Even faster integer mulkiplication

DAVID HARVEY

School of Mathematics and Stakistics
University of New South Wales
$~jdmev NSW 2082
Australia

Email: d.harvey@unsw.edu.au

JORIS VAN DER HOEVEN?, GREGOIRE LECERFY

CNRS, Laboratoire dlinformatique
Ecole Potvkechni.que
9112¥ Palaiseau Cedex
France
a. Email: vdhoeven@lix.polytechnique.fr

b. Email: lecerf@lix.polytechnique.fr

Alm'i[26, 2016

We give a new algorithm for the mulliplication of n-bit integers
in the bit complexity model, which is asymptotically faster than
all Pravi.ou.stj known algorithms., More Precc‘,sabj, we prove thak
two n-bit integers can be multiplied in time 0(n Logn K'°9"), where
K =% and log* n = min {k ¢ N: log < logng 1}. Assuming standard
conjectures about the distribution of Mersenne primes, we give
yet another algorithm that achieves K = 4. The fastest previously
kihown algorithm was due to Firer, who proved the existence of
a complexity bound of the above form for some finite k. We
show that an oPELmised variant of Fiirer's algorithm achieves only
K = 16, suggesting that our new algorithm is faster than Firer's by
o factor of 299",

Keyworps: Integer wmultiplication, algorithm, complexity bound,
FET

AC M, SUBJECT CLASSIFICATION: (.1.0 Comru&ar—aribkmefzic, F.2.1
Number-theoretic compulations

AMS. SUBIECT CLASSIFICATION: 6FW30, 6¥Ql7, &6¥W40

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68Q17&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search

2 EVEN FASTER INTEGER MULTIPLICATION

1. INTRODUCTION

Let I(n) denote the cost of multiplying two n-bit integers in the
deterministic multitape Turing model [4c] (commonly called “bik
complexity”). Previously, the best known asymptotic bound for 1(n)
was due to Furer [1%, 19]. He proved that there is a constant x> 1
such that

(W) = oln Lognl(mf’*“), (1.1)

where log x =l x denotes the hatural logarithm of x and log™ x the
tterated logarithm, i.e.,

log*x := minikeN: log™x <1}, (1.2)

O Js

log™ := loge o log,

for any x € R with x > 0. The main contribution of this paper is a
hew algorithm that yields the following improvement.

THEOREM 1.1. For n =? 0 we have

I(n) = olulogn ‘[{"oa*“).

Furer suqqested several methods to minimise the value of k¥ in
his algorithm, but did not give an explicit bound for k. In section 7

of this paper, we outline an optimised variant of Furer's algorithm
that achieves K = 16, We do not kihow how to obtain K < 16 using
Furer's approach, This suggests that the new algorithm is faster than
Furer's by a factor of Rle9" ",

The idea of the new algorithm is remarkably simple. Given two
n-bit integers, we split them into chunks of exponentially smaller
size, say around Logn bits, and thus reduce to the problem of mul-
tiplying integer polynomials of degree 0(n /Llogn) with coefficients
of bit size o(log n). We multiply the polynomials using discrete
Fourier transforms (DFTs) over €, with a working precision of
o(log n) bits. To compute the DFTs, we decompose them into “short
transforms” of exponentially smaller length, say length around
log n, using the Cooley-Tukey method. We then use Bluestein's chirp
transform to convert each short transform into a polynomial mulki-
plication problem over €, and finally convert back to integer mul-
tiplication via Kronecker substitution. These much smaller integer
multiplications are handled recursively.

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 3

The algorithm just siketched leads immediately to a bound of the
form (1.1). A detailed proof is given in section 4. We emphasise
that the new method works direcf:i,j over €, and does not need
special coefficient rings with “fast” rooks of unity, of the type con-
structed by Furer. Optimising parameters and keeping careful track
of constants leads to Theorem 1.1, which is proved in section &, We
also prove the following conditional result in section 9, where we
recall that a Mersenne prime is a prime of the form p=27-1,

THEOREM 1.2, Let m,{x) denote the number of Mersenne primes less than x. If

the function x V¥ m,(x)/ Lloglog x is bounded both from above and from below
on (3, 00), then

I(n) = olnlogn sl “3.

The assumption on T(x) is a weakening of the Lenstra-Pomer-
ance-Wagstaff conjecture on the distribution of Mersenne primes.
The idea of the algorithm is to replace the coefficient ring € by
the finite field o7 [i]; we are then able to exploit fast algorithms

for multiplication modulo numbers of the form 27-1.

An important feature of the new algorithms is that the same
techniques are appticabte in other cowntexts, such as [ootvnomiat
multiplication over finite fields. Previously, no Furer-type com-
plexity bounds were known for the Latter problem. The details are
presented in the companion paper [24],

In the remainder of this section, we present a brief history
of complexity bounds for integer multiplication, and we give an
overview of the paper and of our contribution. More historical
details can be found in books such as [21, Chapter %].

1.1, Brief history and related work

Mulkiplication algorithms of complexity 0(n*) in the number of
digits n were already known in ancient civilisations, The Eqyptians
used an algorithm based on repeated doublings and additions.
The Babylonians invented the positional numbering system, while
!aerfcrming their computations in base 60 instead of 10, Precise

4 EVEN FASTER INTEGER MULTIPLICATION

de.scripf:ious of multiplication methods close to the ones that we
learn at school appeared in Europe during the late Middle Ages.
For historical references, we refer to [52, Section I11.5] and [39, 5].

The first subquadratic algorithm for integer mulkiplication, with
complexity 0(n'°93/1°93y " has discovered by Karatsuba [31, 32, 33].
From a modern viewpoint, Karatsuba's algorithm utilises an evalu-
a&ioh-iﬂ&errom&ioh scheme. The E.hpu& integers are cut into smaller
chunlies, which are taken to be the coefficients of two integer poly-
nomials; the polynomials are evaluated ab several well-chosen
points; their values at those points are (recursively) mulkiplied;
interpolating the resulks at those points yields the product poly-
nomial; fiv\od.i,j, the integer product is recovered bj pasting together
the coefficients of the product polynomial. This cutting-and-
pasting procedure is sometimes kinowh as Kronecker segmenta-
tion (see seckion 2.6).

Shortly after the discovery of Karatsuba's algorithm, which uses
three evaluation points, Toom generalised it so as to use 2 r - 1
evaluation points instead [54, £3], for any r22. This leads to the
bound I(n) =z o(n'e9@r-legry for fixed r. Letting r grow slowly with
n, he also showed that I(n) = o(n &V e “/waz) for some constant
c>1, and he remarked that one may take c =32, The algorithm was
adapted to the Turing model by Cook [10] and is now known as
Toom-Cook multiplication. Cook also proved that one may indeed
take c = 32 in the complexily estimate. The next improvement was
obtained by Schonhage [47] by working modulo several numbers
of the form 2 -1 instead of using several polynomial evaluation
points. Knuth claimed that an even better complexity bound could
be achieved by suitably adapting Toom's method [34, Section 4.3.3,
Exercise §].

The next step towards even faster integer multiplication was the
rediscovery of the fast Fourier transform (FFT) by Cooley and
Tulkey [11] (esseh&ic\ttj the same algorithm was atreadj khowin to
Gauss [2%]). The FFT yields particularly efficient algorithms for
evaluating and ihf:e.rluota&ihg polynomials on certain special seks
of evaluation points. For example, f & is a ring in which 2 is

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 5

invertible, and if we R is a principal 2“-th root of unily (see sec-
tion 2.2 for detailed definitions), then the FFT permits evaluation
and ihf:erpol.o&ioh at the !aoiv&s 1,0,..., 0% 1 using ohi.\j 0(k 2“) ring
operations in R. Conhsequently, f P and @ are polynomials in R[x]
whose product has degree less than 2%, then the product 7@ can be

computed using 0(k 2“) ring operations as well,

In [50], Schonhage and Strassen Preseuf;ed two FFT-based algo-
rithms for integer mulkiplication. In both algorithms, they first use
Kronecker segmentation to convert the Probtam to multiplication
of integer polynomials. They then embed these polynomials into
R[x] for a suitable ring R and mulkiply the polynomials by using
FFTs over R. The first algorithm takes g =@ and w=exp(2 T L/ 29),
and works with finite-precision approximations to elements of C.
Mulkiplications in € itself are handled recursively, by treating them
as integer mulkiplications (after appropriate scaling). The second
algorithm, popularly khown as the Schonhage-Strassen algorithm,

bakes R = Z/m Z where m = 22 + 1 is a Fermal number, This
algorithm is the faster of the two, achieving the bound I(n) =

0(n logn loglogn). It benefits from the fact that =2 is a principal
“"I-th rool of unity in &, and that mulkiplications by powers of
can be carried oub efficiently, as they correspond to simple shifts

and negations. At around the same time, Pollard pointed out that
one can also work with R = Z/m Z where m is a prime of the

form m = a 2“ + 1, since then R contains primitive 2“-th roots of
unity [41] (although he did not give a bound for 1(n)).

Schonhage and Strassen's algorithm remained the champion for
more than thirty years, but was recently superseded by Firer's algo-
rithm [1%]. In short, Furer managed to combine the advantages
of the two algorithms from [50], to achieve the bound I(n) =
o(n Log n 2°4°9""Y Firer's algorithm is based on the ingenious
observation that the ring & = €[x]/ (¥ + 1) contains a small
number of “fast” principal 27-th roots of unity, namely the powers
of X, but also a large supply of much higher-order roots of unity
inherited from €. To evaluate an FFT over g, he decomposes
it into many “short” transforms of length at wost 27, using the
Cooley-Tukey method. He evaluates the short transforms with the

& EVEN FASTER INTEGER MULTIPLICATION

fast roots of unily, pausing occasionally to Perform “slow” mul-
tiplications by higher-order roots of unity (“twiddle factors”). A
slightly subtle point of the construction is that we really need,

for large k, a principal 2“-th root of unity wer such that ¥ =X,

In [15] it was shown that the technique from [41] to com-
pute modulo suitable prime numbers of the form m = a 2% + 1
con be adapted to Furer's algorithm. Although the complexity of
this algorithm is essentially the same as that of Firer's algorithm,

this method has the advantage that it does not require any error
analysis for approximate numerical operations in C.

Date Authors Time comptexi,&j

<3000 BC | Unknown [39] o(n®

1962 Karatsuba [31, 32] o(nle93/leazy

1963* Toom [54, 53] 0 2°VIean/leazy

1966 Schonhage [47] o{n 2V 2logn/leg? (log n)3/2)
1969" Kiuth [34] o(n 239 n/log? logn)
1971 Schonhage-Strassen [50] [0(n log n loglogn)

2007 Firer [1%] 0{n Log n 2°1e9™)y

2014 This paper 0(n Llog n ¥°9° ")

Table 1.1, Historical overview of known complexity bounds for n-bit integer
mu&ipticakioh.

* It should be noted that Toom only proved that #(n) = o(n ¢V togn/loady Loy
some constant c > 1, but he remarked that one could take ¢ = 32, Similarly,
Kinuth's meroved bound was only stabed as al exercise with indications on
how to prove it in the Froposed\ solution,

1.2. Our contributions and outline of the paper

Throughout the paper, integers are assumed to be handled in the
skandard bihomv represen&o&iov\. For our tompu&a&iohat comptexi,&j

results, we assume that we work on a Turing machine with a finite
bub sufficiently large number of tapes [40]. With some work, ik can

be verified that three tapes actually suffice for the implementation

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 7

of the algorithms i this paper. Nevertheless, the seven tape machine
of [49] is more convenient. The Turing machine model is very
conservative with respect to the cost of memory access, which is
pertinent from a practical point of view for implementations of
FFT algorithms. Nevertheless, other models for sequential com-
putations could be considered [4¥%, 20]. For practical purposes,
parallel models might be more appropriate, but we will not consider
these in this paper. Occasionally, for polynomial arithmetic over
abstract rings, we will also consider algebraic complexity mea-
sures [¥, Chapter 4].

In section 2, we start bgj recalling several classical techniques
for completeness and later use: sorting and array tramsposition
algorithms, discrete Fourier transforms (DFTs), the Cooley-Tukey
algorithm, FFT multiplication and convolution, Bluestein's chirp
transform, and Kronecker substitution and segmentation. In sec-
tion 3, we also Provic\e the necessary tools for the error analysis
of complex Fourier transforms. Most of these tools are standard,
although our presentation is somewhat ad hoc, being based on fixed
point arithmetic.

In section 4, we describe a si.m[ai.i.fied version of the new integer
mu&iptiaq&ioh algorithm, without any o&EemPE to minimise the

oforementioned constant k. As mentioned in the sketch above,
the ey idea is to reduce a given DFT over € to a collection

of “short” transforms, and then to convert these short transforms
back to integer mulkiplication by a combination of Bluestein's chirp

transform and Kronecker substitution.
The complexity analysis of Furer's algorithm and the algorithm

from section 4 tvolves functional inequalities which contain post-
compositions with logarithms and other slowly growing functions,
In section 5, we present a few systematic tools for analysing these
types of inequalities. For more nformation on this quite particular
kind of asymptotic analysis, we refer the reader to [46, 16],

In section &, we present an optimised version of the algo-
rithm from section 4, proving in particular the bound I(n) =

o(n log n %99y (Theorem 1.1), which constitutes the main resulk
of this paper. In section 7, we outline a similar complexity analysis

for Furer's algorithm. Even after several optimisations of the orig-
inal algorithm, we were unable to attain a bound better than I(n) =

¥ EVEN FASTER INTEGER MULTIPLICATION

0(n log n 169™), This suggests that the new algorithm outper-
forms Furer's algorithm by a factor of Rlea"

This speedup is surprising, given that the short Eransforms in
Furer's algorithm involve only shifts, additions and subtractions.
The solution to the paradox is that Firer has made the short trans-
forms too fast. Indeed, they are so fast that they make a negligible
contribution to the overall complexity, and his computation is dom-
nated by the “slow” twiddle factor multiplications. In the new
algorithm, we push more work into the short transforms, allowing
them to get slightly slower; the quid pro quo is that we avold the
factor of two in zero-padding caused by Firer's introduction of
artificial “fast” roots of unity. The optimal strategy is actually to
let the short transforms dominate the computation, bj ncreasing
the short transform length relative to the coefficient size. Firer is
unable to do this, because in his algorithm these two parameters are
too closely Linked. To underscore just how far the situation has
been inverted relative to Firer's algorithm, we F)OEV\E out that in our
presentation we can get away with using Schonhage-Strassen for the
twiddle factor mulkiplications, without any detrimental effect on
the overall complexity.

