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For any ordinal α > 0, we show how to define a hyperexponential Eωα and a hyperlogarithm Lωα on
the class No>,≻ of positive infinitely large surreal numbers. Such functions are archetypes of extremely
fast and slowly growing functions at infinity. We also show that the surreal numbers form a so-called
hyperserial field for our definition.

1 Introduction

The ordered field No of surreal numbers was introduced by Conway in [11]. Conway originally
used transfinite recursion to define both the surreal numbers (henceforth called numbers), the
ordering on No, and the ring operations. For any two sets L and R of numbers with L<R (i.e.
x <y for all x∈L and y∈R), there exists a number {L ∣ R} with

L < {L ∣R} < R,

and all numbers can be obtained in this way. Given x= {xL ∣ xR} and y= {yL ∣ yR}, we have

x +y ≔ {xL+y,x +yL ∣ xR+y,x+yR}

and similar recursive formulas exist for −x , xy and for deciding whether x=y, x⩽y, and x<y.
It is truly remarkable that No turns out to be a totally ordered real-closed field for such “simple”
definitions [11]. The bracket { ∣ } is called the Conway bracket . Using this bracket, we obtain
a surreal number in any traditional Dedekind cut, which allows us to embed ℝ into No. In
addition, No contains all ordinal numbers

0= { ∣ }, 1= {0 ∣ }, 2= {0,1 ∣ }, . . . , ω= {0,1,2, . . . ∣ }, ω+1= {0,1,2, . . . ,ω ∣ }, . . . ,

so No is actually a proper class.

An interesting question is which other operations from calculus can be extended to the sur-
real numbers. Gonshor has shown how to extend the real exponential function to the surreal
numbers [19] and the resulting exponential field (No,exp) turns out to be elementarily equiva-
lent to (ℝ,exp) [13]. Berarducci and Mantova recently defined a derivation with respect to ω on
the surreals [9], again with good model-theoretic properties [2]. In collaboration with Mantova,
the authors constructed a surreal solution to the functional equation

Eω(x+1) = expEωx,

which is a bijection of No>,≻≔ {x ∈No :x >ℝ} onto itself [6]. We call Eω a hyperexponential
and its functional inverse Lω a hyperlogarithm.
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The first goal of this paper is to extend the results from [6] to the construction of hyperexpo-
nentials Eωα:No>,≻⟶No>,≻ of any ordinal force α , together with their functional inverses Lωα.
If α =β +1 is a successor ordinal, then Eωα satisfies the functional equation

Eωβ+1(x +1) = Eωβ(Eωβ+1(x)).

Our second goal is to show that these hyperexponentials are “well-behaved” in the sense that
they endow No with the structure of a hyperserial field in the sense of [5].

1.1 Motivation and background

Whereas it is natural to study surreal exponentiation and differentiation, it may seem more
exotic to define and investigate the properties of surreal hyperexponentials and hyperlogarithms.
In fact, the main motivation behind our work is a conjecture by the second author [26, p. 16]
and a research program that was laid out in [1] for proving this conjecture. The ultimate goal is
to expose the deep connections between two types of mathematical infinities: numerical infini-
ties and growth rates at infinity. Let us briefly recall the rationale behind this connection.

Cantor's ordinal numbers provide us with a way to count beyond all natural numbers and
to keep counting beyond the size of any set. However, ordinal arithmetic is rather poor in the
sense that we have no subtraction or division and that addition and multiplication do not satisfy
the usual laws of arithmetic, such as commutativity. We may regard Conway's surreal numbers
as providing a calculus with Cantor's ordinal numbers which does extend the usual calculus
with real numbers. In this sense, Conway managed to construct the ultimate framework for
computations with numerical infinities.

Another source for computations with infinitely large quantities stems from the study of
growth rates of real functions at infinity. The firstmajor results towards a systematic asymptotic
calculus of this kind are due toHardy in [21, 22], based on earlier ideas by du Bois-Reymond [15,
16, 17]. Hardy defined an L-function to be a function constructed from x and the real num-
bers ℝ using the field operations, exponentiation, and logarithms. He proved that the germs
of L-functions at infinity form a totally ordered field. The framework of L-functions is suit-
able for asymptotic analysis since we have an ordering for comparing the growth at infinity
of any two such functions. This is osten rephrased by saying that L-functions have a regular
growth at infinity.

Hardy also observed [21, p. 22] that “The only scales of infinity that are of any practical
importance in analysis are those which may be constructed by means of the logarithmic and
exponential functions.” In other words, Hardy suggested that the framework of L-functions
not only allows for the development of a systematic asymptotic calculus, but that this frame-
work is also sufficient for all “practical” purposes. Alas, there are several “holes”. First of all,
the framework is not closed under various useful operations such as functional inversion and
integration. Secondly, the framework does not contain any functions of extremely fast or slow
growth at infinity, like Eω and Lω, although such functions naturally appear in the analysis of
certain algorithms. For instance, the best known algorithm for multiplying two polynomials of
degree n in 𝔽2[x] runs in time O(n logn 4Lωn); see [23].

This raises the question how to construct a truly universal framework for computations with
regular functions at infinity. Our next candidate is the class of transseries. A transseries is
a formal object that is constructed from x (with x→∞) and the real numbers, using exponenti-
ation, logarithms, and infinite sums. One example of a transseries is

ee
x+ex /2+ex /3+⋅ ⋅ ⋅−3 ex

2
+5 (logx)π+42+x−1+2x−2+6x−3+24 x−4+ ⋅⋅ ⋅ +e−x.
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Depending on conditions satisfied by their supports, there are different types of transseries. The
first constructions of fields of transseries are due to Dahn and Göring [12] and Écalle [18]. More
general constructions were proposed subsequently by the second author and his former student
Schmeling [24, 25, 29]. Clearly, any L-function is a transseries, but the class of transseries is also
closed under integration and functional inversion, contrary to the class of L-functions.

However, the class of transseries still does not contain any hyperexponential or hyperloga-
rithmic elements like Eωx or Lωx . In our quest for a truly universal framework for asymptotic
analysis, we are thus lead to look beyond: a hyperseries is a formal object that is constructed
from x and the real numbers using exponentiation, logarithms, infinite sums, as well as hyper-
exponentials Eωα and hyperlogarithms Lωα of any force α . The hyperexponentials Eωα and the
hyperlogarithms Lωα are required to satisfy functional equations

Eωα+1∘T1 = Eωα ∘Eωα+1 (1.1)

Lωα+1∘Lωα = T−1∘Lωα+1, (1.2)

where Ts(u)≔u+ s. For γ =∑i=1
p ωαini in Cantor normal form with α1< ⋅⋅⋅<αp, we also define

Lγ = Lωα1
∘n1 ∘ ⋅ ⋅ ⋅ ∘Lωαp

∘np (1.3)

and we require that

Lγ′ =
1

∏β<γ Lβ
. (1.4)

It is non-trivial to construct fields of hyperseries in which these and several other technical
properties (see section 4 below) are satisfied. This was first accomplished by Schmeling for
hyperexponentials Eωn and hyperlogarithms Lωn of finite force n∈ℕ. The general case was
tackled in [14, 5].

The construction of general hyperseries relies on the definition of an abstract notion of hyper-
serial fields. Whereas the hyperseries that we are really aster should actually be hyperseries in
an infinitely large variable x , abstract hyperserial fields potentially contain hyperseries that
can not be written as infinite expressions in x . In the present paper, we define hyperexponen-
tials Eωα and hyperlogarithms Lωα on No for all ordinals α and show that this provides No with
the structure of an abstract hyperserial field. Moreover, any hyperseries f in x can naturally
be evaluated at x =ω to produce a surreal number f (ω). The conjecture from [26, p. 16] states
that, for a sufficiently general notion of “hyperseries in x”, all surreal numbers can actually be
obtained in this way. We plan to prove this and the conjecture in a follow-up paper.

1.2 General overview and summary of our new contributions

Our main goal is to define hyperexponentials Eωα:No>,≻⟶No>,≻ for any ordinal α>1 and to
show that No is a hyperserial field for these hyperexponentials. Since our construction builds
on quite some previous work, the paper starts with three sections of reminders.

In section 2, we recall basic facts about well-based series and surreal numbers. In particular,
we recall that any surreal number x∈No can be regarded as a well-based series

x = �
𝔪∈Mo

x𝔪𝔪

with real coefficients x𝔪∈ℝ. The corresponding group of monomials Mo consists of those
positive numbers 𝔪∈No> that are of the form 𝔪= {ℝ>L ∣ ℝ>R} for certain subsets L and R
of No with ℝ>L<ℝ>R.
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Section 3 is devoted to the theory of surreal substructures from [4]. One distinctive feature
of the class of surreal numbers is that it comes with a partial, well-founded order ⊑, which is
called the simplicity relation. The Conway bracket can then be characterized by the fact that, for
any sets L and R of surreal numbers with L<R, there exists a unique ⊑-minimal number {L ∣ R}
with L< {L ∣ R}<R. For many interesting subclasses S of No, it turns out that the restrictions
of ⩽ and ⊑ to S give rise to a structure (S,⩽,⊑) that is isomorphic to (No,⩽,⊑). Such classes S
are called surreal substructures of No and they come with their own Conway bracket { ∣ }S.

