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ABSTRACT. H-fields are ordered differential fields that capture some basic
properties of Hardy fields and fields of transseries. Each H-field is equipped
with a convex valuation, and solving first-order linear differential equations in
H-field extensions is strongly affected by the presence of a “gap” in the value
group. We construct a real closed H-field that solves every first-order linear
differential equation, and that has a differentially algebraic H-field extension
with a gap. This answers a question raised in [1]. The key is a combinato-
rial fact about the support of transseries obtained from iterated logarithms by
algebraic operations, integration, and exponentiation.

INTRODUCTION

This paper is motivated by a basic problem about H-fields, the gap problem, as we
explain later in this introduction. In this paper “differential field” means “ordinary
differential field of characteristic 0”; H-fields are ordered differential fields whose
ordering and derivation interact in a strong way. The category of H-fields was
defined in [1] as a common algebraic framework for two points of view on the
asymptotic behavior of one-variable real-valued functions at infinity: the theory of
Hardy fields (see [9]), and the more recent theory of transseries fields, introduced
by Dahn and Géring [3] as well as Ecalle [4], and further developed in [15], [13],
[14], [11]. We hope that the theory of H-fields will lead to a better (model-theoretic)
understanding of Hardy fields, and of their relation to fields of transseries.

For this introduction, we assume that the reader has access to [1] and [2]; in
particular, the notations and conventions in these papers remain in force. We
just recall here that any H-field K (with constant field C) comes equipped with a
dominance relation <: for f,g € K, we have

f <9< |f|] <clg| for some c € C,

and we write f < g if f < g and g £ f; we also write g = f instead of f < ¢, and
g = f instead of f < ¢g. (If K D R is a Hardy field, then K is an H-field and, in
Landau’s O-notation, f < g < f =0(g) and f < g & f = o(g).) For some basic
properties of these asymptotic relations we refer to [16] in the case of transseries
fields, and [2] for H-fields in general.

Let K be an H-field. The set K=t = {f € K : f < 1} of bounded elements
of K is a convex subring of K; we shall always denote the associated valuation by
v: K - TU{oo}, with I' = v(K*), K* := K\{0}. For f,g € K we write f < g if
v(f) =wv(g), that is, f < g and g < f. An element f of K is said to be infinitesimal
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if f <1, equivalently, | f| < ¢ for all positive constants ¢ € C, and infinite if f = 1,
equivalently, |f| > C.

An H-field K is Liouville closed if K is real closed, and any first-order linear
differential equation y' + fy = ¢ with f,¢g € K has a solution in K. A Liouville
closure of an H-field K is a Liouville closed H-field L extending K which is minimal
with this property. Every H-field K has at least one, and at most two, Liouville
closures, up to isomorphism over K. Given a differential field F', an element f €
F* and an element y in some differential field extension of F' we let ff := f'/f
denote the logarithmic derivative of f, and let F(y) := F(y,y’,y",...) be the
differential field generated by y over F. A differential field F' is said to be closed
under integration if for each g € F there is f € F with f' = g¢.

Gaps in H-fields. In an H-field, asymptotic relations between elements of non-
zero valuation may be differentiated: if f,g ¥ 1, then f < g & f' < ¢". In
particular, if f is infinitesimal and ¢ is infinite, then f’' < ¢'. Also, if € and §
are non-zero infinitesimals, then & < §f. A gap in an H-field K is an element
v = v(g), g € K*, of its value group I' such that ¢’ < g < &' for all non-zero
infinitesimals €,5. An H-field has at most one gap, and has no gap if it has a
smallest comparability class or is Liouville closed. Further examples of H-fields
without a gap can be obtained using the H-field of transseries of finite exponential
and logarithmic depth with real coefficients, denoted by R((z~!))“¥ in [14], and
by R[[z]]] in [15]: each ordered differential subfield of R[[[z]]] that contains R is an
H-field without a gap.

If an H-field K has a gap v(g) as above, then K has exactly two Liouville
closures, up to isomorphism over K: one in which g = ¢’ with infinitesimal ¢, and
one where ¢ = h' with infinite h. This “fork in the road” due to a gap causes
much trouble. For a model-theoretic analysis of (existentially closed) H-fields, one
needs to understand when a given H-field can have a differentially algebraic H-
field extension with a gap. (An extension L|K of differential fields is said to be
differentially algebraic if every element of L is a zero of a non-constant differential
polynomial over K).

The gap problem. The simplest type of differentially algebraic extensions are
Liouville extensions. If K is a real closed H-field and L = K(y) is an H-field exten-
sion with ¢' € K, then L has a gap if and only if K does, by [1], [2]. However, [2]
also has an example of a real closed H-field K without a gap, but such that some
H-field extension L = K(y) D K with y # 0, y' € K, has a gap. It may even
happen that an H-field K has no gap, but its real closure does. These examples
raise the question (called the “gap problem” in [1]) whether the creation of gaps in
differentially algebraic H-field extensions can be confined to Liouville extensions.
More precisely, we asked the following;:

Suppose L is a differentially algebraic H-field extension of a Liouville closed H -
field K. Can L have a gap? (A negative answer would have been welcome.)

Our main result is an example where the answer is positive. This example is about
as simple as possible, and may well be generic in some sense.

Outline of the example. No differentially algebraic H-field extension of R][[z]]]
can have a gap, by [2], Corollary 12.2, and this statement remains true when R[[[z]]]
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is replaced by any Liouville closed H-subfield. Our example will indeed live in a
larger field T of transseries, as we shall indicate.

First, let £ denote the multiplicative ordered subgroup of R[[[z]]]>® generated
by the real powers of the iterated logarithms

by ==z, t :=logx, ly:=loglogx,..., 0, =log,x,...
of x (the group of logarithmic monomials, see Section 2). This gives rise to
L :=R[[£]] (the field of logarithmic transseries).

In the beginning of Section 3 we equip L with a derivation making it an H-field with
constant field R. Let T be the field of transseries of finite exponential depth and
logarithmic depth at most w, with real coefficients (denoted by RY , [[[z]]] in [15]).
At this stage we only mention that T is obtained from IL by an inductive procedure
of closure under exponentiation. (Details of this procedure are in [15], Chapter 2,
and are recalled at the beginning of Section 4.) As a result of its construction T
comes equipped with a derivation that makes it a real closed H-field extension of L
(with same constant field R), and with an isomorphism exp of the ordered additive
group of T onto its positive multiplicative group T>°, whose inverse is denoted by
log, such that exp(f)' = f exp(f) for all f € T and log¥,, = £,,+1 for all n.
Moreover, the sequence {y,l1,0s,... is coinitial in the set of positive infinite
elements of T and hence 1/£€y,1/¢1,1/¢5, ... is cofinal in the set of positive infinites-
imals of T. Also, R[[[z]]] C T, as H-fields and as exponential fields. Here is a
diagram illustrating the various H-fields and their inclusions (indicated by arrows):

L = R[] T

R(£) R{[[=]]]

Whereas the H-field L does not have a gap (see Section 3), the H-field T does. In
particular, T is not Liouville closed. To see this, we set as in [4], Chapter 7:

Aizgl +£2+€3+EL
In T we have (ln)Jr =(lpt1) = exp(—(fl +l+ -+ ﬁnH)), and thus
(1/€,) < exp(—A) < (1/6,)" for all n.

(Intuitively, exp(—A) represents the infinitely long logarithmic monomial m.)
Therefore v(exp(—A)) is a gap in T, and hence is a gap in each H-subfield of T that
contains exp(A). So any Liouville closed H-subfield K of T with a differentially
algebraic H-field extension L C T containing exp(A) is an example as claimed. Put
1 1
A=A =+ — 4+ e
b ol T hht T,
Let 0 :=2)X + A2 € L. A computation shows that

+ +.- €L

1 1 1 1
¢ <5(2) (lolr)? ~ (olrly)? (boly -~ - £n)? )
We shall prove (Corollary 5.13):

Theorem. There exists a Liouville closed H-subfield K D R(L) of T such that
pEK.
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Given K as in the theorem, let L := K (exp(A),\) C T. Since exp(A)T = X and
N =0 —(1/2)A2, L is an H-subfield of T and differentially algebraic over K; thus
K and L are an example as claimed.

We shall construct a K as in the theorem by isolating a condition on transseries
in T, namely “to have decay > 1”, a condition satisfied by g, but not by A. The
main effort then goes into showing that this condition defines a Liouville closed
H-subfield of T as in the Theorem.

Organization of the paper. After preliminaries in Section 1 on transseries, we
introduce in Section 2 the property of subsets & of £ to have decay > 1. In Section 3
we consider the subset I; of L consisting of those series whose support has decay >
1, and show that L; is an H-subfield of L closed under integration and taking
logarithms of positive elements. (By construction, ¢ € Ly, but A ¢ L;.) Section 4
is the most technical; it focuses on subgroups 91 of the group ¥ of monomials of T
and shows, under mild assumptions including exp(A) ¢ 9, that then the transseries
field R[[9M]] is closed under a natural derivation on R[[¥]] extending that of T, and is
also closed under integration. (Here we make essential use of the Implicit Function
Theorem from [17].) In Section 5 we prove the main theorem by extending L; to a
Liouville closed H-subfield Ty of T. We finish with comments on the transseries A
and p.

1. PRELIMINARIES

In our notations we mostly follow [17]. Throughout this paper we let m and n
range over N:= {0,1,2,...}.

