Longleftrightarrow \ell_{x} \leqslant \ell_{y} \wedge\left(\forall \beta<\ell_{a}, a[\beta]=b[\beta]\right)
$$

Conway's recursive definition

- Given sets $L, R \subseteq$ No with $L<R$, there exists a $\{L \mid R\} \in$ No with $L<\{L \mid R\}<R$
- All numbers in No can be obtained in this way

Definition using sign sequences

- A surreal number x is a sequence $(x[\beta])_{\beta<\alpha} \in\{-,+\}^{\alpha}$ for some ordinal $\ell_{x}:=\alpha \in$ On
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$
x \sqsubseteq y \Longleftrightarrow \ell_{x} \leqslant \ell_{y} \wedge\left(\forall \beta<\ell_{a}, a[\beta]=b[\beta]\right)
$$

Equivalence between $($ No,$\leqslant,\{\mid\})$ and $($ No,\leqslant, 드)

$$
\{L \mid R\}:=\min _{\sqsubseteq}\{a \in \mathbf{N o}: L<a<R\}
$$

Operations on No

Ring structure: for $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0: & :=\{\mid\} \\
1: & :=\{0 \mid\} \\
-x:= & \left\{-x_{R} \mid-x_{L}\right\} \\
x+y:= & \left\{x_{L}+y, x+y_{L} \mid x_{R}+y_{1} x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Operations on No

Ring structure: for $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0 & := \\
1: & \{\mid\} \\
-x:= & \{0 \mid\} \\
x+y:= & \left.\left\{x_{L} \mid-x_{L}\right\}, x+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \quad\left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Gonshor: exponential and logarithm on $\mathbf{N o}$ (resp. $\mathrm{No}^{>}$)

Operations on No

Ring structure: for $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0 & := \\
1: & \{\mid\} \\
-x:= & \{0 \mid\} \\
x+y:= & \left.\left\{x_{L} \mid-x_{L}\right\}+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \quad\left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Gonshor: exponential and logarithm on No (resp. No>)
Conway's ω-map (generalizing Cantor's ordinal exponentiation)

$$
\omega^{x}:=\left\{0, \mathbb{R}^{>} \omega^{x_{L}} \mid \mathbb{R}^{>} \omega^{x_{R}}\right\}
$$

Operations on No

Ring structure: for $x=\left\{x_{L} \mid x_{R}\right\}$ and $y=\left\{y_{L} \mid y_{R}\right\}$, we define

$$
\begin{aligned}
0: & :=\{\mid\} \\
1:= & \{0 \mid\} \\
-x:= & \left\{-x_{R} \mid-x_{L}\right\} \\
x+y:= & \left\{x_{L}+y, x+y_{L} \mid x_{R}+y, x+y_{R}\right\} \\
x y:= & \left\{x^{\prime} y+x y^{\prime}-x^{\prime} y^{\prime}, x^{\prime \prime} y+x y^{\prime \prime}-x^{\prime \prime} y^{\prime \prime} \mid x^{\prime} y+x y^{\prime \prime}-x^{\prime} y^{\prime \prime}, x^{\prime \prime} y+x y^{\prime}-x^{\prime \prime} y^{\prime}\right\} \\
& \left(x^{\prime} \in x_{L}, x^{\prime \prime} \in x_{R}, y^{\prime} \in y_{L}, y^{\prime \prime} \in y_{R}\right) .
\end{aligned}
$$

Gonshor: exponential and logarithm on $\mathbf{N o}$ (resp. $\mathrm{No}^{>}$)
Conway's ω-map (generalizing Cantor's ordinal exponentiation)

$$
\omega^{x}:=\left\{0, \mathbb{R}^{>} \omega^{x_{L}} \mid \mathbb{R}^{>} \omega^{x_{R}}\right\}
$$

Surreal numbers as Hahn series

$$
\text { No } \cong \mathbb{R}[[\mathrm{Mo}]], \quad \text { Mo }:=\omega^{\text {No }}
$$

Examples

$$
\begin{aligned}
0 & :=\{\mid\} \\
1 & :=\{0 \mid\} \\
2 & :=\{0,1 \mid\} \\
& \vdots \\
-1 & :=\{\mid 0\} \\
-2 & :=\{\mid-1,0\} \\
& \vdots \\
1 / 2 & :=\{0 \mid 1\} \\
1 / 4 & :=\left\{\left.0\right|^{1 / 2}, 1\right\} \\
3 / 8 & :=\left\{0,1 /\left.4\right|^{1 / 2}, 1\right\} \\
& \vdots \\
1 / 3 & :=\{0,1 / 4,5 / 16, \ldots \mid \ldots, 3 / 8,1 / 2,1\} \\
\pi & :=\left\{0,1,2,3,3^{1 / 16}, \ldots \mid \ldots, 3^{1 / 4}, 3^{1 / 2}, 4\right\} \\
& \vdots \\
\mathbb{R} & \subseteq \mathbf{N o}
\end{aligned}
$$

