
DIFFERENTIALLY ALGEBRAIC GAPSMATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVENAbstrat. H-�elds are ordered di�erential �elds that apture some basiproperties of Hardy �elds and �elds of transseries. Eah H-�eld is equippedwith a onvex valuation, and solving �rst-order linear di�erential equations inH-�eld extensions is strongly a�eted by the presene of a \gap" in the valuegroup. We onstrut a real losed H-�eld that solves every �rst-order lineardi�erential equation, and that has a di�erentially algebrai H-�eld extensionwith a gap. This answers a question raised in [1℄. The key is a ombinato-rial fat about the support of transseries obtained from iterated logarithms byalgebrai operations, integration, and exponentiation.IntrodutionThis paper is motivated by a basi problem about H-�elds, the gap problem, as weexplain later in this introdution. In this paper \di�erential �eld" means \ordinarydi�erential �eld of harateristi 0"; H-�elds are ordered di�erential �elds whoseordering and derivation interat in a strong way. The ategory of H-�elds wasde�ned in [1℄ as a ommon algebrai framework for two points of view on theasymptoti behavior of one-variable real-valued funtions at in�nity: the theory ofHardy �elds (see [9℄), and the more reent theory of transseries �elds, introduedby Dahn and G�oring [3℄ as well as �Ealle [4℄, and further developed in [15℄, [13℄,[14℄, [11℄. We hope that the theory ofH-�elds will lead to a better (model-theoreti)understanding of Hardy �elds, and of their relation to �elds of transseries.For this introdution, we assume that the reader has aess to [1℄ and [2℄; inpartiular, the notations and onventions in these papers remain in fore. Wejust reall here that any H-�eld K (with onstant �eld C) omes equipped with adominane relation 4: for f; g 2 K, we havef 4 g () jf j 6 jgj for some  2 C;and we write f � g if f 4 g and g 64 f ; we also write g < f instead of f 4 g, andg � f instead of f � g. (If K � R is a Hardy �eld, then K is an H-�eld and, inLandau's O-notation, f 4 g , f = O(g) and f � g , f = o(g).) For some basiproperties of these asymptoti relations we refer to [16℄ in the ase of transseries�elds, and [2℄ for H-�elds in general.Let K be an H-�eld. The set K41 = ff 2 K : f 4 1g of bounded elementsof K is a onvex subring of K; we shall always denote the assoiated valuation byv : K ! � [ f1g, with � = v(K�), K� := Knf0g. For f; g 2 K we write f � g ifv(f) = v(g), that is, f 4 g and g 4 f . An element f of K is said to be in�nitesimalDate: Otober 2003.2000 Mathematis Subjet Classi�ation. Primary 03C64, 16W60; Seondary 26A12.Key words and phrases. H-�elds, �elds of transseries.1



2 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENif f � 1, equivalently, jf j <  for all positive onstants  2 C, and in�nite if f � 1,equivalently, jf j > C.An H-�eld K is Liouville losed if K is real losed, and any �rst-order lineardi�erential equation y0 + fy = g with f; g 2 K has a solution in K. A Liouvillelosure of an H-�eldK is a Liouville losedH-�eld L extendingK whih is minimalwith this property. Every H-�eld K has at least one, and at most two, Liouvillelosures, up to isomorphism over K. Given a di�erential �eld F , an element f 2F� and an element y in some di�erential �eld extension of F we let fy := f 0=fdenote the logarithmi derivative of f , and let F hyi := F (y; y0; y00; : : : ) be thedi�erential �eld generated by y over F . A di�erential �eld F is said to be losedunder integration if for eah g 2 F there is f 2 F with f 0 = g.Gaps in H-�elds. In an H-�eld, asymptoti relations between elements of non-zero valuation may be di�erentiated: if f; g 6� 1, then f � g , f 0 � g0. Inpartiular, if f is in�nitesimal and g is in�nite, then f 0 � g0. Also, if " and Æare non-zero in�nitesimals, then "0 � Æy. A gap in an H-�eld K is an element = v(g), g 2 K�, of its value group � suh that "0 � g � Æy for all non-zeroin�nitesimals "; Æ. An H-�eld has at most one gap, and has no gap if it has asmallest omparability lass or is Liouville losed. Further examples of H-�eldswithout a gap an be obtained using the H-�eld of transseries of �nite exponentialand logarithmi depth with real oeÆients, denoted by R((x�1 ))LE in [14℄, andby R[[[x℄℄℄ in [15℄: eah ordered di�erential sub�eld of R[[[x℄℄℄ that ontains R is anH-�eld without a gap.If an H-�eld K has a gap v(g) as above, then K has exatly two Liouvillelosures, up to isomorphism over K: one in whih g = "0 with in�nitesimal ", andone where g = h0 with in�nite h. This \fork in the road" due to a gap ausesmuh trouble. For a model-theoreti analysis of (existentially losed) H-�elds, oneneeds to understand when a given H-�eld an have a di�erentially algebrai H-�eld extension with a gap. (An extension LjK of di�erential �elds is said to bedi�erentially algebrai if every element of L is a zero of a non-onstant di�erentialpolynomial over K).The gap problem. The simplest type of di�erentially algebrai extensions areLiouville extensions. If K is a real losed H-�eld and L = K(y) is an H-�eld exten-sion with y0 2 K, then L has a gap if and only if K does, by [1℄, [2℄. However, [2℄also has an example of a real losed H-�eld K without a gap, but suh that someH-�eld extension L = K(y) � K with y 6= 0, yy 2 K, has a gap. It may evenhappen that an H-�eld K has no gap, but its real losure does. These examplesraise the question (alled the \gap problem" in [1℄) whether the reation of gaps indi�erentially algebrai H-�eld extensions an be on�ned to Liouville extensions.More preisely, we asked the following:Suppose L is a di�erentially algebrai H-�eld extension of a Liouville losed H-�eld K. Can L have a gap? (A negative answer would have been welome.)Our main result is an example where the answer is positive. This example is aboutas simple as possible, and may well be generi in some sense.Outline of the example. No di�erentially algebrai H-�eld extension of R[[[x℄℄℄an have a gap, by [2℄, Corollary 12.2, and this statement remains true when R[[[x℄℄℄



DIFFERENTIALLY ALGEBRAIC GAPS 3is replaed by any Liouville losed H-sub�eld. Our example will indeed live in alarger �eld T of transseries, as we shall indiate.First, let L denote the multipliative ordered subgroup of R[[[x℄℄℄>0 generatedby the real powers of the iterated logarithms`0 := x; `1 := logx; `2 := log log x; : : : ; `n := logn x; : : :of x (the group of logarithmi monomials, see Setion 2). This gives rise toL := R[[L℄℄ (the �eld of logarithmi transseries):In the beginning of Setion 3 we equip L with a derivation making it anH-�eld withonstant �eld R. Let T be the �eld of transseries of �nite exponential depth andlogarithmi depth at most !, with real oeÆients (denoted by R!<! [[[x℄℄℄ in [15℄).At this stage we only mention that T is obtained from L by an indutive proedureof losure under exponentiation. (Details of this proedure are in [15℄, Chapter 2,and are realled at the beginning of Setion 4.) As a result of its onstrution Tomes equipped with a derivation that makes it a real losed H-�eld extension of L(with same onstant �eld R), and with an isomorphism exp of the ordered additivegroup of T onto its positive multipliative group T>0, whose inverse is denoted bylog, suh that exp(f)0 = f 0 exp(f) for all f 2 T and log `n = `n+1 for all n.Moreover, the sequene `0; `1; `2; : : : is oinitial in the set of positive in�niteelements of T and hene 1=`0; 1=`1; 1=`2; : : : is o�nal in the set of positive in�nites-imals of T. Also, R[[[x℄℄℄ � T, as H-�elds and as exponential �elds. Here is adiagram illustrating the various H-�elds and their inlusions (indiated by arrows):L = R[[L℄℄ - T6 6R(L) - R[[[x℄℄℄Whereas the H-�eld L does not have a gap (see Setion 3), the H-�eld T does . Inpartiular, T is not Liouville losed. To see this, we set as in [4℄, Chapter 7:� := `1 + `2 + `3 + � � � 2 L:In T we have (`n)y = (`n+1)0 = exp��(`1 + `2 + � � �+ `n+1)�, and thus(1=`n)0 � exp(��) � (1=`n)y for all n.(Intuitively, exp(��) represents the in�nitely long logarithmi monomial 1`0`1`2��� .)Therefore v(exp(��)) is a gap in T, and hene is a gap in eah H-sub�eld of T thatontains exp(�). So any Liouville losed H-sub�eld K of T with a di�erentiallyalgebrai H-�eld extension L � T ontaining exp(�) is an example as laimed. Put� := �0 = 1̀0 + 1`0`1 + 1`0`1`2 + � � �+ 1`0`1 � � � `n + � � � 2 L:Let % := 2�0 + �2 2 L. A omputation shows that% = �� 1̀20 + 1(`0`1)2 + 1(`0`1`2)2 + � � �+ 1(`0`1 � � � `n)2 + � � �� :We shall prove (Corollary 5.13):Theorem. There exists a Liouville losed H-sub�eld K � R(L) of T suh that% 2 K.



4 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENGiven K as in the theorem, let L := K� exp(�); �� � T. Sine exp(�)y = � and�0 = %� (1=2)�2, L is an H-sub�eld of T and di�erentially algebrai over K; thusK and L are an example as laimed.We shall onstrut a K as in the theorem by isolating a ondition on transseriesin T, namely \to have deay > 1", a ondition satis�ed by %, but not by �. Themain e�ort then goes into showing that this ondition de�nes a Liouville losedH-sub�eld of T as in the Theorem.Organization of the paper. After preliminaries in Setion 1 on transseries, weintrodue in Setion 2 the property of subsetsS of L to have deay> 1. In Setion 3we onsider the subset L1 of L onsisting of those series whose support has deay >1, and show that L1 is an H-sub�eld of L losed under integration and takinglogarithms of positive elements. (By onstrution, % 2 L1 , but � =2 L1 .) Setion 4is the most tehnial; it fouses on subgroupsM of the group T of monomials of Tand shows, under mild assumptions inluding exp(�) =2M, that then the transseries�eld R[[M℄℄ is losed under a natural derivation on R[[T℄℄ extending that of T, and isalso losed under integration. (Here we make essential use of the Impliit FuntionTheorem from [17℄.) In Setion 5 we prove the main theorem by extending L1 to aLiouville losed H-sub�eld T1 of T. We �nish with omments on the transseries �and %. 1. PreliminariesIn our notations we mostly follow [17℄. Throughout this paper we let m and nrange over N := f0; 1; 2; : : :g.Strong linear algebra. Let (M;4) be an ordered set. (We do not assume that 4is total, but we do follow the onvention that ordered abelian groups and ordered�elds are totally ordered.) A subset S of M is said to be noetherian if for everyin�nite sequene m1;m2; : : : in S there exist indies i < j suh that mi < mj . Ifthe ordering 4 is total, then S �M is noetherian if and only if S is well-orderedfor the reverse ordering <, that is, there is no stritly inreasing in�nite sequenem0 � m1 � � � � in S. Let C be a �eld. ThenC[[M℄℄ := (f = Xm2M fmm : all fm 2 C; supp f �M is noetherian) ;where supp f = fm 2 M : fm 6= 0g is the support of f , denotes the C-vetorspae of transseries with oeÆients in C and monomials from M. We refer to [17℄for terminology and basi results onerning \strong linear algebra" in C[[M℄℄. Inpartiular, a family (fi)i2I in C[[M℄℄ is alled noetherian if the setSi2I supp fi �Mis noetherian and for eah m 2 M there exist only �nitely many i 2 I suh thatm 2 supp fi. In this ase, we putXi2I fi := Xm2M Xi2I fi;m!m;an element of C[[M℄℄.Let (N;6) be a seond ordered set. A C-multilinear map �: C[[M℄℄n ! C[[N℄℄is alled strongly multilinear if for all noetherian families�f1;i1)i12I1 ; : : : ; (fn;in�in2In



