
Fast Polynomial Multiplication over 𝔽260

David Harvey
School of Mathematics and Statistics

University of New South Wales
Sydney NSW 2052

Australia
d.harvey@unsw.edu.au

Joris van der Hoeven, Grégoire Lecerf
Laboratoire d'informatique de l'École polytechnique

LIX, UMR 7161 CNRS
Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
{vdhoeven,lecerf}@lix.polytechnique.fr

ABSTRACT
Can post-Schönhage�Strassen multiplication algorithms be
competitive in practice for large input sizes? So far, the
GMP library still outperforms all implementations of the
recent, asymptotically more e�cient algorithms for integer
multiplication by Fürer, De�Kurur�Saha�Saptharishi, and
ourselves. In this paper, we show how central ideas of our
recent asymptotically fast algorithms turn out to be of prac-
tical interest for multiplication of polynomials over �nite
fields of characteristic two. Our Mathemagix implemen-
tation is based on the automatic generation of assembly
codelets. It outperforms existing implementations in large
degree, especially for polynomial matrix multiplication over
�nite �elds.

Categories and Subject Descriptors
F.2.1 [Analysis of algorithms and problem com-
plexity]: Numerical Algorithms and Problems�Computa-
tions in �nite �elds ; G.4 [Mathematical software]: Algo-
rithm design and analysis

General Terms
Algorithms, Theory

Keywords
Finite �elds; Polynomial multiplication; Mathemagix

1. INTRODUCTION
Let F2k denote the �nite �eld with 2k elements. In this

article we are interested in multiplying polynomials in
F2k[x]. This is a very basic and classical problem in com-
plexity theory, with major applications to number theory,
cryptography and error correcting codes.

Version submitted to ISSAC'16
January 30, 2016

1.1 Motivation
Let M2k(n) denote the bit complexity of multiplying two

polynomials of degree <n in F2k[x]. Until recently, the
best asymptotic bound for this complexity was M2k(n) =
O(k n log(k n) log log(k n)), using a triadic version [32]
of the classical Schönhage�Strassen algorithm [33].

In [21], we improved this bound to M2k(n) =

O(k n log(k n) 8log
�(kn)), where log� x = min fi 2 Nj log �

���
i�
� log x 6 1g: The factor 8log

�(kn) increases so slowly
that it is impossible to observe the asymptotic behavior of
our algorithm in practice. Despite this, the present paper
demonstrates that some of the new techniques introduced
in [20, 21] can indeed lead to more e�cient implementations.

One of the main reasons behind the observed accelera-
tion is that [21] contains a natural analogue for the three
primes FFT approach to multiplying integers [30]. For
a single multiplication, this kind of algorithm is more or
less as e�cient as the Schönhage�Strassen algorithm: the
FFTs involve more expensive arithmetic, but the inner prod-
ucts are faster. On recent architectures, the three primes
approach for integer multiplication generally has perfor-
mance superior to that of Schönhage�Strassen due to its
cache e�ciency [25].

The compactness of the transformed representations also
makes the three primes approach very useful for linear
algebra. Accordingly, the implementation described in this
paper is very e�cient for matrix products over F2k[x]. This
is bene�cial for many applications such as half gcds, poly-
nomial factorization, geometric error correcting codes, poly-
nomial system solving, etc.

1.2 Related work and our contributions
Nowadays the Schönhage�Strassen algorithm is widely

used in practice for multiplying large integers [18] and poly-
nomials [4, 19]. For integers, it was the asymptotically
fastest known until Fürer's algorithm [11, 12] with cost
n log n Klog�n, for input bit sizes n, where K > 1 is some
constant (an optimized version [20] yields the explicit value
K=16). However, no-one has yet demonstrated a practical
implementation for sizes supported by current technology.
The implementation of the modular variant proposed in [7]
has even been discussed in detail in [28]: their conclusion
is that the break-even point seems to be beyond astronom-
ical sizes.

In [20, 21] we developed a uni�ed alternative strategy for
both integers and polynomials. Roughly speaking, products
are performed via discrete Fourier transforms (DFTs) that
are split into smaller ones. Small transforms then reduce
to smaller products. When these smaller products are still
large enough, the algorithm is used recursively. Since the
input size decreases logarithmically between recursive calls,
there is of course just one such recursive call in practice.
Our implementation was guided by these ideas, but, in the
end, only a few ingredients were retained. In fact, we do not
recurse at all; we handle the smaller subproducts directly
over F260 with the Karatsuba algorithm.

For polynomials over finite fields, one key ingredient
of [21] is the construction of suitable �nite �elds: we need
the cardinality of their multiplicative groups to have suf-
�ciently many small prime factors. A remarkable example
is F260, outlined at the end of [21], for which we have:

260¡ 1=32 � 52 � 7 � 11 � 13 � 31 � 41 � 61 � 151 � 331 � 1321:
Section 3 contains our �rst contribution: a detailed opti-
mized implementation of DFTs over F260. We propose sev-
eral original tricks to make it highly competitive on proces-
sors featuring carry-less products . For DFTs of small prime
sizes we appeal to seminal techniques due to Rader [31] and
Winograd [36]. Then the prime-factor algorithm , also called
Good�Thomas [17, 35], is used in medium sizes, while the
Cooley�Tukey algorithm [5] serves for large sizes.
In Section 4, we focus on other �nite �elds F2k. When k is

a divisor of 60, we design e�cient embeddings into F260, and
compare to the use of Kronecker segmentation and padding.
For values of k up to 59, we propose a new algorithm to
reduce computations to F260, in the vein of the three prime
FFT technique. This constitutes our second contribution.
The practical performance of our implementation is

reported in Section 5. We compare to the optimized refer-
ence library gf2x, developed by Brent, Gaudry, Thomé and
Zimmermann [4], which assembles Karatsuba, Toom�Cook
and the triadic Schönhage�Strassen algorithms with auto-
matically tuned thresholds. The high performance of our
implementation is of course a major outcome of this paper.

For detailed references on asymptotically fast algorithms
to univariate polynomials over F2k and some applications,
we refer the reader to [4, 20, 21]. The present article does
not formally rely on [21]. In the next section we recall and
slightly adapt classical results, and present our implementa-
tion framework. Our use of codelets for small and moderate
sizes of DFT is customary in other high performance soft-
ware, such as FFTW3 and SPIRAL [10, 29].

