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Abstract

It is well known that Hardy fields can be extended with integrals,
exponentials and solutions to Pfaffian first order differential equations
f ′ = P (f)/Q(f). From the formal point of view, the theory of transseries
allows for the resolution of more general algebraic differential equations.
However, until now, this theory did not admit a satisfactory analytic
counterpart. In this paper, we will introduce the notion of a transse-
rial Hardy field. Such fields combine the advantages of Hardy fields and
transseries. In particular, we will prove that the field of differentially
algebraic transseries over R{{x−1}} carries a transserial Hardy field struc-
ture. Inversely, we will give a sufficient condition for the existence of a
transserial Hardy field structure on a given Hardy field.

1 Introduction

A Hardy field is a field of infinitely differentiable germs of real functions near
infinity. Since any non-zero element in a Hardy field H is invertible, it admits no
zeros in a suitable neighbourhood of infinity, whence its sign remains constant.
It follows that Hardy fields both carry a total ordering and a valuation. The
ordering and valuation can be shown to satisfy several natural compatibility
axioms with the differentiation, so that Hardy fields are models of the so called
theory of H-fields [AvdD02, AvdD01, AvdD04].

Other natural models of the theory of H-fields are fields of transseries [vdH97,
Sch01, MMvdD97, MMvdD99, Kuh00, vdH06]. Contrary to Hardy fields, these
models are purely formal, which makes them particularly useful for the automa-
tion of asymptotic calculus [vdH97]. Furthermore, the so called field of grid-
based transseries T (for instance) satisfies several remarkable closure properties.
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Namely, T is differentially Henselian [vdH06, theorem 8.21] and it satisfies the
differential intermediate value theorem [vdH06, theorem 9.33].

Now the purely formal nature of the theory of transseries is also a draw-
back, since it is not a priori clear how to associate a genuine real function
to a transseries f , even in the case when f satisfies an algebraic differential
equation over R{{x−1}}. One approach to this problem is to develop Écalle’s
accelero-summation theory [Éca85, Éca87, Éca92, Éca93, Bra91, Bra92], which
constitutes a more or less canonical way to associate analytic functions to for-
mal transseries with a “natural origin”. In this paper, we will introduce another
approach, based on the concept of a transserial Hardy field .

Roughly speaking, a transserial Hardy field is a truncation-closed differential
subfield T of T, which is also a Hardy field. The main objectives of this paper
are to show the following two things:

1. The differentially algebraic closure in T of a transserial Hardy field can
be given the structure of a transserial Hardy field.

2. Any differentially algebraic Hardy field extension of a transserial Hardy
field, which is both differentially Henselian and closed under exponentia-
tion, admits a transserial Hardy field structure.

We have chosen to limit ourselves to the context of grid-based transseries. More
generally, an interesting question is which H-fields can be embedded in fields
of well-based transseries and which differential fields of well-based transseries
admit Hardy field representations. We hope that work in progress [AvdDvdH05,
AvdDvdH] on the model theory of H-fields and asymptotic fields will enable us
to answer these questions in the future.

The theory of Hardy fields admits a long history. Hardy himself proved
that the field of so called L-functions is a Hardy field [Har10, Har11]. The
definition of a Hardy field and the possibility to add integrals, exponentials
and algebraic functions is due to Bourbaki [Bou61]. More generally, Hardy
fields can be extended by the solutions to Pfaffian first order differential equa-
tions [Sin75, Bos81] and solutions to certain second order differential equations
[Bos87]. Further results on Hardy fields can be found in [Ros83a, Ros83b, Ros87,
Bos82, Bos86]. The theory of transserial Hardy fields can be thought of as a
systematic way to deal with differentially algebraic extensions of any order.

The main idea behind the addition of solutions to higher order differential
equations to a given transserial Hardy field T is to write such solutions in the
form of “integral series” over T (see also [vdH05]). For instance, consider a
differential equations such as

f ′ = e−2ex

+ f2,

for large x � 1. Such an equation may typically be written in integral form

f =
∫

e−2ex

+
∫
f2.
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The recursive replacement of the left-hand side by the right-hand side then
yields a “convergent” expansion for f using iterated integrals

f =
∫

e−2ex

+
∫ (∫

e−2ex

)2

+ 2
(∫

e−2ex

)(∫ (∫
e−2ex

)2
)

+ · · · ,

where we understand that each of the integrals in this expansion are taken
from +∞:

(
∫
g)(x) =

∫ x

∞
g(t)dt.

In order to make this idea work, one has to make sure that the extension of
T with a solution f of the above kind does not introduce any oscillatory be-
haviour. This is done using a combination of arguments from model theory and
differential algebra.

More precisely, whenever a transseries solution f to an algebraic differential
equation over T is not yet in T , then we may assume the equation to be of
minimal “complexity” (a notion which refines Ritt rank). In section 2, we will
show how to put the equation in normal form

Lf = P (f), (1)

where P ∈ T {F} is “small” and L ∈ T [∂] admits a factorization

L = (∂ − ϕ1) · · · (∂ − ϕr)

over T [i]. In section 4, it will be show how to solve (1) using iterated integrals,
using the fact that the equation (∂−ϕ)f = g admits e

R
ϕ
∫

e−
R
ϕg as a solution.

Special care will be taken to ensure that the constructed solution is again real
and that the solution admits the same asymptotic expansion over T as the
formal solution.

Section 3 contains some general results about transserial Hardy fields. In
particular, we prove the basic extension lemma: given a transseries f and a real
germ f̂ at infinity which behave similarly over T (both from the asymptotic
and differentially algebraic points of view), there exists a transserial Hardy field
extension of T in which f and f̂ may be identified. The differential equivalence
of f and f̂ will be ensured by the fact that the equation (1) was chosen to be of
minimal complexity. Using Zorn’s lemma, it will finally be possible to close T
under the resolution of real differentially algebraic equations. This will be the
object of the last section 5. Throughout the paper, we will freely use notations
from [vdH06]. For the reader’s convenience, some of the notations are recalled
in section 2.1. We also included a glossary at the end.

It would be interesting to investigate whether the theory of transserial Hardy
fields can be generalized so as to model some of the additional compositional
structure on T. A first step would be to replace all differential polynomials by
restricted analytic functions [vdDMM94]. A second step would be to consider
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postcompositions with operators x+δ for sufficiently flat transseries f for which
Taylor’s formula holds:

f ◦ (x+ δ) = f + f ′δ +
1
2
f ′′δ2 + · · · .

This requires the existence of suitable analytic continuations of f in the complex
domain. Typically, if f ∈ T��g with g ∈ T>,�, then f ◦ ginv should be defined
on some sector at infinity (notice that this can be forced for the constructions
in this paper). Finally, more violent difference equations, such as

f(x) =
1

eeex + f(x+ 1),

generally give rise to quasi-analytic solutions. From the model theoretic point
view, they can probably always be seen as convergent sums.

Finally, one may wonder about the respective merits of the theory of accelero-
summation and the theory of transserial Hardy fields. Without doubt, the first
theory is more canonical and therefore has a better behaviour with respect to
composition. In particular, we expect it to be easier to prove o-minimality
results [vdD98]. On the other hand, many technical details still have to be
worked out in full detail. This will require a certain effort, even though the
resulting theory can be expected to have many other interesting applications.
The advantage of the theory of transserial Hardy fields is that it is more direct
(given the current state of art) and that it allows for the association of Hardy
field elements to transseries which are not necessarily accelero-summable.

2 Preliminaries

2.1 Notations

Let T = R[[[x]]] = R[[T]] be the totally ordered field of grid-based transseries, as
in [vdH06]. Any transseries is an infinite linear combination f =

∑
m∈T fmm of

transmonomials, with grid-based support supp f ⊆ T. Transmonomials m, n, . . .
are systematically written using the fraktur font. Each transmonomial is an
iterated logarithm logl x of x or the exponential of a transseries g with n � 1
for each n ∈ supp g. The asymptotic relations 4,≺,�,∼,��,≺≺,�− and ≈− on T
are defined by

f 4 g ⇐⇒ f = O(g)
f ≺ g ⇐⇒ f = o(g)
f � g ⇐⇒ f 4 g 4 f

f ∼ g ⇐⇒ f − g ≺ g

f �� g ⇐⇒ log |f | 4 log |g|
f ≺≺ g ⇐⇒ log |f | ≺ log |g|
f�−g ⇐⇒ log |f | � log |g|
f≈−g ⇐⇒ log |f | ∼ log |g|.
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Given v 6= 1, one also defines variants of 4,≺, etc. modulo flatness:

f 4v g ⇐⇒ ∃m ≺≺ v, f 4 gm

f ≺v g ⇐⇒ ∀m ≺≺ v, f ≺ gm

f 4∗
v g ⇐⇒ ∃m �� v, f 4 gm

f ≺∗v g ⇐⇒ ∀m �� v, f ≺ gm.

It is convenient to use relations as superscripts in order to filter elements, as in

T> = {f ∈ T : f > 0}
T6= = {f ∈ T : f 6= 0}
T� = {f ∈ T : f � 1}.

Similarly, we use subscripts for filtering on the support:

f� =
∑

m∈supp f,m�1

fmm

f≺≺v =
∑

m∈supp f,m��v

fmm

T� = {f� : f ∈ T}
T≺≺v = {f≺≺v : f ∈ T}.

We denote the derivation onT w.r.t. x by ∂ and the corresponding distinguished
integration (with constant part zero) by

∫
. The logarithmic derivative of f

is denoted by f†. The operations ↑ and ↓ of upward and downward shifting
correspond to postcomposition with expx resp. log x. We finally write f P g if
the transseries f is a truncation of g, i.e. m ≺ supp f for all m ∈ supp(g − f).

2.2 Differential fields of transseries and cuts

Given f ∈ T, we define the canonical span of f by

span f = max
��

{e−d(log(m/n)) : m, n ∈ supp f}. (2)

By convention, span f = 1 if supp f contains less than two elements. We also
define the ultimate canonical span of f by

uspan f = min
��
{span f≺v : v ∈ supp f}. (3)

We notice that uspan f 6= 1 if and only if supp f admits no minimal element for
4.

Example 1 We have

span
(

1 +
e−x

1− x−1

)
= e−x

uspan
(

1 +
e−x

1− x−1

)
= x−1
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Consider a differential subfield T of T and let v ∈ T≺. We say that T has
span v, if span f �� v for all f ∈ T and span f�−v for at least one f ∈ T (notice
that we do not require v ∈ e−T). Since T is stable under differentiation, we
have v �� x−1 as soon as T 6= R. Notice also that we must have T ⊆ T��v if T
has span v.