Strong linear algebra. Let (901, <) be an ordered set. (We do not assume that <
is total, but we do follow the convention that ordered abelian groups and ordered
fields are totally ordered.) A subset & of 9 is said to be noetherian if for every
infinite sequence m;,ms,... in & there exist indices ¢ < j such that m; = m;. If
the ordering < is total, then & C 9 is noetherian if and only if & is well-ordered
for the reverse ordering 3=, that is, there is no strictly increasing infinite sequence
mg <my < --- in 6. Let C be a field. Then

o) = {f = Z fom:all fu € C, supp f C M is noetherian} ,

meM

where supp f = {m € M : fn. # 0} is the support of f, denotes the C-vector
space of transseries with coefficients in C' and monomials from 9. We refer to [17]
for terminology and basic results concerning “strong linear algebra” in C[[90]]. In
particular, a family (f;)icr in C[[9]] is called noetherian if the set | J;.,; supp f; € M
is noetherian and for each m € 9 there exist only finitely many ¢ € I such that
m € supp f;. In this case, we put

> jim X (Ttin

el meM \iel

an element of C[[90]].
Let (9, <) be a second ordered set. A C-multilinear map ®: C[[IN]]” — C[[N]]
is called strongly multilinear if for all noetherian families

(flyil)ilell7 ceey (fmin),'ne[n
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in C[[9M]] the family

((I)(fl,il,. . fn’i"))(il,...7in)611><---><In

in C[[N]] is noetherian and

@ (Z Frivs oo D f) = > O(frirs- - Fin)-
(

i1€l in€ln B1,eenyin ) ELL X oo X Ty

In the case n = 1 we say that ® is strongly linear. Clearly a strongly multilinear
map C[[D]]™ — C[[97]] is strongly linear in each of its n variables.

A map ¢: M — C[[MN]] is said to be noetherian if for every noetherian subset
S C M, the family (p(m))mes in C[[MN]] is noetherian; equivalently, for every
infinite sequence my > my > - -- of monomials in M and n; € supp ¢(m;) for i > 1,
there exist ¢ < j such that n; > n;. A noetherian map 9 — C[[N]] extends to a
unique strongly linear map C[[9]] — C[[N]] (Proposition 3.5 in [17]), and every
strongly linear map C[[9]] — C[[MN]] restricts to a noetherian map M — C[[N]].

A map ®: C[[N]] — C[[N]] is called noetherian if there exists a family (My,)nen
of strongly multilinear maps

M, - C[[]]" = C[N]]
such that for every noetherian family (fi)rex in C[[9]] the family

(M”(fkl’ s I ))neNJch...,kneK

in C[[M]] is noetherian and

@(Z fk> = Z M (frers- - frn)-

keK neN
ki,..,kn€K
The family (M,,) is called a multilinear decomposition of ®. If char C' = 0, then the
M,, may chosen to be symmetric, and in this case the sequence (M,,),en is uniquely
determined by ® ([17], Proposition 5.8). Every strongly linear map ®: C[[90]] —
C[[N]] is noetherian, with multilinear decomposition (M,,) given by M; = ® and
M,, =0 for n # 1. Conversely, if C' is infinite, then every linear noetherian map is
strongly linear, as we show next.

Lemma 1.1. Suppose the field C is infinite and (f;)ien is a noetherian family in
C[[9m]]. Let ¢: C — C[[DM]] be given by () = >, X' fi, and suppose ¢ is C-linear.
Then f; =0 for all i # 1.

Proof. Suppose m € J, supp f;; let iy < --- < 4, be the indices ¢ such that m €
supp fi, and put ¢t := (fi,)m € C for k =1,...,n. With X\ € C' we have ¢(\)m =
Ad(1)m, that is,

Nicp + -4+ Are, = Mep + 00+ ¢).
Since C' is infinite, this yields n = 1 and i; = 1. O

Corollary 1.2. Suppose the field C is infinite, and the map ®: C[[M]] — C[[N]]
is noetherian and C-linear. Then ® is strongly linear.
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Proof. Let (Mp)nen be a multilinear decomposition of ®. Let f € C[[9]], and
define ¢: C — C[N]] by ¢(A) = ®(Af). Then

P(N) = ZA% with f; == Mi(f,..., f),

and ¢ is C-linear. Hence f; = 0 for all ¢ # 1, by the previous lemma. It follows
that & = M, . O

We equip the disjoint union 9 IIDT with the least ordering extending those of 90t
and 9. The natural inclusions i: 9t — M I and j5: N — MU N extend uniquely
to strongly linear maps i: C[[90]] — C[[MMLIN]], and j: C[[N]] — C[[PRLIN]]. This
yields a C-linear bijection

(£,9) = i(f) +J(g): Cl[) x O[N] — C[[2m 11 9.

When convenient, we identify C[[90]] x C[[N]] with C[[9 II YN]] by means of this
bijection. For example, we say that a map ®: C[[9]] x C[[N]] — C[[9MN]] is strongly
linear (respectively, noetherian) if ®, considered as a map C[[MIIN]] — C[[9MN]], is
strongly linear (respectively, noetherian). The following is the strongly linear case
of Theorems 6.1 and 6.3 in [17] (Van der Hoeven’s implicit function theorem):

Theorem 1.3. Let the map (f,g) — ®(f,g): C[[M]] x C[[N]] = C[[MN]] be strongly
linear such that supp ®(m,0) < m for all m € M. Then for each g € C[[N]] there is
a unique f = ¥(g) € C[[IM]] such that ®(f,g) = f. For each g € C[[N]] the family

(War1(9) = Wa(9)),, oy in CIMY] with
\Ilo(g) = q’(oag)a \Ijn+1(g) = ‘ﬁ(q’n(g),g) fOT all n

is noetherian with

T(g) = To(g) + > (Tns1(g) — Tuly))-

neN
The map g~ ¥(g): C[[M]] — C[[M]] is noetherian.

The following consequence for inverting strongly linear maps is important later:

Corollary 1.4. Suppose that C is infinite. Let ®: C[[IN]] — C[[PN]] be a strongly
linear map such that supp ®(m) < m for all m € M. Then the strongly linear
operator Id +® on C[[IN]] is bijective with strongly linear inverse given by
o0
(Id+®)7 (g) = Y _(-1)"@"(9). (1.1)
n=0
Proof. Let ®1: C[[9]] x C[[9M]] — C[[PN]] be given by ®1(f,9) = g — ®(f). Then
®, is strongly linear and supp ®1(m,0) = supp ®(m) < m for all m € 9. By the
theorem above with ®; in place of ® we obtain a a noetherian ¥: C[[9]] — C[[90]]
such that (Id +®) o ¥ = Id. By Corollary 1.2, ¥ is strongly linear.
The assumption on ® yields that Id +® has trivial kernel, so Id +® is injective,
and thus ¥ is even a two-sided inverse of Id +®. Moreover, in the notation of
Theorem 1.3 we have

Uo(g) = g, Wi(9) = g — ®(9), P2(9) = g — (9) + 2*(9), -
for every g, which yields (1.1). O
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Transseries fields. In the rest of this section, (MM, X) is a multiplicative ordered
abelian group. (In particular the ordering < is total.) Then C[[90]] is a field, called
the transseries field with coefficients in C' and monomials from 9. If 6,&" C M
are noetherian, so is 6&’. For & C M, let &* be the multiplicative submonoid of
M generated by &; if & C M is noetherian and & < 1, then &* is noetherian.

For non-zero f € C[[9N]] we put

o(f) == max supp f (dominant monomial of f)

and we call fo(7)0(f) € C* -9 the dominant term of f. We extend the ordering <
on M to a dominance relation on C[[9N]]: for series f and g in C[[M]], we put
fxg = (f#0,9#0,0(f) 0(g)), or f=0
9 = [f<sgrg<s],

so for non-zero f and g: f < g <= 0(f) = 0(g). We have the canonical decompo-
sition of C[[9N]] into C-linear subspaces:

Clm)] = o))" & C @ C[[m))*,

where
Ol[m)]" == {f € C[[]] : supp f = 1} = O[]
and
ClM]* == {f € C[[M]] : supp f < 1} = O[]~ = C[m="]],
the maximal ideal of the valuation ring C[[IN]]S! = C @ C[[IM]]* of C[[9M]]. Every
f € C[[9M]] can be uniquely written as
F=1T+f+1,
where fT € C[[M]|T, f~ € C, and f+ € C[[IM]J*. If C is an ordered field, then we
turn C[[90]] into an ordered field as follows:
>0 < for)>0, for f € C[[M]], f #0. (1.2)

In this case,

Ol = {f € C[)] : 1 f| > C}
and

Ol = {f € C[2]] : | f] < C7°},

and the valuation ring C[[9N]]S! of C[[9MN]] is a convex subring of C[[M]]. Given an

ordered field C' we shall refer to C[[9]] as an ordered transseries field over C to
indicate that C[[90]] is equipped with the ordering defined by (1.2).

Example 1.5. Let C = R and M = 2®, a multiplicative copy of the ordered additive
group of real numbers, with isomorphism 7 + 2" : R — z®. Then we have

1= aa", f~=a, f*=) aa’

r>0 r<0
for f =Y, aya” € R[[z®]].
Let X = (Xy,...,X,,) be a tuple of distinct indeterminates and
F(X)=> a,X" € C[[X]]
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a formal power series; here the sum ranges over all multiindices v = (v1,...,v,) €
N*, and a, € C, XV = X{*--- X}». For any n-tuple ¢ = (e1,...,&y) of elements
of C[[OM]]*, the family (a,e"), is noetherian [8], where ¥ = ¢}* ---g%». Put

F(e) =Y a,e” € C[M].

The proof of the following lemma is similar to that of [12], Lemma 2.5.

Lemma 1.6. Suppose that C' is real closed and the group N is divisible. Then any
subfield K O C[9N] of C[[M]] with the property that F(e) € K for all F € C[[X]]
and e = (g1,...,ep) with ey, ...,e, € K= is real closed.

