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Abstra
t

It is well known that integers or polynomials 
an be multiplied in an

asymptoti
ally fast way using the dis
rete Fourier transform. In this pa-

per, we give an analogue of fast Fourier multipli
ation in the ring of skew

polynomialsC[x; Æ℄, where Æ = x

�

�x

. More pre
isely, we show that the mul-

tipli
ation problem of linear di�erential operators of degree n in x and

degree n in Æ 
an be redu
ed to the n�n matrix multipli
ation problem.

1. Introdu
tion

Let C be an e�e
tive ring, whi
h means that all ring operations 
an be performed

e�e
tively. It is 
lassi
al [Cooley and Tukey (1965); S
h�onhage and Strassen

(1971); Knuth (1981)℄ that polynomials of degree n in C[x℄ 
an be multiplied

in time O(n logn log logn) using FFT multipli
ation. If C 
ontains suÆ
iently

many 2

k

-th roots of unity, this 
omplexity further redu
es to O(n logn). Noti
e

that these 
omplexities are measured in terms of operations in C.

In this paper, we 
onsider the skew polynomial ring C[x; Æ℄, where Æ = x

�

�x

.

We assume that C is an e�e
tive Q -algebra, so that both the ring operations and

the s
alar multipli
ation with rationals 
an be performed e�e
tively. We show

that the multipli
ation problem of polynomials of degree n in x and degree n

in Æ 
an be redu
ed to the problem of multiplying (a �xed �nite number of)

n� n matri
es. Fast algorithms for n� n matrix multipli
ation are des
ribed in

[Strassen (1969); Pan (1984); Coppersmith and Winograd (1990); Knuth (1981)℄

and the lowest time resp. spa
e 
omplexities, whi
h 
an 
urrently be a
hieved

by su
h algorithms, are O(n

�

) with � < 2:376 and O(n

2

).

More pre
isely, we will prove theorem 1.1 below. This theorem should be 
om-

pared to the naive algorithm for the multipli
ation of linear di�erential operators,

whi
h has time 
omplexity O(n

3

logn log logn).
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Figure 1: S
hemati
 representation of FFT multipli
ation of linear di�erential operators.

Theorem 1.1: Assume that there exists an algorithm whi
h multiplies two n�n

matri
es in time M(n) and spa
e S(n). Then two linear di�erential operators

in C[x; Æ℄ of degree n in x and degree Æ 
an be multiplied in time O(M(n)) and

spa
e O(S(n)).

Classi
ally, FFT multipli
ation pro
eeds by evaluating the multipli
ands in

2

k

-th roots of unity, multiplying these evaluations, and interpolating the results.

In the non 
ommutative 
ase, the idea is to evaluate the linear di�erential oper-

ators at powers of x. Roughly speaking, this 
omes down to interpreting linear

di�erential operators of degree n in x and degree n in Æ as linear mappings

from C � � � � � Cx

n

into C � � � � � Cx

2n

. In this 
ontext, the dire
t and inverse

Fourier transforms 
orrespond to multipli
ations with a Vandermonde matrix or

its inverse, as well as some additional reordering of 
oeÆ
ients.

For the reader's 
onvenien
e, we have illustrated our algorithm in �gure 1. The

signi�
an
e of this �gure will be
ome 
lear when reading se
tions 2, 3 and 4.

2. The dire
t Fourier transform

Consider a linear di�erential operator

P =

n

X

i=0

n

X

j=0

P

i;j

x

j

Æ

i

: (1)
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We asso
iate the following matrix with P :

M

P

=

0

B

�

P

0;0

� � � P

0;n

.

.

.

.

.

.

P

n;0

� � � P

n;n

1

C

A

: (2)

Let V

m;n

denote the Vandermonde matrix

V

m;n

=

0

B

B

B

B

B

�

1 0 � � � 0

.

.

.

.

.

.

.

.

.

1 k � � � k

n

.

.

.

.

.

.

.

.

.

1 m � � � m

n

1

C

C

C

C

C

A

: (3)

Sin
e Æ

l

(x

k

) = k

l

x

k

, the 
oeÆ
ient (U

P;m

)

i;j

of the matrix U

P;m

= V

m;n

M

P


oin
ides with the 
oeÆ
ient of x

i

in the evaluation of P

0;j

+ � � �+ P

n;j

Æ

n

at x

i

.