DIFFERENTIALLY ALGEBRAIC GAPS 5in C[[M℄℄ the family ��(f1;i1 ; : : : ; fn;in)�(i1;:::;in)2I1�����Inin C[[N℄℄ is noetherian and� Xi12I1 f1;i1 ; : : : ; Xin2In fn;in! = X(i1;:::;in)2I1�����In�(f1;i1 ; : : : ; fn;in):In the ase n = 1 we say that � is strongly linear. Clearly a strongly multilinearmap C[[M℄℄n ! C[[N℄℄ is strongly linear in eah of its n variables.A map ' : M ! C[[N℄℄ is said to be noetherian if for every noetherian subsetS � M, the family ('(m))m2S in C[[N℄℄ is noetherian; equivalently, for everyin�nite sequene m1 � m2 � � � � of monomials in M and ni 2 supp'(mi) for i > 1,there exist i < j suh that ni � nj . A noetherian map M ! C[[N℄℄ extends to aunique strongly linear map C[[M℄℄ ! C[[N℄℄ (Proposition 3.5 in [17℄), and everystrongly linear map C[[M℄℄! C[[N℄℄ restrits to a noetherian map M! C[[N℄℄.A map �: C[[M℄℄! C[[N℄℄ is alled noetherian if there exists a family (Mn)n2Nof strongly multilinear maps Mn : C[[M℄℄n ! C[[N℄℄suh that for every noetherian family (fk)k2K in C[[M℄℄ the family�Mn(fk1 ; : : : ; fkn)�n2N;k1;:::;kn2Kin C[[N℄℄ is noetherian and� Xk2K fk! = Xn2Nk1;:::;kn2KMn(fk1 ; : : : ; fkn):The family (Mn) is alled a multilinear deomposition of �. If harC = 0, then theMn may hosen to be symmetri, and in this ase the sequene (Mn)n2N is uniquelydetermined by � ([17℄, Proposition 5.8). Every strongly linear map �: C[[M℄℄ !C[[N℄℄ is noetherian, with multilinear deomposition (Mn) given by M1 = � andMn = 0 for n 6= 1. Conversely, if C is in�nite, then every linear noetherian map isstrongly linear, as we show next.Lemma 1.1. Suppose the �eld C is in�nite and (fi)i2N is a noetherian family inC[[M℄℄. Let � : C ! C[[M℄℄ be given by �(�) =Pi �ifi, and suppose � is C-linear.Then fi = 0 for all i 6= 1.Proof. Suppose m 2 Si supp fi; let i1 < � � � < in be the indies i suh that m 2supp fi, and put k := (fik )m 2 C for k = 1; : : : ; n. With � 2 C we have �(�)m =��(1)m, that is, �i11 + � � �+ �inn = �(1 + � � �+ n):Sine C is in�nite, this yields n = 1 and i1 = 1. �Corollary 1.2. Suppose the �eld C is in�nite, and the map �: C[[M℄℄ ! C[[N℄℄is noetherian and C-linear. Then � is strongly linear.



6 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENProof. Let (Mn)n2N be a multilinear deomposition of �. Let f 2 C[[M℄℄, andde�ne � : C ! C[[N℄℄ by �(�) = �(�f). Then�(�) =Xi �ifi with fi :=Mi(f; : : : ; f),and � is C-linear. Hene fi = 0 for all i 6= 1, by the previous lemma. It followsthat � =M1. �We equip the disjoint unionMqN with the least ordering extending those ofMand N. The natural inlusions i : M!MqN and j : N!MqN extend uniquelyto strongly linear maps bi : C[[M℄℄! C[[MqN℄℄, and bj : C[[N℄℄! C[[MqN℄℄. Thisyields a C-linear bijetion(f; g) 7! bi(f) + bj(g) : C[[M℄℄� C[[N℄℄! C[[M qN℄℄:When onvenient, we identify C[[M℄℄ � C[[N℄℄ with C[[M q N℄℄ by means of thisbijetion. For example, we say that a map �: C[[M℄℄�C[[N℄℄! C[[M℄℄ is stronglylinear (respetively, noetherian) if �, onsidered as a map C[[MqN℄℄! C[[M℄℄, isstrongly linear (respetively, noetherian). The following is the strongly linear aseof Theorems 6.1 and 6.3 in [17℄ (Van der Hoeven's impliit funtion theorem):Theorem 1.3. Let the map (f; g) 7! �(f; g) : C[[M℄℄�C[[N℄℄! C[[M℄℄ be stronglylinear suh that supp�(m; 0) � m for all m 2M. Then for eah g 2 C[[N℄℄ there isa unique f = 	(g) 2 C[[M℄℄ suh that �(f; g) = f . For eah g 2 C[[N℄℄ the family�	n+1(g)�	n(g)�n2N in C[[M℄℄ with	0(g) = �(0; g); 	n+1(g) = ��	n(g); g� for all nis noetherian with 	(g) = 	0(g) +Xn2N�	n+1(g)�	n(g)�:The map g 7! 	(g) : C[[M℄℄! C[[M℄℄ is noetherian.The following onsequene for inverting strongly linear maps is important later:Corollary 1.4. Suppose that C is in�nite. Let �: C[[M℄℄ ! C[[M℄℄ be a stronglylinear map suh that supp�(m) � m for all m 2 M. Then the strongly linearoperator Id+� on C[[M℄℄ is bijetive with strongly linear inverse given by(Id+�)�1(g) = 1Xn=0(�1)n�n(g): (1.1)Proof. Let �1 : C[[M℄℄ � C[[M℄℄ ! C[[M℄℄ be given by �1(f; g) = g � �(f). Then�1 is strongly linear and supp�1(m; 0) = supp�(m) � m for all m 2 M. By thetheorem above with �1 in plae of � we obtain a a noetherian 	: C[[M℄℄! C[[M℄℄suh that (Id+�) Æ	 = Id. By Corollary 1.2, 	 is strongly linear.The assumption on � yields that Id+� has trivial kernel, so Id+� is injetive,and thus 	 is even a two-sided inverse of Id+�. Moreover, in the notation ofTheorem 1.3 we have	0(g) = g; 	1(g) = g � �(g); 	2(g) = g � �(g) + �2(g); : : :for every g, whih yields (1.1). �



DIFFERENTIALLY ALGEBRAIC GAPS 7Transseries �elds. In the rest of this setion, (M;4) is a multipliative orderedabelian group. (In partiular the ordering 4 is total.) Then C[[M℄℄ is a �eld, alledthe transseries �eld with oeÆients in C and monomials from M. If S;S0 � Mare noetherian, so is SS0. For S �M, let S� be the multipliative submonoid ofM generated by S; if S �M is noetherian and S 4 1, then S� is noetherian.For non-zero f 2 C[[M℄℄ we putd(f) := max4 supp f (dominant monomial of f)and we all fd(f)d(f) 2 C� �M the dominant term of f . We extend the ordering 4on M to a dominane relation on C[[M℄℄: for series f and g in C[[M℄℄, we putf 4 g :() �f 6= 0; g 6= 0; d(f) 4 d(g)�; or f = 0f � g :() f 4 g ^ g 4 f;so for non-zero f and g: f � g () d(f) = d(g). We have the anonial deompo-sition of C[[M℄℄ into C-linear subspaes:C[[M℄℄ = C[[M℄℄" � C � C[[M℄℄#;where C[[M℄℄" := ff 2 C[[M℄℄ : supp f � 1g = C[[M�1℄℄and C[[M℄℄# := ff 2 C[[M℄℄ : supp f � 1g = C[[M℄℄�1 = C[[M�1℄℄;the maximal ideal of the valuation ring C[[M℄℄41 = C � C[[M℄℄# of C[[M℄℄. Everyf 2 C[[M℄℄ an be uniquely written asf = f" + f= + f#;where f" 2 C[[M℄℄", f= 2 C, and f# 2 C[[M℄℄#. If C is an ordered �eld, then weturn C[[M℄℄ into an ordered �eld as follows:f > 0 () fd(f) > 0; for f 2 C[[M℄℄, f 6= 0. (1.2)In this ase, C[[M℄℄" = ff 2 C[[M℄℄ : jf j > Cgand C[[M℄℄# = ff 2 C[[M℄℄ : jf j < C>0g;and the valuation ring C[[M℄℄41 of C[[M℄℄ is a onvex subring of C[[M℄℄. Given anordered �eld C we shall refer to C[[M℄℄ as an ordered transseries �eld over C toindiate that C[[M℄℄ is equipped with the ordering de�ned by (1.2).Example 1.5. Let C = R andM = xR, a multipliative opy of the ordered additivegroup of real numbers, with isomorphism r 7! xr : R ! xR. Then we havef" =Xr>0 arxr; f= = a0; f# =Xr<0 arxrfor f =Pr arxr 2 R[[xR℄℄.Let X = (X1; : : : ; Xn) be a tuple of distint indeterminates andF (X) =X� a�X� 2 C[[X ℄℄