We have chosen to base most of our algorithms on approximate
complex arithmetic. Instead, following [41] and [15], we might
have chosen to use modular arithmetic, In section ¥, we will bri.e.fi.j
indicate how our main algorithm can be adapted to this setting.
This variant of our algorithm presents several analogies with iks
adaptation to polynomial multiplication over finite fields [24].

The question remains whether there exists an even faster algo-
rithm thawn the algorithm of section &. In an earlier paper [17],
Firer gave another algorithm of complexity o(n log n g0lteg” ny
under the assumption that there exist sufficie.hfztj many Fermat
primes, e, primes of the form £, = 2¥" + 1. It can be shown
that a careful optimisation of this algorithm yields the bound 1(n)=
o(n log n 49"). Unfortunately, odds are high that £y is bhe
largest Fermat prime. In section 9, we present an algorithm that
achieves the bound I(n) = 0(n log n 49"y under the more plau-
sible conjecture thot there exist sufficiently many Mersenne primes
(Theorem 1.2). The main technical ingredient is a variant of an

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 9

algorithm of Crandall and Fagin [12] that permits efficient mul-
tiplication modulo 27 - 1, despite g not being divisible by a large
power of two.

It would be interesting to khow whether the new algorithms
could be useful in practice. We have written a protobype imple-
mentation of the algorithm from section ¥ in the MATHEMAGIX
system [30]. This both enabled us to check the correcthess of

our method and to observe running times close to ¢ n log n for
a suitable constant c. However, our implementation is an order

of magnitude slower than the Gue Library [23]. It should be pos-
sible to significantly reduce this gap through code optimisation
and by adjusting the thresholds and algorithms for higher prac-
tical efficiency. But we doubt that even such a highly optimised
implementation of the new algorithm will be competitive in the
near future. Nevertheless, the variant for polynomial mulkiplica-
tion over finite fields presented in [24] seems to be a promising
avenue for achieving speedups in practical computations. Recent
work confirms this suspicion [25].

Notations. We use Hardy's notations f < g for f = o(9), and f = g
for £ =2 0(9) and g = 0(f). The symbol R” denotes the set of non-
neqgative real numbers, and IN denctes {0, 1, 2, ...}, We will write
lgn:=Tlogn/log2].

Ackhowledgments. We would Like to thank the anonymous referees
for their detailed reading and comments.

2. SURVEY OF CLASSICAL TOOLS

This section recalls basic facks on Fourier transforms and related
techniques used in subsequent sections. For more details and his-

torical referenmces we refer the reader to standard books on the
subject such as [2, %, 21, 44].

2.1, Arrays and sorting

In the Turing model, we have awvailable a fixed number of Linear
bapes. AR ny X X ng array My, of b-bit elements is stored as a
Linear array of ny +++ ny b biks, We generally assume that the elements
are ordered lexicographically by (i, ..., ix), though this is just an

im Ptemehﬁo&ioh dekail.

lo EVEN FASTER INTEGER MULTIPLICATION

What is significant from a complexity point of view is that occa-
siov\auj we nust switch represeh&o&iohs, to access an array (_say
2-dimensional) by “rows” or by “columns”. In the Turing model,
we may transpose an ng X ny matrix of b-bik elements in time
ob ny ny lg min (g, 1)), using the algorithm of [4, Appendix].
Briefly, the idea is to split the matrix into two halves along the
“short” dimension, and transpose each half recursively.

We will also require more complex rearrangements of data, for
which we resort to sorting. Suppose that X is a totally ordered
set, whose elements are represented by bit strings of length b, and
suppose that we can compare elements of X in time 0(b). Then an
array of n elements of x may be sorted in time o(b n Lg n) using

merge sort [35], which can be implemented efficiently on a Turing
machine.,

2.2, Discrete Fourier transforms

Let R be a commutative ring with identity and Let nz 1. An element
wer is said to be a principal n-th root of unity Exf W' =1 and

n-1
> (0)<=o0 (2.1)
k=0
for all ¢ €{1,...,, n = 1}. In this case, we define the discrete Fourier
transform (or DFT) of an n-tuple a =(ac, ..., au-1) € R" with respect to
w to be DFT(a)=a =(Go, -, au-1) € R" where
a; = aotar W +eta,g W1,
That is, &; is the evaluation of the pot-jv\omiat A(X) iz ac+ay X+ +
a“_l x“-l QE wiq
If o is a principal n-th root of unilty, then so is iks inverse

n-1

, ahnd we have

DET 1 {DFT(a)) = na.

wlzw

Indeed, writing b:= DFT,1(DFT(a)), the relation (2.1) implies that

n-1 n-1 n-1 n-1 n-1 n-1
b= ¥ a2 Y ¥ oa. w/ <D 2 ¥ oar ¥ /D 2 Y a(nd D=
Jj=0° Jj=0 k=0 k=0 Jj=0° k=0

nag;

where 6, , =21 f i =k and 6§, , = © otherwise.

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 11

Remark 2.1, In all of the new algorithms introduced in this paper,
we actually work over a field, whose characteristic does not divide
n. In this setting, the concept of principal root of unity coincides
with the wore familiar primitive root of unity. The wmore general
“principal root” concept is only needed for discussions of other

algorithms, such as the Schonhage-Strassen algorithm or Furer's
algorithm.

2.3. The Coote.j-'m,k"e_v FET

Let @ be a principal n-th root of unity and let n = n ny where
1<n <n. Then o is a principal np-th root of unity and w™ is a
principal ni-th root of unity. Moreover, for any i €{o, ..., n -1} and
pelo, ..., mz—l}, we have

n-1 mg-1

~ Kegag + key Y iy g+ i
Bongr, = z Z Al riey w(2tk Yt iz)

k120 k=0

np-1 ng—-1
z ki (z Qg+ iy (whl)kziz) (a)hz)kuﬁ. (2.2)

‘<1=o kz:o

!

If A1 and A are algorithms for computing DFTs of length
and np, we may use (2.2) to construct an algorithm A, & A, for
compuling DFTs of length n as follows,

For each Kk € {0, ..., ny - 1}, the sum inside the brackets corre-
sponds to the ;-th coefficient of a DFT of the np-tuple (acu iy -+
A1y i) € R with res[oedz te 0. Evaluating these ner DFTs
requires ny calls to /b, Next, we muﬂ:iptv bj the twiddle factors 0%,
at a cost of n operations in R. (Actually, fewer than n mulkiplica-
tions are required, as some of the twiddle factors are equal to 1.
This opkimiso&ioh, while impor&av& in Prac&ice, has no QSjMFEOEiC
effect on the algorithms discussed in this paper.) Finally, for each
pelo, ..., ny -1}, the outer sum corresponds to the i-th coefficient
of a DFT of an ny-tuple in k" with respect to 0", These outer DFTs
require np calls to Sy

Denoting by F (1) the number of ring operations needed to com-
pute o DFT of length n, and assuming that we have available a
precomputed table of twiddle factors, we obtain

Folnrng) & g Folig) + g Foling) + m.

12 EVEN FASTER INTEGER MULTIPLICATION

For a factorisation mn =un - ny, this yields recursively

d
n
Feb) & X —Felndr(d=1)n. (2.3)
(=1 ¢
The corresponding algorithm is denoted A4, @@ Ay, The @ oper-
aktion is neither commutative nor associative; the above expression
will always be taken ko mean (-((A, 0 A0 AN)6 Ay

Let # be the bulterfly algorithm that computes a DFT of length
2 bj the formula (ac, a1) ¥ (ao + a1, ao = a1). Then 38°<:=z 806 2
computes a DFT of length n:=2 in time F(2“) = 0(k n). Algorithms
of this Ewﬂ'e are called fast Fourier transforms {or FFTs).

The above discussion requires several modifications in the
Turing model. Assume that elements of R are represented by b bits.

First, for A, @ A; we must add a rearrangement cost of
o(b n Llg min(ny, n2)) to efficiently access the rows and columns
for the recursive subtransforms (see sectiom 2.1). For the gen-
eral case Ay @ -+ @ Ay, the total rearrangement cost is bounded
bv o(Z bnlgn)=o0(bnlgn).

Second, we will sometimes use non-algebraic algorithms to com-
pute the subtransforms, so it may not make semse to express their
cost in terms of F,. The relation (2.3) therefore becomes

d
n
Flh) ¢ ¥ —Flr)+(d -1 ume+olbulgn), (R.4)
i=1 ¢
where F(n) is the (Turing) cost of a transform of length n over g,
and where m, is the cost of a single mulkiplication in <.

Finally, we point out that A, @ A; requires access to a table of
twiddle factors w*%, ordered lexicographically by (i, &), for o<y <ny,
0L ip < g, Assuming that we are given as input a precomputed table
of the form 1, ,...,0"™!
twiddle factor table in the correct order. We first construct a List
of briples (i1, iz, &1 &), ordered bj (i1, @), 1 time 0(n Lg n); then sort

, we must show how to exkract the requ.i.red

bj i i b time 0(n Lg® n) (see section 2.1); then merge with the given
root table to obtain a table (i, &, @3%), ordered by i &, n time
oln (b +1lgn)); and A‘fi.vml.l.j sort by (&, &) a time oln lgn (b +Lg).
The total cost of the extraction is thus 0(n Lgn (b +1g n)).

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 13

The corresponding cost for Ay @ - 0@ Ay is determined as
follows. Assuming that the table 1, w, ..., ™! is given as nput,
we first extract the subtables of (u = n)-th roots of unity for
i=d=1,..,2 i time o((ny ng + + g) (b +lg n)) = o(n (b +
lg n)). Extracting the twiddle factor table for the decomposition

(g =+ mo1) ¥ 1, then costs 0(n; -+ n; Lgn (b +1lgn)); the total over all :
is again o{nlgn(b+Llg)

Remark 2.2, An alternative approach is to compute the twiddle
factors directly in the correct order. When working over €, as in
section 3, this requires a slight increase in the working precision,
Similar comments “PFij to the root tables used in Bluestein's algo-
rithm i section 2.5,

2.4. Fast Fourier mu&iptica&iov\

Let ® be a principal n-th root of unity in R and assume that n
is vertible in k. Consider two polynomials A = ag +*+ + a1 xnot

and B = bot o+ by X7 n R[X]. Leb € =2 co+ - + oy X" be the
polynomial defined by

1
c = =DFT,(DFT(a) DFTL(H)),

where the product of the DFTs is taken pointwise. By construction,
we have & = & b, which means bhat c(w) = A(e) (o) for all
iefo,...,n-1}. The product § =50+ + 5, X" of Aand B modul.?
X" -1 also satisfies s(w') = A(w") B(w") for all ¢. Consequently, 5=4 b,
s2DFTy-(8)/ n=c, whence c =5,

For polynomials A, 8 € R[X] with degA<n and deq s <n, we thus
obtain an algorithm for the computation of 48 modulo X" -1 using
at most 3 F(n) + 0(n) operations in k. Modular products of this
type are also called cyclic convolutions., 1f deq(AB)<n, then we may
recover the product A 8 from its reduction modulo x" - 1. This
mulkiplication method is called FFT multiplication.

1If one of the arguments (say 8) is fixed and we want to compute
many products A 8 (or cyclic convolutions) for different A, then we
may Precompu&e DFTL(b), after which each new Producf; AB can be
computed using only 2F L)+ 0(n) operations in R.

14 EVEN FASTER INTEGER MULTIPLICATION

2.5, Bluestein's chirp transform

We have shown above how to mu.LELPLv polynomials using DFTs.
Inversely, it is possible to reduce the computation of DFTs — of
arbitrary length, not necessarily a power of two — to polynomial
multiplication [3], as follows.

Let @ be a principal n-th root of unhilty, For simplicilty we assume

that n is even, and that there exists some nerR with n* =z w. Consider
the sequences

e i L
fo:=n", g.:=nC.

Then Q)U:ﬁfjgi_J, so for any a € R" we have

n-1 n-1
a= Y a;0V=£ F (i) 9o (2.5)
j=o j=o

Also, since n is even,

Girn = n—(z+u)2 = n—iz—uz—ZMi = n—zz w‘(g*‘)“ = 9.
Now let £ iz fo ao + *** + fuog apey XU7Y, G 12 9o+ + g1 X7 and
Cizcot '+ e X 2F6& wmodulo ¥ -1, Then (2.5) inmplies that
& = fic: for all i efo,..., n -1}, In other words, the compubation of
a DFT of even length n reduces to a cyclic convolution product
of the same length, together with o(n) additional operations in R,

Notice that the polynomial & is fixed and independent of a in this
product.

The only complication in the Turing model is the cost of
extracting the £, in the correct order, i, in the order 1, n, n%,
9 2n-1
n .

We may do this in time 0(nlgn (b +1gn)) by applying the strategy

s ey 17 given as nput a precomputed table 1, n, %, ..., 1

from section 2.3 to the pairs (¢, i* mod 2 n) for © ¢ ¢ < n. Sim-
tlar remarks apply to the g;.

Remark 2.3, It is also possible to give variants of the new mulki-
plication algorithms in which Bluestein's transform is replaced by

a different wmethod for converting DFTs to convolutions, such as
Rader's algorithm [43].

2.6, Krownecker substitution and segmentation

Multiplication in Z[x] may be reduced to multiplication in Z using
the classical technique of Kromecker substitution [21, CoroLLourj #.27].
More precisely, let 4 >0 and n >0, and suppose that we are given two

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 185

polynomials 4, 5 e Z[x] of degree less than d, with coefficients 4,
and & satisfying |4[¢2" and |a]<2". Then for the product C =48 we
have |c | <23 194, Consequently, the coefficients of ¢ may be read
off the integer product c(2") = AR2") 8(2") where N:z=2n +lgd +2.
Notice that the integers |A(2¥)] and [8(2")] have bit length at most
d N, and the encoding and decoding processes have complexity
o(d N,

The nverse Procedure s Kronecker segmentation. Grivenm n » © and
d > 0, and non-negative integers a <2" and b<2", we may reduce the
compulation of c:zab to the computation of a product c:=48 of
two polynomials 4, BeZ[x] of degree less than 4, and with |4,] <2
and |3, <2 where k:=[n/d]. Indeed, we may cut the integers into

chunles of k bits each, so that a = A(RX), b =B(2%) and c = c(2%). Notice
that we may recover ¢ from ¢ using an overtap—add Procedur&

n time o(d (k+lgd)) =0k +d lgd). In our applications, we will
always have d = 0(n/1lgn), so that o(n +d Llgd Y= o(n).