Now we de�ne the \Fourier transform" of P at order m by

T

P;m

=

0

B

B

B

B

B

B

B

B

�

(U

P;m

)

0;0

0

.

.

. (U

P;m

)

1;0

(U

P;m

)

0;n

.

.

.

.

.

.

(U

P;m

)

1;n

(U

P;m

)

m;0

.

.

.

.

.

.

0 (U

P;m

)

m;n

1

C

C

C

C

C

C

C

C

A

(4)

This matrix has the following property: given a polynomialA = A

0

+� � �+A

m

x

m

,

represented by the 
olumn matrix M

A

with entries A

0

; : : : ; A

m

, the evaluation

P (A) of P at A is represented by the 
olumn ve
tor M

P (A)

= T

P;m

M

A

.

3. The inner multipli
ation

Now 
onsider two di�erential operators, P given by (2) and

Q =

n

X

i=0

n

X

j=0

Q

i;j

x

j

Æ

i

: (5)

In order to multiply P and Q, we 
ompute the Fourier transforms of P at order

3n and of Q at order 2n. This yields two matri
es T

P;3n

and T

Q;2n

. We 
laim

that their produ
t T

P;3n

T

Q;2n


oin
ides with the Fourier transform T

PQ;2n

of PQ

at order 2n. Indeed, for ea
h polynomial A of degree 2n, we have T

PQ;2n

M

A

=

M

PQ(A)

= M

P (Q(A))

= T

P;3n

M

Q(A)

= T

P;3n

T

Q;2n

M

A

. Our 
laim follows by 
ount-

ing dimensions. It remains to be shown how to retrieve PQ from T

PQ;2n

.
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4. The inverse Fourier transform

The matrix U

PQ;2n

is easily obtained as a fun
tion of T

PQ;2n

using the formula

(U

PQ;2n

)

i;j

= (T

PQ;2n

)

j;i+j

. We �nally 
ompute the 
oeÆ
ients of PQ using the

formula

M

PQ

= V

�1

2n;2n

U

PQ;2n

: (6)

Let us show how to invert the Vandermonde matrix V

2n;2n

qui
kly. One formally

veri�es that the inverse of a general Vandermonde matrix

V =

0

B

�

1 �

0

� � � �

n

0

.

.

.

.

.

.

.

.

.

1 �

n

� � � �

n

n

1

C

A

; (7)

is given by the formula

V

�1

=

0

B

�

(�1)

n

�

n;0

D

0

� � � (�1)

n

�

n;n

D

n

.

.

.

.

.

.

�

0;0

D

0

� � �

�

0;n

D

n

1

C

A

; (8)

where

�

d;i

= �

d

(�

0

; : : : ; �

i�1

; �

i+1

; : : : ; �

n

);

D

i

= (�

i

� �

0

) � � � (�

i

� �

i�1

)(�

i

� �

i+1

) � � � (�

i

� �

n

)

and �

d

is the symmetri
 polynomial of degree d

�

d

(�

1

; : : : ; �

n

) =

X

16i

1

<���<i

d

6n

d

Y

j=1

�

i

j

: (9)

The �

d;i

may now be 
omputed re
ursively in time and spa
e O(n

2

) using the

formulas

�

0;i

= 1; (10)

�

d;i

= �

d

(�

0

; : : : ; �

n

)� �

i

�

d�1;i

: (11)

The D

i

may be 
omputed naively in time and spa
e O(n

2

). Using O(n

2

) �nal

divisions in Q , this proves that V

�1

2n;2n


an be 
omputed in time and spa
e O(n

2

).

5. Multipli
ation in other skew polynomial rings

The FFT multipli
ation from the previous se
tions may be adapted or general-

ized to a 
ertain number of other skew polynomial rings. We will brie
y des
ribe

two other examples.
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5.1. Di�erentiation with respe
t to x

Consider the multipli
ation problem in the ring C[x; �℄, where � =

�

�x

satis�es

�x = x� + 1. The fa
t that � (unlike Æ) is not graduated in x as an operator on

C[x℄ implies that the algorithm from the previous se
tions 
an not be general-

ized in a dire
t way. Nevertheless, elements of C[x; x

�1

; �℄ may be rewritten as

elements of C[x; x

�1

; Æ℄ and vi
e versa in an eÆ
ient manner. Moreover our algo-

rithm for FFT multipli
ation in C[x; Æ℄ is easily adapted to the ring C[x; x

�1

; Æ℄.

