Toward a unification of infinities

Joris van der Hoeven

CNRS, École polytechnique

with Vincent Bagayoko, Mickael Schmeling, Elliot Kaplan, Lou van den Dries

Mini-workshop on Transseries and Dynamical Systems Fields institute, Toronto

June 1, 2022

Outline

Part I – Regular growth rates at infinity

Regular growth rates at infinity

- Dubois-Reymond (1870)
 - "calculus of infinities"

Regular growth rates at infinity

• Dubois-Reymond (1870)

"calculus of infinities"

• Hausdorff (1906–1909)

subfields of field of germs of continuous functions at infinity

• Dubois-Reymond (1870)

"calculus of infinities"

• Hausdorff (1906–1909)

subfields of field of germs of continuous functions at infinity

• Hardy (1910–1911)

logarithmico-exponential functions

• Dubois-Reymond (1870)

"calculus of infinities"

• Hausdorff (1906–1909)

subfields of field of germs of continuous functions at infinity

• Hardy (1910–1911)

logarithmico-exponential functions

• Bourbaki (1961)

Hardy fields

• Dubois-Reymond (1870)

"calculus of infinities"

• Hausdorff (1906–1909)

subfields of field of germs of continuous functions at infinity

• Hardy (1910–1911)

logarithmico-exponential functions

• Bourbaki (1961)

Hardy fields

• Dahn-Göring (1984), Écalle (1992)

Transseries

Hausdorff fields

Subfields of the ring \mathcal{G}^0 of germs of continuous functions at infinity

Hausdorff fields

Subfields of the ring \mathcal{G}^0 of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring \mathcal{G}^1 of germs of \mathbb{C}^1 functions at infinity

Hausdorff fields

Subfields of the ring \mathcal{G}^0 of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring \mathcal{G}^1 of germs of \mathbb{C}^1 functions at infinity

Hardy field shadows of *o*-minimal structures

Germs of definable functions at infinity in some *o*-minimal structure

Hausdorff fields

Subfields of the ring \mathcal{G}^0 of germs of continuous functions at infinity

Hardy fields

Differential fields of the ring \mathcal{G}^1 of germs of C^1 functions at infinity

Hardy field shadows of o-minimal structures

Germs of definable functions at infinity in some *o*-minimal structure

Formal germs constructed using primitives that preserve regular growth Transseries: constructed from x > 1 and \mathbb{R} using \sum , exp, log

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$e^{e^{x}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+\cdots+e^{-x}$$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$e^{e^{x}+e^{x/2}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+\cdots+e^{-x}$$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$e^{e^{x}+e^{x/2}+e^{x/3}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+6x^{-3}+\cdots+e^{-x}$$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$e^{e^{x}+e^{x/2}+e^{x/3}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+6x^{-3}+24x^{-4}+\cdots+e^{-x}$$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \cdots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \cdots + e^{-x}$$

x: positive infinite indeterminate

 $f_{\mathfrak{m}}$: coefficent

m: transmonomial

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \dots + e^{-x}$$

x: positive infinite indeterminate

 $f_{\mathfrak{m}}$: coefficent

m: transmonomial

 $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \dots + e^{-x}$$

x: positive infinite indeterminate

 $f_{\mathfrak{m}}$: coefficent

m: transmonomial

 $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ $\mathfrak{M} = \exp \mathbb{T}_{\succ}$ $\mathbb{T}_{\succ} = \{f \in \mathbb{T} : \operatorname{supp} f \succ 1\}$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

$$\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \dots + e^{-x}$$

x: positive infinite indeterminate

 $f_{\mathfrak{m}}$: coefficent

m: transmonomial

 $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ $\mathfrak{M} = \exp \mathbb{T}_{\succ}$ $\mathbb{T}_{\succ} = \{f \in \mathbb{T} : \operatorname{supp} f \succ 1\}$

$$e^{e^{x}+e^{x/2}+\cdots} \in \mathfrak{M}$$
$$e^{x}, e^{x/2}, \dots > 1$$

vdH (1997), vdDries-Macintyre-Marker (1997)

 $(\log x \log \log x)^{inv}$ cannot be expanded w.r.t. the scale of exp-log functions

vdH (1997), vdDries-Macintyre-Marker (1997)

 $(\log x \log \log x)^{inv}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

$$E_{\omega}(x+1) = e^{E_{\omega}(x)}$$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997), vdDries-Macintyre-Marker (1997)

 $(\log x \log \log x)^{inv}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

$$E_{\omega}(x+1) = e^{E_{\omega}(x)}$$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$f(x) = \sqrt{x} + e^{f(\log x)}$$

vdH (1997), vdDries-Macintyre-Marker (1997)

 $(\log x \log \log x)^{inv}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

$$E_{\omega}(x+1) = e^{E_{\omega}(x)}$$

→ Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$f(x) = \sqrt{x} + e^{\sqrt{\log x} + e^{f(\log\log x)}}$$

vdH (1997), vdDries-Macintyre-Marker (1997)

 $(\log x \log \log x)^{inv}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

$$E_{\omega}(x+1) = e^{E_{\omega}(x)}$$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries solutions of

$$f(x) = \sqrt{x} + e^{\sqrt{\log \log x} + e^{\sqrt{\log \log x} + e^{f(\log \log \log x)}}}$$

vdH (1997), vdDries-Macintyre-Marker (1997)

 $(\log x \log \log x)^{inv}$ cannot be expanded w.r.t. the scale of exp-log functions

duBois-Reymond, Hardy, Kneser, ...

