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subfields of field of germs of continuous functions at infinity

• Hardy (1910–1911)

logarithmico-exponential functions

• Bourbaki (1961)

Hardy fields

• Dahn–Göring (1984), Écalle (1992)

Transseries
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Hausdorff fields

Subfields of the ring 𝒢 0 of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring 𝒢 1 of germs of 𝒞1 functions at infinity

Hardy field shadows of o-minimal structures

Germs of definable functions at infinity in some o-minimal structure

Formal germs constructed using primitives that preserve regular growth

Transseries: constructed from x≻1 and ℝ using ∑ , exp, log
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𝕋≔ closure of ℝ∪{x} under exp, log and infinite summation

�
𝔪

f𝔪 𝔪 = eex+ex/2+⋅⋅ ⋅ −3ex2 +5(log x)π +42+x−1 +2x−2 +6x−3 + ⋅⋅ ⋅ +e−x

x: positive infinite indeterminate f𝔪: coefficent 𝔪: transmonomial

𝕋 = ℝ[[𝔐]]
𝔐 = exp 𝕋≻

𝕋≻ = { f ∈𝕋:supp f ≻1}

eex+ex/2+⋅⋅ ⋅ ∈ 𝔐
ex, ex/2, . . . ≻ 1
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vdH (1997), vdDries–Macintyre–Marker (1997)

(log x log log x)inv cannot be expanded w.r.t. the scale of exp-log functions

duBois–Reymond, Hardy, Kneser, . . .

There exist “regular” functions that grow faster than x, ex, eex
, . . .

E𝜔(x+1) = eE𝜔(x)

⟶ Écalle's “Grand Cantor”

vdH (1997)

No ordinary transseries like

f(x) = x√ +e logx� +e loglogx� +e ⋅ ⋅⋅
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Conway's recursive definition

• Given sets L,R⊆No with L<R, there exists a {L |R}∈No with L<{L |R}<R
• All numbers in No can be obtained in this way

Definition using sign sequences

• A surreal number x is a sequence (x[𝛽])𝛽<𝛼∈{−,+}𝛼 for some ordinal ℓx≔𝛼∈On
• Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

x ⊑ y ⟺ ℓx ⩽ ℓy ∧ (∀𝛽< ℓa, a[𝛽]=b[𝛽])

Equivalence between (No,⩽, { ∣ }) and (No,⩽,⊑)

{L |R} ≔ min⊑ {a∈No :L<a<R}
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xy ≔ {x′y+xy′−x′y′,x′′y+xy′′−x′′y′′ |x′y+xy′′−x ′y′′,x′′y+xy′−x′′y′}

(x′∈xL, x′′∈xR, y′∈yL, y′′∈yR).

Gonshor: exponential and logarithm on No (resp. No>)

Conway's ω-map (generalizing Cantor's ordinal exponentiation)
𝜔x ≔ {0,ℝ> 𝜔xL |ℝ> 𝜔xR}

Surreal numbers as Hahn series
No ≅ ℝ[[Mo]], Mo ≔ 𝜔No
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0 ≔ { | }
1 ≔ {0 | }
2 ≔ {0,1 | }

⋅⋅⋅
−1 ≔ { |0}
−2 ≔ { |−1,0}

⋅⋅⋅
/1 2 ≔ {0 |1}
/1 4 ≔ {0 | /1 2, 1}
/3 8 ≔ {0, /1 4 | /1 2, 1}

⋅⋅⋅
/1 3 ≔ {0, /1 4, /5 16, . . . | . . . , /3 8, /1 2, 1}
π ≔ {0,1, 2, 3, 3 /1 16, . . . | . . . , 3 /1 4, 3 /1 2, 4}

⋅⋅⋅
ℝ ⊆ No

0 ≔ { | }
1 ≔ {0 | }
2 ≔ {0,1 | }

⋅⋅⋅
𝜔 ≔ {0,1,2, . . . | }

𝜔+1 ≔ {0,1,2, . . . ,𝜔 | }
⋅⋅⋅

𝜔2 ≔ {0,1,2, . . . ,𝜔,𝜔+1, . . . | }
⋅⋅⋅

𝜔2 ≔ {0,1,2, . . . ,𝜔, . . . ,𝜔2, . . . | }
⋅⋅⋅

On ⊆ No

𝜔−1 ≔ {0 | . . . , /1 4, /1 2, 1}
exp 𝜔 ≔ {1,𝜔,𝜔2,𝜔3, . . . | }
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Question: how to define a derivation with respect to 𝜔 on No?