2. PRELIMINARIES
This section gathers classical building blocks used by

our DFT algorithm. We also describe our implementation
framework. If a and b are elements of a Euclidean domain,
then a quo b and a rem b respectively represent the related
quotient and remainder in the division of a by b, so that
a=(a quo b) b+(a rem b) holds.

2.1 Discrete Fourier transforms
Let n1; :::; nd be positive integers, let v = (n1; :::; nd),

n=n1 ��� nd, and i2f0; :::;n¡1g. The v-expansion of i is the
sequence of integers i0; :::; id¡1 such that 06 ij<nj+1 and

i= id¡1+ id¡2nd+ id¡3nd¡1nd+ ���+ i0n2 ���nd:
The v-mirror , written [i]v, of i relative to v, is the integer
de�ned by the following reverse expansion:

[i]v= i0+ i1n1+ ���+ id¡2n1 ���nd¡2+ id¡1n1 ���nd¡1:

Let K be a commutative �eld, and let ! 2K be a primitive
n-th root of unity, which means that !n=1, and !j=/ 1 for
all j 2 f1; :::; n ¡ 1g. The discrete Fourier transform (with
respect to !) of an n-tuple (a0; :::; an¡1) 2 Kn is the n-
tuple (â0; :::; ân¡1)2Kn given by âi=

P
j=0

n¡1
!ij aj. In other

words we have âi = A(!i), where A(x) =
P

j=0

n¡1
aj xj. For

e�ciency reasons, in this article, we compute the âi in the
v-mirror order, where v corresponds to a certain ordering of
the prime factors of n, counted with multiplicities, that will
be optimized later. We shall use the following notation:

DFT!;v(a)= (â[0]v; :::; â[n¡1]v):

Let 16h<d, and let us split v=(n1; :::; nd) into v1=(n1; :::;
nh) and v2 = (nh+1; :::; nd). We recall the Cooley�Tukey
algorithm [5] in the present setting: it decomposes DFT!;v
into DFT!m2;v1 and DFT!m1;v2, where m1 = n1 ��� nh and
m2=nh+1 ���nd.

Algorithm 1 (In-place Cooley�Tukey algorithm)

Input. v = (n1; :::; nd), h 2 f1; :::; d ¡ 1g, an n-th
primitive root of unity !, and a=(a0; :::; an¡1)2Kn.

Output. DFT!;v(a), stored in a.
1. For j 2f0; :::;m2¡ 1g do

Let b=(aj ; aj+m2
; :::; aj+(m1¡1)m2

)

Compute c=DFT!m2;v1(b)
Replace aj+im2

by ci for all i2f0; :::;m1¡ 1g
2. For i2f0; :::;m1¡ 1g and j 2f0; :::;m2¡ 1g do

Replace aj+im2
by aj+im2

![i]v1j

3. For i2f0; :::;m1¡ 1g do
Let b=(aim2

; aim2+1; :::; aim2+m2¡1)
Compute c=DFT!m1;v2(b)
Replace aj+im2

by cj for all j 2f0; :::; m2¡ 1g

Proposition 1. Algorithm 1 is correct.

Proof. Let �; �; be the successive values of the
vector a at the end of steps 1, 2, and 3. We have
�j+im2

=
P

k=0

m1¡1 aj+km2
!km2[i]v1, �j+im2

= �j+im2
![i]v1j,

and j+im2
=
P

l=0

m2¡1 �l+im2
!lm1[j]v2. It follows that

j+im2
=
P

l=0

m2¡1P
k=0

m1¡1 al+km2
!km2[i]v1 ![i]v1l !lm1[j]v2 =P

l=0

m2¡1P
k=0

m1¡1 al+km2
!(km2+l)[i]v1+lm1[j]v2. The conclusion

follows from [j + i m2]v = [i]v1 + m1 [j]v2, which implies
(l+ km2) [i]v1+ lm1 [j]v2� [j+ im2]v (l+ km2)mod n. �
Notice that the order of the output depends on v, but not

on h. If the input vector is stored in a contiguous segment
of memory, then the �rst step of Algorithm 1 may be seen
as an m1�m2 matrix transposition, followed by m2 in-place
DFTs of size m1 on contiguous data. Then the transposition
is inverted. The constants ![i]v1j in step 2 are often called
twiddle factors . Transpositions a�ect the performance of the
strided DFTs when input sizes do not �t in the last level
cache memory of the processor.
For better locality, the multiplications by twiddle fac-

tors in step 2 are actually merged into step 3, and all the
necessary primitive roots and �xed multiplicands (including
the twiddle factors) are pre-computed once, and cached in
memory. We �nally notice that the inverse DFT can be
computed straightforwardly by inverting Algorithm 1.
In addition to the Cooley�Tukey algorithm we shall also

use the method attributed to Good and Thomas [17, 35],
and that saves all the multiplications by the twiddle fac-
tors. First it requires the ni to be pairwise coprime, and

second, input and output data must be re-indexed. The rest
is identical to Algorithm 1�see [8], for instance, for com-
plete formulas. With F260, the condition on the ni fails only
when two ni are 3 or 5. In such a case, it is su�cient to
replace v by a new vector where the two occurrences of 3
(resp. of 5) are replaced by 9 (resp. by 25), and to modify
the re-indexing accordingly. In sizes 9 and 25, we build
codelets upon the Cooley�Tukey formulas. A speci�c codelet
for n = (3 5)2 might further improve performance, but we
did not implement this yet. We hardcoded the re-indexing
into codelets, and we restrict to using the Good�Thomas
algorithm up to sizes that �t into the cache memory. We
shall discuss later the relative performance between these
two DFT algoritms.

2.2 Rader reduction
When the recurrence of the Cooley�Tukey algorithm ends

with a DFT of prime size n, then we may use Rader's algo-
rithm [31] to reduce such a DFT to a cyclic polynomial
product by a �xed multiplicand.
In fact, let �=n¡1, let be a generator of the multiplica-

tive group of Z/n Z, and let � be its modular inverse. We let
B(x)=

P
i=0

�¡1
ai rem n x

i and W (x)=
P

i=0

�¡1
!�

i rem nxi, and
we compute C(x)=B(x)W (x) rem (x�¡1). The coe�cient
ci of xi in C(x) equals

P
j=1

n¡1
aj !