Differentiation. If C[[9M]] is an H-field with respect to a derivation f — f' with
constant field C' and with respect to the ordering extending an ordering on C' via
(1.2), then the dominance relation < that C[[90]] carries as a transseries field over
C coincides with the dominance relation that it has as an H-field, and

mxn < wm<xn for m,n e M\ {1}. (1.3)

In the rest of this section we assume, more generally, that C[[IM]] is equipped with
a derivation f — f' with constant field C' such that (1.3) holds.

Integration. A series f € C[[9]] is called the distinguished integral of g € C[[9]],
written as f = [ g, if f' =g and f= =0.
For every m € 90t there is at most one n € 9t with n’ < m; we say that C[[90]]
is closed under asymptotic integration if for every m € 9t there exists such an n.
If the derivation on C[[9]] is strongly linear and C[[91]] is closed under integra-
tion, then it is closed under asymptotic integration: for m € 9 we have m < n’
where n := 9( [ m). The following converse is very useful:

Lemma 1.7. Suppose that C is infinite, the derivation on C[[IN]] is strongly linear,
and C[[ON]] is closed under asymptotic integration. Then each g € C[[M]] has a
distinguished integral in C[[DN]], and the operator g — [ g on C[[IM]] is strongly
linear.

Proof. Define I: M — C[[M]] by I(m) = cn with ¢ € C, n € M such that en’ —m <
m. Then by (1.3) the map I is noetherian, hence extends to a strongly linear
operator on C[[91]], which we also denote by I. Let D be the derivation on C[[90]].
The strongly linear operator ® = D oI —Id satisfies supp ®(m) < m for all m € 9.
Hence by Corollary 1.4 the strongly linear operator D oI = Id +® has a strongly
linear two-sided inverse ¥ given by

U(g) =(DoD)"'(9) =g—P(g) + 2*(9) — 2*(9) +- -

Since I(m)= = 0 for all m € 9M, the strongly linear operator [ :=Io ¥ assigns to
each g € C[[9N]] its distinguished integral. |

Exponentials and logarithms. Suppose now that C = R. For f € R[[D]]5!,
write f = ¢+ ¢ with ¢ € R and ¢ € R[[90]]*, and put

o0

exp(f) =exp(c+¢) :=¢€°
=0

gt
ﬁ;
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where t — e’ is the usual exponential function on R. Then exp is an ezponential
on R[[IM]]=!: for f, g € R[9N]]!

exp(f) 216 f20, exp(f)>f+1, and exp(f+g) =exp(f)exp(g).
Thus exp is injective with image
{9 e R[M]] : g > 0,0(g) =1}
and inverse
log: {g € R[M]] : g > 0,0(g) = 1} — R[MJ!
given by
log g :=loga + log(1 + ¢)

for g=a(l+¢),a € R°%, & < 1, where loga is the usual natural logarithm of the
positive real number a and

oo -1 n+1
log(1+¢):= Z %s”.
n=1

If R[[97]] is closed under integration, then the above logarithm extends to a function
log: R{[M]>" — R{[M]] by

log g :=loga + logm + log(1 + ¢)
for g = am(1 +¢) with a € R”%, m € 9, and € < 1, and logm := [ mf. Note that
log(fg) = log f +logg for f,g € R[M]]>°.
More notation. For non-zero f,g € C[[9]] we put
Fxg9 = [fx4,
f=yg = <4,
f=g = fixgh

Suppose R[[9M]], with its ordering as an ordered transseries field over C = R, is an
H-field. Then by [2], Proposition 7.3, we have for f,g € R[[20]]"*:

[ Xg — |f] < |g|™ for some n > 0,
=<y = [f|™ < |g] for all n > 0.

2. LOGARITHMIC MONOMIALS

Let £ be the multiplicative subgroup of logarithmic monomials of R[[[z]]]?° gen-
erated by the real powers of the iterated logarithms ¢y := x,¢; := logz,ls :=
loglogz,..., ¢, :=log, ,... of x; that is,

e={egeer - 08 (o, ..., 0n) €ERY,n=0,1,2,... }.

Thus £ is a multiplicatively written ordered vector space over the ordered field R,
with basis £y, {1, {2, - . . satisfying

Oy by =Ly 3 - Ly -,
We define the group of continued logarithmic monomials £ by

Si= {606 2 (a0, - ) € BY)
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and by requiring that (ag,,...) = £5°47* -+ : RY — £ is an isomorphism of the
additive group RY onto the multiplicative group £. We order £ lexicographically:
given m = £5°47" --- and n = KOBOK?I -+ with (ap,,...), (B, B1,...) € RY, put

mxn <= (ag,a1,...) < (Bo,p1,...) lexicographically.

This ordering makes £ into an ordered group, and extends the ordering < on £.
We also extend the relation « (“flatter than”) from £ to £ in the natural way:

m<«n <= I(m)>I(n),
where I(m) :=min{i:a; #0} € Nif m = 547" --- # 1, and I(1) := c0 > N.

Definition 2.1. A sequence (m;);>1 in £ is called a monomial Cauchy sequence
if for each £ € N there is an index ¢g such that for all ¢c > i; > 49 we have
m;, /m;, <K £. A continued logarithmic monomial [ € € is a monomial limit of
(m;)i>1 if for all £ € N there is an 4o such that for all i > ip we have m;/[ < {j.

Given a continued logarithmic monomial m = £5°¢7* - - -, let us write
e(m) := (ag,a1,...) € RY

for its sequence of exponents. Then e: £ — RY is an order-preserving isomorphism
between the multiplicative ordered abelian group £ and the additive group RY,
ordered lexicographically. With this notation, a sequence (m;) in £ is a monomial
Cauchy sequence if and only if (e(m;)) is a Cauchy sequence in RY, that is: for
every ¢ > 0 in RY there exists an index i such that |e(m;,) — e(m;,)| < € for all
is > i1 > ip. Similarly, an element [ € £ is a monomial limit of (m;) if and only
if e([) is a limit of the sequence (e(m;)), in the usual sense: for every € > 0 there
exists ip such that |e(m;) — e([)] < e for all i > ip. If (m;) has a monomial limit in
£, then (m;) is a monomial Cauchy sequence. Conversely, every monomial Cauchy
sequence (m;) in Chasa unique monomial limit [ in E, denoted by [ = lim;_, ., m;.
Moreover, every continued logarithmic monomial m = £5°¢{* - -3 ... € £ is the
monomial limit of some monomial Cauchy sequence in £:
m= llggo Sl ARy

(Thus, viewing £ and £ as topological groups in their interval topology, £ is the
completion of its subgroup £.) Given a subset & of £, let & denote the set of all
monomial limits of monomial Cauchy sequences in & (so & is the closure of & in
£), and & the set of all monomial limits of strictly decreasing monomial Cauchy
sequences m; > my > --- in &. Note that if & C £ is noetherian, then sois & C £,
and & = G UG.

Proposition 2.2. Let G,8' C £ be noetherian. Then
(1) If 6 C &, then G C &' and & C &'.
(2) GUG' =6UG andBGUG =G UG.
(3) 66'=66'UBS wnd 66 =6 &..
(4) If 6 < 1, then 6" C 6*(@)* and 6* C & .
Proof. Parts (1) and (2) are trivial.

For (3) consider a monomial limit [ of a sequence min; > many > -- -, where

(my,ny), (mg,m2),...



DIFFERENTIALLY ALGEBRAIC GAPS 11

is a sequence in & x &’. Since & and &' are noetherian, we may assume, after
choosing a subsequence of (my,ny), (ma,n2),..., that my = ms 3= -+ and ny = no 3=
---. Because (m;n;) is a monomial Cauchy sequence, both sequences (m;) and (n;)
are monomial Cauchy sequences as well. The sequences (m;) and (n;) cannot both
be ultimately constant. If one of these sequences is ultimately constant, say m; = m
for all ¢ > g, then

[ = lim myn; =m lim n; € 66&'.
11— 00 1—00

Otherwise, we have

[= lim myn; = lim m; lim n; € 6&'.

Hence 66&' C 66’ UGS'. The other inclusions of (3) now follow easily.
As to (4), assume that & < 1 and let [ be a monomial limit of a sequence
mp=my ---My; >My=Ma1---Map, > ",

where (my1,...,my,),(M21,...,May,),... is a sequence of tuples over &. Since
the set of these tuples is noetherian for Higman’s embeddability ordering [5], we
may assume, after choosing a subsequence, that in this ordering

(ml,la"'aml,h) % (m2,17"'7m2,l2) ? .

In particular, we have Iy <lo < ---. We claim that the sequence (I;) is ultimately
constant. Assume the contrary. Then, after choosing a second subsequence, we
may assume that [; <ly <---. Let 1 < k;41 < lj+1 be such that

(mi,la e :mi,li) = (mi+1,1, ey M k=15 Wik 1 k15 - - - :mi+1,li+1)
for all 4, hence m; %= m;y1/mip1k,,, for all i. Since & is noetherian, the set
{mgy k,, M3y, ...} has a largest element v < 1. But then
My /My < Mg gy, SO

for all 4, which contradicts (m;) being a monomial Cauchy sequence. This proves
our claim (l;) is ultimately constant.
We now proceed as in (3) to finish the proof of (4). O

Given & C £ we say that & has decay > 1 if for each m = (343" ... € &
there exists kg € N such that ap < —1 for all & > kg. Each finite subset of £ has
decay > 1.

Example 2.3. Fix n > 1, and define a sequence (m;);>o in £ by

_ (1Y (Y (Y (i > 0)
mp = 60 , Mmp = fgfl y e, My = fgfl& 12 .

Then the continued logarithmic monomial

1 -
(= <€o€1"'&'"-> €L

is the monomial limit of the sequence my > my > --- in £. Hence the subset
{m;:9=0,1,2,...} of £ has decay > 1if n > 1, but not if n = 1.

