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Abstrat

It is well known that integers or polynomials an be multiplied in an

asymptotially fast way using the disrete Fourier transform. In this pa-

per, we give an analogue of fast Fourier multipliation in the ring of skew

polynomialsC[x; Æ℄, where Æ = x

�

�x

. More preisely, we show that the mul-

tipliation problem of linear di�erential operators of degree n in x and

degree n in Æ an be redued to the n�n matrix multipliation problem.

1. Introdution

Let C be an e�etive ring, whih means that all ring operations an be performed

e�etively. It is lassial [Cooley and Tukey (1965); Sh�onhage and Strassen

(1971); Knuth (1981)℄ that polynomials of degree n in C[x℄ an be multiplied

in time O(n logn log logn) using FFT multipliation. If C ontains suÆiently

many 2

k

-th roots of unity, this omplexity further redues to O(n logn). Notie

that these omplexities are measured in terms of operations in C.

In this paper, we onsider the skew polynomial ring C[x; Æ℄, where Æ = x

�

�x

.

We assume that C is an e�etive Q -algebra, so that both the ring operations and

the salar multipliation with rationals an be performed e�etively. We show

that the multipliation problem of polynomials of degree n in x and degree n

in Æ an be redued to the problem of multiplying (a �xed �nite number of)

n� n matries. Fast algorithms for n� n matrix multipliation are desribed in

[Strassen (1969); Pan (1984); Coppersmith and Winograd (1990); Knuth (1981)℄

and the lowest time resp. spae omplexities, whih an urrently be ahieved

by suh algorithms, are O(n

�

) with � < 2:376 and O(n

2

).

More preisely, we will prove theorem 1.1 below. This theorem should be om-

pared to the naive algorithm for the multipliation of linear di�erential operators,

whih has time omplexity O(n

3

logn log logn).
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Figure 1: Shemati representation of FFT multipliation of linear di�erential operators.

Theorem 1.1: Assume that there exists an algorithm whih multiplies two n�n

matries in time M(n) and spae S(n). Then two linear di�erential operators

in C[x; Æ℄ of degree n in x and degree Æ an be multiplied in time O(M(n)) and

spae O(S(n)).

Classially, FFT multipliation proeeds by evaluating the multipliands in

2

k

-th roots of unity, multiplying these evaluations, and interpolating the results.

In the non ommutative ase, the idea is to evaluate the linear di�erential oper-

ators at powers of x. Roughly speaking, this omes down to interpreting linear

di�erential operators of degree n in x and degree n in Æ as linear mappings

from C � � � � � Cx

n

into C � � � � � Cx

2n

. In this ontext, the diret and inverse

Fourier transforms orrespond to multipliations with a Vandermonde matrix or

its inverse, as well as some additional reordering of oeÆients.

For the reader's onveniene, we have illustrated our algorithm in �gure 1. The

signi�ane of this �gure will beome lear when reading setions 2, 3 and 4.

2. The diret Fourier transform

Consider a linear di�erential operator

P =

n

X

i=0

n

X

j=0

P

i;j

x

j

Æ

i

: (1)
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We assoiate the following matrix with P :

M

P

=

0

B

�

P

0;0

� � � P

0;n

.

.

.

.

.

.

P

n;0

� � � P

n;n

1

C

A

: (2)

Let V

m;n

denote the Vandermonde matrix

V

m;n

=

0

B

B

B

B

B

�

1 0 � � � 0

.

.

.

.

.

.

.

.

.

1 k � � � k

n

.

.

.

.

.

.

.

.

.

1 m � � � m

n

1

C

C

C

C

C

A

: (3)

Sine Æ

l

(x

k

) = k

l

x

k

, the oeÆient (U

P;m

)

i;j

of the matrix U

P;m

= V

m;n

M

P

oinides with the oeÆient of x

i

in the evaluation of P

0;j

+ � � �+ P

n;j

Æ

n

at x

i

.