$$
\begin{aligned}
0 & :=\{\mid\} \\
1 & :=\{0 \mid\} \\
2 & :=\{0,1 \mid\} \\
& \vdots \\
\omega & :=\{0,1,2, \ldots \mid\} \\
\omega+1 & :=\{0,1,2, \ldots, \omega \mid\} \\
& \vdots \\
\omega 2 & :=\{0,1,2, \ldots, \omega, \omega+1, \ldots \mid\} \\
& \vdots \\
\omega^{2} & :=\{0,1,2, \ldots, \omega, \ldots, \omega 2, \ldots \mid\}
\end{aligned}
$$

$$
\mathrm{On} \subseteq \text { No }
$$

$$
\omega^{-1}:=\{0 \mid \ldots, 1 / 4,1 / 2,1\}
$$

$$
\exp \omega:=\left\{1, \omega, \omega^{2}, \omega^{3}, \ldots \mid\right\}
$$

Missing structure

Question: how to define a derivation with respect to ω on No?

Missing structure

Question: how to define a derivation with respect to ω on No?

- Berarducci-Mantova: transserial derivation ∂_{BM}

Missing structure

Question: how to define a derivation with respect to ω on No?

- Berarducci-Mantova: transserial derivation ∂_{BM}
- Aschenbrenner-vdDries-vdH: No is an H-closed H-field for ∂_{BM}

Missing structure

Question: how to define a derivation with respect to ω on No?

- Berarducci-Mantova: transserial derivation ∂_{BM}
- Aschenbrenner-vdDries-vdH: No is an H-closed H-field for ∂_{BM}
- ∂_{BM} is not the "right" derivation with respect to ω

Missing structure

Question: how to define a derivation with respect to ω on No?

- Berarducci-Mantova: transserial derivation ∂_{BM}
- Aschenbrenner-vdDries-vdH: No is an H-closed H-field for ∂_{BM}
- ∂_{BM} is not the "right" derivation with respect to ω

Question: how to define a composition on No?

Transseries
Extension of \mathbb{R} with infinite element x
$\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$
Closed under exp, log

Surreal numbers

Extension of \mathbb{R} with infinite element ω

$$
\mathrm{No}=\mathbb{R}[[\mathrm{Mo}]]
$$

Closed under exp, log

Transseries	Surreal numbers
Extension of \mathbb{R} with infinite element x	Extension of \mathbb{R} with infinite element ω
$\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$	No $=\mathbb{R}[[\mathrm{Mo}]]$ Closed under exp, log
Closed under exp, log	
Closed under ∂	Closed under $\{\mid\}$

The infinities conjecture

Conjecture (vdH, 2006)

For a suitable generalization of transseries, called hyperseries, the field \mathbb{H} of hyperseries in $x>1$ is naturally isomorphic to $\mathbf{N o}$, via the map $\mathbb{H} \longrightarrow \mathbf{N o} ; f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω.

In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α, and \mathbb{H} contains "nested hyperseries".

The infinities conjecture

Conjecture (vdH, 2006)

For a suitable generalization of transseries, called hyperseries, the field \mathbb{H} of hyperseries in $x>1$ is naturally isomorphic to $\mathbf{N o}$, via the map $\mathbb{H} \longrightarrow \mathbf{N o} ; f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω.

In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α, and \mathbb{H} contains "nested hyperseries".

Transseries

Surreal numbers

Closed under $\{\mid\}$
Simplicity relation \sqsubseteq
Closed under ∂
Closed under o

Taming tameness

- Écalle 1992: "Grand Cantor"

Taming tameness

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries

Taming tameness

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries

Taming tameness

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields

Taming tameness

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields
- Bagayoko, vdH 2019: surreal substructures

Taming tameness

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields
- Bagayoko, vdH 2019: surreal substructures
- Bagayoko, vdH 2021: No as a hyperserial field

Taming tameness

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂, \circ, \sum, nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with $E_{\omega^{n}}$ and $L_{\omega^{n}}$ for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields
- Bagayoko, vdH 2019: surreal substructures
- Bagayoko, vdH 2021: No as a hyperserial field
- Bagayoko, vdH 2022: $\mathrm{No} \cong \mathbb{H}$

$\forall \alpha \in \mathbf{O n}, \quad \ell_{\alpha}:=L_{\alpha} x$

$$
\begin{aligned}
& \mathfrak{L}:=\left\{\prod_{\beta<\alpha} e_{\beta}^{r_{\beta}}: \alpha \in \mathbf{O n},\left(r_{\beta}\right)_{\beta<\alpha} \in \mathbb{R}^{\alpha}\right\} \quad \text { (lex monomial group) } \\
& \mathbb{L}:=\mathbb{R}[[\mathfrak{L}]]
\end{aligned}
$$