8 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENa formal power series; here the sum ranges over all multiindies � = (�1; : : : ; �n) 2Nn , and a� 2 C, X� = X�11 � � �X�nn . For any n-tuple " = ("1; : : : ; "n) of elementsof C[[M℄℄#, the family (a�"�)� is noetherian [8℄, where "� = "�11 � � � "�nn . PutF (") :=X� a�"� 2 C[[M℄℄41:The proof of the following lemma is similar to that of [12℄, Lemma 2.5.Lemma 1.6. Suppose that C is real losed and the group M is divisible. Then anysub�eld K � C[M℄ of C[[M℄℄ with the property that F (") 2 K for all F 2 C[[X ℄℄and " = ("1; : : : ; "n) with "1; : : : ; "n 2 K�1 is real losed.Di�erentiation. If C[[M℄℄ is an H-�eld with respet to a derivation f 7! f 0 withonstant �eld C and with respet to the ordering extending an ordering on C via(1.2), then the dominane relation 4 that C[[M℄℄ arries as a transseries �eld overC oinides with the dominane relation that it has as an H-�eld, andm 4 n () m0 4 n0; for m; n 2M n f1g. (1.3)In the rest of this setion we assume, more generally, that C[[M℄℄ is equipped witha derivation f 7! f 0 with onstant �eld C suh that (1.3) holds.Integration. A series f 2 C[[M℄℄ is alled the distinguished integral of g 2 C[[M℄℄,written as f = R g, if f 0 = g and f= = 0.For every m 2 M there is at most one n 2 M with n0 � m; we say that C[[M℄℄is losed under asymptoti integration if for every m 2M there exists suh an n.If the derivation on C[[M℄℄ is strongly linear and C[[M℄℄ is losed under integra-tion, then it is losed under asymptoti integration: for m 2 M we have m � n0where n := d(R m). The following onverse is very useful:Lemma 1.7. Suppose that C is in�nite, the derivation on C[[M℄℄ is strongly linear,and C[[M℄℄ is losed under asymptoti integration. Then eah g 2 C[[M℄℄ has adistinguished integral in C[[M℄℄, and the operator g 7! R g on C[[M℄℄ is stronglylinear.Proof. De�ne I : M! C[[M℄℄ by I(m) = n with  2 C, n 2M suh that n0�m �m. Then by (1.3) the map I is noetherian, hene extends to a strongly linearoperator on C[[M℄℄, whih we also denote by I. Let D be the derivation on C[[M℄℄.The strongly linear operator � = D Æ I� Id satis�es supp�(m) � m for all m 2M.Hene by Corollary 1.4 the strongly linear operator D Æ I = Id+� has a stronglylinear two-sided inverse 	 given by	(g) = (D Æ I)�1(g) = g � �(g) + �2(g)� �3(g) + � � � :Sine I(m)= = 0 for all m 2 M, the strongly linear operator R := I Æ 	 assigns toeah g 2 C[[M℄℄ its distinguished integral. �Exponentials and logarithms. Suppose now that C = R. For f 2 R[[M℄℄41 ,write f = + " with  2 R and " 2 R[[M℄℄# , and putexp(f) = exp(+ ") := e 1Xi=0 "ii! ;



DIFFERENTIALLY ALGEBRAIC GAPS 9where t 7! et is the usual exponential funtion on R. Then exp is an exponentialon R[[M℄℄41 : for f; g 2 R[[M℄℄41exp(f) > 1, f > 0; exp(f) > f + 1; and exp(f + g) = exp(f) exp(g):Thus exp is injetive with image�g 2 R[[M℄℄ : g > 0; d(g) = 1	and inverse log: �g 2 R[[M℄℄ : g > 0; d(g) = 1	! R[[M℄℄41given by log g := log a+ log(1 + ")for g = a(1 + "), a 2 R>0 , " � 1, where log a is the usual natural logarithm of thepositive real number a andlog(1 + ") := 1Xn=1 (�1)n+1n "n:If R[[M℄℄ is losed under integration, then the above logarithm extends to a funtionlog: R[[M℄℄>0 ! R[[M℄℄ bylog g := log a+ logm+ log(1 + ")for g = am(1 + ") with a 2 R>0 , m 2M, and " � 1, and logm := R my. Note thatlog(fg) = log f + log g for f; g 2 R[[M℄℄>0 .More notation. For non-zero f; g 2 C[[M℄℄ we putf �� g :() fy 4 gy;f �� g :() fy � gy;f �� g :() fy � gy:Suppose R[[M℄℄, with its ordering as an ordered transseries �eld over C = R, is anH-�eld. Then by [2℄, Proposition 7.3, we have for f; g 2 R[[M℄℄�1 :f �� g () jf j 6 jgjn for some n > 0;f �� g () jf jn < jgj for all n > 0:2. Logarithmi MonomialsLet L be the multipliative subgroup of logarithmi monomials of R[[[x℄℄℄>0 gen-erated by the real powers of the iterated logarithms `0 := x; `1 := logx; `2 :=log logx; : : : ; `n := logn x; : : : of x; that is,L = �`�00 `�11 � � � `�nn : (�0; : : : ; �n) 2 Rn ; n = 0; 1; 2; : : :	:Thus L is a multipliatively written ordered vetor spae over the ordered �eld R,with basis `0; `1; `2; : : : satisfying`0 �� `1 �� `2 �� � � � �� `n �� � � � :We de�ne the group of ontinued logarithmi monomials L byL := �`�00 `�11 � � � `�nn � � � : (�0; �1; : : : ; �n; : : :) 2 RN	



10 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENand by requiring that (�0; �1; : : :) 7! `�00 `�11 � � � : RN ! L is an isomorphism of theadditive group RN onto the multipliative group L. We order L lexiographially:given m = `�00 `�11 � � � and n = `�00 `�11 � � � with (�0; �1; : : :); (�0; �1; : : :) 2 RN , putm 4 n :() (�0; �1; : : :) 6 (�0; �1; : : :) lexiographially.This ordering makes L into an ordered group, and extends the ordering 4 on L.We also extend the relation �� (\atter than") from L to L in the natural way:m �� n :() l(m) > l(n);where l(m) := minfi : �i 6= 0g 2 N if m = `�00 `�11 � � � 6= 1, and l(1) :=1 > N.De�nition 2.1. A sequene (mi)i>1 in L is alled a monomial Cauhy sequeneif for eah k 2 N there is an index i0 suh that for all i2 > i1 > i0 we havemi2=mi1 �� `k. A ontinued logarithmi monomial l 2 L is a monomial limit of(mi)i>1 if for all k 2 N there is an i0 suh that for all i > i0 we have mi=l �� `k.Given a ontinued logarithmi monomial m = `�00 `�11 � � � , let us writee(m) := (�0; �1; : : :) 2 RNfor its sequene of exponents. Then e : L! RN is an order-preserving isomorphismbetween the multipliative ordered abelian group L and the additive group RN ,ordered lexiographially. With this notation, a sequene (mi) in L is a monomialCauhy sequene if and only if (e(mi)) is a Cauhy sequene in RN , that is: forevery " > 0 in RN there exists an index i0 suh that je(mi2) � e(mi1)j < " for alli2 > i1 > i0. Similarly, an element l 2 L is a monomial limit of (mi) if and onlyif e(l) is a limit of the sequene (e(mi)), in the usual sense: for every " > 0 thereexists i0 suh that je(mi)� e(l)j < " for all i > i0. If (mi) has a monomial limit inL, then (mi) is a monomial Cauhy sequene. Conversely, every monomial Cauhysequene (mi) in L has a unique monomial limit l in L, denoted by l = limi!1mi.Moreover, every ontinued logarithmi monomial m = `�00 `�11 � � � `�nn � � � 2 L is themonomial limit of some monomial Cauhy sequene in L:m = limi!1 `�00 `�11 � � � `�ii :(Thus, viewing L and L as topologial groups in their interval topology, L is theompletion of its subgroup L.) Given a subset S of L, let S denote the set of allmonomial limits of monomial Cauhy sequenes in S (so S is the losure of S inL), and bS the set of all monomial limits of stritly dereasing monomial Cauhysequenes m1 � m2 � � � � in S. Note that if S � L is noetherian, then so is S � L,and S = S [ bS.Proposition 2.2. Let S;S0 � L be noetherian. Then(1) If S � S0, then bS � bS0 and S � S0.(2) \S [S0 = bS [S0 and S [S0 = S [S0.(3) dSS0 = SS0 [ bSS0 and SS0 = S S0.(4) If S � 1, then S� � S��bS�� and S� � S�.Proof. Parts (1) and (2) are trivial.For (3) onsider a monomial limit l of a sequene m1n1 � m2n2 � � � � , where(m1; n1); (m2; n2); : : :



DIFFERENTIALLY ALGEBRAIC GAPS 11is a sequene in S � S0. Sine S and S0 are noetherian, we may assume, afterhoosing a subsequene of (m1; n1); (m2; n2); : : :, that m1 < m2 < � � � and n1 < n2 <� � � . Beause (mini) is a monomial Cauhy sequene, both sequenes (mi) and (ni)are monomial Cauhy sequenes as well. The sequenes (mi) and (ni) annot bothbe ultimately onstant. If one of these sequenes is ultimately onstant, say mi = mfor all i > i0, then l = limi!1mini = m limi!1 ni 2 SS0:Otherwise, we have l = limi!1mini = limi!1mi limi!1 ni 2 bSS0:Hene dSS0 � SS0 [ bSS0. The other inlusions of (3) now follow easily.As to (4), assume that S � 1 and let l be a monomial limit of a sequenem1 = m1;1 � � �m1;l1 � m2 = m2;1 � � �m2;l2 � � � � ;where (m1;1; : : : ;m1;l1); (m2;1; : : : ;m2;l2); : : : is a sequene of tuples over S. Sinethe set of these tuples is noetherian for Higman's embeddability ordering [5℄, wemay assume, after hoosing a subsequene, that in this ordering(m1;1; : : : ;m1;l1) < (m2;1; : : : ;m2;l2) < � � � :In partiular, we have l1 6 l2 6 � � � . We laim that the sequene (li) is ultimatelyonstant. Assume the ontrary. Then, after hoosing a seond subsequene, wemay assume that l1 < l2 < � � � . Let 1 6 ki+1 6 li+1 be suh that(mi;1; : : : ;mi;li) < (mi+1;1; : : : ;mi+1;ki+1�1;mi+1;ki+1+1; : : : ;mi+1;li+1)for all i, hene mi < mi+1=mi+1;ki+1 for all i. Sine S is noetherian, the setfm2;k2 ;m3;k3 ; : : :g has a largest element v � 1. But thenmi+1=mi 4 mi+1;ki+1 4 vfor all i, whih ontradits (mi) being a monomial Cauhy sequene. This provesour laim (li) is ultimately onstant.We now proeed as in (3) to �nish the proof of (4). �Given S � L we say that S has deay > 1 if for eah m = `�00 `�11 � � � 2 bSthere exists k0 2 N suh that �k < �1 for all k > k0. Eah �nite subset of L hasdeay > 1.Example 2.3. Fix n > 1, and de�ne a sequene (mi)i>0 in L bym0 = � 1̀0�n ; m1 = � 1`0`1�n ; : : : ; mi := � 1`0`1 � � � `i�n (i > 0):Then the ontinued logarithmi monomiall = � 1`0`1 � � � `i � � ��n 2 Lis the monomial limit of the sequene m0 � m1 � � � � in L. Hene the subsetfmi : i = 0; 1; 2; : : :g of L has deay > 1 if n > 1, but not if n = 1.Corollary 2.4. If S and S0 are noetherian subsets of L of deay > 1, then S[S0and SS0 are noetherian of deay > 1; if in addition S � 1, then S� is noetherianof deay > 1. �



12 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVEN3. Logarithmi Transseries of deay > 1Consider the ordered �eld L := R[[L℄℄ of logarithmi transseries , and equip L withthe strongly linear derivation f 7! f 0 suh that for eah � 2 R(`�0 )0 = �`��10 ; (`�k )0 = �`��1k (`0`1 � � � `k�1)�1 for k > 0.This makes L a real losed H-�eld with onstant �eld R, and L is losed underintegration (see example at end of Setion 11 in [2℄). Hene by Lemma 1.7 thedistinguished integration operator R on L is strongly linear.A logarithmi transseries f 2 L is said to have deay > 1 if its support supp fhas deay > 1. By Corollary 2.4 above,L1 := �f 2 L : f has deay > 1	is a sub�eld of L ontaining the sub�eld R(L) of L generated by L over R. Inaddition F (") 2 L1 for any formal power series F (X) 2 R[[X ℄℄ and any n-tuple" = ("1; : : : ; "n) of in�nitesimals in L1 , where X = (X1; : : : ; Xn), n > 1. Hene byLemma 1.6 the �eld L1 is real losed. De�ning the logarithmi funtion on L>0 asin the subsetion \Exponentials and logarithms" of Setion 2, we obtainlog(`�00 `�11 � � � `�kk ) = �0`1 + � � �+ �k`k+1 2 L1for �0; : : : ; �k 2 R. It follows that log f 2 L1 for every positive f 2 L1 . Moreover:Proposition 3.1. The �eld L1 is losed under di�erentiation. (Thus L1 is anH-sub�eld of L.)Proof. Let l 2 L be a monomial limit of a stritly dereasing sequene in supp f 0,where f 2 L1 ; hene l is the monomial limit of a sequenem1n1 � m2n2 � � � �where mi 2 supp f and ni 2 suppmyi for all i. Note that ni 2 D, whereD = � 1̀0 ; 1`0`1 ; 1`0`1`2 ; : : :� : (3.1)Sine supp f and D are noetherian, we may assume thatm1 < m2 < � � � ; and n1 < n2 < � � �after hoosing a subsequene. Therefore (mi) and (ni) are monomial Cauhy se-quenes. We laim that (mi) annot be ultimately onstant: ifmi = `�00 `�11 � � � `�kkfor all i > i0, then ni 2 suppmyi � � 1̀0 ; 1`0`1 ; : : : ; 1`0`1 � � � `k�for all i > i0, so (ni) and thus (mini) would be ultimately onstant. This ontra-dition proves our laim. If (ni) is ultimately onstant, say ni = n for all i > i0,then l = limi!1mini = � limi!1mi�n:Otherwise limi!1 ni = 1`0`1`2 � � � 2 L;



DIFFERENTIALLY ALGEBRAIC GAPS 13hene l = limi!1mini = � limi!1mi� 1`0`1`2 � � � ;whih proves our proposition. �Example 3.2. We have Rh%i = R(%; %0 ; : : :) � L1 as di�erential �elds. Clearly� 2 L, but L1 does not ontain any element of the form �+ ", where " 2 L satis�es" � 1=(`0`1 � � � `n) for all n. (See Example 2.3.) Note also that � =2 L1 .Next we want to show that the di�erential �eld L1 is losed under integration.For this we need the following two lemmas:Lemma 3.3. For any non-zero � 2 R and any f 2 L, the linear di�erentialequation y0 + �y = f (3.2)has a unique solution y = g 2 L, and if f 2 L1 , then g 2 L1 :Proof. Note that for eah i, supp f (i) is ontained in the set (supp f)Di, where Dis as in (3.1). Sine D� = SiDi is noetherian and eah of its elements lies in Difor only �nitely many i, the family (f (i)) is noetherian. Hene we have an expliitformula for a solution g to (3.2):g := 1Xi=0(�1)i f (i)�i+1 :The solution g 2 L is unique, sine the homogeneous equation y0 + �y = 0 onlyhas the solution y = 0 in L. Now suppose f 2 L1 , and let l = `�00 `�11 � � � 2 L be amonomial limit of a sequene m1n1 � m2n2 � � � �in supp(g) where mini 2 supp(fk(i)), with mi 2 supp(f) and ni 2 Dk(i). We anassume that m1 < m2 < � � � and n1 < n2 < � � � . Hene (mi) and (ni) are monomialCauhy sequenes with limit m 2 L and n 2 L, respetively, so that l = mn. Theexponent of `0 in ni is �k(i), and thus the sequene (k(i)) is bounded. Hene wean even assume that this sequene is onstant. Then �k < �1 for all suÆientlylarge k, by Proposition 3.1. Hene g 2 L1 as required. �For k 2 N we onsider the embedding of ordered abelian groupsm = `�00 `�11 � � � `�nn 7! m Æ `k := `�0k `�1k+1 � � � `�nk+n : L! Land denote its unique extension to a strongly linear R-algebra endomorphism of Lby f 7! f Æ `k. Note that (f Æ `k)0 = (f 0 Æ `k)`0k for f 2 L, and if f 2 L1 , thenf Æ `k 2 L1 .In the statement of the next lemma we use the multiindex notation `� :=`�00 `�11 � � � `�nn , for an (n+ 1)-tuple � = (�0; : : : ; �n) 2 Rn+1 .Lemma 3.4. Let n 2 N and suppose (g�)�2Rn+1 is a family in L1 suh that thefamily �`� � (g� Æ `n+1)�� in L is noetherian. ThenX� `� � (g� Æ `n+1) 2 L1 :



14 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENProof. Let l 2 L be a monomial limit of a sequene `�1n1 � `�2n2 � � � � where�i 2 Rn+1 and ni 2 supp(g�iÆ`n+1) for all i. Then there exists an index i0 suh that�i0 = �i0+1 = � � � , and hene ni0 � ni0+1 � � � � is a sequene in supp(g�i0 Æ `n+1)with monomial limit l=`�i0 . Sine g�i0 Æ `n+1 2 L1 , the lemma follows. �Proposition 3.5. The H-�eld L1 is losed under integration.Proof. Let f 2 L1 . Sine 1`0`1`2��� is not a monomial limit of a sequene in supp f ,there exists k 2 N suh thatl(m � `0`1`2 � � � ) 6 k for all m 2 supp f .Take k minimal with this property. We proeed by indution on k. Writef = X�2Rx��1(F� Æ `1)where F� 2 L1 for eah � 2 R, and for 0 6= � 2 R, let g� 2 L1 be the uniquesolution to the linear di�erential equation y0 + �y = F�, by Lemma 3.3. ThenZ x��1(F� Æ `1) = x�(g� Æ `1) 2 L1 ;for � 6= 0. Sine distinguished integration on L is strongly linear, we haveZ f = (g0 Æ l1) +X� 6=0x�(g� Æ `1) 2 L;where g0 := R F0, and thus R f 2 L1 if g0 2 L1 (by Lemma 3.4). If k = 0, thenF0 = 0, hene g0 = 0 2 L1 . If k > 0, thenl(m � `0`1`2 � � � ) 6 k � 1 for all m 2 suppF0,hene g0 in L1 , by the indution hypothesis. We onlude that R f 2 L1 . �4. Strong Differentiation, Strong Integration, and FlatteningFor the onveniene of the reader and to �x notations, we �rst state some fatsabout the �eld of transseries T in addition to those mentioned in the Introdution.For proofs, we refer to [15℄, where T is de�ned as exponential H-�eld, and to [11℄for more details; see [6℄ for an independent onstrution of T as exponential �eld.Fats about T. As an ordered �eld, T is the union of an inreasing sequeneL = R[[T0 ℄℄ � R[[T1 ℄℄ � � � � � R[[Tn ℄℄ � � � �of ordered transseries sub�elds over R, with T0 = L, and where eah inlusionR[[Tn ℄℄ � R[[Tn+1 ℄℄ omes from a orresponding inlusion Tn � Tn+1 of mul-tipliative ordered abelian groups. The exponential operation exp on T maps theordered additive group R[[Tn ℄℄" isomorphially onto the ordered group Tn+1. Henelogm 2 R[[Tn ℄℄" for m 2 Tn+1, where log : T>0 ! T is the inverse of exp. Alsolog(1 + ") = 1Xi=1 (�1)i+1i "i 2 R[[Tn ℄℄ (4.1)for 1 � " 2 R[[Tn ℄℄. For f 2 T>0 and r 2 R we put fr := exp(r log f) 2 T; oneheks easily that fr > 1 if f > 1 and r > 0, and that this operation of raising toreal powers makes T>0 into a multipliative vetor spae over R ontaining eah Tnas a multipliative R-subspae.



DIFFERENTIALLY ALGEBRAIC GAPS 15We put T := Sn Tn (an ordered subgroup of T>0), so the ordered transseries�eld R[[T℄℄ over R ontains T as an ordered sub�eld. The ordered �eld R[[T℄℄omes equipped with two strongly linear automorphisms f 7! f" (upward shift)and f 7! f# (downward shift), that are mutually inverse and map T to itself. Thedownward shift extends the map f 7! f Æ `1 on L used in the last setion, and alsothe omposition operation f 7! f Æ logx on R[[[x℄℄℄. (See [15℄, Chapter 2.) We haveexp(f)" = exp(f") for f 2 T, and hene log(f)" = log(f") and (fr)" = (f")r forf 2 T>0, r 2 R. From these properties one obtains by indution that Tn" � Tn+1and Tn# � Tn. (Hene m 7! m" is an automorphism of the ordered group T.) Wedenote the n-fold funtional omposition of f 7! f# by f 7! f#n, and similarly wewrite f 7! f"n for the n-fold omposition of f 7! f".The derivation on T restrits to a strongly linear derivation on eah sub�eldR[[Tn ℄℄, and extends uniquely to a strongly linear derivation D : f 7! f 0 on R[[T℄℄.With this derivation, R[[T℄℄ is a real losed H-�eld with onstant �eld R. We have(f")0 = ex � (f 0)"; (f#)0 = 1x � (f 0)# (f 2 R[[T℄℄):Note that v� exp(��)� remains a gap in R[[T℄℄, so R[[T℄℄ is not losed under asymp-toti integration. There is also no natural extension of the exponential operationon T to one on R[[T℄℄. Nevertheless, using (4.1) one easily heks that the funtionlog: T>0 ! T extends to an embedding log of the ordered multipliative groupR[[T℄℄>0 into the ordered additive group R[[T℄℄>0 , by settinglog g := log am+ 1Xn=1 (�1)n+1n "nfor g = am(1 + "), a 2 R>0 , m 2 T, and 1 � " 2 R[[T℄℄.Monomial subgroups of T. In the next setion we onstrut a Liouville losedH-sub�eld of T ontaining L1 ; this will involve subgroups M of T suh that thesub�eld R[[M℄℄ of R[[T℄℄ is losed under di�erentiation and integration. In therest of this setion, Mn denotes an ordered subgroup of Tn, for every n, with thefollowing properties:(M1) M0 = L;(M2) An := logMn+1 is an R-linear subspae of R[[Mn ℄℄" and is losed undertrunation;(M3) Mn �Mn+1.Here a set A � R[[T℄℄ is said to be losed under trunation if for eah f =Pm2T fmm 2 A and eah �nal segment F of T we have f jF :=Pm2F fmm 2 A.We put M := SnMn, a subgroup of T. When needed we shall also impose:(M4) M" �M.Example 4.1. LetMn := Tn. Then theMn satisfy (M1){(M4), with An = R[[Tn ℄℄"and M = T.By (M1), the set logM0 is also an R-linear subspae of R[[M0 ℄℄ losed undertrunation. By (M1) and (M2), eah Mn is losed under R-powers: if m 2 Mnand r 2 R, then mr 2 Mn. Also by (M1) and (M2), eah sub�eld R[[Mn ℄℄ of T islosed under taking logarithms of positive elements, and so is the sub�eld R[[M℄℄ ofR[[T℄℄. Moreover, eah sub�eld R[[Mn ℄℄ of T is losed under di�erentiation, hene