There exist "regular" functions that grow faster than x, e^x , e^{e^x} , ...

$$E_{\omega}(x+1) = e^{E_{\omega}(x)}$$

 \rightarrow Écalle's "Grand Cantor"

vdH (1997)

No ordinary transseries like

$$f(x) = \sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + e^{x}}}$$

Part II — All numbers great and small

Numbers beyond

• Cantor (1870)

ordinal calculus 0, 1, 2, ..., ω , ω + 1, ..., ω 2, ..., ω^2 , ..., ω^{ω} , ...

Numbers beyond

• Cantor (1870)

ordinal calculus 0, 1, 2, ..., ω , ω + 1, ..., ω 2, ..., ω^2 , ..., ω^{ω} , ...

• **Robinson (1961)**

non-standard analysis

Numbers beyond

• Cantor (1870)

ordinal calculus 0, 1, 2, ..., ω , ω + 1, ..., ω 2, ..., ω^2 , ..., ω^{ω} , ...

• Robinson (1961)

non-standard analysis

• Conway (1976)

surreal numbers

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Definition using sign sequences

- A surreal number x is a sequence $(x[\beta])_{\beta < \alpha} \in \{-, +\}^{\alpha}$ for some ordinal $\ell_x := \alpha \in \mathbf{On}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Definition using sign sequences

- A surreal number x is a sequence $(x[\beta])_{\beta < \alpha} \in \{-, +\}^{\alpha}$ for some ordinal $\ell_x := \alpha \in \mathbf{On}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$x \sqsubseteq y \iff \ell_x \leqslant \ell_y \land (\forall \beta < \ell_a, a[\beta] = b[\beta])$$

Conway's recursive definition

- Given sets $L, R \subseteq No$ with L < R, there exists a $\{L | R\} \in No$ with $L < \{L | R\} < R$
- All numbers in **No** can be obtained in this way

Definition using sign sequences

- A surreal number x is a sequence $(x[\beta])_{\beta < \alpha} \in \{-, +\}^{\alpha}$ for some ordinal $\ell_x := \alpha \in \mathbf{On}$
- Lexicographical ordering on such sequences (modulo completion with zeros)

Simplicity relation

$$x \sqsubseteq y \iff \ell_x \leqslant \ell_y \land (\forall \beta < \ell_a, a[\beta] = b[\beta])$$

Equivalence between $(No, \leq, \{|\})$ and (No, \leq, \subseteq)

$$\{L \mid R\} := \min_{\sqsubseteq} \{a \in \mathbf{No} : L < a < R\}$$

Operations on No

Ring structure: for $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{|\}$ $1 := \{0|\}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Operations on No

Ring structure: for $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{|\}$ $1 := \{0|\}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Gonshor: exponential and logarithm on **No** (resp. **No**[>])
Operations on No

Ring structure: for $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{|\}$ $1 := \{0|\}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Gonshor: exponential and logarithm on **No** (resp. **No**[>])

Conway's ω -map (generalizing Cantor's ordinal exponentiation) $\omega^x := \{0, \mathbb{R}^> \omega^{x_L} | \mathbb{R}^> \omega^{x_R} \}$

Operations on No

Ring structure: for $x = \{x_L | x_R\}$ and $y = \{y_L | y_R\}$, we define $0 := \{|\}$ $1 := \{0|\}$ $-x := \{-x_R | -x_L\}$ $x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}$ $xy := \{x'y + xy' - x'y', x''y + xy'' - x''y'' | x'y + xy'' - x'y'', x''y + xy' - x''y'\}$ $(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R).$

Gonshor: exponential and logarithm on **No** (resp. **No**[>])

Conway's ω -map (generalizing Cantor's ordinal exponentiation) $\omega^x := \{0, \mathbb{R}^> \omega^{x_L} | \mathbb{R}^> \omega^{x_R} \}$

Surreal numbers as Hahn series

 $\mathsf{No} \cong \mathbb{R}[[\mathsf{Mo}]], \quad \mathsf{Mo} \coloneqq \omega^{\mathsf{No}}$

Examples

 $0 := \{ | \}$ $1 := \{0 \mid \}$ $2 := \{0, 1 | \}$ $-1 := \{ | 0 \}$ $-2 := \{|-1,0\}$ $\frac{1}{2} := \{0 | 1\}$ $\frac{1}{4} := \{0 \mid \frac{1}{2}, 1\}$ $^{3}/_{8} := \{0, \frac{1}{4} | \frac{1}{2}, 1\}$ $1/_3 := \{0, 1/_4, 5/_{16}, \dots | \dots, 3/_8, 1/_2, 1\}$ $\pi := \{0, \overline{1, 2, 3, 3^{1}/_{16}, \dots | \dots, 3^{1}/_{4}, 3^{1}/_{2}, 4}\}$ $\mathbb R$ \subseteq No

$$0 := \{|\} \\
1 := \{0|\} \\
2 := \{0,1|\} \\
\vdots \\
\omega := \{0,1,2,...\} \\
\omega+1 := \{0,1,2,...,\omega|\} \\
\vdots \\
\omega 2 := \{0,1,2,...,\omega,\omega+1,...\} \\
\vdots \\
\omega^2 := \{0,1,2,...,\omega,\omega+1,...\} \\
\vdots \\
\omega^2 := \{0,1,2,...,\omega,\omega+1,...\} \\
\vdots \\
On \subseteq No$$

$$\omega^{-1} := \{0|\ldots, 1/4, 1/2, 1\}$$

exp $\omega := \{1, \omega, \omega^2, \omega^3, \ldots \}$

Question: how to define a derivation with respect to ω on **No**?