A transseries f ∈ T \ T is said to be a serial cut over T , if ϕ ∈ T for every
ϕ C f and supp f admits no minimal element for 4. In that case, let m ∈ supp f
be maximal for 4 such that m−1 supp f4m �� span f . Then Hf = f�m and
Tf = f4m are called the head and the tail of f . We say that f is a normal serial
cut if f ∈ T��span f , which implies in particular that Hf = 0.

Assuming that T has span v, any serial cut over T is necessarily in T��v.
Conversely, any f ∈ T��v \ T with uspan f�−v is a serial cut over T . We will
denote by T̂ the set of all f ∈ T��v which are either in T or serial cuts over T
with uspan f�−v. Notice that T̂ is again a differential subfield of T��v.

The above definitions naturally adapt to the complexifications T[i] and T [i]
ofT and differential subfields T ofT. If T has span v, then the set T̂ [i] coincides
with the set of all f ∈ T��v[i] = T[i]��v which are either in T [i] or serial cuts
over T [i] with uspan f�−v.

2.3 Complements on differential algebra

Let T be a differential field. We denote by T {F} the ring of differential polyno-
mials in F over T and by T 〈F 〉 its quotient field. Given P ∈ T {F} and i ∈ N,
we recall that Pi denotes the homogeneous part of degree i of P . We will denote
by LP the linear operator in T [∂] with LPF = P1(F ). Assuming that P \ T ,
we also denote the order of P by rP , the degree of P in F (rP ) by sP and the
total degree of P by tP . Thus, the Ritt rank of P is given by the pair (rP , sP ).
The triple χP = (rP , sP , tP ) will be called the complexity of P ; likewise ranks,
complexities are ordered lexicographically.

As usual, we will denote the initial and separator of P by IP resp. SP and
set HP = IPSP . Given P,Q ∈ T {F} with P 6∈ T , Ritt reduction of Q by P
provides us with a relation

Hα
PQ = AP +R, (4)

where A ∈ T {F}[∂] is a linear differential operator, α ∈ N and the remainder
R ∈ T {F} satisfies χR < χP .

Let K be a differential field extension of T . An element f ∈ K is said to
be differentially algebraic over T if there exists an annihilator P ∈ T {F} \ T
with P (f) = 0. An annihilator P of minimal complexity χP will then be called
a minimal annihilator and χf = χP is also called the complexity of f over T .
The order rf = rP of such a minimal annihilator P is called the order of f over
T . We say that K is a differentially algebraic extension of T if each f ∈ K is
differentially algebraic over T .

We say that T is differentially closed in K, if K \ T contains no elements
which are differentially algebraic over T .. Given χ ∈ N3 (resp. r ∈ N), we say

6



that T is χ-differentially closed (resp. r-differentially closed) in K if χf > χ
(resp. rf > r) for all f ∈ K \ T . We say that T is weakly differentially closed if
every P ∈ T {F}\T admits a root in T . We say that T is weakly r-differentially
closed if every P ∈ T {F} \ T of order 6 r admits a root in T .

Given a differential polynomial P ∈ T {F} and ϕ ∈ T , we define the additive
and multiplicative conjugates of P by ϕ:

P+ϕ(F ) = P (F + ϕ)
P×ϕ(F ) = P (ϕF ).

We have P+ϕ, P×ϕ ∈ T {F} and

χP+ϕ
= χP

χP×ϕ = χP

IP+ϕ = IP,+ϕ

IP×ϕ
= IP,×ϕ

SP+ϕ = SP,+ϕ

SP×ϕ = SP,×ϕ

We also notice that additive and multiplicative conjugation are compatible with
Ritt reduction: given ϕ ∈ T and assuming (4), we have

Hα
P+ϕ

Q+ϕ = AP+ϕ +R+ϕ

Hα
P×ϕ

Q×ϕ = AP×ϕ +R×ϕ,

Remark 1 The compatibility of Ritt’s reduction theory with additive and mul-
tiplicative conjugation holds more generally for rings of differential polynomials
in a finite number of commutative partial derivations (or with a finite dimen-
sional Lie algebra of non-commutative derivations). Similar compatibility re-
sults hold for upward shiftings or changes of derivations (in the partial case, this
requires the rankings to be order-preserving).

In the case when T is a differential subfield of T = R[[T]], we recall that
a differential polynomial P ∈ T {F1, . . . , Fk} may also be regarded as a series in
R{F1, . . . , Fk}[[T]]. Similarly, elements P/Q of the fraction field T 〈F1, . . . , Fk〉
of T {F1, . . . , Fk} may be regarded as series with coefficients in R〈F1, . . . , Fk〉.
Indeed, writing P = DP dP + RP and Q = DQdQ + RQ, where DP dP denotes
the dominant term of P , we may expand

P

Q
=
DP

DQ
· dP

dQ
·

1 + RP

DP dP

1 + RQ

DQ+dQ

In the case when P,Q ∈ R[[b1; . . . ; bn]]{F1, . . . , Fk} for some transbasis B =
{b1, . . . , bn}, then P and P/Q may also be expanded lexicographically with
respect to bn, . . . , b1.
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2.4 Linear differential operators and factorization

Let T be a differential field and consider a linear differential operator L ∈ T [∂]6=.
We will denote the order of L by rL. Given ψ ∈ T , we define the multiplicative
conjugate L×ψ and the twist Lnψ by

L×ψ = Lψ

Lnψ = ψ−1Lψ

We notice that Lnψ is also obtained by substitution of ∂ + ψ† for ∂ in L. We
say that L splits over T , if it admits a complete factorization

L = c(∂ − ϕ1) · · · (∂ − ϕr) (5)

with c, ϕ1, . . . , ϕr ∈ T . In that case, each of the twists Lnψ of L also splits:

Lnψ = c(∂ + ψ† − ϕ1) · · · (∂ + ψ† − ϕr).

We say that T is r-linearly closed if any linear differential operator of order 6 r
splits over T .

Proposition 1 If T is weakly (r − 1)-differentially closed, then T s r-linearly
closed.

Proof The proof proceeds by induction over r. For r = 0, we have nothing to
prove, so assume that r > 0 and let L ∈ T [∂] be of order r. Then the differential
Riccati polynomial RL has order r − 1, so it admits a root ϕr ∈ T . Division of
L by ∂ − ϕr in T [∂] yields a factorization L = L̃(∂ − ϕr) where L̃ ∈ T [∂] has
order r− 1. By the induction hypothesis, L̃ splits over T , whence so does L. �

Proposition 2 Let L ∈ T [∂]6= be an operator which splits over T and let A,B ∈
T [∂] be such that L = AB. Then A and B split over T .

Proof Recall that greatest common divisors and least common multiples exist
in the ring T [∂]. Given a splitting (5), consider the operators

Λi = lcm(B, (∂ − ϕr+1−i) · · · (∂ − ϕr))
Γi = gcd(B, (∂ − ϕr+1−i) · · · (∂ − ϕr))

We have B = Λ0| · · · |Λr = AB and 1 = Γ0| · · · |Γr = B. Moreover, the orders
of Λi and Λi+1 (resp. Γi and Γi+1) differ at most by one for each i. It follows
that A and B split over T . �

Assume now that T is a totally ordered differential field. A monic operator
L ∈ T [∂]6= is said to be an atomic real operator if L has either one of the forms

L = ∂ − ϕ, ϕ ∈ T
L = (∂ − (ϕ− ψi + ψ†))(∂ − (ϕ+ ψi)), ϕ, ψ ∈ T
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A real splitting of an operator L ∈ T [∂]6= over T is a factorization of the form

L = K1 · · ·Ks, (6)

where each Ki is an atomic real operator. A splitting (5) over T [i] is said to
preserve realness, if it gives rise to a real splitting (6) for Ki = (∂ − ϕij ) or
Ki = (∂ − ϕij )(∂ − ϕij+1) and i1 < · · · < is.

Proposition 3 Let L ∈ T [∂]6= be an operator which splits over T [i]. Then L
admits a real splitting over T .

Proof Assuming that L 6∈ T , we claim that there exists an atomic real right
factor K ∈ T [∂] of L. Consider a splitting (5) over T [i]. If ϕr ∈ T , then we
may take K = ∂ − ϕr. Otherwise, we write

L = c̄(∂ − ϕ̄1) · · · (∂ − ϕ̄r)

and take K to be the least common multiple of ∂ − ϕr and ∂ − ϕ̄r in T [i].
Since K = K̄, we indeed have K ∈ T [∂]. Since ∂ − ϕr|L and ∂ − ϕ̄r|L, we also
have K|L. In particular, proposition 2 implies that K splits over T [i]. Such a
splitting is necessarily of the form

K = (∂ − (ϕ− ψi + ψ†))(∂ − (ϕ+ ψi)), ϕ, ψ ∈ T ,

whence K is atomic. Having proved our claim, the proposition follows by in-
duction over r. Indeed, let L̃ ∈ T [∂] be such that L̃K = L. By proposition 2, L̃
splits over T [i]. By the induction hypothesis, L̃ therefore admits a real splitting
L̃ = K1 · · ·Ks over T . But then L = K1 · · ·KsK is a real splitting of L. �

Corollary 1 An operator L ∈ T [∂]6= is atomic if and only if L is irreducible
over T and L splits over T [i].

2.5 Factorization at cuts

Let T be a differential subfield of T of span v. Given P ∈ T [i]{F} and f ∈ T̂ [i],
we say that P splits over T̂ [i] at f , if LP+f

and P have the same order r and
LP+f

splits over T̂ [i].

Lemma 1 Let T be a differential subfield of T of span v. Let P ∈ T [i]{F} be
a minimal annihilator of a differentially algebraic cut f ∈ T̂ [i] over T [i], which
splits over T̂ [i] at f . Then any minimal annihilator Q ∈ T [i]〈f〉

{
F̄
}

of f̄ over
T [i]〈f〉 splits over T̂ [i] at f̄ .

Proof Since P̄ (f̄) = 0, Ritt division of P̄ by Q yields

Hα
QP̄ = AQ (7)
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for some α ∈ N and A ∈ T [i]〈f〉{F̄}[∂]. Additive conjugation of (7) yields

Hα
Q+f̄

P̄+f̄ = AQ+f̄ . (8)

By the minimality hypothesis forQ, we have LQ+f̄ ,rQ
= SQ(f̄) 6= 0 andHQ(f̄) 6=

0, so that valQ+f̄ = 1 and valHQ+f̄
= 0. Similarly, we have val P̄+f̄ = 1.