Now we de�ne the \Fourier transform" of P at order m by

T

P;m

=

0

B

B

B

B

B

B

B

B

�

(U

P;m

)

0;0

0

.

.

. (U

P;m

)

1;0

(U

P;m

)

0;n

.

.

.

.

.

.

(U

P;m

)

1;n

(U

P;m

)

m;0

.

.

.

.

.

.

0 (U

P;m

)

m;n

1

C

C

C

C

C

C

C

C

A

(4)

This matrix has the following property: given a polynomialA = A

0

+� � �+A

m

x

m

,

represented by the olumn matrix M

A

with entries A

0

; : : : ; A

m

, the evaluation

P (A) of P at A is represented by the olumn vetor M

P (A)

= T

P;m

M

A

.

3. The inner multipliation

Now onsider two di�erential operators, P given by (2) and

Q =

n

X

i=0

n

X

j=0

Q

i;j

x

j

Æ

i

: (5)

In order to multiply P and Q, we ompute the Fourier transforms of P at order

3n and of Q at order 2n. This yields two matries T

P;3n

and T

Q;2n

. We laim

that their produt T

P;3n

T

Q;2n

oinides with the Fourier transform T

PQ;2n

of PQ

at order 2n. Indeed, for eah polynomial A of degree 2n, we have T

PQ;2n

M

A

=

M

PQ(A)

= M

P (Q(A))

= T

P;3n

M

Q(A)

= T

P;3n

T

Q;2n

M

A

. Our laim follows by ount-

ing dimensions. It remains to be shown how to retrieve PQ from T

PQ;2n

.
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4. The inverse Fourier transform

The matrix U

PQ;2n

is easily obtained as a funtion of T

PQ;2n

using the formula

(U

PQ;2n

)

i;j

= (T

PQ;2n

)

j;i+j

. We �nally ompute the oeÆients of PQ using the

formula

M

PQ

= V

�1

2n;2n

U

PQ;2n

: (6)

Let us show how to invert the Vandermonde matrix V

2n;2n

quikly. One formally

veri�es that the inverse of a general Vandermonde matrix

V =

0

B

�

1 �

0

� � � �

n

0

.

.

.

.

.

.

.

.

.

1 �

n

� � � �

n

n

1

C

A

; (7)

is given by the formula

V

�1

=

0

B

�

(�1)

n

�

n;0

D

0

� � � (�1)

n

�

n;n

D

n

.

.

.

.

.

.

�

0;0

D

0

� � �

�

0;n

D

n

1

C

A

; (8)

where

�

d;i

= �

d

(�

0

; : : : ; �

i�1

; �

i+1

; : : : ; �

n

);

D

i

= (�

i

� �

0

) � � � (�

i

� �

i�1

)(�

i

� �

i+1

) � � � (�

i

� �

n

)

and �

d

is the symmetri polynomial of degree d

�

d

(�

1

; : : : ; �

n

) =

X

16i

1

<���<i

d

6n

d

Y

j=1

�

i

j

: (9)

The �

d;i

may now be omputed reursively in time and spae O(n

2

) using the

formulas

�

0;i

= 1; (10)

�

d;i

= �

d

(�

0

; : : : ; �

n

)� �

i

�

d�1;i

: (11)

The D

i

may be omputed naively in time and spae O(n

2

). Using O(n

2

) �nal

divisions in Q , this proves that V

�1

2n;2n

an be omputed in time and spae O(n

2

).

5. Multipliation in other skew polynomial rings

The FFT multipliation from the previous setions may be adapted or general-

ized to a ertain number of other skew polynomial rings. We will briey desribe

two other examples.
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5.1. Di�erentiation with respet to x

Consider the multipliation problem in the ring C[x; �℄, where � =

�

�x

satis�es

�x = x� + 1. The fat that � (unlike Æ) is not graduated in x as an operator on

C[x℄ implies that the algorithm from the previous setions an not be general-

ized in a diret way. Nevertheless, elements of C[x; x

�1

; �℄ may be rewritten as

elements of C[x; x

�1

; Æ℄ and vie versa in an eÆient manner. Moreover our algo-

rithm for FFT multipliation in C[x; Æ℄ is easily adapted to the ring C[x; x

�1

; Æ℄.