16 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENis an H-sub�eld of T. (This follows by an easy indution on n: use (M1) for n = 0,and (M2) for the indution step.) It follows that the sub�eld R[[M℄℄ of R[[T℄℄ islosed under di�erentiation, hene is an H-sub�eld of R[[T℄℄.Lemma 4.2. The H-�eld R[[M℄℄ is losed under asymptoti integration if andonly if exp(�) =2M. In this ase, R[[M℄℄ is losed under integration, and the mapf 7! R f : R[[M℄℄ ! R[[M℄℄ is strongly linear.Proof. The H-�eld R[[M℄℄ is losed under asymptoti integration if and only if itdoes not have a gap ([1℄, Setion 2). The valuation of R[[T℄℄ maps T bijetively andorder-reversingly onto the value group of R[[T℄℄, and also M onto the value groupof R[[M℄℄. The element exp(��) of T satis�es (1=`n)0 � exp(��) � (1=`n)y forall n. Beause the sequene 1=`0; 1=`1; : : : is oinitial in M�1, this yields the �rstpart of the lemma. The rest now follows from Lemma 1.7. �Put M0n := Mn \M" and M0 := SnM0n. The next easy lemma is left as anexerise to the reader.Lemma 4.3. The family (M0n) satis�es the following analogues of (M1){(M3):M00 = L; logM0n+1 is an R-linear subspae of R[[M0n ℄℄" losed under trunation;M0n �M0n+1. If (M4) holds, then M0 =M" and M0" �M0.In the rest of this setion N denotes a onvex subgroup of M, equivalently, asubgroup suh that for all m; n 2Mm �� n 2 N =) m 2 N:Note that then N is losed under R-powers, and that N" is a onvex subgroup ofM". To N we assoiate the setI := �m 2M�1 : expm �� n for some n 2 N	 � N:Then I is an initial segment of M�1 (with I = ; if N = f1g). Consequently, theomplement F =M�1nI of I is a �nal segment of M�1, andR := fr 2M : log r 2 R[[F ℄℄gis also a subgroup of M losed under R-powers.Lemma 4.4. For all m 2M we have:m 2 N () logm 2 R[[I ℄℄:Proof. The lemma holds trivially if N = f1g. Assume that N 6= f1g; hene `k 2 Nfrom some k 2 N. Let m 2Mn. We prove the desired equivalene by distinguishingthe ases n = 0 and n > 0. If n = 0, then we take k 2 N minimal suh that `k 2 N,so N \ L = �`�00 `�11 � � � 2 L : �i = 0 for all i < k	;whih easily yields the desired equivalene.Suppose that n > 0. Then logm 2 An�1. Sine An�1 is losed under trunationwe have logm = ' +  with ' 2 An�1 \ R[[I ℄℄ and  2 An�1 \ R[[F ℄℄. Henee'; e 2M. In fat e' 2 N, beause if ' 6= 0, then d(') 2 I , so e' �� ed(') �� n forsome n 2 N. Similarly, if  6= 0, then e =2 N. The desired equivalene now followsfrom m = e' � e . �With Nn := N \Mn and Rn := R \Mn we have:



DIFFERENTIALLY ALGEBRAIC GAPS 17Corollary 4.5. N \R = f1g and Mn = Nn �Rn.It follows thatM = N �R, and the produts nr with n 2 N and r 2 R are orderedantilexiographially: nr � 1 if and only if r � 1, or r = 1 and n � 1. We think ofthe monomials in the onvex subgroup N as being at. Aordingly we all R thesteep supplement of N.Proof. It is lear from the previous lemma that N \ R = f1g. We now showMn = Nn � Rn. Let m 2 Mn. Then logm 2 R[[M℄℄" , so logm = ' +  with' 2 R[[I ℄℄,  2 R[[F ℄℄. Sine logMn is trunation losed, we have ';  2 logMn,so m = nr with n := e' 2 Mn \ N = Nn and r := e 2 Mn \ R = Rn, using theprevious lemma. �Corollary 4.6. Suppose that x 2 N. Then the following analogues of (M1){(M3)hold:(N1) N0 = L;(N2) logNn+1 is an R-linear subspae of R[[Nn ℄℄" and is losed under trunation;(N3) Nn � Nn+1.In partiular, the sub�eld R[[N℄℄ of R[[M℄℄ is losed under di�erentiation, and ife� =2 N, then R[[N℄℄ is also losed under integration.Remark 4.7. If we drop the assumption x 2 N, then R[[N℄℄ may fail to be losedunder di�erentiation. To see this, take N = fm 2M : m �� xg and m = logx 2 N;then m0 = 1=x �� x, so m0 =2 N.Property (N2) of Corollary 4.6 follows easily from Lemma 4.4 and its proof(without assuming x 2 N). The rest of the orollary is then obvious.Lemma 4.8. Suppose that x 2 N, and that m �� r, where m; r 2M, r =2 N. Thensuppm0 �� r.Proof. By indution on n suh that m 2 Mn. The laim is trivial for n = 0 sineM0 = N0 = L and m0 2 R[[L℄℄. Suppose n > 0 and write m = e' with ' 2 An�1.Sine supp' �� m we obtain supp'0 �� r, by indutive hypothesis. Any u 2 suppm0is of the form u = v �m with v 2 supp'0, hene u �� r as required. �Flattening. We \atten" the dominane relations � and 4 on R[[M℄℄ by theonvex subgroup N of M as follows:f �N g :() (8' 2 N : 'f � g);f 4N g :() (9' 2 N : f 4 'g);for f; g 2 R[[M℄℄. We also de�ne, for f; g 2 R[[M℄℄:f �N g :() f 4N g ^ g 4N f;hene N = fm 2M : m �N 1g. Flattening orresponds to oarsening the valuation:The value group v(M) of the natural valuation v on R[[M℄℄ has onvex subgroupv(N), so gives rise to the oarsened valuation vN on R[[M℄℄ with (ordered) valuegroup v(M)=v(N) given by vN(f) := v(f) + v(N) for f 2 R[[M℄℄� . Then we havethe equivalenes f �N g () vN(f) > vN(g) andf 4N g () vN(f) > vN(g)



18 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENfor f; g 2 R[[M℄℄. (See also Setion 14 of [2℄.) The restrition of 4N to M is aquasi-ordering, i.e., reexive and transitive; it is anti-symmetri (i.e., an ordering)if and only if N = f1g. The restrition of 4N to R is the already given orderingon R. The following rules are valid for f; g 2 R[[M℄℄:the equivalene f �N g () f 0 �N g0 holds, provided f; g 6�N1;1 �N f 4N g =) fy 4N gy;f 4 g =) f 4N g, and hene f �N g =) f � g:In our proofs below, we often redue to the ase that x 2 N by upward shift. Hereare a few remarks about this ase. If x 2 N, then L � N, and for all f 2 R[[M℄℄:the equivalene f �N 1 () f 0 �N 1 holds, provided f 6� 1;f �N 1 () f 0 �N 1: (4.2)(See [2℄, Lemma 13.4.) Moreover:Lemma 4.9. Suppose that x 2 N. Then the following onditions on m 2 M areequivalent:(1) logm 4N 1,(2) logm 2 R[[N℄℄,(3) my 2 R[[N℄℄,(4) my 4N 1.Proof. From supp(logm) �M�1 we obtain (1) ) (2). The impliation (2) ) (3)follows from Corollary 4.6, (3)) (4) is trivial, and (4)) (1) follows from (4.2). �Flattened anonial deomposition. We have an isomorphismR[[M℄℄ ! R[[N℄℄[[R℄℄of R[[N℄℄-algebras given byf = Xm2M fmm 7!Xr2R Xn2N fnrn! r:In R[[M℄℄ we have in fat f =Xr2R Xn2n fnrn! r;where the sums are interpreted as in Setion 1. We shall identify the (real losed,ordered) �eld R[[M℄℄ with the (real losed, ordered) �eld R[[N℄℄[[R℄℄ by means ofthis isomorphism. For f 2 R[[M℄℄ we putfN;r := Xn2N fnrn 2 R[[N℄℄; (r 2 R); andsuppN f := fr 2 R : fN;r 6= 0g :We have the attened anonial deomposition of the R-vetor spae R[[M℄℄ (relativeto N) R[[M℄℄ = R[[M℄℄* � R[[M℄℄� � R[[M℄℄+ ;



DIFFERENTIALLY ALGEBRAIC GAPS 19where R[[M℄℄* = R[[N℄℄[[R�1 ℄℄;R[[M℄℄� = R[[N℄℄;R[[M℄℄+ = R[[N℄℄[[R�1 ℄℄:Aordingly, given a transseries f 2 R[[M℄℄, we writef = f* + f� + f+where f* = X1�m2MnN fmm 2 R[[M℄℄* ;f� = Xm2N fmm 2 R[[M℄℄� ;f+ = X1�m2MnN fmm 2 R[[M℄℄+ :Example 4.10. Let w 2M, w 6� 1, and onsider the onvex subgroupN := �n 2M : n �� w	of M. Suppose that exp(M�1) �M. ThenI = �m 2M�1 : expm �� w	and thus R = �r 2M : supp log r < d(logw)	:In this ase we write suppw f instead of suppN f , 4w instead of 4N, and likewisefor the other asymptoti relations. In the next setion we take w = ex.Flatly noetherian families. Let (fi)i2I 2 R[[M℄℄I . The family (fi) is said to beatly noetherian (with respet to N) if (fi) is noetherian as a family of elementsin C[[R℄℄, where C = R[[N℄℄. If (fi) is atly noetherian, then (fi) is noetherian asa family of elements of R[[M℄℄, and its sum Pi2I fi 2 C[[R℄℄ as a atly noetherianfamily equals its sumPi2I fi 2 R[[M℄℄ as a noetherian family of elements of R[[M℄℄.For any monomial m 2 M, (fi) is atly noetherian if and only if (mfi) is atlynoetherian.Note that if n1 � n2 � � � � is an in�nite sequene of monomials in N, then (ni)i>1is a noetherian family whih is not atly noetherian.A map �: R[[M℄℄ ! R[[M℄℄ is alled atly strongly linear (with respet to N) if� onsidered as a map C[[R℄℄ �! C[[R℄℄ is strongly linear, where C = R[[N℄℄.Lemma 4.11. Suppose that x 2 N. The map R ! C[[R℄℄ : r 7! r0 is noetherian,where C = R[[N℄℄, and thus extends uniquely to a atly strongly linear map' : R[[M℄℄ �! R[[M℄℄:Proof. Let r1 �N r2 �N � � � be elements of R and ui 2 supp r0i for eah i. It suÆesto show that then there exist indies i < j suh that ui �N uj . Sine di�erentiationon R[[M℄℄ is strongly linear, we may assume, after passing to a subsequene, thatui � uj for all i < j. If there exist i < j suh that ui �N ri and uj �N rj , we arealready done. So we may assume that ui 6�Nri for all i, and also that ri 6�Nu1 for



