
DIFFERENTIALLY ALGEBRAIC GAPSMATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVENAbstra
t. H-�elds are ordered di�erential �elds that 
apture some basi
properties of Hardy �elds and �elds of transseries. Ea
h H-�eld is equippedwith a 
onvex valuation, and solving �rst-order linear di�erential equations inH-�eld extensions is strongly a�e
ted by the presen
e of a \gap" in the valuegroup. We 
onstru
t a real 
losed H-�eld that solves every �rst-order lineardi�erential equation, and that has a di�erentially algebrai
 H-�eld extensionwith a gap. This answers a question raised in [1℄. The key is a 
ombinato-rial fa
t about the support of transseries obtained from iterated logarithms byalgebrai
 operations, integration, and exponentiation.Introdu
tionThis paper is motivated by a basi
 problem about H-�elds, the gap problem, as weexplain later in this introdu
tion. In this paper \di�erential �eld" means \ordinarydi�erential �eld of 
hara
teristi
 0"; H-�elds are ordered di�erential �elds whoseordering and derivation intera
t in a strong way. The 
ategory of H-�elds wasde�ned in [1℄ as a 
ommon algebrai
 framework for two points of view on theasymptoti
 behavior of one-variable real-valued fun
tions at in�nity: the theory ofHardy �elds (see [9℄), and the more re
ent theory of transseries �elds, introdu
edby Dahn and G�oring [3℄ as well as �E
alle [4℄, and further developed in [15℄, [13℄,[14℄, [11℄. We hope that the theory ofH-�elds will lead to a better (model-theoreti
)understanding of Hardy �elds, and of their relation to �elds of transseries.For this introdu
tion, we assume that the reader has a

ess to [1℄ and [2℄; inparti
ular, the notations and 
onventions in these papers remain in for
e. Wejust re
all here that any H-�eld K (with 
onstant �eld C) 
omes equipped with adominan
e relation 4: for f; g 2 K, we havef 4 g () jf j 6 
jgj for some 
 2 C;and we write f � g if f 4 g and g 64 f ; we also write g < f instead of f 4 g, andg � f instead of f � g. (If K � R is a Hardy �eld, then K is an H-�eld and, inLandau's O-notation, f 4 g , f = O(g) and f � g , f = o(g).) For some basi
properties of these asymptoti
 relations we refer to [16℄ in the 
ase of transseries�elds, and [2℄ for H-�elds in general.Let K be an H-�eld. The set K41 = ff 2 K : f 4 1g of bounded elementsof K is a 
onvex subring of K; we shall always denote the asso
iated valuation byv : K ! � [ f1g, with � = v(K�), K� := Knf0g. For f; g 2 K we write f � g ifv(f) = v(g), that is, f 4 g and g 4 f . An element f of K is said to be in�nitesimalDate: O
tober 2003.2000 Mathemati
s Subje
t Classi�
ation. Primary 03C64, 16W60; Se
ondary 26A12.Key words and phrases. H-�elds, �elds of transseries.1



2 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENif f � 1, equivalently, jf j < 
 for all positive 
onstants 
 2 C, and in�nite if f � 1,equivalently, jf j > C.An H-�eld K is Liouville 
losed if K is real 
losed, and any �rst-order lineardi�erential equation y0 + fy = g with f; g 2 K has a solution in K. A Liouville
losure of an H-�eldK is a Liouville 
losedH-�eld L extendingK whi
h is minimalwith this property. Every H-�eld K has at least one, and at most two, Liouville
losures, up to isomorphism over K. Given a di�erential �eld F , an element f 2F� and an element y in some di�erential �eld extension of F we let fy := f 0=fdenote the logarithmi
 derivative of f , and let F hyi := F (y; y0; y00; : : : ) be thedi�erential �eld generated by y over F . A di�erential �eld F is said to be 
losedunder integration if for ea
h g 2 F there is f 2 F with f 0 = g.Gaps in H-�elds. In an H-�eld, asymptoti
 relations between elements of non-zero valuation may be di�erentiated: if f; g 6� 1, then f � g , f 0 � g0. Inparti
ular, if f is in�nitesimal and g is in�nite, then f 0 � g0. Also, if " and Æare non-zero in�nitesimals, then "0 � Æy. A gap in an H-�eld K is an element
 = v(g), g 2 K�, of its value group � su
h that "0 � g � Æy for all non-zeroin�nitesimals "; Æ. An H-�eld has at most one gap, and has no gap if it has asmallest 
omparability 
lass or is Liouville 
losed. Further examples of H-�eldswithout a gap 
an be obtained using the H-�eld of transseries of �nite exponentialand logarithmi
 depth with real 
oeÆ
ients, denoted by R((x�1 ))LE in [14℄, andby R[[[x℄℄℄ in [15℄: ea
h ordered di�erential sub�eld of R[[[x℄℄℄ that 
ontains R is anH-�eld without a gap.If an H-�eld K has a gap v(g) as above, then K has exa
tly two Liouville
losures, up to isomorphism over K: one in whi
h g = "0 with in�nitesimal ", andone where g = h0 with in�nite h. This \fork in the road" due to a gap 
ausesmu
h trouble. For a model-theoreti
 analysis of (existentially 
losed) H-�elds, oneneeds to understand when a given H-�eld 
an have a di�erentially algebrai
 H-�eld extension with a gap. (An extension LjK of di�erential �elds is said to bedi�erentially algebrai
 if every element of L is a zero of a non-
onstant di�erentialpolynomial over K).The gap problem. The simplest type of di�erentially algebrai
 extensions areLiouville extensions. If K is a real 
losed H-�eld and L = K(y) is an H-�eld exten-sion with y0 2 K, then L has a gap if and only if K does, by [1℄, [2℄. However, [2℄also has an example of a real 
losed H-�eld K without a gap, but su
h that someH-�eld extension L = K(y) � K with y 6= 0, yy 2 K, has a gap. It may evenhappen that an H-�eld K has no gap, but its real 
losure does. These examplesraise the question (
alled the \gap problem" in [1℄) whether the 
reation of gaps indi�erentially algebrai
 H-�eld extensions 
an be 
on�ned to Liouville extensions.More pre
isely, we asked the following:Suppose L is a di�erentially algebrai
 H-�eld extension of a Liouville 
losed H-�eld K. Can L have a gap? (A negative answer would have been wel
ome.)Our main result is an example where the answer is positive. This example is aboutas simple as possible, and may well be generi
 in some sense.Outline of the example. No di�erentially algebrai
 H-�eld extension of R[[[x℄℄℄
an have a gap, by [2℄, Corollary 12.2, and this statement remains true when R[[[x℄℄℄



DIFFERENTIALLY ALGEBRAIC GAPS 3is repla
ed by any Liouville 
losed H-sub�eld. Our example will indeed live in alarger �eld T of transseries, as we shall indi
ate.First, let L denote the multipli
ative ordered subgroup of R[[[x℄℄℄>0 generatedby the real powers of the iterated logarithms`0 := x; `1 := logx; `2 := log log x; : : : ; `n := logn x; : : :of x (the group of logarithmi
 monomials, see Se
tion 2). This gives rise toL := R[[L℄℄ (the �eld of logarithmi
 transseries):In the beginning of Se
tion 3 we equip L with a derivation making it anH-�eld with
onstant �eld R. Let T be the �eld of transseries of �nite exponential depth andlogarithmi
 depth at most !, with real 
oeÆ
ients (denoted by R!<! [[[x℄℄℄ in [15℄).At this stage we only mention that T is obtained from L by an indu
tive pro
edureof 
losure under exponentiation. (Details of this pro
edure are in [15℄, Chapter 2,and are re
alled at the beginning of Se
tion 4.) As a result of its 
onstru
tion T
omes equipped with a derivation that makes it a real 
losed H-�eld extension of L(with same 
onstant �eld R), and with an isomorphism exp of the ordered additivegroup of T onto its positive multipli
ative group T>0, whose inverse is denoted bylog, su
h that exp(f)0 = f 0 exp(f) for all f 2 T and log `n = `n+1 for all n.Moreover, the sequen
e `0; `1; `2; : : : is 
oinitial in the set of positive in�niteelements of T and hen
e 1=`0; 1=`1; 1=`2; : : : is 
o�nal in the set of positive in�nites-imals of T. Also, R[[[x℄℄℄ � T, as H-�elds and as exponential �elds. Here is adiagram illustrating the various H-�elds and their in
lusions (indi
ated by arrows):L = R[[L℄℄ - T6 6R(L) - R[[[x℄℄℄Whereas the H-�eld L does not have a gap (see Se
tion 3), the H-�eld T does . Inparti
ular, T is not Liouville 
losed. To see this, we set as in [4℄, Chapter 7:� := `1 + `2 + `3 + � � � 2 L:In T we have (`n)y = (`n+1)0 = exp��(`1 + `2 + � � �+ `n+1)�, and thus(1=`n)0 � exp(��) � (1=`n)y for all n.(Intuitively, exp(��) represents the in�nitely long logarithmi
 monomial 1`0`1`2��� .)Therefore v(exp(��)) is a gap in T, and hen
e is a gap in ea
h H-sub�eld of T that
ontains exp(�). So any Liouville 
losed H-sub�eld K of T with a di�erentiallyalgebrai
 H-�eld extension L � T 
ontaining exp(�) is an example as 
laimed. Put� := �0 = 1̀0 + 1`0`1 + 1`0`1`2 + � � �+ 1`0`1 � � � `n + � � � 2 L:Let % := 2�0 + �2 2 L. A 
omputation shows that% = �� 1̀20 + 1(`0`1)2 + 1(`0`1`2)2 + � � �+ 1(`0`1 � � � `n)2 + � � �� :We shall prove (Corollary 5.13):Theorem. There exists a Liouville 
losed H-sub�eld K � R(L) of T su
h that% 2 K.