In section 4, we recall the definition of hyperserial fields from [5] and the main results on
how to construct such fields. One major fact from [5] on which we heavily rely is that the
construction of hyperserial fields can be reduced to the construction of hyperserial skeletons. In
the context of the present paper, this means that it suffices to define the hyperlogarithms Lωα

only for very special, so called L<ωα-atomic elements.
In the case when α = 0, the L<1-atomic elements are simply the monomials in Mo and the

definition of the general logarithm on No> indeed reduces to the definition of the logarithm
on Mo: given x∈No>, we write x= c𝔪 (1+ ε), where c∈ℝ, 𝔪∈Mo and ε is infinitesimal, and
we take logx≔ log𝔪+ log c+ ε− ε2/2+ ε3/3+ ⋅⋅ ⋅. This very special case will be considered in
more detail in section 5.

In the case when α=1, the L<ω-atomic elements of No>,≻ are those elements 𝔞∈No>,≻ such
that Ln𝔞 is a monomial for every n∈ℕ. The construction of Lω on No>,≻ then reduces to the
construction of Lω on the class Moω of L<ω-atomic numbers. This particular case was first
dealt with in [6] and this paper can be used as an introduction to the more general results in the
present paper.

For general ordinals α , we say that 𝔞 ∈No>,≻ is L<ωα-atomic if Lβ 𝔞 is a monomial for
every β <α . The advantage of restricting ourselves to such numbers 𝔞 when defining hyper-
logarithms is that Lα 𝔞 only needs to verify few requirements with respect to the ordering.
This makes it possible to define Lα 𝔞 using the fairly simple recursive formula

Lα 𝔞 ≔ {ℝ,Lα 𝔞′+ (L<α 𝔞′)−1 ∣ Lα 𝔞′′− (L<α 𝔞)−1,L<α 𝔞}, (1.5)

where 𝔞′, 𝔞′′ range over L<α-atomic numbers with 𝔞′, 𝔞′′⊑𝔞 and 𝔞′<𝔞<𝔞′′; see also (7.1).

In section 6, we prove that this definition is warranted and that the resulting functions Lα
satisfy the axioms of hyperserial skeletons from [5, Section 3]. Our proof proceeds by induction
on α and also relies on the fact that the class Moα of L<ωα-atomic numbers actually forms
a surreal substructure of No. Our main result is the following theorem:

Theorem 1.1. The definition (1.5) gives No the structure of a confluent hyperserial skeleton
in the sense of [5]. Consequently, we may uniquely extend Lωμ to No>,≻ in a way that gives No
the structure of a confluent hyperserial field. Moreover, for each ordinal μ, the extended function
Lωμ:No>,≻⟶No>,≻ is bijective.

Our final section 7 is devoted to further identities that illustrate the interplay between the
hyperexponential and hyperlogarithmic functions and the simplicity relation ⊑ on No. We also
prove the following more symmetric variant of (1.5):

Lα 𝔞 = {ℝ,Lα 𝔞′+ (L<α 𝔞′)−1 ∣ Lα 𝔞′′− (L<α 𝔞′′)−1,L<α 𝔞}, (1.6)

where 𝔞′, 𝔞′′ again range over the L<α-atomic numbers with 𝔞′, 𝔞′′ ⊑ 𝔞 and 𝔞′ < 𝔞< 𝔞′′. An
interesting open question is whether there exists an easy argument that would allow us to
use (1.6) instead of (1.5) as a definition of Lα 𝔞.

4 Vincent Bagayoko, Joris van der Hoeven



2 Basic notions

2.1 Ordered fields of well-based series
2.1.1 Well-based series

Let (𝔐,×,1,≺) be a (possibly class-sized) linearly ordered abelian group. We write 𝕊≔ℝ[[𝔐]]
for the class of functions f :𝔐⟶ℝ whose support

supp f ≔ {𝔪∈𝔐: f (𝔪)≠0}

is a well-based set, i.e. a set which is well-ordered with respect to the reverse order (𝔐,≻).
We see elements f of 𝕊 as formal well-based series f =∑𝔪 f𝔪𝔪, where f𝔪 denotes the coeffi-

cient f (𝔪)∈ℝ of 𝔪 in f , for each 𝔪∈𝔐. If supp f ≠∅, then we define 𝔡f ≔max supp f ∈𝔐 to
be the dominant monomial of f . For 𝔪∈𝔐, we let f≻𝔪≔∑𝔫≻𝔪 f𝔫𝔫 and we write f≻≔ f≻1. We
say that a series g∈𝕊 is a truncation of f and we write g{ f if supp(f −g)≻g . The relation {
is a well-founded partial order on 𝕊 with minimum 0.
By [20], the class 𝕊 is an ordered field under the pointwise sum

(f +g) ≔ �
𝔪

(f𝔪+g𝔪)𝔪,

the Cauchy product

f g ≔ �
𝔪 ((((((((( �𝔲𝔳=𝔪 f𝔲g𝔳)))))))))𝔪,

(where each sum∑𝔲𝔳=𝔪 f𝔲g𝔳 has finite support), and where the positive cone𝕊>= {f ∈𝕊: f >0}
is given by

𝕊> ≔ {f ∈𝕊: f ≠0∧ f𝔡f >0}.

The identification of 𝔪∈𝔐 with the formal series ∑𝔫=𝔪 1 ⋅ 𝔫 ∈𝕊 induces an ordered group
embedding (𝔐,×,≺)⟶ (𝕊>, ×,<).
We next define the following asymptotic relations on 𝕊:

f ≺g ⟺ ℝ> |f |< |g |
f ≼g ⟺ ∃r ∈ℝ>, |f |⩽ r |g |
f ≍g ⟺ f ≼g≼ f .

The relation ≺ extends the ordering on 𝔐. For non-zero f ,g∈𝕊 we actually have f ≺g (resp.
f ≼g , resp. f ≍g) if and only if 𝔡f ≺𝔡g (resp. 𝔡f ≼𝔡g, resp. 𝔡f =𝔡g). We finally define

𝕊≻ ≔ {f ∈𝕊: supp f ⊆𝔐≻}
𝕊≺ ≔ {f ∈𝕊: supp f ⊆𝔐≺} = {f ∈𝕊: f ≺1}

𝕊>,≻ ≔ {f ∈𝕊: f >ℝ}= {f ∈𝕊: f ⩾0∧ f ≻1}.

Series in 𝕊≻, 𝕊≺ and 𝕊>,≻ are respectively called purely large, infinitesimal, and positive infinite.

2.1.2 Well-based families

Let (fi)i∈I be a family in 𝕊, We say that (fi)i∈I is well-based if

i. ⋃i∈I supp fi is well-based, and

ii. {i∈ I :𝔪∈ supp fi} is finite for all 𝔪∈𝔐.

In that case, we may define the sum∑i∈I fi of (fi)i∈I by

�
i∈I

fi ≔ �
𝔪 (((((((((�i∈I (fi)𝔪)))))))))𝔪.
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If𝕌=ℝ[[𝔑]] is another field of well-based series and Ψ:𝕊⟶𝕌 isℝ-linear, then we say that Ψ
is strongly linear if for every well-based family (fi)i∈I in 𝕊, the family (Ψ(fi))i∈I is well-based,
with

Ψ(((((((((�i∈I fi))))))))) = �
i∈I

Ψ(fi).

2.2 Surreal numbers
2.2.1 Surreal numbers and simplicity

We denote by On the class of ordinal numbers. Following [19], we define No to be the class of
sign sequences

a = (a[β])β<α ∈ {−1,+1}α

of ordinal length α∈On. The terms a[β]∈ {−1,+1} are called the signs of a and we write la for
the length of a. Given two numbers a,b∈No, we define

a⊑b ⟺ la⩽ lb∧ (∀β< la,a[β]=b[β]).

We call ⊑ the simplicity relation on No and note that (No,⊑) is well-founded. See [4, Section 2]
for more details about the interaction between ⊑ and the ordered field structure of No.

Recall that the Conway bracket is characterized by the fact that, for any sets L and R of surreal
numbers with L<R, there exists a unique ⊑-minimal number {L ∣ R} with L< {L ∣ R}<R. Con-
versely, given a number a∈No, we define

aL ≔ {x∈No :x ⊏a,x<a}
aR ≔ {x∈No :x ⊐a,x>a}.

Then a can canonically be written as

a = {aL ∣ aR}.

2.2.2 Ordinals as surreal numbers

The structure (No,⊑) contains an isomorphic copy of (On,<) by identifying each ordinal α with
the constant sequence (+1)β<α of length α . We will write ν ⩽On to state that ν is either an
ordinal or the class of ordinals.

For γ ∈On, we write ωγ for the ordinal exponentiation of ω to the power γ and we define

ωOn ≔ {ωγ :γ ∈On}.