$\forall \alpha \in \mathbf{O n}, \quad \ell_{\alpha}:=L_{\alpha} x$

$$
\begin{aligned}
& \mathfrak{L}:=\left\{\prod_{\beta<\alpha} \ell_{\beta}^{r_{\beta}}: \alpha \in \mathbf{O n},\left(r_{\beta}\right)_{\beta<\alpha} \in \mathbb{R}^{\alpha}\right\} \\
& \mathbb{L}:=\mathbb{R}[[\mathfrak{L}]]
\end{aligned}
$$

Semantics

$$
\begin{aligned}
\ell_{n} & =L_{1}^{\circ n} x=\left(\log \circ{ }^{n \times} \circ \circ \log \right)(x) \\
\alpha & =\omega^{\mu_{1}} n_{1}+\cdots+\omega^{\mu_{k}} n_{k,} \quad \mu_{1}>\cdots>\mu_{k} \\
\ell_{\alpha} & =\left(L_{\omega^{\nu_{k}}}^{\text {on }} \mathrm{o} \cdots \circ L_{\omega^{\circ_{1}}}^{\mu_{1}}\right)(x) \\
\ell_{\omega^{2}+1} & =\log L_{\omega^{2}} x
\end{aligned}
$$

Calculus

$$
\begin{aligned}
\ell_{\omega^{\mu+1}} \circ \ell_{\omega^{\mu}} & =\ell_{\omega^{\mu+1}}+1 \\
\ell_{\alpha}^{\prime} & =\prod_{\beta<\alpha} \ell_{\beta}^{-1}
\end{aligned}
$$

Calculus

$$
\ell_{\omega^{\mu+1}} \circ \ell_{\omega^{\mu}}=\ell_{\omega^{\mu+1}}+1
$$

$$
\ell_{\alpha}^{\prime}=\prod_{\beta<\alpha} \ell_{\beta}^{-1}
$$

$$
\ell_{0}^{\prime}=x^{\prime}=1, \quad \ell_{1}^{\prime}=\frac{1}{\ell_{0}^{\prime}}, \quad \ell_{2}^{\prime}=\frac{1}{\ell_{0} \ell_{1}}, \quad \ldots, \quad \ell_{\omega}^{\prime}=\frac{1}{\ell_{0} \ell_{1} \ell_{2} \cdots}
$$

Calculus

$$
\begin{aligned}
\ell_{\omega^{\mu+1}} \circ \ell_{\omega^{\mu}} & =\ell_{\omega^{\mu+1}}+1 \\
\ell_{\alpha}^{\prime} & =\prod_{\beta<\alpha} \ell_{\beta}^{-1}
\end{aligned}
$$

$$
\ell_{0}^{\prime}=x^{\prime}=1, \quad \ell_{1}^{\prime}=\frac{1}{\ell_{0}}, \quad \ell_{2}^{\prime}=\frac{1}{\ell_{0} \ell_{1}}, \quad \ldots, \quad \ell_{\omega}^{\prime}=\frac{1}{\ell_{0} \ell_{1} \ell_{2} \cdots}
$$

Theorem

- $\partial: \mathbb{L} \longrightarrow \mathbb{L}$, strongly linear
- o: $\mathbb{L} \times \mathbb{L}^{\ggg} \longrightarrow \mathbb{L}$, strongly linear in first argument
- For all $f \in \mathbb{L}, g \in \mathbb{L}^{\ggg}$ and $\delta<g$

$$
f \circ(g+\delta)=f \circ g+\left(f^{\prime} \circ g\right) \delta+\frac{1}{2}\left(f^{\prime \prime} \circ g\right) \delta^{2}+\cdots
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
E_{\omega}(f+\delta)=E_{\omega}(f)+E_{\omega}^{\prime}(f) \delta+\frac{1}{2} E_{\omega}^{\prime \prime}(f) \delta^{2}+\cdots
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
E_{\omega}\left(x+\frac{1}{x}\right) \stackrel{?}{=} E_{\omega}(x)+E_{\omega}^{\prime}(x) \frac{1}{x}+\frac{1}{2} E_{\omega}^{\prime \prime}(x) \frac{1}{x^{2}}+\cdots
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
E_{\omega}\left(x+\frac{1}{x}\right) \stackrel{?}{=} E_{\omega}(x)+\left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{x}+\cdots
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{\succ}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
E_{\omega}\left(x+\frac{1}{x}\right) \stackrel{?}{=} \overline{E_{\omega}(x)+\left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{x}+\cdots}
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{\succ}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
E_{\omega}\left(x+\frac{1}{E_{\omega}(x)}\right)=E_{\omega}(x)+\left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{E_{\omega}(x)}+\cdots
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{\succ}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
E_{\omega}\left(x+\frac{1}{E_{\omega}(x-1)}\right) \stackrel{?}{=} E_{\omega}(x)+\left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{E_{\omega}(x-1)}+\cdots
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
\begin{aligned}
E_{\omega}\left(x+\frac{1}{E_{\omega}(x-1)}\right) & \stackrel{?}{=} E_{\omega}(x)+\left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{E_{\omega}(x-1)}+\cdots \\
E_{\omega}\left(x-1+\frac{1}{E_{\omega}(x-1)}\right) & =E_{\omega}(x-1)+\left(E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{E_{\omega}(x-1)}+\cdots
\end{aligned}
$$

