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Hausdorff fields

Subfields of the ring go of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring gl of germs of C! functions at infinity

Hardy field shadows of o-minimal structures

Germs of definable functions at infinity in some o-minimal structure

Formal germs constructed using primitives that preserve regular growth

Transseries: constructed from x >1 and R using ), exp, log
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The field T of transseries e

T := closure of R U {x} under exp, log and infinite summation

mem = et 3 4 5 (logx) T 4241 425 246X 0 - e
m

x: positive infinite indeterminate fm: coefficent m: transmonomial

= R{[2m]]
= exp T
{f€T:supp f>1}

VR R
[

I~ ex/2
et e m

e*e? .. > 1
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(log xlog log x)™

cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist “regular” functions that grow faster than x, e”, e, ...

Eo(x+1) = efeW@
—> Ecalle's “Grand Cantor”

vdH (1997)
No ordinary transseries like

Fx) = v el
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e Cantor (1870)

ordinal calculus 0,1,2,...,w,w+1,...,w2,...,w*,...,w%,...
e Robinson (1961)

non-standard analysis
e Conway (1976)

surreal numbers
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Surreal numbers -

Conway's recursive definition

e Given sets L,RCNo with L <R, there exists a {L.|R} €No with L<{L|R} <R
e All numbers in No can be obtained in this way

Definition using sign sequences

e Asurreal number x is a sequence (x[B])g<a € {—,+}" for some ordinal ¢,:=a € On
e Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation
x Ly = &<t N (VB<byalB]=DlB])
Equivalence between (No,<,{|}) and (No,<,E)

{LIR} := minc {aeNo:L<a<R}
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Ring structure: for x ={xy|xg} and y={y.|yr}, we define
0 := {|}
1= {0])
—x = {—xp|—xL}
x+y = {xp+y,x+yLlxg+Yy,x+Yyr}
xy = {x'y+xy' —x"y " y+xy ="y | y+xy” —x"y "y xy —x"y
(x'€xp, x" €xr, v €y, vy EYR).

Gonshor: exponential and logarithm on No (resp. No~)

Conway's w-map (generalizing Cantor's ordinal exponentiation)
w* = {0,R” w*| R~ w*}

Surreal numbers as Hahn series
No = R[[Mo]], Mo = w"°



C

Examples 1273

{1} 0 := {I}

{01} 1 :={0l}
= {0,11} 2 := {0,1]}

{10} w = {0,1,2,...])

{I-1,0} w+1 = {0,1,2,...,w|}

(0]1) w2 = {0,1,2,...,w0,w+1,...])
= {Oll/le}
= {0,Y41%,1} w? = {0,1,2,...,w,...,w2,...|}
= {0,Y4,°he - |...,%5, Y2, 1} On Q No
= {0/1/2/3/31/16/"' |...,31/4,31/2,4}
: w_l = {0|°°-/1/4/1/2/1}

No 2 3 |}

expw = {l,w,w”,w>...
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Question: how to define a derivation with respect to w on No?
e Berarducci—-Mantova: transserial derivation dgpy
e Aschenbrenner-vdDries-vdH: No is an H-closed H-field for dgp

® OJpy\ is not the “right” derivation with respect to w

Question: how to define a composition on No?
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Summary so far

Transseries

Surreal numbers
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Extension of R with infinite element x
T=R[[MM]]

Closed under exp, log

Extension of R with infinite element w
No=R|[[Mo]]

Closed under exp, log

Closed under 0

Closed under o

Closed under {|}

Simplicity relation C
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Conjecture (vdH, 2006)

For a suitable generalization of transseries, called hyperseries, the field H of hyperseries
inx > 1 is naturally isomorphic to No, via the map H — No; f — f(w) that evaluates
a hyperseries f at w.

In particular, H is closed under all hyperexponentials E, and hyperlogarithms L, for
ordinal «, and H contains “nested hyperseries’.



The infinities conjecture 16736

Conjecture (vdH, 2006)

For a suitable generalization of transseries, called hyperseries, the field H of hyperseries

inx > 1 is naturally isomorphic to No, via the map H — No; f — f(w) that evaluates
a hyperseries f at w.