If μ∈On is a successor ordinal, then we define μ− to be the unique ordinal with μ= μ−+1. We
also define μ−≔μ if μ is a limit ordinal. Similarly, if α =ωμ , then we set α/ω≔ωμ−. Recall that
every ordinal γ has a unique Cantor normal form

γ = ωη1n1+ ⋅⋅ ⋅ +ωηrnr ,

where r ∈ℕ, n1, . . . ,nr ∈ℕ>0 and η1, . . . ,ηr ∈On with η1> ⋅⋅ ⋅ >ηr .
2.2.3 Surreal numbers as well-based series

We define Mo to be the class of positive numbers 𝔪∈No> of the form 𝔪= {ℝ>L ∣ ℝ>R} for
certain subsets L and R of No with ℝ> L <ℝ> R. Numbers in Mo are called monomials. It
turns out [11, Theorem 21] that the monomials form a subgroup of (No>, ×,<) and that there is
a natural isomorphism between No and the ordered field ℝ[[Mo]]. We will identify those two
fields and thus see No as a field of well-based series. The ordinal ω, seen as a surreal number,
is the simplest element, or ⊑-minimum, of the class No>,≻.
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3 Surreal substructures

3.1 Surreal substructures
In [4], we introduced the notion of surreal substructures. A surreal substructure is a subclass 𝐒
of No such that (No,⩽,⊑) and (𝐒,⩽,⊑) are isomorphic. The isomorphism No⟶𝐒 is unique and
denoted by Ξ𝐒. Many important subclasses of No that are relevant to the study of hyperserial
properties of No are surreal substructures. In particular, it is known that the following classes
are surreal substructures:

• The classes No>, No>,≻ and No≺ of positive, positive infinite and infinitesimal numbers.

• The classes Mo and Mo≻ of monomials and infinite monomials.

• The classes No≻ and No≻> of purely infinite and positive purely infinite numbers.

• The class Moω of log-atomic numbers.

If 𝐔, 𝐕 are surreal substructures, then the class 𝐔 �𝐕≔ Ξ𝐔𝐕 is a surreal substructure
with Ξ𝐔�𝐕=Ξ𝐔∘Ξ𝐕.

3.2 Cuts
Given a subclass 𝐗 of No and a∈X, we will write

aL
𝐗 ≔ {b∈X :b<a∧b⊑a} and aR

𝐗 ≔ {b∈X :b>a∧b⊑a},

so that aL≔aL
No and aR≔aR

No. We also write a⊏𝐗≔aL
𝐗∪aR𝐗 and a⊏≔a⊏No.

If X is a subclass of No and L,R are subsets of X with L<S, then the class

(L ∣ R)X ≔ {a∈X : (∀l∈L, l<a)∧ (∀r∈R,a< r)}

is called a cut in X. If (L ∣ R)X contains a unique simplest element, then we denote this element
by {L ∣ R}X and say that (L,R) is a cut representation (of {L ∣ R}X) in X. These notations naturally
extend to the case when 𝐋 and 𝐑 are subclasses of X with 𝐋<𝐑.
A surreal substructure 𝐒 may be characterized as a subclass of No such that for all cut repre-

sentations (L,R) in S, the cut (L ∣ R)S has a unique simplest element [4, Proposition 4.7].

Let S be a surreal substructure. Note that we have a= {aL𝐒 ∣ aR𝐒} for all a∈ S. Let a∈ S and
let (L, R) be a cut representation of a in S. Then (L, R) is cofinal with respect to (aL

S, aRS ) in
the sense that L has no strict upper bound in aL

S and R has no strict lower bound in aR
S [4,

Proposition 4.11(b)].
Given numbers a,b∈No with a⩽b, the number c≔ {aL ∣ bR} is the unique ⊑-maximal number

with c⊑ a,b. We have a⩽ c⩽b. Let S be a surreal substructure. Considering the isomorphism
ΞS: (No, ⩽, ⊑)⟶ (S, ⩽, ⊑), we see that for all a, b∈ S with a⩽ b, there is a unique ⊑-maximal
element c of S with c⊑ a,b, and we have a⩽ c ⩽b. In what follows, we will use this basic fact
several times without further mention.

3.3 Cut equations
Let X⊆No be a subclass, let 𝐓 be a surreal substructure and F :X⟶𝐓 be a function. Let λ,ρ
be functions defined for cut representations in X and such that λ(L,R),ρ(L,R) are subsets of 𝐓
whenever (L,R) is a cut representation in X. We say that (λ,ρ) is a cut equation for F if for all
a∈X, we have

λ(aL
X,aRX) < ρ(aL

X,aRX), F (a) = {λ(aL
X,aRX) ∣ ρ(aLX,aRX)}𝐓.

Elements in λ(aL
X, aRX) (resp. ρ(aL

X, aRX)) are called lest (resp. right) options of this cut equation
at a.
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We say that the cut equation is uniform if we have

λ(L,R) < ρ(L,R), F ({L ∣ R}X) = {λ(L,R) ∣ ρ(L,R)}𝐓

whenever (L,R) is a cut representation in X. For instance, given r∈ℝ, consider the translation
Tr :No⟶No;a⟼a+ r on No. By [19, Theorem 3.2], we have the following uniform cut equa-
tion for Tr on No:

∀a∈No, a+ r = {aL+ r ,a+ rL ∣ a+ rR,aR+ r}. (3.1)

We will need the following result from [4]:

Proposition 3.1. [4, Proposition 4.36] Let 𝐒, 𝐓 be surreal substructures. Let Λ be a function
from 𝐒 to the class of subsets of 𝐓 such that for x, y∈𝐒 with x < y, the set Λ(y) is cofinal with
respect to Λ(x). For x∈𝐒, let Λ[x] denote the class of elements u of 𝐒 such that Λ(x) and Λ(u) are
mutually cofinal. Let {λ ∣ ρ}𝐓 be a cut equation on 𝐒 that is extensive in the sense that

∀x,y∈𝐒, (x ⊑y⟹ (λ(xL𝐒,xR𝐒)⊆λ(yL𝐒,yR𝐒)∧ρ(xL𝐒,xR𝐒)⊆ρ(yL𝐒,yR𝐒))).

Let F : 𝐒⟶𝐓 be strictly increasing with cut equation

∀x∈𝐒, F (x)= {Λ(x),λ(xLS,xRS) ∣ ρ(xLS,xRS)}𝐓.

Then F induces an embedding (Λ[x],⩽,⊑)⟶ (𝐓,⩽,⊑) for each element x of 𝐒.

3.4 Convex partitions
One natural way to obtain surreal substructures is via convex partitions. If 𝐒 is a surreal sub-
structure, then a convex partition of 𝐒 is a partitionΠ of 𝐒whosemembers are convex subclasses
of 𝐒 for the order ⩽. Wemay then consider the class SmpΠ of simplest elements (i.e. ⊑-minima)
in each member of Π. Those elements are said Π-simple. For a∈𝐒, we let Π[a] denote the
unique member of Π containing a. By [4, Proposition 4.16], the class Π[a] contains a unique
Π-simple element, which we denote by πΠ(a). The function πΠ is a surjective non-decreasing
function 𝐒⟶SmpΠ with πΠ∘πΠ=πΠ.
Given a,b∈SmpΠ, note that we have a<b if and only if Π[a]<Π[b]. For 𝐗⊆No, we write

Π[𝐗]=⋃a∈𝐗Π[a]. We have the following criterion to characterize elements of SmpΠ.

Proposition 3.2. [4, Lemma 6.5] An element a of 𝐒 is Π-simple if and only if there is a cut
representation (L,R) of a in 𝐒 with Π[L]< a<Π[R]. Equivalently a∈𝐒 is Π-simple if and only
if Π[aL𝐒]<a<Π[aR𝐒].

We say that Π is thin if each member of Π has a cofinal and coinitial subset. We then have:

Proposition 3.3. [4, Theorem 6.7 and Proposition 6.8] If Π is thin, then the class SmpΠ is
a surreal substructure and ΞSmpΠ has the following uniform cut equation:

∀z∈No, ΞSmpΠz= {Π[ΞSmpΠzL] ∣ Π[ΞSmpΠzR]}𝐒.

3.5 Function groups
A special type of thin convex partitions is that of partitions induced by function groups acting
on surreal substructures. A function group 𝒢 on a surreal substructure 𝐒 is a set-sized group of
strictly increasing bijections 𝐒⟶𝐒 under functional composition. We see elements f ,g of𝒢 as
actions on 𝐒 and we sometimes write f g and fa instead of f ∘g and f (a), where a∈𝐒.

For such a function group𝒢, the collection Π𝒢 of classes

𝒢[a] ≔ {b∈𝐒:∃f ,g∈𝒢, fa⩽b⩽ga}
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with a∈𝐒 is a thin convex partition of 𝐒. We write Smp𝒢≔SmpΠ𝒢. We have the uniform cut
equation

∀z∈No, ΞSmp𝒢z= {𝒢ΞSmp𝒢zL ∣ 𝒢ΞSmp𝒢zR}𝐒. (3.2)

Consider sets X ,Y of strictly increasing bijections 𝐒⟶𝐒, then we say that Y is pointwise cofinal
with respect to X , and we write X ∠−Y , if we have ∀f ∈X ,∀a∈𝐒,∃g∈Y , fa⩽ga. We also define

//X //≔ {f0∘ f1∘ ⋅ ⋅ ⋅ ∘ fn :n∈ℕ, f0, . . . , fn∈X ∪X−1}.