Indire
tly, we thus obtain an FFT-like algorithm for the multipli
ation of linear

di�erential operators in C[x; �℄.

The fast 
onversion of elements in C[x; x

�1

; �℄ to elements in C[x; x

�1

; Æ℄ and

vi
e versa is based on the fa
t that we have formulas

�

i

= x

�i

i

X

j=0

�

i;j

Æ

j

; (12)

Æ

i

=

i

X

j=0

�

i;j

x

j

�

j

; (13)

with �

i;j

; �

i;j

2 Z. The 
oeÆ
ients �

i;j

and �

i;j


an be 
omputed by indu
tion

in linear time. Using (12) and (13) in a 
onvenient way, the 
onversion problem

then again redu
es to matrix multipli
ation.

5.2. The shift operator

Consider the ring C[x; S℄ with Sx = (x+1)S. This ring 
orresponds to the ring

of polynomials in x with the shift operator S : P (x) 7! P (x+1). The ideas from

se
tions 2, 3 and 4 apply to this 
ase as well, but in an \adjoint" way.

Indeed, instead of evaluating the skew polynomials at powers of x, we rather


onsider their adjoint evaluations at powers of S. Just like the evaluation of a

polynomial P in x and Æ at x

i

is obtained by setting Æ = 0 in the produ
t Px

i

,

the adjoint evaluation of a polynomial P in x and S at S

i

is obtained by setting

x = 0 in the produ
t S

i

P . Similarly, we may de�ne the adjoint evaluations of

skew polynomials in C[x; S℄ at polynomials in S.

We now observe that the adjoint evaluation of x

i

S

j

at S

k

is k

i

S

j+k

, just

like the evaluation of x

j

Æ

i

at x

k

is k

i

x

j+k

. This analogy may be exploited in

a straightforward way so as to adapt the FFT multipli
ation algorithm from

se
tions 2, 3 and 4 to the present 
ase.

6. Final remarks

1. Our multipli
ation method 
an be adapted to a few other skew polynomial

rings, su
h as C[x;Q℄ with Qx = qxQ and q 2 C

�

.

2. It would be interesting to see whether the ideas of this paper 
an also

be used in order to prove that the matrix multipli
ation problem may be
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redu
ed to the multipli
ation problem of skew polynomials, sin
e this would

prove that these problems are essentially equivalent. This is 
ertainly the


ase, if we assume that the multipli
ations of 
onstants in C with rational

numbers may be negle
ted with respe
t to other 
onstant multipli
ations.

Indeed, this assumption implies that the 
ost of the dire
t and inverse

FFT transforms 
an be negle
ted w.r.t. the 
ost of the inner multipli
ation,

sin
e the dire
t and inverse FFT transforms only involve multipli
ations of


onstants in C with rational numbers.

3. Assume that the skew polynomials P and Q have unequal degrees n and

m in x resp. Æ. If n and m are very di�erent, then PQ may be 
omputed

using the naive formula

PQ = P �Q+

�P

�Æ

� x

�Q

�x

+ � � �+

1

r!

�

r

P

�Æ

r

�

�

x

�

�x

�

r

Q; (14)

where r = min (n;m) and

P �Q =

n

X

i

1

=0

n

X

i

2

=0

m

X

j

1

=0

m

X

j

2

=0

P

i

1

;j

1

Q

i

2

;j

2

x

j

1

+j

2

Æ

i

1

+i

2

(15)

stands for the \
ommutative produ
t" of P and Q.

If m = kn or n = km, with small k > 1, then the te
hnique from the previ-

ous se
tion may be adapted in order to yield a multipli
ation algorithm of


omplexityO(k

2

M(n)) resp. O(k

2

M(m)), whereM(n) is the time needed to

multiply two n�n matri
es. Currently, we do not know, if this bound 
an be

further redu
ed to O(k log k log log kM(n)) resp. O(k log k log log kM(m)).
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