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Abstract

Consider the class of exp-log constants, which is constructed from the integers using the field
operations, exponentiation and logarithm. Let z be such an exp-log constant and let n be its size
as an expression. Witness conjectures attempt to give bounds $(n) for the number of decimal
digits which need to be evaluated in order to test whether z equals zero. For this purpose, it
is convenient to assume that exponentials are only applied to arguments with absolute values
bounded by 1. In that context, several witness conjectures have appeared in the literature and
the strongest one states that it is possible to choose $(n) = O(n). In this paper we give a
counterexample to this conjecture. We also extend it so as to cover similar, polynomial witness
conjectures.

1. Introduction

Consider the class of exp-log constant expressions, which is constructed from the
integers using the field operations, exponentiation and logarithm. An important problem
in computer algebra is to test whether an exp-log constant expression c represents zero.
A straightforward approach is to evaluate c up to a certain number of decimal digits and
test whether this evaluation vanishes. Witness conjectures attempt to give bounds $(n)
for the number of decimal digits which are necessary as a function of the size n of the
expression c.

Of course, exponentials can be used in order to produce massive cancellations, like in

eee
10

+e−ee
10

− eee
10

− 1≈ 0.

? The paper was originally written using GNU TEXmacs (see www.texmacs.org). Unfortunately, Elsevier

insists on the use of LATEX with its own style files. Any insufficiencies in the typesetting quality should
therefore be imputed to Elsevier.

Email address: vdhoeven@texmacs.org (Joris van der Hoeven).

Preprint submitted to Elsevier Science 17 April 2006



For this reason, it is appropriate to allow only for exp-log expressions such that |s| 6 1 for
all subexpressions of the form es. In that context, several witness conjectures appeared
in the literature [van der Hoeven (1997, 2001a,b); Richardson (2001)], and the strongest
one states that we may take $(n) = O(n).

In this paper we give a counterexample to this strong witness conjecture. The coun-
terexample is based on the observation that it suffices to find a counterexample for the
power series analogue of the problem [van der Hoeven (2001b)] and a suggestion made by
D. Richardson. In Section 4, we will generalize our technique and give counterexamples
to all witness conjectures with $(n) = nO(1). However, for this generalization, we need
to extend the notion of exp-log constants so as to include algebraic numbers.

In what follows, we will freely use Hardy’s notations ϕ ≺ ψ for ϕ = o(ψ) and ϕ 4 ψ
for ϕ = O(ψ). We also write ϕ � ψ if ϕ 4 ψ 4 ϕ and ϕ ∼ ψ if ϕ− ψ ≺ ϕ. Finally, given
a field K, we denote K 6= = K \ {0}.

2. Notations

Let E be the set of admissible constant expressions built up from Z,+,−,×, /, exp
and log. Here a constant is said to be admissible if it evaluates to a real number. Given
c ∈ E , we denote by σ(c) ∈ N its size (the number of inner nodes in the corresponding
expression tree plus the number of digits which are needed to write the integers at the
leaves) and by c̄ ∈ R its evaluation. We denote by C ⊆ E the subset of all expressions c,
such that |s̄| 6 1 for all subexpressions of the form es.

Consider the ring R = Q[[z]] of formal power series. A series f = f0 + f1z + · · · ∈
R is said to be infinitesimal if f0 = 0. If f 6= 0, then its valuation is the smallest
number v(f) ∈ N with fv(f) 6= 0. Let S be the set of series expressions built up from z,
elements in Q, the ring operations and left composition of expressions which represent
infinitesimal series by one of the series

I = z/(1− z)

L= log(1 + z)

E = exp(z)− 1

Given such an expression f ∈ S, we denote by σ(f) ∈ N its size (the number of nodes of
the corresponding expression tree) and by f̄ ∈ R the represented series. We also denote
by #zf the number of occurrences of z in f and by v(f̄) the valuation of f̄ .