20 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENall i. Write eah ui as ui = rimi, with mi 2 supp ryi , mi =2 N. We distinguish twoases:(1) For all i > 1 there exists a vi 2 supp log u1 suh that mi 2 supp v0i. Sinesupp log u1 is noetherian we may assume, after passing to a subsequene,that vi < vj for 1 < i < j. Sine di�erentiation on R[[M℄℄ is strongly linear,we then �nd i < j with mi < mj . Hene mi <N mj , so ui �N uj .(2) There exists an i > 1 suh that for all v 2 supp log u1 we have mi 62 supp v0.Take suh i and hoose v 2 supp log ri suh that mi 2 supp v0. Thenv 2 (supp log ri)n(supp log u1) � supp log(ri=u1) �M�1and hene v �� log(u1=ri). Sine logm �� m for m 2 M n f1g, this yieldsv �� u1=ri. By Lemma 4.8 we get mi �� u1=ri. Hene if n := u1=ui 2 N,then mi �� u1=ri = min, ontraditing mi =2 N. Therefore u1 �N ui. �In the rest of this setion we assume (M4).In partiular, our previous results apply to M"k instead of M for k = 1; 2; : : : , byLemma 4.3. In this onnetion, the following fat will be useful.Remark 4.12. A family (fi)i2I 2 R[[M℄℄I is atly noetherian with respet to N ifand only if the family (fi")i2I 2 R[[M"℄℄I is atly noetherian with respet to N".We now arrive at the main results of this setion:Theorem 4.13. If (fi)i2I is a atly noetherian family in R[[M℄℄, then so is (f 0i)i2I .Proof. Sine the aseN = f1g is trivial, we may assumeN 6= f1g. Then x 2 N"k forsuÆiently large k 2 N. Sine (f")0 = ex � (f 0)" for f 2 R[[M℄℄, Remark 4.12 allowsus to redue to the ase that x 2 N. Then R[[N℄℄ is losed under di�erentiation byCorollary 4.6. Now onsider a atly noetherian family (fi)i2I 2 R[[M℄℄I . Then (fi)is noetherian, hene (f 0i) is noetherian by strong linearity of di�erentiation. By thelemma above, the family (gi) de�ned bygi :=Xr2R fi;N;rr0is atly noetherian. Put hi := f 0i � gi =Xr2R(fi;N;r)0r:We have suppN hi � suppN fi for i 2 I , sine R[[N℄℄ is losed under di�erentiation.It follows that (hi) is atly noetherian. Hene the family (f 0i) is atly noetheriansine it is the omponentwise sum of two atly noetherian families. �Theorem 4.14. Suppose that exp(�) 62 M. Then R[[M℄℄ is losed under integra-tion, and if (fi)i2I is a atly noetherian family in R[[M℄℄, then �R fi�i2I is atlynoetherian.Before we begin the proof, we make some remarks about the summation of atlynoetherian families in R[[M℄℄. Choose a basis B for the R-vetor spae R[[N℄℄. Wede�ne a (partial) ordering 4� on B�R as follows:(b; r) 4� (; s) () r �N s, or r = s and b = , (4.3)



DIFFERENTIALLY ALGEBRAIC GAPS 21for all (b; r); (; s) 2 B�R. Consider the R-vetor spae R[[B �R℄℄ of transsseriesf = X(b;r)2B�R f(b;r)(b; r)with real oeÆients f(b;), whose support supp f := �(b; r) : f(b;) 6= 0	 is noether-ian for 4�; see Setion 1. We have:Lemma 4.15. There exists a unique isomorphism ' : R[[B � R℄℄ ! R[[M℄℄ ofR-vetor spaes suh that(1) '(b; r) = b � r for b 2 B, r 2 R,(2) a family (fi)i2I 2 R[[B � R℄℄I is noetherian if and only if �'(fi)�i2I isatly noetherian,(3) if (fi)i2I 2 R[[B �R℄℄I is noetherian, then ' �Pi2I fi� =Pi2I '(fi).Proof. Of ourse, there is at most one suh '. For existene, �rst note that theprojetion map � : B � R ! R is stritly inreasing, and that a set S � B � Ris noetherian if and only if �(S) � R is noetherian and eah �ber ��1(r), (r 2 R)is �nite. Applying this remark to S := Si2I supp fi, where (fi)i2I is a noetherianfamily in R[[B �R℄℄, it follows that the subset�(S) = [i2I;b2B;r2R suppN�fi;(b;r)b � r�ofR is noetherian, and that for eah r 2 R there are only �nitely many (i; b) 2 I�Bwith r 2 suppN�fi;(b;r)b � r�. Therefore the family �fi;(b;r)b � r�(i;b;r)2I�B�R ofelements of R[[M℄℄ is atly noetherian. Thus, by setting'(f) :=Xr2R Xb2B f(b;r)b! r for f 2 R[[B �R℄℄;we obtain an R-linear bijetion ' : R[[B �R℄℄ ! R[[M℄℄ suh that for every noe-therian family (fi) 2 R[[B � R℄℄I , the family �'(fi)� is atly noetherian and' (Pi fi) =Pi '(fi). (See proof of Proposition 3.5 in [17℄.) If (fi) 2 R[[B �R℄℄Iand �'(fi)� is atly noetherian, then, with S := Si supp fi,�(S) =[i2I suppN '(fi)is noetherian and �jS has �nite �bers, so (fi) is noetherian. �We now begin the proof of Theorem 4.14. Using upward shifting and R (f") =�R (f � x�1)� " for f 2 R[[M℄℄, we �rst redue to the ase that ex 2 N. In partiularx 2 N, so R[[N℄℄ is losed under di�erentiation and integration, by Corollary 4.6.Partition M = VqW (disjoint union), whereV = �m 2M : my 4N 1	and W = �m 2M : my �N 1g:Then V is a onvex subgroup of M ontaining N whih is losed under R-powers,and R[[M℄℄ = R[[V℄℄ � R[[W℄℄ as R-vetor spaes. Note that if n 2 N, r 2 R, thenn � r 2W if and only if r 2W. It follows thatW = N �S, where S :=W\R. Sinex 2 V, the sub�eld R[[V℄℄ of R[[M℄℄ is losed under di�erentiation and integration,by Corollary 4.6. Moreover:



22 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENLemma 4.16. The R-linear subspae R[[W℄℄ of R[[M℄℄ is losed under the operatorsf 7! f 0 and g 7! R g on R[[M℄℄.Proof. If R[[W℄℄ is losed under f 7! f 0, then it is also losed under g 7! R g, beauseR[[V℄℄ is losed under di�erentiation and R[[M℄℄ is losed under integration. So letw 2W; it is enough to show that then suppw0 �W. Take n > 0 with w 2W\Mn,and write w = e' with ' 2 An�1. By Lemma 4.8 we have supp'0 �� w. Henemy � wy �N 1 and thus m 2W, for every m 2 suppw0. �Lemma 4.17. For all h 2 R[[V℄℄, we have suppN R h � suppN h.Proof. It is enough to prove the lemma for h of the form h = fr, where f 2 R[[N℄℄,f 6= 0, and r 2 V \ R, so r = e' with '0 = ry 4N 1. By Lemma 4.9, we have'0 2 R[[N℄℄. We may assume ' 6= 0. Then e' = r �� N, so '0 = ry � ny for alln 2 N. Thus the strongly linear map�: R[[N℄℄ ! R[[N℄℄; g 7! g0='0satis�es �(n) � n for all n 2 N. Hene by Corollary 1.4 the strongly linear operatorId+� on R[[N℄℄ is bijetive. We let g := (Id+�)�1(f='0) 2 R[[N℄℄. Then g0+'0g =f and thus R fr = gr. �If (fi) is a atly noetherian family of elements of R[[V℄℄, then by the previ-ous lemma �R fi� is atly noetherian. To omplete the proof of Theorem 4.14 ittherefore remains to show:Lemma 4.18. If (fi) is a atly noetherian family of elements of R[[W℄℄, then �R fi�is atly noetherian.Proof. Let C = R[[N℄℄, let B be a basis for C as R-vetor spae, and let R[[B�R℄℄and ' : R[[B � R℄℄ ! R[[M℄℄ be as in Lemma 4.15. Put S := W \ R as before.Then '(B �S) = B �S � R[[W℄℄, so ' restrits to an R-linear map'1 : R[[B �S℄℄! R[[W℄℄:Clearly '1 is bijetive, sine W = N � S. Consider the strongly linear operatorsD : R[[M℄℄ ! R[[M℄℄ given by f 7! f 0 and R : R[[M℄℄ ! R[[M℄℄ given by f 7! R f .We have D(f); R f 2 R[[W℄℄ for f 2 R[[W℄℄, by Lemma 4.16. By Theorem 4.13and Lemma 4.15, the operator D1 := '�11 Æ DW Æ '1 on R[[B � S℄℄ is stronglylinear, where DW := DjR[[W℄℄ : R[[W℄℄ ! R[[W℄℄. By Lemma 4.15 it suÆes toprove that the operator R 1 := '�11 ÆRW Æ'1 on R[[B�S℄℄ is strongly linear, whereRW := R jR[[W℄℄ : R[[W℄℄ ! R[[W℄℄. Sine 1 =2 W, the operators DW and RW onR[[W℄℄ are mutually inverse, and hene the operators D1 and R1 on R[[B �S℄℄ aremutually inverse.For t 2 C� � S, let �t and It be the dominant term of the series t0 and R tin C[[R℄℄, respetively, so �t; It 2 C� � S by Lemma 4.16. By the rules on �Nlisted earlier, if t1; t2 2 C� �S satisfy t1 �N t2, then �t1 �N �t2 and It1 �N It2.Moreover, the maps I : C� � S ! C� � S and �: C� � S ! C� � S are mutuallyinverse, and '1(B�S) � C� �S � R[[W℄℄. Now let�1 := '�11 Æ� Æ �'1jB�S� : B�S! R[[B �S℄℄;I1 := '�11 Æ I Æ �'1jB�S� : B�S! R[[B �S℄℄:Then for v1; v2 2 B�S we havev1 �� v2 =) supp�1v1 �� supp�1v2; supp I1v1 �� supp I1v2:



DIFFERENTIALLY ALGEBRAIC GAPS 23Hene the maps �1; I1 are noetherian, so they extend uniquely to strongly linearoperators on R[[B�S℄℄. These extensions, again denoted by �1 and I1, respetively,are mutually inverse by [17℄, Proposition 3.10, beause � and I are.Now onsider the strongly linear operator� := (D1 ��1) Æ I1 = D1I1 � Idon R[[B �S℄℄. UsingD1I1jB�S = '�11 Æ (DW Æ I) Æ ('1jB�S)we obtain supp�(v) �� v for v 2 B � S. Hene by Corollary 1.4, the operatorId+� = D1I1 on R[[B � S℄℄ is bijetive with strongly linear inverse. Thus theoperator I1 Æ (Id+�)�1 on R[[B �S℄℄ is strongly linear. Finally, note thatD1 Æ I1 Æ (Id+�)�1 = D1 Æ I1 Æ (D1I1)�1 = Id;so R 1 = D�11 = I1 Æ (Id+�)�1, and thus R 1 is strongly linear. �5. Transseries of deay > 1In this setion we extend L1 to a Liouville losed H-sub�eld T1 of R[[T℄℄ by �rstextending L1 to a real losed H-sub�eld S of R[[T℄℄ that is losed under takinglogarithms of positive elements, and then losing o� S under downward shifts.The H-�eld T1 will satisfy the requirements on K in the Theorem stated in theintrodution.Constrution of S. The onvex subgroupT[ = fn 2 T : n �� exgof the ordered group T is losed under R-powers. Note that L � T[. We all T[the at part of T. Its steep supplement (as de�ned in the previous setion) is thesubgroup T℄ = fg 2 T : supp log g < xgof T, alled the steep part of T. (See Examples 4.1 and 4.10.) We apply hereSetion 4 to M = T, and aordingly identify R[[T℄℄ and R[[T[ ℄℄[[T℄℄℄. Everyf = Xm2T fmm 2 R[[T℄℄an be written as f = Xr2T℄ f [r r;where the oeÆients f [r := Xn2T;n��ex fnrnare series in R[[T[ ℄℄. (In the notation of Setion 4, we have f [r = fT[;r.) We mayalso deompose f as f = f* + f� + f+; (5.1)



24 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENwhere, with m ranging over T,f* := Xm�1;m��ex fmm;f� := Xm��ex fmm;f+ := Xm�1;m��ex fmm:Put S0 := L1 , the latter as de�ned in Setion 3. So S0 � R[[T0 ℄℄ � R[[T[ ℄℄.Indutively, given the sub�eld Sn of R[[Tn ℄℄, we let Sn+1 be the sub�eld of R[[Tn+1 ℄℄onsisting of those f 2 R[[T℄℄ suh that f [r 2 L1 and log r 2 S"n for all r 2 suppex f ,that is, with C := R[[T[ ℄℄: Sn+1 = L1 [[Un+1℄℄ � C[[T℄℄℄where Un+1 := T℄ \ exp(S"n) = exp�Sn \ R[[T<xn ℄℄�;a subgroup of T℄ \ Tn+1 losed under R-powers. It follows that Sn+1 � R[[Tn+1 ℄℄.It is onvenient to de�ne R0 := f1g � T0.Example 5.1. We have U1 = exp�L1 \ R[[L<x ℄℄�. Therefore ex2 2 S1, but ex2# =e(logx)2 62 S1.Lemma 5.2. Eah Sn is a real losed sub�eld of T, and Un � Un+1 for all n.(Hene Sn � Sn+1 for all n.)Proof. The �rst statement follows from the remarks at the beginning of Setion 3and Lemma 1.6. We show the other statement by indution on n. The ase n = 0being lear, suppose that Un � Un+1. ThenSn = L1 [[Un℄℄ � L1 [[Un+1℄℄ = Sn+1and thus Un+1 = T℄ \ exp(S"n) � T℄ \ exp(S"n+1) = Un+2as required. �We let S be the union of the inreasing sequene S0 � S1 � � � � of real losedsub�elds of T. Then S is a real losed sub�eld of T. Moreover:Lemma 5.3. log(S>0n ) � Sn for every n. (Hene log(S>0) � S.)Proof. The ase n = 0 is disussed at the beginning of Setion 3. Suppose n > 0.Every positive f 2 Sn may be written in the formf = g � u � (1 + ")where 0 < g 2 L1 , u 2 Un � exp(S"n�1), and " �ex 1. We getlog f = log g + log u+ log(1 + "):We have log g 2 L1 and (sine " � 1)log(1 + ") = 1Xk=1 (�1)k+1k "k 2 Sn:Moreover log u 2 Sn�1, thus log u 2 Sn by Lemma 5.2. Hene log f 2 Sn. �



DIFFERENTIALLY ALGEBRAIC GAPS 25We now put An := S"n, Mn+1 := exp(An) for every n, and M0 := L. EahAn is an R-linear subspae of R[[Tn ℄℄, and Mn is a subgroup of Tn losed underR-powers. Here are some more properties of Sn, An and Mn. A subset A of R[[T℄℄is said to be losed under subseries if for every f =Pm2T fmm 2 A the subseriesf jS :=Pm2S fmm is in A, for any subset S of T.Lemma 5.4. For every n we have:(1) Sn � R[[Mn ℄℄. (Hene An � R[[Mn ℄℄".)(2) Sn is losed under subseries. (Hene An is losed under subseries.)(3) logMn � An. (Hene Mn �Mn+1.)(4) Sn" � Sn+1. (Hene Mn" �Mn+1.)Proof. Parts (1){(3) are obvious for n = 0. For the ase n = 0 of (4) note �rstthat L" � L � (expx)R with L \ (expx)R = f1g. Moreover, if a subset S of Lhas deay > 1 and S" � L � (expx)� with � 2 R, then �(S") has deay > 1,where � : L � (expx)R ! L is given by l � (expx)� 7! l for l 2 L, � 2 R. HeneL1" � L1 [[(expx)R℄℄ � S1 as required.Let now n > 0. For (1) note thatL = exp logL � exp(L"1 ) � exp(S"n�1); Un � exp(S"n�1);hene Sn = L1 [[Un℄℄ � R[[L � Un℄℄ � R[[exp(S"n�1)℄℄ = R[[Mn ℄℄:For (2) let f =Pu2Un f [uu 2 Sn, so f [u 2 L1 for all u. Then for any subset S of Twe have f jS = Xu2Un(f [u)jSuu 2 Sn;where Su := fn 2 T[ : nu 2 Sg for u 2 Un. For part (3) we have, by Lemma 5.2,logMn = An�1 = S"n�1 � S"n = Anas required. For (4), we may assume indutively that Sn�1" � Sn. Sine Tn�1" �Tn we getUn" = exp�Sn�1 \ R[[T<xn�1 ℄℄� " � exp �Sn \ R[[T<exp xn ℄℄� � Un+1:Together with L1" � L1 [[(expx)R℄℄ this yields Sn" = (L1")[[Un"℄℄ � Sn+1. �We let M be the union of the inreasing sequene M0 � M1 � � � � of orderedsubgroups of T. Then M is an ordered subgroup of T, and S is an ordered sub�eldof R[[M℄℄. Note that the Mn satisfy onditions (M1){(M4) of the previous setion.We have S\L = L1 , hene exp(�) =2M, by part (3) of Lemma 5.4 and Example 3.2.Proposition 5.5. For every n, the �eld Sn is losed under di�erentiation.Proof. We proeed by indution on n. We have already dealt with the ase n = 0in Proposition 3.1. Let f = Pu2Un+1 f [uu 2 Sn+1. By Theorem 4.13, the family�(f [uu)0�u2Un+1 in R[[Tn+1 ℄℄ is atly noetherian. Hene for any s 2 T℄n+1 the sumXu2Un+1 h�(f [u)0 + f [uuy�ui[shas only �nitely many non-zero terms and equals (f 0)[s. Let u 2 Un+1 and s 2T℄n+1. By the indution hypothesis we have uy 2 Sn, hene (uy)[s=u 2 L1 . By



26 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENProposition 3.1 we get (f [u)0 2 L1 . Therefore (f 0)[s 2 L1 . It follows that f 2 Sn+1as required. �Constrution of T1. We have S#k = (S")#k+1 � S#k+1 for every k 2 N, byLemma 5.4, (4). We let T1 be the union of the inreasing sequeneS� S#� S#2 � � � � � S#k � � � �of real losed sub�elds of T. The elements of the real losed sub�eld T1 of T arealled transseries of deay > 1. The �eld T1 is losed under upward and downwardshift: if f 2 T1, then f"; f# 2 T1. We have L1 � T1; in fat:Lemma 5.6. L1 = T1 \ L.Proof. Suppose f 2 T1 \ L; so f"k 2 Sn where k; n 2 N; we laim that f 2 L1 .The ase k = 0 being trivial, we may assume k > 0. Thenf"k 2 L[[(exp x)R � � � (expk x)R℄℄ \ Sn � L1 [[(expx)R � � � (expk x)R℄℄;where expm x = x"m for all m. Hene f an be written in the formf = X�2Rk `� � (g� Æ `k);where g� 2 L1 and `� = `�00 � � � `�k�1k�1 for � = (�0; : : : ; �k�1) 2 Rk . By Lemma 3.4,we get f 2 L1 as desired. �If A is a subset of R[[T℄℄ whih is losed under subseries, then so is A#, sine(f#)jS = (f jS")#, for any f 2 A and S � T. By indution on k it follows that eahsub�eld S#k of R[[T℄℄ is losed under subseries. Hene T1 is losed under subseries.Proof of the main theorem. In the remainder of this setion, we show thatK = T1 has the properties of the main theorem in the introdution.Proposition 5.7. The sub�eld T1 of T is losed under exponentiation and takinglogarithms of positive elements.Proof. Sine log(f#m) = (log f)#m for all m and all f 2 S>0,Lemma 5.3 yields that T1 is losed under taking logarithms. Similarly,exp(f#m) = (exp f)#m for all m and all f 2 S.Hene as to exponentiation, it suÆes to prove that exp f 2 T1 for all f 2 S. Letf 2 Sn, and deompose f as in (5.1): f = f* + f� + f+, soexp f = (exp f*) � (exp f�) � (exp f+):Sine f+ 2 T�1 we get exp f+ = 1Xn=0 (f+)nn! 2 Sn:We have f* = Xm�1;m��ex fmm 2 Sn\ R[[T<xn ℄℄;hene exp f* 2 Un+1 � Sn+1. It remains to prove that exp f 2 T1 for all f 2 L1 .So let f 2 L1 . From 1 62 \supp f � L we obtain k 2 N suh that `k �� m for all