What is a monomial?

$$
\mathfrak{m} \in \mathfrak{M} \Longleftrightarrow \log \mathfrak{m} \in \mathbb{T}_{>}
$$

Defining the exponential

$$
\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}=\mathrm{e}^{\mathrm{e}^{x}+3 x^{2}+\log x} \mathrm{e}^{\sqrt{2}} \mathrm{e}^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+\mathrm{e}^{-x}}
$$

Defining the first hyperexponential

$$
\begin{aligned}
E_{\omega}\left(x+\frac{1}{E_{\omega}(x-1)}\right) & \stackrel{?}{=} E_{\omega}(x)+\left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{E_{\omega}(x-1)}+\cdots \\
E_{\omega}\left(x-1+\frac{1}{E_{\omega}(x-1)}\right) & =E_{\omega}(x-1)+\left(E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{E_{\omega}(x-1)}+\cdots \\
E_{\omega}\left(x+\frac{1}{E_{\omega}(x-1)}\right) & =\exp E_{\omega}\left(x-1+\frac{1}{E_{\omega}(x-1)}\right)
\end{aligned}
$$

Endorsing hypermonomials II

$$
\delta<\frac{1}{L_{n} E_{\omega} f} \quad \Longrightarrow \quad E_{\omega}(f+\delta)=E_{n} E_{\omega}(f+\cdots)
$$

Endorsing hypermonomials II

$$
\begin{gathered}
\delta \prec \frac{1}{L_{n} E_{\omega} f} \Longrightarrow E_{\omega}(f+\delta)=E_{n} E_{\omega}(f+\cdots) \\
\mathfrak{M}_{\omega}:=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a}>\frac{1}{L_{n} \mathfrak{a}}\right\}
\end{gathered}
$$

Endorsing hypermonomials II

$$
\begin{aligned}
& \delta<\frac{1}{L_{n} E_{\omega} f} \Longrightarrow \quad E_{\omega}(f+\delta)=E_{n} E_{\omega}(f+\cdots) \\
& \mathfrak{M}_{\omega}:=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a}>\frac{1}{L_{n} \mathfrak{a}}\right\} \\
&=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, L_{n} \mathfrak{a} \in \mathfrak{M}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\delta<\frac{1}{L_{n} E_{\omega} f} \Longrightarrow \quad E_{\omega}(f+\delta)=E_{n} E_{\omega}(f+\cdots) \\
\mathfrak{M}_{\omega}:=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a}>\frac{1}{L_{n} \mathfrak{a}}\right\} \\
=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, L_{n} \mathfrak{a} \in \mathfrak{M}\right\} \\
E_{\omega}\left(x+\frac{1}{x}\right), E_{\omega}\left(x-1+\frac{1}{x}\right), E_{\omega}\left(x-2+\frac{1}{x}\right), \ldots \in \mathfrak{M}_{\omega} \subseteq \mathfrak{M}
\end{gathered}
$$

Endorsing hypermonomials II

$$
\begin{gathered}
\delta<\frac{1}{L_{n} E_{\omega} f} \Longrightarrow \quad E_{\omega}(f+\delta)=E_{n} E_{\omega}(f+\cdots) \\
\mathfrak{M}_{\omega}:=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a}>\frac{1}{L_{n} \mathfrak{a}}\right\} \\
=\left\{\mathfrak{a} \in \mathfrak{M}: \forall n \in \mathbb{N}, L_{n} \mathfrak{a} \in \mathfrak{M}\right\} \\
E_{\omega}\left(x+\frac{1}{x}\right), E_{\omega}\left(x-1+\frac{1}{x}\right), E_{\omega}\left(x-2+\frac{1}{x}\right), \ldots \in \mathfrak{M}_{\omega} \subseteq \mathfrak{M}
\end{gathered}
$$

L_{ω} on $\mathfrak{M}_{\omega} \leadsto$ Definition of $E_{\omega}\left(L_{\omega} \mathfrak{a}+\delta\right)$ for any $\delta<\frac{1}{L_{n} \mathfrak{a}}$ for some $n \in \mathbb{N}$
$\mathbb{H}=\mathbb{R}[[\mathfrak{M}]]$ with
HF1. $\circ: \mathbb{L} \times \mathbb{H}^{\ggg} \longrightarrow \mathbb{H}$
HF2. Taylor expansions
HF3. supp $\ell_{\omega^{\mu}} \circ \mathfrak{a}>\frac{1}{\ell_{\gamma} \circ \mathfrak{a}}$ for all $\mu \geqslant 1, \gamma<\omega^{\mu}$, and $\mathfrak{a} \in \mathfrak{M}_{\omega^{\mu}}$ HF^{*}. ...
$\mathbb{H}=\mathbb{R}[[\mathfrak{M}]]$ with
HF1. $\circ: \mathbb{L} \times \mathbb{H}^{\ggg} \longrightarrow \mathbb{H}$
HF2. Taylor expansions
HF3. supp $\ell_{\omega^{\mu}} \circ \mathfrak{a}>\frac{1}{\ell_{\gamma} \circ \mathfrak{a}}$ for all $\mu \geqslant 1, \gamma<\omega^{\mu}$, and $\mathfrak{a} \in \mathfrak{M}_{\omega^{\mu}}$
$H F^{*}$. ...