Question: how to define a derivation with respect to ω on **No**?

• Berarducci-Mantova: transserial derivation ∂_{BM}

Question: how to define a derivation with respect to ω on **No**?

- Berarducci-Mantova: transserial derivation ∂_{BM}
- Aschenbrenner-vdDries-vdH: No is an H-closed H-field for ∂_{BM}

Question: how to define a derivation with respect to ω on **No**?

- Berarducci-Mantova: transserial derivation ∂_{BM}
- Aschenbrenner-vdDries-vdH: No is an H-closed H-field for ∂_{BM}
- $\partial_{\rm BM}$ is *not* the "right" derivation with respect to ω

Question: how to define a derivation with respect to ω on **No**?

- Berarducci-Mantova: transserial derivation ∂_{BM}
- Aschenbrenner-vdDries-vdH: No is an H-closed H-field for ∂_{BM}
- ∂_{BM} is *not* the "right" derivation with respect to ω

Question: how to define a composition on **No**?

Part III — The infinities conjecture

Summary so far

Transseries	Surreal numbers
Extension of $\mathbb R$ with infinite element x	Extension of ${\mathbb R}$ with infinite element ω
$\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$	$No = \mathbb{R}[[Mo]]$
Closed under exp, log	Closed under exp, log

Summary so far

Transseries	Surreal numbers
Extension of $\mathbb R$ with infinite element x	Extension of ${\mathbb R}$ with infinite element ω
$\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$	$No = \mathbb{R}[[Mo]]$
Closed under exp, log	Closed under exp, log
Closed under ∂	Closed under { }
Closed under •	Simplicity relation \Box

The infinities conjecture

Conjecture (vdH, 2006)

For a suitable generalization of transseries, called **hyperseries**, the field \mathbb{H} of hyperseries in x > 1 is naturally isomorphic to **No**, via the map $\mathbb{H} \longrightarrow \mathbf{No}$; $f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω .

In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α , and \mathbb{H} contains "nested hyperseries".

The infinities conjecture

Conjecture (vdH, 2006)

For a suitable generalization of transseries, called **hyperseries**, the field \mathbb{H} of hyperseries in x > 1 is naturally isomorphic to **No**, via the map $\mathbb{H} \longrightarrow \mathbf{No}$; $f \longmapsto f(\omega)$ that evaluates a hyperseries f at ω .

In particular, \mathbb{H} is closed under all hyperexponentials E_{α} and hyperlogarithms L_{α} for ordinal α , and \mathbb{H} contains "nested hyperseries".

Transseries	Surreal numbers
Closed under { }	Closed under ∂
Simplicity relation \sqsubseteq	Closed under •

• Écalle 1992: "Grand Cantor"

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , Σ , nested transseries

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , Σ , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , Σ , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , \sum , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , \sum , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , \sum , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , \sum , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields
- Bagayoko, vdH 2019: surreal substructures

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , \sum , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields
- Bagayoko, vdH 2019: surreal substructures
- Bagayoko, vdH 2021: No as a hyperserial field

- Écalle 1992: "Grand Cantor"
- vdH 1997: class sized field of transseries \mathbb{T} closed under ∂ , \circ , \sum , nested transseries
- vdH 1997-2001: strong linear algebra, generalized fields of transseries
- Schmeling (+vdH) 2001: \uparrow and "transseries" with E_{ω^n} and L_{ω^n} for $n \in \mathbb{N}$
- ... surreal numbers ... infinities conjecture ... Berarducci-Mantova
- vdDries, vdH, Kaplan 2018: logarithmic hyperseries
- Bagayoko, vdH, Kaplan 2021: hyperserial fields
- Bagayoko, vdH 2019: surreal substructures
- Bagayoko, vdH 2021: No as a hyperserial field
- Bagayoko, vdH 2022: No $\cong \mathbb{H}$

<u>نور بو بنگ هو بو بنگ</u> **Part IV** – Hyperseries ی می دور به می دور به

Logarithmic hyperseries

 $\forall \alpha \in \mathbf{On}, \qquad \ell_{\alpha} := L_{\alpha} x$

$$\mathfrak{L} := \left\{ \prod_{\beta < \alpha} \ell_{\beta}^{r_{\beta}} : \alpha \in \mathbf{On}, (r_{\beta})_{\beta < \alpha} \in \mathbb{R}^{\alpha} \right\}$$
 (lex monomial group)
$$\mathbb{L} := \mathbb{R}[[\mathfrak{L}]]$$