4 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENGiven K as in the theorem, let L := K� exp(�); �� � T. Sin
e exp(�)y = � and�0 = %� (1=2)�2, L is an H-sub�eld of T and di�erentially algebrai
 over K; thusK and L are an example as 
laimed.We shall 
onstru
t a K as in the theorem by isolating a 
ondition on transseriesin T, namely \to have de
ay > 1", a 
ondition satis�ed by %, but not by �. Themain e�ort then goes into showing that this 
ondition de�nes a Liouville 
losedH-sub�eld of T as in the Theorem.Organization of the paper. After preliminaries in Se
tion 1 on transseries, weintrodu
e in Se
tion 2 the property of subsetsS of L to have de
ay> 1. In Se
tion 3we 
onsider the subset L1 of L 
onsisting of those series whose support has de
ay >1, and show that L1 is an H-sub�eld of L 
losed under integration and takinglogarithms of positive elements. (By 
onstru
tion, % 2 L1 , but � =2 L1 .) Se
tion 4is the most te
hni
al; it fo
uses on subgroupsM of the group T of monomials of Tand shows, under mild assumptions in
luding exp(�) =2M, that then the transseries�eld R[[M℄℄ is 
losed under a natural derivation on R[[T℄℄ extending that of T, and isalso 
losed under integration. (Here we make essential use of the Impli
it Fun
tionTheorem from [17℄.) In Se
tion 5 we prove the main theorem by extending L1 to aLiouville 
losed H-sub�eld T1 of T. We �nish with 
omments on the transseries �and %. 1. PreliminariesIn our notations we mostly follow [17℄. Throughout this paper we let m and nrange over N := f0; 1; 2; : : :g.Strong linear algebra. Let (M;4) be an ordered set. (We do not assume that 4is total, but we do follow the 
onvention that ordered abelian groups and ordered�elds are totally ordered.) A subset S of M is said to be noetherian if for everyin�nite sequen
e m1;m2; : : : in S there exist indi
es i < j su
h that mi < mj . Ifthe ordering 4 is total, then S �M is noetherian if and only if S is well-orderedfor the reverse ordering <, that is, there is no stri
tly in
reasing in�nite sequen
em0 � m1 � � � � in S. Let C be a �eld. ThenC[[M℄℄ := (f = Xm2M fmm : all fm 2 C; supp f �M is noetherian) ;where supp f = fm 2 M : fm 6= 0g is the support of f , denotes the C-ve
torspa
e of transseries with 
oeÆ
ients in C and monomials from M. We refer to [17℄for terminology and basi
 results 
on
erning \strong linear algebra" in C[[M℄℄. Inparti
ular, a family (fi)i2I in C[[M℄℄ is 
alled noetherian if the setSi2I supp fi �Mis noetherian and for ea
h m 2 M there exist only �nitely many i 2 I su
h thatm 2 supp fi. In this 
ase, we putXi2I fi := Xm2M Xi2I fi;m!m;an element of C[[M℄℄.Let (N;6) be a se
ond ordered set. A C-multilinear map �: C[[M℄℄n ! C[[N℄℄is 
alled strongly multilinear if for all noetherian families�f1;i1)i12I1 ; : : : ; (fn;in�in2In



DIFFERENTIALLY ALGEBRAIC GAPS 5in C[[M℄℄ the family ��(f1;i1 ; : : : ; fn;in)�(i1;:::;in)2I1�����Inin C[[N℄℄ is noetherian and� Xi12I1 f1;i1 ; : : : ; Xin2In fn;in! = X(i1;:::;in)2I1�����In�(f1;i1 ; : : : ; fn;in):In the 
ase n = 1 we say that � is strongly linear. Clearly a strongly multilinearmap C[[M℄℄n ! C[[N℄℄ is strongly linear in ea
h of its n variables.A map ' : M ! C[[N℄℄ is said to be noetherian if for every noetherian subsetS � M, the family ('(m))m2S in C[[N℄℄ is noetherian; equivalently, for everyin�nite sequen
e m1 � m2 � � � � of monomials in M and ni 2 supp'(mi) for i > 1,there exist i < j su
h that ni � nj . A noetherian map M ! C[[N℄℄ extends to aunique strongly linear map C[[M℄℄ ! C[[N℄℄ (Proposition 3.5 in [17℄), and everystrongly linear map C[[M℄℄! C[[N℄℄ restri
ts to a noetherian map M! C[[N℄℄.A map �: C[[M℄℄! C[[N℄℄ is 
alled noetherian if there exists a family (Mn)n2Nof strongly multilinear maps Mn : C[[M℄℄n ! C[[N℄℄su
h that for every noetherian family (fk)k2K in C[[M℄℄ the family�Mn(fk1 ; : : : ; fkn)�n2N;k1;:::;kn2Kin C[[N℄℄ is noetherian and� Xk2K fk! = Xn2Nk1;:::;kn2KMn(fk1 ; : : : ; fkn):The family (Mn) is 
alled a multilinear de
omposition of �. If 
harC = 0, then theMn may 
hosen to be symmetri
, and in this 
ase the sequen
e (Mn)n2N is uniquelydetermined by � ([17℄, Proposition 5.8). Every strongly linear map �: C[[M℄℄ !C[[N℄℄ is noetherian, with multilinear de
omposition (Mn) given by M1 = � andMn = 0 for n 6= 1. Conversely, if C is in�nite, then every linear noetherian map isstrongly linear, as we show next.Lemma 1.1. Suppose the �eld C is in�nite and (fi)i2N is a noetherian family inC[[M℄℄. Let � : C ! C[[M℄℄ be given by �(�) =Pi �ifi, and suppose � is C-linear.Then fi = 0 for all i 6= 1.Proof. Suppose m 2 Si supp fi; let i1 < � � � < in be the indi
es i su
h that m 2supp fi, and put 
k := (fik )m 2 C for k = 1; : : : ; n. With � 2 C we have �(�)m =��(1)m, that is, �i1
1 + � � �+ �in
n = �(
1 + � � �+ 
n):Sin
e C is in�nite, this yields n = 1 and i1 = 1. �Corollary 1.2. Suppose the �eld C is in�nite, and the map �: C[[M℄℄ ! C[[N℄℄is noetherian and C-linear. Then � is strongly linear.



6 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENProof. Let (Mn)n2N be a multilinear de
omposition of �. Let f 2 C[[M℄℄, andde�ne � : C ! C[[N℄℄ by �(�) = �(�f). Then�(�) =Xi �ifi with fi :=Mi(f; : : : ; f),and � is C-linear. Hen
e fi = 0 for all i 6= 1, by the previous lemma. It followsthat � =M1. �We equip the disjoint unionMqN with the least ordering extending those ofMand N. The natural in
lusions i : M!MqN and j : N!MqN extend uniquelyto strongly linear maps bi : C[[M℄℄! C[[MqN℄℄, and bj : C[[N℄℄! C[[MqN℄℄. Thisyields a C-linear bije
tion(f; g) 7! bi(f) + bj(g) : C[[M℄℄� C[[N℄℄! C[[M qN℄℄:When 
onvenient, we identify C[[M℄℄ � C[[N℄℄ with C[[M q N℄℄ by means of thisbije
tion. For example, we say that a map �: C[[M℄℄�C[[N℄℄! C[[M℄℄ is stronglylinear (respe
tively, noetherian) if �, 
onsidered as a map C[[MqN℄℄! C[[M℄℄, isstrongly linear (respe
tively, noetherian). The following is the strongly linear 
aseof Theorems 6.1 and 6.3 in [17℄ (Van der Hoeven's impli
it fun
tion theorem):Theorem 1.3. Let the map (f; g) 7! �(f; g) : C[[M℄℄�C[[N℄℄! C[[M℄℄ be stronglylinear su
h that supp�(m; 0) � m for all m 2M. Then for ea
h g 2 C[[N℄℄ there isa unique f = 	(g) 2 C[[M℄℄ su
h that �(f; g) = f . For ea
h g 2 C[[N℄℄ the family�	n+1(g)�	n(g)�n2N in C[[M℄℄ with	0(g) = �(0; g); 	n+1(g) = ��	n(g); g� for all nis noetherian with 	(g) = 	0(g) +Xn2N�	n+1(g)�	n(g)�:The map g 7! 	(g) : C[[M℄℄! C[[M℄℄ is noetherian.The following 
onsequen
e for inverting strongly linear maps is important later:Corollary 1.4. Suppose that C is in�nite. Let �: C[[M℄℄ ! C[[M℄℄ be a stronglylinear map su
h that supp�(m) � m for all m 2 M. Then the strongly linearoperator Id+� on C[[M℄℄ is bije
tive with strongly linear inverse given by(Id+�)�1(g) = 1Xn=0(�1)n�n(g): (1.1)Proof. Let �1 : C[[M℄℄ � C[[M℄℄ ! C[[M℄℄ be given by �1(f; g) = g � �(f). Then�1 is strongly linear and supp�1(m; 0) = supp�(m) � m for all m 2 M. By thetheorem above with �1 in pla
e of � we obtain a a noetherian 	: C[[M℄℄! C[[M℄℄su
h that (Id+�) Æ	 = Id. By Corollary 1.2, 	 is strongly linear.The assumption on � yields that Id+� has trivial kernel, so Id+� is inje
tive,and thus 	 is even a two-sided inverse of Id+�. Moreover, in the notation ofTheorem 1.3 we have	0(g) = g; 	1(g) = g � �(g); 	2(g) = g � �(g) + �2(g); : : :for every g, whi
h yields (1.1). �



DIFFERENTIALLY ALGEBRAIC GAPS 7Transseries �elds. In the rest of this se
tion, (M;4) is a multipli
ative orderedabelian group. (In parti
ular the ordering 4 is total.) Then C[[M℄℄ is a �eld, 
alledthe transseries �eld with 
oeÆ
ients in C and monomials from M. If S;S0 � Mare noetherian, so is SS0. For S �M, let S� be the multipli
ative submonoid ofM generated by S; if S �M is noetherian and S 4 1, then S� is noetherian.For non-zero f 2 C[[M℄℄ we putd(f) := max4 supp f (dominant monomial of f)and we 
all fd(f)d(f) 2 C� �M the dominant term of f . We extend the ordering 4on M to a dominan
e relation on C[[M℄℄: for series f and g in C[[M℄℄, we putf 4 g :() �f 6= 0; g 6= 0; d(f) 4 d(g)�; or f = 0f � g :() f 4 g ^ g 4 f;so for non-zero f and g: f � g () d(f) = d(g). We have the 
anoni
al de
ompo-sition of C[[M℄℄ into C-linear subspa
es:C[[M℄℄ = C[[M℄℄" � C � C[[M℄℄#;where C[[M℄℄" := ff 2 C[[M℄℄ : supp f � 1g = C[[M�1℄℄and C[[M℄℄# := ff 2 C[[M℄℄ : supp f � 1g = C[[M℄℄�1 = C[[M�1℄℄;the maximal ideal of the valuation ring C[[M℄℄41 = C � C[[M℄℄# of C[[M℄℄. Everyf 2 C[[M℄℄ 
an be uniquely written asf = f" + f= + f#;where f" 2 C[[M℄℄", f= 2 C, and f# 2 C[[M℄℄#. If C is an ordered �eld, then weturn C[[M℄℄ into an ordered �eld as follows:f > 0 () fd(f) > 0; for f 2 C[[M℄℄, f 6= 0. (1.2)In this 
ase, C[[M℄℄" = ff 2 C[[M℄℄ : jf j > Cgand C[[M℄℄# = ff 2 C[[M℄℄ : jf j < C>0g;and the valuation ring C[[M℄℄41 of C[[M℄℄ is a 
onvex subring of C[[M℄℄. Given anordered �eld C we shall refer to C[[M℄℄ as an ordered transseries �eld over C toindi
ate that C[[M℄℄ is equipped with the ordering de�ned by (1.2).Example 1.5. Let C = R andM = xR, a multipli
ative 
opy of the ordered additivegroup of real numbers, with isomorphism r 7! xr : R ! xR. Then we havef" =Xr>0 arxr; f= = a0; f# =Xr<0 arxrfor f =Pr arxr 2 R[[xR℄℄.Let X = (X1; : : : ; Xn) be a tuple of distin
t indeterminates andF (X) =X� a�X� 2 C[[X ℄℄