It is easy to see that //X //is a function group on 𝐒 and that we have //X //∠− //Y //if X ∠− Y or
X−1∠− Y −1. The relation //X //∠− //Y //trivially implies Smp //Y //⊆ Smp //X //. If X ∠− Y and Y ∠−X ,
then we say that X and Y are mutually pointwise cofinal and we write X ∠∠Y . We then have
Smp //X //=Smp //Y //.
We write X ⩽Y (resp. X <Y ) if we have ∀a∈𝐒,∀f ∈X , ∀g∈Y , fa⩽ga (resp. ∀a∈𝐒,∀f ∈X ,

∀g∈Y , fa<ga). We also write f <Y and X <g instead of {f }<Y and X < {g}.
Given a function group 𝒢 on 𝐒, the relation defined by f < g⟺ {f }< {g} is a partial order

on𝒢. We will frequently rely on the basic fact that (𝒢,<) is partially bi-ordered in the sense that

∀f ,g,h∈𝒢, id𝐒<g⟺ fh< fgh.

3.6 Remarkable function groups
Each of the examples of surreal substructures from Subsection 3.1 can be regarded as the classes
Smp𝒢 for actions of the following function groups 𝒢 acting on No, No> or No>,≻. For c∈ℝ
and r ∈ℝ>, we define

Tr ≔ a⟼a+ c acting on No or No>,≻.
Hc ≔ a⟼ r a acting on No> or No>,≻.
Pc ≔ a⟼ar acting on No> or No>,≻.

Now consider

𝒯 ≔ {Tc : c∈ℝ},
ℋ ≔ {Hr : r∈ℝ>},
𝒫 ≔ {Pr : r ∈ℝ>},
ℰ′ ≔ //EnHrLn:n∈ℕ, r ∈ℝ>//, and
ℰ∗ ≔ {En,Ln :n∈ℕ}.

Then we have the following list of correspondences 𝒢⟼Smp𝒢:

• The action of𝒯 on No (resp. No>,≻) yields No≻ (resp. No≻>), e.g. Smp𝒯=No≻.

• The action ofℋ on No> (resp. No>,≻) yields Mo (resp. Mo≻).

• The action of𝒫 on No>,≻ yields Mo�Mo=E1Mo≻.

• The action of ℰ′ on No>,≻ yields Moω.

• The action of ℰ∗ on No>,≻ yields 𝐊≔Moω�No≻ (which will coincide with EωNo≻>).

Generalizations of those function groups will allow us to define certain surreal substructures
related to the hyperlogarithms and hyperexponentials on No.

4 Hyperserial fields
In this section, we briefly recall the definition of hyperserial fields from [5] and how to construct
such fields from their hyperserial skeletons.
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4.1 Logarithmic hyperseries
Let x be a formal, infinitely large indeterminate. The field 𝕃 of logarithmic hyperseries of [14]
is the smallest field of well-based series that contains all ordinal real power products of the
hyperlogarithms Lα x with α ∈On. It is naturally equipped with a derivation ∂:𝕃⟶𝕃 and
composition law ∘:𝕃×𝕃>,≻⟶𝕃.
Definition Let α be an ordinal. For each γ < α , we introduce the formal hyperlogarithm

`γ≔Lγx and define 𝔏<α to be the group of formal power products 𝔩=∏γ<α`γ
𝔩γ with 𝔩γ∈ℝ. This

group comes with a monomial ordering ≻ that is defined by

𝔩≻1⟺𝔩β>0 for β=min {γ <α : 𝔩γ≠0}.

We define𝕃<α to be the ordered field of well-based series𝕃<α≔ℝ[[𝔏<α]]. If α ,β are ordinals
with β<α , then we define 𝔏[β,α) to be the subgroup of 𝔏<α of monomials 𝔩with 𝔩γ=0 whenever
γ <β . As in [14], we write

𝕃[β,α) ≔ ℝ[[𝔏[β,α)]]
𝔏 ≔ �

α∈On
𝔏<α

𝕃 ≔ ℝ[[𝔏]].

We have natural inclusions 𝔏[β,α)⊆𝔏<α⊂𝔏, hence natural inclusions 𝕃[β,α)⊆𝕃<α⊂𝕃.

Derivation on 𝕃<α The field 𝕃<α is equipped with a derivation ∂:𝕃<α⟶𝕃<α which satis-
fies the Leibniz rule and which is strongly linear. Write `γ

†≔∏ι⩽γ ὶ
−1∈𝔏<α for all γ <α . The

derivative of a logarithmic hypermonomial 𝔩∈𝔏<α is defined by

∂𝔩 ≔ (((((((((((�γ<α 𝔩γ `γ
†
))))))))))) 𝔩.

So ∂ `γ=
1

∏ι<γ ὶ
for all γ <α . For f ∈𝕃<α and k∈ℕ, we will sometimes write f (k)≔∂k f .

Composition on 𝕃<α Assume that α = ων for a certain ordinal ν. Then the field 𝕃<α is
equipped with a composition ∘:𝕃<α ×𝕃<α

>,≻⟶𝕃<α that satisfies in particular:

• For g ∈𝕃<α>,≻, the map 𝕃<α⟶𝕃<α; f ⟼ f ∘ g is a strongly linear embedding [14,
Lemma 6.6].

• For f ∈𝕃<α and g,h∈𝕃<α
>,≻, we have g ∘h∈𝕃<α

>,≻ and f ∘ (g ∘h)= (f ∘g)∘h [14, Propo-
sition 7.14].

• For g∈𝕃<α
>,≻ and successor ordinals μ<ν, we have `ωμ ∘ `ωμ−= `ωμ−1 [14, Lemma 5.6].

The same properties hold for the composition ∘:𝕃×𝕃>,≻⟶𝕃 if α is replaced by On. For γ<α ,
the map𝕃<α⟶𝕃<α; f ⟼ f ∘`γ is injective, with image𝕃[γ ,α) [14, Lemma 5.11]. For g∈𝕃[γ ,α),

we define g↑γ to be the unique series in 𝕃<α with g↑γ ∘`γ=g .

4.2 Hyperserial fields
Let 𝔐 be an ordered group. A real powering operation on 𝔐 is a law

ℝ×𝔐⟶𝔐; (r ,𝔪)⟼𝔪r

of ordered ℝ-vector space on𝔐. Let𝕋=ℝ[[𝔐]] be a field of well-based series with𝔐≠1, let
ν⩽On, and let ∘:𝕃×𝕋>,≻⟶𝕋 be a function. For μ⩽ν , we define𝔐ωμ to be the class of series
s∈𝕋>,≻ with ∀γ <ωμ,`γ ∘ s∈𝔐≻. We say that (𝕋,∘) is a hyperserial field if

HF1. 𝕃⟶𝕋; f ⟼ f ∘ s is a strongly linear morphism of ordered rings for each s∈𝕋>,≻.
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HF2. f ∘ (g ∘ s)= (f ∘g)∘ s for all f ∈𝕃, g∈𝕃>,≻, and s∈𝕋>,≻.

HF3. f ∘ (t +δ )=∑k∈ℕ
f (k) ∘ t
k! δ k for all f ∈𝕃, t∈𝕋>,≻, and δ ∈𝕋 with δ ≺ t .

HF4. `ωμ
↑γ ∘ s<`ωμ

↑γ ∘ t for all ordinals μ, γ <ωμ , and s, t ∈𝕋>,≻ with s< t .

HF5. The mapℝ>×𝔐≻→𝔐; (r ,𝔪)↦𝔪r≔`0r ∘𝔪 extends to a real powering operation on𝔐.

HF6. `1∘ (s t)= `1∘ s+ `1∘ t for all s, t ∈𝕋>,≻.

HF7. supp `1∘𝔪≻1 for all 𝔪∈𝔐≻;
supp `ωμ ∘𝔞≻ (`γ ∘𝔞)−1 for all 1⩽μ<ν , γ <ωμ and 𝔞∈𝔐ωμ.

For each μ∈On, we define the function Lωμ:𝔐ωμ⟶𝕋;𝔞⟼ `ωμ ∘ 𝔞. The skeleton of (𝕋, ∘) is
defined to be the structure (𝕋, (Lωμ)μ∈On) equipped with the real power operation from HF5.
We say that (𝕋,∘) is confluent if for all μ∈On with μ⩽ν , we have

∀s∈𝕋>,≻, ∃𝔞∈𝔐ωμ, ∃γ <ωμ, `γ ∘ s≍ `γ ∘𝔞.

In particular (𝕃,∘) is a confluent hyperserial field.