Corollary 2.4. If § and &' are noetherian subsets of £ of decay > 1, then G UGS’
and &' are noetherian of decay > 1; if in addition & < 1, then &* is noetherian
of decay > 1. O
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3. LOGARITHMIC TRANSSERIES OF DECAY > 1

Consider the ordered field L := R[[£]] of logarithmic transseries, and equip L with
the strongly linear derivation f — f’ such that for each a € R

(62) = oS Y, (£2) =l M(loly -+ Ly_y)™" for k> 0.

This makes L a real closed H-field with constant field R, and L is closed under
integration (see ezample at end of Section 11 in [2]). Hence by Lemma 1.7 the
distinguished integration operator [ on L is strongly linear.

A logarithmic transseries f € IL is said to have decay > 1 if its support supp f
has decay > 1. By Corollary 2.4 above,

]Ll::{fE]L:fhasdecay>1}

is a subfield of L containing the subfield R(£) of L generated by £ over R. In
addition F(e) € L; for any formal power series F(X) € R[[X]] and any n-tuple
e = (e1,...,en) of infinitesimals in L;, where X = (X3,...,X,,), n > 1. Hence by
Lemma 1.6 the field L is real closed. Defining the logarithmic function on L>° as
in the subsection “Exponentials and logarithms” of Section 2, we obtain

log(ggogtln .. .gzk) — aogl 4+ 4 ak€k+1 c Ll
for ayp,...,ar € R It follows that log f € I; for every positive f € ;. Moreover:

Proposition 3.1. The field Ly is closed under differentiation. (Thus Ly is an
H-subfield of L.

Proof. Let [ € £ be a monomial limit of a strictly decreasing sequence in supp f’,
where f € L ; hence [ is the monomial limit of a sequence

ming > Mong > - -

where m; € supp f and n; € supp m;-r for all i. Note that n; € ®, where

1 1 1
= — — — .. 1
0 {zo’eoel Tolily’ } (3-1)

Since supp f and © are noetherian, we may assume that
myp=my=-cc, and ng =g e

after choosing a subsequence. Therefore (m;) and (n;) are monomial Cauchy se-
quences. We claim that (m;) cannot be ultimately constant: if

m; = (500 -0t
for all ¢ > i, then

. pefL 1 1

n; € suppm; — e ————

PESIPPTN =0 ol Gl -

for all i > 49, so (n;) and thus (m;n;) would be ultimately constant. This contra-
diction proves our claim. If (n;) is ultimately constant, say n; = n for all ¢ > iy,
then

[= lim myn; = ('lim mi) n.
71— 00 71— 00
Otherwise )
li =— ¢
z—l)n;) Wi 606162 te < £7
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hence
[ = lim m;n; = (hm m,-) —_—,
i—00 i—00 606162 T
which proves our proposition. d

Ezample 3.2. We have R(p) = R(p,0',...) C L; as differential fields. Clearly
A € L, but L; does not contain any element of the form A + ¢, where € € L satisfies
e < 1/(bply ---£y) for all n. (See Example 2.3.) Note also that A ¢ L.

Next we want to show that the differential field L; is closed under integration.
For this we need the following two lemmas:

Lemma 3.3. For any non-zero a € R and any f € L, the linear differential
equation

y +ay=f (3.2)
has a unique solution y =g €L, and if f € Ly, then g € 1.

Proof. Note that for each i, supp f() is contained in the set (supp f)D?, where D
is as in (3.1). Since D* = |J; D* is noetherian and each of its elements lies in D°
for only finitely many 4, the family (f(¥)) is noetherian. Hence we have an explicit
formula for a solution g to (3.2):

S (_1)if
9= Z(—l) L
i=0

The solution g € L is unique, since the homogeneous equation y’ + ay = 0 only
has the solution y = 0 in . Now suppose f € L, and let [ = £5°¢7* --- € £ be a
monomial limit of a sequence

ming > Mong > - -

in supp(g) where m;n; € supp(f*®), with m; € supp(f) and n; € D*?. We can
assume that m; = mo = --- and ny = ny 3= ---. Hence (m;) and (n;) are monomial
Cauchy sequences with limit m € £ and n € £, respectively, so that [ = mn. The
exponent of £y in n; is —k(4), and thus the sequence (k(i)) is bounded. Hence we
can even assume that this sequence is constant. Then aj < —1 for all sufficiently
large k, by Proposition 3.1. Hence g € L; as required. O

For k € N we consider the embedding of ordered abelian groups
m = (500" - lp s meo by = 000 s £ 8

and denote its unique extension to a strongly linear R-algebra endomorphism of L
by f — foli. Note that (f ofly) = (f' oly)l}, for f € L, and if f € Ly, then

f ¢} Zk S Ll .
In the statement of the next lemma we use the multiindex notation % :=
£5eest -+ 02~ for an (n + 1)-tuple @ = (ap, ..., a,) € R*1,

Lemma 3.4. Let n € N and suppose (ga)acrn+ is a family in Ly such that the
family (€% - (gq o €n+1))a in IL is noetherian. Then

D 4% (ga 0 lnt1) € Lo
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Proof. Let | € € be a monomial limit of a sequence £*n; > ¢*>ny > --- where
a; € R and n; € supp(ga, oln 1) for alli. Then there exists an index ig such that
i, = Qjg+1 = - -+, and hence n;; > n;41 > --- is a sequence in supp(g%0 0lnt1)
with monomial limit [/¢%. Since Gai, © bnt1 € Ly, the lemma follows. a

Proposition 3.5. The H-field L, is closed under integration.

Proof. Let f € ;. Since W is not a monomial limit of a sequence in supp f,
there exists k£ € N such that

I(m-Lolyly--) <k for all m € supp f.
Take k£ minimal with this property. We proceed by induction on k. Write
f= Zxa_l(Fa o (1)
a€eR

where F, € I; for each a € R, and for 0 # a € R, let g, € I; be the unique
solution to the linear differential equation y’ + ay = F,, by Lemma 3.3. Then

/xafl(Fa oly) =a%(gaoly) €Ly,

for a # 0. Since distinguished integration on L is strongly linear, we have

JERICRIOED SERCATATN
a#0
where go := [ Fp, and thus [ f € Ly if go € Ly (by Lemma 3.4). If k = 0, then
Fy =0, hence go =0€ L. If £ >0, then

I(m-Lolyly--) < k-1 for all m € supp Fp,
hence go in Ly, by the induction hypothesis. We conclude that [ f € Ly . O

4. STRONG DIFFERENTIATION, STRONG INTEGRATION, AND FLATTENING

For the convenience of the reader and to fix notations, we first state some facts
about the field of transseries T in addition to those mentioned in the Introduction.
For proofs, we refer to [15], where T is defined as exponential H-field, and to [11]
for more details; see [6] for an independent construction of T as exponential field.

Facts about T. As an ordered field, T is the union of an increasing sequence
L=R[%]] CR[T]] S - CR[T] -

of ordered transseries subfields over R, with ¥, = £, and where each inclusion
R[[%.]] € R[[%,+1]] comes from a corresponding inclusion ¥,, C %,4+1 of mul-
tiplicative ordered abelian groups. The exponential operation exp on T maps the
ordered additive group R[[T,,]]" isomorphically onto the ordered group ¥,,+1. Hence
logm € R[[T,]]" for m € T,,;1, where log: T>° — T is the inverse of exp. Also
o (=D

log(1+¢) = ; ——c' € R[T,]] (4.1)
for 1 = ¢ € R[[T,]]. For f € T>° and r € R we put f" := exp(rlog f) € T; one
checks easily that f7 > 1if f > 1 and r > 0, and that this operation of raising to
real powers makes T>? into a multiplicative vector space over R containing each %,
as a multiplicative R-subspace.
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We put T := |J,, T, (an ordered subgroup of T>Y), so the ordered transseries
field R[[?]] over R contains T as an ordered subfield. The ordered field R[[%]]
comes equipped with two strongly linear automorphisms f — f1 (upward shift)
and f — fl| (downward shift), that are mutually inverse and map T to itself. The
downward shift extends the map f — f o/, on LL used in the last section, and also
the composition operation f — fologz on R[[[z]]]. (See [15], Chapter 2.) We have
exp(f)t = exp(f1) for f € T, and hence log(f)t = log(f1) and (f")t = (f1)" for
f €T>° r € R From these properties one obtains by induction that T,1 C Tpi1
and T,/ C %,,. (Hence m — m? is an automorphism of the ordered group ¥.) We
denote the n-fold functional composition of f — f| by f — fl", and similarly we
write f — f1" for the n-fold composition of f > f1.

The derivation on T restricts to a strongly linear derivation on each subfield
R[[%,]], and extends uniquely to a strongly linear derivation D: f — f' on R[[%]].
With this derivation, R[[T]] is a real closed H-field with constant field R. We have

() = (9 (D' =2 ( (f € R,

Note that v( exp(—A)) remains a gap in R[[Z]], so R[[%]] is not closed under asymp-
totic integration. There is also no natural extension of the exponential operation
on T to one on R[[T]]. Nevertheless, using (4.1) one easily checks that the function
log: T>% — T extends to an embedding log of the ordered multiplicative group
R[[Z]]>° into the ordered additive group R[[Z]]>?, by setting

o0 (_1)n+1
1 =1 E —e"
ogyg ogam + 2. " €

forg=am(l+¢),a € R"%, me %, and 1 > ¢ € R[[T]].