8 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENa formal power series; here the sum ranges over all multiindi
es � = (�1; : : : ; �n) 2Nn , and a� 2 C, X� = X�11 � � �X�nn . For any n-tuple " = ("1; : : : ; "n) of elementsof C[[M℄℄#, the family (a�"�)� is noetherian [8℄, where "� = "�11 � � � "�nn . PutF (") :=X� a�"� 2 C[[M℄℄41:The proof of the following lemma is similar to that of [12℄, Lemma 2.5.Lemma 1.6. Suppose that C is real 
losed and the group M is divisible. Then anysub�eld K � C[M℄ of C[[M℄℄ with the property that F (") 2 K for all F 2 C[[X ℄℄and " = ("1; : : : ; "n) with "1; : : : ; "n 2 K�1 is real 
losed.Di�erentiation. If C[[M℄℄ is an H-�eld with respe
t to a derivation f 7! f 0 with
onstant �eld C and with respe
t to the ordering extending an ordering on C via(1.2), then the dominan
e relation 4 that C[[M℄℄ 
arries as a transseries �eld overC 
oin
ides with the dominan
e relation that it has as an H-�eld, andm 4 n () m0 4 n0; for m; n 2M n f1g. (1.3)In the rest of this se
tion we assume, more generally, that C[[M℄℄ is equipped witha derivation f 7! f 0 with 
onstant �eld C su
h that (1.3) holds.Integration. A series f 2 C[[M℄℄ is 
alled the distinguished integral of g 2 C[[M℄℄,written as f = R g, if f 0 = g and f= = 0.For every m 2 M there is at most one n 2 M with n0 � m; we say that C[[M℄℄is 
losed under asymptoti
 integration if for every m 2M there exists su
h an n.If the derivation on C[[M℄℄ is strongly linear and C[[M℄℄ is 
losed under integra-tion, then it is 
losed under asymptoti
 integration: for m 2 M we have m � n0where n := d(R m). The following 
onverse is very useful:Lemma 1.7. Suppose that C is in�nite, the derivation on C[[M℄℄ is strongly linear,and C[[M℄℄ is 
losed under asymptoti
 integration. Then ea
h g 2 C[[M℄℄ has adistinguished integral in C[[M℄℄, and the operator g 7! R g on C[[M℄℄ is stronglylinear.Proof. De�ne I : M! C[[M℄℄ by I(m) = 
n with 
 2 C, n 2M su
h that 
n0�m �m. Then by (1.3) the map I is noetherian, hen
e extends to a strongly linearoperator on C[[M℄℄, whi
h we also denote by I. Let D be the derivation on C[[M℄℄.The strongly linear operator � = D Æ I� Id satis�es supp�(m) � m for all m 2M.Hen
e by Corollary 1.4 the strongly linear operator D Æ I = Id+� has a stronglylinear two-sided inverse 	 given by	(g) = (D Æ I)�1(g) = g � �(g) + �2(g)� �3(g) + � � � :Sin
e I(m)= = 0 for all m 2 M, the strongly linear operator R := I Æ 	 assigns toea
h g 2 C[[M℄℄ its distinguished integral. �Exponentials and logarithms. Suppose now that C = R. For f 2 R[[M℄℄41 ,write f = 
+ " with 
 2 R and " 2 R[[M℄℄# , and putexp(f) = exp(
+ ") := e
 1Xi=0 "ii! ;



DIFFERENTIALLY ALGEBRAIC GAPS 9where t 7! et is the usual exponential fun
tion on R. Then exp is an exponentialon R[[M℄℄41 : for f; g 2 R[[M℄℄41exp(f) > 1, f > 0; exp(f) > f + 1; and exp(f + g) = exp(f) exp(g):Thus exp is inje
tive with image�g 2 R[[M℄℄ : g > 0; d(g) = 1	and inverse log: �g 2 R[[M℄℄ : g > 0; d(g) = 1	! R[[M℄℄41given by log g := log a+ log(1 + ")for g = a(1 + "), a 2 R>0 , " � 1, where log a is the usual natural logarithm of thepositive real number a andlog(1 + ") := 1Xn=1 (�1)n+1n "n:If R[[M℄℄ is 
losed under integration, then the above logarithm extends to a fun
tionlog: R[[M℄℄>0 ! R[[M℄℄ bylog g := log a+ logm+ log(1 + ")for g = am(1 + ") with a 2 R>0 , m 2M, and " � 1, and logm := R my. Note thatlog(fg) = log f + log g for f; g 2 R[[M℄℄>0 .More notation. For non-zero f; g 2 C[[M℄℄ we putf �� g :() fy 4 gy;f �� g :() fy � gy;f �� g :() fy � gy:Suppose R[[M℄℄, with its ordering as an ordered transseries �eld over C = R, is anH-�eld. Then by [2℄, Proposition 7.3, we have for f; g 2 R[[M℄℄�1 :f �� g () jf j 6 jgjn for some n > 0;f �� g () jf jn < jgj for all n > 0:2. Logarithmi
 MonomialsLet L be the multipli
ative subgroup of logarithmi
 monomials of R[[[x℄℄℄>0 gen-erated by the real powers of the iterated logarithms `0 := x; `1 := logx; `2 :=log logx; : : : ; `n := logn x; : : : of x; that is,L = �`�00 `�11 � � � `�nn : (�0; : : : ; �n) 2 Rn ; n = 0; 1; 2; : : :	:Thus L is a multipli
atively written ordered ve
tor spa
e over the ordered �eld R,with basis `0; `1; `2; : : : satisfying`0 �� `1 �� `2 �� � � � �� `n �� � � � :We de�ne the group of 
ontinued logarithmi
 monomials L byL := �`�00 `�11 � � � `�nn � � � : (�0; �1; : : : ; �n; : : :) 2 RN	



10 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENand by requiring that (�0; �1; : : :) 7! `�00 `�11 � � � : RN ! L is an isomorphism of theadditive group RN onto the multipli
ative group L. We order L lexi
ographi
ally:given m = `�00 `�11 � � � and n = `�00 `�11 � � � with (�0; �1; : : :); (�0; �1; : : :) 2 RN , putm 4 n :() (�0; �1; : : :) 6 (�0; �1; : : :) lexi
ographi
ally.This ordering makes L into an ordered group, and extends the ordering 4 on L.We also extend the relation �� (\
atter than") from L to L in the natural way:m �� n :() l(m) > l(n);where l(m) := minfi : �i 6= 0g 2 N if m = `�00 `�11 � � � 6= 1, and l(1) :=1 > N.De�nition 2.1. A sequen
e (mi)i>1 in L is 
alled a monomial Cau
hy sequen
eif for ea
h k 2 N there is an index i0 su
h that for all i2 > i1 > i0 we havemi2=mi1 �� `k. A 
ontinued logarithmi
 monomial l 2 L is a monomial limit of(mi)i>1 if for all k 2 N there is an i0 su
h that for all i > i0 we have mi=l �� `k.Given a 
ontinued logarithmi
 monomial m = `�00 `�11 � � � , let us writee(m) := (�0; �1; : : :) 2 RNfor its sequen
e of exponents. Then e : L! RN is an order-preserving isomorphismbetween the multipli
ative ordered abelian group L and the additive group RN ,ordered lexi
ographi
ally. With this notation, a sequen
e (mi) in L is a monomialCau
hy sequen
e if and only if (e(mi)) is a Cau
hy sequen
e in RN , that is: forevery " > 0 in RN there exists an index i0 su
h that je(mi2) � e(mi1)j < " for alli2 > i1 > i0. Similarly, an element l 2 L is a monomial limit of (mi) if and onlyif e(l) is a limit of the sequen
e (e(mi)), in the usual sense: for every " > 0 thereexists i0 su
h that je(mi)� e(l)j < " for all i > i0. If (mi) has a monomial limit inL, then (mi) is a monomial Cau
hy sequen
e. Conversely, every monomial Cau
hysequen
e (mi) in L has a unique monomial limit l in L, denoted by l = limi!1mi.Moreover, every 
ontinued logarithmi
 monomial m = `�00 `�11 � � � `�nn � � � 2 L is themonomial limit of some monomial Cau
hy sequen
e in L:m = limi!1 `�00 `�11 � � � `�ii :(Thus, viewing L and L as topologi
al groups in their interval topology, L is the
ompletion of its subgroup L.) Given a subset S of L, let S denote the set of allmonomial limits of monomial Cau
hy sequen
es in S (so S is the 
losure of S inL), and bS the set of all monomial limits of stri
tly de
reasing monomial Cau
hysequen
es m1 � m2 � � � � in S. Note that if S � L is noetherian, then so is S � L,and S = S [ bS.Proposition 2.2. Let S;S0 � L be noetherian. Then(1) If S � S0, then bS � bS0 and S � S0.(2) \S [S0 = bS [
S0 and S [S0 = S [S0.(3) dSS0 = S
S0 [ bSS0 and SS0 = S S0.(4) If S � 1, then 
S� � S��bS�� and S� � S�.Proof. Parts (1) and (2) are trivial.For (3) 
onsider a monomial limit l of a sequen
e m1n1 � m2n2 � � � � , where(m1; n1); (m2; n2); : : :



DIFFERENTIALLY ALGEBRAIC GAPS 11is a sequen
e in S � S0. Sin
e S and S0 are noetherian, we may assume, after
hoosing a subsequen
e of (m1; n1); (m2; n2); : : :, that m1 < m2 < � � � and n1 < n2 <� � � . Be
ause (mini) is a monomial Cau
hy sequen
e, both sequen
es (mi) and (ni)are monomial Cau
hy sequen
es as well. The sequen
es (mi) and (ni) 
annot bothbe ultimately 
onstant. If one of these sequen
es is ultimately 
onstant, say mi = mfor all i > i0, then l = limi!1mini = m limi!1 ni 2 S
S0:Otherwise, we have l = limi!1mini = limi!1mi limi!1 ni 2 bS
S0:Hen
e dSS0 � S
S0 [ bSS0. The other in
lusions of (3) now follow easily.As to (4), assume that S � 1 and let l be a monomial limit of a sequen
em1 = m1;1 � � �m1;l1 � m2 = m2;1 � � �m2;l2 � � � � ;where (m1;1; : : : ;m1;l1); (m2;1; : : : ;m2;l2); : : : is a sequen
e of tuples over S. Sin
ethe set of these tuples is noetherian for Higman's embeddability ordering [5℄, wemay assume, after 
hoosing a subsequen
e, that in this ordering(m1;1; : : : ;m1;l1) < (m2;1; : : : ;m2;l2) < � � � :In parti
ular, we have l1 6 l2 6 � � � . We 
laim that the sequen
e (li) is ultimately
onstant. Assume the 
ontrary. Then, after 
hoosing a se
ond subsequen
e, wemay assume that l1 < l2 < � � � . Let 1 6 ki+1 6 li+1 be su
h that(mi;1; : : : ;mi;li) < (mi+1;1; : : : ;mi+1;ki+1�1;mi+1;ki+1+1; : : : ;mi+1;li+1)for all i, hen
e mi < mi+1=mi+1;ki+1 for all i. Sin
e S is noetherian, the setfm2;k2 ;m3;k3 ; : : :g has a largest element v � 1. But thenmi+1=mi 4 mi+1;ki+1 4 vfor all i, whi
h 
ontradi
ts (mi) being a monomial Cau
hy sequen
e. This provesour 
laim (li) is ultimately 
onstant.We now pro
eed as in (3) to �nish the proof of (4). �Given S � L we say that S has de
ay > 1 if for ea
h m = `�00 `�11 � � � 2 bSthere exists k0 2 N su
h that �k < �1 for all k > k0. Ea
h �nite subset of L hasde
ay > 1.Example 2.3. Fix n > 1, and de�ne a sequen
e (mi)i>0 in L bym0 = � 1̀0�n ; m1 = � 1`0`1�n ; : : : ; mi := � 1`0`1 � � � `i�n (i > 0):Then the 
ontinued logarithmi
 monomiall = � 1`0`1 � � � `i � � ��n 2 Lis the monomial limit of the sequen
e m0 � m1 � � � � in L. Hen
e the subsetfmi : i = 0; 1; 2; : : :g of L has de
ay > 1 if n > 1, but not if n = 1.Corollary 2.4. If S and S0 are noetherian subsets of L of de
ay > 1, then S[S0and SS0 are noetherian of de
ay > 1; if in addition S � 1, then S� is noetherianof de
ay > 1. �



12 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN3. Logarithmi
 Transseries of de
ay > 1Consider the ordered �eld L := R[[L℄℄ of logarithmi
 transseries , and equip L withthe strongly linear derivation f 7! f 0 su
h that for ea
h � 2 R(`�0 )0 = �`��10 ; (`�k )0 = �`��1k (`0`1 � � � `k�1)�1 for k > 0.This makes L a real 
losed H-�eld with 
onstant �eld R, and L is 
losed underintegration (see example at end of Se
tion 11 in [2℄). Hen
e by Lemma 1.7 thedistinguished integration operator R on L is strongly linear.A logarithmi
 transseries f 2 L is said to have de
ay > 1 if its support supp fhas de
ay > 1. By Corollary 2.4 above,L1 := �f 2 L : f has de
ay > 1	is a sub�eld of L 
ontaining the sub�eld R(L) of L generated by L over R. Inaddition F (") 2 L1 for any formal power series F (X) 2 R[[X ℄℄ and any n-tuple" = ("1; : : : ; "n) of in�nitesimals in L1 , where X = (X1; : : : ; Xn), n > 1. Hen
e byLemma 1.6 the �eld L1 is real 
losed. De�ning the logarithmi
 fun
tion on L>0 asin the subse
tion \Exponentials and logarithms" of Se
tion 2, we obtainlog(`�00 `�11 � � � `�kk ) = �0`1 + � � �+ �k`k+1 2 L1for �0; : : : ; �k 2 R. It follows that log f 2 L1 for every positive f 2 L1 . Moreover:Proposition 3.1. The �eld L1 is 
losed under di�erentiation. (Thus L1 is anH-sub�eld of L.)Proof. Let l 2 L be a monomial limit of a stri
tly de
reasing sequen
e in supp f 0,where f 2 L1 ; hen
e l is the monomial limit of a sequen
em1n1 � m2n2 � � � �where mi 2 supp f and ni 2 suppmyi for all i. Note that ni 2 D, whereD = � 1̀0 ; 1`0`1 ; 1`0`1`2 ; : : :� : (3.1)Sin
e supp f and D are noetherian, we may assume thatm1 < m2 < � � � ; and n1 < n2 < � � �after 
hoosing a subsequen
e. Therefore (mi) and (ni) are monomial Cau
hy se-quen
es. We 
laim that (mi) 
annot be ultimately 
onstant: ifmi = `�00 `�11 � � � `�kkfor all i > i0, then ni 2 suppmyi � � 1̀0 ; 1`0`1 ; : : : ; 1`0`1 � � � `k�for all i > i0, so (ni) and thus (mini) would be ultimately 
onstant. This 
ontra-di
tion proves our 
laim. If (ni) is ultimately 
onstant, say ni = n for all i > i0,then l = limi!1mini = � limi!1mi�n:Otherwise limi!1 ni = 1`0`1`2 � � � 2 L;



DIFFERENTIALLY ALGEBRAIC GAPS 13hen
e l = limi!1mini = � limi!1mi� 1`0`1`2 � � � ;whi
h proves our proposition. �Example 3.2. We have Rh%i = R(%; %0 ; : : :) � L1 as di�erential �elds. Clearly� 2 L, but L1 does not 
ontain any element of the form �+ ", where " 2 L satis�es" � 1=(`0`1 � � � `n) for all n. (See Example 2.3.) Note also that � =2 L1 .Next we want to show that the di�erential �eld L1 is 
losed under integration.For this we need the following two lemmas:Lemma 3.3. For any non-zero � 2 R and any f 2 L, the linear di�erentialequation y0 + �y = f (3.2)has a unique solution y = g 2 L, and if f 2 L1 , then g 2 L1 :Proof. Note that for ea
h i, supp f (i) is 
ontained in the set (supp f)Di, where Dis as in (3.1). Sin
e D� = SiDi is noetherian and ea
h of its elements lies in Difor only �nitely many i, the family (f (i)) is noetherian. Hen
e we have an expli
itformula for a solution g to (3.2):g := 1Xi=0(�1)i f (i)�i+1 :The solution g 2 L is unique, sin
e the homogeneous equation y0 + �y = 0 onlyhas the solution y = 0 in L. Now suppose f 2 L1 , and let l = `�00 `�11 � � � 2 L be amonomial limit of a sequen
e m1n1 � m2n2 � � � �in supp(g) where mini 2 supp(fk(i)), with mi 2 supp(f) and ni 2 Dk(i). We 
anassume that m1 < m2 < � � � and n1 < n2 < � � � . Hen
e (mi) and (ni) are monomialCau
hy sequen
es with limit m 2 L and n 2 L, respe
tively, so that l = mn. Theexponent of `0 in ni is �k(i), and thus the sequen
e (k(i)) is bounded. Hen
e we
an even assume that this sequen
e is 
onstant. Then �k < �1 for all suÆ
ientlylarge k, by Proposition 3.1. Hen
e g 2 L1 as required. �For k 2 N we 
onsider the embedding of ordered abelian groupsm = `�00 `�11 � � � `�nn 7! m Æ `k := `�0k `�1k+1 � � � `�nk+n : L! Land denote its unique extension to a strongly linear R-algebra endomorphism of Lby f 7! f Æ `k. Note that (f Æ `k)0 = (f 0 Æ `k)`0k for f 2 L, and if f 2 L1 , thenf Æ `k 2 L1 .In the statement of the next lemma we use the multiindex notation `� :=`�00 `�11 � � � `�nn , for an (n+ 1)-tuple � = (�0; : : : ; �n) 2 Rn+1 .Lemma 3.4. Let n 2 N and suppose (g�)�2Rn+1 is a family in L1 su
h that thefamily �`� � (g� Æ `n+1)�� in L is noetherian. ThenX� `� � (g� Æ `n+1) 2 L1 :



14 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENProof. Let l 2 L be a monomial limit of a sequen
e `�1n1 � `�2n2 � � � � where�i 2 Rn+1 and ni 2 supp(g�iÆ`n+1) for all i. Then there exists an index i0 su
h that�i0 = �i0+1 = � � � , and hen
e ni0 � ni0+1 � � � � is a sequen
e in supp(g�i0 Æ `n+1)with monomial limit l=`�i0 . Sin
e g�i0 Æ `n+1 2 L1 , the lemma follows. �Proposition 3.5. The H-�eld L1 is 
losed under integration.Proof. Let f 2 L1 . Sin
e 1`0`1`2��� is not a monomial limit of a sequen
e in supp f ,there exists k 2 N su
h thatl(m � `0`1`2 � � � ) 6 k for all m 2 supp f .Take k minimal with this property. We pro
eed by indu
tion on k. Writef = X�2Rx��1(F� Æ `1)where F� 2 L1 for ea
h � 2 R, and for 0 6= � 2 R, let g� 2 L1 be the uniquesolution to the linear di�erential equation y0 + �y = F�, by Lemma 3.3. ThenZ x��1(F� Æ `1) = x�(g� Æ `1) 2 L1 ;for � 6= 0. Sin
e distinguished integration on L is strongly linear, we haveZ f = (g0 Æ l1) +X� 6=0x�(g� Æ `1) 2 L;where g0 := R F0, and thus R f 2 L1 if g0 2 L1 (by Lemma 3.4). If k = 0, thenF0 = 0, hen
e g0 = 0 2 L1 . If k > 0, thenl(m � `0`1`2 � � � ) 6 k � 1 for all m 2 suppF0,hen
e g0 in L1 , by the indu
tion hypothesis. We 
on
lude that R f 2 L1 . �4. Strong Differentiation, Strong Integration, and FlatteningFor the 
onvenien
e of the reader and to �x notations, we �rst state some fa
tsabout the �eld of transseries T in addition to those mentioned in the Introdu
tion.For proofs, we refer to [15℄, where T is de�ned as exponential H-�eld, and to [11℄for more details; see [6℄ for an independent 
onstru
tion of T as exponential �eld.Fa
ts about T. As an ordered �eld, T is the union of an in
reasing sequen
eL = R[[T0 ℄℄ � R[[T1 ℄℄ � � � � � R[[Tn ℄℄ � � � �of ordered transseries sub�elds over R, with T0 = L, and where ea
h in
lusionR[[Tn ℄℄ � R[[Tn+1 ℄℄ 
omes from a 
orresponding in
lusion Tn � Tn+1 of mul-tipli
ative ordered abelian groups. The exponential operation exp on T maps theordered additive group R[[Tn ℄℄" isomorphi
ally onto the ordered group Tn+1. Hen
elogm 2 R[[Tn ℄℄" for m 2 Tn+1, where log : T>0 ! T is the inverse of exp. Alsolog(1 + ") = 1Xi=1 (�1)i+1i "i 2 R[[Tn ℄℄ (4.1)for 1 � " 2 R[[Tn ℄℄. For f 2 T>0 and r 2 R we put fr := exp(r log f) 2 T; one
he
ks easily that fr > 1 if f > 1 and r > 0, and that this operation of raising toreal powers makes T>0 into a multipli
ative ve
tor spa
e over R 
ontaining ea
h Tnas a multipli
ative R-subspa
e.



DIFFERENTIALLY ALGEBRAIC GAPS 15We put T := Sn Tn (an ordered subgroup of T>0), so the ordered transseries�eld R[[T℄℄ over R 
ontains T as an ordered sub�eld. The ordered �eld R[[T℄℄
omes equipped with two strongly linear automorphisms f 7! f" (upward shift)and f 7! f# (downward shift), that are mutually inverse and map T to itself. Thedownward shift extends the map f 7! f Æ `1 on L used in the last se
tion, and alsothe 
omposition operation f 7! f Æ logx on R[[[x℄℄℄. (See [15℄, Chapter 2.) We haveexp(f)" = exp(f") for f 2 T, and hen
e log(f)" = log(f") and (fr)" = (f")r forf 2 T>0, r 2 R. From these properties one obtains by indu
tion that Tn" � Tn+1and Tn# � Tn. (Hen
e m 7! m" is an automorphism of the ordered group T.) Wedenote the n-fold fun
tional 
omposition of f 7! f# by f 7! f#n, and similarly wewrite f 7! f"n for the n-fold 
omposition of f 7! f".The derivation on T restri
ts to a strongly linear derivation on ea
h sub�eldR[[Tn ℄℄, and extends uniquely to a strongly linear derivation D : f 7! f 0 on R[[T℄℄.With this derivation, R[[T℄℄ is a real 
losed H-�eld with 
onstant �eld R. We have(f")0 = ex � (f 0)"; (f#)0 = 1x � (f 0)# (f 2 R[[T℄℄):Note that v� exp(��)� remains a gap in R[[T℄℄, so R[[T℄℄ is not 
losed under asymp-toti
 integration. There is also no natural extension of the exponential operationon T to one on R[[T℄℄. Nevertheless, using (4.1) one easily 
he
ks that the fun
tionlog: T>0 ! T extends to an embedding log of the ordered multipli
ative groupR[[T℄℄>0 into the ordered additive group R[[T℄℄>0 , by settinglog g := log am+ 1Xn=1 (�1)n+1n "nfor g = am(1 + "), a 2 R>0 , m 2 T, and 1 � " 2 R[[T℄℄.Monomial subgroups of T. In the next se
tion we 
onstru
t a Liouville 
losedH-sub�eld of T 
ontaining L1 ; this will involve subgroups M of T su
h that thesub�eld R[[M℄℄ of R[[T℄℄ is 
losed under di�erentiation and integration. In therest of this se
tion, Mn denotes an ordered subgroup of Tn, for every n, with thefollowing properties:(M1) M0 = L;(M2) An := logMn+1 is an R-linear subspa
e of R[[Mn ℄℄" and is 
losed undertrun
ation;(M3) Mn �Mn+1.Here a set A � R[[T℄℄ is said to be 
losed under trun
ation if for ea
h f =Pm2T fmm 2 A and ea
h �nal segment F of T we have f jF :=Pm2F fmm 2 A.We put M := SnMn, a subgroup of T. When needed we shall also impose:(M4) M" �M.Example 4.1. LetMn := Tn. Then theMn satisfy (M1){(M4), with An = R[[Tn ℄℄"and M = T.By (M1), the set logM0 is also an R-linear subspa
e of R[[M0 ℄℄ 
losed undertrun
ation. By (M1) and (M2), ea
h Mn is 
losed under R-powers: if m 2 Mnand r 2 R, then mr 2 Mn. Also by (M1) and (M2), ea
h sub�eld R[[Mn ℄℄ of T is
losed under taking logarithms of positive elements, and so is the sub�eld R[[M℄℄ ofR[[T℄℄. Moreover, ea
h sub�eld R[[Mn ℄℄ of T is 
losed under di�erentiation, hen
e