Consequently, when considering the linear part of the equation (8), we obtain

Hα
Q+f̄ ,0

LP̄+f̄
= A0LQ+f̄

,

whence LQ+f̄
divides LP̄+f̄

in T [i]〈f〉[∂]. Now LP+f
splits over T̂ [i][∂], whence

so does LP̄+f̄
. By proposition 2, we infer that LQ+f̄

splits over T̂ [i][∂]. Since

SQ(f̄) 6= 0, we also have rLQ+f̄
= rQ and we conclude that Q splits over T̂ [i] at

f̄ . �

Corollary 2 Let T be a differential subfield of T of span v. Let P ∈ T [i]{F} be
a minimal annihilator of a differentially algebraic cut f ∈ T̂ [i] over T [i], which
splits over T̂ [i] at f . Then any minimal annihilator R ∈ T [i]〈f〉 {G} of Re f
over T [i]〈f〉 splits over T̂ [i] at Re f .

Proof Applying the lemma to Q = R/2,−f , we see that LQ+f̄
splits over T̂ [i].

Now Q+f̄ = R+ Re f,/2, whence LR+ Re f,/2 and LRRe f
= LR+ Re f,/2,×2 also split

over T̂ [i]. �

Lemma 2 Let T be a differential subfield of T of span v, such that T̂ [i] is r-
linearly closed. Let P ∈ T [i]{F} be a minimal annihilator of a differentially
algebraic cut f ∈ T̂ [i] over T [i], such that P has order r. Assume that Re f 6∈ T
and let S ∈ T {G} be a minimal annihilator of Re f over T . Then S splits over
T̂ [i] at Re f .

Proof Let R be as in the above corollary, so that R splits over T̂ [i] at Re f .
Since R has minimal complexity and S(Re f) = 0, Ritt division of S by R yields

Hα
RS = AR

for some α ∈ N and A ∈ T[i]〈f〉{G}[∂]. Additive conjugation and extraction
of the linear part yields

Hα
S+ Re f ,0

LS+ Re f
= A0LR+ Re f

,

so LR+ Re f
divides LS+ Re f

in T̂ [i][∂]. Since the separants of R and S don’t
vanish at Re f , we have

rLR+ Re f
= rR = tr deg(T [i]〈f,Re f〉 : T [i]〈f〉)

= tr deg(T [i]〈Re f, Im f〉 : T [i])− tr deg(T [i]〈f〉 : T [i])
= tr deg(T 〈Re f, Im f〉 : T )− tr deg(T [i]〈f〉 : T [i])

rLS+ Re f
= rS = tr deg(T 〈Re f〉 : T )

= trdeg(T 〈Re f, Im f〉 : T )−
tr deg(T 〈Re f, Im f〉 : T 〈Re f〉)
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and

rS − rR = tr deg(T [i]〈f〉 : T [i])− tr deg(T 〈Re f, Im f〉 : T 〈Re f〉) 6 r.

Consequently, the quotient of LS+ Re f
and LR+ Re f

has order at most r, whence
it splits over T̂ [i]. It follows that LS+ Re f

splits over T̂ [i] and S splits over T̂ [i]
at Re f . �

2.6 Normalization of linear operators

Let T be a differential subfield of T of span v �� x. Recall from [vdH06, Section
7.7] that Lh = 0 with L ∈ T [i][∂] admits a canonical fundamental system of
oscillatory transseries solutions ΣL = {h1, . . . , hr} ⊆ O with log h1, . . . , log hr ∈
T��v[i]. We will denote by HL the set of dominant monomials of h1, . . . , hr.
The neglection relation on T is extended to O by f ≺ 1 if and only if f =
f;ψ1e

iψ1 + · · ·+ f;ψpeiψp with f;ψ1 , . . . , f;ψp ∈ T[i]≺ and ψ1, . . . , ψp ∈ T.
We say that L is normal , if we have hi �v 1 or Re log hi � log v for each i.

In that case, any quasi-linear equation of the form

Lf = g, f 4v 1

with g ∈ T��v[i] admits L−1g as its only solution in T��v[i]. If L is a first order
operator of the form L = ∂ − ϕ, then L is normal if and only if Reϕ > cv† for
some c > 0 or Reϕ � v†. In particular, we must have ϕ <v 1 and Reϕ < v†.

Proposition 4 Let L ∈ T [i][∂] \ T [i].

a) There exists a λ ∈ R such that Lnvλ is normal.

b) If L is normal and λ > 0, then Lnvλ is normal.

Proof Let ΣL = {h1, . . . , hr}. For each λ ∈ R, the operator Lnvλ admits
h1/v

λ, . . . , hr/v
λ as solutions, which implies in particular that HLnvλ

= v−λHL.
Now Re log(hi/vλ) 4 log v ⇔ Re log hi 4 log v for all i. Choosing λ sufficiently
large, it follows that hi/vλ �v 1 for all i with Re log(hi/vλ) 4 log v, so that
Lnvλ is normal. Similarly, if hi �v 1 for some i with Re log(hi/vλ) 4 log v, then
hi �v vλ for all λ > 0. �

Proposition 5 Consider a normal operator L ∈ T [i][∂], which admits a split-
ting

L = (∂ − ϕ1) · · · (∂ − ϕr)

with ϕ1, . . . , ϕr ∈ T [i]. Then each ∂ − ϕi is a normal operator.

Proof We will call h ∈ T��v[i]eiT��v normal, if ∂ − h† is normal. Let us
first prove the following auxiliary result: given ϕ ∈ T [i] and h ∈ T��v[i]eiT��v

such that ∂ − ϕ and h are normal and h = dh 6∈ H∂−ϕ, then (∂ − ϕ)h is
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also normal. If Re log h � log v, then 0 6= (∂ − ϕ)h �∗v h, whence Re log(∂ −
ϕ)h = Re log h + O(log v) � log v. In the other case, we have h �v 1. Now
if h† � ϕ, then (∂ − ϕ)h �v 1, since ϕ <v 1. If h† ∼ ϕ, then h 6∈ H∂−ϕ
implies 1 6∈ H(∂−ϕ)nh

, whence ϕ − h† � 1/(x log x · · · ). It again follows that
(∂ − ϕ)h <v h/(x log x · · · ) �v 1.

Let us now prove the proposition by induction over r. For r = 1, we have
nothing to do, so assume that r > 1. Since L̃ = (∂ − ϕ2) · · · (∂ − ϕr) is normal,
the induction hypothesis implies that ∂ − ϕi is normal for all i > 2. Now let h
be the unique element in ΣL \ ΣL̃. Since h is normal, (∂ − ϕi) · · · (∂ − ϕr)h is
also normal for i = r, . . . , 2, by the auxiliary result. We conclude that ∂ −ϕ1 is
normal, since ϕ1 = (L̃h)†. �

Let L and ΣL = {h1, . . . , hr} be as above. The smallest real number ν > 0
with log hi 4v v−ν for all i will be called the growth rate of L, and we denote
σL = ν. For all α ∈ R, we notice that σLnvα = σL.

Proposition 6 Let K,L ∈ T [i][∂] be operators of the same order with

K = L+ ov(vrLσLL).

Then HK = HL.

Proof Given h ∈ ΣL, we have

Knh = Lnh + ov(Lnh),

since h† �v log h 4 v−σL . In particular, Knh,0 ≺v K, whence 1 ∈ HKnh
and

dh ∈ HK . �

Proposition 7 Given a splitting

L = (∂ − ϕ1) · · · (∂ − ϕr)

with ϕ1, . . . , ϕr ∈ T��v[i], we have ϕi 4v v−σL for all i.

Proof Assume for contradiction that ϕi �v v−σL for some i and choose i
maximal with this property. Setting

K = (∂ − ϕi+1) · · · (∂ − ϕr),

the transseries
h = K−1(e

R
ϕi) ∈ T��v[i]e

R
ϕi

satisfies Lh = 0, as well as log h �v ϕi �v v−σL . But such an h cannot be a
linear combination of the hi with log hi 4v v−σL . �

Remark 2 It can be shown (although this will not be needed in what follows)
that an operator L ∈ T [i][∂] splits over T̂ [i] if and only if there exists an approx-
imation L̃ ∈ T [i][∂] with L̃ − L 4v vλ which splits over T [i] for every λ ∈ R.
In particular, T̂ [i] is r-linearly closed if and only if T [i] is r-linearly closed over
T̂ [i].
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2.7 Normalization of quasi-linear equations

Assume now that T is a differential subfield of T of span v �� x. We say that
P is normal if LP is normal of order rP and P 6=1 ≺v vrPσLP LP . In that case,
the equation

P (f) = 0, f 4v 1 (9)

is quasi-linear and it admits a unique solution in T��v. Indeed, let f ∈ T��v

be the distinguished solution to (9). By proposition 6, the operator LP+f
is

normal. If f̃ ∈ T��v were another solution to (9), then df̃−f would be in HL+f
,

whence f̃ � 1, which is impossible.

Proposition 8 Let T be a differential subfield of T of span v. Let P ∈ T [i]{F}
be a minimal annihilator of a differentially algebraic cut f ∈ T̂ [i] over T [i]. Then
there exists a truncation ϕ C f and λ ∈ R such that P+ϕ,×vλ is normal.

Proof Let P̃ = P+f and ν = rLP̃
σLP̃

. Modulo a multiplicative conjugation
by vα for some α > 0, we may assume without loss of generality that P̃ � LP̃ .
Modulo an additive conjugation by f<v1, we may also assume that f ≺v 1. For
any λ, µ > 0 and ϕ = f<vvµ C f , we have

P+ϕ = P̃+ϕ−f = P̃ + ov(vµP̃ ),

whence
P+ϕ,×vλ = P̃1,×vλ +Ov(v2λP̃ ) + ov(vµP̃ ). (10)

Since SP (f) 6= 0, we have P̃1 6= 0. By proposition 4, there exists a λ > ν
for which LP̃ ,nvλ is normal. Now take µ = λ + ν. Denoting N = P+ϕ,×vλ ,
proposition 6 and (10) imply that LN is normal with σLN

= ν and N 6=1 ≺v

vν P̃1,×vλ � vνLN . �

We say that P ∈ T [i]{F} is split-normal , if P is normal and LP can be
decomposed LP = L+K such that L splits over T [i] and K ≺v vrLσLL. In that
case, we may also decompose P (F ) = LF+R(F ) for R(F ) = P 6=1(F )+KF with
R ≺v vrLσLL. If L is monic, then we say that P is monic split-normal . Any
split-normal equation (9) is clearly equivalent to a monic split-normal equation
of the same form.