Monomial subgroups of T. In the next section we construct a Liouville closed
H-subfield of T containing L ; this will involve subgroups 9t of ¥ such that the
subfield R[[91]] of R[[%]] is closed under differentiation and integration. In the
rest of this section, 90, denotes an ordered subgroup of ¥,,, for every n, with the
following properties:

(M].) gﬁo = S;
(M2) A, := logM,,+1 is an R-linear subspace of R[[M,]]" and is closed under
truncation;

(M3) M, C Mptq.
Here a set A C R[[%]] is said to be closed under truncation if for each f =
Y mex fmm € A and each final segment § of T we have flz := > < fum € A.

We put 9 :=J,, My, a subgroup of T. When needed we shall also impose:
(M4) ot C .

Ezample 4.1. Let 9, := T,,. Then the M,, satisfy (M1)—(M4), with 4,, = R[[T,,]]T
and M = T.

By (M1), the set log9My is also an R-linear subspace of R[[Mp]] closed under
truncation. By (M1) and (M2), each 9, is closed under R-powers: if m € M,
and r € R, then m" € 9M,,. Also by (M1) and (M2), each subfield R[[9,]] of T is
closed under taking logarithms of positive elements, and so is the subfield R[[90]] of
R[[Z]]. Moreover, each subfield R[[9,]] of T is closed under differentiation, hence
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is an H-subfield of T. (This follows by an easy induction on n: use (M1) for n = 0,
and (M2) for the induction step.) It follows that the subfield R[[9]] of R[[%]] is
closed under differentiation, hence is an H-subfield of R[[T]].

Lemma 4.2. The H-field R[[9N]] is closed under asymptotic integration if and
only if exp(A) ¢ M. In this case, R[[MN]] is closed under integration, and the map
f e [ RN — R[M]] is strongly linear.

Proof. The H-field R[[9N]] is closed under asymptotic integration if and only if it
does not have a gap ([1], Section 2). The valuation of R[[¥]] maps ¥ bijectively and
order-reversingly onto the value group of R[[T]], and also 9t onto the value group
of R[[M]]. The element exp(—A) of T satisfies (1/£,)" < exp(—A) < (1/£,)T for
all n. Because the sequence 1/, 1/{1,... is coinitial in 9=!, this yields the first
part of the lemma. The rest now follows from Lemma 1.7. a

Put M, := M, N Mt and M’ := [J,, M],. The next easy lemma is left as an
exercise to the reader.

Lemma 4.3. The family (9]) satisfies the following analogues of (M1)-(M3):
0 = £; logM!, ., is an R-linear subspace of R[N} ]]" closed under truncation;
N, CM, . If (M4) holds, then I = ML and N+ C M.

In the rest of this section 9t denotes a convex subgroup of 9, equivalently, a
subgroup such that for all m,n € 9

m<KXneN=meN

Note that then 91 is closed under R-powers, and that 911 is a convex subgroup of
MT. To N we associate the set

I::{meimﬂ:expmﬁnforsomene‘ﬁ}g‘ﬁ.

Then I is an initial segment of 9! (with I = @ if 91 = {1}). Consequently, the
complement F' = 9M~!\TI of I is a final segment of M~ and

R = {veN:logr e R[F]|}
is also a subgroup of M closed under R-powers.
Lemma 4.4. For all m € 9 we have:

meN << logme R[[I]].

Proof. The lemma holds trivially if 9t = {1}. Assume that 9t # {1}; hence £;, € N
from some k € N. Let m € 9t,. We prove the desired equivalence by distinguishing
the cases n = 0 and n > 0. If n = 0, then we take & € N minimal such that £;, € N,
SO

NNL= {60 e L:p;=0foralli <k},
which easily yields the desired equivalence.

Suppose that n > 0. Then logm € A,,_;. Since A,,_; is closed under truncation
we have logm = ¢ + ¢ with ¢ € A, 1 NR[[I]] and ¢ € A,_1 NR[[F]]. Hence
e?,e?¥ € M. In fact e € N, because if ¢ # 0, then V(p) € I, so e¥ = *¥) K n for
some n € M. Similarly, if ¢ # 0, then e¥ ¢ M. The desired equivalence now follows
from m = e¥ - e?. d

With 0, := NN IM, and R, := RN M, we have:
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Corollary 4.5. TNR = {1} and M,, = N, - R,.

It follows that 9T = 91-R, and the products nt with n € 9t and ¢t € R are ordered
antilexicographically: nt > 1 if and only if ¢t > 1, or t = 1 and n > 1. We think of
the monomials in the convex subgroup 9 as being flat. Accordingly we call R the
steep supplement of .

Proof. It is clear from the previous lemma that 91N MR = {1}. We now show
M, = N, -R,. Let m € M,,. Then logm € R[M]]", so logm = ¢ + ¢ with
v € R[[I]], ¥ € R[[F]]. Since log,, is truncation closed, we have p,1 € log9M,,
som=nt with n:=e¥ € M, NN =N, and v := e¥ € M, N R = R, using the
previous lemma. d

Corollary 4.6. Suppose that x € M. Then the following analogues of (M1)—(M3)
hold:

(Nl) mo = S,’
(N2) log,,11 is an R-linear subspace of R[N, ]]" and is closed under truncation;
(N3) M, €My
In particular, the subfield R[[N]] of R[[IMN]] is closed under differentiation, and if
el ¢ N, then R[N]] is also closed under integration.

Remark 4.7. If we drop the assumption z € 0N, then R[[M]] may fail to be closed
under differentiation. To see this, take 91 = {m € M : m K z} and m = logz € N;
then m’ = 1/z =< x, som’ ¢ M.

Property (N2) of Corollary 4.6 follows easily from Lemma 4.4 and its proof

(without assuming € 91). The rest of the corollary is then obvious.

Lemma 4.8. Suppose that © € N, and that m <K v, where m,v € M, v ¢ N. Then
suppm’ < t.

Proof. By induction on n such that m € 9t,,. The claim is trivial for n = 0 since
Mo = Np = £ and m’ € R[[£]]. Suppose n > 0 and write m = e¥ with ¢ € A,_;.
Since supp p < m we obtain supp ¢’ < t, by inductive hypothesis. Any u € suppm’
is of the form u = v - m with v € supp ¢’, hence u < v as required. O

Flattening. We “flatten” the dominance relations < and < on R[[9]] by the
convex subgroup 9t of M as follows:

f=mg = (peN:pf=<yg),

fRmg = (BpeN:f<og),
for f,g € R[[9N]]. We also define, for f,g € R[[IN]]:

f=ng = [f=ngAhg=snl/f

hence Mt = {m € M : m <y 1}. Flattening corresponds to coarsening the valuation:
The value group v(91) of the natural valuation v on R[[91]] has convex subgroup
v(N), so gives rise to the coarsened valuation vy on R[[IMN]] with (ordered) value
group v(M)/v(N) given by v (f) = v(f) + v(MN) for f € R[[M]]*. Then we have
the equivalences

f=nyg — om(f) >
f<nyg — om(f) =
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for f,g € R[9M]]. (See also Section 14 of [2].) The restriction of <y to M is a
quasi-ordering, i.e., reflexive and transitive; it is anti-symmetric (i.e., an ordering)
if and only if 9 = {1}. The restriction of < to R is the already given ordering
on R. The following rules are valid for f,g € R[[90]]:
the equivalence f <y g <= f' <m ¢’ holds, provided f, g%n1;
1< fxmg= f" <m g
f9= f<ng,and hence f <pg= f <g.
In our proofs below, we often reduce to the case that x € 9t by upward shift. Here
are a few remarks about this case. If z € M, then £ C N, and for all f € R[[9N]]:
the equivalence f =<y 1 <= f'=<xn 1 holds, provided f % 1;
frol = f'=ql (4.2)

(See [2], Lemma 13.4.) Moreover:
Lemma 4.9. Suppose that © € M. Then the following conditions on m € IM are
equivalent:

(1) logm <o 1,

(2) logm € R[[N]],

(3) m' e R[],

(4) m' <o 1.
Proof. From supp(logm) C 9M>! we obtain (1) = (2). The implication (2) = (3)
follows from Corollary 4.6, (3) = (4) is trivial, and (4) = (1) follows from (4.2). O

Flattened canonical decomposition. We have an isomorphism
R[907]] — RI[M][[R]]
of R[[N]]-algebras given by

F=) fame Y (Z fntn> t.

meMN teR \neN
In R[[9]] we have in fact

f-y (z f) :

teER \nEn

where the sums are interpreted as in Section 1. We shall identify the (real closed,
ordered) field R[[9]] with the (real closed, ordered) field R[[D1]][[2R]] by means of
this isomorphism. For f € R[[9]] we put

f‘n,r = Z fan € R[[m”, ('C € ER), and
neMN
suppy f = {t € R+ fne £ 0}

We have the flattened canonical decomposition of the R-vector space R[[9]] (relative
to 1)

R[] = R{[90]]" & R{[200)]= & R[m]]",
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where
R0 = R{OYIR]);
R = RI9N;
R[0)* = RIVYR]).
Accordingly, given a transseries f € R[[9]], we write
f=f"+f=+5
where
Moo= > feme R
1<meM\N
= = ) fume RM];
meN
o= > fame R
1>-meM\N

Example 4.10. Let v € M, 1o % 1, and consider the convex subgroup
MN:= {negﬁ:n-«m}
of M. Suppose that exp(M~1) C M. Then
[:{mEDﬁ>1 :expm-«m}
and thus
R = {v€M:supplogr = o(logw)}.
In this case we write supp,, f instead of suppy; f, <« instead of <5, and likewise
for the other asymptotic relations. In the next section we take ro = e”.

