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Abstract
It is well known that integers or polynomials can be multiplied in an
asymptotically fast way using the discrete Fourier transform. In this pa-
per, we give an analogue of fast Fourier multiplication in the ring of skew
polynomials C[z, 0], where § = ;Ua%. More precisely, we show that the mul-
tiplication problem of linear differential operators of degree n in z and
degree n in 0 can be reduced to the n X n matrix multiplication problem.

1. Introduction

Let C' be an effective ring, which means that all ring operations can be performed
effectively. It is classical [Cooley and Tukey (1965); Schénhage and Strassen
(1971); Knuth (1981)] that polynomials of degree n in C|x] can be multiplied
in time O(nlognloglogn) using FFT multiplication. If C' contains sufficiently
many 2F-th roots of unity, this complexity further reduces to O(nlogn). Notice
that these complexities are measured in terms of operations in C'.

In this paper, we consider the skew polynomial ring C|[z,d], where 6 = xa%.
We assume that C'is an effective Q-algebra, so that both the ring operations and
the scalar multiplication with rationals can be performed effectively. We show
that the multiplication problem of polynomials of degree n in x and degree n
in § can be reduced to the problem of multiplying (a fixed finite number of)
n X n matrices. Fast algorithms for n x n matrix multiplication are described in
[Strassen (1969); Pan (1984); Coppersmith and Winograd (1990); Knuth (1981)]
and the lowest time resp. space complexities, which can currently be achieved
by such algorithms, are O(n®) with « < 2.376 and O(n?).

More precisely, we will prove theorem 1.1 below. This theorem should be com-
pared to the naive algorithm for the multiplication of linear differential operators,
which has time complexity O(n?lognloglogn).
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Figure 1: Schematic representation of FFT multiplication of linear differential operators.

THEOREM 1.1: Assume that there exists an algorithm which multiplies two nxn
matrices in time M(n) and space S(n). Then two linear differential operators

in Clx,0] of degree n in x and degree § can be multiplied in time O(M(n)) and
space O(S(n)).

Classically, FFT multiplication proceeds by evaluating the multiplicands in
2F_th roots of unity, multiplying these evaluations, and interpolating the results.
In the non commutative case, the idea is to evaluate the linear differential oper-
ators at powers of z. Roughly speaking, this comes down to interpreting linear
differential operators of degree n in x and degree n in ¢ as linear mappings
from C @ ---@® Cz" into C @ --- @ Cz?®". In this context, the direct and inverse
Fourier transforms correspond to multiplications with a Vandermonde matrix or
its inverse, as well as some additional reordering of coefficients.

For the reader’s convenience, we have illustrated our algorithm in figure 1. The
significance of this figure will become clear when reading sections 2, 3 and 4.

2. The direct Fourier transform

Consider a linear differential operator

P= zn:ijpi,jxw. (1)

i=0 j=0
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We associate the following matrix with P:

Mp = : : : (2)
PnO Pnn

Let V. denote the Vandermonde matrix

1 0 0
Von=11 k - k" |. (3)
1 m .- mn

Since §'(z*) = Kk'zF, the coefficient (Up,,);; of the matrix Up,, = Vi, Mp
coincides with the coefficient of 2" in the evaluation of Py ; + -+ 4 P, ;0" at z".
Now we define the “Fourier transform” of P at order m by

(Up,m)o,0 0
: (Up,m)1,0
Tpm = | (Urmlon : B (4)
(UP,m) 1,n (UP,m)m,O
0 (UP,m)m,n

This matrix has the following property: given a polynomial A = Ay+- - -+ A,,x™,
represented by the column matrix M, with entries Ag,..., A, the evaluation
P(A) of P at A is represented by the column vector Mpay = TpmMa.

3. The inner multiplication

Now consider two differential operators, P given by (2) and

Q=> ) Qild (5)

i=0 j=0

In order to multiply P and @), we compute the Fourier transforms of P at order
3n and of @) at order 2n. This yields two matrices Tpg, and Ty o,. We claim
that their product Tp3,T¢ 2, coincides with the Fourier transform Tpq 9, of PQ
at order 2n. Indeed, for each polynomial A of degree 2n, we have Tpg o, Ma =
MPQ(A) = MP(Q(A)) = Tp73nMQ(A) = Tp73nTQ72nMA. Our claim follows by count-
ing dimensions. It remains to be shown how to retrieve PQ) from Tpq 2p.
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4. The inverse Fourier transform

The matrix Upg o, is easily obtained as a function of Tpg 9, using the formula
(Upgan)ij = (Troaon)ji+j- We finally compute the coefficients of P(Q) using the
formula

Mpq = Vin2,Upq 20 (6)