In particular, H is closed under all hyperexponentials E, and hyperlogarithms L, for
ordinal «, and H contains “nested hyperseries’.

Transseries Surreal numbers

Closed under {|} Closed under 0

Simplicity relation C Closed under o
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Ecalle 1992: “Grand Cantor”

vdH 1997: class sized field of transseries T closed under 9, o, ), nested transseries
vdH 1997-2001: strong linear algebra, generalized fields of transseries
Schmeling (+vdH) 2001: 1 and “transseries” with E» and L for n €N

... surreal numbers ... infinities conjecture ... Berarducci-Mantova

vdDries, vdH, Kaplan 2018: logarithmic hyperseries

Bagayoko, vdH, Kaplan 2021: hyperserial fields

Bagayoko, vdH 2019: surreal substructures

Bagayoko, vdH 2021: No as a hyperserial field

Bagayoko, vdH 2022: No = [H
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Va € On, 0, = Lyx

£ = {n €ﬁrﬁ ; aEOn,(rﬁ)ﬁqE]R“} (lex monomial group)
p<a
L := R[[£]]

Semantics
b, = Li"x = (logo olog)(x)

= w'ny+ w0, ur>co > U
by = (LZ;Z{kO"' Z;%)( )

lp2+1 = logLy2x



b 10 br = L n+1+ 1

&
Il

/ l—'[ le_l

B<a



_ bolyt -



e J:L — L, strongly linear

o o:LxIL”” — L, strongly linear in first argument

e Forallfell,gel”™” and 6<g

Fo(g+8) = fog+(flog)b+5(f"0g)d%+---
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m e M < logm € T,

Defining the exponential
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?

.
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m e M < logm € T,

Defining the exponential

; 3 _ 3 _
e +3x? +logx+2+=+ 5+ e S tete
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= ¢

Defining the first hyperexponential
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m e M < logm € T,
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What is a monomial?
m e M < logm € T,

Defining the exponential

ex+3x2+logx+\/§+%+x12+---+e‘x . eex+3x2+108xe\/§e%+x12+'"+e_x

Defining the first hyperexponential

1 ? 1
Eo(¥+ o) = Eal®) + (Ba(®) Ea(x—1) Eg(x—2) ) g + -+

1 1
Ew(x—“];w(x_n) = Eo(x=1)+ (Eo(x=1) Eo(x=2) ) =73

Ew<x+ﬁ> = expEw<x—1+Ew(xl_1)>
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O < L E.T

—  E(f+0) = ExEu(f+--")

1
M, = {aeim : VneN, suppra>Lna}



1

o < L.Eof

= Eu(f+0) = ExEu(f+--)

M, = {aeim : VneN, suppra>L1a}

= {a€M: VneN, L,aeN}
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1
LyEwf

0 < = Eu(f+0) = ExEu(f+-+)

1
M, = {aE?Jﬁ : VneN, suppra>L a}

= {aeM: VneN, L,aeN}

Ew(x+%>, Ew(x—1+%), Ew(x—2+%), .. E M, T M



L., on M,

Endorsing hypermonomials Il 2136

1

O < T E.T

—  E (f+06) = ExEo(f+--)

1
M, = {aE?Jﬁ : VneN, suppra>L a}

= {aeM: VneN, L,aeN}

Ew(x+%>, Ew(x—1+%), Ew(x—2+%), .. E M, T M

1
L,a

Definition of E, (L, a+6) for any § < — for some n €N
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H=R[[9]] with
HF1. oo LxH>~ — H

HF2. Taylor expansions

HF3. supp {,#ca > forall u =21, y<w”, and a M,

HF*. ...

3 closure of H under all hyperexponentials E, with « € On. |
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S C No is a surreal substructure iff (S,<s,Cs) = (N0, <no,CnNo)

The isomorphism Eg:No — S is unique and given by

Esx = Eg{xilxr} = {Esxr|Esxr}s

Examples
e No~ ENo>X=1+x
e No ™~ ENor> X =W+ x

e Mo EMOXZCUx
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Let (xS — S be a function group action on a surreal substructure S.