Proposition 9 Let T be a differential subfield of T of span v such that T̂ [i] is
r-linearly closed. Let P ∈ T [i]{F} be a minimal annihilator of a differentially
algebraic cut f ∈ T̂ [i] of order r over T [i]. Let S ∈ T {F} be a minimal annihi-
lator of Re f and assume that rS > rP . Then there exists a truncation ϕ C Re f
and λ ∈ R such that S+ϕ,×vλ is split-normal.

Proof By proposition 8 and modulo a replacement of f by v−λ(f − ϕ), we
may assume without loss of generality that S is normal. By lemma 2, S splits
over T̂ [i] at Re f . Let c, ϕ1, . . . , ϕs ∈ T̂ [i] be such that

LS+f
= c(∂ − ϕ1) · · · (∂ − ϕs).
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Setting ν = sσLS
, we notice that LS = LS+f

+ ov(vνLS). Now take

L = c<vvνdc(∂ − ϕ1,<vvν ) · · · (∂ − ϕs,<vvν ) ∈ T [i][∂].

Then L = LS + ov(vνLS) and proposition 6 implies that L is normal, with
σL = σLS

= σLS+f
. Denoting R(F ) = S(F )−LF , we finally have R ≺v vsσLL.

�

3 Transserial Hardy fields

3.1 Transserial Hardy fields

Let T = R[[[x]]] = R[[T]] be the field of grid-based transseries [vdH06] and G
the set of infinitely differentiable germs at infinity. A transserial Hardy field
is a differential subfield T of T, together with a monomorphism ρ : T → G of
ordered differential R-algebras, such that

TH1 For every f ∈ T , we have supp f ⊆ T .

TH2 For every f ∈ T , we have f≺ ∈ T .

TH3 There exists an d ∈ Z, such that log m ∈ T +R logd x for all m ∈ T ∩ T .

TH4 The set T ∩ T is stable under taking real powers.

TH5 We have ρ(log f) = log ρ(f) for all f ∈ T > with log f ∈ T .

In what follows, we will always identify T with its image under ρ, which is
necessarily a Hardy field in the classical sense. The integer d in TH3 is called
the depth of T ; if log m ∈ T for all m ∈ T ∩ T , then the depth is defined to be
+∞. We always have d > 0, since T is stable under differentiation. If d 6= ∞,
then f ↑d is exponential for all f ∈ T and T contains logd−1 x. If d = ∞ and
T 6= R, then T contains logk x for all sufficiently large k.

Example 2 The field T = R is clearly a transserial Hardy field. As will follow
from theorem 2 below, other examples are

R(xR) =
⋃

α1,...,αk∈R
R(xα1 , . . . , xαk)

R(eRx) =
⋃

α1,...,αk∈R
R(eα1x, . . . , eαkx).

Remark 3 Although the axioms TH4 and TH5 are not really necessary, TH4
allows for the simplification of several proofs, whereas it is natural to enforce
TH5. Notice that TH5 automatically holds for f ∈ T > with f � 1 since

ρ(log f)′ = ρ((log f)′) = ρ(f ′/f) = ρ(f)′/ρ(f) = (log ρ(f))′,

whence ρ(log f) = log ρ(f) + c for some c ∈ R. Since both ρ(log f)− log f� and
log ρ(f)− log f� are infinitesimal in G, we have c = 0. Consequently, it suffices
to check TH5 for monomials f ∈ T ∩ T with log f ∈ T .

14



Proposition 10 Let T be a transserial Hardy field with x ∈ T . Then the
upward shift T ↑ of T carries a natural transserial Hardy field structure with
ρ(f ↑) = ρ(f) ◦ ex.

Proof The field T ↑ is stable under differentiation, since f ↑′= (xf ′) ↑
for all f ∈ T . �

Corollary 3 If T has depth d < ∞, then T ↑d is a transserial Hardy field of
depth 0.

We recall that a transbasis B is a finite set of transmonomials {b1, . . . , bn}
with

TB1 b1, . . . , bn � 1 and b1 ≺≺ · · · ≺≺ bn.

TB2 b1 = logd−1 x for some d ∈ Z.

TB3 log bi ∈ R[[b1; . . . ; bi−1]] for all 1 < i 6 n.

If d = 0, then B is called a plane transbasis and R[[b1; . . . ; bn]] is stable under
differentiation. The incomplete transbasis theorem for T also holds for transse-
rial Hardy fields:

Proposition 11 Let B ⊆ T be a transbasis and f ∈ T . Then there exists an
supertransbasis B̂ ⊆ T of B with f ∈ R[[BR]]. Moreover, if B is plane and f
is exponential, then B̂ may be taken to be plane.

Proof The same proof as for [vdH06, Theorem 4.15] may be used, since all
field operations, logarithms and truncations used in the proof can be carried
out in T . �

Given a set F of exponential transseries in T , the transrank of F is the min-
imal size of a plane transbasis B = {b1, . . . , bn} with F ⊆ R[[b1; . . . ; bn]]. This
notion may be extended to allow for differential polynomials P in F (modulo
the replacement of P by its set of coefficients).

Remark 4 The span and ultimate span of f ∈ T are not necessarily in T .
Nevertheless, if span f 6= 1 and B = {b1, . . . , bn} ⊆ T is a transbasis for f , then
we do have span f�−bi for some i (and similarly for the ultimate span of f).

3.2 Cuts in transserial Hardy fields

Let T be a transserial Hardy field. Given f ∈ T and f̂ ∈ G, we write f ∼ f̂ if
there exists a ϕ ∈ T with

f ∼T ϕ ∼G f̂ .

We say that f and f̂ are asymptotically equivalent over T if for each ϕ ∈ T (or,
equivalently, for each ϕ C f), we have

f − ϕ ∼ f̂ − ϕ.
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We say that f and f̂ are differentially equivalent over T if

P (f) = 0 ⇔ P (f̂) = 0

for all P ∈ T {F}.

Lemma 3 Let T be a transserial Hardy field and let f ∈ T \T be differentially
algebraic over T . Let m ∈ supp f be maximal for <, such that ϕ = f�m 6∈ T .
Then ϕ is differentially algebraic over T and χϕ 6 χf .

Proof Let P ∈ T {F} be a minimal annihilator of f . Modulo upward shifting,
we may assume without loss of generality that P and f are exponential. Since
ϕ ∈ T̂ , all monomials in suppϕ are in T , whence there exists a plane transbasis
{b1, . . . , bn} ⊆ T for P and ϕ. Modulo subtraction of Hϕ from f and ϕ, we may
assume without loss of generality that Hϕ = 0. Let k be such that uspanϕ�−bk
and let bα1

1 · · · bαn
n be the dominant monomial of ϕ. Modulo division of f and

ϕ by b
αk+1
k+1 · · · bαn

n , we may also assume that ϕ is a normal serial cut. But then
the equation P (f) = 0 gives rise to the equation P��bk

(ϕ) = 0 for ϕ = f��bk
.

The complexity of P��bk
is clearly bounded by χP = χf . �

Lemma 4 Let T be a transserial Hardy field and v ∈ T ∩T≺. Let f ∈ T̂��v and
f̂ ∈ G be such that f and f̂ are both asymptotically and differentially equivalent
over T��v. Then f and f̂ are both asymptotically and differentially equivalent
over T .

Proof Given ϕ ∈ T , we either have ϕ �∗v 1 and

f − ϕ ∼T −ϕ ∼G f̂ − ϕ

or ϕ 4∗
v 1, in which case

f − ϕ ∼T f − ϕ�∗v1 ∼ f̂ − ϕ�∗v1 ∼G f̂ − ϕ.

This proves that f and f̂ are asymptotically equivalent over T .
As to their differential equivalence, let us first assume that f is differentially

transcendent over T��v. Given R ∈ T {F}6=, let us denote

DR = d−1
R Q�∗vdR

∈ T��v.

We have DR(f) 6= 0, DR(f̂) 6= 0 and

R(f) ∼∗v DR(f)dR (11)

R(f̂) ∼∗v DR(f̂)dR, (12)

whence R(f) 6= 0 and R(f̂) 6= 0.
Assume now that f is differentially algebraic over T��v and let P ∈ T��v{F}

be a minimal annihilator. Given Q ∈ T {F}, Ritt reduction of Q w.r.t. P gives

Hk
PQ = AP +R,
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where A ∈ T {F}[∂] and R ∈ T {F} is such that χR < χP . Since χHP
< χP

and HP ∈ T��v, we both have HP (f) 6= 0 and HP (f̂) 6= 0, whence

Q(f) =
R(f)
HP (f)k

Q(f̂) =
R(f̂)

HP (f̂)k
.

If R = 0, this clearly implies R(f) = R(f̂) = 0. Otherwise, DR vanishes neither
at f nor at f̂ and the relations (11) and (12) again yield R(f) 6= 0 and R(f̂) 6= 0.

�

Lemma 5 Let T be a transserial Hardy field and let f ∈ T̂ \T be a differentially
algebraic cut over T with minimal annihilator P . Let f̂ ∈ G be a root of P
such that f and f̂ are asymptotically equivalent over T . Then f and f̂ are
differentially equivalent over T .

Proof Let v ∈ T be such that uspan f�−v. Modulo some upward shiftings, we
may assume without loss of generality that f and P are exponential. Modulo
an additive conjugation by Hf and a multiplicative conjugation by df , we may
also assume that f is a normal cut. Modulo a division of P by dP and replacing
P by P��v, we may finally assume that P ∈ T��v{F}.

Now consider Q ∈ T��v{F}6= with χQ < χP . Since Q(f) 6= 0, there exists a
ϕ C f with f − ϕ ≺v 1 and Q+ϕ, 6=0 ≺v Q(ϕ). But then

Q(f̂) = Q(ϕ) +Q+ϕ, 6=0(f̂ − ϕ) ∼ Q(ϕ) 6= 0.

For general Q ∈ T {F}, we use Ritt reduction of Q w.r.t. P and conclude in a
similar way as in the proof of lemma 4. �

3.3 Elementary extensions

Lemma 6 Let f ∈ T \ T and f̂ ∈ G \ T be such that

i. f is a serial cut over T .

ii. f and f̂ are asymptotically equivalent over T .

iii. f and f̂ are differentially equivalent over T .

Then T 〈f〉 carries the structure of a transserial Hardy field for the unique dif-
ferential morphism ρ : T 〈f〉 → G over T with ρ(f) = f̂ .

