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Abstract

We consider a bivariate rational generating function

F (x, y) =
P (x, y)

Q(x, y)
=

∑

r,s≥0

arsx
r
y
s

under the assumption that the complex algebraic curve V on which Q vanishes is smooth. For-

mulae for the asymptotics of the coefficients {ars} are derived in [PW02]. These formulae are

in terms of algebraic and topological invariants of V, but up to now these invariants could be

computed only under a minimality hypothesis, namely that the dominant saddle must lie on

the boundary of the domain of convergence. In the present paper, we give an effective method

for computing the topological invariants, and hence the asymptotics of {ars}, without the min-

imality assumption. This leads to a theoretically rigorous algorithm, whose implementation is

in progress at http://www.mathemagix.org .
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1 Introduction

Consider a power series F (z) =
∑

r
arz

r, where r varies over integer vectors in the orthant (Z+)d

and zr denotes the monomial zr11 · · · zrdd . We say that F is the (ordinary) generating function for

the array {ar}. In analytic combinatorics, our aim is to derive estimates for ar, given a simple

description of F as an analytic function. An apparatus for doing this for various classes of function

is developed in a series of papers [PW02, PW04, BP08, Pem10]; see also the survey [PW08]. Most

known results on multivariate asymptotics concern either rational functions or quasi-powers. In the

case of rational functions F (z) = P (z)/Q(z), the analysis centers on geometric properties of the

pole variety V := {z : Q(z) = 0}.

When V has singularities, tools are required such as iterated residues, resolution of singularities

or generalized Fourier transforms, and analyses exist only for specific examples. When V is smooth,

if certain degeneracies are avoided, asymptotic formulae for ar may be given in terms of certain

algebraic and topological invariants of V. Denote normalized vectors by

r̂ :=
r

|r| =
(

r1
∑d

j=1 rj
, . . . ,

rd
∑d

j=1 rj

)

:= (r̂1, . . . , r̂d) .

Asymptotic formulae for ar depend on the direction r̂ in which r is going to infinity. For example,

Theorem 3.9 of [Pem10, Theorem 3.9] gives an asymptotic formula for ar in terms of a sum over a

set Ξ of quantities that are easily computed via standard saddle point techniques. The set Ξ = Ξ(r̂)

is a subset of the set saddles of saddle points of the function h : V → R defined by

h(z) := hr̂(z) := −
d
∑

j=1

r̂j log |zj | . (1.1)

The set saddles is readily computed but membership in the subset Ξ is not easily determined, and

in fact there is no known algorithm for doing so.

The main result in this paper is a characterization of Ξ when d = 2 and the complex algebraic

curve V is smooth. This leads to a completely effective and rigorous algorithm for asymptotically

computing ar. The organization of the remainder of the paper is as follows.

Section 2 reviews background results from elsewhere which reduce the computation of asymptotic

formulae to identification of the set Ξ and of some path segments through each σ ∈ Ξ. In particular,

Section 2 begins with the integral representation of the general coefficient ar, Section 2.1 defines

the residue of a meromorphic form, Section 2.2 reduces the integral for ar to a lower-dimensional

integral with some parameters yet to be specified, and Section 2.3 selects a chain of integration for

this integral that results in an explicit asymptotic estimate.

The new material begins in Section 3. Beginning with the topology of V near the coordinate

axes (Theorem 3.2), we give a topological characterization of the minimax height to which the cycle
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of integration can be lowered (Theorem 3.4) and of the set Ξ of contributing saddles (Theorem 3.5).

Section 4 demonstrates how these topological computations may be made completely effective. De-

tails of implementation are given, as well as a discussion of uniformity and boundary cases.

2 Background

In this section we review the framework for deriving estimates for ar, beginning with results for

general F , then specializing to rational functions, and smooth pole variety V. This section may

be skipped by readers who want only to understand the effective computation and not

the underlying analysis. Most of the material in this section is valid for any number of variables.

When we need to assume a bivariate function, we will state this but will also change the notation

to use x and y in place of z1 and z2 and (r, s) in place of r.

Computation of ar via complex analytic methods begins with the multivariate Cauchy integral

formula.

ar =
1

(2πi)d

∫

T

F (z)

z1 · . . . · zd
z−r dz . (2.1)

Here the torus T is any product of a circles in each coordinate sufficiently small so that the product

of the corresponding disks lies completely with the domain of holomorphy D of F . This version of

Cauchy’s formula can be found in most textbooks presenting complex analysis in a multivariable

setting, and follows easily as an iterated form of the single variable formula; see, for example, [Sha92,

page 19]. The integrand is may be written as z−rω where

ω := ωF :=
F (z)

z1 · . . . · zd
dz . (2.2)

Let (C∗)d := (C\0)d denote the set of complex d-vectors with all nonzero coordinates and denote

V ′ := V ∩ (C∗)d. A key step in obtaining asymptotic estimates for ar is to transform the Cauchy

integral equation (2πi)dar =
∫

T
z−rωF via an identity valid for any meromorphic form with a simple

pole:
∫

T

z−rω = 2πi

∫

α

Res (z−rω) (2.3)

where Res (·) is the residue operator defined in Section 2.1 and α is the intersection class defined in

Section 2.2. Putting these together and specializing to d = 2 leads to Lemma 2.4 below:

ar =
1

2πi

∫

α

x−ry−s Res (ω) .

2.1 The residue form

The residue form Res (η) is a holomorphic (d−1)-form on V ′. The specification of this form will not

be important for the subsequent analysis, but for completeness we include the following definition.
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If η = (P/Q) dz is any meromorphic form on a domain U with simple pole on a set V ⊆ U , then we

define

Res (η) := ι∗θ (2.4)

where θ is any solution to

dQ ∧ θ = P dz . (2.5)

Existence and uniqueness are well known, and a proof can be found in [DeV10, Proposition 2.6]

among other places (see, e.g., [AY83]). One important property of the residue form is that if

g : V → C is holomorphic then

Res (g · η) = g · Res (η) .

In particular, Res (z−r ω) = z−rRes (ω).

2.2 The intersection class

Because Res (z−r ω) is holomorphic on V ′, the integral over a (d− 1)-cycle B ⊆ V ′ depends only on

the homology class of B in Hd−1(V ′). The chain of integration α in (2.3) is really a homology class

known as the intersection class of T with V ′. The construction of the intersection class is quite

general and may be found in the literature. Conditions are given in [PW12, Appendix A] for the

intersection class to be uniquely defined. When it is not, however, the integral over α must be the

same for any choice of intersection class, α, so we will not pursue it further here.

Because we will need an explicit construction of a cycle in this class, we will give a quick con-

struction of α and derivation of (2.3). We begin with a form of the Cauchy-Leray residue theorem,

which may be found in [DeV10, Theorem 2.8].

Lemma 2.1 (Cauchy-Leray Residue Theorem). Let η be a meromorphic d-form on domain U ⊆ Cd

with pole variety V ⊆ U along which η has only simple poles. Let N be a d-chain in U , locally the

product of a (d− 1)-chain C on V with a circle γ in the normal slice to V, oriented as the boundary

of a disk oriented positively with respect to the complex structure of the normal slice. Then

∫

N

η = 2πi

∫

C

Res (η) .

�

Corollary 2.2. Let F, P,Q and V be as above and let η be meromorphic. Let M1 and M2 be

compact d-manifolds in Cd and let H be a smooth homotopy from M1 to M2 that intersects V
transversely in a compact manifold C. Then

∫

M1

η −
∫

M2

η = 2πi

∫

C

Res (η) .