Indiretly, we thus obtain an FFT-like algorithm for the multipliation of linear

di�erential operators in C[x; �℄.

The fast onversion of elements in C[x; x

�1

; �℄ to elements in C[x; x

�1

; Æ℄ and

vie versa is based on the fat that we have formulas

�

i

= x

�i

i

X

j=0

�

i;j

Æ

j

; (12)

Æ

i

=

i

X

j=0

�

i;j

x

j

�

j

; (13)

with �

i;j

; �

i;j

2 Z. The oeÆients �

i;j

and �

i;j

an be omputed by indution

in linear time. Using (12) and (13) in a onvenient way, the onversion problem

then again redues to matrix multipliation.

5.2. The shift operator

Consider the ring C[x; S℄ with Sx = (x+1)S. This ring orresponds to the ring

of polynomials in x with the shift operator S : P (x) 7! P (x+1). The ideas from

setions 2, 3 and 4 apply to this ase as well, but in an \adjoint" way.

Indeed, instead of evaluating the skew polynomials at powers of x, we rather

onsider their adjoint evaluations at powers of S. Just like the evaluation of a

polynomial P in x and Æ at x

i

is obtained by setting Æ = 0 in the produt Px

i

,

the adjoint evaluation of a polynomial P in x and S at S

i

is obtained by setting

x = 0 in the produt S

i

P . Similarly, we may de�ne the adjoint evaluations of

skew polynomials in C[x; S℄ at polynomials in S.

We now observe that the adjoint evaluation of x

i

S

j

at S

k

is k

i

S

j+k

, just

like the evaluation of x

j

Æ

i

at x

k

is k

i

x

j+k

. This analogy may be exploited in

a straightforward way so as to adapt the FFT multipliation algorithm from

setions 2, 3 and 4 to the present ase.

6. Final remarks

1. Our multipliation method an be adapted to a few other skew polynomial

rings, suh as C[x;Q℄ with Qx = qxQ and q 2 C

�

.

2. It would be interesting to see whether the ideas of this paper an also

be used in order to prove that the matrix multipliation problem may be
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redued to the multipliation problem of skew polynomials, sine this would

prove that these problems are essentially equivalent. This is ertainly the

ase, if we assume that the multipliations of onstants in C with rational

numbers may be negleted with respet to other onstant multipliations.

Indeed, this assumption implies that the ost of the diret and inverse

FFT transforms an be negleted w.r.t. the ost of the inner multipliation,

sine the diret and inverse FFT transforms only involve multipliations of

onstants in C with rational numbers.

3. Assume that the skew polynomials P and Q have unequal degrees n and

m in x resp. Æ. If n and m are very di�erent, then PQ may be omputed

using the naive formula

PQ = P �Q+

�P

�Æ

� x

�Q

�x

+ � � �+

1

r!

�

r

P

�Æ

r

�

�

x

�

�x

�

r

Q; (14)

where r = min (n;m) and

P �Q =

n

X

i

1

=0

n

X

i

2

=0

m

X

j

1

=0

m

X

j

2

=0

P

i

1

;j

1

Q

i

2

;j

2

x

j

1

+j

2

Æ

i

1

+i

2

(15)

stands for the \ommutative produt" of P and Q.

If m = kn or n = km, with small k > 1, then the tehnique from the previ-

ous setion may be adapted in order to yield a multipliation algorithm of

omplexityO(k

2

M(n)) resp. O(k

2

M(m)), whereM(n) is the time needed to

multiply two n�n matries. Currently, we do not know, if this bound an be

further redued to O(k log k log log kM(n)) resp. O(k log k log log kM(m)).
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