• Berarducci–Mantova: transserial derivation ∂BM

• Aschenbrenner-vdDries–vdH: No is an H-closed H-field for ∂BM

• ∂BM is not the “right” derivation with respect to 𝜔

Question: how to define a composition on No?
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In particular, ℍ is closed under all hyperexponentials E𝛼 and hyperlogarithms L𝛼 for
ordinal 𝛼, and ℍ contains “nested hyperseries”.
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in x≻1 is naturally isomorphic to No, via the map ℍ⟶No; f ⟼ f(𝜔) that evaluates
a hyperseries f at 𝜔.

In particular, ℍ is closed under all hyperexponentials E𝛼 and hyperlogarithms L𝛼 for
ordinal 𝛼, and ℍ contains “nested hyperseries”.

Conjecture (vdH, 2006)

Transseries Surreal numbers

Closed under { | } Closed under ∂

Simplicity relation ⊑ Closed under ∘
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• Bagayoko, vdH 2021: No as a hyperserial field

• Bagayoko, vdH 2022: No≅ℍ
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∀𝛼∈On, ℓ𝛼 ≔ L𝛼 x

𝔏 ≔ {{{{{{{{{{{{{{{{�
𝛽<𝛼

ℓ𝛽
r𝛽 : 𝛼∈On,(r𝛽)𝛽<𝛼 ∈ℝ𝛼}}}}}}}}}}}}}}}} (lex monomial group)

𝕃 ≔ ℝ[[𝔏]]

Semantics

ℓn = L1
∘n x = (log∘ ⋅ ⋅ ⋅n× ∘ log)(x)

𝛼 = 𝜔𝜇1n1 + ⋅⋅ ⋅ +𝜔𝜇knk, 𝜇1 > ⋅⋅ ⋅ >𝜇k

ℓ𝛼 = (L𝜔𝜇k
∘nk ∘ ⋅ ⋅ ⋅ ∘L𝜔𝜇1

∘n1 )(x)

ℓ𝜔2+1 = log L𝜔2 x
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ℓ𝜔𝜇+1 ∘ ℓ𝜔𝜇 = ℓ𝜔𝜇+1 +1

ℓ𝛼′ = �
𝛽<𝛼

ℓ𝛽
−1

ℓ0′ = x′ = 1, ℓ1′ = 1
ℓ0

, ℓ2′ = 1
ℓ0 ℓ1

, . . . , ℓ𝜔′ = 1
ℓ0 ℓ1 ℓ2 ⋅ ⋅ ⋅ , . . .

• ∂:𝕃⟶𝕃, strongly linear

• ∘:𝕃×𝕃>,≻ ⟶𝕃, strongly linear in first argument

• For all f ∈𝕃, g∈𝕃>,≻ and 𝛿≺ g

f ∘(g+𝛿) = f ∘ g+( f ′ ∘ g)𝛿+ 1
2 ( f ′′ ∘ g)𝛿2 + ⋅⋅ ⋅

Theorem
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𝔪 ∈ 𝔐 ⟺ log 𝔪 ∈ 𝕋≻

Defining the exponential

eex+3x2+logx+ 2� + 3
x+ π

x2 +⋅⋅ ⋅+e−x

= eex+3x2+logxe 2� e
3
x+ π

x2 +⋅⋅ ⋅+e−x
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E𝜔(x+ 1
E𝜔(x−1)) =

?
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E𝜔(x−1) + ⋅⋅ ⋅

E𝜔(x+ 1
E𝜔(x−1)) = exp E𝜔(x−1+ 1

E𝜔(x−1))
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𝛿 ≺ 1
Ln E𝜔 f ⟹ E𝜔( f +𝛿) = En E𝜔( f + ⋅⋅ ⋅)