�
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Proof: Let N be the boundary of a tubular neighborhood W of C in Cd. Then η is holomorphic on

H\W . The boundary of H\W is M2−M1+N , and dη vanishes on H\W because the differential of

any holomorphic d-form vanishes on Cd. Tubular neighborhoods of a smooth algebraic hypersurface

always have a product structure (see, e.g., [PW12, Proposition A.4.1]). Therefore, Stokes’ Theorem

and Lemma 2.1 together yield

∫

M1

η =

∫

M2

η +

∫

N

η =

∫

M2

η + 2πi

∫

C

Res (η) .

�

Remarks 2.3. One sees that the orientation of C must be chosen so that the boundary of its product

with a positively oriented disk in the normal slice is homologous to M1−M2. Also note that result

is true when H \W is any cobordism: we used only that ∂(H \W ) = M2 −M1 +N , not that H

was a homotopy.

Let Tǫ be the torus {|z1| = · · · = |zd| = ǫ} and let Tǫ,L be the torus {|z1| = · · · = |zd−1| =
ǫ , |zd| = L}. Fix ǫ > 0 and suppose that for sufficiently large L, the torus Tǫ,L does not intersect V.
We claim that for rd sufficiently large,

∫

Tǫ,L

z−r ω = 0 . (2.6)

Indeed,

|z−rω| ≤ ǫ−
∑d−1

j=1
rjL−rd sup

z∈Tǫ,L

|ω(z)|

≤ CL−rdLβ

where β is the degree of the rational form ω. The chain of integration has volume O(L), from which

we conclude that
∫

Tǫ,L
z−r ω = O(L1+β−rd). Once rd > 1 + β, we therefore have

∫

Tǫ,L
z−r ω = o(1)

as L → ∞. But Tǫ,L avoids V for sufficiently large L, hence by Stokes’ Theorem,
∫

Tǫ,L
z−r ω is

constant for sufficiently large L, hence zero, establishing (2.6).

The intersection class may now be constructed as follows. Let HL be the homotopy defined by

HL(z, t) = (z1, . . . , zd−1, (1− t)zd + t(L/ǫ− 1)zd) .

Suppose that HL[Tǫ] intersects V transversely. We let

α = [C] where C := HL[Tǫ] ∩ V . (2.7)

This is independent of L once L is sufficiently large. We take the orientation of C as in the remark

following Corollary 2.2.

Summing up the residue and intersection cycle constructions we have:
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Lemma 2.4 (Residue representation of ar). Suppose d = 2. Then for sufficiently small ǫ > 0,

ar =
1

(2πi)d−1

∫

α

x−ry−s Res (ω) (2.8)

holds with Res defined as in (2.4) – (2.5) and the intersection class α defined in (2.7).

Proof: Let S be the set of x ∈ C such that there is a sequence (xn, yn) in V with xn → x and

yn → ∞. The set S is finite and therefore min{|x| : x ∈ S, x 6= 0} is strictly positive. Taking ǫ

less than this minimum guarantees that for sufficiently large L, the torus Tǫ,L does not intersect

V. The set of (x, y) ∈ V where ∂Q/∂y vanishes is also finite. Again, taking ǫ less than the least

nonzero modulus of such a point guarantees that the homotopy HL intersects V transversely. Having

verified these two suppositions, the construction of α is completed. Now apply Corollary 2.2 with

M1 = Tǫ,M2 = Tǫ,L, N = C and η = z−rω, where ǫ is small enough so that Tǫ ⊆ D. Using (2.6) to

see that
∫

M2
η = 0 and combining with Cauchy’s integral formula gives

(2πi)dar =

∫

Tǫ

z−rω = 2πi

∫

α

Res (z−rω) = 2πi

∫

α

z−r Res (ω) .

�

Remark 2.5. The only use thus far of the restriction to d = 2 is in verifying that HL intersects V
transversely and Tǫ,L not at all. Transversality may be accomplished for any d via a perturbation

and it is not hard to handle a nonempty intersection of V with Tǫ,L, so no essential use has been

made yet of the restriction to d = 2.

2.3 Morse theory

Saddle point integration techniques require that we choose a chain of integration C′ in the class α to

(roughly) minimize the modulus of the integrand z−rω. It will suffice to minimize the factor of z−r,

the form ω being bounded on compact chains. The log modulus of z−r is
∑d

j=1 rj log |zj |. Letting

n = |r| =∑d
j=1 rj , we have

log
∣

∣z−r

∣

∣ =

d
∑

j=1

rj log |zj | = nhr̂(z)

which explains our definition of h in (1.1). It will be helpful to consider the manifold V ′ from a

Morse theoretic viewpoint with height function h.

Definitions 2.6. Let M be any manifold and let h : M → R be any smooth, proper function

with isolated critical points (a critical point is where ∇h vanishes). Let V≥c denote the subset of

V consisting of points z with h(z) ≥ c. Define V>c,V≤c,V<c and V=c similarly. Define the set

saddles = saddles(M, h) to be the set of critical points for h. The set h[saddles] is called the set of
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critical values. For fixed (r, s), the set saddles is a zero-dimensional variety, whose defining equations

we call the critical point equations:

Q(x, y) = 0 (2.9)

s xQx − r y Qy = 0 .

Here and henceforth, we use subscript notation for partial derivatives.

When h : V ′ → R is the height function hr̂ above, by convention we extend h to V taking

h(0, y) = h(x, 0) = +∞, so that points of V \ V ′ are in every V≥c.

Theorem 2.7. Let h : M → R be a smooth, proper function with isolated critical points.

(i) Suppose there are no critical values of h in the interval [a, b]. Then the gradient flow induces

a homotopy in M between M≤b and M≤a, and also between M≥b and M≥a. This homotopy

carries M=b = ∂M≥b = ∂M≤b to M=a.

(ii) Let a < c < b such that c is the unique critical value of h in [a, b]. Let σ1, . . . , σk enumerate the

critical points of h at height c. Then H∗(M≤b,M≤a) decomposes naturally as the direct sum

of H∗(M≤b
σj
,M≤a

σj
), where Mσj

is the intersection of M with a sufficiently small neighborhood

of σj.

(iii) Let C be a cycle in M and let c∗ be the infimum of c such that C is homologous in M to a

cycle in M≤c. Then c is either −∞ or a critical value, and in the latter case, for sufficiently

small ǫ > 0, the cycle C projects to a nonzero homology class in H∗(M,M≤c−ǫ).

Proof: Part (i) is the first Morse lemma, a proof of which may be found for example in [Mil63,

Theorem 3.1] or [GM88]. A generic perturbation separates the critical values, one may then prove

part (ii) by a standard excision argument. Part (iii) is proved in [Pem10, Lemma 8]. �

Remark 2.8. Classical Morse theory combines the first Morse lemma (no topological change between

critical values) with a description of the change at a critical value (an attachment map). The results

we have quoted require only the first Morse lemma. For this it is not necessary to assume h is a

Morse function, but only that it is a smooth, proper map with isolated critical points.

Example 2.9 (bivariate harmonic case). Suppose d = 2. Let σ be a critical point of h on V at

height c and suppose that locally h is the real part of an analytic function. Then there is an integer

k ≥ 2 and there are local coordinates ψ : U → V on a neighborhood of the origin in C1 such that

ψ(0) = σ and

h(ψ(z)) = c+ Re {zk} .