Logarithmic hyperseries

$$\forall \alpha \in \mathbf{On}, \quad \ell_{\alpha} := L_{\alpha} x$$

$$\mathfrak{L} := \left\{ \prod_{\beta < \alpha} \ell_{\beta}^{r_{\beta}} : \alpha \in \mathbf{On}, (r_{\beta})_{\beta < \alpha} \in \mathbb{R}^{\alpha} \right\} \quad (\text{lex monomial group})$$

$$\mathbb{L} := \mathbb{R}[[\mathfrak{L}]]$$

Semantics

$$\ell_n = L_1^{\circ n} x = (\log \circ \stackrel{n \times}{\cdots} \circ \log)(x)$$

$$\alpha = \omega^{\mu_1} n_1 + \dots + \omega^{\mu_k} n_k, \quad \mu_1 > \dots > \mu_k$$

$$\ell_\alpha = (L_{\omega^{\mu_k}}^{\circ n_k} \circ \dots \circ L_{\omega^{\mu_1}}^{\circ n_1})(x)$$

$$\omega^{2} + 1 = \log L_{\omega^2} x$$

Calculus

$$\ell_{\omega^{\mu+1}} \circ \ell_{\omega^{\mu}} = \ell_{\omega^{\mu+1}} + 1$$

 $\ell_{\alpha}' = \prod_{\beta < \alpha} \ell_{\beta}^{-1}$

Calculus

$$\ell_{\omega}{}^{\mu+1} \circ \ell_{\omega}{}^{\mu} = \ell_{\omega}{}^{\mu+1} + 1$$

$$\ell_{\alpha}' = \prod_{\beta < \alpha} \ell_{\beta}^{-1}$$

$$\ell_{0}' = x' = 1, \quad \ell_{1}' = \frac{1}{\ell_{0}}, \quad \ell_{2}' = \frac{1}{\ell_{0}\ell_{1}}, \quad \dots, \quad \ell_{\omega}' = \frac{1}{\ell_{0}\ell_{1}\ell_{2}\cdots}, \quad \dots$$

Calculus

$$\ell_{\omega}{}^{\mu+1} \circ \ell_{\omega}{}^{\mu} = \ell_{\omega}{}^{\mu+1} + 1$$

$$\ell_{\alpha}' = \prod_{\beta < \alpha} \ell_{\beta}^{-1}$$

$$\ell_{0}' = x' = 1, \quad \ell_{1}' = \frac{1}{\ell_{0}'}, \quad \ell_{2}' = \frac{1}{\ell_{0}\ell_{1}'}, \quad \dots, \quad \ell_{\omega}' = \frac{1}{\ell_{0}\ell_{1}\ell_{2}\cdots'}, \quad \dots$$

Theorem

- $\partial: \mathbb{L} \longrightarrow \mathbb{L}$, strongly linear
- $\circ: \mathbb{L} \times \mathbb{L}^{>,>} \longrightarrow \mathbb{L}$, strongly linear in first argument
- For all $f \in \mathbb{L}$, $g \in \mathbb{L}^{>,>}$ and $\delta \prec g$

$$f \circ (g + \delta) = f \circ g + (f' \circ g) \delta + \frac{1}{2} (f'' \circ g) \delta^2 + \cdots$$

Endorsing hypermonomials

What is a monomial?

 $\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

$$E_{\omega}(f+\delta) = E_{\omega}(f) + E'_{\omega}(f)\,\delta + \frac{1}{2}E''_{\omega}(f)\,\delta^{2} + \cdots$$

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\dots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\dots+e^{-x}}$$

$$E_{\omega}\left(x+\frac{1}{x}\right) \stackrel{?}{=} E_{\omega}(x) + E'_{\omega}(x)\frac{1}{x} + \frac{1}{2}E''_{\omega}(x)\frac{1}{x^{2}} + \cdots$$

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

$$E_{\omega}\left(x+\frac{1}{x}\right) \stackrel{?}{=} E_{\omega}(x) + \left(E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots\right) \frac{1}{x} + \cdots$$

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

$$E_{\omega}\left(x+\frac{1}{x}\right) \stackrel{?}{=} E_{\omega}(x) + \left(E_{\omega}(x)E_{\omega}(x-1)E_{\omega}(x-2)\cdots\right)\frac{1}{x} + \cdots$$

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

$$E_{\omega}\left(x+\frac{1}{E_{\omega}(x)}\right) = E_{\omega}(x) + \left(E_{\omega}(x)E_{\omega}(x-1)E_{\omega}(x-2)\cdots\right)\frac{1}{E_{\omega}(x)} + \cdots$$
What is a monomial?

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

Defining the first hyperexponential

$$E_{\omega}\left(x+\frac{1}{E_{\omega}(x-1)}\right) \stackrel{?}{=} E_{\omega}(x) + \left(E_{\omega}(x)E_{\omega}(x-1)E_{\omega}(x-2)\cdots\right)\frac{1}{E_{\omega}(x-1)} + \cdots$$

What is a monomial?

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\dots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\dots+e^{-x}}$$

Defining the first hyperexponential

$$E_{\omega}\left(x + \frac{1}{E_{\omega}(x-1)}\right) \stackrel{?}{=} E_{\omega}(x) + (E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots) \frac{1}{E_{\omega}(x-1)} + \cdots$$
$$E_{\omega}\left(x - 1 + \frac{1}{E_{\omega}(x-1)}\right) = E_{\omega}(x-1) + (E_{\omega}(x-1) E_{\omega}(x-2) \cdots) \frac{1}{E_{\omega}(x-1)} + \cdots$$

What is a monomial?

$$\mathfrak{m} \in \mathfrak{M} \iff \log \mathfrak{m} \in \mathbb{T}_{\succ}$$

Defining the exponential

$$e^{e^{x}+3x^{2}+\log x+\sqrt{2}+\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}} = e^{e^{x}+3x^{2}+\log x}e^{\sqrt{2}}e^{\frac{3}{x}+\frac{\pi}{x^{2}}+\cdots+e^{-x}}$$