(�ij) rem n. Consequently

we have DFT!;n(a) = (
P

j=0

n¡1
aj ; a0 + c�(1)¡1; :::; a0 +

c�(�)¡1); where � is the permutation of f1; :::; �g de�ned by
�(�i rem �) = i. In this way, the DFT of a reduces to one
cyclic product of size �, by the �xed multiplicand W .

Remark 2. Bluestein reduction [2] allows for the con-
version of DFTs into cyclic products even when n is not
prime. In [21], this is crucially used for controlling the size n
of recursive DFTs. This suggests that Bluestein reduction
might be useful in practice for DFTs of small composite
orders, say n 6 50. For DFTs over F260, this turns out to
be wrong: so far, the strategies to be described in Section 3
are more e�cient.

2.3 Implementation framework
Throughout this article, we consider a platform equipped

with an Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz and
8 GB of 1600 MHz DDR3 memory, which features AVX2
and CLMUL technologies (family number 6 and model
number 0x3C). The platform runs the Jessie GNU Debian
operating system with a 64 bit Linux kernel version 3.14.
Care has been taken to avoid CPU throttling and Turbo
Boost issues while measuring timings. We compiled with
GCC [15] version 4.9.2.
In order to e�ciently and easily bene�t from AVX and

CLMUL instruction sets, we decided to implement the
lowest level of our DFTs directly in assembly code. In fact
there is no standard way to take full advantage of these
technologies within languages such as C and C++, where
current SIMD types are not even bona �de . It is true that
programming via intrinsics [26] is a reasonable compromise,
but there remain a certain number of technical pitfalls such
as memory alignment, register allocation, and instruction
latency management.
For our convenience we developed dynamic compilation

features (also known as just in time compilation) from
scratch, dedicated to high performance computing within
Mathemagix (http://www.mathemagix.org). It is only
used to tune assembly code for DFTs of orders a few thou-
sands. Our implementation in the Runtime library partially

supports the x86, SSE, and AVX instruction sets for the
amd64 application binary interface�missing instructions
can be added easily. This of course suits most personal com-
puters and computation clusters.
The e�ciency of an SSE or AVX instruction is not easy

to determine. It depends on the types of its arguments, and
is usually measured in terms of latency and throughput. In
ideal conditions, the latency is the number of CPU clock
cycles needed to make the result of an instruction available
to another instruction; the reciprocal throughput , sometimes
called issue latency , is the (fractional) number of cycles
needed to actually perform the computation�for brevity,
we drop �reciprocal�. For detailed de�nitions we refer the
reader to [26], and also to [9] for useful additional comments.
In this article, we shall only use AVX-128 instructions,

and 128-bit registers are denoted xmm0,..., xmm15 (our code is
thus compatible with the previous generation of processors).
A 128-bit register may be seen as a vector of two 64-bit
integers, that are said to be packed in it. We provide unfa-
miliar readers with typical examples for our aforementioned
processor, with cost estimates, and using the Intel syntax,
where the destination is the �rst argument of instructions:
� vmovq loads/stores 64-bits integers from/to memory.

vmovdqu loads/stores packed 64-bits integers not neces-
sary aligned to 256-bit boundaries. vmovdqa is similar to
vmovdqu when data is aligned on a 256-bit boundary; it
is also used for moving data between registers. Latencies
of these instructions are between 1 and 4, and through-
puts vary between 0.3 and 1.

� vpand, vpor, and vpxor respectively correspond to bit-
wise �and�, �or� and �xor� operations. Latencies are 1 and
throughputs are 0.33 or 0.5.

� vpsllq and vpsrlq respectively perform left and right
logical shifts on 64-bit packed integers, with latency 1
or 2, and throughput 1. We shall also use vpunpckhqdq
xmm1, xmm2, xmm3/m128 to unpack and interleave in
xmm1 the 64-bit integers from the high half of xmm2 and
xmm3/m128, with latency and throughput 1. Here, xmm1,
xmm2, and xmm3 do not mean that the instruction only
acts on these speci�c registers: instead, the indices 1,
2, and 3 actually refer to argument positions. In addition,
the notation xmm3/m128 means that the third argument
may be either a register or an adress pointing to 128-bit
data to be read from the memory.

� vpclmulqdq xmm1, xmm2, xmm3/m128, imm8 carry-less
multiplies two 64-bit integers, selected from xmm2 and
xmm3/m128 according to the constant integer imm8, and
stores the result into xmm1. The value 0 for imm8 means
that the multiplicands are the 64-bit integers from
the low half of xmm2 and xmm3/m128. Mathematically
speaking, this corresponds to multiplying two polyno-
mials in F2[x] of degrees <64, which are packed into
integers: such a polynomial is thus represented by a
64-bit integer, whose i-th bit corresponds to the coef-
�cient of degree i. This instruction has latency 7 and
throughput 2. This high latency constitutes an impor-
tant issue when optimizing the assembly code. This will
be discussed later.

3. DFTs OVER 𝔽260

In order to perform DFTs e�ciently, we are interested in
�nite �elds F2k such that 2k ¡ 1 admits many small prime
factors. This is typically the case [21] when k admits many
small prime factors itself. Our favorite example is k = 60,
also because 60 is only slightly smaller than the bit size 64
of registers on modern architectures.

Using the eight smallest prime divisors of 260 ¡ 1 allows
us to perform DFTs up to size 32 � 52 � 7 � 11 � 13 � 31 � 41 �
61=17461919475, which is su�ciently large for most of the
applications. We thus begin with building DFTs in size 3,
5, 7, 11, 13, 31, 41, 61, and then combine them using the
Good�Thomas and Cooley�Tukey algorithms.

3.1 Basic arithmetic in 𝔽260

The other key advantage of k=60 is the following de�ning
polynomial P (z) = (z61 ¡ 1)/ (z ¡ 1) 2 F2[z]. Elements of
F260 will thus be seen as polynomials in F2[z] modulo P .

For multiplying a and b in F260, we perform the product
a~ b~ of the preimage polynomials, so that the preimage c~ of
c= a b may be obtained as follows

c~= ((a~ b~) rem (z61¡ 1)) remP :

The remainder by z61 ¡ 1 may be performed e�ciently by
using bit shifts and bitwise xor. The �nal division by P
corresponds to a single conditional subtraction of P .
In order to decrease the reduction cost, we allow an

even more redundant representation satisfying the minimal
requirement that data sizes are 664 bits. If a~; b~ 2 F2[z]

have degrees <64, then c~ = a~ b~ may be reduced in-place
by z64¡ z3, using the following macro, where xmm1 denotes
any auxiliary register, and xmm0 represents a register dif-
ferent from xmm1 that contains c~:
vpunpckhqdq xmm1, xmm0, xmm0
vpsllq xmm1, xmm1, 3
vpxor xmm0, xmm0, xmm1

In input xmm0 contains the 128-bit packed polynomial, and
its 64-bit reduction is stored in its low half in output. Let
us mention from here that our implementation does not yet
fully exploit vector instructions of the SIMD unit. In fact we
only use the 64-bit low half of the 128-bit registers, except
for DFTs of small orders as explained in the next para-
graphs.