Figure 1 illustrates this for k = 4. The shaded regions are where h > c. On the right, the connected

local components of {h > c} are number counterclockwise from 1 to k and the local components of
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Figure 1: A saddle of order 4 and the path γ1,2

{h < c} are numbered correspondingly. The pair M̃ := (V≤c+ǫ ∩ ψ[U ],V≤c+ǫ ∩ ψ[U ]) is homotopy

equivalent to a disk modulo k boundary arcs. Let γj denote an arc from the boundary to the center

that remains in the jth local component of {h < c}. Then H1(M̃) is generated by the relative

1-cycles γi − γj . We have the relations
∑

i,j bi,j(γi − γj) = 0 if and only

∑

j

bi,j =
∑

j

bj,i

for every i ≤ k. In particular, {γi − γi+1 : 1 ≤ i ≤ k − 1} is a basis for H1(M̃).

We remark that our assumptions imply that h has no local extrema on M. Therefore, as c

decreases, the connected components of M≥c can merge but new components never arise.

This leads to a canonical form in dimension d = 2 for classes in H1(V ′), choosing a representing

cycle so as to be in position for saddle point integration.

Proposition 2.10. Let h = hr̂. Let γ be any cycle in H1(V ′). Then either γ is homologous to a cycle

supported at arbitrarily small height or there is a critical value c∗ and a nonempty set ξ ⊂ saddles

of critical points at height c∗ such that the following holds.

The cycle γ is homologous in H1(V ′) to a cycle C′ in V≤c∗ ; the maximum of h on V is

achieved exactly on Ξ; in a neighborhood of each σ ∈ Ξ of order k = k(σ) ≥ 2, there is

a subset paths(σ) of {1, . . . , k(σ)− 1} such that the restriction of C′ to the neighborhood

is equal to
∑

i∈T (σ) γi − γi+1.

As promised, integrals of the residue form Res (x−ry−sωF ) are known. To summarize this, we

let F = P/Q be rational, with ω defined in (2.2) and Res (ω) defined in Section 2.1. With γi as

in Figure 1, we then have the following explicit integration estimates. Note that the magnitude of

x−ry−s is exp[(r + s)c∗] when (x, y) ∈ Ξ, which makes the remainder term exponentially smaller

than the summands.

7



Lemma 2.11 (saddle point integrals). Let σ = (x0, y0) ∈ saddles, satisfy the critical point

equations (2.9). Denote the order of vanishing of h at (x0, y0) by k = k(x0, y0). Then

(2πi)
∫

γi−γi+1
Res (x−ry−sω) is given by the formula Φ(σ, i) where

Φ(σ, i) :=
K(σ, i)

√

2π(r + s)
x−r
0 y−s

0 +O (exp[(c∗ − ǫ)(r + s)]) (2.10)

where K(σ, i) is a constant term given by (2.11) when d = 2 and more generally by an explicit formula

which may be written in a number of ways, e.g. [PW02, Theorem 3.5] or [BBBP08, Theorem 3.3].

When k = 2, the remainder term is uniform as (x0, y0, r, s) varies with (x0, y0) ∈ saddles(r, s) and

(x0, y0) varying over a compact set on which k is constant. When k > 2, the estimate is uniform

for fixed (x0, y0) and (r, s) → ∞ with r = λs+O(1), where λ = xQx/(yQy) evaluated at (x0, y0). �

Remarks 2.12.

(i) In fact a uniform estimate holds for r = λs + O(s1/2) although this is more complicated and

involves Airy functions.

(ii) When d = 2 the constant K(σ, i) is given in [PW02, Theorem 3.1] as

K(σ, i) = P (x, y)

√

r + s

s

−Qy

xψ
(2.11)

evaluated at (x0, y0), where ψ(x, y) is the expression in equation (4.4) below.

(iii) When k > 2, the constant K(σ, i) is the leading term in a series expansion for λ near σ. The

explicit formula involves partial derivatives of P and Q up to order k and may be derived from,

e.g., [PW02, Theorem 3.3].

Putting together Lemma 2.4 with Proposition 2.10 and Lemma 2.11 leads to the following asymp-

totic expression for ar, which has appeared several times before; for example, when σ is a minimal

point, this goes back to [PW02, Theorem 3.1]; for an alternative formulation see [BBBP08, Theo-

rem 3.3].

Theorem 2.13 (smooth point asymptotics).

ars =

(

1

2πi

)d−1
∑

σ∈Ξ

∑

i∈paths(σ)

Φ(σ, i) +O (exp[(c∗ − ǫ)(r + s)]) .

�

This completes the summary of known results. We now turn to the main work which is to identify

and compute the quantities c∗,Ξ and paths(σ) appearing in Theorem 2.13 and formula (2.10).
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3 Identifying c∗ and Ξ

We begin by constructing the intersection class. We will take a homotopy which keeps the torus

small in the x-coordinate. If V intersects the y-axis transversely at (0, y), then the set V ∩ {|x| ≤ ǫ}
will have a component that is a topological disk nearly coinciding with a component of V≥c with

c = −r̂ log ǫ. To see that something like this holds more generally, we recall some facts about Puiseux

expansions. Consider the multivalued function x 7→ y(x) that solves Q(x, y(x)) = 0. When x is in a

sufficiently small punctured neighborhood of 0, there is a finite collection of convergent series of the

form

y(x) =
∑

j≥j0

cjx
j/k (3.1)

where j0 ∈ Z, k ∈ Z+, and cj0 6= 0; such a series yields k different values of y for each x; together,

the collection of series yields each solution to Q(x, y) = 0 exactly once. We always assume that k

is chosen as small as possible. A proof of these facts may be found in [FS09, Theorem VII.7]. Our

assumption that Q(0, 0) 6= 0 implies j0 ≤ 0 in every Puiseux series solution. Those with j0 = 0

correspond to points at which V intersects the x-axis, the y-value being equal to the coefficient c0.

Under the assumption that V is smooth, for each such y-value there will be only one series6. If k = 1,

the intersection with the y-axis is transverse but it is possible that k ≥ 2 and V is smooth but with

non-transverse intersection. Finally, series with j0 < 0 correspond to components of V ∩ {|x| ≤ ǫ}
with y going to infinity as x goes to zero. We begin by showing that each series gives a single

component and describing the embedding of the component. First, to clarify, we give an example in

which all these possibilities occur.

Example 3.1. Let Q(x, y) = 1 − 3y + 2y2 − 6xy4 + x3y5. It is easy to check that V is smooth.

The total number of solutions should be the y-degree of Q, namely 5. Setting x = 0 we find two

points (0, 1) and (0, 1/2) of V on the y-axis. These correspond to two series solutions with j0 = 0

and k = 1:

y(x) = 1 + 6x+ 72x2 + · · ·

y(x) =
1

2
− 3

8
x+

45

32
x2 + · · ·

There are also two series solutions with j0 < 0, one with k = 1 and one with k = 2:

y(x) =
1√
3
x−1/2 − 3

4
+

19
√
3

32
x1/2 + · · ·

y(x) = 6x−2 − 1

18
x+

1

72
x3 · · · .