Defining the first hyperexponential

$$E_{\omega}\left(x + \frac{1}{E_{\omega}(x-1)}\right) \stackrel{?}{=} E_{\omega}(x) + (E_{\omega}(x) E_{\omega}(x-1) E_{\omega}(x-2) \cdots) \frac{1}{E_{\omega}(x-1)} + \cdots$$

$$E_{\omega}\left(x - 1 + \frac{1}{E_{\omega}(x-1)}\right) = E_{\omega}(x-1) + (E_{\omega}(x-1) E_{\omega}(x-2) \cdots) \frac{1}{E_{\omega}(x-1)} + \cdots$$

$$E_{\omega}\left(x + \frac{1}{E_{\omega}(x-1)}\right) = \exp E_{\omega}\left(x - 1 + \frac{1}{E_{\omega}(x-1)}\right)$$

$$\delta \prec \frac{1}{L_n E_{\omega} f} \implies E_{\omega}(f+\delta) = E_n E_{\omega}(f+\cdots)$$

$$\delta \prec \frac{1}{L_n E_{\omega} f} \implies E_{\omega}(f+\delta) = E_n E_{\omega}(f+\cdots)$$

$$\mathfrak{M}_{\omega} := \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a} > \frac{1}{L_{n} \mathfrak{a}} \right\}$$

$$\delta \prec \frac{1}{L_n E_{\omega} f} \implies E_{\omega}(f+\delta) = E_n E_{\omega}(f+\cdots)$$

$$\mathfrak{M}_{\omega} := \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a} > \frac{1}{L_{n} \mathfrak{a}} \right\}$$
$$= \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, L_{n} \mathfrak{a} \in \mathfrak{M} \right\}$$

$$\delta \prec \frac{1}{L_n E_{\omega} f} \implies E_{\omega}(f+\delta) = E_n E_{\omega}(f+\cdots)$$

$$\mathfrak{M}_{\omega} := \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a} > \frac{1}{L_{n} \mathfrak{a}} \right\}$$
$$= \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, L_{n} \mathfrak{a} \in \mathfrak{M} \right\}$$

$$E_{\omega}\left(x+\frac{1}{x}\right), \ E_{\omega}\left(x-1+\frac{1}{x}\right), \ E_{\omega}\left(x-2+\frac{1}{x}\right), \ \dots \in \mathfrak{M}_{\omega} \subseteq \mathfrak{M}$$

$$\delta \prec \frac{1}{L_n E_{\omega} f} \implies E_{\omega}(f+\delta) = E_n E_{\omega}(f+\cdots)$$

$$\mathfrak{M}_{\omega} := \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, \operatorname{supp} L_{\omega} \mathfrak{a} > \frac{1}{L_{n} \mathfrak{a}} \right\}$$
$$= \left\{ \mathfrak{a} \in \mathfrak{M} : \forall n \in \mathbb{N}, L_{n} \mathfrak{a} \in \mathfrak{M} \right\}$$

$$E_{\omega}\left(x+\frac{1}{x}\right), E_{\omega}\left(x-1+\frac{1}{x}\right), E_{\omega}\left(x-2+\frac{1}{x}\right), \ldots \in \mathfrak{M}_{\omega} \subseteq \mathfrak{M}$$

 L_{ω} on $\mathfrak{M}_{\omega} \longrightarrow$ Definition of $E_{\omega}(L_{\omega}\mathfrak{a} + \delta)$ for any $\delta \prec \frac{1}{L_{n}\mathfrak{a}}$ for some $n \in \mathbb{N}$

Hyperserial fields

 $\mathbb{H} = \mathbb{R}[[\mathfrak{M}]]$ with

HF1. $\circ: \mathbb{L} \times \mathbb{H}^{>,>} \longrightarrow \mathbb{H}$

HF2. Taylor expansions

HF3. supp
$$\ell_{\omega^{\mu}} \circ \mathfrak{a} > \frac{1}{\ell_{\gamma} \circ \mathfrak{a}}$$
 for all $\mu \ge 1, \gamma < \omega^{\mu}$, and $\mathfrak{a} \in \mathfrak{M}_{\omega^{\mu}}$

HF*.

Hyperserial fields

 $\mathbb{H} = \mathbb{R}[[\mathfrak{M}]]$ with

HF1. $\circ: \mathbb{L} \times \mathbb{H}^{>,>} \longrightarrow \mathbb{H}$

HF2. Taylor expansions

HF3. supp
$$\ell_{\omega^{\mu}} \circ \mathfrak{a} > \frac{1}{\ell_{\gamma} \circ \mathfrak{a}}$$
 for all $\mu \ge 1, \gamma < \omega^{\mu}$, and $\mathfrak{a} \in \mathfrak{M}_{\omega^{\mu}}$

HF*. ...

Theorem

 \exists closure of \mathbb{H} under all hyperexponentials E_{α} with $\alpha \in \mathbf{On}$.