Flatly noetherian families. Let (f;)ic; € R[[P1]]¢. The family (f;) is said to be
flatly noetherian (with respect to M) if (f;) is noetherian as a family of elements
in C[[R]], where C = R[[MN]]. If (f;) is flatly noetherian, then (f;) is noetherian as
a family of elements of R[[90]], and its sum ), f; € C[[R]] as a flatly noetherian
family equals its sum ), f; € R[[9]] as a noetherian family of elements of R[[9)7]].
For any monomial m € 9, (f;) is flatly noetherian if and only if (mf;) is flatly
noetherian.

Note that if ny > ny > --- is an infinite sequence of monomials in 9N, then (n;);>1
is a noetherian family which is not flatly noetherian.

A map @: R[[M]] — R[[IM]] is called flatly strongly linear (with respect to M) if
® considered as a map C[[R]] — C[[R]] is strongly linear, where C' = R[[91]].

Lemma 4.11. Suppose that z € M. The map R — C[[R]]: v — t' is noetherian,
where C = R[[N]], and thus extends uniquely to a flatly strongly linear map

p: R[] — R[]].

Proof. Let vty >g t2 > - -- be elements of B’ and u; € suppt} for each i. It suffices
to show that then there exist indices ¢ < j such that u; > u;. Since differentiation
on R[[9N]] is strongly linear, we may assume, after passing to a subsequence, that
u; > u; for all ¢ < j. If there exist ¢ < j such that u; < v; and u; < v;, we are
already done. So we may assume that u;%yt; for all ¢, and also that t;%yxu; for
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all 7. Write each u; as u; = v;m;, with m; € supp t;f, m; ¢ 9. We distinguish two
cases:

(1) For all i > 1 there exists a v; € supplogu; such that m; € suppv}. Since
supp logu; is noetherian we may assume, after passing to a subsequence,
that v; = v; for 1 < i < j. Since differentiation on R[[9)]] is strongly linear,
we then find ¢ < j with m; > m;. Hence m; =9t m;, so u; > uj.

(2) There exists an 7 > 1 such that for all v € supplogu; we have m; ¢ suppv'.
Take such 7 and choose v € supp logt; such that m; € suppv’. Then

v € (supplogt;)\(supplogu;) C supp log(r;/u;) C M~*

and hence v < log(u; /v;). Since logm <« m for m € M\ {1}, this yields
v <« u/t;. By Lemma 4.8 we get m; << u;/v;. Hence if n:= uy/u; € N,
then m; < uy /v; = myn, contradicting m; ¢ N. Therefore u; > u;.

O

In the rest of this section we assume (M4).

In particular, our previous results apply to 91" instead of 9t for k = 1,2,..., by
Lemma 4.3. In this connection, the following fact will be useful.

Remark 4.12. A family (f;)ier € R[[91]]! is flatly noetherian with respect to 9 if
and only if the family (f;1)icr € R[[911])! is flatly noetherian with respect to 9.

We now arrive at the main results of this section:
Theorem 4.13. If (fi)icr is a flatly noetherian family in R[[IN]], then so is (f])icr-

Proof. Since the case 9 = {1} is trivial, we may assume 9 # {1}. Then = € Nt for
sufficiently large k € N. Since (f1)" = e® - (f')1 for f € R[[9M]], Remark 4.12 allows
us to reduce to the case that z € 91. Then R[[N]] is closed under differentiation by
Corollary 4.6. Now consider a flatly noetherian family (f;);c; € R[[9]7. Then (f;)
is noetherian, hence (f/) is noetherian by strong linearity of differentiation. By the
lemma above, the family (g;) defined by

g9i:=>_ fimet
teER
is flatly noetherian. Put
hii=fl—gi=Y (fimo)'x.
teR
We have suppy; h; C suppsy, fi for i € I, since R[[N]] is closed under differentiation.
It follows that (h;) is flatly noetherian. Hence the family (f/) is flatly noetherian

(3
since it is the componentwise sum of two flatly noetherian families. O

Theorem 4.14. Suppose that exp(A) € M. Then R[[IM]] is closed under integra-
tion, and if (fi)icr is a flatly noetherian family in R[[ON]], then (f fi)iel is flatly
noetherian.

Before we begin the proof, we make some remarks about the summation of flatly
noetherian families in R[[M]]. Choose a basis B for the R-vector space R[[D]]. We
define a (partial) ordering <* on B x R as follows:

(b,t) " (c,9) = t<ms,orr=sandb=c, (4.3)
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for all (b,t), (c,5) € B x R. Consider the R-vector space R[[B x R]] of transsseries

f= > fenbr)

(b,r)EB xR

with real coefficients f(p,c), whose support supp f := {(b,t) : fp,c) # 0} is noether-
ian for <*; see Section 1. We have:

Lemma 4.15. There exists a unique isomorphism p: R[[B x R]] — R[M]] of
R-vector spaces such that
(1) p(b,t) =b-t for b € B, v € R,
(2) a family (fi)icr € R[B x R]]! is noetherian if and only if ((p(fi))iel is
flatly noetherian,
(3) if (fi)ier € R[[B x R])! is noetherian, then o (Ziel fl) =D ier P(fi).

Proof. Of course, there is at most one such ¢. For existence, first note that the
projection map 7: B x R — R is strictly increasing, and that a set & C B x R
is noetherian if and only if 7(&) C R is noetherian and each fiber 771(t), (r € R)
is finite. Applying this remark to & := |J;., supp fi, where (f;)icr is a noetherian
family in R[[B x R]], it follows that the subset

®) = |J  suppn(fi(emb )
i€1,bEB,rER
of R is noetherian, and that for each v € R there are only finitely many (i,b) € I xB
with v € suppy (fi,(b,0)0 - t). Therefore the family (f; (p,)b - t) (1.6,6)ETxB xR of
elements of R[[N]] is flatly noetherian. Thus, by setting

o(f) = (Z fm)b) v for f € R[[B x N,

t€R \beB
we obtain an R-linear bijection ¢: R[[B x R]] — R[[9N]] such that for every noe-
therian family (f;) € R[[B x R]]’, the family (¢(f;)) is flatly noetherian and
o (X, fi) =X, o(fi)- (See proof of Proposition 3.5 in [17].) If (f;) € R[[B x K]/
and (<p(fl)) is flatly noetherian, then, with & := J, supp fi,

(&) = | suppor (/i)
el

is noetherian and 7|& has finite fibers, so (f;) is noetherian. O

We now begin the proof of Theorem 4.14. Using upward shifting and [(f1) =
(f(f-a=")) 1 for f € R[9M]], we first reduce to the case that e* € M. In particular
z €N, so R[[N]] is closed under differentiation and integration, by Corollary 4.6.
Partition 9t = 0 I1 20 (disjoint union), where

B={meM:m' gy 1}
and

W= {meM:mh =y 1}.
Then ¥ is a convex subgroup of 9 containing 9 which is closed under R-powers,
and R[[N]] = R[[V]] ® R[[20]] as R-vector spaces. Note that if n € M, v € R, then
n-tv € W if and only if v € WJ. It follows that W = N - S, where & := WNR. Since
x € U, the subfield R[[V]] of R[[M]] is closed under differentiation and integration,
by Corollary 4.6. Moreover:
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Lemma 4.16. The R-linear subspace R[[20]] of R[[IN]] is closed under the operators
[ fand g— [g on R[]

Proof. If R[[20]] is closed under f — f, then it is also closed under g — [ g, because
R[[Y]] is closed under differentiation and R[[9N]] is closed under integration. So let
w € 20; it is enough to show that then supp v’ C 20. Take n > 0 with o € 20NN,
and write v = e¥ with ¢ € A,,_1. By Lemma 4.8 we have supp¢’ < m. Hence
mf =< w' >4 1 and thus m € 25, for every m € supp w'. O

Lemma 4.17. For all h € R[[U]], we have suppy, [ h C suppey; h.

Proof. Tt is enough to prove the lemma for h of the form h = fr, where f € R[[91]],
f#0,and t € DNR, sot = e with ¢ = tf < 1. By Lemma 4.9, we have
¢ € R[M]]. We may assume ¢ # 0. Then e? =t » M, so ¢’ = tf = nf for all
n € Y. Thus the strongly linear map

@: R[] — RN, g—g'/¢
satisfies ®(n) < n for all n € 91. Hence by Corollary 1.4 the strongly linear operator
Id +@® on R[[MN]] is bijective. We let g := (Id +®) " 1(f/¢’) € R[[N]]. Then g'+¢'g =
f and thus [ fr = gr. O

If (f;) is a flatly noetherian family of elements of R[[U]], then by the previ-
ous lemma ([ f;) is flatly noetherian. To complete the proof of Theorem 4.14 it
therefore remains to show:

Lemma 4.18. If (f;) is a flatly noetherian family of elements of R[[20]], then ([ f;)
is flatly noetherian.

Proof. Let C = R[[N]], let B be a basis for C' as R-vector space, and let R[[B x R]]
and ¢: R[[B x R]] — R[[M]] be as in Lemma 4.15. Put & := W N R as before.
Then ¢(B x &) =B - & C R[[2W]], so p restricts to an R-linear map
v1: R[[B x 6]] = R[[20]].

Clearly ¢, is bijective, since 20 = 91 - &. Consider the strongly linear operators
D: R[M]] — R[9M]] given by f — f and [: R[M]] — R[9N]] given by f — [ f.
We have D(f), [ f € R[[2]] for f € R[[20]], by Lemma 4.16. By Theorem 4.13
and Lemma 4.15, the operator D; := 7' o Dgy 0 ¢y on R[[B x &]] is strongly
linear, where Doy := D|gypon): R[20]] — R[[2]]. By Lemma 4.15 it suffices to
prove that the operator [ := ;"o [, 01 on R[[B x S]] is strongly linear, where
Jon = [ e R[] — R[[2]]. Since 1 ¢ 2, the operators Doy and [, on
R[[20]] are mutually inverse, and hence the operators Dy and [; on R[[B x &]] are
mutually inverse.