Kronecker substitution and segmentation can also be used to
handle Gaussian integers (and Gaussian integer polynomials), and

to compute cyclic convolutions. For example, given polynomials
A, B e Z[UIx] /(x4 - 1) with |4], |8] ¢ 2", then for ¢ = A B8 we
have |c;] £ 22799, 50 we may recover C from the cyclic Gaussian
integer product c(2¥) = A2Y) 8(2") e (ZZ 7 @ - 1) ZYi], where
N:=2n+lgd +2. In the other direction, suppose that we wish to
compule a b for some a,be(Z /(R - 1) Z)i]. We may assume that
the “real” and “imaginary” parts of a and b are non-negative, and
so reduce to the problem of mulkiplying A, 5 € Z[i[x]/ (x4 - 1),
where a = A(R") and b =8(2"), and where the real and imaginary parts
of A, B €Z[i] are non-neqgative and have at most n bits.

3. FIXED POINT COMPUTATIONS AND ERROR BOUNDS

In this section, we consider the computation of DFTs over € in
the Turing model. Elements of € can only be represented approx-
imately on a Turing machine. We describe algorithms that compute
DFTs approximately, using a fixed-point representation for €, and
we give complexity bounds and a detailed error analysis for these

algorithms, We refer the reader to [7] for more details about mul-
tiple precision arithmetic.

16 EVEN FASTER INTEGER MULTIPLICATION

For our complexity estimates we will free.tj use the standard
observation that I(k n) = o(1(n)) for any fixed constant k, since
the multiplication of two integers of bit length ¢k n reduces to &
mulkiplications of integers of bit length ¢, for any fixed k21

3.1. Fixed point numbers

We will represent fixed point numbers by a signed mantissa and a
fixed expoheh&. More Precisei.j, given a Precision Parame&er pze,
we denote by €, the set of complex numbers of the form ==m, 277,
where m, = u + v i for integers u and v satisfying o® +v* & 2, ie.,
|z2] €1, We write €, 2¢ for the set of complex numbers of the form
u 2%, where u ¢, and e € Z; in particular, for z € T, 2¢ we always
have |z]€2¢. At every stage of our algorithms, the exponent e will be
determined implicitly bj context, and in particular, the exponents
do not have to be explicitly stored or manipulated,

In our error analysis of numerical alqorithms, each - ¢ C, 2% is
really the approximation of some genuine complex number 2 ¢ €.
Each such z comes with an i,mPLi,cE,E error bound ¢, 20; this is a real
number for which we can quarantee that |z - 2| <e,. We also define

the relative error bound for = by p, iz . /2% We finally denote by
€:22"7¢1/% the “machine accuracy”,

Remark 3.1. Interval arithmetic [3%] (or ball arithmetic [29,
Chapter 3]) provides a systematic method for tracking error

bounds by storing the bounds along with 2. We will use similar
formulas for the computation of e, and p., but we will not actu-

ally store the bounds during computations.

3.2. Basic arithmetic

In this section we give error bounds and complexity estimates for
fixed point addition, subtraction and mulkiplication, under certain
simptifjing assumptions, In particular, in our DFTs, we only ever
need to add and subtract numbers with the same exponent. We
also give error bounds for fixed point convolution of vectors; the
complexity of this important operation is considered later,

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 17

For x € R, we define the “round towards zero” function [x] by
Lx—, =]_x,f i.f x 2 © and [_x—, = rx_’ i.f x £ O, For x, y € K, we defi.he

Lx +yi]:=lx]+[y]i. Notice that [L2]]¢]z] and JL=T]- 2] V2 for any
ze,

PROPOSITION 32, Let z, u e p 25 Define the fixed point sum and difference
ztu,z~u «C, et by m i, :=L(m, 2 m, /7], Then z + u and z = u can be
compuled in time O(p), and

 PrP
pziu = 2

+ €.

Proof. We have

27Fg\/2.27 ge

K.z iu)—(ziu)‘ “.mzimu‘l m, T m,

Rert 2 2
and
(zzu)-(228)] e.+ve, p.*p.
getl < e+l = 2 ’
whence [(z 2e)- (22 &) /257 < (p, +p.) /2 + €. 0O

PROPOSITION 3.3, Let 2z p R and we@, 2% Define the fixed point product
zXue CC.F 2T by m, 5, := L2 m, m,]. Then z * u can be computed in time

o(1(p)), and

1+ps, & (Lrp)(21+p)(1+e)

Proof. We have

|z % - zu] /2% =27 m, mu']—2-f’mzmu[2_f’$\/§'2—’p$€
and
lzllu—&’|+|z-2|(|ul+l¢7—u|)
Ré=¢g,+R%¢g, +¢, €,

(Do + P+ P pu)RETe

~ N
leu-25

IN IN

]

Consequently, |z %« - 2&]/2%7<p, +p, +p.p, +es(1+p.) (2 +p,)1+
€)-1.]

‘Proposi&ion 3.3 may be gev\eratised ko numerical c-jcl.i,c convo-
Lution of vectors as follows.

1l¥ EVEN FASTER INTEGER MULTIPLICATION

PROPOSITION 3.4, Let k21 and n:=2% Let 2 ¢(C,2%)" and v e(@, 2%)".
Define the fixed point convolution z * o € (CC p ZEZ““H()“ by

. e | 97FTK .
M%), t= [2 z m., muiz], OLicn.

ia+ip=i (mod n)

Then

max (1 +p5,3) & max(l+p, Imax(l+p,)(1+e)

Proof. Let * denote the exact convolution, and write p, :=wax ;p.

and p, := max; p, . As in the proof of Proposition 3.3, we obtain
(2% e, = (2% u),|/257" <\ /2 27F g and

l(z' * u)i - (2' * g)l,l s 2 lzil uL'z - 2’121 &’L'zl

ig+ip=i (mod n)

< (. +pu+p.p.)

Zez*"eu*-k

The proof is concluded in the same way as Proposition 3.3, O

3.3. Precomputing roots of unity

let Hi={x + yie@: y20} and M, :={x + y L€« T, y 2 0}, Let
/i M = M be the branch of the square root function such that

Vel :ze? for 0¢0< . Using Newton's method [7, Section 3.5] and
Schonhage-strassen multiplication [50], we may construct a fixed

point square root function V7: M, = M, which may be evaluated in
time o(p log p log Log F)' such that [vZ - vZ| g€ for all 2 €M, For
example, we may first compute some u € H such that e -vz|se/4

and Ju| €1, and then take vz :=[2/ v} 277; the desired bound follows
since €/4++/2 27 ¢,

LEMMA 3.8, Let z ef.H,,, and assume Fthat ‘ZI =21 and p,£3/¥. Then py=4p, * €.

Proof. The mean value theorem impties that 'ﬁ -z 'SEZ mMox,,ep |1/
(2 va)| where p := {w € H: |w - z] € .}, For w € D we have |w] 2
2] -2 -2]-|a-w|21-3/%-3/%21/4; hence |\/Z -vz|¢e, =p.. By
construction |vz - vz|<e. We conclude that 'V‘E- \/z: Ispz + €, D

PROPOSITION 3.6, Let k¢ IN and p 2k and let @ = ezfi‘/zk. We may comlvul'e

1,0, 0%.., wzk'lce(f.l,, with pyi & € for all i, in time o(z“p log ploglog F)'

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 19

Proof. It suffices to compute 1, o, ..., w2l e H,. Starting from
©0®=1 and 0¥ =i, for each L= k-3, k-4,...,0, we compute w2 for
i=21,3,..,2“"" =1 using 022 Vo <2 and 0?12t 022
otherwise. Performing all computations with temporarily increased
precision p':= p +1lg p +2 and corresponding € := 2", Lemama 3.5
3E.etds P Sk €S/ 4. This also shows that the hypothesis p$3/% is

always satisfied, since €/4<1/32¢3/%. After rounding to p bits,
the relative error is at most €/4 + \/E 2 ' ge, D

3.4. Error analysis for fast Fourier transforms

A tight algorithm for compuling DFTs of length n = 2 2 2 is a
numerical algorithm that takes as input an n-tuple a € ((L".f,)"

and computes an approximation a e (CC,, 2¢7<Y" ko the DFT of a

2L -2/ n

with respect to w = e /" (or 0 = e i the case of an inverse

transform), such that

max (1+pz) €& max(1+p,)(1+e)3< 2

We assume for the moment thot any such algorithm has at its dis-
posat all hecessary root tables with relative error not exceedi,mg €.
Propositions 3.2 and 3.3 directly imply the following:

PROPOSITION 3.7. The bul‘l‘erﬂj algorithm 3B that computes a DFT of length 2
using the formula (ao, a1)*? {ac + a1, ao = ay) is Light.

Proof. We have p; $(p,, +p.,)/ 2+ esmax, p, +€<(1+max; p,) (1+e€)-
1. O

PROPOSITION 3.¥. Leb ky, ky 21, and let by and Sy be tight algorithms for
compuling DFTs of lengths 24 and 2", Then Ay @ Ay is a bight algorithm for
compuling DFTs of length "7,

Proof. The inner and outer DFTs contribute factors of (1 + €)%?

and (1 +€)*27%, and by Proposition 3.3 the twiddle factor mulkipli-
cations contribute a factor of (1 +¢e)?. Thus

max (1 + Pa-) < wax (1 + pa,;) (1 + 6)(3:<1-2)+2+(3:<2'2) < wax (1 + Pai) (1 +

L

6)3(1(14- k)= O

COROLLARY 3.9. Let k21, Then B°< isa tight algorithm for comlnuéing DFTs
of length 2% over € p whose complexity is bounded by 0(2" ke I(/a))

20 EVEN FASTER INTEGER MULTIPLICATION

4. A SIMPLE AND FAST MULTIPLICATION ALGORITHM

In this section we give the simplest version of the new integer mul-
tiplication algorithm. The key tnovation is an alternative method
for computing DFTs of small length. This new method uses a com-
bination of Bluestein's chirp transform and Kronecker substitution

(see sections 2.5 and 2.6) to convert the DFT to a cyclic integer
product in (Z/ ("' -1)ZY)1] for suitable ',

PROPOSITION 4.1, Let 1 & r & p. There exists a tight algorithm €, for com-
puting DFTs of length 27 over €, whose complexily is bounded by 0(1(2’ lp) +

2 3p5).

Proof. Let n := 27, and suppose that we wish to compute the DFT
of a € (@€, 2°)". Using Bluestein's chirp transform (notation as in
section 2.5), this reduces to computing a cyclic convolution of
suitable F e ((CP 2Nx1/(x"-1) and G ¢ €, [x]/(x" - 1). We assume
that the £, and g; have been precomputed with pg,p,, e

We may regard £:22/""F and 6" :=2/ ¢ as eyclic polynomials
with complex integer coefficients, ie., as elements of Z[I][x]/(x" -
1), Write £ = 322 F X' and &' = 322 & XY, where £, &! € Z2[i]
with |£/] ¢ 27 and |a/] ¢ 27, Now we compute the exact product
W= F e e ZLULX] /(¥ = 1) using Kronecker substitution. More
precisely, we have [|#;] & 2°r"7 so it suffices to compute the cyclic
integer product H(2P) = F(RP) ¢ (2P) e (Z2 / (2" - 1) Z)[1], where b :=
R p+r+2z20(p). Then #:=H 27’ is the exact comvolution of F and
&, and rounding # to precision p yields £ * G e(CL”./, 2" \[x]/ (x"-1)
n the sense of Proposition 3.4. A final mulbiplication by £ yields
the Fourier coefficients &, e, 2",

To establish tightness, observe that 1 +p. (1 +p,) (1 + € and
P, & €, so Proposition 3.4 ylelds 1 +pigy (1 + p) (1 +)% where
Pa iz max, p, ; we conclude that 1+p; <(1+p,)(1+€)b. For r23, this
means that the algorithm is tight; for r<2, we may take €, := 3.

For the complexity, observe that the product in (Z/ ("t -1) Z2)[i]
reduces to three integer products of size 0(n p). These have cost
O(I(n F)), and the algorithm also Pe.rforms o(n) multiplications in
<, coh&rébu&ing the o(n I(lp)> term, O

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 21

Remark 4.2, A crucial observation is that, for suitable parame-
ters, the DFT algorithm in Proposition 4.1 is actually faster than
the conventional Cooley-Tukey algorithm of Corollary 3.9, For
example, Y we assume that I(m) = m (log M)W, then to compute
a transform of length n over €, with n ~ p, the Cooley-Tukey
approach has complexity n? (log W), whereas Proposition 4.1

yields n? (log W) an improvement by a factor of roughly log n.

THEOREM 4.3, For n =? S0, we have

() I(lg? n) I(lg n)
= 0 + +1 1]
lo?nlglgn Llgnlglgn

lon (4.1)

Proof. We first reduce our integer product to a polynomial product
using Kronecker segmentation (section 2.6). Splitting the two n-bit
inputs into chunks of b:=lgn bits, we need to compute a product
of polynomials u,veZ[X] with non-negative b-bik coefficients and
degrees less than m:=Tn/ b1z 0(n/lgn). The coefficients of h:zuv
have 0(lg n) bits, and we may deduce the desired integer product
K(2%) n time o(n).

Let & := lg (2 m). To compute v v, we will use DFTs of length
2“z0(n/lgn) over €, where p:=2b+r2k+lgk+¥=0(lgn). Zero-
Pc\ddi\r\g u to obtain a sequence (uo, ..., g1 Y€ (C P 2P%°, and similarly
for v, we compute the transforms &, U € (€, 2"7P" with respect to

2T/2° a5 follows.

w:ze

Let r:zlglgn and d:=Tk/rizo(lgn/lglgn). Write k=r +-+ry
with r.:zr for i¢d -1 and ry:zk=(d =1) r&<r. We use the algorithm
o iz Sy ® - 0 Ay (see section 2.3), where for 1 ¢ ¢ d - 1 we
take 4, to be the tight algorithm €, for DFTs of length 2" < lg n
given by Proposition 4.1, and where /b, is %™ as in Corollary 3.9,
In other words, we split the kK usual radix-2 layers of the FFT
into groups of r layers, handling the transforms i each group

with the Bluestein-Kronecker reduction, and then using ordiv\arjj
Cooley-Tukey for the remaining ra layers.

b+2/<; and

We next tom[auf:e the Poih(zwise Produc&s Z;L- =40, «(L’"./, 2%
then apply an inverse transform A defined analogously to A, A
final division by 2 (which is really just an implicit adjustment of

expov\ev&s) -;;E,el.ds approximations h; eC, Rbr2k

22 EVEN FASTER INTEGER MULTIPLICATION

Since A and A’ are tight by Propositions 3.%, 4.1 and Corol-

lary 3.9, we have 1+p; <(1+€)%<72, and similarly for . Thus 1 *p; &

(1 + 6)610-3; so 1+ ph: £ (1 + 6)9“'5 < 2XF‘(9 P 6) < exr}(.zs—rl.g k-lu> <1+ 26+L3 k=p

after the inverse transform (since exp x €1 + 2 x for x £ 1). In

2b+r2ic+lg k- pré .
TEHTRETPT <1/ 4, s0 we obtain the exact

particular, g, =222 p, <2
value of &, by rounding to the nearest integer.