Definition

$S \subseteq No$ is a surreal substructure iff $(S, \leq _{S}, \subseteq_{S}) \cong (No, \leq_{No'} \subseteq_{No})$

Definition

 $S \subseteq No$ is a surreal substructure iff $(S, \leq_S, \subseteq_S) \cong (No, \leq_{No}, \subseteq_{No})$

Examples

- No[>]
- No^{>,>}
- Mo

Definition

$$S \subseteq No$$
 is a surreal substructure iff $(S, \leq_S, \subseteq_S) \cong (No, \leq_{No'} \subseteq_{No})$

Proposition

The isomorphism $\Xi_{\mathbf{S}}$: **No** \longrightarrow **S** is unique and given by

$$\Xi_{S} x = \Xi_{S} \{ x_{L} | x_{R} \} = \{ \Xi_{S} x_{L} | \Xi_{S} x_{R} \}_{S}$$

Definition

 $S \subseteq No$ is a surreal substructure iff $(S, \leq_S, \subseteq_S) \cong (No, \leq_{No'} \subseteq_{No})$

Proposition

The isomorphism $\Xi_S: \mathbf{No} \longrightarrow \mathbf{S}$ is unique and given by

$$\Xi_{S} x = \Xi_{S} \{ x_{L} | x_{R} \} = \{ \Xi_{S} x_{L} | \Xi_{S} x_{R} \}_{S}$$

Examples

- No[>] $\Xi_{No^>} x = 1 + x$
- No^{>,>} $\Xi_{No^{>,>}} x = \omega + x$
- Mo $\Xi_{Mo} x = \omega^x$

26/36

Theorem

Let $G \times S \longrightarrow S$ be a function group action on a surreal substructure S. For any $x \in S$, the halo $G[x] := Hull_S G x$ admits a simplest element $\pi_G(x)$. The class $Smp_G := im \pi_G$ forms a surreal substructure.

 $\mathbf{Mo} \subseteq \mathbf{No}^{>} \quad x \longmapsto c \, x, \qquad c \in \mathbb{R}^{>}$

26/36

Theorem

Let $\mathcal{G} \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S} . For any $x \in \mathbf{S}$, the halo $\mathcal{G}[x] \coloneqq \mathbf{Hull}_{\mathbf{S}} \mathcal{G}x$ admits a simplest element $\pi_{\mathcal{G}}(x)$. The class $\mathbf{Smp}_{\mathcal{G}} \coloneqq \mathrm{im} \pi_{\mathcal{G}}$ forms a surreal substructure.

 $\mathbf{Mo} \subseteq \mathbf{N} \mathbf{o}^{>} \quad x \longmapsto c \, x, \qquad c \in \mathbb{R}^{>}$

 $\mathbf{K} \subseteq \mathbf{No}^{\succ,\succ} \quad x \longmapsto \exp_n x, \qquad n \in \mathbb{Z}$

26/36

Theorem

Let $G \times S \longrightarrow S$ be a function group action on a surreal substructure S. For any $x \in S$, the halo $G[x] := Hull_S G x$ admits a simplest element $\pi_G(x)$. The class $Smp_G := im \pi_G$ forms a surreal substructure.

$$\begin{aligned} \mathbf{Mo} &\subseteq \mathbf{No}^{>} \quad x \longmapsto c \, x, \quad c \in \mathbb{R}^{>} \\ \mathbf{K} &\subseteq \mathbf{No}^{>,>} \quad x \longmapsto \exp_{n} x, \quad n \in \mathbb{Z} \\ \mathbf{La} &\subseteq \mathbf{No}^{>,>} \quad x \longmapsto \exp_{n}(c \log_{n} x), \quad c \in \mathbb{R}^{>}, \quad n \in \mathbb{N} \end{aligned}$$

26/36

Theorem

Let $\mathcal{G} \times \mathbf{S} \longrightarrow \mathbf{S}$ be a function group action on a surreal substructure \mathbf{S} . For any $x \in \mathbf{S}$, the halo $\mathcal{G}[x] \coloneqq \mathbf{Hull}_{\mathbf{S}} \mathcal{G}x$ admits a simplest element $\pi_{\mathcal{G}}(x)$. The class $\mathbf{Smp}_{\mathcal{G}} \coloneqq \mathrm{im} \pi_{\mathcal{G}}$ forms a surreal substructure.

$$\begin{split} \mathbf{Mo} &\subseteq \mathbf{No}^{>} \quad x \mapsto cx, \quad c \in \mathbb{R}^{>} \\ \mathbf{K} &\subseteq \mathbf{No}^{>,>} \quad x \mapsto \exp_{n} x, \quad n \in \mathbb{Z} \\ \mathbf{La} &\subseteq \mathbf{No}^{>,>} \quad x \mapsto \exp_{n}(c \log_{n} x), \quad c \in \mathbb{R}^{>}, \quad n \in \mathbb{N} \\ \mathbf{Ne} &\subseteq \mathbf{Ad} \quad \sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + x}} \mapsto \sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + cx}}, \quad c \in \mathbb{R}^{>}, \text{ height } n \end{split}$$

26/36

Theorem

Let $G \times S \longrightarrow S$ be a function group action on a surreal substructure S. For any $x \in S$, the halo $G[x] := Hull_S G x$ admits a simplest element $\pi_G(x)$. The class $Smp_G := im \pi_G$ forms a surreal substructure.

$$\begin{split} \mathbf{Mo} &\subseteq \mathbf{No}^{>} \quad x \mapsto cx, \quad c \in \mathbb{R}^{>} \\ \mathbf{K} &\subseteq \mathbf{No}^{>,>} \quad x \mapsto \exp_{n} x, \quad n \in \mathbb{Z} \\ \mathbf{La} &\subseteq \mathbf{No}^{>,>} \quad x \mapsto \exp_{n}(c \log_{n} x), \quad c \in \mathbb{R}^{>}, \quad n \in \mathbb{N} \\ \mathbf{Ne} &\subseteq \mathbf{Ad} \quad \sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + x}} \mapsto \sqrt{\omega} + e^{\sqrt{\log \log \omega} + cx}, \quad c \in \mathbb{R}^{>}, \text{ height } n \end{split}$$