Let us show how to invert the Vandermonde matrix V5, o, quickly. One formally
verifies that the inverse of a general Vandermonde matrix

1 Ao - AP
V=1 C (7)
1 A\, An
is given by the formula
TLETL; nEn;n
(_1) D—OO (_1) Dy,
V_l - : ) (8)
Zo0 Zoin
Dy Dy,

where

Yai = Ba(Aos-o o Nicts A1, -, An);
D; = (Ni—Xo)-- (N — X)) (N — Aiga) - (N — An)

and Y, is the symmetric polynomial of degree d

Yalag,. ..., apn) = Z HOéi]-- (9)

1< < <ig<n j=1

The Y4; may now be computed recursively in time and space O(n?) using the
formulas

)

Y = Za(Xos-- s An) — NiZa—1y (11)

The D; may be computed naively in time and space O(n?). Using O(n?) final
divisions in Q, this proves that ‘/;271,1271 can be computed in time and space O(n?).

5. Multiplication in other skew polynomial rings

The FFT multiplication from the previous sections may be adapted or general-
ized to a certain number of other skew polynomial rings. We will briefly describe
two other examples.
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5.1. Differentiation with respect to x

Consider the multiplication problem in the ring Cz,d], where 0 = 2 satisfies
O0r = x0 + 1. The fact that 0 (unlike ¢) is not graduated in = as an operator on
Clz] implies that the algorithm from the previous sections can not be general-
ized in a direct way. Nevertheless, elements of Clz,x ™1, 9] may be rewritten as
elements of Clz,z !, §] and vice versa in an efficient manner. Moreover our algo-
rithm for FFT multiplication in C|z, §] is easily adapted to the ring Clz, z !, d].
Indirectly, we thus obtain an FFT-like algorithm for the multiplication of linear
differential operators in C[z, J].

The fast conversion of elements in C|x, 27!, ] to elements in C[z,z !, d] and
vice versa is based on the fact that we have formulas

= :EiiZOéi,j(Sj; (12)
=0

5i = Zﬁiijjaj, (13)
Jj=0

with o j, 8;; € Z. The coefficients «;; and 3;; can be computed by induction
in linear time. Using (12) and (13) in a convenient way, the conversion problem
then again reduces to matrix multiplication.

5.2. The shift operator

Consider the ring C[z, S] with Sz = (x +1)S. This ring corresponds to the ring
of polynomials in  with the shift operator S : P(x) — P(z+1). The ideas from
sections 2, 3 and 4 apply to this case as well, but in an “adjoint” way.

Indeed, instead of evaluating the skew polynomials at powers of x, we rather
consider their adjoint evaluations at powers of S. Just like the evaluation of a
polynomial P in z and § at 2 is obtained by setting § = 0 in the product Pz,
the adjoint evaluation of a polynomial P in z and S at S° is obtained by setting
2 = 0 in the product S°P. Similarly, we may define the adjoint evaluations of
skew polynomials in C[z, S] at polynomials in S.

We now observe that the adjoint evaluation of xz'S7 at S* is k'S7tk, just
like the evaluation of z76° at x* is k'2/**. This analogy may be exploited in
a straightforward way so as to adapt the FFT multiplication algorithm from
sections 2, 3 and 4 to the present case.

6. Final remarks

1. Our multiplication method can be adapted to a few other skew polynomial
rings, such as Clz, Q] with Qz = gqz@ and ¢ € C*.

2. It would be interesting to see whether the ideas of this paper can also
be used in order to prove that the matrix multiplication problem may be
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reduced to the multiplication problem of skew polynomials, since this would
prove that these problems are essentially equivalent. This is certainly the
case, if we assume that the multiplications of constants in C' with rational
numbers may be neglected with respect to other constant multiplications.
Indeed, this assumption implies that the cost of the direct and inverse
FFT transforms can be neglected w.r.t. the cost of the inner multiplication,
since the direct and inverse FF'T transforms only involve multiplications of
constants in C with rational numbers.

3. Assume that the skew polynomials P and () have unequal degrees n and
m in x resp. 6. If n and m are very different, then P() may be computed
using the naive formula

oP
PQ=P+Q+ — x0—2 4.+ —

I5/) or rl 00T

e, 18’“P*< a>Q7 14

where r = min (n, m) and

n n m m
D 555 95 S TT NE LT ST RS
11 =042=0 51=0 52=0
stands for the “commutative product” of P and Q).

If m = kn or n = km, with small £ > 1, then the technique from the previ-
ous section may be adapted in order to yield a multiplication algorithm of
complexity O(k?M (n)) resp. O(k?*M (m)), where M (n) is the time needed to
multiply two n xn matrices. Currently, we do not know, if this bound can be
further reduced to O(klogkloglog kM (n)) resp. O(klogkloglog kM (m)).
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