Now we analyse the complexity. Using Proposition 3.6, we first
24~

compute a table of roots 1,0,...,0* 7! in time o{2“ p Llog p Loglog F):
0(n Llg n), and then extract the required twiddle factor tables in
time 0(2" % (F + k)) = 0(n lg n) (see section 2.3). For the Bluestein
reductions, we may extract a table of 27"-th roots in time o2~ p):
0(n), and then rearrange them as required in time 0(2’ r{p+ r)) =
o(lg* n lglg n) (see section 2.5). These precomputations are then all
repeated for the inverse transforms.

By Corollary 3.9, Proposition 4.1 and (2.4), each invocation of
A {or A" has cost

o{(e - 1) 257 (1(27 p) + 27 I(pY) + 274 27 ry I(p) + (d - 1) 2X I(p) +
r 2% ke

o{(cd =)27 (27 p) + (d + ra) 2X I(pY + p 2% i)

n n
- 2
0(I(lg* n) + 9o I(lg n)+n lg m).

Ll

]

lgnlglgn
The cost of the 0(2") pointwise mulkiplications is subsumed within
this bound. O

It is now a straightforward matter ko recover Firer's bound.

THEOREM 4.4. For some constant K » 1, we have

I(n) = olnulgn Pacl “3.

Proof, Let 7(n) := (1) /(1 lg n) for n 2 2. By Theorem 4.3, there
exisks xo 22 and ¢ > 1 such that

7(n) ¢ c(Tlg*)+ T(lgn)+1)
for all n » xo. Let 8(x):= 4 log® x for x € R, x > 1. Increasing xo if
necessary, we may assume that 8(x) < x - 1 for x » xo, so that the

function 8%(x) ;= min {j € N: 8V(x) & xol is well-defined. Increasing
C i necessary, we may also assume that 7(1)<3 ¢ for all n < xo.

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 23

We prove bj induction on 8 (1) that 7(n)<(3 YU for all n,

If 8*(W) =0, then n < xo, so the bound holds, Now suppose that 87(n)?

1. Since Lg? n £ B(n), we have 8*(lg n) < 8*(lg* n) < 8" (@(W)) = 8" (W) -1,
so by induction T(n)<c (3)W rc(B3) M+ cg(3),

Finally, since 2(8(x)) < Log x, we have 2*(x) <2 log™ x + 0(1), so

(1) = 0(k°9 ") for Kk :=(3). O

5. LOGARITHMICALLY SLOW RECURRENCE INEQUALITIES

This section is devoted to developing a framework for handling

recurrence Lhequo&i&ies, similar to (4.1), that appear in subsequeh&
sections,
Let &:(xo,20)=» R be a smooth increasing function, for some xo €

R. We say that 8% (xo,00) = R’ is an iterator of & if 8" is increasing
and

8 (x) = & (@(x))+1 (5.1)

for all sufficiently large x.

For instance, the standard iterated logarithm Llog* defined
n (1.2) is an iterator of Log. An analogous iterator may be defined
for any smooth increasing function B: (xo, 20) » R for which there
exists some 0 2 xo such bthat &(x) ¢ x = 1 for all x » 0. Indeed,
in that case,

3*(x) = min{rem: Q°“(x)$0}

s well-defined and satisfies (5.1) for all x » 0. It will sometimes

be convenient to increase xo so that 8(x) < x =1 is satisfied on the
whole domain of &,

We say that & is logarithmically slow if there exists an teN such that

(Log”f od °ex[o°f>(x) = logx+o0(1) (5.2)

for x -»c0. For example, the functions Log (2 x), 2 Llog x, (Llog x)* and
(Log xYealeax gre logarithmically slow, with t=0,1,2, 3 respectively.

LEMMA 8.1, Let &:(xo,90)? R be a logarithmically slow function, Then there

exists 02 xo such that Q(x) $x=1 forall x > 0. Consequently all logarithmically
slow functions admit iterators.

Proof. The case £ = © is clear. For {21, let F:izlogoedo exp. By
induction T(x)<x -1 for large x, so Q(x)sexp(tog x-1)=x/e<x-1
for large x.]

24 EVEN FASTER INTEGER MULTIPLICATION

In this paper, the main role played by logarithmically slow func-
tions is to measure size reduction in wmulkiplication algorithms. In
other words, mulkiplication of objects of size n will be reduced
to nmulkiplication of objects of size n', where n' & 8(n) for some
logarithmically slow function #(x). The following result asserts
that, from the point of view of iterators, such functions are more
or less interchangeable with Log x,

LEMMA 8.2, For any iterator 8" of a logarithmically slow function 8, we have
2" (x) = log™x+o0(1).

Proof. First consider the case where t=0 in (5.2), i.e., assume that

|8(x) - Llog x| ¢ ¢ for some constant >0 and all x » xo. Increasing xo

and ¢ if hecessary, we may assume that 2 (x) = 8 (@8(x)) + 1 for all

x 7 xo, ad thal 2 €*€ > xo.
We claim that

2 <a(x)<2log 4 (5.3)

J
ESxSZy == 2

for all y >4 &*°. Indeed, if %Sx $2 y, then

%Log7stogg—c¢$¢(§>$¢(x)$¢(2 y)SLog(Z yy+cszlogy.

Now, given any x » 4 €*¢, let k:= min { k€ IN: Log™ x £ 4 €3}, so k2 1.
For any j=9,..., k-1 we have log™/ x> 4 e*c, so k-fold iteration of
(8.3), starting with y=x, jiei.ds

Logn‘jx
2
Moreover this shows that 8V(x) > 2 €2 > xo for 0 < j < k, s0 8%(x) =
(2 (x)) + k. Since T(x) <2 log™ x £ ¥ *C and k =log® x + 0(1), we
obtain #*(x) =Llog™ x + 0(1).
Now consider the general case {2 0, Let ¥:= Log“f odo ex[o"f, SO

<8Y(x)¢2logYx (0< k).

that ¥° := 8% o exp"f is an iterator of ¥, By the above argument
T(x) = log® x + 0(1), and so 8*(x) = T(log™ x) = Log*(log™ x) + 0(1) =
log® x =+ 0(1) =Llog™ x + 0(1). D
The next result, which generalises and refines the arqument of
Theorem 4.4, is our main tool for converting recurrence inequal-
ikies into actual asymptotic bounds for solutions. We state it in a
slightly more general form than is necessary for the present paper,
anticipating the more comptico&ed sttuation thab arises in [24].

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 28

PROPOSITION 8.3, Let K > 1, B 20 and L € N, Let xo 2 exp"f(l), and let B:
(xo, ©0) 2 R be a logarithmically slow function such that B(x)<x -1 for all
x ? xo. Then there exists a positive constant C (depending on xo, ®, K, B and £
with the following property.

Let 02 xo and L> 0, Let P ER, and et T: L -» R? be any function satisfying
the following recurrence. First, T(yY& L for all y € F, 4y £ 0. Second, for all
ye £, Yy 7 0, there exist yi,.u.; yy € F with ye & Q(_:j), and weights Y1, ..., Y4 2 ©
with ¥, y; =21, such that

)Z Ve T(9:) * L.

(=1

log™ y-log®
Then we have T(yYSCLK 2 779 forall y& #, y» 0.

Proof. Let 0, L, # and T(x) be as above. Define &;(x):=min{renN:
&“(x) <0} for x » xo. We claim that there exists reN, depending only
ol xo and &, such that

8(x) ¢ log*x-log*o+r (5.4)

for all x >0, Indeed, let 8" (x):=min{ j e!N: 8V(x) < xo}. First suppose
0> xo, 50 that 8*(0)21. For any x » 0, we have B Y5 0, so

gHE)-1+87(0)-1)(Y 5 g8 O)1)(5Y 5 xo,

and hence &% (x) > &;(x) + &*(0) - 2. This Last inequality also clearly
holds f 0 = xo (since © » -2). By Lemma 5.2 we obtain &5(x) £
2" (x) = 8"(0) + 0(1) =Llog™ x - log™ o+ 0(1).

Define a sequence of real numbers £, &, ... by the formula

£

{14—3 U jsr+t,
j o=

1+8/ ex,a"(f DY et
We claim that
1+ B/Log"f x £ Epix) (8.8)

for all x > 0. Indeed, let j := 85(x). If j ¢ r + ¢ then (5.5) holds
as x > 02 xo 2 exp™(1). If j > r+ 1t then log® x 2 j - r by (5.4), so
x 2 expfu (1) and hence log™ x 2 efoU “rmt1(1,

Now let ye. . We will prove by induction on j:=85(y) that

T(y) & &1 EJL(KJ+"-+K+1)

26 EVEN FASTER INTEGER MULTIPLICATION

for all y > xo. The base case j:=0, Le, y<0, holds by assumption.
Now assume that j21, so y>o0. By ththesi.s there exist ..., yq €5,
9. $8(y), and yi, ..., Vu 20 with Xy, =1, such that

T(y) & KE;Z ViT(y)*L.
Since 34)< 85(8(y)) = 85(y) - 1, we obtain
T(y) & KEjE vyl) Lk e e k1)) r L

z g gL(k e r kR k)L
£ El"-EJL(Kj+"'+K2+/(+1).

Finally, the infinite product

, B
E':::Tr E'JS(l*‘B)rHTr (1+‘m)

J21 k20

cer&aihtj converges, so we have T(y) SEL KJ+1/(K -1) for Yy ? xo.

Setting c:=£ k™ /(k - 1), by (5.4) we obtain T(y)¢cL Pt el for
all y >0, O

&, EVEN FASTER MULTIPLICATION

In this section, we present an optimised version of the new integer
multiplication algorithm. The basic outline is the same as i sec-
tion 4, but our goal is now ko minimise the “expansion factor” at

each recursion level. The necessary modifications may be sum-
marised as follows,

© Since Bluestein's chirp transform reduces a DFT to a complex
cyclic convolution, we take the basic recursive problem to
be comPLex cvctic integer convolution, i.e,, mut&ipucq&wv\ in
(Z /(2" -1) Z)[1], rather than ordinary integer mulkiplication.

e In mulkiplications involving one fixed operand, we reuse the
transform of the fixed operand.

e In a convolution of length n with nput coefficients of bit
size b, the size of the oubput coefficients is 2 b+ 0(lgn), so the
roatic of output to input size is 2+ 0((lg n)/b). We increase b

from lgn to (lgn)?, so as to reduce the inflation ratio from
o(1) to 2+ 0(1/1lg n).

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 27

¢ We increase the “short transform length” from lg n to
(Lg natonrold - rhe complexity then becomes dominated bj

the Bluestein-Kronecker multiplications, while the contribu-
tion from ordiha\rj arithmetic in €, becomes asymptotically
negligible. (As noted in section 1, this is precisely the oppo-
site of what occurs in Firer's algorithm.)

We begin with a technical preliminary. To Perform multiplication
n (Z/@"-1)z2)i] e.fficie.h&tj using FFT mulkiplication, we need
n to be divisible by a high power of two. We say that an integer
n2 3 is admissible f 20| n, where kK(n):=lgn -Llg(lg? n) +1 (note that
osk(n) slgn for all n 2 3). We will need a function that rounds
a given n up to an admissible integer. For this purpose we define

a(n) 1= Tn /24907 240 for w2 3. Note that a(n) may be computed in
time o(lg n).

LEMMA 6.1, Let n 2 3. Then al{n) is admissible and
4 n

ngaln)sn+ gt n (6.1)

Proof., We have n ¢ a(n) € n + 2"(‘“, which E.mPLi.es (6.1). Since
n /24 g pla) ppd k(n)<lgn, we have [n /20 g2l w0 and bhus
alnd £ 219", te., lgan) =lgn. In particular kK(a(n)) = k(n), so a(n)
ts admissible, (In fact, one easily checlkes that aln) is the smallest
admissible integer zn). m]

Remark 6.2, It is o«:&u,od.tv Fossibte to d\rop the requirement that n
be divisible bv a high power of two, bj using the Crandall-Fagin
mebhod (see section 9). We Prefer to avoid this approach in this

section, as it adds an unhecessary layer of complexity to the pre-
sentation,

Now let n be admissible, and consider the problem of computing
t21 Producfss Ve g v WM wg e, uy Ve (Z/(E“‘l) ZY)1i], e, &
products with one fixed operand. Denote the cost of this operation
by Cnd. Our algorithm for this problem will perform & +1 forward
DFETs and ¢t Uverse DFTs, so it is convenient to inkroduce the nor-
malisation

C‘E(“)

8 .
“Potrr1
(2%

Cln) :=

R¥ EVEN FASTER INTEGER MULTIPLICATION

This is well-defined since clearly C(n) <t Cy(n). Roughly speaking,
C(n) may be thought of as the notional cost of a single DFT.

The problem of mulkiplying k-bit integers may be reduced to the
above problem by using zero-padding, ie., by taking n:=af2 k + 1)
and £ := 1, Sinece a2 k + 1) = 0(k) and C(n) £ 3 C(n), we obtain
(k) € 3C(0(k)) + 0(k). Thus it suffices to obtain a good bound for

Cln).
The recursive sEeP i the main mui&iptiaa&iov\ algorithm nvolves

computing “short” DFTs via the Bluestein-Kronecker device, As
Poim&ed out in section 2.5, this leads to a cyclic convolution with
one fixed operand. To take advantage of the fixed operand, let
B,,(2") denote the cost of computing ¢ independent DFTs of length
2" over ©,, and let BF(Zr) 12 Ui BN(T)/(.Z £+ 1). Then we have
the following refinement of Proposition 4.1, As usual we assume
that the necessary Bluestein root table has been precomputed.