3.2 DFTs of small prime orders
In size n = 3, it is classical that a DFT needs only one

product and one reduction: DFT!;(3)(a) = (a0 + a1 + a2;

a0 + (a1 + a2) ! + a2; a0 + a1 + (a1 + a2) !). This strategy
generalizes to larger n as follows, via the Rader reduction of
Section 2.2, that involves a product of the form

C(x)=

 X
i=0

�¡1

bi x
i

! X
i=0

�¡1

wix
i

!
rem (x�¡ 1): (1)

The coe�cient ci of degree i of C satis�es:

ci=
X

(k+l) rem �=i
k<l

(bk+ bl) (wk+wl)+
X
k=0

�¡1

bkwk: (2)

This amounts to �+ � (� ¡ 1)/2 products, �2 sums (even
less if the wk+wl are pre-computed), and � reductions.
We handcrafted these formulas in registers for n = 3; 5;

7. Products are computed by vpclmulqdq. They are not
reduced immediately. Instead we perform bitwise arithmetic
on 128-bit registers, so that reductions to 64-bit integers are
postponed to the end. The following table counts instruc-
tions of each type. Precomputed constants are mostly read
from memory and not stored in registers. The last column
cycles contains the number of CPU clock cycles, measured
with the CPU instruction rdtsc, when running the DFT
code in-place on contiguous data already present in the
level 1 cache memory.

n clmul shift xor move cycles
3 1 2 7 6 19
5 10 8 22 10 37
7 21 12 45 14 58

For n > 11, these computations do not �t into the 16
registers, and using auxiliary memory introduces unwanted
overhead. This is why we prefer to use the method described
in the next subsection.

3.3 DFTs of larger prime orders
For larger DFTs we still use the Rader reduction (1) but

it is worth using Karatsuba's method instead of formula (2).
Let �= � quo 2, and let ��= 1 if � is odd and 0 otherwise.
We decompose B(x) = B0(x) + x� B1(x) + �� b�¡1 x

�¡1,
and W (x) = W0(x) + x� W1(x) + �� w�¡1 x�¡1, where
B0; B1; W0; W1 have degrees 6� ¡ 1. Then B(x) W (x)
may be computed as C0(x) + x� C1(x) + x2� C2(x) +
�� (b�¡1W (x) + w�¡1 B(x)), where C0(x) = B0(x)W0(x),
C2(x)=B1(x)W1(x), and C1(x)=(B0(x)+B1(x)) (W0(x)+
W1(x)) ¡ C0(x) ¡ C2(x) are obtained by the Karatsuba
algorithm.
If � is odd, then during the recursive calls for C0; C1; C2,

we collect bi wi, for 06 i<2 �. Then we compute b�¡1w�¡1,
so that the needed b�¡1 wi+w�¡1 bi are obtained as (b�¡1+
bi) (w�¡1+wi)¡ b�¡1w�¡1¡ biwi.
During the recursive calls, reductions of products are dis-

carded, and sums are performed over 128 bits. The total
number of reductions at the end thus equals �. We use these
formulas for n= 11; 13; 31; 41; 61. For n=5; 7 this approach
leads to fewer products than with the previous method, but
the number of sums and moves is higher, as reported in the
following table:

n clmul shift xor move cycles
5 9 8 34 52 63
7 18 12 76 83 83
11 42 20 184 120 220
13 54 24 244 239 450
31 270 60 1300 971 2300
41 378 80 1798 1156 3000
61 810 120 3988 2927 7300

For readability only the two most signi�cant �gures are
reported in column cycles . The measurements typically vary
by up to about 10%. It might be possible to further improve
these timings by polishing register allocation, decreasing
temporary memory, reducing latency effects, or even by
trying other strategies [1, 3].

3.4 DFTs of composite orders
As long as the input data and the pre-computed constants

�t into the level 3 cache of the processor (in our case, 8 MB),
we may simply unfold Algorithm 1: we do not transpose-
copy data in step 1, but rather implement DFT codelets of
small prime orders, with suitable input and output strides.
For instance, in size n = 3 � 5, we perform �ve in-place
DFTs of order 3 with stride 5, namely on (a0; a5; a10); (a1;
a6; a11); :::; (a4; a9; a14), then we multiply by those twiddle
factors not equal to 1, and �nally, we do three in-place DFTs
of size 5 and stride 1. In order to minimize the e�ect of
the latency of vpclmulqdq, carry-less products by twiddle
factors and reductions may be organized in groups of 8, so
that the result of each product is available when arriving
at its corresponding reduction instructions. More precisely,

0 1e4
0

7e5

n

cycles

Figure 1. Timings for DFT over F260, in CPU cycles.

if rdi contains the current address to entries in a, and rsi
the current address to the twiddle factors, then 8 entry-wise
products are performed as follows:
vmovq xmm0, [rdi+8*0]
vmovq xmm1, [rdi+8*1]
...

vmovq xmm7, [rdi+8*7]
vpclmulqdq xmm0, xmm0, [rsi+8*0], 0
vpclmulqdq xmm1, xmm1, [rsi+8*1], 0
...

vpclmulqdq xmm7, xmm7, [rsi+8*7], 0
Then the contents of xmm0,...,xmm7 are reduced in sequence
modulo z64 ¡ z3, and finally the results are stored into
memory.
Up to sizes n < 10 000 made from primes 641, we gen-

erated executable codes for the Cooley�Tukey algorithm,
and measured timings for all the possible orderings v. This
revealed that increasing orders, namely n1 6 n2 6 ��� 6 nd,
yield the best performances. In size n = 3 � 5 � 7 � 11 =
1155, one transform takes 44000 CPU cycles, among which
9000 are spent in multiplications by twiddle factors. We
implemented the Good�Thomas algorithm in the same way
as for Cooley�Tukey, and concluded that it is always faster
when data �t into the cache memory. When n= 1155, this
leads to only 38000 cycles for one transform, for which carry-
less products contribute 40%.
For each size m < 10000, we then deduced the smallest