The former of these yields two solutions. Although we do not need it here, we remark that these

five solutions can be enumerated by counting y-displacement along the Northwest boundary of the

6In fact the analyses in this paper are valid when self-intersections of V are allowed at points (0, y), with the result

that the closures of the components of V ′ ∩ {|x| ≤ ǫ} may intersect.
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Newton polygon: going up from (0, 0) to (0, 2) counts the first two solutions, going from (0, 2)

to (1, 4) yields the two solutions y ∼ ±1/
√
3x and going from (1, 4) to (3, 5) yields the solution

y ∼ 6x−2.

Let X≥c (respectively Y ≥c denote the union of those components of V≥c containing arbitrarily

small values of x (respectively y). Say that the direction of a Puiseux series solution to Q(x, y(x)) =

0 is −j0/k. The direction is always nonnegative because j0 is nonpositive due to Q(0, 0) 6= 0. Let

bad := {β > 0 : β is a direction of a series solution to Q(x, y(x)) = 0}

denote the set of positive directions.

Theorem 3.2 (V ′ near the axes). Fix r̂ with r/s /∈ bad. Suppose that h has isolated critical points.

Then when ǫ > 0 is sufficiently small and c is sufficiently large, the following hold.

(i) The graph of each Puiseux expansion of y(x) over the punctured disk {0 < |x| < ǫ} is a

component of V ′ ∩ {|x| ≤ ǫ}.

(ii) Each such component is a topological disk and its boundary winds k times around the y-axis.

(iii) The components of X≥c are exactly the graphs over some neighborhood of 0 of those Puiseux

series whose directions are less than r/s.

(iv) Components of V ′ ∩ {|x| < ǫ} and X≥c with the same Puiseux series are homotopic in V ′.

Proof: Fix any Puiseux series solution
∑

j≥j0
cjx

j/k on a punctured disk U and define g(x) :=
∑

cjx
j . From this we define the function

G : U −→ D

x 7−→ (xk, g(x)) .

We will show that G is a diffeomorphism onto its image. For sufficiently small ǫ the images of the

punctured ǫ-disk under different Puiseux series are disjoint, which will finish the proof of (i) and (ii).

First we check that G is one-to-one on a sufficiently small punctured disk. If not then we may

find arbitrarily small x1 and x2 such that xk1 = xk2 and g(x1) = g(x2). This means that there is some

kth root of unity ξ and such that g(x) = g(ξx) for arbitrarily small x. For some m, the functions

xmg(x) and xmg(ξx) are holomorphic, and if they agree on a sequence converging to zero then they

must define the same function on U . It follows that their Taylor expansions agree, and hence that

the only nonzero coefficients are those indexed by a multiple of k. This contradicts the minimality

of k in the Puiseux series representation and we conclude that g is one-to-one on a sufficiently small

disk. For any smooth function φ, the function (xk, φ(x)) 7→ x is diffeomorphism near any x 6= 0

because xk 7→ x is locally smooth except at 0. This proves that G is a diffeomorphism onto its

image, establishing (i) and (ii). To continue, we need a lemma.
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Lemma 3.3. When ǫ is sufficiently small, for any θ the radial arcs

t 7→ (teiθ, y(teiθ)), 0 ≤ t ≤ ǫ

are monotone in height, that is,

hθ(t) := h(teiθ, y(teiθ))

is monotone increasing or decreasing. Furthermore, as t ↓ 0, hθ(t) → ±∞ according to whether the

direction β = −j0/k of the Puiseux series is less or greater than r/s.

Proof: Write

y(x) = cx−β(1 + φ(x))

where the remainder φ satisfies φ(x) = o(1) and xφ′(x) = o(1) as x → 0. Plugging this into the

function H(x, y) := −r̂ log x− ŝ log y gives

d

dx
H(x, y(x)) =

ŝβ − r̂

x
− φ′(x)

1 + φ(x)

=
1

x

(

ŝβ − r̂ − xφ′(x)

1 + φ(x)

)

∼ ŝβ − r̂

x
(3.2)

because we have assumed ŝβ − r̂ 6= 0. The function h is the real part of H, which along with the

chain rule yields

d

dt
hθ(t) = cos θ Re

d

dx
H(x, y(x))− sin θ Im

d

dx
H(x, y(x)) .

Plugging in (3.2) then gives
d hθ(t)

dt
∼ ŝβ − r̂

|x|
which finishes the proof of the lemma. �

Proof of Theorem 3.2, continued: Each component B of X≥c has, by definition, points with

arbitrarily small values of x which are therefore on the graph of one of the Puiseux series. Taking

a sufficiently small neighborhood, the graphs of the series are disjoint, therefore the map from

component to series is well defined. We need to see that the range of the map from components to

series is exactly those with directions les than r/s. If B has direction less than r/s then h → ∞
as x → 0 on the corresponding component, whence the corresponding component of V ′ ∩ {|x| < ǫ}
maps to B. On the other hand, if the direction of B is greater than r/s then h → −∞ as x → 0,

from which it follows that X≥c cannot contain points in B with arbitrarily small x values and hence

such a component is not the graph of a Puiseux series about x = 0. This proves (iii).

Let B be a component of X≥c where c is sufficiently large so that the projection onto x is

contained in a sufficiently small disk so that Lemma 3.3 applies. A radial homotopy in the x-

coordinate (one that maps x := ρeiθ to f(θ)x and maps y(x) to y(f(θ)x)) then shrinks B to the same
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component with any specified greater value of c, or the corresponding component of V ′ ∩ {|x| ≤ ǫ}
with as long as ǫ is at most the in-radius of the original x-neighborhood. This establishes (iv) and

also that either type of component remains in the same homotopy class as c or ǫ is varied. �

Switching the roles of x and y in Theorem 3.2, it follows that for sufficiently large c, the set

V≥c is the disjoint union of X≥c and Y ≥c. Define cxy to the least value of c for which this remains

true, which is also that greatest value of c such that V≥c has a component containing both a point

(0, y) and a point (x, 0). By the first Morse lemma, if h is smooth and proper, the topology of V≥c

cannot change between critical values of h. In particular cxy must be a critical value cj . The next

two results complete the description of c∗ and Ξ.

Theorem 3.4 (characterization of c∗). Assume that V is smooth and that h = hr̂ is smooth and

proper with isolated critical points. Then

(i) For each c ≥ cxy, the cycle ∂X≥c is in the homology class α from Lemma 2.4.

(ii) c∗ = cxy.

For each critical point σ with h(σ) = c∗ let k = k(σ) denote its order, let N denote a small

neighborhood of σ in V. Label the components of N ∩ {h > c∗} in counterclockwise order by

R1, . . . , Rk as in Figure 1. Each such region R will be called an x-region if R ⊆ X>c and a y-region

if R ⊆ Y >c. Because c ≥ cxy, these are mutually exclusive.

Theorem 3.5 (characterization of Ξ and paths).

(i) σ ∈ Ξ if and only if the regions R1, . . . , Rk include at least one x-region and at least one

y-region.

(ii) Let Y (j) = 1 if Rj is a y-region and Y (j) = 0 otherwise. Let Cσ denote the relative cycle in

H1(N ∩ Vc∗+ǫ,N ∩ Vc∗−ǫ) represented by

k
∑

j=1

[Y (j)− Y (j + 1)] γj

Then Cσ represents the projection of α to this homology group, from which we easily recover

paths(σ).

(iii) The cycle C∗ :=
∑

σ∈Ξ Cσ represents the projection of α to H1(Vc∗+ǫ,Vc∗−ǫ).