Theorem

\exists closure of \mathbb{H} under all hyperexponentials E_{α} with $\alpha \in \mathbf{O n}$.

Definition

$\mathbf{S} \subseteq \mathbf{N o}$ is a surreal substructure iff $\left(\mathbf{S}, \leqslant_{\mathrm{s}}, \sqsubseteq_{\mathrm{s}}\right) \cong\left(\mathbf{N o}, \leqslant_{\mathrm{No}}, \sqsubseteq_{\mathrm{No}}\right)$

Definition

$\mathbf{S} \subseteq \mathbf{N o}$ is a surreal substructure iff $\left(\mathbf{S}, \leqslant_{\mathrm{s}}, \sqsubseteq_{\mathrm{s}}\right) \cong\left(\mathbf{N o}, \leqslant_{\mathrm{No}}, \sqsubseteq_{\mathrm{No}}\right)$

Examples

- No ${ }^{>}$
- No ${ }^{\gg}$
- Mo

Surreal substructures

Definition

$\mathbf{S} \subseteq \mathbf{N o}$ is a surreal substructure iff $\left(\mathbf{S}, \leqslant_{\mathrm{s}}, \sqsubseteq_{\mathrm{s}}\right) \cong\left(\mathbf{N o}, \leqslant_{\mathrm{No}}, \sqsubseteq_{\mathrm{No}}\right)$

Proposition

The isomorphism $\Xi_{s}: \mathbf{N o} \longrightarrow \mathbf{S}$ is unique and given by

$$
\Xi_{\mathbf{S}} x=\Xi_{\mathbf{S}}\left\{x_{L} \mid x_{R}\right\}=\left\{\Xi_{\mathbf{S}} x_{L} \mid \Xi_{\mathbf{S}} x_{R}\right\}_{\mathbf{S}}
$$

Definition

$\mathbf{S} \subseteq \mathbf{N o}$ is a surreal substructure iff $\left(\mathbf{S}, \leqslant_{\mathrm{s}}, \sqsubseteq_{\mathrm{s}}\right) \cong\left(\mathbf{N o}, \leqslant_{\mathrm{No}}, \sqsubseteq_{\mathrm{No}}\right)$

Proposition

The isomorphism $\Xi_{\mathbf{S}}: \mathbf{N o} \longrightarrow \mathbf{S}$ is unique and given by

$$
\Xi_{\mathbf{S}} x=\Xi_{\mathbf{S}}\left\{x_{L} \mid x_{R}\right\}=\left\{\Xi_{\mathbf{S}} x_{L} \mid \Xi_{\mathbf{S}} x_{R}\right\}_{\mathbf{S}}
$$

Examples

- No> $\Xi_{\mathrm{No}^{>}>} x=1 \dot{+} x$
- $\mathrm{No}^{\ggg} \quad \Xi_{\mathrm{No}^{\gg}} x=\omega \dot{+} x$
- Mo $\quad \Xi_{\text {Mo }} x=\omega^{x}$

Simplest elements in halos under group actions

Theorem

Let $g \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S}. For any $x \in \mathbf{S}$, the halo $\mathrm{G}[x]:=\mathrm{Hull}_{\mathbf{S}} \mathrm{C}_{\mathrm{g}}$ admits a simplest element $\pi_{g}(x)$.
The class $\mathbf{S m p}_{g}:=\mathrm{im} \pi_{g}$ forms a surreal substructure.
$\mathbf{M o} \subseteq \mathbf{N o}^{>} \quad x \longmapsto c x, \quad c \in \mathbb{R}^{>}$

Simplest elements in halos under group actions

Theorem

Let $g \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S}.
For any $x \in \mathbf{S}$, the halo $\mathcal{G}[x]:=$ Hull $_{\mathbf{S}} \operatorname{gx}$ admits a simplest element $\pi_{g}(x)$.
The class $\mathbf{S m p}_{g}:=\mathrm{im} \pi_{g}$ forms a surreal substructure.
$\mathbf{M o} \subseteq \mathbf{N o}^{>} \quad x \longmapsto c x, \quad c \in \mathbb{R}^{>}$
$\mathbf{K} \subseteq \mathbf{N o}^{\ggg} \quad x \longmapsto \exp _{n} x, \quad n \in \mathbb{Z}$