4.3 Hyperserial skeletons
It turns out that each hyperlogarithm Lωμ on a hyperserial field𝕋 can uniquely be reconstructed
from its restriction to the subset of L<ωμ-atomic hyperseries (here we say that f ∈𝕋>,≻ is
L<ωμ-atomic if Lγ f ∈𝔐 for all γ <ωμ). One of the main ideas behind [14] is to turn this fact
into a way to construct hyperserial fields. This leads to the definition of a hyperserial skeleton
as a field 𝕋 with partially defined hyperlogarithms Lωμ, which satisfy suitable counterparts of
the above axioms HF1 until HF7.

More precisely, let𝕋=ℝ[[𝔐]] be a field ofwell-based series and fix ν∈On>∪ {On}. A hyper-
serial skeleton on 𝕋 of force ν consists of a family of partial functions Lωμ for μ < ν , called
(hyper)logarithms, which satisfy a list of axioms that we will describe now.

First of all, the domains𝔐ωμ≔domLωμ on which the partial functions Lωμ are defined should
satisfy the following axioms:

Domains of definition:

DD0. domL1=𝔐≻;

DDμ. domLωμ=⋂η<μ domLωη, if μ is a non-zero limit ordinal;

DDμ. domLωμ= {s∈𝕋:Lωμ−
∘n (s)∈dom Lωμ− for all n}, if μ is a successor ordinal.

It will be convenient to also define the class 𝔐ων by

𝔐ων ≔ {s∈𝕋:Lων−
∘n (s)∈𝔐ων− for all n} if ν is a successor ordinal

𝔐ων ≔ �
μ<ν

𝔐ωμ if ν is a non-zero limit ordinal.

Consider an ordinal γ<ων written in Cantor normal form γ=∑i=1
r ωηini where η1>η2>⋅⋅⋅>ηr

and n1, . . . ,nr <ω. We denote by Lγ the partial function

Lγ ≔ Lωη1
∘n1 ∘ ⋅ ⋅ ⋅ ∘Lωηr

∘nr . (4.1)

It follows from the definition that for all μ⩽ν , the class 𝔐ωμ consists of those series s∈𝕋>,≻
for which s∈domLγ and Lγ s∈𝔐≻ for all γ <ωμ. We call such series L<ωμ-atomic.
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Secondly, the hyperlogarithms Lωμ with μ<ν should satisfy the following axioms:

Axioms for the logarithm

Functional equation:

FE0. ∀𝔪,𝔫∈𝔐1,L1(𝔪𝔫)=L1𝔪+L1𝔫.

Asymptotics:

A0. ∀r∈ℝ>,∀𝔪∈𝔐1,L1𝔪≺𝔪.

Monotonicity:

M0. ∀𝔪,𝔫∈𝔐1,𝔪≺𝔫⟹L1𝔪<L1𝔫.

Regularity:

R0. ∀𝔪∈𝔐1, suppL1𝔪≻1.

Surjective logarithm:

SL. ∀φ∈𝕋≻>, ∃𝔪∈𝔐1,φ=L1𝔪.

Axioms for the hyperlogarithms (for each μ∈On with 0<μ<ν and β≔ωμ)

Functional equation:

FEμ. ∀𝔞∈𝔐β,LβLβ/ω 𝔞=Lβ 𝔞−1 if μ is a successor ordinal.

Asymptotics:

Aμ. ∀γ <β,∀𝔞∈𝔐β,Lβ 𝔞<Lγ 𝔞.

Monotonicity:

Mμ. ∀𝔞,𝔟∈𝔐β, ∀γ <β, 𝔞≺𝔟⟹Lβ 𝔞+ (Lγ 𝔞)−1<Lβ 𝔟− (Lγ 𝔟)−1.

Regularity:

Rμ. ∀𝔞∈𝔐β,∀γ <β, suppLβ 𝔞≻ (Lγ 𝔞)−1.

Finally, for μ⩽ν with μ∈On, we also need the following axiom

Infinite products:

Pμ. ∀𝔞∈𝔐β,∀𝔩∈𝔏<β
≻ ,∑γ<β 𝔩γLγ+1𝔞∈L1𝔐

≻.

Note that SL and R0 together imply L1𝔐≻=𝕋≻>, whence Pμ automatically holds. This will in
particular be the case for No (see Section 5).

In summary, we have:

Definition 4.1. [5,Definition 3.3] Given ν∈On>∪ {On}, we say that (𝕋, (Lωμ)μ<ν) is a hyper-
serial skeleton of force ν if it satisfies DDμ , FEμ , Aμ , Mμ , and Rμ for all μ<ν, as well as Pμ for
all ordinals μ⩽ν.

Assume that𝕋 is a hyperserial skeleton of force ν . The partial logarithm L1:𝔐1⟶𝕋 extends
naturally into a strictly increasing morphism (𝕋>,×,<)⟶ (𝕋,+,<), which we call the logarithm
and denote by L1 or log [5, Section 4.1]. If 𝕋 satisfies SL, then this extended logarithm is actu-
ally an isomorphism [29, Proposition 2.3.8]. In that case, for any s∈𝕋> and r ∈ℝ, we define
s r≔exp(r log s)∈𝕋>.
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4.4 Confluence

Definition 4.2. [5, Definition 3.5] Given a hyperserial skeleton 𝕋=ℝ[[𝔐]] of force ν∈On>
and μ<ν, we inductively define the notion of μ-confluence in conjunction with the definition of
functions 𝔡ωμ:𝕋>,≻⟶𝔐ωμ, as follows.

• The field 𝕋 is said 0-confluent if 𝔐 is non-trivial. The function 𝔡1 maps every positive
infinite series s∈𝕋>,≻ onto its dominant monomial 𝔡s. For each s∈𝕋>,≻, we write

ℰ1[s] ≔ {t ∈𝕋>,≻ : t ≍ s}.

Let μ⩽ν be such that 𝕋 is η-confluent for all η<μ and let s∈𝕋>,≻.
• If μ is a successor ordinal, then we write ℰωμ[s] for the class of series t with

(Lωμ−∘𝔡ωμ−)∘n(s) ≍ (Lωμ−∘𝔡ωμ−)∘n(t)

for a certain n∈ℕ.

• If μ is a limit ordinal, then we write ℰωμ[s] for the class of series t with

Lωη𝔡ωη(s) ≍ Lωη𝔡ωη(t)

for a certain η<μ.
We say that 𝕋 is μ-confluent if each class ℰωμ[s] contains a L<ωμ-atomic element; we then
define 𝔡ωμ(s) to be this element.

This inductive definition is sound. Indeed, if μ⩽ν+1 and 𝕋 is η-confluent for all η<μ, then
the functions 𝔡ωη:𝕋>,≻⟶𝔐ωη with η<μ are well-defined and non-decreasing. Thus, for η<μ,
the collection of ℰωη[s] with s∈𝕋>,≻ forms a partition of 𝕋>,≻ into convex subclasses.
We say that 𝕋 is confluent if it is ν-confluent. If 𝕋 has force On, then we say that 𝕋 is

On-confluent, or confluent , if (𝕋, (Lωη)η<μ) is μ-confluent for all μ∈On.

4.5 Correspondence between fields and skeletons

Proposition 4.3. [5, Theorem 1.1] If (𝕋, (Lωμ)μ∈On) is a confluent hyperserial skeleton, then
there is a unique function ∘:𝕃×𝕋>,≻⟶𝕋 with

∀μ∈On,∀𝔞∈𝔐ωμ, `ωμ ∘𝔞=Lωμ 𝔞

such that (𝕋,∘) is a confluent hyperserial field.

Assume now that 𝕋 is only a hyperserial skeleton of force ν ∈On>∪ {On} and that μ is an
ordinal with 0< μ< ν such that (𝕋, (Lωη)η<μ) is μ-confluent. Let β≔ωμ . By [5, Definition 4.11
and Lemma 4.12], the partial function Lβ naturally extends into a function 𝕋>,≻⟶𝕋>,≻ that
we still denote by Lβ. This extended function is strictly increasing, by‘ [5, Corollary 4.17]. If μ
is a successor ordinal, then it satisfies the functional equation

∀s∈𝕋>,≻, LβLβ/ω s=Lβ s−1, (4.2)

by [5, Proposition 4.13]. For γ < β , we have a strictly increasing function Lγ: 𝕋>,≻⟶𝕋>,≻
obtained as a composition of functions Lωη with η<μ, as in (4.1). By [5, Proposition 4.7], we have

ℰβ[s] = {t∈𝕋>,≻ : ∃γ <β,Lγ t ≍Lγ s}.

4.6 Hyperexponentiation
In a traditional transseries field 𝕋, the transmonomials are characterized by the fact that, for
any f ∈𝕋>, we have

f ∈𝔐 ⟺ supp log f ≻1. (4.3)
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In particular, the logarithm log:𝕋>⟶𝕋 is surjective as soon as expφ is defined for all φ∈𝕋
with supp φ ≻ 1. In hyperserial fields, similar properties hold for L<ωη-atomic elements with
respect to the hyperexponential Eωη, as we will recall now.
Given ν ∈On>∪ {On}, let 𝕋 be a confluent hyperserial skeleton 𝕋 of force ν . By [5, The-

orem 4.1], we have a composition ∘:𝕃<ων ×𝕋>,≻⟶𝕋. Given η< ν , the extended function
Lωη:𝕋>,≻⟶𝕋>,≻ is strictly increasing and hence injective. Consequently, Lωη has a partially
defined functional inverse that we denote by Eωη.
The characterization (4.3) generalizes as follows:

Definition 4.4. [5, Definition 7.10]We say that φ∈𝕋>,≻ is 1-truncated if

suppφ ≻ 1.