Proof Modulo upward shifting, an additive conjugation by Hf and a multi-
plicative conjugation by df , we may assume without loss of generality that f
is an exponential normal serial cut. Let v ∈ T be such that uspan f�−v. We
have to show that T 〈f〉 is closed under truncation and that P (f) ∼ P (f̂) for
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all P ∈ T {F} with P (f) 6= 0 (this implies in particular that ρ is increasing).
Notice that supp f ⊆ T implies T 〈f〉 ∩ T = T ∩ T.

Truncation closedness. Given R ∈ T 〈F 〉, let us prove by induction over
the transrank n of {R, f} that P (f)� ∈ T 〈f〉. So let {b1, . . . , bn} be a plane
transbasis for R and f . Assume first that bn �� v. Writing

R =
∑
α∈R

Rαbαn ∈ R[[b1; . . . ; bn−1]]〈F 〉[[bn]],

the sum
R�bn

=
∑
α>0

Rαbαn

is finite, whence

R(f)�bn
= R�bn

(f) =
∑
α>0

Rα(f)bαn ∈ T 〈f〉.

By the induction hypothesis, we also have R0(f)� ∈ T 〈f〉 and R(f)� ∈ T 〈f〉.
If bn�−v, then

R(f)� = R(ϕ)�

for a sufficiently large truncation ϕ C f , whence R(f)� ∈ T .

Preservation of dominant terms. Given P ∈ T {F} with P (f) 6= 0, let
us prove by induction over the transrank n of {P, f} that P (f) ∼ P (f̂). Let
{b1, . . . , bn} be a plane transbasis for P and f and assume first that v ≺≺ bn.
Since P (f) 6= 0, there exists a maximal α with Pα(f) 6= 0, when considering
P =

∑
α∈R Pαbαn as a series in bn. But then

P (f) ∼ Pα(f)bαn ∼ Pα(f̂)bαn ∼ P (f̂),

by the induction hypothesis. If bn�−v, then there exists an α ∈ R such that, for
all sufficiently large truncations ϕ C f , the Taylor series expansion of P (ϕ +
(f − ϕ)) yields

P (f) = P (ϕ) +Ov((f − ϕ)vα)

P (f̂) = P (ϕ) +Ov((f̂ − ϕ)vα).

Taking ϕ C f such that (f − ϕ)vα ≺v P (f), we obtain

P (f) ∼ P (ϕ) ∼ P (f̂).

This completes the proof. �

Theorem 1 Let T be a transserial Hardy field. Then its real closure T rcl admits
a unique transserial Hardy field structure which extends the one of T .
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Proof Assume that T rcl 6= T and choose f ∈ T rcl \ T of minimal complexity.
By lemma 3, we may assume without loss of generality that f is a serial cut.
Consider the monic minimal polynomial P ∈ T [F ] of f . Since P ′(f) 6= 0, we
have

deg4f−ϕ P+ϕ = 1

for a sufficiently large truncation ϕ C f of f (we refer to [vdH06, Section 8.3]
for a definition of the Newton degrees deg4ψ P ). But then

P+ϕ(g) = 0, g 4 f − ϕ (13)

admits unique solutions g and ĝ in T resp. G, by the implicit function theorem.
It follows in particular that f = ϕ + g. Let f̂ = ϕ + ĝ and consider ψ with
ϕ P ψ C f . Then

P (f)− P (ψ) ∼ P+ψ,1(f − ψ)

P (f̂)− P (ψ) ∼ P+ψ,1(f̂ − ψ)

Since P (f) = P (f̂) = 0, we obtain f − ψ ∼ f̂ − ψ, whence f and f̂ are
asymptotically equivalent over T . By lemmas 5 and 6, it follows that T 〈f〉
carries a transserial Hardy field structure which extends the one on T . Since
(13) has a unique solution ĝ in G, this structure is unique. We conclude by
Zorn’s lemma. �

3.4 Exponential and logarithmic extensions

Theorem 2 Let T be a transserial Hardy field and let ϕ ∈ T� be such that
eϕ 6∈ T . Then the set T (eRϕ) carries the structure of a transserial Hardy field for
the unique differential morphism ρ : T (eRϕ) → G over T with ρ(eλϕ) = eλρ(ϕ)

for all λ ∈ R.

Proof Each element in f = T (eRϕ) is of the form f = R(eλ1ϕ, . . . , eλkϕ) for
R ∈ T (F1, . . . , Fk) and Q-linearly independent λ1, . . . , λk ∈ R. Given R ∈
T (F1, . . . , Fk), let {b1, . . . , bn} be a transbasis for R. We may write

eϕ = eϕ̃bαi
i · · · bαn

n

with bi−1 ≺≺ eϕ̃ ≺≺ bi (or the obvious adaptations if i = 1 or i = n+1). Modulo
the substitution of ϕ by αi log bi + · · ·+ αn log bn + ϕ̃, we may assume without
loss of generality that αi = · · · = αn = 0.

If bn ≺≺ eϕ, then we may regard f =
∑
µ∈R fµe

µϕ as a convergent grid-based
series in eϕ with coefficients in T ∩R[[b1; . . . ; bn]]. In particular,

f� =

 ∑
µ signϕ>0

fµeµϕ

+ f0,� ∈ T (eRϕ).

Furthermore, if f admits ν as its dominant exponent in eϕ, then f ∼ fνeνϕ

holds both in T and in G.
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If eϕ ≺≺ bn, then we may consider R as a series

R ∈ S := (T ∩R[[b1; . . . ; bi−1]])(F1, . . . , Fk)[[bi; . . . ; bn]]

in bi, . . . , bn. Since T is closed under truncation, both R�bi
and R�bi

lie in S,
whence

f� = R�bi
(eλ1ϕ, . . . , eλkϕ) +R�bi

(eλ1ϕ, . . . , eλkϕ)� ∈ T (eRϕ),

by what precedes. Similarly, if Rνi,...,νnbνi
i · · · bνn

n is the dominant term of R as
a series in bi, . . . , bn and ceνϕ is the dominant term of Rνi,...,νn(eλ1ϕ, . . . , eλkϕ)
as a series in eϕ (with c ∈ T ∩R[[b1; . . . ; bi−1]]), then f ∼ ceνϕbνi

i · · · bνn
n holds

both in T and in G.
This shows that T (eRϕ) is truncation closed and that the extension of ρ to

T (eRϕ) is increasing. We also have T (eRϕ) ∩ T = (T ∩ T)eRϕ. In other words,
T (eRϕ) is a transserial Hardy field. �

Theorem 3 Let T be a transserial Hardy field of finite depth d < ∞. Then
T ((logd x)R) carries the structure of a transserial Hardy field for the unique
differential morphism ρ : T ((logd x)R) → G over T with ρ((logd x)λ) = (logd x)λ

for all λ ∈ R.

Proof The proof is similar to the proof of theorem 2, when replacing eϕ by
logl x. �

3.5 Complex transserial Hardy fields

Let T be a transserial Hardy field. Asymptotic and differential equivalence over
T [i] are defined in a similar way as over T .

Proposition 12 Let T be a transserial Hardy field. Let f ∈ T[i] be a serial
cut over T [i] and f̂ ∈ G[i]. Then f and f̂ are asymptotically equivalent over
T [i] if and only if Re f and Re f̂ as well as Im f and Im f̂ are asymptotically
equivalent over T .

Proof Assume that f and f̂ are asymptotically equivalent over T [i] and let
ϕ C Re f . Consider ψ = (Im f)�Re f−ϕ P Im f . We have ϕ + ψi C f , so
that f − ϕ − ψi ∼ f̂ − ϕ − ψi. Moreover, f − ϕ − ψi � Re f − ϕ, whence
Re f − ϕ ∼ Re f̂ − ϕ and Re f ∼ Re f̂ . The relation Im f ∼ Im f̂ is proved
similarly. Inversely, assume that Re f and Re f̂ as well as Im f and Im f̂ are
asymptotically equivalent over T . Given ϕ C f , we have Reϕ, Imϕ ∈ T , whence
there exist g, h ∈ T with Re f −Reϕ ∼ g ∼ Re f̂ −Reϕ and Im f − Imϕ ∼ h ∼
Im f̂ − Imϕ. It follows that f − ϕ ∼ g + hi ∼ f̂ − ϕ, whence f ∼ f̂ . �

Proposition 13 Let T be a transserial Hardy field, f ∈ T and f̂ ∈ G. Then f
and f̂ are differentially equivalent over T [i] if and only if they are differentially
equivalent over T .
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Proof Differential equivalence over T [i] clearly implies differential equivalence
over T . Assuming that f and f̂ are differentially equivalent over T , we also
have

P (f) = 0 ⇔ (ReP )(f) = 0 ∧ (ImP )(f) = 0

⇔ (ReP )(f̂) = 0 ∧ (ImP )(f̂) = 0

⇔ P (f̂) = 0

for every P ∈ T [i]{F}. �

Remark 5 Given f ∈ T and f̂ ∈ G, it can happen that f and f̂ are differen-
tially equivalent over T [i], without Re f and Re f̂ being differentially equivalent
over T . This is for instance the case for T = R(xR), f = ex and f̂ = iex.
Indeed, the differential ideals which annihilate f resp. f̂ are both F ′ − F .

Most results from the previous sections generalize to the complex setting in
a straightforward way. In particular, lemmas 3, 4 and 5 also hold over T [i].
However, the fundamental extension lemma 6 admits no direct analogue: when
taking f ∈ T[i] \ T [i] and f̂ ∈ G[i] \ T [i] such that the complexified conditions i ,
ii and iii hold, we cannot necessarily give T 〈Re f〉 the structure of a transserial
Hardy field. This explains why some results such as lemmas 2 and 9 have to be
proved over T instead of T [i]. Of course, theorem 1 does imply the following:

Theorem 4 Let T be a transserial Hardy field. Then there exists a unique alge-
braic transserial Hardy field extension T rcl of T such that T rcl[i] is algebraically
closed.

4 Analytic resolution of differential equations

Recall that G stands for the differential algebra of infinitely differentiable germs
of real functions at +∞. Given x0 ∈ R, we will denote by Gx0 the differential
subalgebra of infinitely differentiable functions on [x0,∞). We define a norm
on G4

x0
= {f ∈ Gx0 : f 4 1} by

‖f‖x0 = sup
x>x0

|f(x)|

Given r ∈ N, we also denote G4
x0;r = {f ∈ Gx0 : f, . . . , f (r) 4 1} and define a

norm on G4
x0;r by

‖f‖x0;r = max{‖f‖x0 , . . . , ‖f (r)‖x0}.