Theorem

Let $g \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S}.
For any $x \in \mathbf{S}$, the halo $\mathcal{G}[x]:=$ Hull $_{\mathbf{S}} \operatorname{gx}$ admits a simplest element $\pi_{g}(x)$.
The class $\mathbf{S m p}_{g}:=\mathrm{im} \pi_{g}$ forms a surreal substructure.
$\mathbf{M o} \subseteq \mathbf{N o}^{>} \quad x \longmapsto c x, \quad c \in \mathbb{R}^{>}$
$\mathbf{K} \subseteq \mathbf{N o}^{\ggg} \quad x \longmapsto \exp _{n} x, \quad n \in \mathbb{Z}$
$\mathbf{L a} \subseteq \mathbf{N o}^{\ggg} \quad x \longmapsto \exp _{n}\left(c \log _{n} x\right), \quad c \in \mathbb{R}^{>}, \quad n \in \mathbb{N}$

Theorem

Let $G \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S}.
For any $x \in \mathbf{S}$, the halo $\mathcal{G}[x]:=$ Hull \mathbf{S} gx admits a simplest element $\pi_{g}(x)$.
The class $\mathbf{S m p}_{g}:=\mathrm{im} \pi_{g}$ forms a surreal substructure.
$\mathbf{M o} \subseteq \mathrm{No}^{>} \quad x \longmapsto c x, \quad c \in \mathbb{R}^{>}$
$\mathbf{K} \subseteq \mathbf{N o}^{\gg}>\quad x \longmapsto \exp _{n} x, \quad n \in \mathbb{Z}$
$\mathbf{L a} \subseteq \mathbf{N o}^{\gg}>\quad x \longmapsto \exp _{n}\left(c \log _{n} x\right), \quad c \in \mathbb{R}^{>}, \quad n \in \mathbb{N}$

Theorem

Let $G \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S}.
For any $x \in \mathbf{S}$, the halo $\mathcal{G}[x]:=$ Hull \mathbf{S} gx admits a simplest element $\pi_{g}(x)$.
The class $\mathbf{S m p}_{g}:=\mathrm{im} \pi_{g}$ forms a surreal substructure.
$\mathbf{M o} \subseteq \mathbf{N o}^{>} \quad x \longmapsto c x, \quad c \in \mathbb{R}^{>}$
$\mathbf{K} \subseteq \mathbf{N o}^{>}{ }^{>}>\quad x \longmapsto \exp _{n} x, \quad n \in \mathbb{Z}$
$\mathbf{L a} \subseteq \mathbf{N o}^{\ggg} \quad x \longmapsto \exp _{n}\left(c \log _{n} x\right), \quad c \in \mathbb{R}^{>}, \quad n \in \mathbb{N}$
$\mathbf{N e} \subseteq \mathbf{A d} \quad \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega}+x}} \longmapsto \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega}+c x}}, \quad c \in \mathbb{R}^{>}$, height n

Note: hyperserial solutions of $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}$ parameterized by surreal constant

Defining E_{ω} on $\mathbf{N o}^{\ggg}$

Step 1: definition of $E_{\omega}: \mathbf{N o}_{>}^{>} \longrightarrow \mathbf{K}$, with $\mathbf{N o}_{>}^{>}:=\mathbf{S m p}_{\mathcal{I}}$ and $x \mapsto x+\mathbb{R}$ on $\mathbf{N o}^{\gg},>$

$$
E_{\omega} x:=\left\{E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathrm{No}>} \mid L_{\mathbb{N}} E_{\omega} x_{R}^{\mathrm{No}>}\right\} \in \mathbf{K}
$$

Defining E_{ω} on $\mathbf{N o}{ }^{\ggg}$

Step 1: definition of $E_{\omega}: \mathbf{N o}_{>}^{>} \longrightarrow \mathbf{K}$, with $\mathbf{N o}_{>}^{>}:=\operatorname{Smp}_{\mathcal{I}}$ and $x \stackrel{\mathcal{L}}{\mapsto} x+\mathbb{R}$ on $\mathbf{N o}^{\gg,>}$

$$
E_{\omega} x:=\left\{E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathrm{No}>} \mid L_{\mathbb{N}} E_{\omega} x_{R}^{\mathrm{No}>}\right\} \in \mathbf{K}
$$

Step 2: define Tr as the surreal substructure of simplest elements of halos

$$
\Pi[a]:=\left\{b \in \mathbf{N o}^{\ggg}: \exists n \in \mathbb{N}, a-b<\frac{1}{L_{\mathbb{N}} E_{\omega} a_{>}}\right\}, \quad a \in \mathbf{N o}^{\ggg}
$$

Example: $\omega+\frac{1}{\omega} \in \operatorname{Tr} \backslash \mathbf{N o}_{>}^{>}$