16 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENis an H-sub�eld of T. (This follows by an easy indu
tion on n: use (M1) for n = 0,and (M2) for the indu
tion step.) It follows that the sub�eld R[[M℄℄ of R[[T℄℄ is
losed under di�erentiation, hen
e is an H-sub�eld of R[[T℄℄.Lemma 4.2. The H-�eld R[[M℄℄ is 
losed under asymptoti
 integration if andonly if exp(�) =2M. In this 
ase, R[[M℄℄ is 
losed under integration, and the mapf 7! R f : R[[M℄℄ ! R[[M℄℄ is strongly linear.Proof. The H-�eld R[[M℄℄ is 
losed under asymptoti
 integration if and only if itdoes not have a gap ([1℄, Se
tion 2). The valuation of R[[T℄℄ maps T bije
tively andorder-reversingly onto the value group of R[[T℄℄, and also M onto the value groupof R[[M℄℄. The element exp(��) of T satis�es (1=`n)0 � exp(��) � (1=`n)y forall n. Be
ause the sequen
e 1=`0; 1=`1; : : : is 
oinitial in M�1, this yields the �rstpart of the lemma. The rest now follows from Lemma 1.7. �Put M0n := Mn \M" and M0 := SnM0n. The next easy lemma is left as anexer
ise to the reader.Lemma 4.3. The family (M0n) satis�es the following analogues of (M1){(M3):M00 = L; logM0n+1 is an R-linear subspa
e of R[[M0n ℄℄" 
losed under trun
ation;M0n �M0n+1. If (M4) holds, then M0 =M" and M0" �M0.In the rest of this se
tion N denotes a 
onvex subgroup of M, equivalently, asubgroup su
h that for all m; n 2Mm �� n 2 N =) m 2 N:Note that then N is 
losed under R-powers, and that N" is a 
onvex subgroup ofM". To N we asso
iate the setI := �m 2M�1 : expm �� n for some n 2 N	 � N:Then I is an initial segment of M�1 (with I = ; if N = f1g). Consequently, the
omplement F =M�1nI of I is a �nal segment of M�1, andR := fr 2M : log r 2 R[[F ℄℄gis also a subgroup of M 
losed under R-powers.Lemma 4.4. For all m 2M we have:m 2 N () logm 2 R[[I ℄℄:Proof. The lemma holds trivially if N = f1g. Assume that N 6= f1g; hen
e `k 2 Nfrom some k 2 N. Let m 2Mn. We prove the desired equivalen
e by distinguishingthe 
ases n = 0 and n > 0. If n = 0, then we take k 2 N minimal su
h that `k 2 N,so N \ L = �`�00 `�11 � � � 2 L : �i = 0 for all i < k	;whi
h easily yields the desired equivalen
e.Suppose that n > 0. Then logm 2 An�1. Sin
e An�1 is 
losed under trun
ationwe have logm = ' +  with ' 2 An�1 \ R[[I ℄℄ and  2 An�1 \ R[[F ℄℄. Hen
ee'; e 2M. In fa
t e' 2 N, be
ause if ' 6= 0, then d(') 2 I , so e' �� ed(') �� n forsome n 2 N. Similarly, if  6= 0, then e =2 N. The desired equivalen
e now followsfrom m = e' � e . �With Nn := N \Mn and Rn := R \Mn we have:



DIFFERENTIALLY ALGEBRAIC GAPS 17Corollary 4.5. N \R = f1g and Mn = Nn �Rn.It follows thatM = N �R, and the produ
ts nr with n 2 N and r 2 R are orderedantilexi
ographi
ally: nr � 1 if and only if r � 1, or r = 1 and n � 1. We think ofthe monomials in the 
onvex subgroup N as being 
at. A

ordingly we 
all R thesteep supplement of N.Proof. It is 
lear from the previous lemma that N \ R = f1g. We now showMn = Nn � Rn. Let m 2 Mn. Then logm 2 R[[M℄℄" , so logm = ' +  with' 2 R[[I ℄℄,  2 R[[F ℄℄. Sin
e logMn is trun
ation 
losed, we have ';  2 logMn,so m = nr with n := e' 2 Mn \ N = Nn and r := e 2 Mn \ R = Rn, using theprevious lemma. �Corollary 4.6. Suppose that x 2 N. Then the following analogues of (M1){(M3)hold:(N1) N0 = L;(N2) logNn+1 is an R-linear subspa
e of R[[Nn ℄℄" and is 
losed under trun
ation;(N3) Nn � Nn+1.In parti
ular, the sub�eld R[[N℄℄ of R[[M℄℄ is 
losed under di�erentiation, and ife� =2 N, then R[[N℄℄ is also 
losed under integration.Remark 4.7. If we drop the assumption x 2 N, then R[[N℄℄ may fail to be 
losedunder di�erentiation. To see this, take N = fm 2M : m �� xg and m = logx 2 N;then m0 = 1=x �� x, so m0 =2 N.Property (N2) of Corollary 4.6 follows easily from Lemma 4.4 and its proof(without assuming x 2 N). The rest of the 
orollary is then obvious.Lemma 4.8. Suppose that x 2 N, and that m �� r, where m; r 2M, r =2 N. Thensuppm0 �� r.Proof. By indu
tion on n su
h that m 2 Mn. The 
laim is trivial for n = 0 sin
eM0 = N0 = L and m0 2 R[[L℄℄. Suppose n > 0 and write m = e' with ' 2 An�1.Sin
e supp' �� m we obtain supp'0 �� r, by indu
tive hypothesis. Any u 2 suppm0is of the form u = v �m with v 2 supp'0, hen
e u �� r as required. �Flattening. We \
atten" the dominan
e relations � and 4 on R[[M℄℄ by the
onvex subgroup N of M as follows:f �N g :() (8' 2 N : 'f � g);f 4N g :() (9' 2 N : f 4 'g);for f; g 2 R[[M℄℄. We also de�ne, for f; g 2 R[[M℄℄:f �N g :() f 4N g ^ g 4N f;hen
e N = fm 2M : m �N 1g. Flattening 
orresponds to 
oarsening the valuation:The value group v(M) of the natural valuation v on R[[M℄℄ has 
onvex subgroupv(N), so gives rise to the 
oarsened valuation vN on R[[M℄℄ with (ordered) valuegroup v(M)=v(N) given by vN(f) := v(f) + v(N) for f 2 R[[M℄℄� . Then we havethe equivalen
es f �N g () vN(f) > vN(g) andf 4N g () vN(f) > vN(g)



18 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENfor f; g 2 R[[M℄℄. (See also Se
tion 14 of [2℄.) The restri
tion of 4N to M is aquasi-ordering, i.e., re
exive and transitive; it is anti-symmetri
 (i.e., an ordering)if and only if N = f1g. The restri
tion of 4N to R is the already given orderingon R. The following rules are valid for f; g 2 R[[M℄℄:the equivalen
e f �N g () f 0 �N g0 holds, provided f; g 6�N1;1 �N f 4N g =) fy 4N gy;f 4 g =) f 4N g, and hen
e f �N g =) f � g:In our proofs below, we often redu
e to the 
ase that x 2 N by upward shift. Hereare a few remarks about this 
ase. If x 2 N, then L � N, and for all f 2 R[[M℄℄:the equivalen
e f �N 1 () f 0 �N 1 holds, provided f 6� 1;f �N 1 () f 0 �N 1: (4.2)(See [2℄, Lemma 13.4.) Moreover:Lemma 4.9. Suppose that x 2 N. Then the following 
onditions on m 2 M areequivalent:(1) logm 4N 1,(2) logm 2 R[[N℄℄,(3) my 2 R[[N℄℄,(4) my 4N 1.Proof. From supp(logm) �M�1 we obtain (1) ) (2). The impli
ation (2) ) (3)follows from Corollary 4.6, (3)) (4) is trivial, and (4)) (1) follows from (4.2). �Flattened 
anoni
al de
omposition. We have an isomorphismR[[M℄℄ ! R[[N℄℄[[R℄℄of R[[N℄℄-algebras given byf = Xm2M fmm 7!Xr2R Xn2N fnrn! r:In R[[M℄℄ we have in fa
t f =Xr2R Xn2n fnrn! r;where the sums are interpreted as in Se
tion 1. We shall identify the (real 
losed,ordered) �eld R[[M℄℄ with the (real 
losed, ordered) �eld R[[N℄℄[[R℄℄ by means ofthis isomorphism. For f 2 R[[M℄℄ we putfN;r := Xn2N fnrn 2 R[[N℄℄; (r 2 R); andsuppN f := fr 2 R : fN;r 6= 0g :We have the 
attened 
anoni
al de
omposition of the R-ve
tor spa
e R[[M℄℄ (relativeto N) R[[M℄℄ = R[[M℄℄* � R[[M℄℄� � R[[M℄℄+ ;