�

Proofs: Let c1 > · · · > cν = cxy be the critical values of h that are at least cxy. Let W denote the

set of c ∈ R for which ∂X≥c ∈ α. To establish (i) we will show:
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(a) If c ∈ W and ci > c > ci+1 then the entire closed interval [ci+1, ci] is a subset of W;

(b) If c ∈ W and c > c1 then [c1,∞) ⊆ W;

(c) If ci ∈ W and i < ν then ci − ǫ ∈ W for all sufficiently small ǫ > 0;

(d) The set W contains some c > c1.

By part (i) of Theorem 2.7, the spaces {∂X≥t : cI > t > ci+1 are all homotopic in V ′, hence

represent the same homology class in H1(V ′). By continuity, this is true as well for t = ci and

t = ci+1, which proves (a). The proof of (b) is identical.

To prove (c), we first assume that there is a single critical point σ with h(σ) = ci. Let k ≥ 2 be

the order to which the derivatives of h vanish at σ. Recall the neighborhood U from Example 2.9

and the analytic parametrization ψ : U → V with h(ψ(z)) = ci + Re {zk}. Locally, the image of U

is divided into 2k sectors with h > ci and h < ci in alternating sectors. Figure 2 shows V≥c (shaded)

for three values of c in the case k = 2. A circle is drawn to indicate a region of parametrization

for which h = ci + Re {zk}. In the top diagram c > ci, in the middle diagram c = ci and in the

bottom, c < ci. The arrows show the orientation of ∂V≥c inherited from the complex structure of

V. The pictures for k > 2 are similar but with more alternations. Consider the first picture where

Figure 2: V≥c and its boundary for three values of c

c > ci. Because c > cxy, each of the k shaded regions is in X≥c or Y ≥c but not both. Let us term

these regions “x-regions” or “y-regions” accordingly. Because ci > cxy, this persists in the limit as
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c ↓ ci, which means that either all k regions are in Y ≥c or all k regions are in X≥c. In the former

case, ∂X≥c does not contain σ for c in an interval around ci and the first Morse lemma shows that

∂X≥ci+ǫ is homotopic to ∂X≥ci−ǫ. In the latter case we consider the cycle ∂X≥ci+ǫ + ∂B where

B is the polygon showed in Figure 3. Because we added a boundary, this is homologous to ∂Xci+ǫ.

But also it is homotopic to ∂Xci+ǫ: within the parametrized neighborhood, the lines may be shifted

so as to coincide with ∂Xci+ǫ, while outside this neighborhood the downward gradient flow provides

a homotopy. In the case where there is more than one critical point at height ci, we may add the

boundary of a polygon separately near each critical x-point, that is, each point that is a limit as

ǫ ↓ 0 of points in Xci+ǫ.
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Figure 3: V≥ci+ǫ and V≥ci−ǫ differ locally by a boundary

Finally, we recall from Lemma 2.4 that a cycle C representing α is constructed as HL[Tǫ] ∩ V.
Here ǫ is sufficiently small and L sufficiently large that this set is precisely {(x, y) ∈ V : |x| = ǫ}. By
part (iv) of Theorem 3.2, the union of these homotopic to ∂X≥c for sufficiently large c. Checking

that the orientation given by Remark 2.3 is the same as taking boundaries of regions oriented by the

complex structure of V, we conclude (d). Part (i) of Theorem 3.4 is a direct consequence of (a) – (d).

Part (i) implies that for any c ≥ cxy, there is a cycle in the class α that is supported on V≥c,

which shows that c∗ ≤ cxy. To see that c∗ ≥ cxy, we suppose not and argue by contradiction. The

construction in [Pem10, Lemma 3.8] shows that for each ci > c∗, there is a cycle representing α

supported on V≤ci+ǫ and any such cycle projects to zero in the relative group (V,Vci−ǫ). For a

contradiction, it suffices to check that ∂Xc∗+ǫ does not project to zero in H1(V,V≤c∗−ǫ).
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Suppose first that there is a single critical point σ at height cxy. Recall from Example 2.9 that

H1(Vcxy+ǫ,V≤cxy−ǫ) is generated by {γi−γi+11 ≤ i ≤ k−1}. The only relation among these is that

the sum of all of them vanishes. It follows that a sum of some subset of these vanishes if and only

the subset is all or none. Referring back to Figure 3, it is clear that the cycle ∂X≥cxy is represented

in H1(Vcxy+ǫ,V≤cxy−ǫ) by the sum of the γi+1− γi over those i for which the shaded sector between

these two path segments is an x-region. By the definition of cxy, the point σ is a limit point of both

x-regions and y-regions. In other words, the subset of shaded sectors that are in X≥cxy is a proper

subset of all k shaded sectors. It follows that ∂X≥cxy does not vanish in H1(V,V≤cxy−ǫ), and we

have our contradiction. This establishes (ii) of Theorem 3.4 in the case of only one critical point at

height c∗ and also gives the characterization of Cσ in part (ii) of Theorem 3.5 in this case.

When there is more than one critical point σ with h(σ) = c∗, it follows from the definition of

cxy that for at least one such σ, the k local regions include at least one x-region and at least one

y-region. The formula in part (ii) of Theorem 3.5 continues to hold at each σ. This vanishes when

all the regions are of one type, giving the characterization of Ξ in part (i) of Theorem 3.5. The

direct sum decomposition in part (ii) of Theorem 2.7 allows us to write C∗ as
∑

σ∈Ξ Cσ, establishing
part (iii). �

4 Effective computation

By describing c∗,Ξ and C∗ in terms of x- and y-regions, Theorems 3.4 and 3.5 give us a means to

compute c∗,Ξ and C∗. One possible approach is as follows. Instead of following ∂V≥c down from

c = ∞ to c∗, we follow paths upward from each critical point until we find what we’re looking

for. A critical point of order k has k computable steepest ascent directions. The backbone of our

computation will therefore be:

1. Compute the critical points and order them by decreasing height.

2. For the highest saddle, for each of the k ascent paths, check whether it converges to the x-axis

or the y-axis.

3. if there is at least one of each type, set c∗ equal to the height of this saddle, set Cσ according

to part (ii) of Theorem 3.5, and do the same for any other saddles at this height.

4. If all are of the same type, then continue to the next lower saddle and iterate.

It should be clear that no new theorems are required in order to implement this program. However, a

number of computational apparati are required in order to make such a program completely effective;

this section, which contains no major theorems, is devoted to implementation.
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Chief among the needed computational apparati is a way to compute ascent paths. Discretizing,

we have the problem: given (x, y) ∈ V, produce a point (x′, y′) with h(x′, y′) > h(x, y) such that

there is a strictly ascending path in V from (x, y) to (x′, y′). Assuming we can do this, we must

also ensure that this process ends after finitely many steps with identification as an x-component

or a y-component. This, together with some computer algebra, will complete our preparation for

implementation.

4.1 Ball arithmetic and Mathemagix

For our implementation we have chosen the platform Mathemagix [vdHLM+02]. This platform

was designed for rigorous computations with objects of both algebraic and analytic nature. On the

one hand, the algorithms in this paper indeed rely on purely symbolic pre-computations, which will

be done using Gröbner bases. On the other hand, our ascent paths are a special case of rigorous

computations with analytic functions. Interval arithmetic is a systematic device for carrying out

such computations [Moo66, AH83, Neu90, MKC09, Rum10]. We will use a variant, called ball

arithmetic [vdH09], which is more suitable for computations with complex numbers. The use of

interval arithmetic to achieve full rigor contrasts to other homotopy continuation methods such as

the package Bertini [SW07] which use bootstrap testing that is extremely reliable but still heuristic.