For any x €S, the halo ([ x]:=Hulls Gx admits a simplest element 7(x).
The class Smpg :=1im 71, forms a surreal substructure.
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height n

Note: hyperserial solutions of f(x)=J/x+ ef(los?) parameterized by surreal constant



I
Step 1: definition of E,:NoJ — K, with NoZ :=Smpy and x— x+ R on No™"~

Eox = {Enx EnEoxM|LyEoxy®} € K



Defining E,, on No™~ 2713

I
Step 1: definition of E,:NoZ — K, with NoZ :=Smpy and x— x+ R on No”™~

Ewx := {EnXEnEoxt ™ |LyEoxy®} € K
Step 2: define Tr as the surreal substructure of simplest elements of halos

1

— >> . <
I[a] := {bENo : dneN,a b<LNEwa>

}, a € No™~

1
Example: w+—€&Tr\ Nog



Defining E,, on No™~ 2713

I
Step 1: definition of E,:NoZ — K, with NoZ :=Smpy and x— x+ R on No”™~

Ewx := {EnXEnEoxt ™ |LyEoxy®} € K
Step 2: define Tr as the surreal substructure of simplest elements of halos

1

— >> . <
I[a] := {bENo : dneN,a b<LNEwa>

}, a € No™~

1
Example: w+—€&Tr\ Nog

Step 3: extend E: Tr— La

Eox = {Enx,EELx["|EEL X!} € La = Smp,
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Step 1: definition of E,:NoZ — K, with NoZ :=Smpy and x— x+ R on No”™~

Ewx := {EnXEnEoxt ™ |LyEoxy®} € K
Step 2: define Tr as the surreal substructure of simplest elements of halos
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I[a] := {bENo : dneN,a b<LNEwa>
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Example: w+%ETr NL )
Step 3: extend E: Tr— La

Eox = {Enx,EELx["|EEL X!} € La = Smp,

Step 4: extend E,:No”™” — No”~ using Taylor expansions



e The so-constructed function E,:No”~ — No”~ is an increasing bijection

e Similarly, we construct E, for a > w? in w°"

(No, (Ew#) ucon, (Lwr) ucon) is a hyperserial field.
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Badly nested is bad: the following terms occur in the derivative
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[1ng+e loglogw+e-" "+10gloglogw+10glogw

loglogw+e:’
J@ +eV BT v J@+e +1og w
Badly nested is bad: the following terms occur in the derivative
1 e\/logw+--~ e,/logw+---e,/loglogw+---
— < <
w wlog w wlog wloglog w
Can be aVOided: SOIVing f(X) = ﬁ-'—ef(logx) +1ng Solving g(x) — ﬁ_l_eg(logx)

Theorem

The hyperserial field No is well nested: it contains no badly nested elements.



Nested numbers

Theorem

[1 + loglogw+e-” .
Let Ad be the class of numbers x ~ /i + € BT that satisfy

Jw < x < 2Jw
1 2.1
Jw+e o5 < x < Jw+e 8¢

Let Ne be the subclass of such numbers x for which the following are monomials:

[10 w—e loglogw+e".
mp = x—Jw = € 5

,/10 logw+e~
m, := logm;—,/logw = e 508

Then Ad and Ne are surreal substructures.
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(tree) expression

Low+e Lacw+e L
Liw+eV? +JLow+eV?Te wr2ote

L [,
JO+e + JToweVrortwTe



(tree) description = expression + ranking
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Any surreal number has a unique hyperserial description in terms of (. |







There exists an o-minimal structure that defines (an) E,.
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Does any o-minimal structure with a transexponential function define (an) E,?




There exists an o-minimal structure that defines (an) E,.

Does any o-minimal structure with a transexponential function define (an) E,?

The germs at infinity of any o-minimal structure can be embedded in (H, +,%,9, o).




Any functional defined using +, X, E,, L,, 9, o satisfies the intermediate value property.




Any functional defined using +, X, E,, L,, 9, o satisfies the intermediate value property.

Let A(n, k) be the bivariate Ackermann function and take E ,«(n) := A(n,n).
Compute the hyperserial expansion of A(n,n?).
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