DIFFERENTIALLY ALGEBRAIC GAPS 19where R[[M℄℄* = R[[N℄℄[[R�1 ℄℄;R[[M℄℄� = R[[N℄℄;R[[M℄℄+ = R[[N℄℄[[R�1 ℄℄:A

ordingly, given a transseries f 2 R[[M℄℄, we writef = f* + f� + f+where f* = X1�m2MnN fmm 2 R[[M℄℄* ;f� = Xm2N fmm 2 R[[M℄℄� ;f+ = X1�m2MnN fmm 2 R[[M℄℄+ :Example 4.10. Let w 2M, w 6� 1, and 
onsider the 
onvex subgroupN := �n 2M : n �� w	of M. Suppose that exp(M�1) �M. ThenI = �m 2M�1 : expm �� w	and thus R = �r 2M : supp log r < d(logw)	:In this 
ase we write suppw f instead of suppN f , 4w instead of 4N, and likewisefor the other asymptoti
 relations. In the next se
tion we take w = ex.Flatly noetherian families. Let (fi)i2I 2 R[[M℄℄I . The family (fi) is said to be
atly noetherian (with respe
t to N) if (fi) is noetherian as a family of elementsin C[[R℄℄, where C = R[[N℄℄. If (fi) is 
atly noetherian, then (fi) is noetherian asa family of elements of R[[M℄℄, and its sum Pi2I fi 2 C[[R℄℄ as a 
atly noetherianfamily equals its sumPi2I fi 2 R[[M℄℄ as a noetherian family of elements of R[[M℄℄.For any monomial m 2 M, (fi) is 
atly noetherian if and only if (mfi) is 
atlynoetherian.Note that if n1 � n2 � � � � is an in�nite sequen
e of monomials in N, then (ni)i>1is a noetherian family whi
h is not 
atly noetherian.A map �: R[[M℄℄ ! R[[M℄℄ is 
alled 
atly strongly linear (with respe
t to N) if� 
onsidered as a map C[[R℄℄ �! C[[R℄℄ is strongly linear, where C = R[[N℄℄.Lemma 4.11. Suppose that x 2 N. The map R ! C[[R℄℄ : r 7! r0 is noetherian,where C = R[[N℄℄, and thus extends uniquely to a 
atly strongly linear map' : R[[M℄℄ �! R[[M℄℄:Proof. Let r1 �N r2 �N � � � be elements of R and ui 2 supp r0i for ea
h i. It suÆ
esto show that then there exist indi
es i < j su
h that ui �N uj . Sin
e di�erentiationon R[[M℄℄ is strongly linear, we may assume, after passing to a subsequen
e, thatui � uj for all i < j. If there exist i < j su
h that ui �N ri and uj �N rj , we arealready done. So we may assume that ui 6�Nri for all i, and also that ri 6�Nu1 for
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h ui as ui = rimi, with mi 2 supp ryi , mi =2 N. We distinguish two
ases:(1) For all i > 1 there exists a vi 2 supp log u1 su
h that mi 2 supp v0i. Sin
esupp log u1 is noetherian we may assume, after passing to a subsequen
e,that vi < vj for 1 < i < j. Sin
e di�erentiation on R[[M℄℄ is strongly linear,we then �nd i < j with mi < mj . Hen
e mi <N mj , so ui �N uj .(2) There exists an i > 1 su
h that for all v 2 supp log u1 we have mi 62 supp v0.Take su
h i and 
hoose v 2 supp log ri su
h that mi 2 supp v0. Thenv 2 (supp log ri)n(supp log u1) � supp log(ri=u1) �M�1and hen
e v �� log(u1=ri). Sin
e logm �� m for m 2 M n f1g, this yieldsv �� u1=ri. By Lemma 4.8 we get mi �� u1=ri. Hen
e if n := u1=ui 2 N,then mi �� u1=ri = min, 
ontradi
ting mi =2 N. Therefore u1 �N ui. �In the rest of this se
tion we assume (M4).In parti
ular, our previous results apply to M"k instead of M for k = 1; 2; : : : , byLemma 4.3. In this 
onne
tion, the following fa
t will be useful.Remark 4.12. A family (fi)i2I 2 R[[M℄℄I is 
atly noetherian with respe
t to N ifand only if the family (fi")i2I 2 R[[M"℄℄I is 
atly noetherian with respe
t to N".We now arrive at the main results of this se
tion:Theorem 4.13. If (fi)i2I is a 
atly noetherian family in R[[M℄℄, then so is (f 0i)i2I .Proof. Sin
e the 
aseN = f1g is trivial, we may assumeN 6= f1g. Then x 2 N"k forsuÆ
iently large k 2 N. Sin
e (f")0 = ex � (f 0)" for f 2 R[[M℄℄, Remark 4.12 allowsus to redu
e to the 
ase that x 2 N. Then R[[N℄℄ is 
losed under di�erentiation byCorollary 4.6. Now 
onsider a 
atly noetherian family (fi)i2I 2 R[[M℄℄I . Then (fi)is noetherian, hen
e (f 0i) is noetherian by strong linearity of di�erentiation. By thelemma above, the family (gi) de�ned bygi :=Xr2R fi;N;rr0is 
atly noetherian. Put hi := f 0i � gi =Xr2R(fi;N;r)0r:We have suppN hi � suppN fi for i 2 I , sin
e R[[N℄℄ is 
losed under di�erentiation.It follows that (hi) is 
atly noetherian. Hen
e the family (f 0i) is 
atly noetheriansin
e it is the 
omponentwise sum of two 
atly noetherian families. �Theorem 4.14. Suppose that exp(�) 62 M. Then R[[M℄℄ is 
losed under integra-tion, and if (fi)i2I is a 
atly noetherian family in R[[M℄℄, then �R fi�i2I is 
atlynoetherian.Before we begin the proof, we make some remarks about the summation of 
atlynoetherian families in R[[M℄℄. Choose a basis B for the R-ve
tor spa
e R[[N℄℄. Wede�ne a (partial) ordering 4� on B�R as follows:(b; r) 4� (
; s) () r �N s, or r = s and b = 
, (4.3)
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; s) 2 B�R. Consider the R-ve
tor spa
e R[[B �R℄℄ of transsseriesf = X(b;r)2B�R f(b;r)(b; r)with real 
oeÆ
ients f(b;
), whose support supp f := �(b; r) : f(b;
) 6= 0	 is noether-ian for 4�; see Se
tion 1. We have:Lemma 4.15. There exists a unique isomorphism ' : R[[B � R℄℄ ! R[[M℄℄ ofR-ve
tor spa
es su
h that(1) '(b; r) = b � r for b 2 B, r 2 R,(2) a family (fi)i2I 2 R[[B � R℄℄I is noetherian if and only if �'(fi)�i2I is
atly noetherian,(3) if (fi)i2I 2 R[[B �R℄℄I is noetherian, then ' �Pi2I fi� =Pi2I '(fi).Proof. Of 
ourse, there is at most one su
h '. For existen
e, �rst note that theproje
tion map � : B � R ! R is stri
tly in
reasing, and that a set S � B � Ris noetherian if and only if �(S) � R is noetherian and ea
h �ber ��1(r), (r 2 R)is �nite. Applying this remark to S := Si2I supp fi, where (fi)i2I is a noetherianfamily in R[[B �R℄℄, it follows that the subset�(S) = [i2I;b2B;r2R suppN�fi;(b;r)b � r�ofR is noetherian, and that for ea
h r 2 R there are only �nitely many (i; b) 2 I�Bwith r 2 suppN�fi;(b;r)b � r�. Therefore the family �fi;(b;r)b � r�(i;b;r)2I�B�R ofelements of R[[M℄℄ is 
atly noetherian. Thus, by setting'(f) :=Xr2R Xb2B f(b;r)b! r for f 2 R[[B �R℄℄;we obtain an R-linear bije
tion ' : R[[B �R℄℄ ! R[[M℄℄ su
h that for every noe-therian family (fi) 2 R[[B � R℄℄I , the family �'(fi)� is 
atly noetherian and' (Pi fi) =Pi '(fi). (See proof of Proposition 3.5 in [17℄.) If (fi) 2 R[[B �R℄℄Iand �'(fi)� is 
atly noetherian, then, with S := Si supp fi,�(S) =[i2I suppN '(fi)is noetherian and �jS has �nite �bers, so (fi) is noetherian. �We now begin the proof of Theorem 4.14. Using upward shifting and R (f") =�R (f � x�1)� " for f 2 R[[M℄℄, we �rst redu
e to the 
ase that ex 2 N. In parti
ularx 2 N, so R[[N℄℄ is 
losed under di�erentiation and integration, by Corollary 4.6.Partition M = VqW (disjoint union), whereV = �m 2M : my 4N 1	and W = �m 2M : my �N 1g:Then V is a 
onvex subgroup of M 
ontaining N whi
h is 
losed under R-powers,and R[[M℄℄ = R[[V℄℄ � R[[W℄℄ as R-ve
tor spa
es. Note that if n 2 N, r 2 R, thenn � r 2W if and only if r 2W. It follows thatW = N �S, where S :=W\R. Sin
ex 2 V, the sub�eld R[[V℄℄ of R[[M℄℄ is 
losed under di�erentiation and integration,by Corollary 4.6. Moreover:



22 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENLemma 4.16. The R-linear subspa
e R[[W℄℄ of R[[M℄℄ is 
losed under the operatorsf 7! f 0 and g 7! R g on R[[M℄℄.Proof. If R[[W℄℄ is 
losed under f 7! f 0, then it is also 
losed under g 7! R g, be
auseR[[V℄℄ is 
losed under di�erentiation and R[[M℄℄ is 
losed under integration. So letw 2W; it is enough to show that then suppw0 �W. Take n > 0 with w 2W\Mn,and write w = e' with ' 2 An�1. By Lemma 4.8 we have supp'0 �� w. Hen
emy � wy �N 1 and thus m 2W, for every m 2 suppw0. �Lemma 4.17. For all h 2 R[[V℄℄, we have suppN R h � suppN h.Proof. It is enough to prove the lemma for h of the form h = fr, where f 2 R[[N℄℄,f 6= 0, and r 2 V \ R, so r = e' with '0 = ry 4N 1. By Lemma 4.9, we have'0 2 R[[N℄℄. We may assume ' 6= 0. Then e' = r �� N, so '0 = ry � ny for alln 2 N. Thus the strongly linear map�: R[[N℄℄ ! R[[N℄℄; g 7! g0='0satis�es �(n) � n for all n 2 N. Hen
e by Corollary 1.4 the strongly linear operatorId+� on R[[N℄℄ is bije
tive. We let g := (Id+�)�1(f='0) 2 R[[N℄℄. Then g0+'0g =f and thus R fr = gr. �If (fi) is a 
atly noetherian family of elements of R[[V℄℄, then by the previ-ous lemma �R fi� is 
atly noetherian. To 
omplete the proof of Theorem 4.14 ittherefore remains to show:Lemma 4.18. If (fi) is a 
atly noetherian family of elements of R[[W℄℄, then �R fi�is 
atly noetherian.Proof. Let C = R[[N℄℄, let B be a basis for C as R-ve
tor spa
e, and let R[[B�R℄℄and ' : R[[B � R℄℄ ! R[[M℄℄ be as in Lemma 4.15. Put S := W \ R as before.Then '(B �S) = B �S � R[[W℄℄, so ' restri
ts to an R-linear map'1 : R[[B �S℄℄! R[[W℄℄:Clearly '1 is bije
tive, sin
e W = N � S. Consider the strongly linear operatorsD : R[[M℄℄ ! R[[M℄℄ given by f 7! f 0 and R : R[[M℄℄ ! R[[M℄℄ given by f 7! R f .We have D(f); R f 2 R[[W℄℄ for f 2 R[[W℄℄, by Lemma 4.16. By Theorem 4.13and Lemma 4.15, the operator D1 := '�11 Æ DW Æ '1 on R[[B � S℄℄ is stronglylinear, where DW := DjR[[W℄℄ : R[[W℄℄ ! R[[W℄℄. By Lemma 4.15 it suÆ
es toprove that the operator R 1 := '�11 ÆRW Æ'1 on R[[B�S℄℄ is strongly linear, whereRW := R jR[[W℄℄ : R[[W℄℄ ! R[[W℄℄. Sin
e 1 =2 W, the operators DW and RW onR[[W℄℄ are mutually inverse, and hen
e the operators D1 and R1 on R[[B �S℄℄ aremutually inverse.For t 2 C� � S, let �t and It be the dominant term of the series t0 and R tin C[[R℄℄, respe
tively, so �t; It 2 C� � S by Lemma 4.16. By the rules on �Nlisted earlier, if t1; t2 2 C� �S satisfy t1 �N t2, then �t1 �N �t2 and It1 �N It2.Moreover, the maps I : C� � S ! C� � S and �: C� � S ! C� � S are mutuallyinverse, and '1(B�S) � C� �S � R[[W℄℄. Now let�1 := '�11 Æ� Æ �'1jB�S� : B�S! R[[B �S℄℄;I1 := '�11 Æ I Æ �'1jB�S� : B�S! R[[B �S℄℄:Then for v1; v2 2 B�S we havev1 �� v2 =) supp�1v1 �� supp�1v2; supp I1v1 �� supp I1v2:
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e the maps �1; I1 are noetherian, so they extend uniquely to strongly linearoperators on R[[B�S℄℄. These extensions, again denoted by �1 and I1, respe
tively,are mutually inverse by [17℄, Proposition 3.10, be
ause � and I are.Now 
onsider the strongly linear operator� := (D1 ��1) Æ I1 = D1I1 � Idon R[[B �S℄℄. UsingD1I1jB�S = '�11 Æ (DW Æ I) Æ ('1jB�S)we obtain supp�(v) �� v for v 2 B � S. Hen
e by Corollary 1.4, the operatorId+� = D1I1 on R[[B � S℄℄ is bije
tive with strongly linear inverse. Thus theoperator I1 Æ (Id+�)�1 on R[[B �S℄℄ is strongly linear. Finally, note thatD1 Æ I1 Æ (Id+�)�1 = D1 Æ I1 Æ (D1I1)�1 = Id;so R 1 = D�11 = I1 Æ (Id+�)�1, and thus R 1 is strongly linear. �5. Transseries of de
ay > 1In this se
tion we extend L1 to a Liouville 
losed H-sub�eld T1 of R[[T℄℄ by �rstextending L1 to a real 
losed H-sub�eld S of R[[T℄℄ that is 
losed under takinglogarithms of positive elements, and then 
losing o� S under downward shifts.The H-�eld T1 will satisfy the requirements on K in the Theorem stated in theintrodu
tion.Constru
tion of S. The 
onvex subgroupT[ = fn 2 T : n �� exgof the ordered group T is 
losed under R-powers. Note that L � T[. We 
all T[the 
at part of T. Its steep supplement (as de�ned in the previous se
tion) is thesubgroup T℄ = fg 2 T : supp log g < xgof T, 
alled the steep part of T. (See Examples 4.1 and 4.10.) We apply hereSe
tion 4 to M = T, and a