DFT size n > m, together with the best ordering, leading
to the fastest calculation via the Good�Thomas algorithm.
The graph in Figure 1 represents the number of CPU cycles
in terms of m obtained in this way. Thanks to the variety
of prime orders, the staircase e�ect is softer than with the
classical FFT.
For sizes n larger than a few thousands, using internal

DFTs of prime size with large strides is of course a bad idea
in terms of memory management. The classical technique,
going back to [16], and now known as the 4-step or 6-step
FFT in the literature, consists in decomposing n into m1m2

such that m1 and m2 are of order of magnitude n
p

. In the
context of Algorithm 1, with v=(n1; :::;nd), and n=n1 ��� nd,
we need to determine h 2 f1; :::; dg such that m1= n1 ��� nh
and m2=nh+1 ���nd are the closest to n

p
.

As previously mentioned, for large values of m1;m2, step 1
of Algorithm 1 decomposes into the transposition of a m1�
m2 matrix (in column representation), followed by m2 in-

place DFTs of size m1 on contiguous data. Then the trans-
position is performed backward. In the classical case of the
FFT, m1 and m2 are powers of two that satisfy m1=m2 or
m1 = 2m2, and e�cient cache-friendly and cache-oblivious
solutions are known to transpose such m2 � m2 matrices
in-place with AVX2 instructions. Unfortunately, we were
not able to do so in our present situation. Consequently we
simply transpose rows in groups of 4 into a �xed temporary
bu�er of size 4m2. Then we may perform 4 DFTs of size m2

on contiguous data, and �nally transpose backward. The
threshold for our 4-step DFTs has been estimated in the
neighborhood of 7000.

4. OTHER GROUND FIELDS
Usually, fast polynomial multiplication over F2 is used as

the basic building block for other fast polynomial arithmetic
over �nite �elds in characteristic two. It is natural to ask
whether we may use our fast multiplication over F260 as the
basic building block. Above all, this requires an e�cient
way to reduce multiplications in F2k[x] with k=/ 60 to mul-
tiplications in F260[x]. The optimal algorithms vary greatly
with k. In this section, we discuss various possible strategies.
Timings are reported for some of them in the next section.
In the following paragraphs, a; b 2F2k[x] represent the two
polynomials of degrees <d to be multiplied, and Pk 2F2[z]
is the de�ning polynomial of F2k over F2.

4.1 Lifting and Kronecker segmentation
Case when k=1. In order to multiply two packed polyno-

mials in F2[x], we use standard Kronecker segmentation and
cut the input polynomials into slices of 30 bits. More pre-
cisely, we setm=dd/30e, A(y;x)=

P
i=0

m¡1P
j=0

29
a30i+j x

j yi

and B(y; x) =
P

i=0

m¡1P
j=0

29
b30i+j x

j yi, so that a(x) =
A(x30; x) and b(x) = B(x30; x). The product c = a b then
satis�es c(x)=C(x30; x), where C=AB. We are thus led to
multiply A by B in F260[x] by reinterpreting y as the gener-
ator of F260. In terms of the input size, this method admits
a constant overhead factor of roughly 2. In fact, when con-
sidering algorithms with asymptotically softly linear cost,
comparing relative input sizes gives a relevant approxima-
tion of the relative costs.
General strategies. It is well known that one can handle

any value of k by reduction to the case k=1. Basically, F2k

is seen as F2[z] / (Pk(z)), and a product in F2k[x] is lifted
to one product in degree <d in F2[z][x], with coe�cients
of degrees <k in z, followed by 2 d ¡ 1 divisions by Pk(z).
Then, the Kronecker substitution [14, Chapter 8] reduces
the computation of one such product in F2[z][x], said in bi-
degree <(k; d), to one product in F2[x] in degree <(2 k ¡
1) d. In total, we obtain a general strategy to reduce one
product in degree <d in F2k to one product in F260[x] in
degree 6d((2 k¡1) d)/30e, plus O(dM2k(1)) bit operations.
Roughly speaking, this approach increases input bit sizes by
a factor at most 4 in general, but only 3 when k=2.
Instead of Kronecker substitution, we may alternatively

use classical evaluation/interpolation schemes [23, Sec-
tion 2]. Informally speaking, a multiplication in F2k[x] in
degree <d is still regarded as a multiplication of a~ and b~

in F2[z][x] of bi-degrees <(k; d), but we �specialize� the vari-
able z at su�ciently many �points� in a suitable ring A,
then perform products in A[x] of degrees <d, and �nally
we �interpolate� the coe�cients of a~b~.

The classical Karatsuba transform is such a scheme. For
instance, if k = 2 then �(z) = �0 + �1 z is sent to (�0;
�0 + �1; �1), which corresponds to the projective evalua-
tion at (0; 1;1). The size overhead of this reduction is 3,
but its advantage to the preceding general strategy is the
splitting of the initial product into smaller independent
products. The Karatsuba transform can be iterated, and
even Toom�Cook transforms of [3] might be used to handle
small values of k.

Another standard evaluation scheme concerns the case
when k is su�ciently large. Each coe�cient �(z) of a~; b~
is �evaluated� via one DFT of size n > d(2 k ¡ 1) / 30e
applied to the Kronecker segmentation of �(z) into slices
of 30 bits seen in F260[y]. Then we perform n products in
F260[x] in degree <d, and �interpolate� the output coe�-
cients by means of inverse DFTs. Asymptotically, the size
overhead is again 4.
The rest of this section is devoted to other reduction

strategies involving a size growth less than 4 in various par-
ticular cases.