Notice that
‖fg‖x0;r 6 2r‖f‖x0;r‖g‖x0;r.

An operator K : Gx0 → Gx0 (resp. K : Gx0 → Gx0;r) is said to be continuous
if there exists an M ∈ R with ‖Kf‖x0 6 M‖f‖x0 (resp. ‖Kf‖x0;r 6 M‖f‖x0)
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for all f ∈ Gx0 . The smallest such M is called the norm of K and denoted by
9K9x0 (resp. 9K9x0;r). The above definitions generalize in an obvious way to
the complexifications G4

x0
[i] and G4

x0;r[i].

4.1 Continuous right-inverses of first order operators

Let T be a transserial Hardy field of span v �� ex. Consider a normal operator
∂ − ϕ with ϕ ∈ T [i] and let x0 be sufficiently large such that Reϕ does not
change sign on [x0,∞). We define a primitive Φ ∈ G of ϕ by

Φ(x) =
{ ∫ x

∞ ϕ(t)dt if ϕ is integrable at ∞∫ x
x0
ϕ(t)dt otherwise

Decomposing Φ = <+ =i, we are either in one of the following two cases:

1. The repulsive case when e< �v 1.

2. The attractive case when both e< ≺v 1 and e< �� v.

Notice that the hypothesis v �� ex implies R′ = Reϕ < v† < 1.

Proposition 14 The operator J = (∂ − ϕ)−1
x0

, defined by

(Jf)(x) =

{
eΦ(x)

∫ x
∞ e−Φ(t)f(t)dt (repulsive case)

eΦ(x)
∫ x
x0

e−Φ(t)f(t)dt (attractive case)
(14)

is a continuous right-inverse of L = ∂ − ϕ on G4[i], with

9J9x0 6

∥∥∥∥ 1
Reϕ

∥∥∥∥
x0

. (15)

Proof In the repulsive case, the change of variables <(t) = u yields

(Jf)(x) = eΦ(x)

∫ <(x)

∞
e−u−=(<inv(u))i f(<inv(u))

<′(<inv(u))
du.

It follows that

|(Jf)(x)| 6 e<(x)

∫ <(x)

∞
e−u‖f‖x

∥∥∥∥ 1
<′

∥∥∥∥
x

du = ‖f‖x
∥∥∥∥ 1
<′

∥∥∥∥
x

for all x > x0, whence (15). In the attractive case, the change of variables
−<(t) = u leads in a similar way to the bound

|(Jf)(x)| 6 e<(x)

∫ −<(x)

−<(x0)

eu‖f‖x0

∥∥∥∥ 1
<′

∥∥∥∥
x0

du

=
[
1− e<(x)−<(x0)

]
‖f‖x0

∥∥∥∥ 1
<′

∥∥∥∥
x0

6 ‖f‖x0

∥∥∥∥ 1
<′

∥∥∥∥
x0

,
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for all x > x0, using the monotonicity of <. Again, we have (15). �

Corollary 4 In the attractive case, the operator

Jλ : f 7−→ (Jf)(x) + λeΦ(x)‖f‖x0

is a continuous right-inverse of L on G4[i], for any λ ∈ C.

4.2 Continuous right-inverses of higher order operators

Let T be a transserial Hardy field of span v �� ex. A monic operator L ∈ T [i][∂]
is said to be split-normal , if it is normal and if it admits a splitting

L = (∂ − ϕ1) · · · (∂ − ϕr) (16)

with ϕ1, . . . , ϕr ∈ T [i]. In that case, proposition 5 implies that each ∂ − ϕi is a
normal first order operator. For a sufficiently large x0, it follows that L admits
a continuous “factorwise” right-inverse Jr · · ·J1 on G[i]4, where Ji = (∂−ϕi)−1

x0
.

We have
9Jr · · ·J19x0 6 9Jr 9x0 · · · 9 J1 9x0 .

Proposition 15 vνJr · · ·J1 : G4
x0

[i] → G4
x0;r[i] is a continuous operator for ev-

ery ν > rσL.

Proof Given f ∈ G4[i], the the first r derivatives of (vνJr · · ·J1)f satisfy

[(vνJr · · ·J1)f ](i) =
r∑

j=r−i
ci,j(vνJj · · ·J1)f,

with

c0,r = 1

ci+1,j = c′i,j + νv†ci,j + ϕjci,j +
1

ψj+1
ci,j+1.

By proposition 7 and induction over i, we have ci,j 4v v−iσL for all i, j. Since
ν > rσL, it follows that

‖[(vνJr · · ·J1)f ](i)‖x0 6 Ci‖f‖x0 , (17)

for all f ∈ G4[i] and i, where

Ci =
r∑

j=r−1

‖vνci,j‖x0 9 Jj 9x0 · · · 9 J1 9x0 .

We conclude that

9vνJr · · ·J19x0;r 6 max{C0, . . . , Cr}.

�
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Proposition 16 If L ∈ T [∂] and the splitting (16) preserves realness, then
Jr · · ·J1 preserves realness in the sense that it maps G4

x0
into itself.

Proof It clearly suffices to prove the proposition for an atomic real operator
L. If L has order 1, then the result is clear. Otherwise, we have

L = (∂ − (a− bi + b†))(∂ − (a+ bi))

for certain a, b ∈ T . In particular, we are in the same case (attractive or
repulsive) for both factors of L. Setting ϕ = a+ bi, let Φ = <+=i be as in the
previous section. Consider f ∈ G4

x0
and g = J2J1f . In the repulsive case, we

have

g(x) = b(x)eΦ̄(x)

∫ x

x0

e2i=(t)

b(t)

∫ t

x0

e−Φ(u)f(u)dudt.

In particular, we have g(x0) = g′(x0) = 0, whence g ∈ G4
x0

, since g satisfies the
differential equation Lg = f of order 2 with real coefficients. In the attractive
case, we have

g(x) = b(x)eΦ̄(x)

∫ x

∞

e2i=(t)

b(t)

∫ t

∞
e−Φ(u)f(u)dudt,

so that g, g′ 4v 1. Since Lg = Lḡ = f , the difference ḡ−g satisfies L(ḡ−g) = 0.
Now 0 is the only solution with h 4v 1 to the equation Lh = 0. This proves
that ḡ = g. �

4.3 The fixed point theorem

Let T be a transserial Hardy field of span v �� ex and consider a monic split-
normal quasi-linear equation

Lf = P (f), f ≺ 1, (18)

where L ∈ T [i][∂] has order r and P ∈ T [i]{F} has degree d. Of course, we
understand that L is a monic split-normal operator with P ≺v vrσL . We will
denote by vP > rσL the valuation of P in v (i.e. P �v vvP for P 6= 0 and
v0 = ∞). We will show how to construct a solution to (18) using the fixed-point
technique.

Proposition 17 Given ν with rσL < ν < vP , let Jr,nvν · · ·J1,nvν be a contin-
uous factorwise right-inverse of Lnvν beyond x0 and consider the operator

Ξ : f 7−→ (Jr · · ·J1)(P (f)) (19)

on G4
x0;r. Then there exists a constant Cx0 with

‖Ξ(f + δ)− Ξ(f)‖x0;r 6 Cx0(1 + · · ·+ ‖f‖dx0;r)(‖δ‖x0;r + · · ·+ ‖δ‖dx0;r), (20)

for all f, δ ∈ G4
x0;r.
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Proof Consider the Taylor series expansion

P (f + δ) =
∑

i

P (i)(f)δ(i)

=
∑

i

∑
j

P
(i)
j f (j)

 δ(i)
Since P (i)

j ≺v vν for all i and j, we may define Ax0 by

Ax0 =
∑
i,j

∥∥∥v−νP (i)
j

∥∥∥
x0

(21)

and obtain∥∥v−ν(P (f + δ)− P (f))
∥∥
x0

6 Ax0(1 + · · ·+ ‖f‖dx0;r)(‖δ‖x0;r + · · ·+ ‖δ‖dx0;r).

On the other hand, for each g ∈ Gx0 with g 4 vν , we have

‖(Jr · · ·J1)(g)‖x0;r = ‖(vνJr,nvν · · ·J1,nvν )(v−νg)‖x0;r 6 Bx0‖v−νg‖x0 ,

where
Bx0 = 9vνJr,nvν · · ·J1,nvν 9x0;r (22)

Consequently, the proposition holds for Cx0 = Ax0Bx0 . �

Theorem 5 Let (18) be a monic split-normal equation and let ν be such that
rσL < ν < vP . Then for any sufficiently large x0, there exists a continuous
factorwise right-inverse Jr,nvν · · ·J1,nvν of Lnvν , such that the operator (19)
satisfies

‖Ξ(f + δ)− Ξ(f)‖x0;r 6
1
2
‖δ‖x0;r (23)

for all

f, δ ∈ B
(
G4
x0;r,

1
2

)
=
{
f ∈ G4

x0;r : ‖f‖x0;r 6
1
2

}
.

Moreover, taking x0 such that ‖P0‖x0;r 6 1
4 , the sequence Ξ(n)(0) tends to a

unique fixed point f ∈ B(G4
x0;r,

1
2 ) for the operator Ξ.

Proof Since v−νP
(i)
j ≺ 1 for all i, j, the number Ax0 from (21) tends to 0

for x0 → ∞. When constructing J1,nvν , . . . , Jr,nvν using proposition 14, the
number Bx0 from (22) decreases as a function of x0. Taking x0 sufficiently large
so that Cx0 = Ax0Bx0 6 1

4 , we obtain (23). By induction over n, it follows that

‖Ξn(0)− Ξn−1(0)‖x0;r 6
1

2n+1

‖Ξn(0)‖x0;r 6
1
2
− 1

2n+1
.
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Now let Ĝ4
x0;r be the space of r times continuously differentiable functions f

on [x0,∞), such that f, . . . , f (r) are bounded. This space is complete, whence
Ξn(0) converges to a limit f ∈ B(Ĝ4

x0;r,
1
2 ). Since this limit satisfies the equation

(18), the function f is actually infinitely differentiable, i.e. f ∈ B(G4
x0;r,

1
2 ). �

4.4 Asymptotic analysis

With the notations from the previous section, assume now that T [i] is (1, 1, 1)-
differentially closed in T[i]��v, i.e. any solution f ∈ T[i]��v to an equation
(∂ − ϕ)f = g with ϕ, g ∈ T [i] is already in T [i]. Each Ji is the right-inverse of
an operator ∂−ϕi with ϕi ∈ T [i]. Now ∂−ϕi also admits a formal distinguished
right-inverse J̃i. Consequently, the operator Ξ also admits a formal counterpart

Ξ̃ : f 7−→ (J̃r · · · J̃1)(P (f)).