ordingly identify R[[T℄℄ and R[[T[ ℄℄[[T℄℄℄. Everyf = Xm2T fmm 2 R[[T℄℄
an be written as f = Xr2T℄ f [r r;where the 
oeÆ
ients f [r := Xn2T;n��ex fnrnare series in R[[T[ ℄℄. (In the notation of Se
tion 4, we have f [r = fT[;r.) We mayalso de
ompose f as f = f* + f� + f+; (5.1)



24 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENwhere, with m ranging over T,f* := Xm�1;m��ex fmm;f� := Xm��ex fmm;f+ := Xm�1;m��ex fmm:Put S0 := L1 , the latter as de�ned in Se
tion 3. So S0 � R[[T0 ℄℄ � R[[T[ ℄℄.Indu
tively, given the sub�eld Sn of R[[Tn ℄℄, we let Sn+1 be the sub�eld of R[[Tn+1 ℄℄
onsisting of those f 2 R[[T℄℄ su
h that f [r 2 L1 and log r 2 S"n for all r 2 suppex f ,that is, with C := R[[T[ ℄℄: Sn+1 = L1 [[Un+1℄℄ � C[[T℄℄℄where Un+1 := T℄ \ exp(S"n) = exp�Sn \ R[[T<xn ℄℄�;a subgroup of T℄ \ Tn+1 
losed under R-powers. It follows that Sn+1 � R[[Tn+1 ℄℄.It is 
onvenient to de�ne R0 := f1g � T0.Example 5.1. We have U1 = exp�L1 \ R[[L<x ℄℄�. Therefore ex2 2 S1, but ex2# =e(logx)2 62 S1.Lemma 5.2. Ea
h Sn is a real 
losed sub�eld of T, and Un � Un+1 for all n.(Hen
e Sn � Sn+1 for all n.)Proof. The �rst statement follows from the remarks at the beginning of Se
tion 3and Lemma 1.6. We show the other statement by indu
tion on n. The 
ase n = 0being 
lear, suppose that Un � Un+1. ThenSn = L1 [[Un℄℄ � L1 [[Un+1℄℄ = Sn+1and thus Un+1 = T℄ \ exp(S"n) � T℄ \ exp(S"n+1) = Un+2as required. �We let S be the union of the in
reasing sequen
e S0 � S1 � � � � of real 
losedsub�elds of T. Then S is a real 
losed sub�eld of T. Moreover:Lemma 5.3. log(S>0n ) � Sn for every n. (Hen
e log(S>0) � S.)Proof. The 
ase n = 0 is dis
ussed at the beginning of Se
tion 3. Suppose n > 0.Every positive f 2 Sn may be written in the formf = g � u � (1 + ")where 0 < g 2 L1 , u 2 Un � exp(S"n�1), and " �ex 1. We getlog f = log g + log u+ log(1 + "):We have log g 2 L1 and (sin
e " � 1)log(1 + ") = 1Xk=1 (�1)k+1k "k 2 Sn:Moreover log u 2 Sn�1, thus log u 2 Sn by Lemma 5.2. Hen
e log f 2 Sn. �



DIFFERENTIALLY ALGEBRAIC GAPS 25We now put An := S"n, Mn+1 := exp(An) for every n, and M0 := L. Ea
hAn is an R-linear subspa
e of R[[Tn ℄℄, and Mn is a subgroup of Tn 
losed underR-powers. Here are some more properties of Sn, An and Mn. A subset A of R[[T℄℄is said to be 
losed under subseries if for every f =Pm2T fmm 2 A the subseriesf jS :=Pm2S fmm is in A, for any subset S of T.Lemma 5.4. For every n we have:(1) Sn � R[[Mn ℄℄. (Hen
e An � R[[Mn ℄℄".)(2) Sn is 
losed under subseries. (Hen
e An is 
losed under subseries.)(3) logMn � An. (Hen
e Mn �Mn+1.)(4) Sn" � Sn+1. (Hen
e Mn" �Mn+1.)Proof. Parts (1){(3) are obvious for n = 0. For the 
ase n = 0 of (4) note �rstthat L" � L � (expx)R with L \ (expx)R = f1g. Moreover, if a subset S of Lhas de
ay > 1 and S" � L � (expx)� with � 2 R, then �(S") has de
ay > 1,where � : L � (expx)R ! L is given by l � (expx)� 7! l for l 2 L, � 2 R. Hen
eL1" � L1 [[(expx)R℄℄ � S1 as required.Let now n > 0. For (1) note thatL = exp logL � exp(L"1 ) � exp(S"n�1); Un � exp(S"n�1);hen
e Sn = L1 [[Un℄℄ � R[[L � Un℄℄ � R[[exp(S"n�1)℄℄ = R[[Mn ℄℄:For (2) let f =Pu2Un f [uu 2 Sn, so f [u 2 L1 for all u. Then for any subset S of Twe have f jS = Xu2Un(f [u)jSuu 2 Sn;where Su := fn 2 T[ : nu 2 Sg for u 2 Un. For part (3) we have, by Lemma 5.2,logMn = An�1 = S"n�1 � S"n = Anas required. For (4), we may assume indu
tively that Sn�1" � Sn. Sin
e Tn�1" �Tn we getUn" = exp�Sn�1 \ R[[T<xn�1 ℄℄� " � exp �Sn \ R[[T<exp xn ℄℄� � Un+1:Together with L1" � L1 [[(expx)R℄℄ this yields Sn" = (L1")[[Un"℄℄ � Sn+1. �We let M be the union of the in
reasing sequen
e M0 � M1 � � � � of orderedsubgroups of T. Then M is an ordered subgroup of T, and S is an ordered sub�eldof R[[M℄℄. Note that the Mn satisfy 
onditions (M1){(M4) of the previous se
tion.We have S\L = L1 , hen
e exp(�) =2M, by part (3) of Lemma 5.4 and Example 3.2.Proposition 5.5. For every n, the �eld Sn is 
losed under di�erentiation.Proof. We pro
eed by indu
tion on n. We have already dealt with the 
ase n = 0in Proposition 3.1. Let f = Pu2Un+1 f [uu 2 Sn+1. By Theorem 4.13, the family�(f [uu)0�u2Un+1 in R[[Tn+1 ℄℄ is 
atly noetherian. Hen
e for any s 2 T℄n+1 the sumXu2Un+1 h�(f [u)0 + f [uuy�ui[shas only �nitely many non-zero terms and equals (f 0)[s. Let u 2 Un+1 and s 2T℄n+1. By the indu
tion hypothesis we have uy 2 Sn, hen
e (uy)[s=u 2 L1 . By



26 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENProposition 3.1 we get (f [u)0 2 L1 . Therefore (f 0)[s 2 L1 . It follows that f 2 Sn+1as required. �Constru
tion of T1. We have S#k = (S")#k+1 � S#k+1 for every k 2 N, byLemma 5.4, (4). We let T1 be the union of the in
reasing sequen
eS� S#� S#2 � � � � � S#k � � � �of real 
losed sub�elds of T. The elements of the real 
losed sub�eld T1 of T are
alled transseries of de
ay > 1. The �eld T1 is 
losed under upward and downwardshift: if f 2 T1, then f"; f# 2 T1. We have L1 � T1; in fa
t:Lemma 5.6. L1 = T1 \ L.Proof. Suppose f 2 T1 \ L; so f"k 2 Sn where k; n 2 N; we 
laim that f 2 L1 .The 
ase k = 0 being trivial, we may assume k > 0. Thenf"k 2 L[[(exp x)R � � � (expk x)R℄℄ \ Sn � L1 [[(expx)R � � � (expk x)R℄℄;where expm x = x"m for all m. Hen
e f 
an be written in the formf = X�2Rk `� � (g� Æ `k);where g� 2 L1 and `� = `�00 � � � `�k�1k�1 for � = (�0; : : : ; �k�1) 2 Rk . By Lemma 3.4,we get f 2 L1 as desired. �If A is a subset of R[[T℄℄ whi
h is 
losed under subseries, then so is A#, sin
e(f#)jS = (f jS")#, for any f 2 A and S � T. By indu
tion on k it follows that ea
hsub�eld S#k of R[[T℄℄ is 
losed under subseries. Hen
e T1 is 
losed under subseries.Proof of the main theorem. In the remainder of this se
tion, we show thatK = T1 has the properties of the main theorem in the introdu
tion.Proposition 5.7. The sub�eld T1 of T is 
losed under exponentiation and takinglogarithms of positive elements.Proof. Sin
e log(f#m) = (log f)#m for all m and all f 2 S>0,Lemma 5.3 yields that T1 is 
losed under taking logarithms. Similarly,exp(f#m) = (exp f)#m for all m and all f 2 S.Hen
e as to exponentiation, it suÆ
es to prove that exp f 2 T1 for all f 2 S. Letf 2 Sn, and de
ompose f as in (5.1): f = f* + f� + f+, soexp f = (exp f*) � (exp f�) � (exp f+):Sin
e f+ 2 T�1 we get exp f+ = 1Xn=0 (f+)nn! 2 Sn:We have f* = Xm�1;m��ex fmm 2 Sn\ R[[T<xn ℄℄;hen
e exp f* 2 Un+1 � Sn+1. It remains to prove that exp f 2 T1 for all f 2 L1 .So let f 2 L1 . From 1 62 \supp f � L we obtain k 2 N su
h that `k �� m for all