4.2 Field embedding
Case when k j60:When k>2 and k j60, which corresponds

to k = 2; 3; 4; 5; 6; 10; 12; 15; 20; 30, we may embed F2k

into F260, by regarding F260 as a �eld extension of F2k. The
input polynomials are now cut into slices of degrees <m
with m= b(60/k + 1)/2c. The overhead of this method is
asymptotically 60 / (m k) 6 2. If k = 4; 12; 20, then 60 /k
is odd, m = (60 / k + 1) / 2, and the overhead is <2. In
particular it is only 3/2 for k= 20.
Let Q be an irreducible factor of P in F2k[x], of degree

60/k. Elements of F260 can thus be represented by poly-
nomials of degrees <60 / k in F2k[y], modulo Q, via the
following isomorphism

�:F2[z; y]/(Pk(z); Q�(z; y))!F2[z]/(P (z));

where Q�(z; y) represents the canonical preimage of Q in
F2[z; y]. Let f(z; y) be a polynomial of bi-degree <(k; m)
representing an element of F2k[y], obtained as a slice of a
or b. The image �(f) can be obtained as f(�(z); �(y)).
Consequently, if we pre-compute �(zj yi) for all j < k and
i<m, then deducing �(f) requires 59 sums in F2[z]/(P (z)).
The number of sums may be decreased by using larger

look-up tables. Let b0; :::; b59 represent the basis zj yi for
j < k and i < m, whatever the order is. Then all the
f�(

P
j=0

5
�6i+j b6i+j)j (�6i; :::; �6i+5) 2 F2

6g for 06 i < 10
can be stored in 10 look-up tables of size 64, which allows
�(f) to be computed using 9 sums. Of course the cost for
reordering and packing bits of elements of F2k[y] must be
taken into account, and sizes of look-up tables must be care-
fully adjusted in terms of k. The details are omitted.

Conversely, let g 2 F2[z] / (P (z)). We wish to compute
�¡1(g). As for direct images of �, we may pre-compute
�¡1(zi) for all i<60 and reduce the computation of �¡1(g)
to 59 sums in F[z; y]/(Pk(z); Q�(z; y)). Larger look-up tables
can again help to reduce the number of sums.
Let us mention that the use of look-up tables cannot ben-

e�t from SIMD technologies. On the current platform this
is not yet a problem: fully vectorized arithmetic in F260[z;

y] / (Pk(z); Q�(z; y)) would also require SIMD versions of
carry-less multiplication which are not available at present.
Case when gcd(60; k) > 2. We may combine the pre-

vious strategies when k is not coprime with 60. Let t =
gcd(60; k). We rewrite elements of F2k[x] into polynomials
in F2t[y][x] of bi-degrees <(k / t; d), and then use the Kro-

necker substitution to reduce to one product in F2t[x] in
degree (2 k / t ¡ 1) d. For example, when 60 j k, elements
of F2k may be represented by polynomials in F260[y]. We
are thus led to multiplying polynomials in F260[y][x] in bi-
degree <(k/60; d), which yields an overhead of 2. Another
favorable case is when 20 j k, yielding an overhead of 3.

4.3 Double-lifting
When k 6 30, we may of course directly lift products

in F2k[x] to products in F2[z][x] of output degree in z at
most 58. The latter products may thus be computed as
products in F260[x]. This strategy has an overhead of 60/k,
so it outperforms the general strategies for k> 16.
For 316k659, we lift products to F2[z][x] and multiply in

(F2[z]/(P (z)))[x] and (F2[z]/(P (z + 1)))[x]. We then per-
form Chinese remaindering to deduce the product modulo
P (z)P (z+1).
Multiplying A and B in (F[z] / (P (z + 1)))[x] may be

obtained as (A(z+1; x)B(z+1; x) remP (z))(z+1). In this
way all relies on the same DFT routines over F260.
If �(z) 2 F2[z] has degree <l, with l a power of 2, we

decompose �(z) = �0(z) + zl/2 �1(z) with �0 and �1 of
degrees <l /2, then �(z + 1) is obtained e�ciently by the
following induction:

�(z+1) = �0(z+1)+ (z+1)l/2�1(z+1) (3)
= �0(z+1)+�1(z+1)+ zl/2�1(z+1):

Chinese remaindering can also be done efficiently. Let
U(z) = z2 + 1 be the inverse of P (z + 1) modulo P (z).
Residues 0(z) mod P (z) and 1(z) mod P (z+1) then lift
into 1(z)+(U(z) (0(z)¡ 1(z)) remP (z)) P (z+1)modulo
P (z) P (z + 1). Since deg i 6 58, this formula involves
only one carry-less product. Asymptotically, the overhead
of this method is 2< 120/k < 4.
On our platform, formula (3) may be implemented

in degree <64 as follows. Assume that xmm0 contains
101010...10, xmm1 contains 11001100...1100, xmm2 con-
tains 11110000...11110000, :::, and xmm5 is filled with
11...1100...00. Then, using xmm15 for input and output,
we simply do
vpand xmm14, xmm15, xmm0
vpsrlq xmm14, xmm14, 1
vpxor xmm15, xmm14, xmm15
vpand xmm14, xmm15, xmm1
vpsrlq xmm14, xmm14, 2
vpxor xmm15, xmm14, xmm15

...
vpand xmm14, xmm15, xmm5
vpsrlq xmm14, xmm14, 32
vpxor xmm15, xmm14, xmm15

4.4 The Crandall–Fagin reduction
For �lucky� 60 < k < 230 such that (xk+1¡ 1)/(x ¡ 1) is

irreducible over F2, multiplication in F2k reduces to cyclic
multiplication over F2 of length k + 1. Using our adapta-
tion [21] of Crandall�Fagin's algorithm [6], multiplying two
polynomials of degrees <d in F2k[x] therefore reduces to one
product in (F260[y]/ (ym ¡ 1))[x] in degree <d, where m is
the �rst integer such that d(k+1)/me630. The asymptotic
overhead of this method is �2. This strategy generalizes to
the case when Pk divides xk+r¡ 1, with r� k.
For various k > 60, the polynomial (xk+1 ¡ 1) / (x ¡ 1)

factors into r irreducible polynomials of degree k / r. In
that case, we may use the previous strategy to reduce r

log2 d 16 17 18 19 20 21
us 13 28 52 140 290 640
gf2x 79 160 400 800 1600 3500

Table 1. Products in degree <d in F260[x], in milliseconds.

log2 /d 64 16 17 18 19 20 21
us 29 70 170 300 730 1300
gf2x 39 89 190 490 900 2100
flint 840 2200 4400 11000 :::

Table 2. Products in degree <d in F2[x], in milliseconds.

products in F2k/r[x] to multiplications in F260[x], using r
di�erent de�ning polynomials of F2k/r. Asymptotically, the
overhead reaches again �2, although working with di�erent
de�ning polynomials of F2k/r probably involves another non
trivial overhead in practice. Again, the strategy generalizes
to the case when (xk+1 ¡ 1) / (x ¡ 1) admits r irreducible
factors of degree k/r¡ � with �� k/r.