Note: hyperserial solutions of $f(x) = \sqrt{x} + e^{f(\log x)}$ parameterized by *surreal* constant

Defining E_{ω} on $\mathbf{No}^{>,>}$

Step 1: definition of E_{ω} : $\mathbf{No} \ge \longrightarrow \mathbf{K}$, with $\mathbf{No} \ge := \mathbf{Smp}_{\mathcal{T}}$ and $x \xrightarrow{\mathcal{T}} x + \mathbb{R}$ on $\mathbf{No}^{>,>}$

$$E_{\omega} x := \{ E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathbf{No}^{\geq}} | L_{\mathbb{N}} E_{\omega} x_{R}^{\mathbf{No}^{\geq}} \} \in \mathbf{K}$$

Defining E_{ω} on **No**^{>,>|}

Step 1: definition of E_{ω} : **No** $\stackrel{>}{>}$ \longrightarrow **K**, with **No** $\stackrel{>}{>}$:= **Smp** $_{\mathcal{T}}$ and $x \stackrel{\mathcal{T}}{\mapsto} x + \mathbb{R}$ on **No** $\stackrel{>}{>}$,>

$$E_{\omega} x := \{ E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathbf{No}^{\geq}} | L_{\mathbb{N}} E_{\omega} x_{R}^{\mathbf{No}^{\geq}} \} \in \mathbf{K}$$

Step 2: define **Tr** as the surreal substructure of simplest elements of halos

$$\Pi[a] := \left\{ b \in \mathbf{No}^{\succ, \succ} : \exists n \in \mathbb{N}, a - b < \frac{1}{L_{\mathbb{N}} E_{\omega} a_{\succ}} \right\}, \quad a \in \mathbf{No}^{\succ, \succ}$$

Example: $\omega + \frac{1}{\omega} \in \mathbf{Tr} \setminus \mathbf{No}^{\succ}_{\succ}$

Defining E_{ω} on **No**^{>,>|}

Step 1: definition of E_{ω} : $\mathbf{No} \ge \longrightarrow \mathbf{K}$, with $\mathbf{No} \ge := \mathbf{Smp}_{\mathcal{T}}$ and $x \xrightarrow{\mathcal{T}} x + \mathbb{R}$ on $\mathbf{No}^{>,>}$

$$E_{\omega} x := \left\{ E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathbf{No}^{\geq}} \middle| L_{\mathbb{N}} E_{\omega} x_{R}^{\mathbf{No}^{\geq}} \right\} \in \mathbf{K}$$

Step 2: define **Tr** as the surreal substructure of simplest elements of halos

$$\Pi[a] := \left\{ b \in \mathbf{No}^{\succ,\succ} : \exists n \in \mathbb{N}, a - b \prec \frac{1}{L_{\mathbb{N}} E_{\omega} a_{\succ}} \right\}, \quad a \in \mathbf{No}^{\succ,\succ}$$

Example: $\omega + \frac{1}{\omega} \in \mathbf{Tr} \setminus \mathbf{No}^{\succeq}$

Step 3: extend E_{ω} : **Tr** \rightarrow **La**

$$E_{\omega} x := \{E_{\mathbb{N}} x, \mathcal{E} E_{\omega} x_{L}^{\mathsf{Tr}} | \mathcal{E} E_{\omega} x_{L}^{\mathsf{Tr}}\} \in \mathsf{La} = \mathsf{Smp}_{\mathcal{E}}$$

Defining E_{ω} on **No**^{>,>|}

Step 1: definition of E_{ω} : $\mathbf{No} \ge \longrightarrow \mathbf{K}$, with $\mathbf{No} \ge := \mathbf{Smp}_{\mathcal{T}}$ and $x \xrightarrow{\mathcal{T}} x + \mathbb{R}$ on $\mathbf{No}^{>,>}$

$$E_{\omega} x := \left\{ E_{\mathbb{N}} x, E_{\mathbb{N}} E_{\omega} x_{L}^{\mathbf{No}^{\geq}} | L_{\mathbb{N}} E_{\omega} x_{R}^{\mathbf{No}^{\geq}} \right\} \in \mathbf{K}$$

Step 2: define **Tr** as the surreal substructure of simplest elements of halos

$$\Pi[a] := \left\{ b \in \mathbf{No}^{\succ,\succ} : \exists n \in \mathbb{N}, a - b \prec \frac{1}{L_{\mathbb{N}} E_{\omega} a_{\succ}} \right\}, \quad a \in \mathbf{No}^{\succ,\succ}$$

Example: $\omega + \frac{1}{\omega} \in \mathbf{Tr} \setminus \mathbf{No}^{\succeq}$

Step 3: extend E_{ω} : **Tr** \rightarrow **La**

$$E_{\omega} x := \{E_{\mathbb{N}} x, \mathcal{E} E_{\omega} x_{L}^{\mathsf{Tr}} | \mathcal{E} E_{\omega} x_{L}^{\mathsf{Tr}}\} \in \mathsf{La} = \mathsf{Smp}_{\mathcal{E}}$$

Step 4: extend E_{ω} : **No**^{>,>} \longrightarrow **No**^{>,>} using Taylor expansions

The hyperserial field of surreal numbers

- The so-constructed function E_{ω} : **No**^{>,>} \longrightarrow **No**^{>,>} is an increasing bijection
- Similarly, we construct E_{α} for $\alpha \ge \omega^2$ in $\omega^{\mathbf{On}}$

Theorem

 $(No, (E_{\omega^{\mu}})_{\mu \in On}, (L_{\omega^{\mu}})_{\mu \in On})$ is a hyperserial field.