𝔐𝜔 ≔ {{{{{{{{𝔞∈𝔐 : ∀n∈ℕ, supp L𝜔 𝔞≻ 1
Ln 𝔞}}}}}}}}

= {𝔞∈𝔐 : ∀n∈ℕ, Ln 𝔞∈𝔐}

E𝜔(x+ 1
x), E𝜔(x−1+ 1

x), E𝜔(x−2+ 1
x), . . . ∈ 𝔐𝜔 ⊆ 𝔐

L𝜔 on 𝔐𝜔 ↝ Definition of E𝜔(L𝜔 𝔞+𝛿) for any 𝛿≺ 1
Ln 𝔞 for some n∈ℕ



Hyperserial fields 23/36

ℍ=ℝ[[𝔐]] with

HF1. ∘:𝕃×ℍ>,≻ ⟶ℍ

HF2. Taylor expansions

HF3. supp ℓ𝜔𝜇 ∘𝔞 ≻ 1
ℓ𝛾 ∘𝔞 for all 𝜇⩾1, 𝛾 <𝜔𝜇, and 𝔞∈𝔐𝜔𝜇

HF*. . . .
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HF1. ∘:𝕃×ℍ>,≻ ⟶ℍ

HF2. Taylor expansions

HF3. supp ℓ𝜔𝜇 ∘𝔞 ≻ 1
ℓ𝛾 ∘𝔞 for all 𝜇⩾1, 𝛾 <𝜔𝜇, and 𝔞∈𝔐𝜔𝜇

HF*. . . .

∃ closure of ℍ under all hyperexponentials E𝛼 with 𝛼∈On.
Theorem
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S⊆No is a surreal substructure iff (S,⩽S,⊑S)≅(No,⩽No,⊑No)
Definition

The isomorphism ΞS:No⟶S is unique and given by

ΞS x = ΞS {xL |xR} = {ΞS xL |ΞS xR}S

Proposition

Examples

• No> ΞNo> x=1∔x

• No≻,> ΞNo≻,> x=𝜔∔x

• Mo ΞMo x=𝜔x



Simplest elements in halos under group actions 26/36

Let 𝒢 ×S⟶S be a function group action on a surreal substructure S.
For any x∈S, the halo 𝒢[x]≔HullS 𝒢x admits a simplest element 𝜋𝒢(x).
The class Smp𝒢 ≔im 𝜋𝒢 forms a surreal substructure.

Theorem

Mo⊆No> x⟼ cx, c∈ℝ>
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Let 𝒢 ×S⟶S be a function group action on a surreal substructure S.
For any x∈S, the halo 𝒢[x]≔HullS 𝒢x admits a simplest element 𝜋𝒢(x).
The class Smp𝒢 ≔im 𝜋𝒢 forms a surreal substructure.

Theorem

Mo⊆No> x⟼ cx, c∈ℝ>

K⊆No≻,> x⟼expn x, n∈ℤ

La⊆No≻,> x⟼expn(c logn x), c∈ℝ>, n∈ℕ

Ne⊆Ad 𝜔√ +e log𝜔� +e loglog𝜔� +x

⟼ 𝜔√ +e log𝜔� +e loglog𝜔� +cx

, c∈ℝ>, height n

Note: hyperserial solutions of f(x)= x√ +e f(logx) parameterized by surreal constant
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> ⟶K, with No≻

> ≔Smp𝒯 and x↦↦↦↦↦↦↦
𝒯
x+ℝ on No≻,>

E𝜔 x ≔ {Eℕ x,Eℕ E𝜔 xL
No≻

> |Lℕ E𝜔 xR
No≻

>
} ∈ K
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Step 1: definition of E𝜔:No≻
> ⟶K, with No≻