Given 0<η<ν, we say that a series φ∈𝕋>,≻ is ωη-truncated if

∀𝔪∈suppφ, 𝔪≺1⟹ (∀γ <ωη,φ< `ωη
↑γ ∘𝔪−1).

For any β =ωη<ων, we write 𝕋≻,β for the class of β-truncated series in 𝕋.

Proposition 4.5. [5, Corollary 7.21] For f ∈𝕋>,≻ and β=ωη<ων, we have

f ∈𝔐β ⟺ Lβ f ∈𝕋≻,β.

In general, we have 𝕋≻,β+ℝ⩾⊆𝕋≻,β. Whenever η is a successor ordinal, we even have

𝕋≻,β+ℝ = 𝕋≻,β (4.4)

Let φ be a series such that Eβφ is defined. By [5, Lemma 7.14], the series φ is β-truncated if and
only if

∀γ <β, suppφ≻ (LγEβφ)−1.

For μ<ν , the axiom Rμ is therefore equivalent to the inclusion Lωμ𝔐ωμ⊆𝕋≻,ωμ. For s∈𝕋>,≻,
there is a unique {-maximal truncation ♯β(s) of s which is β-truncated. By [5, Propositions 6.16
and 6.17], the classes

ℒβ[s] ≔ {t∈ s+𝕋≺ : t= s, or ∃γ <β, (t <`β
↑γ ∘ |s− t |−1)} (4.5)

with s∈𝕋>,≻ form a partition of𝕋>,≻ into convex subclasses. Moreover, the series ♯β(s) is both
the unique β-truncated element and the {-minimum ofℒβ[s]. If Eβ s is defined, then we have
the following simplified definition [5, Proposition 7.19] of the class ℒβ[s]:

ℒβ[s] ≔ {{{{{{{{{{{{{{t∈𝕋>,≻ : ∃γ <β, t − s≺ 1
LγEβ s}}}}}}}}}}}}}}. (4.6)

The following shows that the existence of Eβ on 𝕋>,≻ is essentially equivalent to its existence
on 𝕋≻,β.

Proposition 4.6. [5, Corollary 7.24] Let μ⩽ ν and assume that for η<μ, the function Eωη is
defined on 𝕋≻,ωη. Then each hyperlogarithm Lωη for η<μ is bijective.

If Proposition 4.6 holds, then we say that 𝕋 is a (confluent) hyperserial field of force (ν ,μ).
Since every function Lγ,γ <ωμ is then a strictly increasing bijection 𝕋>,≻⟶𝕋>,≻, we obtain

ℰλ[s] = {t ∈𝕋>,≻ :∃γ <λ, ∃r0, r1∈ℝ>,Eγ(r0Lγ s)< t <Eγ(r1Lγ s)}, (4.7)
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for each ordinal λ=ω ι with ι⩽μ. By [5, Corollary 7.23], for all s∈𝕋>,≻, we have

Eβ(♯β(s)) = 𝔡β(Eβ s). (4.8)

5 The transseries field No
Recall that No is identified with the ordered field of well-based seriesℝ[[Mo]]. In this section,
we describe, in the first level ν = 1 of our hierarchy, the properties of No equipped with the
Kruskal-Gonshor logarithm.

5.1 Surreal exponentiation
In [19, Chapter 10],Gonshor defines the exponential function exp:No⟶No>, relying on partial
Taylor sums of the real exponential function. For a∈No and n∈ℕ, write

[a]n ≔ �
k⩽n

ak

k! .

We then have the recursive definition

∀a∈No, expa≔ {{{{{{{{{{exp(aL) [a−aL]ℕ,exp(aR) [a−aR]2ℕ+1 ||||| expaR
[aR−a]ℕ

, expaL
[aL−a]2ℕ+1}}}}}}}}}}.

We will sometimes write ea instead of exp a. The function exp: (No, +, <)⟶ (No>, ×, <) is a
bijective morphism [19, Corollary 10.1, Corollary 10.3], which satisfies:

• exp coincides with the natural exponential on ℝ⊆No [19, Theorem 10.2].

• eNo≻=Mo [19, Theorems 10.7, 10.8 and 10.9].

We define log:No>⟶No to be the functional inverse of exp, and we set L1≔ log ↿Mo≻. Given
an ordinal α , we understand that ωα still stands for the α-th ordinal power of ω from sec-

tion 2.2.2 and warn the reader that ωα does not necessarily coincide with eα logω.
Together, the above facts imply that L1 satisfies the axioms FE0, A0, M0, R0 and SL. There-

fore, (No,L1) is a hyperserial skeleton of force 1. The extension of L1 to No> from section 4.5
coincides with log. It was shown in [13] that (No, +, ×, <, exp) is an elementary extension
of (ℝ,+,×,<,exp). See [28, 7, 8] for more details on exp and log.

5.2 No as a transseries field
Berarducci and Mantova identified the class Moω of log-atomic numbers as Moω= Smpℰ [9,
Corollary 5.17] and showed that (No,L1) is 1-confluent [9, Corollary 5.11]. Thus (No,L1) is a
confluent hyperserial skeleton of force (1,1). Thanks to [5, Theorem 1.1], it is therefore equipped
with a composition law 𝕃<ω ×No>,≻⟶No. See [29, 10] for further details on extensions of
this composition law to exponential extensions of 𝕃<ω.
Berarducci and Mantova also proved [9, Theorem 8.10] that No is a field of transseries in the

sense of [24, 29], i.e. that (No,L1) satisfies the axiom T4 of [29, Definition 2.2.1]. We plan to
prove in subsequent work that (No, (Lωμ)μ∈On) satisfies a generalized version of T4.

6 Hyperserial structure on No
We have seen in section 5 that (No, L1) is a confluent hyperserial skeleton of force (ν, ν)
for ν= 1. The aim of this section is to extend this result to any ordinal ν. More precisely, we
will define a sequence (Lωμ)μ∈On of partial functions on No such that for each ordinal ν, the
structure (No, (Lωμ)μ<ν) is a confluent hyperserial skeleton of force (ν,ν), and L1 coincides with
Gonshor's logarithm.
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6.1 Remarkable group actions on No
Assume for the moment that we can define Lγ and Eγ as bijective strictly increasing functions
on No>,≻ for all ordinals γ . This is the case already for γ <ω. Let us introduce several useful
groups that act on No, as well as several remarkable subclasses of No.
Given an ordinal ν, we write α =ων and we consider the function groups

ℰα′ = //EγHrLγ :γ <α ∧ r∈ℝ>//
ℰα∗ = //Eγ,Pr :γ <α ∧ r ∈ℝ>//.

where Eγ, Hs,Ps and Lγ act on No>,≻. We also define

ℒα′ = Lαℰα′Eα
ℒα
∗ = Lαℰα∗Eα.

We write L<λ≔ {Lγ :γ <λ} and E<λ≔ {Eγ :γ <λ} for each λ⩽α . In the case when α =1, note that

ℰ1′ = ℋ
ℰ1
∗ = 𝒫

ℒ1′ = 𝒯
ℒ1
∗ = ℋ.

By Proposition 3.3 and the fact the set-sized function groups ℰα′ , ℰα
∗, ℒα′ , and ℒα

∗ induce thin
partitions of No>,≻, we may define the following surreal substructures

Moα′ ≔ Smpℰα′
Moα∗ ≔ Smpℰα

∗

Trα ≔ Smpℒα′
Trα∗ ≔ Smpℒα∗.

Here we note that Mo1′ corresponds to the class Mo≻=Mo1 of infinitemonomials in No and πℰ1′
maps positive infinite numbers to their dominant monomial. Similarly, Tr1 coincides with No≻>
and πℒ1′ maps a∈No>,≻ to a≻. In sections 6 and 7, we will prove the following identities.

Moα′ = Moα, [Proposition 6.18]

πℰα′ = 𝔡α, [Proposition 6.18]

Trα = No≻,α=Lα Moα, [Proposition 7.6]

πℒα′ = ♯α, [Proposition 7.6]

Trα∗ = Trα if ν is a limit ordinal, [Lemma 6.11]

Trα∗ = No≻> if ν is a successor ordinal, [Lemma 7.8]

∀r ∈ℝ,ΞNo≻,αTr = Tr ΞNo≻,α if ν is a successor ordinal, [Lemma 7.7]

∀r∈ℝ,ΞMoαTr = EαTrLα ΞMoα if ν is a successor ordinal, [Proposition 7.10]

Moα∗ = Moα�No≻ if ν is a successor ordinal, [Proposition 7.12]

Moα∗ = Eα Trα∗. [Proposition 7.13]

The first and third identities imply in particular that the classes Moα and No≻,α from section 4
are in fact surreal substructures, when regarding No as a hyperserial field.