PROPOSITION &.3. Let r2z 3, and assume that 27 divides n’:= O(((Z prr+ 2) 2r>.
Then there exists a Light algorithm €' for computing DFTs of length 27 over €,
with

B,(27) & Cl)+ o2 1(p))

Proof. We use the same notation and algorithm as in the proof of
Proposition 4.1, except that it the Kronecker substitution we take
b:=2n' /2722 p+r+2, so that the resulting integer multiplication takes
place in (Z/(@"-1)Z)i]. The proof of tightness is identical to
that of Proposition 4.1 (this is where we use the assumption rz 3).
For the complexity bound, note that ' is admissible by construction,
so for any ¢ 2 1 we have BN(Y) € Cln) + O(E 2" I(lp>). Here we
have used the fact that G is fixed over all these multiplications.
Dividing by 2 ¢ +1 and taking suprema over £21 yields the result. O

The next result gives the main recurrence satisfied bj C(n) (com-
pare with Theorem 4.3),

THEOREM &.4. There exists xo 2 3 and a logarithmically slow function ®:

(xo, OO) =» R with the fotlowihg lpro,verl-y. For all admissible n » xo, there exists
an admissible n’ & B(n) such that

Cln) 1 Cln?
nlgn < (f{ " 0(1.3 lg n)) n'lgn’ +o(0). (6.2)

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 29

Proof. Let n be admissible and sufficiently large, and consider
the problem of compuling ¢ 2 1 products uy v, .., w v, for uy, ..., u,
ve(Z/@ -1)Z)N1i]. Let k := k(n) ~ lg n, so that 2% | n, and Llet
b:z=n/2"xlg* n.

We cul the inpuls into 2 chunks of size b, Le., f w is one of the
E+1 npubs, we write w = wo+ wy 28+ + wpe) 28D where w, € Z[1],
and where the real and imaginary parts of w; have absolute value at
most 22, Thus Jw,]<+/2 122 <2571, and for any p2b+1 we may encode
w as a polynomial we (CCP 2P x]/ (3 = 1),

We will mulkiply the desired (cyclic) polynomials by using DFTs
of length 2“ over C, where p:=2b+r2k+lgrrlo= o(lg® n). We
construct the DFTs in a similar way to section 4. Let r:=(lglgn)?
and d :=2Tk/rl= o(lgn/(lglg n)?). Write k= r ++ry with r:=r
for isd -1 and ry:zk={(d-1)r<r. We use the tight algorithm
o 1z Sy @ @ Ay, where for 1 € ¢ d - 1 we take A, ko be the
tight algorithm € for DFTs of length 27 given by Proposition 6.3,
and where Ay is B4 as n Corollary 3.9, Thus, for the first
d -1 groups of r layers, we use Bluestein-Kronecker to reduce to
complex integer convolution of size n':= a((z prr+ 2) 2"), and the
remaining layers are handled using ordinary Cooley-Tukey. We
write A’ for the analogous inverse transform,

To check the hypothesis of Proposition 6.3, we observe that 27| n’
for sufficiently large n, as n’' is divisible by 2 where k' :=z lg n’ -
lg(lg® n) +1, and

n’ (2 pr r+2) _" bar (Lg n)?)
xtﬂz""xigz((zp+r+2>2r)x(tﬂb*‘r)zx(igtgn)‘* &

r

2K r2

Denote by D the cost of a single invocation of A (or A). By
Corollary 3.9 and (2.4), we have

D g (A =18, 527+ 0(257 2 rg I(py) + 0(d 2% I(pY) + 0(2% ke b).

The last term is the rearrangement cost, and simptifies ko o(n Lgn).
The second term covers the invocations of A4, and si,mpl.bfies to
o{r 2 1(p)), so is absorbed by the o 2% I(p) term. The first term
covers the tnvocations of €. By definition B,2-{2) ¢ (2 - 277 +
1) BF(Zr), and since 2“7 rlglgn, Proposition &.3 yields

B2 & (2+0(1/lglgnd) 2“7)+ o(2“ 1(p)).

30 EVEN FASTER INTEGER MULTIPLICATION

Thus
D ¢ R+0o(1/lglgn))d 2477 Cln)+ o(d 2k 1(,,)) +0(n Llg n).

We will use Schonhage-Strassen's algorithm for fixed point
multiplications in €,. Since p = o{lg® n), we may take I(p) =
o(lg* n lglg n lglglgn). Thus the o 2~ I(p) term becomes

lglglgn _
lglgn -

lgn n .
0((1,31.3“)2 ngm lg* nilglgnilglglgn]= o(u lg n

o{n Lg n).

(We could of course use our algorithm recursively for these mul-
tiplications; however, it turns out that Schénhage-Strassen is fast
enough, and leads to simpler recurrences. In fact, the algorithm
asymptotically spends more time rearranging data than mulkiplying
i C l,,!)

Since (2 prr+r2)2=(4b+ollgu))2 =(4+0(1/lglgn)) 27, and
since Lg(b 27 =r+ollglgn)=(1+0(1/1lglgn)) rriglgn, by Lemma 6.1
we have

n' (4+0(1/lglgnd)) b2,
(1+0(1/lglgn))r.
We also have k=lgun+o(lglgn) and d = k/r+0(1), so
lgn = (1+0(1/lglgn)) K,
d (1+0(1/lglgn)) x/r.

- 4 (24 b) d 1 nlgn
AR ETGE ey C\Y A\ gign) nigar

!

lgun

!

1}

Thus

and cohseque\r\&tj
1 nlgn)
D < (f(+ O(LS s “)) i n)+ o(n lg n).

To compute the desired ¢ products, we must execute ¢+ 1 for-

ward transforms and ¢ inverse transforms. For each product, we
must also Perfcrm o(“) Poivﬂmise mu&iptica&ions n €, at cost

0(2" I(Iv)) = 0(n Llg n). As in the proof of Theorem 4.3, the cost
of all necessary root table precomputations is also bounded by

0(2“ I(.f’)) =z 0(nlgn). Thus we obtain
Cln) ¢ Re+1)D+o0(Enlgn)

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 31

Dividing by (2 ¢ + 1) n lg n and taking suprema yields the
bound (&.2).

The error analysis is almost identical to the proof of The-
orem 4.3, the only difference being that b is replaced by b + 1.

Denoting one of the ¢ Produd:s bj he (CL”.F ZZb*Z"*z)}:X]/(sz - 1), we
have p,, e exactly as in Theorem 4.3, Thus g, g Rkl

1/ 4, and again we obtain k; by rounding to the nearest integer,

Finally we show how to define 8(x). We already observed that

lg n' ~ r ~ (lg lg n)? Thus there exists a constant ¢ > © such that
log log log n’ g log log log log n + ¢ for large n, so we may take
B(x) := exp®(Llog™ x +),]

Now we may prove the main theorem anncunced in the Inktro-
duction,

Proof of Theorem 1.1, Let x5 and &(x) be as in Theorem &.4,
Increasing xo Y necessary, by Lemma 5.1 we may assume that 8(x)<

x =1 for x > xo, and that xo 2 exp (exp (1))

Let 7(n) := €)Y/ (1 lg n) for admissible n 2 3, By the theorem,

there exist constanks B,L> 0 such that for all admissible n > xo, there
exiskts an admissible n'< 8(n) with

T(n) ¢ 5‘{(1)T(_u')+L.

" loglogn
Increasing L if necessary, we may also assume that 7(n) <L for all
admissible n € xo. Taking ¥ to be the set of admissible integers,
we apply Proposition £.3 with K := ¥, 012 xo, {12 2, and for each
admissible n > xo setting d :=1, y1:21, y:=n and y :=n' as above.
We conclude that 7(n) = 0(°9"), and heince C(n) = o(n lgn glo9’ny

as n runs over admissible integers. We already pointed out that
(k) £ 3 o)) + 0(k). o

7. AN OPTIMISED VARIANT OF FURER'S ALG-ORITHM

As pointed out in the Introduction, Firer proved that I(n) =

oln log n PaclS) for some Kk > 1, but did not give an explicit
bound for k. In this section we sketch an arqument showing that

32 EVEN FASTER INTEGER MULTIPLICATION

one may achieve K =16 in Firer's algorithm, by reusing tools from
previous sections, especiattj section &,

At the core of Fiirer's algorithm is the ring & = C[x]/(x* + 1),
which contains the principal 27-th root of unity X. Note that R is a
direct sum of 2! copies of €, and hence not a field (for rz2). A
crucial observation is that X is a “fast” root of unity, in the sense
that mulkiplication by X and its powers can be achieved in linear
time, as in Schonhage-Strassen's algorithm. For any k> r, we need
to construct a 2“7"-th root © of X, which is itself a 2“-th principal

root of unity., We recall Firer's construction of o as follows.

2ai 2ai
LEMMA 7.1, With R as above, let 0 = exp —— and O=exp ——. Then
771 2 j+1
20+1 Myee X =07
w = Z [R TE T R
(=0 Trj;hi (G t-o)

is a principal 2“-th root of unilty with 0¥ 2 X. The coefficients of ® have

absolute value £1.
Proof. See [19, Section 4],]

As our basic recursive probtem, we will consider mu&iptica&iom
n (Z /(2" + 1) Z)[1], where n is divisible by a high power of two.
We will refer to the last property as “admissibility”, but we will not
define it precisely. We write C(n) for the cost of 21 such products
with one fixed arqument, and C(n):= supi Cn) /(2 &+ 1) for the
normalised cost, exactly as in section &,

Furer worked with Z /(2" + 1) Z rather than (Z /(2" + 1) Z)[1],

but, since we are interested in constant factors, and since the
recursive wmultiplication step nvolves mulkiplication of complex

quantities, it simplifies the exposition to work systematically with

complexified objects everywhere.

For suitable parameters r and k, we will encode elements of
(ZZz /(2" + 1) ZY)[i] as (nega)cvctic polynomials in R[¥1/(¥* + 1),
where g 1= €[x]/(x¥ " + 1) as above. We choose the parameters
later; for now we require only that 2“77% divides n and that b :=
n/27 2 21lgn (so that the coefficients are not too small).

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 33

The encoding Proceeds as follows., Given a eZZ/(2" +1) Z, we
split a into 2 parts ao, ..., g1 of 1 /2" biks. Each a; is cul into 277*
even smaller pieces a; o, -+ a;2-2-1 of b bits. Then a is encoded as

2k-1 2r%-1
a := z z ai‘jX‘j‘/",
(=0 \f:c
and an element v = x + y Le(Z /(2" + 1) Z)[i] is encoded as & :=
£+ 5 i (Notice that the coefficients of ¥/ are zero for 277%¢ j <2 Y
this zero-padding is the price Firer pays for introducing artificial
roots of wnity.)

We represent complex coefficients by elements of €, 2° for a
suitable precision parameter p. The exponent e varies during the
algorithm, as explained in [19]; nevertheless, additions and sub-
tractions only occur for numbers with the same exponent, as in the
algorithms from sections 4 and &,

Given u, v € (Z /(2" + 1) Z)[i], to successfully recover the
product w v from the polynomial product &'V e R[¥]1/(¥¥ + 1),
we must choose p 22 b + ik + r + k, where h is an allowance for
numerical error. Certainly r & k $lgn, and, as shown bj Furer, we
may also take h = o(lg n) (an analogous conclusion is reached in
sections 4 and 6). Thus we may assume that p =25+ o(lg).

We must now show how to compute a product & 7, for &, V e
R[¥]/(¥? +1). Furer handles these bypes of mulkiplications using
“half-DFTs", L.e,, DFTs that evaluate at odd powers of n, where ner is
=X (Lemma 7.1). To
keep Eermi.\aotogv and notation consisktent wikth previous sections,

2&*1—r

a principal 2“7I-th root of unity such that n

we Prefer to wmake the substitution u(x, ¥):= &(x,n ¥), ie, writing
g o= B v, we put U := I, (& n) ¥4, and similarly for ¥
and V. This reduces the problem to computing the product vV in
R[¥]/(¥* -1). The change of variable imposes a cost of 0(2“m,),
where m, is the cost of a mulkiplication in R.

So now cownsider a Produc& UV, where U, Ve[¥]/(¥* -1). Let
w:=n?, so bthat 0¥ =X, Leb d:2Tk/r], and write k= ry +-+ ry with
roc=r for isd -1 and ryi=k-(d-1)r<r. For each ¢, let A, be the
algorithm for DFTs of length 27 that applies the usual Cooley-Tukey

method, taking advantage of the fast 27-th root of uniby X3

24 EVEN FASTER INTEGER MULTIPLICATION

The comptexi&v of A, is 0(2”” r; Iv), since it Performs o2 r.)
Linear-time operations on objects of bit size o027 p). Let D be the
complexity of the algorithm A :z A, 6+ 0 Ay for DFTs of length 2%
over R. Then (2.4) ji,el.ds

d
ke
'D S: 0(z 21{"'?’5 2?’[*‘7‘ riF) + [_] 2‘< mg + 0(“ LS “)}
r

i=l
The first term is bounded bj o(o(Rk 2r r,a) = 0((2"”,4) k) = 0(n Llg n),
since p = 0(b).

Let us now consider the second term [k / r] 2 m,, which
describes the cost of the twiddle factor mulkiplications, This term

turns out to be the dominant one. Both Kronecker substibution
and FFT mulkiplication may be considered for mulkiplication in g,

but it turis out that Krownecker substitution is faster (a similar
phenomenon was noted in Remark 4.2). So we reduce wmulkipli-

cation in R to multiplication n (Z / (% + 1) ZYi] where n' 2
27 (2 p+ r +2) is admissible and divisible by 277!, For any rea-
sonable definition of admissibility we then have n'=(1+o(1))27p,
provided that r is somewhat smaller than p. (In the interests of
brevity, we will not specify the o(1) terms for the remainder of
the argument. They can all be controlled along the Llines of sec-
tion &.) Most of the twiddle factors are reused many times, so
we will assume that m, = (2 + o(1)) C(n), where the factor 2 counts
the two (rather than three) DFTs needed for each mulkiplication
of size n'. The term of interest then becomes

P E R

»
[—] 2¥m, = @+ o(1))

r

nlgn’
lgn
Since p=2b+o(lg n)= (2 + 0(%)) b and 27" b = 4 n, this 3&21.6\5

Ll n r+l nlgn
D < (1e+o(1))(1+o(3)) 3rr3
b r n'lgn’

)+ o(n Llg n).

To minimise the leading constant, we must choose b to grow faster
than Lg n, and r to grow faster than lg p. For example, taking

r:z(lglgn) and k:z=lgn-r-1lg(lg® n) leads to b = 4 n /2" %
l9* n and lg p = lg b X lg lg n. The function mapping n to n' is
then bounded by a Llogarithmically slow function, and a similar
argument to section & shows that I(n) = 0(n Llogn 1699),

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 38

¥. FAST MULTIPLICATION USING MODULAR ARITHMETIC

Shor&tj ofter Firer's algorithm QPPeared, De ek al [15] Preseh&ed a

variant based on modular qri&kme&i{: that also achieves the com-
plexity bound I(n) = oln log n K99y for some Kk > 1. Roughly

speaking, they replace the coefficient ring € with the field @, of
p-adic numbers, for a suitable prime p. In this context, working
to “finite precision” means performing computations in Z/ p' Z,
where 121 is a precision Poumme&e.r.