> ≔Smp𝒯 and x↦↦↦↦↦↦↦
𝒯
x+ℝ on No≻,>

E𝜔 x ≔ {Eℕ x,Eℕ E𝜔 xL
No≻

> |Lℕ E𝜔 xR
No≻

>
} ∈ K

Step 2: define Tr as the surreal substructure of simplest elements of halos

Π[a] ≔ {{{{{{{{b∈No≻,> : ∃n∈ℕ, a−b≺ 1
Lℕ E𝜔 a≻}}}}}}}}, a ∈ No≻,>

Example: 𝜔+ 1
𝜔 ∈Tr∖No≻

>

Step 3: extend E𝜔:Tr⟶La

E𝜔 x ≔ {Eℕ x, ℰE𝜔 xLTr |ℰE𝜔 xLTr} ∈ La = Smpℰ

Step 4: extend E𝜔:No≻,> ⟶No≻,> using Taylor expansions



The hyperserial field of surreal numbers 28/36

• The so-constructed function E𝜔:No≻,> ⟶No≻,> is an increasing bijection

• Similarly, we construct E𝛼 for 𝛼⩾𝜔2 in 𝜔On

(No,(E𝜔𝜇)𝜇∈On,(L𝜔𝜇)𝜇∈On) is a hyperserial field.

Theorem
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Well-nestedness 30/36

𝜔√ +e log𝜔� +e loglog𝜔� +e ⋅ ⋅⋅

𝜔√ +e log𝜔� +e loglog𝜔� +e ⋅ ⋅⋅ ⋅⋅ ⋅+logloglog𝜔+loglog𝜔 +log 𝜔

Badly nested is bad: the following terms occur in the derivative

1
𝜔 ≺ e log𝜔� +⋅⋅ ⋅

𝜔log 𝜔 ≺ e log𝜔� +⋅⋅ ⋅ e loglog𝜔� +⋅⋅ ⋅

𝜔log 𝜔log log 𝜔 ≺ ⋅⋅ ⋅

Can be avoided: solving f(x)= x√ +e f(logx)+log x ↝
reduces

solving g(x)= x√ +eg(logx)

The hyperserial field No is well nested: it contains no badly nested elements.

Theorem



Nested numbers 31/36

Let Ad be the class of numbers x≈ 𝜔√ +e log𝜔� +e loglog𝜔� +e ⋅ ⋅⋅

that satisfy

𝜔√ < x < 2 𝜔√

𝜔√ +e log𝜔� < x < 𝜔√ +e2 log𝜔�

⋅⋅⋅
Let Ne be the subclass of such numbers x for which the following are monomials:

𝔪1 ≔ x− 𝜔√ = e log𝜔� +e loglog𝜔� +e ⋅ ⋅⋅

𝔪2 ≔ log 𝔪1 − log 𝜔� = e loglog𝜔� +e ⋅ ⋅⋅

⋅⋅⋅
Then Ad and Ne are surreal substructures.

Theorem
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(tree) expression

𝜔√ +e L1𝜔� +e L2𝜔� +e ⋅ ⋅⋅ + L2𝜔� +e L3𝜔� +e ⋅ ⋅⋅
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(tree) description = expression + ranking

𝜔√ +e L1𝜔� +e L2𝜔� +e ⋅ ⋅⋅ + L2𝜔� +e L3𝜔� +e ⋅ ⋅⋅

+ L𝜔 𝜔� +e L𝜔+1𝜔� +e L𝜔+2𝜔� +e ⋅ ⋅⋅

0 𝜔+π −5

Any surreal number has a unique hyperserial description in terms of 𝜔.

Theorem



Part VII — Bonus
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There exists an o-minimal structure that defines (an) E𝜔.

Conjecture



Link with o-minimality 34/36

There exists an o-minimal structure that defines (an) E𝜔.

Conjecture

Does any o-minimal structure with a transexponential function define (an) E𝜔?

Question



Link with o-minimality 34/36

There exists an o-minimal structure that defines (an) E𝜔.

Conjecture

Does any o-minimal structure with a transexponential function define (an) E𝜔?

Question

The germs at infinity of any o-minimal structure can be embedded in (ℍ,+,×,∂, ∘).
o-maximus conjecture



Ultimate closure 35/36

Any functional defined using +, ×, E𝛼, L𝛼, ∂, ∘ satisfies the intermediate value property.

Conjecture



Ultimate closure 35/36

Any functional defined using +, ×, E𝛼, L𝛼, ∂, ∘ satisfies the intermediate value property.

Conjecture

Let A(n, k) be the bivariate Ackermann function and take E𝜔𝜔(n)≔A(n,n).
Compute the hyperserial expansion of A(n,n2).

Question



Thank you !
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