6.2 Inductive setting
For the definition of the partial hyperlogarithm Lωμ, we will proceed by induction on μ. Let μ
be an ordinal. Until the end of this section we make the following induction hypotheses:
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Induction hypotheses
I1,μ. For η < μ, the partial hyperlogarithm Lωη is defined; we have L1 = log ↿ Mo≻

and (No, (Lωη)η<μ) is a confluent hyperserial skeleton of force (μ,μ).

I2,μ. For r , s∈ℝ with 1< s and for γ ,ρ<ωμ with γ <ρ, we have

∀a∈No>,≻, Eγ (rLγa)<Eρ(sLρa).

I3,μ. For η⩽μ, the class Moωη′ is that of L<ωη-atomic surreal numbers, i.e. Moωη′ =Moωη.

These induction hypotheses require a few additional explanations. Assuming that I1,μ holds,
the partial functions Lωη with η< μ extend into strictly increasing bijections Lωη:No>,≻⟶
No>,≻, by the results from section 4. Using (1.3), this allows us to define a strictly increasing
bijection Lγ:No>,≻⟶No>,≻ for any γ <μ and we denote by Eγ its functional inverse. In par-
ticular, this ensures that the hypotheses I2,μ and I3,μ make sense.

Remark 6.1. In addition to the above induction hypotheses, we will implicitly assume that
our hyperlogarithms Lωη for η<μ are always defined by (6.1) below. In particular, our construc-
tion of Lωμ is not relative to any potential construction of the preceding hyperlogarithms Lωη

with η<μ that would satify the induction hypotheses I1,μ , I2,μ , and I3,μ . Instead, we define one
specific family of functions (Lωη)η∈On that satisfy our requirements, as well as the additional
identities listed in subsection 6.1.

Proposition 6.2. The axioms 𝐈1,1, 𝐈2,1 and 𝐈3,1 hold for (No,L1).

Proof. Section 5 shows that 𝐈1,1 holds. Consider r , s∈ℝ> with s> 1. On No>,≻, we have
Tlogr <Hs, hence Hr = E1 Tlogr L1< E1Hs L1. It follows that we have EnHr Ln < En+1Hs Ln+1
on No>,≻ for all n∈ℕ. This implies that 𝐈2,1 holds. Finally, 𝐈3,1 is valid because of the rela-
tion Moω=Smpℰ. □

Proposition 6.3. Let ν be a limit ordinal and assume that I1,μ , I2,μ , and I3,μ hold for all μ<ν.
Then 𝐈1,ν, 𝐈2,ν, and 𝐈3,ν hold.

Proof. The statement 𝐈2,ν follows immediately by induction. Towards 𝐈3,ν , note that we have
Moα =⋂η<ν Moωη=⋂η<ν Moωη′ by I1,η (and thus DDη) and 𝐈3,η for all η< ν. By [4, Proposi-

tion 6.28], we have Moα′ =⋂η<ν Moωη′ =Moα. So I3,ν holds.
By 𝐈1,η for all η<ν, we need only justify that (No, (Lωη)η<ν) is ν-confluent to deduce that 𝐈1,ν

holds. For a∈No>,≻, by 𝐈2,ν , there are a 𝔞∈Moα′ =Moα and a β≔ωη<α with Eβ( /1 2Lβa)⩽𝔞⩽
Eβ(2Lβa). We deduce that Lβa≍Lβ 𝔞, thus 𝔞∈ℰβ[a]. This concludes the proof. □

From now on, we assume that I1,μ , I2,μ , and I3,μ are satisfied for μ⩾1 and we define

ν ≔ μ+1
α ≔ ων

β ≔ ωμ.

The remainder of the section is dedicated to the definition of Lβ and the proof of the inductive
hypotheses I1,ν , I2,ν , and I3,ν for ν. In combination with Propositions 6.2 and 6.3, this will
complete our induction and the proof of Theorem 1.1.

6.3 Defining the hyperlogarithm
Recall that we have Moβ′ =Moβ by I3,μ . In particular Moβ is a surreal substructure. Consider
η<ν. The skeleton (No, (Lω ι)ι<η) is a confluent hyperserial skeleton of force (η,η) by I1,μ . So for
a∈No>,≻, (4.7) and I2,μ yield ℰωη[a]=ℰωη′ [a].

The hyperserial field of surreal numbers 17



In view of Aμ and Mμ , the simplest way to define Lβ is via the cut equation:

∀𝔞∈Moβ, Lβ 𝔞≔ {{{{{{{{{{{{{{{{{{ℝ,Lβ 𝔞′+ 1
L<β 𝔞′

:𝔞′∈𝔞LMoβ ||||||||| Lβ 𝔞RMoβ− 1
L<β 𝔞

,L<β 𝔞}}}}}}}}}}}}}}}}}}. (6.1)

Note the asymmetry between lest and right options Lβ 𝔞′ + (L<β 𝔞′)−1 and Lβ 𝔞′′ − (L<β 𝔞)−1

(instead of Lβ 𝔞′′ − (L<β 𝔞′′)−1) for generic 𝔞′ ∈ 𝔞LMoβ and 𝔞′′ ∈ 𝔞RMoβ. In Corollary 7.4 below,
we will derive a more symmetric but equivalent cut equation for Lβ, as promised in the intro-

duction. For now, we prove that (6.1) is warranted and that Aμ , Mμ , and Rμ hold.

Proposition 6.4. The function Lβ is well-defined on Moβ and, for 𝔞∈Moβ, we have

H𝔞: (∀𝔞′∈𝔞LMoβ,Lβ 𝔞′+
1

L<β 𝔞′
<Lβ 𝔞−

1
L<β𝔞) and (∀𝔞′′∈𝔞RMoβ,Lβ 𝔞+

1
L<β 𝔞

<Lβ 𝔞′′−
1

L<β𝔞′′).
Proof. We prove this by induction on (Moβ, ⊑). Let 𝔞∈Moβ such that H𝔟 holds for all 𝔟∈

𝔞⊏Moβ. Let 𝔞′∈𝔞LMoβ and 𝔞′′∈𝔞RMoβ. We have 𝔞′∈ (𝔞′′)LMoβ or 𝔞′′∈ (𝔞′)RMoβ, so H𝔞′ or H𝔞′′ yields

Lβ 𝔞′+
1

L<β 𝔞′
< Lβ 𝔞′′−

1
L<β 𝔞′′

.

For γ <β , we have `γ+1≺
1
2 `γ and 1

Lγ 𝔞′
≻ 1

Lγ 𝔞′′
, 1
Lγ 𝔞

, whence

1
Lγ+1𝔞′

≻ 2
Lγ 𝔞′

> 1
Lγ 𝔞′

+ 1
Lγ 𝔞′′

+ 1
Lγ 𝔞

,
for all γ <β . Hence,

Lβ 𝔞′+
1

L<β 𝔞′
< Lβ 𝔞′′−

1
L<β 𝔞

.

We clearly have Lβ 𝔞′′−
1

L<β𝔞
≍Lβ 𝔞′′>ℝ. Finally,

Lβ 𝔞′+
1

L<β 𝔞′
≍ Lβ 𝔞′ ≺ L<β 𝔞′,

so Lβ 𝔞′+
1

L<β𝔞′
<L<β 𝔞. This shows that Lβ 𝔞 is defined and

Lβ 𝔞′+
1

L<β 𝔞′
< Lβ 𝔞 < Lβ 𝔞′′−

1
L<β 𝔞

.

Since 𝔞′<𝔞<𝔞′′, it follows that

Lβ 𝔞′+
1

L<β 𝔞′
< Lβ 𝔞±

1
L<β 𝔞

< Lβ 𝔞′′−
1

L<β 𝔞
.

By induction, this proves 𝐇𝔞 for all 𝔞∈Moβ. □

Proposition 6.5. The axiom Mμ holds.

Proof. Let 𝔞,𝔟∈Moβ with 𝔞≺𝔟. Since Moβ is a surreal substructure, there is a 𝔠∈Moβ with
𝔠⊑𝔞, 𝔟 and 𝔞⩽𝔠⩽𝔟. If 𝔞<𝔠, then we have Lβ 𝔞+ (L<β 𝔞)−1<Lβ 𝔠− (L<β 𝔠)−1 by 𝐇𝔞. If 𝔠<𝔟, then

we have Lβ 𝔠+ (L<β 𝔠)−1<Lβ 𝔟− (L<β 𝔟)−1 by 𝐇𝔟. We cannot have both 𝔞= 𝔠 and 𝔠= 𝔟, so this

proves that Lβ 𝔞+ (L<β 𝔞)−1<Lβ 𝔟− (L<β 𝔟)−1. Therefore Mμ holds. □

Proposition 6.6. The axiom Aμ holds.

Proof. The rightmost options in (6.1) directly yield Aμ . □
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Proposition 6.7. The axiom Rμ holds.