The main advantage of this approach is that the error analysis
becomes brivial; indeed Z / ,vA Z is a ring (unlike our CCP), and
arithmetic opero&ions never lead to precision loss (unless one
divides bv ps which never happens in these algorithms), The main

disadvantage is that there are certain technical difficulties associ-

ated with finding an appropriate p; this is discussed in section ¥.2
below.
The aim of this section is to sketch an analogue of the algorithm

of section & that achieves I(n) = 0(n log n ¥°9") using modular
arithmetic instead of €. We assume familiarity with p-adic num-

bers, referring the reader to [22] for an elementary introduction,

%.1. Skebtch of the algorithm

For the basic Probte.m, we talke multiplication in Z /(2" - 1) Z, where

n is admissible (in the sense of section &) and where one of the
arguments is fixed over ¢ 2 1 multiplications., As before, we take

k:2k(n), and cuk the tnputs into chunks of b:=n/2"=0(lg?* n) bits,
Thus we reduce to mulkiplying polynomials in Z[x]/(x* - 1) with

coefficients of ot most b biks. The coefficients of the product have

ok most 2 b+ K biks,
Let p be a prime such that p = 1 (mod 2“), so that ®, contains

a primitive 2“-th root of unity w. The problem of finding such p
and o is discussed in the next section; for now we assume only
that Lg p = 0(lg n). We may then embed the multiplication problem
into @F[X]/(sz- 1), and use DFTs with respect to o to compute the
product. On a Turing machine, we cannot represent elements of ® p

exactly, so we Perform all computations in Z/ ,ﬂz where

A !' 2b+ ke]
T (ap)-1]

36 EVEN FASTER INTEGER MULTIPLICATION

This choice ewnsures that Lg(,ﬂ) 22 b + Kk, so khowledge of the
product in (Z. / ,,/‘ Z.)[X]/ (¥ = 1) determines it umambiguaustj i
2x]/(x¥ - 1),

To compute each DFT, we first use the Cooley-Tukey algorithm
to decompose it ko “short tramsforms” of length 27, where r :=

(lg Lg n)? (As U section &, there are also residual transforms of
length 2™ for some rq € r, whose contribution to the complexity

is hegligible.) Mulkiplications in Z/ p)\ Z, such as the multiplica-
tions by twiddle factors, are handled using Schonhage-Strassen's
algorithm, with the divisions by p* being reduced to multiplication
via Newton's method. We then use Bluestein's algorithm to convert
each short transform to a cyclic convolution of length 27 over

Z/ p' Z, and apply Kronecker substitution to convert this to multi-

plication in Z / (2"'-1) Z, where n'’ is the smallest admissible integer

exceeding 2" (2 Alg p + r). This mulkiplication is then handled
recursively,

Now, since Lg p=o(lgn), lg p2k, bxlg®n and k=0(lgn), we have
A=+ 0(1/lgu)) b/Llg p, and hence n'=(4+0(1/1lglgn)) b 27, just
as in section 6. The rest of the complexity analysis follows exactly
as in the proof of Theorem &.4, except for the computation of p
and o, which is considered below,

Remark ¥.1. The role of the precision parameter A is to give some
extra flexibility regarding the choice of p. If there was an efficient
way to find a prime p =1 (mod 2“) larger than 222"% (but wnot too
much larger), and an efficient way to find a suitable 2“-th root
of unity modulo p, then we could always take A:=1 and obtain an
algorithm working directly over the finite field o=,

¥.2. Compuling suitable p and o

Given a transform length 2 for k21, our aim is to find a prime
p such that p=1(mod2), Le,, such that 2 divides p-1. Denote by
pol i) the smallest such prime.

Heath-Brown has conjectured that po(k) = 0(2 &) [26], but given

the current state of knowledge in number theory, we are only able
to prove a resulk of the following type.

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 37

Lemma ¥z For all Sufficienuj L“rﬂe k we have f’o(.k‘) < 26'<, and we may
compul-e ,vc(k) in time 0(25 Kk k-o(l))'

Proof, This is a special case of Linnik's theorem [36, 37], which
states that there exist constants ¢ and L such that for any a, beN
with gcd (a, b) = 1, there exists a prime number p = a (mod b) with
p < bt The best currently known estimate L <52 for L is due to
Xylouris [56]. Applying this resulk for a 21 and b = 2%, we get the
bound p<2°“ for large enough k. The complexity bound follows by
testing 24 +1,2+2¥+1,3:2+1,... for primality until we find p, using
a polynomial time primality test [1].]

The difficulty with this result — already noted in [15] — is that
the time required to find p greatly exceeds the time bound we are
trying to prove for I(n)!

To avoid this problem, De et al suggested using a multivariate
sPLiEELV\S, Le., bj encoding each integer as a Potvv\omiat i ZZ[Xy, ...,
X.] for suitable m, say m 2 7. One then uses m-dimensional DFTs
to mulkiply the polynomials. Since the transform length is shorter,
one can get away with a smaller p. Unfortunately, this introduces
further zero-padding and leads to a larger value of K, ruining our
attempt to achieve the bound o1 log n gtoomy,

On the other hand, we note that the problem only really occurs
at the top recursion level, Indeed, ok deeper recursion levels, there
is expomentially more time available ot the previous level to compute
p. So one possible workaround is to use a different, sufficiently
fast algorithm at the top level, such as Firer's algorithm, and then
switch to the algorithm siketched in section %.1 for the remaining
levels, In this way one still obtains the bound o(n log n gloany,
and asymptotically almost all of the computation is done using the
algorithm of section ¥.1,

If one insists on avoiding € entirely, there are still many
choices: one could use the algorithm of De et al at the top level,

or use a mulkivariate version of the algorithm of section ¥.1.
One could even use the Schonhage-Strassen algorithm, whose main

recursive step yields the bound 1(n) = 0o(n’? (W2 + u log n);
apptvihg this three times gives I(n) = o{n"% I(nMFY + n log n),

3% EVEN FASTER INTEGER MULTIPLICATION

and then to multiply integers with n'/® bits, one can find a suib-
able prime using Lemma ¥.2 in time 0(n3/ 47N = o(n).

Another way ko work around the Probl.em is ko assume the gener-
alised Riemann hypothesis (GRH). De et al pointed out that under
GRH, ik is possible to find a suitable prime efficiently using a ran-
domised algorithm. Here we show that, under GRH, we can even use
deterministic algorithms,

LEMMA ¥.3. Assume GRH. Then Ivo(lz‘) = 0(R%* 1*), and we may compute ,Uc(k)
in time 0(2% 10N,

Proof. The first bound is given in [27], and the complexity bound
follows similarly to the proof of Lemma % .2, O

To use this result, we must modify the algorithm of section %.1
slightly. Choose a constant ¢ » 3 so that we can compute polk)

i time 0(2% k), as in Lemma ¥.3. Increase the coefficient size
from (lgn)? to (Lgn)?, and change the definition of admissibility
accordingly., The transform length then decreases to 2 = o(n /
(Lg n)<1), and the cost of computing p decreases to only o(n Lgn).
The rest of the complexity analysis is essentially unchanged; the
result is an algorithm with complexity o(n log n %1991, working
entirely with modular arithmetic, in which the top recursion level
does hot need any special treatment.

Finally, we consider the computation of a suitable approximation
to a 2“-th root of unily in ®,.

LEMMA ¥.4. Given k, A 2 1 and a prime p = 1 (mod 29), we may find
OeZZ/ ,/z. such that @ = © (mod FA) for some primitive R4~th root of unity
WeQ,, in time 0(‘,5'1/4*"6'9- (k‘)\ log fz)“e) for any €» O,

Proof. We may find a generator g of (z/p Z)* deterministically
n kime 0(F1/4+e> [51]. Then &0 = g(”_l)/zk is a primitive 2“-th root
of unity in Z/ p Z, and there is o unique primitive 2“-th root of
u.hil:v w«(Qf, congruent to @ modulo p. Given Do, we may compu&e
® (mod //) using fast Newton Lifting in time o{(x 1 Llog F)“e) [o,
Section 12.3]. O

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 39

In the context of section %.1, we may assume that 1= o((lg Yoy
and k = 0(lg n), so the cost of finding w is o(p*/*"). This is cer-
tainly Lless than the cost of finding p itself, using cither Lemma .2
or Lemma ¥.3,

9. CONIECTURALLY FASTER MULTIPLICATION

It is natural to ask whether the approaches from sections &, 7
or ¥ can be further optimised, to obtain a complexity bound 1(n) =
o{n logn K991y with k < ¥.

In Furer's algorithm, the complexity is dominated by the cost of
multiplications in g = C[x]/ (¥¥7 + 1), If we could use a similar
algorithm for a much simpler g, then we might achieve a better
bound. Such an algorithm was actually given by Firer [17], under
the assumption that there exist sufficiently many Fermat primes, ie.,
primes of the form £, =2%" +1, More precisely, his algorithm requires
that there exists a positive integer k such that for every me N, the
SEUENCR Fpyry,-eey Fpmec COMEAAS @ prime number. The DFTs are then
computed directly over R = ¢, for suitable m, taking advantage
of the fact that 05 contains a fast 27"-th primitive root of unity
(.vmme.tj the element 2) as well as a 22"-th primitive root of uniby, It
con be shown that a suitably optimised version of this hypothetical
algorithm achieves K = 4: we still pay a factor of two due to the
fact that we compute both forward and tnverse transforms, and we
pay another factor of two for the zero-padding in the recursive
reduction. Unforizuhai:ei.j, ik is likely that £, = 65537 is the last
Fermat prime [12].

In the kK =¥ algorithm of section &, a potential bottleneck arises
during the short transforms, when we use Krownecker substitution
to mulkiply polynomials in € [x]/ (x¥ -1). We really only need
the high p bits of each coefficient of the product (ie., of the real
and imaginary parts), but we are forced to allocate roughly 2 p bits
per coefficient in the Kronecker substitution, and then we discard
roughly half of the output. This problem is similar to the well-
kinown obstruction that prevents us from using FFT methods to
compute a “short product”, ie., the high n bits or Llow n bits of the
product of two n-bit integers, any faster than computing the full
2 n bits,

40 EVEN FASTER INTEGER MULTIPLICATION

In this section, we present a variant of the algorithm of sec-
tion &, in which the coefficient ring € is replaced by a finite field
o~ l,[i_], where ,;:27— 1 is a Mersenne prime. Thus “short Froc\uc&s” are
replaced by “cyclic products”, namely by mulkiplications modulo
27 = 1. This saves a factor of two abt each recursion level, and
consequently reduces kK from ¥ to 4.

This change of coefficient ring introduces several technical
complications. First, ik is of course unknown if there are infinitely
many Mersenne primes. Thus we are forced to rely on unproved
conjectures about the distribution of Mersenne primes.

Second, q is always prime (except Possibi.j at the top recur-
ston level). Thus we cannol cut up an element of Z/ p Z nto
equal-sized chunlkes with an integral number of bits, and still expect
to take advantage of cyclic products. In other words, g is very

far from being admissible in the sense of section 6. To work
around this, we deploy a variant of an algorithm of Crandall and
Fagin [12], which allows us to work with chunks of varying size.
The Crandall-Fagin algorithm was origihattj Preseu&ed over C,
and depended crucially on the fact that R contains sai&o\bi:e rooks
of 2. In our setting, we work over & F.[L];D‘:(¥ where p=2’-1isa
Mersenne prime exponem&iau\j smaller than p. Haplai.tj, =, contains
suitable roots of 2, and this enables us to adapt their algorithm

to our setting. Moreover, since (F’)z -1=227 (277" - 1), the field
o= ,[i] contains roots of unity of high Power—of—&wo order, hamely

of order 277", s0 we can perform FFTs over & ,[i] very efficiently.

Finally, we can no longer use Kronecker substitution, as this
would reintroduce the very zero-padding we are trying to avoid.
Instead, we kake our basic Probi.em to be polynomial mulkiplication
over (Z& /p Z)[i,] (where p = 27 = 1 is not hecessarily prime).
After the Crandall-Fagin splitting step, we have a bivariate mulki-
plication problem over &, [i], which is solved using 2-dimensional
FFTs over 05, [i]. These FFTs are in turn reduced to 1-dimensional
FFTs using standard methods; this dimension reduction is, roughly
speaking, the analogue of Kronecker substitution in this algorithm,
(Indeed, it is also possible to give an algorithm along these Lines
that works over € but avoids Kronecker substibution en&iret\j; this

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 41

still yields K = % because of the “short product” problem mentioned

above.) For the l1-dimensional transforms, we use the same tech-
v\ique. as i Previous seckions: we use Cooiev—‘mkev's algorithm to

decompose them into “short transforms” of exponentially shorter

length, then use Bluestein's method to convert them to (univariate)
polynomial products, and ftv\aLL-j evaluate these products recur-

si.ve.tj.

2.1. Mersenne Frimes

Let m,(x) denocte the number of Mersenne primes less than x.
Based on probabilistic arguments and numerical evidence, Lenstra,
Pomerance and Wagstaff have conjectured that

eY

Tokx) ~ log2 log log x

as x =¥ o0, where y=0.6772... is the Euler constant [55, 42]. Our fast
multiplication algorithm relies on the following slightly weaker

con jecture.,

CONIECTURE 9.1, There exist constants © < a < b such that for all x » 3,

a loglog x < m,(x) < b log Llog x.

PROPOSITION 9.2, Assume Conjfecture 9.1 and let ¢ := b/a. For any integer
n 2R, there exists a Mersenne prime p = 27 =1 in the interval 2" < F(Z“C. Given

n, we may com/vul'e the smallest such ps and find a f’r'imiéive 27*1—[41 rook of
umil'y in [Ff’[i]’ in kime 0(“(3+o(1))c>'

Proof. The required prime exists since for nz2 we have

k2")7 a loglog (2" N z=aclogn +a loglog2> blogu +bloglog2=
b log log(2") > 7, (2").

An integer of the form 27 -1 may be tested for primality in time
qz*"m using the Lucas-Lehmer primality test [13]. A simple way to
compule p is to apply this test successively for all ge{n+1,...,ln°l};
Ehis takes time 0(u®TeEN) A primitive 277-th root of unily ©
may be computed by the formula o := 22"+ (-3 " Lers L] i time
0(c;2+°(1)); see [46] or [14, Corollary 5.]