For t € C* - &, let At and It be the dominant term of the series ¢ and [t
in C[[R]], respectively, so At,It € C* - & by Lemma 4.16. By the rules on >
listed earlier, if ¢1,ts € c*.-6 satisfy t1 > t2, then Aty >0 Ato and Ity = Ito.
Moreover, the maps I: C* - & —- C* -G and A: C* -6 — C* - G are mutually
inverse, and ¢, (B x &) C C* - & C R[[2W]]. Now let

A = <P1_1°A°(<P1|%><6) : %XG—)R[[% XG]],
I := <pf1010(<p1|%x6) : Bx G - R[B x 6.
Then for vy,05 € B X & we have
v =" by == suppAiv; =" supp Aivs, suppliv; =¥ supplivs.
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Hence the maps Aj,I; are noetherian, so they extend uniquely to strongly linear
operators on R[[B x S]]. These extensions, again denoted by A; and Iy, respectively,
are mutually inverse by [17], Proposition 3.10, because A and I are.

Now consider the strongly linear operator

d = (Dl — Al) OIl = DlIl —Id
on R[[B x &]]. Using

Dililgsxs = @1 ' o (Dyol)o (p1|sxe)

we obtain supp ®(v) <* v for v € B x &. Hence by Corollary 1.4, the operator
Id+® = Dil; on R[[B x &]] is bijective with strongly linear inverse. Thus the
operator I; o (Id +®)~" on R[[B x &]] is strongly linear. Finally, note that

Dyolio(Id+®) ' =Dyol; o(DiI;)™ =1d,

50 fl =D;' =1, 0 (Id +®) !, and thus fl is strongly linear. O

5. TRANSSERIES OF DECAY > 1

In this section we extend L; to a Liouville closed H-subfield Ty of R[[¥]] by first
extending L; to a real closed H-subfield S of R[[Z]] that is closed under taking
logarithms of positive elements, and then closing off S under downward shifts.
The H-field T, will satisfy the requirements on K in the Theorem stated in the
introduction.

Construction of S. The convex subgroup
T ={neT: n=<xe}

of the ordered group ¥ is closed under R-powers. Note that £ C T°. We call 3"
the flat part of . Its steep supplement (as defined in the previous section) is the
subgroup

T ={g € T:supplogg = z}

of ¥, called the steep part of . (See Examples 4.1 and 4.10.) We apply here
Section 4 to 9 = ¥, and accordingly identify R[[]] and R[[T°]][[T¢]]. Every

f=7 fam € R[T]]

me¥x

F=Y fr,

rext

ftb = Z faet

nef,n<Ke®

can be written as

where the coefficients

are series in R[[T’]]. (In the notation of Section 4, we have f! = fg ..) We may
also decompose f as

F=r+r=+r (5.1)
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where, with m ranging over ¥,

fﬂ = Z fum;

fU = Z Srnm.

Put S¢ := L;, the latter as defined in Section 3. So Sy C R[[%]] € R[Z’]].
Inductively, given the subfield S, of R[[Z,,]], we let S,,+1 be the subfield of R[[%},+1]]
consisting of those f € R[[T]] such that f° € L, and logt € S} for all v € supp,. f,
that is, with C := R[[T"]):

Snt1 = La [[t1]] € C[F]]
where
Uyt =T N exp(S]) = exp (Sn N ]R[[sz]]),
a subgroup of T¥ N T, 41 closed under R-powers. It follows that S,11 C R[[T,41]]-
It is convenient to define Ry := {1} C F,.
Ezample 5.1. We have 84, = exp(L; N R[[€7%]]). Therefore ¢*” € Sy, but e | =
ellogz)? ZS,.

Lemma 5.2. Fach S, is a real closed subfield of T, and U, C Uy y1 for all n.
(Hence Sy, C Sypy1 for all n.)

Proof. The first statement follows from the remarks at the beginning of Section 3
and Lemma 1.6. We show the other statement by induction on n. The case n = 0
being clear, suppose that i, C ,,11. Then

Sn =L [[tha]] € La [[Unt1]] = Snta

and thus
i1 = T Nexp(S]) C T Nexp(S]1y) = g
as required. O
We let S be the union of the increasing sequence So C S; C - -+ of real closed

subfields of T. Then S is a real closed subfield of T. Moreover:
Lemma 5.3. log(S;% CS,, for every n. (Hence log(S>Y) C S.)

Proof. The case n = 0 is discussed at the beginning of Section 3. Suppose n > 0.
Every positive f € S,, may be written in the form

f=g-u-(1+e)
where 0 < gely,ue i, C exp(SIl_l), and € <. 1. We get
log f = log g + logu + log(1 + ¢).

We have logg € L; and (since € < 1)

x -1 k+1
log(l1+¢) = Z %sk €S,
k=1

Moreover logu € S,,_1, thus logu € S,, by Lemma 5.2. Hence log f € S,,. O
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We now put A, := S! 9,1 := exp(4,) for every n, and My := £. Each
A, is an R-linear subspace of R[[%,]], and 9, is a subgroup of ¥, closed under
R-powers. Here are some more properties of S, A,, and 2M,,. A subset A of R[[T]]
is said to be closed under subseries if for every f = 7 o fmum € A the subseries
fle == nes fmm isin A, for any subset & of T.

Lemma 5.4. For every n we have:

(1) S, C R[9,]]. (Hence A,, C R[[I,]]T.)

(2) Sy is closed under subseries. (Hence A, is closed under subseries.)

(3) logdm,, C A,. (Hence M, C My q1.)

(4) S,1 C Syy1. (Hence Mt C MNMypgr )
Proof. Parts (1)—(3) are obvious for n = 0. For the case n = 0 of (4) note first
that £1 C £+ (expz)® with £ (expz)® = {1}. Moreover, if a subset & of £
has decay > 1 and &1 C £ - (expz)?® with 8 € R, then 7(&1) has decay > 1,
where m: £ - (expz)® — £ is given by [ (expz)® > [for [ € £, @ € R Hence
Lyt C Ly [[(expx)®]] C Sy as required.

Let now n > 0. For (1) note that
L£=explog £ C exp(]L,I) C exp(SL_l)a U, C exp(Sl_l),
hence
Sn = Li[[t4:]] € RI[€ - 1] € R{[exp(S],_))]) = RI[9])-

For (2) let f =3, cq. fluesS,, so fo el for all u. Then for any subset & of T
we have

fle =Y (f)ls.u € Sn,

uesly,
where &, := {n € T°: nu € &} for u € 4,,. For part (3) we have, by Lemma 5.2,
logM, = A,y =S!_, cSl =4,
as required. For (4), we may assume inductively that S, ;1 C S,,. Since ¥,,_11 C
T we get
Ut = exp (Su 1 NRIFE ) 1 C exp (SuNRITZ™ 7)) C i,
Together with IL; 1 C Ly [[(exp )®]] this yields S, = (L D)[[Ua1]] € Snt1- O

We let 991 be the union of the increasing sequence My C M; C -+ of ordered
subgroups of ¥. Then 9 is an ordered subgroup of ¥, and S is an ordered subfield
of R[[M]]. Note that the 9T, satisfy conditions (M1)—(M4) of the previous section.
We have SNL = L, hence exp(A) ¢ M, by part (3) of Lemma 5.4 and Example 3.2.

Proposition 5.5. For every n, the field S,, is closed under differentiation.

Proof. We proceed by induction on n. We have already dealt with the case n =0

in Proposition 3.1. Let f = Zueu”“ fﬁu € S,41- By Theorem 4.13, the family
((fﬁu)l)ueun+1 in R[[Tp+1]] is flatly noetherian. Hence for any s € ‘I§L+1 the sum

b

S [+ fady]

U€EUn 41 °

has only finitely many non-zero terms and equals (f')?. Let u € 4,41 and s €

T?z+1- By the induction hypothesis we have uf € S,, hence (uT)Z/u € ;. By
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Proposition 3.1 we get (f2)’ € ;. Therefore (f')2 € L. It follows that f € S,11
as required. O

Construction of T,. We have S* = (ST)LIH'1 C SIF* for every k € N, by
Lemma 5.4, (4). We let Ty be the union of the increasing sequence
scsicsifc - cslfc

of real closed subfields of T. The elements of the real closed subfield T; of T are
called transseries of decay > 1. The field T, is closed under upward and downward
shift: if f € Ty, then f1, fl € T:. We have ; C Ty; in fact:

Lemma 5.6. L, =T, NL.
Proof. Suppose f € Ty NL; so f4* € S,, where k,n € N; we claim that f € L.

The case k = 0 being trivial, we may assume k£ > 0. Then
15 e Ll(exp 2)* - - - (expy 2)*]) NS, C L [[(exp )™ - - - (expy )],
where exp,, x = z1" for all m. Hence f can be written in the form
f= 6% (gaote),
a€ERE
where g, € Ly and (% = £5° - £;*7" for a = (ap, ..., 1) € R¥. By Lemma 3.4,
we get f € L as desired. O

If A is a subset of R[[¥]] which is closed under subseries, then so is AJ, since
(fDle = (flet)d, for any f € A and & C ¥. By induction on k it follows that each
subfield S|¥ of R[[Z]] is closed under subseries. Hence T is closed under subseries.

Proof of the main theorem. In the remainder of this section, we show that
K =T, has the properties of the main theorem in the introduction.

Proposition 5.7. The subfield T, of T is closed under exponentiation and taking
logarithms of positive elements.