DIFFERENTIALLY ALGEBRAIC GAPS 27m 2 supp fnf1g. Then g� 2 R for g = f"k+1, hen
e exp g 2 S by what we haveshown above. We 
on
lude that exp f = (exp g)#k+1 2 T1. �Sin
e (f#)0 = (f 0#) � x�1 for all f 2 T, Proposition 5.5 yields:Corollary 5.8. The sub�eld T1 of T is 
losed under di�erentiation. (Hen
e T1 isan H-sub�eld of T.) �To prove that T1 is 
losed under integration, we �rst establish some auxiliaryfa
ts. Re
all that R[[M℄℄ is 
losed under di�erentiation and that exp(�) =2 M.Hen
e R[[M℄℄ is 
losed under integration.In the next lemma we �x n > 0. We have the following in
lusions:L � Un �Mn � Sn � L[[Un ℄℄ = R[[L � Un℄℄ � R[[Mn ℄℄:The sub�eld L[[Un ℄℄ of R[[M℄℄ is 
losed under di�erentiation by Proposition 5.5,and 
losed under integration by the argument used to prove Lemma 4.2. Note thatlog s 2 Sn�1 � L[[Un ℄℄ for all s 2 Un. In the next lemma we also �x a monomialu 2 Un n f1g and put S := �s 2 Un : sy �ex uy	 ; (5.2)a 
onvex subgroup of Un 
losed under R-powers.Lemma 5.9. The sub�eld L[[S℄℄ of L[[Un ℄℄ is 
losed under di�erentiation. Also, ifuy �ex 1, then uy 2 L[[S℄℄.Proof. The �rst part will follow if s0 2 L[[S℄℄ for all s 2 S. So let s 2 S; wedistinguish two 
ases:(1) sy �ex 1. Then s =2 T[, hen
e s = e' with supp'0 �� s (by Lemma 4.8applied to m 2 supp'). Using '0 = sy, this yields my � sy for everym 2 supp s0. Let v 2 (suppex s0) n f1g, so v �ex m with m 2 supp s0. Thenvy �ex my � sy �ex uy, hen
e v 2 S, as desired.(2) sy 4ex 1. Then log s 2 L[[Un ℄℄ \ R[[T[ ℄℄ = L (by Lemma 4.9) and thuss0 = (log s)0 � s 2 L[[S℄℄.Suppose that uy �ex 1. Then log u �ex 1 by Lemma 4.9, hen
e(log u)y = uylog u �ex uy:Therefore, if v 2 suppex log u, then vy 4ex (log u)y �ex uy, hen
e v 2 S. Thuslog u 2 L[[S℄℄, and sin
e L[[S℄℄ is 
losed under di�erentiation, we get uy 2 L[[S℄℄.�Lemma 5.10. Let f 2 S with uy �ex 1 for all u 2 (suppex f) nf1g. Then R f 2 S.Proof. We already know that S0 = L1 is 
losed under distinguished integration, byProposition 3.5. So we may assume that 1 62 suppex f by passing from f to f � f [1.Take n > 0 su
h that f 2 Sn. We shall prove that R f 2 Sn. We havef = Xu2Un f [uu 2 L1 [[Un℄℄ = Sn:PutN :=M\T[, a 
onvex subgroup ofM; note that L � R[[N℄℄. LetR be the steepsupplement of N in M. The de�nitions of T℄ and R easily yield that M \ T℄ � R;hen
e Un � R. Therefore, the family (f [uu)u2Un in R[[M℄℄ is 
atly noetherian withrespe
t to N, with sum f . Thus by Theorem 4.14, the family � R f [uu�u2Un in R[[M℄℄
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atly noetherian, with sum R f . Fix any g 2 L1 and u 2 Un with uy �ex 1;it suÆ
es to show that then R gu 2 Sn = L1 [[Un℄℄. Put h := 1u R gu 2 L[[Un ℄℄; itremains to show that h 2 L1 [[Un℄℄. Note thath+ (h0=uy) = g=uy:Let S be as in (5.2). Take a basis C for the R-ve
tor spa
e L; extend C to a basisB for R[[N℄℄, and let 4� be as in (4.3) and ' : R[[B �R℄℄ ! R[[M℄℄ as de�ned inLemma 4.15. The map ' restri
ts to an R-linear bije
tion'1 : R[[C �S℄℄! R[[L �S℄℄ = L[[S℄℄:By the previous lemma, the sub�eld L[[S℄℄ of L[[Un ℄℄ is 
losed under di�erentiationand 
ontains uy. Hen
e the operator�: L[[Un ℄℄! L[[Un ℄℄; y 7! y0=uymaps L[[S℄℄ to itself, and (Id+�)(h) = g=uy. By Theorem 4.13 the operator�1 := '�11 Æ � Æ '1 on R[[C �S℄℄ is strongly linear, and supp�1(
; s) �� (
; s) forall (
; s) 2 C�S. We now apply Corollary 1.4 with C�S in pla
e of M, orderedby the restri
tion of 4� to C�S, and �1 in pla
e of �. It follows that the family�(�1)i�i(g=uy)�i2Nin L[[S℄℄ is 
atly noetherian as a family in R[[M℄℄, and thath1 := 1Xi=0(�1)i�i(g=uy) 2 L[[S℄℄satis�es h1 + (h01=uy) = g=uy = h+ (h0=uy):Hen
e h = h1 + 
u�1 for some 
 2 R. From �(L1 [[Un℄℄) � L1 [[Un℄℄ we obtain that�i(g=uy) 2 L1 [[Un℄℄ for all i. Hen
e h1 2 L1 [[Un℄℄, and thus h 2 L1 [[Un℄℄. �Next we show that for suitable f the hypothesis in the last lemma is satis�edafter a single upward shift:Lemma 5.11. For every f 2 S with f [1 = 0 and u 2 suppex f" we have uy �ex 1.Proof. Suppose f 2 Sn, f [1 = 0, n > 0. Thenf" = X1 6=s2Un(f [s)" � s"with suppex(f [s)" � (expx)R for 1 6= s 2 Un. So it suÆ
es to show for su
h s that(s")y �ex 1. Write s = e' with 0 6= ' 2 Sn�1 \ R[[T<xn�1 ℄℄. Then d(') < x andhen
e d('") = d(')" < ex. Therefore d('")0 < (ex)0 = ex �ex 1, so (s")y = ('")0 �d('")0 �ex 1 as required. �Proposition 5.12. The H-sub�eld T1 of T is 
losed under integration.Proof. We 
laim that for ea
h k 2 N and g 2 S#k there is f 2 S#k+1 su
h thatf 0 = g. We pro
eed by indu
tion on k. First, let g 2 S. By Proposition 3.5 wemay assume that g[1 = 0. Consider G = (g") � ex 2 S. By the previous lemma, allu 2 (suppex G) nf1g satisfy uy �ex 1. By Lemma 5.10, we get R G 2 S and hen
eR g = (R G)# 2 S#. This proves the 
ase k = 0 of our 
laim.
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tion step we 
onsider an element of S#k+1, and write it as g# withg 2 S#k. Then g � ex 2 S#k, so indu
tively we have an f 2 S#k+1 with f 0 = g � ex.Then (f#)0 = g#, and f# 2 S#k+2. �We now have the main theorem from the introdu
tion, with K = T1:Corollary 5.13. The H-sub�eld T1 of T is Liouville 
losed, and % 2 T1.Proof. Propositions 5.7 and 5.12 yield that T1 is Liouville 
losed; the se
ond partfollows from % 2 L1 � T1. �6. Final RemarksThe di�erential polynomial 2Z 0+Z2 (the \S
hwarzian" in [4℄) has a 
lose 
onne
tionto the se
ond-order linear di�erential equation Y 00 = fY where f is an element ofsome H-�eld: whenever y is a non-zero solution to Y 00 = fY , then z = 2yy satis�es2z0+z2 = f . The 
ut in R[[[x℄℄℄ = R((x�1 ))LE determined by % := 2�0+�2 2 L 
anbe used to des
ribe for whi
h f 2 R[[[x℄℄℄ the linear di�erential equation Y 00 = fYhas a non-zero solution in R[[[x℄℄℄; see [14℄. (Likewise for the existen
e of solutionsin �nite-rank Hardy �elds, [10℄.) See also [7℄ for some observations about the role ofgaps in Hardy �elds, and of the transseries �, in the theory of ordinary di�erentialequations over o-minimal expansions of the real exponential �eld.The transseries % makes another appearan
e in �E
alle [4℄: Lemme 7.4 says thatfor any non-
onstant di�erential polynomial P (Z;Z 0; : : : ; Z(n)) 2 RfZg, the seriesP (�; �0; : : : ; �(n)) 2 L has in�nite support, and the sum of its �rst ! terms, afterpossibly dis
arding �nitely many initial terms, either has the form
`�e00 `�e11 � � � `�ek�1k�1 ��#k� with e0 > e1 > � � � > ek�1 > 1or 
`�e00 `�e11 � � � `�ek�1k�1 �%#k� with e0 > e1 > � � � > ek�1 > 2;where 
 2 R� , k 2 N, and the ei are integers.Given a real number r > 0, we say that a subset S of L has de
ay > r if forevery m = `�00 `�11 � � � in bS (with �k 2 R for all k) there exists k0 su
h that �k < �rfor all k > k0. Let Lr be the set of all f 2 L su
h that supp f has de
ay > r. (SoLr � Ls for 0 6 s 6 r.) We have � 2 Lr n L1 for all 0 6 r < 1 and % 2 Ls n L2 for0 6 s < 2. As with L1 , one 
an show that Lr is a di�erential sub�eld of L, whi
his 
losed under integration if and only if r > 1. (For 0 6 r < 1 we have � 2 Lr , butR � = � 62 Lr .) For r > 1, 
arrying out the 
onstru
tion of T1 with Lr in pla
e ofL1 yields a Liouville 
losed H-sub�eld Tr of T whi
h doesn't 
ontain an element ofthe form �+ ", where " 2 R[[T℄℄ satis�es " � 1=(`0`1 � � � `n) for all n.By the above result of �E
alle, � does not satisfy any di�erential equation of theform P (�; �0; : : : ; �(n)) = f , where P (Z;Z 0; : : : ; Z(n)) 2 RfZg is non-
onstant andf 2 Tr with r > 1. (We suspe
t that � is di�erentially trans
endental over Lr , andhen
e over Tr, for any r > 1.) In parti
ular, our 
onstru
tion of a di�erentiallyalgebrai
, non-Liouvillian gap 
ould not have been 
arried out with T1 repla
ed byTr for any r > 1, even if we repla
e 2Z 0 + Z2 by another non-
onstant di�erentialpolynomial P (Z;Z 0; : : : ; Z(n)) 2 RfZg.Finally, let us mention that the Newton polygon method of [15℄ 
an be used toobtain Hardy �eld examples of the various possibilities for the appearan
e of gapsexhibited in this paper. We shall leave the details for another o

asion.
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