Defining E_{ω} on $\mathbf{N o}^{\ggg}$

Step 1: definition of $E_{\omega}: \mathbf{N o}_{>}^{>} \longrightarrow \mathbf{K}$, with $\mathbf{N o}_{>}^{>}:=\operatorname{Smp}_{\mathcal{I}}$ and $x \stackrel{\text { I }}{\mapsto} x+\mathbb{R}$ on $\mathbf{N o}^{\gg}{ }^{>}$

$$
E_{\omega} x:=\left\{E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathrm{No}_{>}^{>}} \mid L_{\mathbb{N}} E_{\omega} x_{R}^{\mathrm{No}>}\right\} \in \mathbf{K}
$$

Step 2: define Tr as the surreal substructure of simplest elements of halos

$$
\Pi[a]:=\left\{b \in \mathbf{N o}^{>,>}: \exists n \in \mathbb{N}, a-b<\frac{1}{L_{\mathbb{N}} E_{\omega} a_{>}}\right\}, \quad a \in \mathbf{N o}^{>,>}
$$

Example: $\omega+\frac{1}{\omega} \in \operatorname{Tr} \backslash \mathbf{N o}_{>}^{>}$
Step 3: extend $E_{\omega}: \operatorname{Tr} \longrightarrow$ La

$$
E_{\omega} x:=\left\{E_{\mathbb{N}} x, \varepsilon E_{\omega} x_{L}^{\operatorname{Tr}} \mid \varepsilon E_{\omega} x_{L}^{\mathrm{Tr}}\right\} \in \mathrm{La}=\operatorname{Smp}_{\varepsilon}
$$

Defining E_{ω} on $\mathbf{N o}^{\ggg}$

Step 1: definition of $E_{\omega}: \mathbf{N o}_{>}^{>} \longrightarrow \mathbf{K}$, with $\mathbf{N o}_{>}^{>}:=\operatorname{Smp}_{\mathcal{I}}$ and $x \stackrel{\text { I }}{\mapsto} x+\mathbb{R}$ on $\mathbf{N o}^{\gg}{ }^{>}$

$$
E_{\omega} x:=\left\{E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathrm{No}_{>}^{>}} \mid L_{\mathbb{N}} E_{\omega} x_{R}^{\mathrm{No}>}\right\} \in \mathbf{K}
$$

Step 2: define Tr as the surreal substructure of simplest elements of halos

$$
\Pi[a]:=\left\{b \in \mathbf{N o}^{\gg,>}: \exists n \in \mathbb{N}, a-b<\frac{1}{L_{\mathbb{N}} E_{\omega} a_{>}}\right\}, \quad a \in \mathbf{N o}^{>,>}
$$

Example: $\omega+\frac{1}{\omega} \in \operatorname{Tr} \backslash \mathbf{N o}_{>}^{>}$
Step 3: extend $E_{\omega}: \operatorname{Tr} \longrightarrow \mathbf{L a}$

$$
E_{\omega} x:=\left\{E_{\mathbb{N}} x, \varepsilon E_{\omega} x_{L}^{\operatorname{Tr}} \mid \varepsilon E_{\omega} x_{L}^{\mathrm{Tr}}\right\} \in \mathrm{La}=\operatorname{Smp}_{\varepsilon}
$$

Step 4: extend $E_{\omega}: \mathbf{N o}^{\gg}{ }^{>} \longrightarrow \mathbf{N o}^{\ggg}$ using Taylor expansions

The hyperserial field of surreal numbers

- The so-constructed function $E_{\omega}: \mathrm{No}^{\ggg} \longrightarrow \mathrm{No}^{\ggg}$ is an increasing bijection
- Similarly, we construct E_{α} for $\alpha \geqslant \omega^{2}$ in $\omega^{\text {On }}$

Theorem

(No, $\left.\left(E_{\omega^{\mu}}\right)_{\mu \in \mathrm{On}}\left(L_{\omega^{\mu}}\right)_{\mu \in \mathrm{On}}\right)$ is a hyperserial field.

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega}+e^{\cdot}}}
$$

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega+e} \cdot \cdots}+\log \log \log \omega}+\log \log \omega+\log \omega
$$

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega}+\mathrm{e}^{\cdot}}} \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega}+e^{\cdot \cdots} \cdot+\log \log \log \omega}+\log \log \omega}+\log \omega
$$

Badly nested is bad: the following terms occur in the derivative

$$
\frac{1}{\omega} \prec \frac{\mathrm{e}^{\sqrt{\log \omega}+\cdots}}{\omega \log \omega} \prec \frac{\mathrm{e}^{\sqrt{\log \omega}+\cdots} \mathrm{e}^{\sqrt{\log \log \omega}+\cdots}}{\omega \log \omega \log \log \omega} \prec \cdots
$$

Well-nestedness

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \operatorname{cog} \alpha+e}+}} \quad \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \theta+e}+\cdots}+\operatorname{tog} \log \log \omega+\log \log \omega}+\log \omega
$$