42 EVEN FASTER INTEGER MULTIPLICATION

9.2, Crandall and Fagin's algorithm revisited

Let p =27 -1 be a Mersenne number (not necessarily prime). The
main integer mulkiplication algorithm depends on a variant of
Crandall and Fagin's algorithm that reduces mulkiplication in (Z. /
I z)[L][x] / (3("' -1 to mulkiplication in & GLDX, v 1/ (¥ =1, y¥ -1),
where p' = 27 - 1 is a suitably smaller Mersenne prime (assuming
that such a prime exists).

To explain the idea of this reduction, we first consider the sim-
pler univariate case, in which we reduce mulkiplication in (25 /

I Z.)[E,] to multiplication in & F[i][‘/ 1/(¥"-1). Here we require that
N g, that gcd(N, q’):l and that 4’22 }—q/N—]H.g N+ 3. For any ke,
we will write N, ={0,..., k -1} and Z, ={~(k-1),..., k- 1}.

Assume that we wish to compu&e the Produ,d: of «, ve(zz/ p Z)[L].

Considering u and v as elements of N JLi] modulo p, we decompose

them as
N-1

N-1
wu= F w29 vz p v 2%, (9.1)

i=0 (=0

e = rq c /N-,,
v, € [Nzen-l‘ez[_i].

where

We regard «; and v; as complex “digits” of u and v, where the base
2¢m17% varies with the Posif:ion i. Notice that ;.1 - ¢, takes ohtj two
possible values: Lq/n]or[q/n].
For 0<i<nN, let
;. = Ne - qi, (2o.2)

so that © <& c, < N. For any © <, 3 < N, define 6, ., € Z as follows.
Choose 0€{0,1} so that i 1=y + -0 N Lies in the interval 0 <N,
and put

1,8 e €£1+€£2_€,: -0 q.

From (2.2), we have

A N L (e, + €, e)- 9 (h+ri-i)=nN Oiy, e
Since the left hand side Lies in the tnterval (-~,2 n), this shows that
8, €10, 1}, Now, since 27 =1 (mod p) and ¢, + e, = ¢ + 5, (mod g),

we have
N-1 N-1 N-1

uv = X X ti Vi, R 2 z wy; R (mod lu),

(=0 (=0 (=0

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 43

where

w; = 2 PR @ Vi,
aripzi (mod N)
Since e, | < \/E 2l and similarly for v, we have w, ez4rq/Nq+1N[L].
Note that we may recover u v from we, .., wyo1 1 time 0(g), by a
standard overlap-add procedure (provided that v = 0(6}/ Lg 9)).
Let k be the tnverse of g° modulo N; this inverse exists since we

assumed gcd(N, ') =1. Let 0:=2"er ps S0 that

N =2"N =2,

since 2 has order 9" 7, The qu&h&i&v 0 [ai.oujs the sawe role as

F'q
the real n-th root of 2 appearing in Crandall-Fagin's algorithm,
Now define polynomials U, v e [iI[¥]/(¥"-1) by v,:20%u; and

V.:i=0%y, for 0¢i <N, and lek W = wo + -+ + Wy_y Y"1 iz UV be their
(eyelic) product. Then

w207 wW, = z v, v, = z geat R wy Vi, & z 2% Wi, Vi
ia+ip=i (mod M)
coincides with the reinterpretation of w; as an element of o=, [i].
Moreover, we may recover w, unambiguously from &, as g'z2 f?/
N]+1lg N+ 3 and w e 2.4(,,/”1*1”[&]. Altogether, this shows how

ko reduce mulkiplication in (Z / p 2Z)[i] to mulkiplication in
o=, LUl]/ (7Y - 1),

Remark 2.3, The pair (eiv1, €i1) can be compu&ed from (e, ¢.) in
O(Lg q) bik opera&i,ons, SO we may compu&e the sequences eo, ..., ey-1

and co, oue, cy-1 A Eime O(N lg c,). Moreover, since c;.1 - ¢; btalkes on
ovd.v two Fossibte values, we may compu&e the sequence 0%, ..., 6

using o(n) mulkiplications in o=, [i].

9.3, Bivariate Crandall-Fagin reduction

Generalising the discussion of the previous section, we now show
how to reduce multiplication in (Z / p)X/ (x* - 1), for
a given # 2 1, to mulkiplication in o=, Lilx, v1/7 (" -1, vV - 1),
For this, we require that v < g, that gcd(n, c,’) = 1 and that g' 2
2[9/N]+Lg(un)+3.

4G4 EVEN FASTER INTEGER MULTIPLICATION

Indeed, comnsider two cyclic polynomials u = uo + =+ + wy-g X*7*
and v = vo + o+ vuog XU i (227 p Z2)0X]/ (X4 - 1), We cut each
of the coefficients u;, v, € (Z/ I ZZ.)[E,] into N chunks v, ; and v, ;
of bit size ak most [9/ N7, using the same varying base strategy as

above. With 6% =2 and c; as before, we next form the bivariate cyclic
polynomials

U::Z u,;’J‘GCJX':YJ, ‘/::2 VL"JBCJXiyJ
i, J i, J
i o= LU0, v1/(x* -1, y¥ = 1), Setting
W= UV=y «.:L-,jQCJX"YJ,
i, J
the same arquments as in the previous section yield
§. .
wi,j = z X C Yy, o Ve, for
aripzi (mod M) i+ p=j (mod N)
Using the assumption that g'22 rc, /N]+1lg (M N)+ 3, we recover the
coefficients w, j, and hence the product u v, from the bivariate
cyclic convolution Produc& w=UvV.

2.4. Conjecturally faster multiplication

Let 922 and p:=27-1 (nol necessarily prime). We will take our
basic recursive problem to be mulkiplication in (zz,/ p Z)[i][x]/
(x* =1) for suitable #. We need ¢ somewhat larger than g; this is
analogous to the situation in section &, where we chose a “short
transform length” somewhat larger than the coefficient size. Thus

we set M= M(q):= 2" shere 1 q) is defined as follows.

LEMMA 9.4, There exists an increasing function [I: IN=? IN such that

ogpu(gd)- (Logz q) (Logz log; q) £2 (2.3
for all q 22, and such that we may compute [(q) in time (Log q)”o(l).

Proof. Let f (9 ::(Logz q) (Logz log, q). Using [€], we may consktruct
a function g(q) such that [9(9) = f(9)] €1/ g for all g 2 2, and

which may be computed in time (Log g) W, One checks that £(q+
1

1) - f(9d 22/ q forall g22 50 9(q+1)2 f(g+1)- 772
1 1

£(q +1)-—;; F(9)+ 2 9(9) for 922. Thus g(g) is increasing, and

#(qY:=] 9(q)+ 3/2] has the desired properties. D

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 48

We say thot an integer n 2 2 is admissible if it is of the form
n = g M where M := #M(q) for some g 2 2. (This should not be
confused with the notion of admissibility of section 6.) An element
of (Z./ p Z)[i,][x]/ (x* - 1) is then represented by 2 n bits. Note
that g ¥ g #M(q) is strictly Unereasing, so there is a one-to-one
correspondence between integers g2 2 and admissible n. For x 22

we define P(x) to be the smallest admissible integer n 2 x.

LEMMA 2.8, We have ()= 0(n) as n 200, Given n 22, we may compute B(n),
and the corresponding g, in time o{n).

Proof. From (9.3) we have (g+1) #(g+1)/(qm(q))= o(THDY 2
0(1); this immediately implies that fn) = o(n).

Suppose that we wish to compute B(n) for some n. We
assume that n is large enough that the definition g0 :=
lton/Ualan-lalalon-D1 pnies sense and so thak 9o 2 2. One checks
that (Logz go) (Logz log, qo) 2 lg n, so p(g0) 2 lg n and hence
go M(g0) 2 n. To find the smallest suitable 9, we may simply com-
pute g M(q) for each g =2, 3, ..., go, and compare with n. This

talkes time o(o (Log qo)“"(l)> = o{n). m]

Now let g 22, p:=27 -1 and 4 := #(q). Consider the problem
of compu&ing £z 1 Producfss g vy ey g v o wibR wg e voE (Z/
I Z)[E,][X]/(X“ - 1). We denote b-j Cln) the complexity of this
problem, where n:z g #(q) is the admissible integer corresponding
to 9. As in section &, we define Cn):= supiz Clnd/(2e+1).

Notice that mulkiplication of two integers of bit size <k reduces
to the above problem, for ¢ = 1, via a suitable Kronecker segmen-
tation, Indeed, leb n := f(¥ k) = 9 #(q) for some g, and encode
the integers as integer polynomials of degree less than 41 /2 with
coefficients of bit size m:=[k/(n/2)]. The desired product may
be recovered from the product in (Z/ lpZ)[é][X]/ (x"-1), as

4 9
2m-t-Lg(M/E)ST"'H(q)SE*lJ(q)Sc,-l

for large g. Thus, as in section 6, we have I(k) < 3 Clo(K)) + o(k),
and it suffices to obtain a good bound for C(n).

46 EVEN FASTER INTEGER MULTIPLICATION

Now suppose additionally that p =27 -1 is prime. In this case
(Zt./ I Z.)[i.] =07 [i] is a field, and as noted above, it contains 277t
th roots of unily, so we may define DFTs of length 27 over =, [i]
for any r € g + 1. In particular, for r ¢ 9 we may use Bluestein's
algorithm to compute DFTs of length 27, Denote by B_ (27) the cost
of evaluating ¢ independent DFTs of length 27" over &=, [i], and put
Bq(zr) 12 Supr 67‘5(2”)/(2 t+1). Here we assume as usual that a 2771~
th root of unity is kinown, and that the corresponding Bluestein
root table has been precomputed.

Let us apply these definitions in the case r:=lg #; this is per-
missible, as lg #1 € g for sufficiently large q. Since convolution of
length # over 07, [i] is exactly the basic recursive Probiem, and since
one of the operands is fixed, we have BW(M) S Cln) + o(é M I(c,)),
where n:= g, and hence

B (M) & Clud+o(mI(q)). (2.4)

THEOREM 9.6, Assume Conmjecture 9.1, Then there exists xo 2 2 and a loga-
rithmically slow function ®: (xo;, ©0) =» R with the following property. For all
admissible n » xq, there exists an admissible n'% Q(M) such Ehat

C(n) 1)
nlgn < (4 N 0(13 lglg n)) n'lgn +0(2). (9.8

Proof. Let niz g# with # = #(q). Assume that we wish to compute
t21 products with one fixed operand. Our goal is to reduce to a
problem of the same form, but for exponentially smaller n.

Choose parameters. Let p' = 27 = 1 be the smallest Mersenne prime
larger than laM¥ By Proposition 9.2, we have lam p < pllo s
whence (lg #)* ¢ g’ ¢ (lg m)*, for some absolute comstant ¢ > 1,
Moreover, we may compu&e ' together with a Primif:ive 277 -t root
of unilty o & F'BJ’ n time o(lg mNEeIN 2 p(n lg n). We define
m:= M(g") and iz g’ M,

The algorithm must [aerform various mulkiplications n &, [i],
at cost o(l(c,’)). For simplicily we will use Schonhage-Strassen's
algorithm for these multiplications, Le., we will take (4N =

O(q’tg 9'lglg q'). Since lg 9'= o(lglg M) = o(lglg n), we have
I(c,’) = o(c,' lglgniglglg n).

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 47

Crandall-Fagin reduction. We use the framework of section 9.3 to
reduce the basic mulkiplication problem in (ZL/ pZ)[i][X]/ (x¥-1)
to multiplication in o= [illx, ¥1/(x* -1, ¥¥ - 1) for suitable N, We

take N :=2's where
2 q
L —_—
2 (9'13 Ly 9)’

9
s 1= R + 1.
L{(ﬂ“iaz ﬂ)]

We also write L:=2'. The definition of s makes sense for large g
since ¢'2 (Lg) = (lg 9 LgLlg ¢)°. Lek us check that the hypotheses

)
)

of section 9.3 are satisfied for large 9. We have L% g/ (c,’ lg g c,)
and hence s xlglg g; i particular, s = g, so gcd(n,) = 1, and
also N 9/ q'<9/lg 9. Since N=Ls22 q/(q’—tgz), we also have
2[9/n] ¢ q' =19 9+ 0(1), and thus 2[9/ N] +Llg (M N) + 3¢ g since
Llg(mn) = O(Lg 9lglg q).

We also note for later use the estimate

1
s (Zw(ls st))“

Indeed, since sxlglg g we have

ol ws)) o
s = 2+ 0)
laly 9//2'(q'- L% 9)

and we od.reo\c\:j noticed earlier that (ng c,)/ q'= 0(1/ (Lg lg 9)2) =

0(1/ lglg 9).
To assess the cost of the Crandall-Fagin reduction, we wnote

that computing the ¢ and ¢ costs O(N lg 9) = o(n Llg n) (see
Remark 9.3), the splitting tkself and final overlap-add phase
require time 0(¢ n), and the various multiplications b-j 0, 6 and

07 have cost o(t-M N I(q')) = 0(6 n I(c,’)/ q‘) = 0(tn lgn).

Reduction to power-of-two lengths. Next we reduce mulkiplication
m o=, [ilx, ¥]/(x" -1, ¥ -1) to mulkiplication in %[X, z]/(x" -1,
zt - 1), where % := 0, [iJ[v]/(v° - 1). In fact, since ged(L, s) = 1,
these rings are isomorphic, via the map that sends ¥ to ¥ and ¥

4% EVEN FASTER INTEGER MULTIPLICATION

to z U. Evaluating this isomorphism corresponds to rearranging
the coefficients according to the rule i ¥ (i, i), where ¢ €{o, ...,
N - 1} is the exponent of ¥ and where i := ¢ mod L and g :=
i mod s are the exponents of z and U. This may be achieved in time
0(& MNLlgN (q’-c- lg N)):: 0t n Lgn) using the same sorting strategy as
in section 2.3. The lnverse rearrangement is handled similarly.

Reduction to univariate transforms. For mulkiplication in Z[X, z]/
(x* -1, 2" - 1), we will use bivariate DFTs over #. This is possible
because o7, [i] contains both s-th and L-th primitive roots of unity,

9'+1 9
vmmel.j 0t M oand w? 7/t

, since ¢’ r lg M and g » lg L. More
precisely, we must perform ¢ +1 forward bivariate DFTs and ¢ inverse
bivariate DFTs of length 4 x L over %, and ¢ M L mulkiplications in
#. Each bivariate DFT reduces further to s 4 univariate DFTs of
length L over & f,[i,] (with respect to 2) and s L univariate DFTs
of length # over o pLi] (with respect to X). Interspersed between
these steps are various malrix transpose operations of total cost
0((— smLlgls ML) 9) = 0(k n lg n), to enable efficient access to the
“rows” and “columns” (see section 2.1).