Although there is a large community for interval arithmetic, these techniques are not so common in

other areas. For this reason, we will recall the basic principles of ball arithmetic.

Ball arithmetic

Given c ∈ C and r ∈ R≥0, denote by B(c, r) the closed ball with center c and radius r. In what

follows, a complex ball number is a ball B(c, r) with c ∈ Q[i] and r ∈ Q≥0. We think of such a ball

number as representing a generic complex number z ∈ B(c, r). The standard arithmetic operations

can be defined on ball numbers as follows:

B(c, r) + B(c′, r′) = B(c+ c′, r + r′)

B(c, r)− B(c′, r′) = B(c− c′, r + r′)

B(c, r) · B(c′, r′) = B(c · c′, (|c|+ r)r′ + r|c′|)

Given ∗ ∈ {+,−, ·} and B(c′′, r′′) = B(c, t) ∗ B(c′, r′), these definitions have the property that

z ∈ B(c, r) and z′ ∈ B(c′, r′) =⇒ z ∗ z′ ∈ B(c′′, r′′) .

Similar definitions can be given for other operations, such as division, exponentiation, logarithm,

and so forth. Notice that any element z ∈ Q[i] gives rise to a ball number B(z, 0).

In practice, Q is usually replaced by Fp,q, the set of floating point numbers x = m2e whose

mantissa m ∈ Z and exponent e ∈ Z have bounded bit lengths p ∈ N and q ∈ N respectively. In that
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case the operations in Fp,q have additional rounding errors, and the definitions of the operations on

ball numbers must be adjusted to take into account these additional errors. Furthermore, we must

allow for the case where r = +∞. For more details, we refer to [vdH09, Section 3.2].

Ball arithmetic allows for the reliable evaluation of more complicated expressions (or programs)

f(z1, . . . , zk) that are built up from the basic operations. Indeed, by induction over the size of the

expression, it is easily verified that

z1 ∈ B(c1, r1), . . . , zk ∈ B(ck, rk) =⇒ f(z1, . . . , zk) ∈ f(B(c1, r1), . . . ,B(ck, rk)) .

Furthermore, it can be shown that ball arithmetic remains continuous in the sense that the radius

of f(B(c1, r1), . . . ,B(ck, rk)) will tend to zero if r1, . . . , rk all tend to zero.

Complex algebraic numbers

Thus far, we have no reliable zero test for ball numbers. In one direction, if B(c, r) ∩ B(c′, r′) = ∅,
then we can be sure that z 6= z′ for any z ∈ B(c, r) and z′ ∈ B(c′, r′). However the converse does not
hold: if B(c, r) ∩ B(c′, r′) 6= ∅, then we do not know whether z = z′ for z ∈ B(c, r) and z ∈ B(c′, r′).
Of course, for some algorithms it is necessary to be able to decide equality. Fortunately, this can be

accomplished for the subclass of algebraic numbers.

Represent a complex algebraic number z by a triple (P, c, r) where P ∈ Q[t] is a square free poly-

nomial and B(c, r) is a ball number such that z is the unique root of P in B(c, r). This representation
is of course not unique. The condition that z be the unique root of P in B(c, r) may be replaced by

a more explicit sufficient condition due to Krawczyk and Rump [Kra69, Rum80, Rum10]. Consider

the expression

B(c′, r′) = Φ(B(c, r)) := c− P (c)

P ′(c)
+

(

1− P ′(B(c, r))
P ′(c)

)

· B(0, r), (4.1)

evaluated using ball arithmetic. If B(c′, r′) is contained in the interior of B(c, r) then it is certified

that P admits one and only one root z ∈ B(c, r). In particular, z = 0 if and only if P is divisible

by t. Moreover, for any ǫ > 0, there exists an iterate B(cn, rn) = Φn(B(c, r)) such that rn < ǫ and

z ∈ B(cn, rn). In other words, the triple (P, c, r) may be replaced by a new triple (P, cn, rn) for

which the radius rn is arbitrarily small.

We will denote by A the set of complex algebraic numbers. Using the above representation,

arithmetic operations in A are easy to implement. For instance, assume that we want to compute the

sum of two algebraic numbers represented by (P, c, r) and (Q, c′, r′). We first use symbolic algebra to

compute the square free part R of the annihilator of all sums of a root of P and a root of Q. Replacing

B(c, r) and B(c′, r′) by smaller balls if necessary, we next ensure that B(x′′, r′′) := B(c, r) + B(c′, r′)
satisfies the above Krawczyk-Rump test for R. The triple (R, c′′, r′′) then represents the sum.
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Combining Gröbner basis techniques, e.g., [CLO98], with algorithms for complex root finding of

univariate polynomials [Sch82, BF00], the following can be shown in a similar way: there exists an

algorithm which takes as input a zero-dimensional ideal of Q[t1, . . . , tk] and produces as output all

complex solutions in the form of vectors of ball numbers describing disjoint poly-balls each containing

a unique root.

Ascent paths

Given a point z0 ∈ Q[i] with f(z0) 6= 0 6= f ′(z0), it will be important to be able to compute a line

segment of ascent, namely another rational complex number z1 such that |f | increases on the line

segment from z0 to z1. First, we note the following procedure to check whether a ball lies entirely

in the sector Sπ/4 of complex numbers whose arguments are strictly between −π/4 and π/4. We

consider a ball B(c, r) that is known to intersect Sπ/4 and we let B(c′, r′) denote Re {B(c, r)2} in

ball arithmetic. If r′ < |c′| then zero is not in B(c′, r′), hence by continuity B(c, r)2 lies in the open

right half-plane. Because B(c, r) is known to intersect Sπ/4, it follows that B(c, r) lies in Sπ/4 rather

than −Sπ/4. In other words, to conclude that B(c, r) ⊆ Sπ/4, it is sufficient that r′ < |c′| in the ball

number that is the real part of the square of B(c, r).

Proposition 4.1. Let f be locally analytic such that f and f ′ can be evaluated using ball arithmetic.

Let z0 be a rational point at which f(z0) 6= 0 6= f ′(z0).

(i) For ǫ > 0 sufficiently small, the function

u 7→
f ′(z0 + u f(z0)

f ′(z0)
)

f ′(z0)
(4.2)

evaluated at u = B(0, ǫ) is contained in Sπ/4.

(ii) For such an ǫ > 0, the function |f | is strictly increasing on the line segment from z0 to

z0 + ǫ f(z0)
f ′(z0)

.

Remark 4.2. Let ǫ0(f, z0) denote the supremum of those ǫ > 0 satisfying (4.2) when evaluated in

ball arithmetic. Although implementation-dependent, this quantity is continuous as a function of

z0. It is also easy to find an ǫ > 0 which satisfies (4.2) and which is larger than ǫ0(f, z0)/2: just

keep doubling ǫ as long (4.2) remains satisfied.

Proof: Change variables to the function g defined by

g(u) :=
1

f(z0)
f

(

z0 + u
f(z0)

f ′(z0)

)

.