For each n ∈ N, we have

Ξ̃n+1(0)− Ξ̃n(0) ≺v Ξ̃n(0)

so the sequence Ξ̃n(0) also admits a formal limit f̃ in T̂ [i]. In order to show
that the fixed point f from proposition 5 and f̃ are asymptotically equivalent
over T [i], we need some further notations. Given f ∈ G4[i] and f̃ ∈ T [i], let us
write f ≈ f̃ if f − f̃ ≺ vR, i.e. f − f̃ ≺ vα for all α ∈ R. We also write f ≈r f̃
if f ≈ f̃ , . . . , f (r) ≈ f̃ (r).

Proposition 18 For f, g ∈ G4[i], f̃ , g̃ ∈ T [i] and r ∈ N, we have

f ≈r f̃ ∧ g ≈r g̃ ⇒ f + g ≈r f̃ + g̃

f ≈r f̃ ∧ g ≈r g̃ ⇒ fg ≈r f̃ g̃
f ≈r+1 f̃ ⇒ f ′ ≈r f̃ ′

Proof Trivial. �

Proposition 19 For f ∈ G4[i], f̃ ∈ T [i] and r ∈ N with f, f̃ ≺v vν , we have

f ≈r f̃ ⇒ Jif ≈r+1 J̃if̃ .

Proof Let us first show that

f ≈ 0 ⇒ Jif ≈1 0. (24)

Given α > ν with f 4 vα, we have Ji,nvα(v−αf) 4 1, whence Jif 4 vα.
Moreover,

(Jif)′ = ψ−1
i f + ϕ(Jif), (25)

whence f 4 vα ⇒ (Jif)′ 4 vα+β for some fixed β. This proves (24). More
generally, r additional applications of (25) yield

f ≈r 0 ⇒ Jif ≈r+1 0.
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Now assume that f ≈r f̃ and write

Jif − J̃if̃ = Ji(f − f̃) + (Ji − J̃i)(f̃).

By what precedes, we have Ji(f − f̃) ≈r+1 0. On the other hand,

(Ji − J̃i)(f̃) = ce
R
ϕi

for some c ∈ C. Since ∂−ϕi is normal, we either have e
R
ϕi ≺ vR (in which case

(e
R
ϕi)(i) ≺ vR for all i ∈ N) or c = 0. In both cases, we get (Ji− J̃i)(f̃) ≈r+1 0,

so that Jif ≈r+1 J̃if̃ . �

Theorem 6 Let T be a transserial Hardy field of span v �� ex such that T [i]
is (1, 1, 1)-differentially closed in T��v. Consider a monic split-normal quasi-
linear equation (18) without solutions in T . Then there exist solutions f ∈ G[i]
and f̃ ∈ T̂ [i] to (18), such that f and f̃ are asymptotically equivalent over T [i].

Proof With the above notations, let f and f̃ be the limits in G[i] resp. T̂ [i] of
the sequences Ξn(0) resp. Ξ̃n(0). Given g ∈ T [i], there exists an n with

Ξn+1(0)− Ξn(0) ≺v g.

At that point, we have

f − g ∼ Ξn(0)− g ≈ Ξ̃n(0)− g ∼ f̃ − g

In other words, f and f̃ are asymptotically equivalent over T [i]. �

Theorem 7 Let T be a transserial Hardy field of span v �� ex. Consider a
monic split-normal quasi-linear equation (18) without solutions in T such that
L and P have coefficients in T . Assume that one of the following conditions
holds:

a) T is (1, 1, 1)-differentially closed in T��v and rL = rP = 1.

b) T [i] is (1, 1, 1)-differentially closed in T[i]��v.

Then there exist solutions f ∈ G and f̃ ∈ T̂ to (18), such that f and f̃ are
asymptotically equivalent over T .

Proof In view of propositions 3 and 16, we may assume that Jr · · ·J1 and
Ξ preserve realness in all results from sections 4.3 and 4.4. In particular, the
solutions f and f̃ in the conclusion of theorem 6 are both real. �
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5 Differentially algebraic Hardy fields

5.1 First order extensions

Lemma 7 Let T be a transserial Hardy field of span v �� ex. Let L = ∂ −
ϕ ∈ T [∂] be a normal operator. Let f̃ ∈ T̂ 4 and g ∈ T 4 be such that f̃ is
transcendental over T and Lf̃ = g. Then there exists an f ∈ G4 with Lf = g,
such that f and f̃ are both differentially and asymptotically equivalent over T .

Proof With the notations of section 4.1, let f = Jg. Given a truncation ψ C f̃ ,
we claim that

f − ψ ≈ J(g − (ψ′ − ϕψ)).

Indeed, consider
δ = ψ − J(ψ′ − ϕψ) ∈ ReΦ.

In the attractive case, ψ ≺v eΦ implies δ = 0. In the repulsive case, we have
eΦ ≺∗v 1 and again δ ≈ 0. By proposition 19, we also have

f̃ − ψ = J̃(g − ψ′ + ϕψ) ≈ J(g − ψ′ + ϕψ).

Since ψ′ − ϕψ 6= g, it follows that f̃ − ψ ∼ f − ψ, whence f and f̃ are asymp-
totically equivalent over T . Furthermore, LF − g is a minimal annihilator of f̃
over T , since f̃ is transcendental over T . Lemma 5 therefore implies that f and
f̃ are differentially equivalent over T . �

Theorem 8 Let T be a transserial Hardy field. Let T fo ⊇ T be the smallest
differential subfield of T, such that for any P ∈ T fo{F} 6= with rP 6 1 and
f ∈ T we have P (f) = 0 ⇒ f ∈ T fo. Then the transserial Hardy field structure
of T can be extended to T fo.

Proof By theorems 1, 2 and 3, we may assume that T is closed under the
resolution of real algebraic equations, exponentiation and logarithm. Assume
that T fo 6= T and let P ∈ T {F}6= be of minimal complexity χP = (1, s, t), such
that P (f) = 0 for some f ∈ T fo. Without loss of generality, we may make the
following assumptions:

• f and P are exponential (modulo upward shifting).

• f is a serial cut (by lemma 3).

• f is a normal cut (modulo additive and multiplicative conjugations by Hf

resp. df ).

• P ∈ T [i]��v{F}, where v ∈ T ∩ T satisfies uspan f�−v (modulo replacing
P by P��v).

• P is monic split-normal (modulo proposition 9, additive and multiplicative
conjugations, and division by dP ).
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By Zorn’s lemma, it suffices to show that T 〈f〉 carries the structure of a transse-
rial Hardy field, which extends the structure of T .

If s = t = 1, then lemma 7 implies the existence of an f̂ ∈ G4 such that f
and f̂ are both asymptotically and differentially equivalent over T��v. Hence,
the result follows from lemmas 4 and 6.

If t > 1, then T and T��v are (1, 1, 1)-differentially closed in T resp. T��v.
Now v �� ex, since f is exponential. Therefore, theorem 7 provides us with an
f̂ ∈ G4 with P (f̂) = 0, such that f and f̂ are asymptotically equivalent over
T��v. We conclude by lemmas 5, 4 and 6. �

5.2 Higher order extensions

Lemma 8 Let T be a transserial Hardy field of span v �� ex. Let L = ∂ − ϕ ∈
T [i][∂] be a normal operator. Let f̃ ∈ T̂ [i]4 and g ∈ T [i]4 be such that Re f̃ has
order 2 over T and Lf̃ = g. Then there exists an f ∈ G4[i] with Lf = g, such
that Re f and Re f̃ are both differentially and asymptotically equivalent over T .

Proof The fact that f and f̃ are asymptotically equivalent over T is proved
in a similar way as for lemma 7. It follows in particular that Re f and Re f̃
are asymptotically equivalent. Since lcm(L, L̄) annihilates f , f̄ , f̃ and f̃ , it also
annihilates both Re f and Re f̃ . The fact that Re f̃ has complexity (2, 1, 1) over
T now guarantees that lcm(L, L̄) is a minimal annihilator of Re f̃ . We conclude
by lemma 5. �

Theorem 9 Let T be a transserial Hardy field. Let T dalg ⊇ T be the smallest
differential subfield of T, such that for any P ∈ T dalg{F} 6= and f ∈ T we have
P (f) = 0 ⇒ f ∈ T dalg. Then the transserial Hardy field structure of T can be
extended to T dalg.

Proof By theorems 2, 3 and 8, we may assume that T is closed under exponen-
tiation, logarithm and the resolution of first order differential equations. Assume
that T dalg 6= T and let P ∈ T [i]{F} 6= be of minimal complexity χP = (r, s, t),
such that P (f) = 0 for some f ∈ T dalg[i] with Re f 6∈ T . Let Q ∈ T {F} be a
minimal annihilator of Re f and notice that rQ > rP , since Re f 6∈ T . Without
loss of generality, we may make the following assumptions:

• f , P and Q are exponential (modulo upward shifting).

• f is a serial cut (by the complexified version of lemma 3).

• f is a normal cut (modulo additive and multiplicative conjugations by Hf

resp. df ).

• P ∈ T [i]��v{F} and Q ∈ T��v{F}, where v ∈ T ∩ T satisfies uspan f�−v
(modulo the replacement of P and Q by P��v resp. Q��v).

• Q is monic split-normal (modulo proposition 9, additive and multiplicative
conjugations, and division by dQ).
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By Zorn’s lemma, it now suffices to show that T 〈Re f〉 carries the structure of
a transserial Hardy field, which extends the structure of T .

If r = s = t = 1, then lemma 8 and the fact that T is 1-differentially
closed imply the existence of an f̂ ∈ G4[i] such that Re f and Re f̂ are both
asymptotically and differentially equivalent over T��v. The result follows by
lemmas 4 and 6.

If χP 6= (1, 1, 1), then T [i] and T [i]��v are (1, 1, 1)-differentially closed in T[i]
resp. T[i]��v. Now v �� ex, since f is exponential. Therefore, theorem 7 pro-
vides us with a g ∈ G4 with Q(g) = 0, such that Re f and g are asymptotically
equivalent over T��v. We conclude by lemmas 5, 4 and 6. �

Corollary 5 There exists a transserial Hardy field T , such that for any P ∈
T {F} and f, g ∈ T with f < g and P (f)P (g) < 0, there exists a h ∈ T with
f < h < g and P (h) = 0.