Given f ∈ S and g ∈ S with v(ḡ) > 0, the substitution of g for z in f yields another
series expression f ◦ g in S and we have

σ(f ◦ g) = σ(f) + (#zf)(σ(g)− 1) ; (1)

v(f ◦ g) = v(f̄)v(ḡ). (2)

Similarly, given f ∈ S and c ∈ C, such that |c̄| is sufficiently small, the substitution of c
for z in f yields a constant expression f(c) ∈ C of size

σ(f(c)) = σ̃(f) + (#zf)(σ(c)− 1), (3)
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where σ̃(f) is the number of inner nodes of f plus the sizes of the rational numbers on
the leaves. For c̄→ 0, we also have

log |f(c)| ∼ v(f̄) log |c̄|.

Proposition 1 Given f ∈ S with v(f̄) > 0 and k ∈ N, we have

σ(f◦k) = (σ(f)−#zf)
(#zf)k − 1
#zf − 1

+ (#zf)k ; (4)

v(f◦k) = v(f̄)k. (5)

If c ∈ C is such that |c̄| is sufficiently small, then we also have

σ(f◦k(c)) = (σ̃(f)−#zf)
(#zf)k − 1
#zf − 1

+ (#zf)kσ(c). (6)

Proof This follows from (1), (2) and (3) by a straightforward induction. 2

3. The strong witness conjecture

Consider

Φ = 2 log(1− log(1− z/2))− z ∈ S.

We have σ(Φ) = 11, #zΦ = 2 and v(Φ̄) = 3, since

Φ̄ =
1
24
z3 +O(z4).

Theorem 1 Let $ be a witness function with $(n) = O(nα) and α < log 3/ log 2. Then
there exists an expression Ω ∈ S of size n with Ω̄ 6= 0 and v(Ω̄) > $(n).
Proof By Proposition 1, we have n := σ(Φ◦k) = 10 · 2k − 9 � 2k and v(Φ◦k) = 3k. It
therefore suffices to take Ω = Φ◦k for a sufficiently large k. 2

Theorem 2 Let $ be a witness function with $(n) = O(nα) and α < log 3/ log 2. Then
there exists a constant expression c ∈ C of size n with c̄ 6= 0 and |c̄| 6 e−$(n).
Proof On the interval [0, 1

2 ], we notice that Φ̄ satisfies 0 6 Φ̄(c) 6 c3. Hence, |Φ◦k( 1
2 )| 6

2−3k

for all k. By Proposition 1, we also have n := σ(Φ◦k( 1
2 )) � 2k for large k. Therefore,

it suffices to take c = Φ◦k( 1
2 ) for a sufficiently large k. 2

4. Polynomial witness conjectures

Let Ê , Ĉ and Ŝ be the analogues of E , C and S, if we replace Z and Q by the set of
algebraic numbers Q̂ in their respective definitions. The size of an algebraic number c
is defined to be the minimal size of a polynomial equation satisfied by c. After choosing
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a suitable determination of log, the evaluations of constants in Ê are complex numbers.
The analogues of all observations in Section 2 remain valid.

Given l > 2 and a = (a0, . . . , al) ∈ (Q̂ 6=)l+1, we denote

Ψa = (a0z) ◦ log(1 + z) ◦ (a1z) ◦ · · · ◦ (al−1z) ◦ log(1 + z) ◦ (alz) ∈ Ŝ.

Lemma 1 Given a, b ∈ (Q̂ 6=)l+1 with b 6= a, we have Ψb 6= Ψa.
Proof Let i be maximal such that bi 6= ai. Modulo postcomposition of both sides of
the equation Ψb = Ψa with

log(1 + z) ◦ (ai+1z) ◦ · · · ◦ log(1 + z) ◦ (alz)]◦−1,

we may assume without loss of generality that i = l. Then Ψb admits a singularity above
z = −b−1

l , near to which Ψb � log◦l(z + b−1
l ). On the other hand, the number of nested

logarithms in the logarithmic transseries expansion of Ψa near any point above z = −b−1
l

cannot exceed l − 1. Therefore, we must have Ψb 6= Ψa. 2

Lemma 2 There exist a, b ∈ (Q̂ 6=)l+1 with Φ = Ψb −Ψa 6= 0 and v(Φ) > l.
Proof The mapping ξ from (Q̂6=)l+1 into Q̂l, which maps a to the first l Taylor co-
efficients of Ψa, is polynomial. Since dim(Q̂ 6=)l+1 > dim Q̂l, this mapping cannot be
injective. We conclude by the previous Lemma. 2