Thus g(0) = g′(0) = 1. Because 1 is in the interior of Sπ/4, continuity of ball arithmetic implies that

g′(B(0, ǫ)) lies in Sπ/4 for sufficiently small positive ǫ. The function in (4.2) is precisely g′, which
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proves (i). For (ii), observe that for u ∈ [0, ǫ] we have

g(u) =

∫ u

0

g′(v) dv ∈ Sπ/4 . (4.3)

This implies Arg (g′(u)/g(u)) ∈ (−π/2, π/2) for all u ∈ [0, ǫ]. Thus |g| increases strictly on [0, ǫ],

and changing variables back to f gives (ii). �

More generally, we will need to compute a segment of ascent for algebraic points where the

derivative vanishes to some order k. The same argument as for Proposition 4.1 easily shows the

following.

Proposition 4.3. Let f be locally analytic such that f and its first k derivatives may be evaluated

using ball arithmetic. Let z0 be a rational point at which f(z0) 6= 0 6= f (k)(z0) while f
(1)(z0) = · · · =

f (k−1)(z0) = 0. Define

g(u) :=
1

f(z0)
f

(

z0 + u

[

f(z0)

f ′(z0)

]1/k
)

where any choice of the kth root is allowed. Then when ǫ > 0 is sufficiently small, g(k)(B(0, ǫ)) ⊆
Sπ/4 and for such an ǫ, the magnitude of f will increase strictly on the line segment from z0 to

z0+ ǫ[f(z0)/f
(k)(z0)]

1/k. Furthermore, computing such an ǫ for each choice of 1/k power and taking

the minimum ensures that |f | increases on all k line segments simultaneously. �

4.2 The use of ascent paths to compute invariants on V

We now harness these computational devices to compute the topological invariants of V that are

required for asymptotics, namely c∗,Ξ and paths. We begin by transferring ascent segments of a

function (Propositions 4.1 and 4.3) to ascending paths on the Riemann surface V. Let W denote the

set of points z = (x, y) ∈ V \ saddles with x ∈ Q[i] and ∂Q/∂x(z) 6= 0. We may represent elements

of W as ball numbers with first coordinate radius zero and second coordinate radius small enough

that the ball contains only one root of Q(x, ·).

Proposition 4.4 (rigorous ascent step). There is a ball-computable function φ : W → W with

the following properties. Let z0 = (x0, y0) ∈ W and denote z1 := (x1, y1) := φ(z0). Then the line

segment [x0, x1] lifts uniquely to a curve in V connecting z0 to z1, along which h is strictly increasing.

Furthermore, φ may be chosen so that h(z1)− h(z0) is bounded below by a positive constant cK on

any bounded subset K of W whose closure avoids saddles and points where ∂Q/∂x vanishes.

Proof: Given z0 ∈W , let y be the locally analytic function such that y(x0) = y0 andQ(x, y(x)) = 0.

Apply Proposition 4.1 to f(z) := exp[h(z, y(z))] and z0 = x0, obtaining a segment [x0, x1] =

[z0, z0 + ǫ1f(z0)/f
′(z0). It is easy, computationally, to choose ǫ1 always to be at least ǫ0/2. Define

φ1(z0) := z1 := (x1, y1). The lifting of [x0, x1] to V is a path along which h increases, hence
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h(φ1(z))− h(z) is strictly positive. Let us check that this difference is bounded below by a positive

constant on compact sets.

We know ǫ1 is bounded away from zero on compact sets avoided by saddles and ∂Q/∂x because

ǫ0 is. Letting h(z0, t) denote the derivative of |f | along the lifted segment at z0 + tf(z0)/f
′(z0), and

observing that h(z0, 0) is bounded below by a positive constant on compact sets avoiding saddles,

we conclude that h(φ1(z)) − h(z) is indeed bounded below by a positive constant c′K on compact

sets, K.

This gives the conclusion we desire except that x1 may not be rational. To correct this, note

that all we used about ǫ1 was that was guaranteed to be in the interval [cǫ0, ǫ0] for some constant

c. Having computed ǫ1, we may choose ǫ > 0.99ǫ1 such that ǫf(z0)/f
′(z0) is rational. Denoting

the endpoint of the new shorter lifted path by φ(z), the same argument as before now shows that

h(φ(z))− h(z) is bounded from below by a positive constant, finishing the proof. �

�

Having defined a step from a point not near a saddle, we next find a way to ascend out of a

saddle. The following proposition describes a way to do this. The proof is nearly identical to the

proof of Proposition 4.4 and is omitted.

Proposition 4.5 (ascent from a saddle). Let z0 = (x0, y0) ∈ saddles with x0 ∈ Q[i]. Suppose

∂Q/∂x does not vanish at z0. Then we may compute a rational ψ(x0) such that the union of the

radial line segments
{

[x0, x0 + φ(x0)e
2πij/k] : 0 ≤ j ≤ k − 1

}

lifts uniquely to a union of paths from z0 on V on each of which h is strictly increasing. �

The following proposition allows us to terminate an ascent path when it comes close enough to

the x-axis or y-axis.

Proposition 4.6 (arrival at X or Y ). Fix r̂ with r/s /∈ bad and let h = hr̂. Let cmax denote the

greatest critical value of h and cmin denote the least critical value. Let ǫ be small enough so that there

are no critical points (x, y) with |x| < ǫ. Then any point (x, y) ∈ V with |x| < ǫ and h(x, y) > cmin

is in X>cmax .

Remark. The hypothesis is formulated so as to be easily checked using ball arithmetic: letting J be

the ideal generated by the critical point equations (2.9), we take ǫ to be sufficiently small such that

the ball solutions to J are disjoint from the ball B(0, ǫ). Also note that the roles of x and y may be

switched to yield an analogous result.

Proof: Let ǫ be as in the hypothesis. We know that the graph of V over B(0, ǫ) is a union of

graphs of Puiseux series. Recall that as x→ 0 on one of these components, h→ ∞ except possibly
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for some “low” components on which y is unbounded and h → −∞. By hypothesis, h cannot take

on a critical value on any of these components, so we have h > cmax on the high components and

h < cmin on the low components. This accounts for all solutions to |x| < r on V ′, hence |x| < r

together with c > cmin suffices to assure that a point (x, y) ∈ V is in X>cmax . �

The next proposition allows ascent paths to terminate when they come sufficiently near a saddle.

Without this improvement there is a danger that an ascent path could converge to a saddle along an

infinite sequence of ever smaller steps. This necessary improvement is also a big time-saver. Step 2

of the algorithm at the beginning of Section 4 calls for us to identify which axis is the limit of each

ascent path from a given saddle. Proposition 4.7 classifies an ascent path once it comes near any

higher saddle, thereby saving the remainder of the journey to the axes.

Proposition 4.7 (bypassing a saddle). Let c > c∗ be a critical value of h and let (x0, y0) be a

critical point at height c in X≥c. Suppose there is an ǫ > 0 for which the following conditions hold.

(i) For each x such that |x−x0| ≤ ǫ there is at most one solution to Q(x, y) = 0 with |y− y0| ≤ ǫ;

(ii) (x0, y0) is the unique critical point (x, y) of h on V with |x− x0|, |y − y0| ≤ ǫ.

Then |x− x0|, |y − y0| < ǫ and Q(x, y) = 0 together imply (x, y) ∈ X>c∗ .

Remarks. An identical result holds if X≥c and X>c∗ are replaced by Y ≥c and Y >c∗ throughout.