Proof Take T = R(xR)dalg and endow it with a transserial Hardy field struc-
ture. Let P ∈ T {F} and f, g ∈ T with f < g be such that P (f)P (g) < 0. By
[vdH06, Theorem 9.33], there exists a h ∈ T with f < h < g and P (h) = 0.
But P (h) = 0 implies h ∈ T . �

Corollary 6 There exists a transserial Hardy field T , such that T [i] is weakly
differentially closed.

Proof Take T = Rdalg. By a straightforward adaptation of [vdH06, Chapter
8] (see also [vdH01, theorem 9.3]), it can be shown that any differential equation
P (f) = 0 of degree d with P ∈ T [i]{F} admits d distinguished solutions in T[i]
when counting with multiplicities. Let f be such a solution. Since P (f) =
P̄ (f̄) = 0, both Re f and Im f are differentially algebraic over T , whence f ∈
T [i]. �

Corollary 7 There exists a differentially Henselian transserial Hardy field T ,
i.e., such that any quasi-linear differential equation over T admits a solution in
T .

5.3 Differential Newton polynomials for Hardy fields

Let H be a differentially algebraic Hardy field extension of a transserial Hardy
field T .

Proposition 20 Given ε ∈ H≺, there exists an l ∈ N with ε ≺ (logl x)−1.

Proof The functional inverse |ε−1|inv of |ε−1| satisfies an algebraic differential
equation P (|ε−1|inv) = 0 over T . Let P〈i〉f 〈i〉 be the leading term of P for its
logarithmic decomposition. As in [vdH06, Section 8.1.4]. there exists an l ∈ N
with P (f) ∼ P〈i〉f

〈i〉 for all f < expl x . It follows that |ε−1|inv ≺ expl x and
ε ≺ (logl x)−1. �
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Given a differential polynomial P ∈ H{F}6=, we define its dominant part to
be the unique monic DP ∈ R{F} such that P = `P (DP +EP ) for some `P ∈ H
and EP ∈ H{F}≺. Here DP is said to be monic if its leading coefficient w.r.t.
F (rP ), . . . , F equals 1.

Theorem 10 Given P ∈ H{F}6=, there exists a polynomial NP ∈ R[F ](F ′)N

with

DP↑l
= NP

EP↑l
= oex(1)

for all sufficiently large l ∈ N.

Proof As in the proof of [vdH06, Theorem 8.6], we have

wtDP > wvDP > wtDP↑ > wvDP↑ > · · · ,

so we may assume without loss of generality that wtDP↑i = wvDP↑i = w is
constant for all i ∈ N. Now

P ↑ = `P↑(DP↑ + EP↑)
= `P ↑ (DP ↑ +EP ↑)
= `P ↑ (e−wxDP↑ + EP ↑),

whence

`P↑ = `P ↑ e−wx (26)
DP↑ = DDP ↑ (27)
EP↑ = EP ↑ ewx. (28)

Indeed, we must have

EP ↑ ewx = (EP[<w] ↑ +EP[>w] ↑)e
wx ≺ 1,

because EP[<w] ↑ ewx < 1 would imply wtDP↑ < w. Applying [vdH06, Lemma
8.5] to (27), and similarly for P ↑, P ↑↑, . . ., we get

DP↑l
= DP ∈ R[F ](F ′)w

for all l ∈ N.
By proposition 20 and (28), we have EP,[>v] ≺logl x 1 and EP↑l+1,[>v] ≺ex 1

for some l ∈ N. Modulo upward shiftings, we may thus assume without loss of
generality that EP,[>v] ≺ex 1. More generally, assume that EP,[>v] ≺ex 1 for
some v < w. By (28), this implies EP↑l,[>v] ≺ex 1 for all l ∈ N and

EP↑,[ω] = (EP,[v] ↑[ω] +EP,[>v] ↑[ω])ewx

= e(w−v)x(EP,[ω] ↑ +oex(1)), (29)
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for all ω of weight v. We claim that there exists an l ∈ N with

EP,[v] ≺ [(log−1
l x)′]w−v. (30)

Assume the contrary and consider a coefficient EP,[ω] of weight v with

ψ = w−v

√
EP,[ω] < (log−1

l x)′

for all l ∈ N. Without loss of generality, we may assume that ψ and
∫
ψ are in

H. Then proposition 20 implies
∫
ψ < 1 and even

∫
ψ � 1 (by integrating from

+∞ when possible). Again by proposition 20, it follows that
∫
ψ � logl x and

ψ � (logl x)′ for some l ∈ N. But then (29) yields

EP↑l,[ω] = [(logl x)
′]v−w ↑l (EP,[ω] ↑l +oex(1)) � 1,

which contradicts the fact that EP↑l
≺ 1. The relations (30) and (29) imply the

existence of an l ∈ N with EP↑l+1,[v] ≺ex 1. By induction over v = w,w−1, . . . , 0
and modulo upward shiftings, we may thus ensure that EP,[>v] ≺ex 1 for all
v 6 w. �

The polynomial NP in theorem 10 is called the differential Newton polyno-
mial of P . The generalization of this concept to H allows us to mimic a lot of
the theory from [vdH06, chapter 8] in H. In what follows, we will mainly need
a few more definitions. The Newton degree of an equation

P (f) = 0, f ≺ ϕ (31)

with P ∈ H{F} and ϕ ∈ H 6= is defined by deg≺ϕ P = degNP×ϕ
. Setting

γ̂ =
1

x log x log2 x · · ·

we also define
deg≺γ̂ P = min

ϕ�γ̂
deg≺ϕ P.

We say that f ≺ ϕ is a solution to (31) modulo o(ψ), ψ ∈ T ∪{γ̂} if deg≺ψ P+f >
0. We say that H is differentially Henselian, if every quasi-linear equation over
H admits a solution. Given a solution f to (31), we say that f has algebraic
type if NP×f

is not homogeneous and differential type in the other case. The
following proposition is proved along the same lines as [vdH06, proposition 8.16]:

Proposition 21 Let f be a solution to (31) of differential type and let i be the
degree of NP×f

. Then f† is a solution modulo o(γ̂) of RPi .

Remark 6 In this section, we assumed thatH is a differentially algebraic Hardy
field extension of a transserial Hardy field T . We expect that the theory can be
adapted to even more general H-field. This is one of the objectives of a current
collaboration with Lou van den Dries and Matthias Aschenbrenner [AvdDvdH].
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5.4 Transserial models of differentially algebraic Hardy
fields

Theorem 11 Let T be a transserial Hardy field and H a differentially algebraic
Hardy field extension of T , such that H is differentially Henselian and stable
under exponentiation. Then there exists a transserial Hardy field structure on
H which extends the structure on T .

Proof By theorems 1, 2 and 8, we may assume that T is closed under the
resolution of real algebraic equations, exponentiation and integration. Assume
that H 6= T and choose P ∈ T {F} of minimal complexity χP = (r, s, t), such
that either

C1 P (f) = 0 for some f ∈ H.

C2 P (f) = 0 modulo o(mγ̂) for some f ∈ H, m ∈ T ∩T and P admits no roots
in T modulo o(mγ̂). Moreover, T is χP -differentially closed in H.

Modulo upward shifting, we may assume without loss of generality that P is
exponential. In view of Zorn’s lemma, it suffices to show that there exists a
transserial Hardy field structure on T 〈f〉 which extends the structure on T .

Let Φ be the set of f̃ ∈ T such that f − f̃ ≺ supp f̃ . The set Φ is totally
ordered for P, so there exists a minimal well-based transseries f̃ with ϕ P f̃
for all ϕ ∈ Φ. We call f̃ the initializer of f over T . Assume first that f̃ ∈ T .
Then we may assume without loss of generality that ϕ = 0, modulo an additive
conjugation by ϕ. Now f is of differential type, since f � m for no m ∈ T ∩T. Let
i ∈ N be such that RPi(f

†) = 0 modulo o(γ̂). Since RPi has lower complexity
than P , there exists a g ∈ T with RPi(g) = 0 modulo o(γ̂). Since T is truncation
closed we may take g ∈ T�γ̂ . But then f � e

R
g ∈ T ∩ T. This contradiction

proves that we cannot have f̃ ∈ T .
Let us now consider the case when f̃ 6∈ T . Since deg≺supp f̃ P+f̃ > 0, there

exists a root ϕ Q f̃ of P in the set of well-based transseries with complex
coefficients. But P admits only grid-based solutions, whence f̃ ∈ T. By con-
struction, f and f̃ are asymptotically equivalent over T . Let v ∈ T ∩T be such
that uspan f̃�−v. Modulo an additive and a multiplicative conjugation we may
assume without loss of generality that f̃ is a normal cut. In case C2, we notice
that supp f̃ � mγ̂, whence m ≺∗v 1, since uspan f̃ = v. Consequently, we always
have P��v(f̃) = 0.

We claim that the cuts f and f̃ are differentially equivalent over T . Assume
the contrary and let Q ∈ T��v{F} be a minimal annihilator of f̃ . By lemma 8
and modulo an additive and multiplicative conjugation, we may assume without
loss of generality that f̃ ≺v 1 and that Q is normal. Since H is differentially
Henselian, it follows that Q admits a root g ≺v 1 in H. Now χQ < χP in case
C1 and χQ 6 χP in case C2, so this root is already in T , by the induction
hypothesis. But Q admits at most one solution in T��v, whence f̃ = g��v ∈ T .
This contradiction completes the proof of our claim. By lemma 6, we conclude
that T 〈f〉 carries the structure of a transserial Hardy field extension of T . �
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Corollary 8 Let T be a transserial Hardy field and H a differentially algebraic
Hardy field extension of T , such that H is differentially Henselian. Assume that
H admits no non-trivial algebraically differential Hardy field extensions. Then
H satisfies the differential intermediate value property.

Proof The fact that H admits no non-trivial algebraically differential Hardy
field extensions implies that H is stable under exponentiation. By theorem 11,
we may give H the structure of a transserial Hardy field. By theorem 9, we also
have T dalg = T . We conclude in a similar way as in the proof of corollary 5. �

It is quite possible that there exist maximal Hardy fields whose differentially
algebraic parts are not differentially Henselian, although we have not searched
hard for such examples yet. The differentially algebraic part of the intersection
of all maximal Hardy fields is definitely not differentially Henselian (and there-
fore does not satisfy the differential intermediate value property), due to the
following result [Bos87, Proposition 3.7]:

Theorem 12 Any solution of the equation

f ′′ + f = ex
2

is contained in a Hardy field. However, none of these solutions is contained in
the intersection of all maximal Hardy fields.
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