5. TIMINGS
Our polynomial products are implemented in the Justin-

line library of Mathemagix. The source code is freely
available from revision 10434 of our SVN server (http://
gforge.inria.fr/projects/mmx/). Sources for DFTs over
F260 are in the file dft_f2_60_amd64_avx_clmul.mmx.
Those for our polynomial products in F2k[x] are in
polynomial_f2k_amd64_avx_clmul.mmx. Let us recall here
that Mathemagix functions can also be easily exported
to C++ [24].
We use version 1.1 of the gf2x library, tuned to our

platform during installation. The top level function, named
gf2x_mul, multiplies packed polynomials in F2[x], and
makes use of the carry-less product instruction. Triadic vari-
ants of the Schönhage�Strassen algorithm start to be used
from degree 64 � 6485. gf2x can be used from versions >
5.5 of the NTL library [34], that uses Kronecker substitu-
tion to multiply in F2k[x]. Consequently, we do not need
to compare to NTL. We also compare to FLINT 2.5.2, tuned
according to �13 of the documentation.

5.1 𝔽2[x] and 𝔽260[x]
Table 1 displays timings for multiplying polynomials of

degrees <d in F260[x]. The row �us� concerns the natural
product via DFTs, the other row is the running time of
gf2x_mul used to multiply polynomials in F2[x] built from
Kronecker substitution.
In Table 2, we report on timings for multiplying poly-

nomials of degrees <d in F2[x]. The row �us� concerns our
DFT based implementation via Kronecker segmentation,
as recalled in Section 4.1. The row gf2x is the running
time for the direct call to gf2x_mul. The row FLINT con-
cerns the performance of the function nmod_poly_mul, which
reduces to products in Z[x] via Kronecker substitution.
Since the packed representation is not implemented, we
could not obtain timings until the end. This comparison
is not intended to be fair, but rather to show unfamiliar
readers why dedicated algorithms for F2[x] may be worth it.
In both cases, our DFT based products turn out to

be more efficient than the triadic version of the Schön-
hage�Strassen of gf2x, for large degrees. One major advan-
tage of the DFT based approach concerns linear algebra.
Instead of multiplying r � r matrices over F260[x] naively

r 1 2 4 8 16 32
us 29 120 500 2200 9800 48000
gf2x 39 320 2500 20000 160000 1300000

Table 3. Products of r� r matrices over F2[x],
in degree <64 � 216, in milliseconds.

log2 d 16 17 18 19 20 21
us 28 58 110 290 600 1300
gf2x 76 160 400 790 1600 3400

Table 4. Products in degree <d in F259[x], in milliseconds.

log2 /d 32 16 17 18 19 20 21
us 30 73 170 310 750 1400
gf2x 54 120 270 570 1500 2700

Table 5. Products in degree <d in F22[x], in milliseconds.

in time O(r3M260(d)), we compute the 3 r2 DFTs and �2 d
products of r� r matrices over F260, in time O(r2M260(d)+
r3 d). Matrix multiplication over F2k[x] is reduced to matrix
multiplication over F260[x] using similar techniques as in Sec-
tion 4. Timings for matrices over F2[x], reported in Table 3,
con�rm the practical gain.

5.2 𝔽4[x] and 𝔽259[x]
Table 4 displays timings for multiplying polynomials of

degrees <d in F259[x]. The row �us� concerns the double-
lifting strategy of Section 4.3. The next row is the running
time of gf2x_mul used to multiply polynomials in F2[x] built
from Kronecker substitution. As expected, timings for gf2x
are similar to those of Table 1, and the overhead with respect
to F260 is close to 2. Overall, our implementation is about
twice as fast than via gf2x.
Table 5 finally concerns our implementation of the

strategy from Section 4.2 for products in degree <d in F4[x].
As expected, timings are similar to those of Table 2 when
input sizes are the same. We compare to the sole time
needed by gf2x_mul used as follows: we rewrite the pro-
duct in F4[x] into a product in F2[x][y] / (y

2 + y + 1),
which then reduces to 3 products in F2[x] in degrees 6d/
2 thanks to Karatsuba's formula.

6. CONCLUSION
We are pleased to observe that key ideas from [20, 21]

turn out to be of practical interest even for polynomials in
F2k[x] of medium sizes. Besides Schönhage�Strassen-type
algorithms, other strategies such as the additive Fourier
transform have been developed for F2k[x] [13, 27], and it
would be worth experimenting them carefully in practice.
Let us mention a few plans for future improvements. First,

vectorizing our code should lead to a signi�cant speed-up.
However, in our implementation of multiplication in F2[x],
we noticed that about the third of the time is spent in
carry-less products. Since vpclmulqdq does not admit a gen-
uine vectorized counterpart over 256-bit registers, we cannot
hope for a speed-up of two by fully exploiting the AVX-256
mode. Then, the graph from Figure 1 can probably be fur-
ther smoothed by adapting the truncated Fourier transform
algorithm [22]. We are also investigating further acceler-
ations of DFTs of prime orders in Section 3.3. For instance,
for n = 7 and � = 6, we might exploit the factorization
z6 ¡ 1 = (z + 1)2 (z2 + z + 1)2 in order to compute cyclic

products using Chinese remaindering. In the longer run,
we �nally expect the approach in this paper to be gener-
alizable to �nite �elds of higher characteristic 3; 5; 7; 11; :::

7. REFERENCES
[1] S. Ballet and J. Pieltant. On the tensor rank of mul-

tiplication in any extension of F2. J. Complexity ,
27(2):230�245, 2011.

[2] L. I. Bluestein. A linear �ltering approach to the com-
putation of discrete Fourier transform. IEEE Transac-
tions on Audio and Electroacoustics , 18(4):451�455,
1970.

[3] M. Bodrato. Towards optimal Toom-Cook multipli-
cation for univariate and multivariate polynomials in
characteristic 2 and 0. In C. Carlet and B. Sunar, edi-
tors, Arithmetic of Finite Fields , volume 4547 of Lect.
Notes Comput. Sci., pages 116�133. Springer Berlin
Heidelberg, 2007.

[4] R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmer-
mann. Faster multiplication in GF(2)[x]. In A. van der
Poorten and A. Stein, editors, Algorithmic Number
Theory , volume 5011 of Lect. Notes Comput. Sci., pages
153�166. Springer Berlin Heidelberg, 2008.