Multiplications in # are handled by zero-padding, ie., we first

use Cooley-Tukey to mulkiply in = SLlul/ (UZHSSM - 1), and then
reduce modulo U° - 1. The total cost of these mulkiplications is
O(éM Lslgs I(q’)) = O(E nlgsi{q)/ q‘) z0(tnlglgn(lglglgn)®) =
ot nlg).

Reduction to short transforms. Consider one of the “long” uni-
variate DFTs of length 2“ € {4, L} over o7, [i]. We decompose the
DFT into “short” DFTs of length 4’ as follows. Let r := lg 4’ =
ollglgnlglglgn) and 4 :=[k/r]=0(lgn/(lglgn lglglgn)), and
write kzr + o+ ry where r =1 for 1¢i¢d =1 and ry:=k-(d -—1) re&r.
We use the algorithm A := Ay 0 0 A, where for 1¢i¢d -1 we
take A, to be the algorithm based on Bluestein's method (discussed
immediately before (9.4)), and where A, is the usual Cooley-Tukey
algorithm over o=, [i]. Let D, be the cost of a single invocation

of A (or of the corresponding inverse transform A, By (2.4) we
have

D, ¢ (d = 1) B2 + 027 2 g I(g)) + o(d 2% I(g) +
0(2“9’1,3 n).

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 49

The cost of precomputing the necessary root tables is only
0o(2“ 1(9")). By definition B, {27V (2 2T+ 1)B (). From (9.4)
and the estimate 2“7"rlglg n, the first term becomes

(4-1)B,-(27) € (2 + 0(1/1lg Llg w)) (4 - 1) 2“7) +
o 2477w 1(4.

The contribution to D, from all terms involving I(g") is

lgn
lglgnlglglgn

0(2"' (rqy + &) I(q')) = 0(2" 9’ lg lg n lg Llg Lg n) =
0(2"7’1.3 M),
50

D, ¢ R+o(1/lglgm))(d -1)27)+ 0(2 g Lg n).

Denoting by D the cost of a bivariate DFT of length 4 x L over 2,

we thus have (ignoring the transposition costs, which were included
earlier)

D = sLDygy*tsmMDyg,

1 lgu | #m lgr | LN
[t - damm)) [(o] 7 - <o [gw)) <o -

O(SLMq’Lgn)
L
(2+0(-))SLM S(LM)C(u’)*'O(sLMq’Lgm)

IN

IN

lglgn MLy m’
1 nlgn)
S (4-*' 0(’-3 9 “)) g Cn)+ o(n Lg n).

Moreover, since

Llg n’ lg g 1 1

e =1+3q=1+—0 =l+0 —— |,
Lg m’ Lg m’ lglg g’ lglglgn

1 nlgn)
D < (4—+0(LSLSLSM))M‘LSM’L.(_n)*rO(_nLgm).

we get

We must Per{orm 2 t + 1 bivariate DFTs; the bound (9.5) then
follows exactly as in the Proof of Theorem &.4.

§o EVEN FASTER INTEGER MULTIPLICATION

For large n, we have log g'= 0(loglog M) = o(loglog n), so logn'=

log g' + 0(;1(q')> = O(Log 9" Llog log c") = 0{log log n log Llog Log n).
Thus there exists a cownstant ¢ » © such that log log log wn' <
log log log log n + ¢ for large n, and we may take &(x) :=
exp®(log™ x + <),]

Proof of Theorem 1.2. Follows from Theorem 9.6 and Proposi-
tion 5.3, analogously to the proof of Theorem 1.1, O

RIBLIOGRAPHY

[1] m. Agrawal, N. Kavat, and N. Saxena. PRIMES is in P. Aunals of Math.,
160(2):7¥1-793, 2004,

[2] A. V. Aho, 3. E. HOPCT‘O&, and 3. D. Ullman. The design and analysis of computer
algorithms Addisoh—WesLEj, 1974,

[3] L. I. Bluestein. A linear filtering approach to the computation of discrete

Fourier transform. IEEE Transactions on Audio and Electroacoustics, 1¥(4):461-488,
1970,
[4] A. Bostan, P. Gaudrj, oand E. Schost. Linear recurremces with PoLynomiaL

coefficients and application to integer factorization and Cartier-Manin oper-
ator. S1AM 3. Comput., 36:1777-1%06, 2007,
[s] <. & Boyer. A History of Mathematics, Princeton Univ. Press, first PC\FerbC\Ck‘

edition, 19%5.
[6] R. P. Bremnt. Fast multiple-precision evaluation of elementary functions, 2.

Assoc, Comput. Mach., 23(2):24-2-251, 1976,

[7] R. P. Bremk and ?P. Zimmermann, Modern Computer Arithmetic, Cambridge Uni-
versi.hv Press, 2010,

[¥] ?. Birgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory.
Springer-verlag, 1997.

[2] H. Cohken, G. Frey, R. Avanzi, Ch. Doche, T. Lange, K. Nguyen, and F. Ver-
cauteren, editors. Handbook of elliptic and hyperelliptic curve cryptography. Discrete
Mathemaltics and iks Applications, Chapman & Hall/CRC, Boca Rakton, FL, 2006,

[10] S. A. Cook. 0On the minimum compulation time of functions. PhD thesis, Harvard
Uhi.varsi.&v, 1966,

[11] 3. W. Cooley and 3. W. Tukey. An algorithm for the machine calculation of
comptex Fourier series. Math. Computat., 19:297-301, 1968,

[12] R. Crandall and B. Fagin. Discrete weighted transforms and large-integer
arithmetic, Math, Comp., 62(205):305-324, 1994

[13] R. Crandall and C. Pomerance. Prime numbers. A compulational perspective.
Springer, New York, 2nd edition, 008,

[14] R. Creu&z_burg and M. Tasche. Parameter determination for compLex

number-theoretic transforms using cyclotomic polynomials. #ath. Comp.,
52(1¥8):1%9-200, 19%9,
[18] A. De, P. P. Kurur, C. Saha, and R. Saphho.riski. Fast integer mul&iptico&iov\

using modular arithmetic, s1am 2, Comput., 42(R):6%5-699, 2013,

[16] 2. Ecalle. Introduction aux fonctions analysables et preuve constructive de la conjecture

DAVID HARVEY, JORIS VAN DER HOEVEN, GrREGOIRE LECERF 51

de Dulac. Hermann, collection: Actualités mathématiques, 1992.

[17] M. Firer. On the complexity of integer multiplication (extended abstract).
Technical erork CS-%9-17, ?QV\V\SjLVQV\LQ State Uhi.versi.bj, 19%9.

[1%] M. Furer. Faster integer mu&ipLicaEien. In Proceedings of the Thirty-Ninth ACM
Symposium on Theory of Compuling, STOC 2007, pages §7-66, New York, NY, USA, 2007,
ACM Press,

[19] M. Firer. Faster integer mu&iplica&tou. SIAM 3. Comput., 39(3):979-1008, 2009,

[20] M. Firer. How fast can we multiply large integers on an actual computer? In
A. Pardo and A, Viola, editors, Proceedings of LATIN 2014: Theoretical Informatics:
11th Latin American Symposium, Montevideo, Uruguay, volume ¥392 of Lect, Notes Comput.
Sei., pages 660-670, Springer Berlin Heidelberq, 2014,

[21] 3. von zur Gathen and I, Gerhard. #Modern Computer Algebra . Cambridge Uni-
versity Press, New Yorlk, NY, USA, 3rd edition, 2013,

[22] F. Q. Gouvéa. p-adic numbers. An introduction. Universitext, Springer-verlag,

Berlin, 1993,

[23] T. Granlund et al. GMP, the GNU mu,ﬂ:ipte precision arithmetic Librarj.
http://gmplib.org, 1991. Latest version 6.0.0 released in 2014,

[24] 7. Harvey, 3. van der Hoeven, and G. Lecerf. Faster polynomial mulkipli-
cation over finite fields. Technical report, HAL, 2014, http://hal.archives-
ouvertes.fr,

[25] w. Harvey, J. van der Hoeven, and G, Lecerf, Fast polynomial mulkiplica-
tion over Fye. Technical report, HAL, 2016, http://hal.archives-ouvertes.fr/hal-
01265278,

[26] D. R. Heath-Brown, Almosk—'nrimes in arithmetic progressions and short
intervals. Math, Proc. Cambridge Philos. Soc., ¥3(3):357-378, 197%.

[27] D.R. Heath-Brown. Zero-free regions for Dirichlet (~functions, and the least
prime i an arithmetic progression. Proc. London Math. Soc. (3), 64(2):265-33%,

1992,

[2%] M. T. Heideman, D. H. Johnson, and C. S. Burrus. Grauss and the history of
the fast Fourier transform. Arch. Hist. Exact Sci., 34(3):266-277, 19¥5.

[29] 3. van der Hoeven., Journées Natiomales de Calcul Formel (2011), volume 2 of Les
cours du CIRM, charker Calcul ahatjkique. CEDRAM, 2011, E£xp. No. 4, ¥5 pages,
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM 2011 2 1 A4 0.

[30] 3. van der Hoeven, G, Lecerf, B. Mourrain, et al. Mathemagix, 2002, http://
www .mathemagix.org.

[31] A.Karatsuba and J. Ofman. YMHOKeHHe MHOrO3HauyHBIX YMCET Ha aBTOMATaX, Doklady
Akad, Nauk SSSR, 7:293-294, 1962, English translation in [32].

[32] A. Karatsuba and 3. Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7:5696-596, 1963,

[33] A. A, Karatsuba. The complexity of compubations. Proc. of the Steklov Inst.

of Math., 211:169-1%3, 1995, English tramslation; Russian original abt pages
1¥6-202.
[34] D.E. Knubh, The Art of Computer Programming, volume 2: Seminumerical Algo-

rithms, Acidisov\—weslej, 1969,

[35] D.E. Knuth, The Art ofComputer Programming, volume 3: Sorting and Searching.
Ad\disov\-WesLej, Reading, MA, 199%,

[36] Yu. V. Linnik, On the least prime in an arithmetic progression I. The basic

theorem. Rec. Math. (Mat. Shornik) N.S., 18(87):139-17%, 194-4.
[37] Yu. V. Loanik. On the least prime in an arithmetic progression II. The

http://gmplib.org
http://gmplib.org
http://gmplib.org
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://hal.archives-ouvertes.fr/hal-01265278
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://ccirm.cedram.org/ccirm-bin/fitem?id=CCIRM_2011__2_1_A4_0
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org

52 EVEN FASTER INTEGER MULTIPLICATION

Deuring-Heilbronn phenomenon. Rec. Math. (Mat. Shornik) N.S., 18(87):347-16%,
1944,

[3¥] R.E. Moore. Interval Analysis. Prentice Hall, Emglewood Cliffs, N.J., 1966,

[39] oO. Neugebauer. The Exact Sciences in Ankiquily. Brown Univ. Press, Providence,
R.I., 1957.

[40] C.H. ‘Pa’aadtmif:rtou. Computational Complexity. Adcii.sow-v\iestej, 1994,

[41] 3. M. Pollard. The fast Fourier transform in a finite field. math, Comp.,
25(114):3658-374, 1971,

[42] C. Pomerance. Recent devetopmevd:s in Primaubj testing. Math, Intelligencer,
3(3):97-108, 19%0/%1,

[43] C. M. Rader. Discrete Fourier transforms when the number of data samples
is prime. Proc. IEEE, §6(6):1107-110%, June 196%.

[44] K.R. Rao, D. N. Kim, and 3. I. Hwanqg. Fast Fourier Transform - Algorithms and
Applications . Signals and Communication Technology. Springer-Verlag, 2010,

[45] I.5. Reed and T. K. Truong. The use of finite fields to compute convolu-
tions. IEEE Trams. Inform. Theory, IT-21:20%-213, 1975,

[46] M. C. Schmeling. Corps de transséries. PhD thests, Université Paris-VII, France,
ROO1,

[47] A. Schonhage. Mulliplikation grofer Zahlen. Computing, 1(3):1%2-196, 1966,

[4%] A.Schénhage. Storage modification machines. SIAM . on Comput., 9:490-50¥%,
19¥%0,

[49] A. Schonhage, A, F. W, Grotefeld, and E£. Vebter. rFast Algorithms - A Mulbitape
Turing Machine Implementation. BI-Wissenschaftsverlag, Mannheim, Leipzig, Wien,
Ziirich, 1994

[s0] A. Schdnhage and V. Strassen. Schunelle Multiplikation groger Zahlen. Com-
puting, 7:2%1-292, 1971,

[51] I.Shparlinski. On finding primitive roots in finite fields. Theoret. Comput. sci.,
187(2):273-275, 1996,

[52] D. E£. Smith. History of Mathematics, volume 2. Dover, 195%,

[s3] A. L. Toom. The complexity of a scheme of functional elements realizing
the mulkiplication of integers, Soviet Mathematics, 4(2):714-716, 1963,

[54] A. L. Toom. O CI0OKHOCTH CXxeMbl M3 (YHKLMOHAJbHBIX 3JIEMEHTOB, peau3yIoLiel
YMHOXKeHHe Le/bIX YUCeNl. Doklady Akad. Nauk SSSR, 150:496-49%, 1963, English
translation in [53].

[55] S. Wagstaff. Divisors of Mersenne numbers. #Math, Comp., 40(161):3%5-397,
19¥%3.

[56] T. Xylouris. On the least prime in an arithmetic progression and estimates

for the zeros of Dirichlet L-functions. Acta Arith., 1:68-91, 2011,

	1. Introduction
	1.1. Brief history and related work
	1.2. Our contributions and outline of the paper

	2. Survey of classical tools
	2.1. Arrays and sorting
	2.2. Discrete Fourier transforms
	2.3. The Cooley–Tukey FFT
	2.4. Fast Fourier multiplication
	2.5. Bluestein's chirp transform
	2.6. Kronecker substitution and segmentation

	3. Fixed point computations and error bounds
	3.1. Fixed point numbers
	3.2. Basic arithmetic
	3.3. Precomputing roots of unity
	3.4. Error analysis for fast Fourier transforms

	4. A simple and fast multiplication algorithm
	5. Logarithmically slow recurrence inequalities
	6. Even faster multiplication
	7. An optimised variant of Fürer's algorithm
	8. Fast multiplication using modular arithmetic
	8.1. Sketch of the algorithm
	8.2. Computing suitable p and ω

	9. Conjecturally faster multiplication
	9.1. Mersenne primes
	9.2. Crandall and Fagin's algorithm revisited
	9.3. Bivariate Crandall–Fagin reduction
	9.4. Conjecturally faster multiplication

	Bibliography