Proof. Since

log(f1™) = (log f){™ for all m and all f € S°,
Lemma 5.3 yields that T is closed under taking logarithms. Similarly,

exp(f4™) = (exp f)4™ for all m and all f € S.
Hence as to exponentiation, it suffices to prove that exp f € Ty for all f € S. Let
f €S, and decompose f as in (5.1): f = fT+ f=+ % so

exp f = (exp f1) - (exp f) - (exp fY).
Since f¥ € T=! we get N
expr:Z% €S,.

n=0
We have
=" fameS,NR[T;]],

m>1,mp»e?
hence exp f1 € U,41 C Sp41. It remains to prove that exp f € Ty for all f € L;.
Solet f € ;. From 1 ¢ supp f C £ we obtain k£ € N such that £; < m for all
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m € supp f\{1}. Then ¢= € R for g = L hence expg € S by what we have
shown above. We conclude that exp f = (exp g)ik"'1 eT. O

Since (f})' = (f'}) -a~! for all f € T, Proposition 5.5 yields:

Corollary 5.8. The subfield Ty of T is closed under differentiation. (Hence Ty is
an H-subfield of T.) O

To prove that T is closed under integration, we first establish some auxiliary
facts. Recall that R[[9]] is closed under differentiation and that exp(A) ¢ 9.
Hence R[[91]] is closed under integration.

In the next lemma we fix n > 0. We have the following inclusions:

The subfield L{[tL,,]] of R[[9N]] is closed under differentiation by Proposition 5.5,
and closed under integration by the argument used to prove Lemma 4.2. Note that
logs € S,,—1 C L[4, ]] for all s € 4,,. In the next lemma we also fix a monomial
u € i, \ {1} and put

S :={s€ i, s <. u}, (5.2)
a convex subgroup of i,, closed under R-powers.

Lemma 5.9. The subfield L[[S]] of L[[,,]] is closed under differentiation. Also, if
ut =.o 1, then ut € L[[&]].

Proof. The first part will follow if s' € L[[&]] for all s € &. So let s € &; we
distinguish two cases:
(1) s =.= 1. Then s ¢ T°, hence s = e with suppy’ < s (by Lemma 4.8
applied to m € suppy). Using ¢' = sf, this yields m' =< st for every
m € supps’. Let v € (supp,= §') \ {1}, so v <= m with m € supps’. Then
ot <. mf < st <. uf, hence v € &, as desired.
(2) st <ee 1. Then logs € L{[4,]] N R[[¥*]] = L (by Lemma 4.9) and thus
s’ = (logs)’ - s € L[[S]].
Suppose that uf .. 1. Then logu .= 1 by Lemma 4.9, hence
po v f
(logu)" = Togu <o Ul
Therefore, if b € supp,. logu, then v’ <.. (logu)’ <. uf, hence v € &. Thus
logu € L[[6&]], and since L[[&]] is closed under differentiation, we get uf € L[[&]].
[l

Lemma 5.10. Let f € S with ut == 1 for all u € (supp,. f)\{1}. Then [ f €S.

Proof. We already know that Sg = L; is closed under distinguished integration, by
Proposition 3.5. So we may assume that 1 ¢ supp,. f by passing from f to f — f2.
Take n > 0 such that f € S,. We shall prove that [ f € S,,. We have

F= fueL[i])] =S
u€il,
Put 9 := 9MNT’, a convex subgroup of M; note that L. C R[[N]]. Let N be the steep
supplement of 9 in 9. The definitions of T¢ and N easily yield that M N TF C RK;
hence 4, C R. Therefore, the family (f2u)yey, in R[91]] is flatly noetherian with
respect to N, with sum f. Thus by Theorem 4.14, the family (f fﬁu)ueun in R[[9N]]
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is also flatly noetherian, with sum [ f. Fix any g € Ly and u € 4, with uf = 1;
it suffices to show that then [gu € S, = Ly [[thp]]. Put b := L [gu € L[4, ]]; it
remains to show that h € Ly [[41,,]]. Note that
h+ (B Jul) = g/u.
Let & be as in (5.2). Take a basis € for the R-vector space L; extend € to a basis
B for R[[MN]], and let <* be as in (4.3) and ¢: R[[B x R]] = R[[M]] as defined in
Lemma 4.15. The map ¢ restricts to an R-linear bijection
p1: R[€ x 6] — R[£ - 6]] = L{[&]].

By the previous lemma, the subfield L{[&]] of L{[il,,]] is closed under differentiation
and contains uf. Hence the operator

®: L[t ]] = L[tha]], g = y'/uf
maps L[[8]] to itself, and (Id+®)(h) = g/uf. By Theorem 4.13 the operator
®; := ;' o ®op; on R[[€ x &]] is strongly linear, and supp @ (c,s) <* (c,s) for
all (¢,s) € € x 6. We now apply Corollary 1.4 with € x & in place of 91, ordered
by the restriction of <* to € x &, and ®; in place of ®. It follows that the family

((_1)i(1)i(g/uT))ieN
in L{[&]] is flatly noetherian as a family in R[[90]], and that

o0

hy = (~1)'®'(g/ul) € L[S]]

i=0
satisfies

hy + (B /ut) = g/ul = h + (B /u).
Hence h = hy + cu™! for some ¢ € R. From ®(L; [[i,,]]) C Ly [[4,,]] we obtain that
®i(g/ul) € Ly [[8,]] for all i. Hence hy € L [[U,]], and thus h € Ly [[t,]]. O

Next we show that for suitable f the hypothesis in the last lemma is satisfied
after a single upward shift:

Lemma 5.11. For every f € S with f? =0 and u € supp,. f1 we have uf == 1.
Proof. Suppose f € S,, flb =0,n > 0. Then

fr=> (f)rst
1#sed,
with supp,. (f2)1 C (expz)® for 1 # s € ,,. So it suffices to show for such s that
(sP)T >ce 1. Write s = e® with 0 # ¢ € S,, 1 NR[T7*,]]. Then 0(¢) % = and
hence 2(¢1) = 9(p)1 5= €®. Therefore 0(p1)" 3= (€%)' = €® == 1,50 (s1) = (p1) <
(1) =e= 1 as required. O

Proposition 5.12. The H-subfield T, of T is closed under integration.

Proof. We claim that for each & € N and ¢ € S{* there is f € S{*™! such that
f' = g. We proceed by induction on k. First, let ¢ € S. By Proposition 3.5 we
may assume that g = 0. Consider G = (g1) - e* € S. By the previous lemma, all
u € (supp,. G) \{1} satisfy uf =.. 1. By Lemma 5.10, we get [ G € S and hence
J 9= (JG)l €S| This proves the case k = 0 of our claim.
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For the induction step we consider an element of S|, and write it as gl with
g € SI¥. Then g-e® € SI*, so inductively we have an f € S{F™! with f' =g - e®.
Then (fl)' = gl, and f| € S{¥*2. O

We now have the main theorem from the introduction, with K = T;:
Corollary 5.13. The H-subfield T, of T is Liouville closed, and o € T;.

Proof. Propositions 5.7 and 5.12 yield that T, is Liouville closed; the second part
follows from o € L; C T;. O

6. FINAL REMARKS

The differential polynomial 2Z'+Z? (the “Schwarzian” in [4]) has a close connection
to the second-order linear differential equation Y = fY where f is an element of
some H-field: whenever y is a non-zero solution to Y = fY, then z = 2y' satisfies
22"+ 2% = f. The cut in R[[[z]]] = R((z~1))"F determined by ¢ := 2\' + 2 € L can
be used to describe for which f € R[[[z]]] the linear differential equation Y = fY
has a non-zero solution in R[[[z]]]; see [14]. (Likewise for the existence of solutions
in finite-rank Hardy fields, [10].) See also [7] for some observations about the role of
gaps in Hardy fields, and of the transseries A, in the theory of ordinary differential
equations over o-minimal expansions of the real exponential field.

The transseries o makes another appearance in Ecalle [4]: Lemme 7.4 says that
for any non-constant differential polynomial P(Z,Z',...,Z") ¢ R{Z}, the series
P\ N, ..., A(™) € L has infinite support, and the sum of its first w terms, after
possibly discarding finitely many initial terms, either has the form

byl - 0,7 (ALF) witheo > e >0 2 epq > 1

or
cly ol ---K,;_e’i_l (Qik) witheg >e; > --->ep 1 > 2,

where ¢ € R*, k € N, and the e; are integers.

Given a real number r 20, we say that a subset & of £ has decay > r if for
every m = £g°¢{" - -+ in & (with oy € R for all k) there exists ko such that oy, < —r
for all k > ko. Let L, be the set of all f € L such that supp f has decay > r. (So
L. CLyfor0<s<r.) Wehave A\ e L, \L; forall0 <r < 1andp€L,\L for
0 < s < 2. As with Ly, one can show that L, is a differential subfield of L, which
is closed under integration if and only if r > 1. (For 0 < r < 1 we have A € L., but
JA=A¢L,.) Forr > 1, carrying out the construction of T; with L, in place of
L, yields a Liouville closed H-subfield T, of T which doesn’t contain an element of
the form A + €, where € € R[[T]] satisfies € < 1/ (ol - - - £y,) for all n.

By the above result of Ecalle, A does not satisfy any differential equation of the
form P\, N,...,A") = f, where P(Z,Z',...,Z™) € R{Z} is non-constant and
f € T, with r > 1. (We suspect that A is differentially transcendental over L, , and
hence over T,, for any r > 1.) In particular, our construction of a differentially
algebraic, non-Liouvillian gap could not have been carried out with T; replaced by
T, for any r > 1, even if we replace 2Z' + Z? by another non-constant differential
polynomial P(Z,Z',...,Z") € R{Z}.

Finally, let us mention that the Newton polygon method of [15] can be used to
obtain Hardy field examples of the various possibilities for the appearance of gaps
exhibited in this paper. We shall leave the details for another occasion.
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