Theorem 3 Let $ be a witness function with

$(n) =O(nα log n)

α<
2 log 2− log3 2

4

Then there exists an expression Ω ∈ Ŝ of size n with Ω̄ 6= 0 and v(Ω̄) > $(n).
Proof With Φ as in Lemma 2, consider Ω = Φ◦k for large l ∈ N and

k=
⌈

log 2
2− log2 2

log l
⌉
.

Since σ(Φ) = 6l + 7, v(Φ̄) > l and #zΦ = 2, Proposition 1 implies

n := σ(Ω) = (6l + 9)(2k − 1) + 2k � l2k � l
2

2−log2 2 (7)

and

v(Ω̄) > lk = e
log 2

2−log 2 log2 l+O(log l). (8)

From (7) it follows that

log n=
2

2− log2 2
log l +O(1).
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Plugging this into (8), we obtain

v(Ω̄) > eα log2 n+O(log n),

which clearly implies the Theorem, by choosing l large enough. 2

Theorem 4 Let $ be a witness function with $(n) = O(nα) and α ∈ R>. Then there
exists an expression c ∈ Ĉ of size n with c̄ 6= 0 and |c̄| 6 e−$(n).
Proof With Φ as in Lemma 2, choose l such that log l/ log 2 > α. Then for r ∈ Q>∩[0, 1

2 ]
sufficiently small, the closed disk Br = {z ∈ C : |z| 6 r} is mapped into itself and
|Φ̄(z)| 6 zl for z ∈ Br. Now Proposition 1 implies n := σ(Φ◦k(r)) � 2k and |Φ◦k(r)| 6 rlk

for large k. Therefore, c = Φ◦k(r) yields the desired counterexample for a sufficiently large
k. 2

5. Algebraic counterexamples

The technique from the previous Section may also be used in order to produce algebraic
counterexamples. Indeed, given l > 0 and a = (a0, . . . , al) ∈ (Q̂6=)l+1, let

Ψa = (a0z) ◦
√

1 + z ◦ (a1z) ◦ · · · ◦ (al−1z) ◦
√

1 + z ◦ (alz)

Then we have the following analogue of Lemma 1:
Lemma 3 Given a, b ∈ (Q̂ 6=)l+1 with b 6= a, we have Ψb 6= Ψa.
Proof Consider the Riemann surface of Ψa admits an algebraic singularity at

z = zl = − 1
al

of degree 2. On one of the two leaves, we again have an algebraic singularity at

z = zl−1 = − 1
al

+
1

ala2
l−1

of degree 2, and so on for the zl−2, . . . , z1 given by

zi =
(
z

al
◦ (z2 − 1) ◦ z

al−1
◦ · · · ◦ z

ai+1
◦ (z2 − 1) ◦ z

ai

)
(−1).

We conclude by the observation that the mapping (a1, . . . , al) 7→ (z1, . . . , zl) is injective.
2

6. Conclusion

We have given counterexamples to the most optimistic kind of witness conjectures.
In the power series context, we previously proved a witness conjecture for a doubly
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exponential witness function $ [Shackell and van der Hoeven (2001)]. Hopefully, this
technique may be extended in order to yield Khovanskii-like bounds $(n) = eO(n2)

[Khovanskii (1991)]. If this turns out to be possible indeed, the next challenge would be
to study what happens for growth rates between eO(log2 n) and eO(n2). In particular, it
would be very useful for practical applications if the witness conjecture would hold for a
witness function of exponentiality 0 (i.e., log◦k ◦$ ◦ exp◦k ∼ Id for sufficiently large k).

It might also be interesting to further investigate the proof technique used in this
paper. For instance, can we do without algebraic numbers? Would it be possible to
replace Φ by Ψa − z in Lemma 2? Can we make Theorem 4 as strong as Theorem 3?
Does there exist an approximation theory for power series by expressions of the form Ψa

(analogous to Padé approximation)?
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6