[5] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex Fourier series. Math.
Computat., 19:297�301, 1965.

[6] R. Crandall and B. Fagin. Discrete weighted trans-
forms and large-integer arithmetic. Math. Comp.,
62(205):305�324, 1994.

[7] A. De, P. P. Kurur, C. Saha, and R. Saptharishi. Fast
integer multiplication using modular arithmetic. SIAM
J. Comput., 42(2):685�699, 2013.

[8] P. Duhamel and M. Vetterli. Fast Fourier transforms: A
tutorial review and a state of the art. Signal Processing ,
19(4):259�299, 1990.

[9] A. Fog. Instruction tables. Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel,
AMD and VIA CPUs . Number 4 in Optimization man-
uals. http://www.agner.org, Technical University of
Denmark, 1996�2016.

[10] M. Frigo and S. G. Johnson. The design and implemen-
tation of FFTW3. Proc. IEEE , 93(2):216�231, 2005.

[11] M. Fürer. Faster integer multiplication. In Proceed-
ings of the Thirty-Ninth ACM Symposium on Theory
of Computing, STOC 2007 , pages 57�66, New York,
NY, USA, 2007. ACM Press.

[12] M. Fürer. Faster integer multiplication. SIAM J.
Comp., 39(3):979�1005, 2009.

[13] S. Gao and T. Mateer. Additive fast Fourier trans-
forms over �nite �elds. IEEE Trans. Inform. Theory ,
56(12):6265�6272, 2010.

[14] J. von zur Gathen and J. Gerhard. Modern computer
algebra . Cambridge University Press, second edition,
2003.

[15] GCC, the GNU Compiler Collection. Software available
at http://gcc.gnu.org, from 1987.

[16] W. M. Gentleman and G. Sande. Fast Fourier trans-
forms: For fun and pro�t. In Proceedings of the
November 7-10, 1966, Fall Joint Computer Conference ,
AFIPS '66 (Fall), pages 563�578. ACM Press, 1966.

[17] I. J. Good. The interaction algorithm and practical
Fourier analysis. J. R. Stat. Soc. Ser. B , 20(2):361�372,
1958.

[18] T. Granlund et al. GMP, the GNU multiple precision
arithmetic library. http://gmplib.org, from 1991.

[19] W. Hart et al. FLINT: Fast Library for Number Theory.
http://www.flintlib.org, from 2008.

[20] D. Harvey, J. van der Hoeven, and G. Lecerf. Even
faster integer multiplication. http://arxiv.org/abs/
1407.3360, 2014.

[21] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster
polynomial multiplication over �nite �elds. http://
arxiv.org/abs/1407.3361, 2014.

[22] J. van der Hoeven. The truncated Fourier transform
and applications. In J. Schicho, editor, Proceedings of
the 2004 International Symposium on Symbolic and
Algebraic Computation , ISSAC '04, pages 290�296.
ACM Press, 2004.

[23] J. van der Hoeven. Newton's method and FFT trading.
J. Symbolic Comput., 45(8):857�878, 2010.

[24] J. van der Hoeven and G. Lecerf. Interfacing Math-
emagix with C++. In M. Monagan, G. Cooperman, and
M. Giesbrecht, editors, Proceedings of the 2013 ACM
on International Symposium on Symbolic and Algebraic
Computation , ISSAC '13, pages 363�370. ACM Press,
2013.

[25] J. van der Hoeven, G. Lecerf, and G. Quintin. Mod-
ular SIMD arithmetic in Mathemagix. http://
hal.archives-ouvertes.fr/hal-01022383, 2014.

[26] Intel Corporation, 2200 Mission College Blvd., Santa
Clara, CA 95052-8119, USA. Intel (R) Architecture
Instruction Set Extensions Programming Reference ,
2015. Ref. 319433-023, http://software.intel.com.

[27] Sian-Jheng Lin, Wei-Ho Chung, and
S. Yunghsiang Han. Novel polynomial basis and its
application to Reed-Solomon erasure codes. In 2014
IEEE 55th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 316�325. IEEE, 2014.

[28] C. Lüders. Implementation of the DKSS algorithm for
multiplication of large numbers. In Proceedings of the
2015 ACM on International Symposium on Symbolic
and Algebraic Computation , ISSAC '15, pages 267�274.
ACM Press, 2015.

[29] L. Meng and J. Johnson. High performance implemen-
tation of the TFT. In K. Nabeshima, editor, Proceedings
of the 39th International Symposium on Symbolic and
Algebraic Computation , ISSAC '14, pages 328�334.
ACM, 2014.

[30] J. M. Pollard. The fast Fourier transform in a �nite
�eld. Math. Comp., 25(114):365�374, 1971.

[31] C. M. Rader. Discrete Fourier transforms when
the number of data samples is prime. Proc. IEEE ,
56(6):1107�1108, 1968.

[32] A. Schönhage. Schnelle Multiplikation von Poly-
nomen über Körpern der Charakteristik 2. Acta Infor.,
7(4):395�398, 1977.

[33] A. Schönhage and V. Strassen. Schnelle Multiplikation
groÿer Zahlen. Computing , 7:281�292, 1971.

[34] V. Shoup. NTL: A Library for doing Number Theory ,
2015. Software, version 9.6.2. http://www.shoup.net.

[35] L. H. Thomas. Using a computer to solve problems in
physics. In W. F. Freiberger and W. Prager, editors,
Applications of digital computers , pages 42�57. Boston,
Ginn, 1963.

[36] S. Winograd. On computing the discrete Fourier trans-
form. Math. Comp., 32:175�199, 1978.

	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords

	1. Introduction
	1.1 Motivation
	1.2 Related work and our contributions

	2. Preliminaries
	2.1 Discrete Fourier transforms
	2.2 Rader reduction
	2.3 Implementation framework

	3. DFTs over 𝔽_(2^60)
	3.1 Basic arithmetic in 𝔽_(2^60)
	3.2 DFTs of small prime orders
	3.3 DFTs of larger prime orders
	3.4 DFTs of composite orders

	4. Other ground fields
	4.1 Lifting and Kronecker segmentation
	4.2 Field embedding
	4.3 Double-lifting
	4.4 The Crandall–Fagin reduction

	5. Timings
	5.1 𝔽_2[x] and 𝔽_(2^60)[x]
	5.2 𝔽_4[x] and 𝔽_(2^59)[x]

	6. Conclusion
	7. References