Also, hypotheses (i) and (ii) are easily checked in ball arithmetic.

Proof: Our first hypothesis on ǫ implies that the set

S := V ∩ {|x− x0| < ǫ} ∩ {|y − y0| < ǫ}

is a graph over B(x0, ǫ) of a univalent holomorphic function. Our second hypothesis implies that

V=c∗ does not intersect S. Because V=c∗ is the boundary of V<c∗ this implies that the entire set S

is contained in one component of V>c∗ . Because (x0, y0) is an element of S and is also in X>c∗ , we

conclude that S ⊆ X>c∗ which is the desired conclusion. �

Let σ1, σ2, . . . , σm be ball algebraic representations of the critical points in weakly descending

order of height. Fix r̂ /∈ bad. The algorithm outlined at the beginning of Section 4 may now be

described in detail, proved to terminate and proved to produce a correct answer. In the end, the

index j0 will be such that cj0 = c∗; each critical point will be classified as x, y, mixed or unclassified;

the set Ξ will be the set of mixed saddles; the unclassified saddles will be the ones lower than c∗.

Algorithm 4.8 (Computation of c∗,Ξ and C∗).

1. (initialization)

• Set j := 1.
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• Let ǫ be as in Proposition 4.6 and let ǫ′ be the analogous quantity with x and y switched.

• For 1 ≤ j ≤ m set 
lass(σj) := “unclassified”.

• Set c∗ := −∞.

2. (main loop) Repeat while h(σj) ≥ c∗:

• Set z0 := σj .

• Apply Proposition 4.5 with (x0, y0) = z0 for each of the k choices of 1/k power and let

zi for 1 ≤ i ≤ k denote the other endpoint of the resulting line segment.

• For i = 1 to k, initialize sub
lassi to “unclassified”.

• For i = 1 to k, initialize done to False and repeat until done:

– If the x-component of zi has modulus less than ǫ then set sub
lassi :=“x” and done :=

True;

– else if the y-component of zi has modulus less than ǫ′ then set sub
lassi :=“y” and

done := True;

– else if zi is in the ball B(σp) in the conclusion of Proposition 4.7 for any (x0, y0) =

σp : p < j then set sub
lassi := sub
lassp and done := True;

– else set zi := φ(zi) as in Proposition 4.4.

• – If 
lassi =“x” for all 1 ≤ i ≤ k then set 
lass(σj) =“x”.

– else if 
lassi =“y” for all 1 ≤ i ≤ k then set 
lass(σj) =“y”.

– else set 
lass(σj) := “mixed”.

• If c∗ = “undefined” and 
lass(σj) = “mixed” then set c∗ := h(σj).

• j := j + 1.

3. (finishing the computation)

• Set Ξ = ∅.
• For i = 1 to j, if 
lass(σi) =“mixed” then do:

– Ξ := Ξ ∪ {σj}.
– Compute Cσj

via Theorem 3.5 with Y (i) = 1sub
lassi=y
.

Theorem 4.9. This algorithm terminates and correctly computes c∗,Ξ and {Cσ : σ ∈ Ξ}.

Proof: The sequence z0, zi, φ(zi), φ(φ(zi)), . . . defines a polygonal path in x whose lifting to V is

an ascent path for h along which the value of h on each step increases by an amount bounded away

from zero. We must therefore reach the terminal conditions of the done loop in a number of steps

bounded by L, where L = M − cmin divided by this minimum step increase and M is the greatest
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height of any (x, y) ∈ V with |x| = ǫ. The k(σ) ascent paths from each critical point σ verify

whether each of the k regions is and x-region or a y-region; the algorithm computes cxy and thus,

by Theorem 3.4, computes c∗. Theorem 3.5 shows that the remainder of the algorithm computes Ξ

and C∗. �

4.3 Uniform asymptotics as r̂ varies

Let

monkey := {r̂ : hr̂ has a degenerate critical point }

where degenerate means having order 3 or higher. We use this name because the degenerate saddle

of order 3 is called a “monkey saddle” (downward regions for both legs and the tail).

Proposition 4.10. Assume for nondegeneracy that Q is not a binomial. Let J be the ideal in

C[x, y, λ] generated by the following three polynomials.

Q

xQx − λyQy

yQ2
y(Qx + xQxx) + xQ2

x(Qy + yQyy)− 2xyQxQyQxy (4.4)

Then (r, s) ∈ monkey implies r/s is the λ-coordinate of a solution to J . In particular, the set

monkey is the intersection of (0,∞) with the zero set of the elimination polynomial f of λ in J .

Proof: The first two generating polynomials for J define an algebraic function

λ(x, y) :=
xQx

yQy
(4.5)

on the variety {Q = 0}. This is the direction function of [PW02] in the sense that a point (x, y) ∈ V
is critical for hr̂ if and only if λ(x, y) = r/s. The derivative of λ on V with respect to, say, x, is

given by
d

dx

∣

∣

∣

∣

V

(λ) = λx + λy
−Qx

Qy

which vanishes exactly when the Wronskian λxQy −λyQx vanishes. Using the explicit formula (4.5)

for λ shows the Wronskian, up to some factors of y and Qy, to be the third of the given generators of

J . Vanishing of the derivative of λ on V is a necessary condition for the coalescing of two solutions

to λ = c on V. This proves the main conclusion. If there is no elimination polynomial for f in J

then λ is constant on V which implies that Q is binomial. We have assumed not, from which the

last statement follows. �

Let Ã := bad ∪monkey denote the set of troublesome directions. We see from Proposition 4.10

and the definition of bad that Ã is readily computed. Its complement in the arc of r̂ in the positive
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quandrant is a finite union of intervals with endpoints whose slopes are algebraic. On each interval

in Ãc, the asymptotic estimate for ar in Lemma 2.11 is uniform over compact sub-intervals. This

allows us effectively to give uniform asymptotics in all nondegenerate directions.

Algorithm 4.11.

• Compute Ã

• Enumerate the intervals of Ãc in the open arc parametrized by λ ∈ (0,∞) and choose one

rational value r(I) in each interval I.

• for each interval I do:

– Set r̂ = r(I)

– Use Algorithm 4.8 to compute c∗,Ξ and C∗
– Use Lemma 2.11 to write a uniform estimate for ar with r̂ ∈ I by summing (2.10) over

σ ∈ Ξ and i ∈ paths(σ).

• Interpret the formula as holding uniformly over compact subintervals of I, where multi-valued

quantities depending on r̂ are extended by homotopy from their values at r(I).

Discussion of remaining directions

To complete the asymptotic analysis of ar, we need to know what happens in the remaining direc-

tions. For each r̂ ∈ monkey, we have a formula given by inserting the estimates from Lemma 2.11

into Algorithm 4.8. These estimates are known to extend to Airy functions on the rescaled window

r = λs+ O(s1/2). Because the focus of this paper is how to make the computation of Ξ and paths

effective, we do not discuss the extensions of (2.10) to Airy function estimates in the present work.

When r/s = λ0 ∈ bad, there is a projective point of V of finite height. It is possible that this

point is a smooth point and not a critical point, in which case a change of chart maps gets rid of

it; the formulae for the two adjacent intervals I and I ′ will agree and will be valid throughout the

union I ∪ I ′ ∪ {λ0}. More often, however, the projective point fails to be a smooth point. In this

case the formulae on I and I ′ will in general be different and asymptotics in the direction λ0 will be

given by something other than (2.10).
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