Part VI – Numbers as hyperseries

 $\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e}}$... $\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\sqrt{\log \log \omega} + \log \log \omega} + \log \log \omega}} + \log \omega$

$$\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\sqrt{10g \log \omega} + e^{\sqrt{10g \log \omega} + e^{\sqrt{\log \log \omega} + \log \log \omega}}} + \log \omega} \sqrt{\omega} + \log \omega$$

Badly nested is bad: the following terms occur in the derivative

$$\frac{1}{\omega} \prec \frac{e^{\sqrt{\log \omega} + \cdots}}{\omega \log \omega} \prec \frac{e^{\sqrt{\log \omega} + \cdots} e^{\sqrt{\log \log \omega} + \cdots}}{\omega \log \omega \log \log \omega} \prec \cdots$$

$$\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\sqrt{10}}}} \sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\sqrt{10} \log \log \omega} + \log \log \omega}} + \log \omega$$

Badly nested is bad: the following terms occur in the derivative

$$\frac{1}{\omega} < \frac{e^{\sqrt{\log \omega} + \cdots}}{\omega \log \omega} < \frac{e^{\sqrt{\log \omega} + \cdots} e^{\sqrt{\log \log \omega} + \cdots}}{\omega \log \omega \log \log \omega} < \cdots$$

Can be avoided: solving $f(x) = \sqrt{x} + e^{f(\log x)} + \log x \xrightarrow{\text{reduces}} \text{solving } g(x) = \sqrt{x} + e^{g(\log x)}$

$$\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\sqrt{10}}}} \sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\sqrt{10} \log \log \omega} + \log \log \omega}} + \log \omega$$

Badly nested is bad: the following terms occur in the derivative

$$\frac{1}{\omega} < \frac{e^{\sqrt{\log \omega} + \cdots}}{\omega \log \omega} < \frac{e^{\sqrt{\log \omega} + \cdots} e^{\sqrt{\log \log \omega} + \cdots}}{\omega \log \omega \log \log \omega} < \cdots$$

Can be avoided: solving $f(x) = \sqrt{x} + e^{f(\log x)} + \log x \xrightarrow{\text{reduces}} \text{solving } g(x) = \sqrt{x} + e^{g(\log x)}$

Theorem

The hyperserial field **No** is well nested: it contains no badly nested elements.

Nested numbers

Theorem

Let Ad be the class of numbers $x \approx \sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\cdots}}}$ that satisfy

$$\sqrt{\omega} < x < 2\sqrt{\omega}$$
$$\sqrt{\omega} + e^{\sqrt{\log \omega}} < x < \sqrt{\omega} + e^{2\sqrt{\log \omega}}$$
$$\vdots$$

Let **Ne** be the subclass of such numbers x for which the following are monomials:

$$\mathfrak{m}_{1} \coloneqq x - \sqrt{\omega} = e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\cdot}}}$$
$$\mathfrak{m}_{2} \coloneqq \log \mathfrak{m}_{1} - \sqrt{\log \omega} = e^{\sqrt{\log \log \omega} + e^{\cdot}}$$
$$\vdots$$

Then Ad and Ne are surreal substructures.

Numbers as hyperseries in ω

(tree) expression

$$\sqrt{\omega} + e^{\sqrt{L_1\omega} + e^{\sqrt{L_2\omega} + e^{\sqrt{L_2\omega}} + e^{\sqrt{L_3\omega} + e^{\sqrt{L_3\omega}} + e^{\sqrt{L_\omega\omega}} + e^{\sqrt{L_{\omega+1}\omega} + e^{\sqrt{L_{\omega+2}\omega} + e$$

Numbers as hyperseries in ω

(tree) description = expression + ranking

Numbers as hyperseries in ω

(tree) description = expression + ranking

Theorem

Any surreal number has a unique hyperserial description in terms of ω .

Link with *o*-minimality

Conjecture

There exists an o-minimal structure that defines (an) E_{ω} .
Link with *o*-minimality

Conjecture

There exists an o-minimal structure that defines (an) E_{ω} .

Question

Does any o-minimal structure with a transexponential function define (an) E_{ω} ?

Link with *o*-minimality

Conjecture

There exists an o-minimal structure that defines (an) E_{ω} .

Question

Does any o-minimal structure with a transexponential function define (an) E_{ω} ?

o-maximus conjecture

The germs at infinity of any o-minimal structure can be embedded in $(\mathbb{H}, +, \times, \partial, \circ)$ *.*

Ultimate closure

Conjecture

Any functional defined using +, \times , E_{α} , L_{α} , ∂ , \circ satisfies the intermediate value property.

Ultimate closure

Conjecture

Any functional defined using +, \times , E_{α} , L_{α} , ∂ , \circ satisfies the intermediate value property.

Question

Let A(n,k) be the bivariate Ackermann function and take $E_{\omega^{\omega}}(n) \coloneqq A(n,n)$. Compute the hyperserial expansion of $A(n,n^2)$.

Thank you !

http://www.texmacs.org