DIFFERENTIALLY ALGEBRAIC GAPS 27m 2 supp fnf1g. Then g� 2 R for g = f"k+1, hene exp g 2 S by what we haveshown above. We onlude that exp f = (exp g)#k+1 2 T1. �Sine (f#)0 = (f 0#) � x�1 for all f 2 T, Proposition 5.5 yields:Corollary 5.8. The sub�eld T1 of T is losed under di�erentiation. (Hene T1 isan H-sub�eld of T.) �To prove that T1 is losed under integration, we �rst establish some auxiliaryfats. Reall that R[[M℄℄ is losed under di�erentiation and that exp(�) =2 M.Hene R[[M℄℄ is losed under integration.In the next lemma we �x n > 0. We have the following inlusions:L � Un �Mn � Sn � L[[Un ℄℄ = R[[L � Un℄℄ � R[[Mn ℄℄:The sub�eld L[[Un ℄℄ of R[[M℄℄ is losed under di�erentiation by Proposition 5.5,and losed under integration by the argument used to prove Lemma 4.2. Note thatlog s 2 Sn�1 � L[[Un ℄℄ for all s 2 Un. In the next lemma we also �x a monomialu 2 Un n f1g and put S := �s 2 Un : sy �ex uy	 ; (5.2)a onvex subgroup of Un losed under R-powers.Lemma 5.9. The sub�eld L[[S℄℄ of L[[Un ℄℄ is losed under di�erentiation. Also, ifuy �ex 1, then uy 2 L[[S℄℄.Proof. The �rst part will follow if s0 2 L[[S℄℄ for all s 2 S. So let s 2 S; wedistinguish two ases:(1) sy �ex 1. Then s =2 T[, hene s = e' with supp'0 �� s (by Lemma 4.8applied to m 2 supp'). Using '0 = sy, this yields my � sy for everym 2 supp s0. Let v 2 (suppex s0) n f1g, so v �ex m with m 2 supp s0. Thenvy �ex my � sy �ex uy, hene v 2 S, as desired.(2) sy 4ex 1. Then log s 2 L[[Un ℄℄ \ R[[T[ ℄℄ = L (by Lemma 4.9) and thuss0 = (log s)0 � s 2 L[[S℄℄.Suppose that uy �ex 1. Then log u �ex 1 by Lemma 4.9, hene(log u)y = uylog u �ex uy:Therefore, if v 2 suppex log u, then vy 4ex (log u)y �ex uy, hene v 2 S. Thuslog u 2 L[[S℄℄, and sine L[[S℄℄ is losed under di�erentiation, we get uy 2 L[[S℄℄.�Lemma 5.10. Let f 2 S with uy �ex 1 for all u 2 (suppex f) nf1g. Then R f 2 S.Proof. We already know that S0 = L1 is losed under distinguished integration, byProposition 3.5. So we may assume that 1 62 suppex f by passing from f to f � f [1.Take n > 0 suh that f 2 Sn. We shall prove that R f 2 Sn. We havef = Xu2Un f [uu 2 L1 [[Un℄℄ = Sn:PutN :=M\T[, a onvex subgroup ofM; note that L � R[[N℄℄. LetR be the steepsupplement of N in M. The de�nitions of T℄ and R easily yield that M \ T℄ � R;hene Un � R. Therefore, the family (f [uu)u2Un in R[[M℄℄ is atly noetherian withrespet to N, with sum f . Thus by Theorem 4.14, the family � R f [uu�u2Un in R[[M℄℄



28 ASCHENBRENNER, VAN DEN DRIES, AND VAN DER HOEVENis also atly noetherian, with sum R f . Fix any g 2 L1 and u 2 Un with uy �ex 1;it suÆes to show that then R gu 2 Sn = L1 [[Un℄℄. Put h := 1u R gu 2 L[[Un ℄℄; itremains to show that h 2 L1 [[Un℄℄. Note thath+ (h0=uy) = g=uy:Let S be as in (5.2). Take a basis C for the R-vetor spae L; extend C to a basisB for R[[N℄℄, and let 4� be as in (4.3) and ' : R[[B �R℄℄ ! R[[M℄℄ as de�ned inLemma 4.15. The map ' restrits to an R-linear bijetion'1 : R[[C �S℄℄! R[[L �S℄℄ = L[[S℄℄:By the previous lemma, the sub�eld L[[S℄℄ of L[[Un ℄℄ is losed under di�erentiationand ontains uy. Hene the operator�: L[[Un ℄℄! L[[Un ℄℄; y 7! y0=uymaps L[[S℄℄ to itself, and (Id+�)(h) = g=uy. By Theorem 4.13 the operator�1 := '�11 Æ � Æ '1 on R[[C �S℄℄ is strongly linear, and supp�1(; s) �� (; s) forall (; s) 2 C�S. We now apply Corollary 1.4 with C�S in plae of M, orderedby the restrition of 4� to C�S, and �1 in plae of �. It follows that the family�(�1)i�i(g=uy)�i2Nin L[[S℄℄ is atly noetherian as a family in R[[M℄℄, and thath1 := 1Xi=0(�1)i�i(g=uy) 2 L[[S℄℄satis�es h1 + (h01=uy) = g=uy = h+ (h0=uy):Hene h = h1 + u�1 for some  2 R. From �(L1 [[Un℄℄) � L1 [[Un℄℄ we obtain that�i(g=uy) 2 L1 [[Un℄℄ for all i. Hene h1 2 L1 [[Un℄℄, and thus h 2 L1 [[Un℄℄. �Next we show that for suitable f the hypothesis in the last lemma is satis�edafter a single upward shift:Lemma 5.11. For every f 2 S with f [1 = 0 and u 2 suppex f" we have uy �ex 1.Proof. Suppose f 2 Sn, f [1 = 0, n > 0. Thenf" = X1 6=s2Un(f [s)" � s"with suppex(f [s)" � (expx)R for 1 6= s 2 Un. So it suÆes to show for suh s that(s")y �ex 1. Write s = e' with 0 6= ' 2 Sn�1 \ R[[T<xn�1 ℄℄. Then d(') < x andhene d('") = d(')" < ex. Therefore d('")0 < (ex)0 = ex �ex 1, so (s")y = ('")0 �d('")0 �ex 1 as required. �Proposition 5.12. The H-sub�eld T1 of T is losed under integration.Proof. We laim that for eah k 2 N and g 2 S#k there is f 2 S#k+1 suh thatf 0 = g. We proeed by indution on k. First, let g 2 S. By Proposition 3.5 wemay assume that g[1 = 0. Consider G = (g") � ex 2 S. By the previous lemma, allu 2 (suppex G) nf1g satisfy uy �ex 1. By Lemma 5.10, we get R G 2 S and heneR g = (R G)# 2 S#. This proves the ase k = 0 of our laim.



DIFFERENTIALLY ALGEBRAIC GAPS 29For the indution step we onsider an element of S#k+1, and write it as g# withg 2 S#k. Then g � ex 2 S#k, so indutively we have an f 2 S#k+1 with f 0 = g � ex.Then (f#)0 = g#, and f# 2 S#k+2. �We now have the main theorem from the introdution, with K = T1:Corollary 5.13. The H-sub�eld T1 of T is Liouville losed, and % 2 T1.Proof. Propositions 5.7 and 5.12 yield that T1 is Liouville losed; the seond partfollows from % 2 L1 � T1. �6. Final RemarksThe di�erential polynomial 2Z 0+Z2 (the \Shwarzian" in [4℄) has a lose onnetionto the seond-order linear di�erential equation Y 00 = fY where f is an element ofsome H-�eld: whenever y is a non-zero solution to Y 00 = fY , then z = 2yy satis�es2z0+z2 = f . The ut in R[[[x℄℄℄ = R((x�1 ))LE determined by % := 2�0+�2 2 L anbe used to desribe for whih f 2 R[[[x℄℄℄ the linear di�erential equation Y 00 = fYhas a non-zero solution in R[[[x℄℄℄; see [14℄. (Likewise for the existene of solutionsin �nite-rank Hardy �elds, [10℄.) See also [7℄ for some observations about the role ofgaps in Hardy �elds, and of the transseries �, in the theory of ordinary di�erentialequations over o-minimal expansions of the real exponential �eld.The transseries % makes another appearane in �Ealle [4℄: Lemme 7.4 says thatfor any non-onstant di�erential polynomial P (Z;Z 0; : : : ; Z(n)) 2 RfZg, the seriesP (�; �0; : : : ; �(n)) 2 L has in�nite support, and the sum of its �rst ! terms, afterpossibly disarding �nitely many initial terms, either has the form`�e00 `�e11 � � � `�ek�1k�1 ��#k� with e0 > e1 > � � � > ek�1 > 1or `�e00 `�e11 � � � `�ek�1k�1 �%#k� with e0 > e1 > � � � > ek�1 > 2;where  2 R� , k 2 N, and the ei are integers.Given a real number r > 0, we say that a subset S of L has deay > r if forevery m = `�00 `�11 � � � in bS (with �k 2 R for all k) there exists k0 suh that �k < �rfor all k > k0. Let Lr be the set of all f 2 L suh that supp f has deay > r. (SoLr � Ls for 0 6 s 6 r.) We have � 2 Lr n L1 for all 0 6 r < 1 and % 2 Ls n L2 for0 6 s < 2. As with L1 , one an show that Lr is a di�erential sub�eld of L, whihis losed under integration if and only if r > 1. (For 0 6 r < 1 we have � 2 Lr , butR � = � 62 Lr .) For r > 1, arrying out the onstrution of T1 with Lr in plae ofL1 yields a Liouville losed H-sub�eld Tr of T whih doesn't ontain an element ofthe form �+ ", where " 2 R[[T℄℄ satis�es " � 1=(`0`1 � � � `n) for all n.By the above result of �Ealle, � does not satisfy any di�erential equation of theform P (�; �0; : : : ; �(n)) = f , where P (Z;Z 0; : : : ; Z(n)) 2 RfZg is non-onstant andf 2 Tr with r > 1. (We suspet that � is di�erentially transendental over Lr , andhene over Tr, for any r > 1.) In partiular, our onstrution of a di�erentiallyalgebrai, non-Liouvillian gap ould not have been arried out with T1 replaed byTr for any r > 1, even if we replae 2Z 0 + Z2 by another non-onstant di�erentialpolynomial P (Z;Z 0; : : : ; Z(n)) 2 RfZg.Finally, let us mention that the Newton polygon method of [15℄ an be used toobtain Hardy �eld examples of the various possibilities for the appearane of gapsexhibited in this paper. We shall leave the details for another oasion.
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