Badly nested is bad: the following terms occur in the derivative

$$
\frac{1}{\omega} \prec \frac{\mathrm{e}^{\sqrt{\log \omega}+\cdots}}{\omega \log \omega} \prec \frac{\mathrm{e}^{\sqrt{\log \omega}+\cdots} \mathrm{e}^{\sqrt{\log \log \omega}+\cdots}}{\omega \log \omega \log \log \omega} \prec \cdots
$$

Can be avoided: solving $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}+\log x \xrightarrow{\text { reduces }}$ solving $g(x)=\sqrt{x}+\mathrm{e}^{g(\log x)}$

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega+}+\mathrm{e}^{\sqrt{\log \log \alpha} \omega+e}} \quad \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \alpha+e}+\cdots}+\operatorname{tog} \log \log \omega+\log \log \omega}+\log \omega
$$

Badly nested is bad: the following terms occur in the derivative

$$
\frac{1}{\omega} \prec \frac{\mathrm{e}^{\sqrt{\log \omega}+\cdots}}{\omega \log \omega} \prec \frac{\mathrm{e}^{\sqrt{\log \omega+\cdots}} \mathrm{e}^{\sqrt{\log \log \omega}+\cdots}}{\omega \log \omega \log \log \omega} \prec \cdots
$$

Can be avoided: solving $f(x)=\sqrt{x}+\mathrm{e}^{f(\log x)}+\log x \stackrel{\text { reduces }}{\sim}$ solving $g(x)=\sqrt{x}+\mathrm{e}^{g(\log x)}$

Theorem

The hyperserial field No is well nested: it contains no badly nested elements.

Nested numbers

Theorem

Let Ad be the class of numbers $x \approx \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega}+\mathrm{e} \cdot}}$ that satisfy

$$
\begin{aligned}
& \sqrt{\omega}<x<2 \sqrt{\omega} \\
& \sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}}<x<\sqrt{\omega}+\mathrm{e}^{2 \sqrt{\log \omega}} \\
& \vdots
\end{aligned}
$$

Let Ne be the subclass of such numbers x for which the following are monomials:

$$
\begin{aligned}
& \mathfrak{m}_{1}:=x-\sqrt{\omega} \\
& \mathfrak{m}_{2}:=\log \mathfrak{m}_{1}-\sqrt{\log \omega}=\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log \log \omega+\mathrm{e}} \mathrm{e} \cdot}}
\end{aligned}
$$

Then Ad and Ne are surreal substructures.

(tree) expression

(tree) description $=$ expression + ranking

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{L_{1} \omega}+\mathrm{e}^{\sqrt{L_{2} \omega}+\mathrm{e}^{\prime}}}+\sqrt{L_{2} \omega}+\mathrm{e}^{\sqrt{L_{3} \omega}+\mathrm{e}}+\sqrt{L_{\omega} \omega}+\mathrm{e}^{\sqrt{L_{\omega+1} \omega}+\mathrm{e}^{\sqrt{L_{\omega+2} \omega}+\mathrm{e}^{-}}}
$$

(tree) description $=$ expression + ranking

$$
\sqrt{\omega}+\mathrm{e}^{\sqrt{L_{1} \omega}+\mathrm{e}^{\sqrt{L_{2} \omega}+\mathrm{e}^{\prime}}}+\sqrt{L_{2} \omega}+\mathrm{e}^{\sqrt{L_{3} \omega}+\mathrm{e}}+\sqrt{L_{\omega} \omega}+\mathrm{e}^{\sqrt{L_{\omega+1} \omega}+\mathrm{e}^{\sqrt{L_{\omega+2} \omega}+\mathrm{e}^{\prime}}}
$$

Theorem

Any surreal number has a unique hyperserial description in terms of ω.

Link with o-minimality

Conjecture

There exists an o-minimal structure that defines (an) E_{ω}.

Link with o-minimality

Conjecture

There exists an 0-minimal structure that defines (an) E_{ω}.

Question

Does any o-minimal structure with a transexponential function define (an) E_{ω} ?

Link with o-minimality

Conjecture

There exists an o-minimal structure that defines (an) E_{ω}.

Question

Does any o-minimal structure with a transexponential function define (an) E_{ω} ?

o-maximus conjecture

The germs at infinity of any o-minimal structure can be embedded in $(\mathbb{H},+, \times, \partial, \circ)$.

Ultimate closure

Conjecture

Any functional defined using $+, x, E_{\alpha}, L_{\alpha}, \partial$, o satisfies the intermediate value property.

Conjecture

Any functional defined using $+, \times, E_{\alpha}, L_{\alpha}$, ∂, o satisfies the intermediate value property.

Question

Let $A(n, k)$ be the bivariate Ackermann function and take $E_{\omega^{\omega}}(n):=A(n, n)$. Compute the hyperserial expansion of $A\left(n, n^{2}\right)$.

Thank you !

http://www.texmacs.org