Proof. Let 𝔞∈Moβ and write φ≔ Lβ 𝔞. Let 𝔪∈ suppφ with 𝔪≺ 1. We have φ <L<β 𝔞 and
φ≻𝔪≍φ so φ≻𝔪<L<β 𝔞. Moreover φ≻𝔪 is positive infinite. The number φ≻𝔪 is strictly simpler
than φ, so φ≻𝔪 does not lie in the cut which defines Lβ 𝔞 in (6.1). Therefore, there is an 𝔞′∈𝔞LMoβ

or an 𝔞′′ ∈ 𝔞RMoβ and an ordinal γ < β with φ≻𝔪⩽ Lβ 𝔞′ + (Lγ 𝔞′)−1 or φ≻𝔪⩾ Lβ 𝔞′′ − (Lγ 𝔞)−1.
Consider the first case. We have Lβ 𝔞′+ (L<β 𝔞′)−1<φ⩽φ≻𝔪+φ𝔪𝔪+ δ for a certain δ ≺𝔪. So
φ𝔪>0 and

1
L<β 𝔞′

< 1
Lγ 𝔞′

+φ𝔪𝔪.

For ρ<β with γ <ρ, we have (Lρ 𝔞′)−1≻ (Lγ 𝔞′)−1 so (Lρ 𝔞′)−1− (Lγ 𝔞′)−1≍ (Lρ 𝔞′)−1. We deduce

that (Lρ 𝔞′)−1≼𝔪 for all such ρ. It follows that (Lρ 𝔞)−1≼𝔪 for all ρ < β . In the second case,
we directly get 𝔪≻ (Lγ 𝔞)−1. This proves that we always have 𝔪≻ (L<β 𝔞)−1. In other words
suppφ≻ (L<β 𝔞)−1, whence Rμ holds. □

Proposition 6.8. If μ is a successor ordinal, then the cut equation (6.1) is uniform.

Proof. Let (𝔏𝔞,ℜ𝔞) be a cut representation in Moβ and write 𝔞≔ {𝔏𝔞 ∣ ℜ𝔞}Moβ. For 𝔩∈𝔏𝔞, we

have Lβ 𝔩<Lβ 𝔞≺ L<β 𝔞 so Lβ 𝔩<L<β 𝔞. For 𝔯∈ℜ𝔞, we have Lβ 𝔩+ (L<β 𝔩)−1<Lβ 𝔯 by Mμ . Since

𝔩≺𝔞, it follows that Lβ 𝔩+ (L<β 𝔩)−1<Lβ 𝔯− (L<β 𝔞)−1. We may thus define the number

φ ≔ {{{{{{{{{{{{{{ℝ,Lβ 𝔩+ 1
L<β 𝔩

: 𝔩∈𝔏𝔞 ||||||| Lβℜ𝔞− 1
L<β 𝔞

,L<β 𝔞}}}}}}}}}}}}}}.
In order to show that (6.1) is uniform, we need to prove that Lβ 𝔞=φ, for any choice of the cut
representation (𝔏𝔞,ℜ𝔞). We will do so by proving that Lβ 𝔞⊑φ and φ⊑Lβ 𝔞.

Recall that (𝔏𝔞,ℜ𝔞) is cofinal with respect to (𝔞LMoβ ∣ 𝔞RMoβ) and that Lβ is strictly increasing.
Consequently, we have

φ < Lβ 𝔞RMoβ− (L<β 𝔞)−1.

Given 𝔞′∈𝔞LMoβ, there is an 𝔩∈𝔏𝔞 with 𝔞′⩽ 𝔩. By Mμ , we have Lβ 𝔞′+ (Lγ 𝔞′)−1⩽Lβ 𝔩+ (Lγ 𝔩)−1

for all γ <β , so φ> {Lβ 𝔞′+ (L<β 𝔞′)−1 :𝔞′∈𝔞LMoβ}. This proves that φ lies in the cut defining Lβ 𝔞
as per (6.1), whence Lβ 𝔞⊑φ.

Conversely, in order to prove that φ⊑Lβ 𝔞, it suffices to show that Lβ 𝔞 lies in the cut

(((((((Lβ 𝔩+ 1
L<β 𝔩

: 𝔩∈𝔏𝔞 ||||||| Lβℜ𝔞− 1
L<β 𝔞))))))).

Let 𝔩∈𝔏𝔞 and let 𝔟∈Moβ be⊑-maximal with 𝔟⊑𝔩,𝔞. We have 𝔩⩽𝔟⩽𝔞, whence Lβ𝔟⩽Lβ𝔞, by Mμ .

If 𝔟⊏ 𝔩, then 𝔟∈ 𝔩RMoβ, so H𝔩 yields Lβ 𝔩+ (L<β 𝔩)−1<Lβ 𝔟 and Lβ 𝔩+ (L<β 𝔩)−1<Lβ 𝔞. Otherwise

𝔩=𝔟∈𝔞LMoβ, so H𝔞 yields Lβ 𝔩+ (L<β 𝔩)−1<Lβ 𝔞. This proves that {Lβ 𝔩+ (L<β 𝔩)−1 : 𝔩∈𝔏𝔞}<Lβ 𝔞.
Let 𝔯∈ℜ𝔞 and let 𝔠∈Moβ be ⊑-maximal with 𝔠⊑𝔯, 𝔞. As above, if 𝔠⊏𝔞, then 𝔠∈𝔞RMoβ so H𝔞

yields Lβ 𝔞<Lβ 𝔠− (L<β 𝔞)−1, whence Lβ 𝔞<Lβ 𝔯− (L<β 𝔞)−1. Otherwise 𝔞=𝔠∈𝔯LMoβ so H𝔯 yields

Lβ 𝔯>Lβ 𝔞+ (L<β 𝔞)−1. Hence Lβ 𝔞<Lβℜ𝔞− (L<β 𝔞)−1 and we conclude by induction. □

6.4 Functional equation
In this subsection we derive FEμ , under the assumption that μ is a successor ordinal. We start
with the following inequality.
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Lemma 6.9. If μ>1, then we have E<β/ω<Eβ/ωH2Lβ/ω on No>,≻.

Proof. For γ <β/ω, there are η<μ− and n<ω with γ <ωηn. We have

Eγ < Eωηn = Eωη+1TnLωη+1 < Eωη+1H2Lωη+1

on No>,≻ by (4.2). Note that η+1⩽μ−<μ, so I2,μ yields

Eωη+1H2Lωη+1 ⩽ Eβ/ωH2Lβ/ω,

whence Eγ<Eβ/ωH2Lβ/ω. □

Let 𝔞∈Moβ. Since Moβ is a surreal substructure, we may consider the L<β-atomic number

𝔟 ≔ {Lβ/ω 𝔞L
Moβ ∣ Lβ/ω 𝔞R

Moβ, 𝔞}Moβ.

We claim that 𝔟=Lβ/ω 𝔞. Assume that μ=1 and write 𝔞=ΞMoωa. We have

log𝔞 = ΞMoω(a−1) (by [2, Proposition 2.5])

= ΞMoω {aL−1 ∣ aR−1,a} (by (3.1))

= {ΞMoω(aL−1) ∣ ΞMoω(aR−1),ΞMoωa}Moω
= {logΞMoωaL ∣ logΞMoωaR,ΞMoωa}Moω (by [2, Proposition 2.5])

= {log𝔞L
Moω ∣ log𝔞R

Moω, 𝔞}Moω
= 𝔟.

Assume now that μ>1. The function Lβ/ω is strictly increasing with Lβ/ω< idNo>,≻. Therefore

Lβ/ω 𝔞 ∈ (Lβ/ω 𝔞L
Moβ ∣ Lβ/ω 𝔞R

Moβ, 𝔞)Moβ,

so 𝔟⊑Lβ/ω 𝔞. Since 𝔞∈Moβ, the cut equation (6.1) for μ− yields

Lβ/ω 𝔞 = {ℝ,Lβ/ω 𝔞′+ (L<β 𝔞′)
−1 :𝔞′∈𝔞LMoβ/ω ∣ Lβ/ω 𝔞R

Moβ/ω− (L<β 𝔞)−1,L<β/ω 𝔞}. (6.2)

Given 𝔞′∈𝔞LMoβ/ω, we have 𝔡β(𝔞′)∈𝔞LMoβ and 𝔞′∈ℰβ[𝔡β(𝔞′)]. We deduce that

Lβ/ω 𝔞′ ∈ Lβ/ωℰβ[𝔡β(𝔞′)] = ℰβ[Lβ/ω 𝔡β(𝔞′)].

Moreover, by definition, we have

𝔟 > ℰβ′[Lβ/ω 𝔡β(𝔞′)] = ℰβ[Lβ/ω 𝔡β(𝔞′)],

so 𝔟≻Lβ/ω𝔞′. Symmetric arguments yield 𝔟≺Lβ/ω𝔞R
Moβ/ω. Lemma 6.9 implies that L<β/ω𝔞⊆ℰβ[𝔞],

whence 𝔡β(L<β/ω 𝔞)= {𝔞}. We get 𝔟<ℰβ 𝔡β(L<β/ω 𝔞), whence 𝔟<L<β/ω 𝔞. Thus 𝔟 lies in the cut
defining Lβ/ω 𝔞 in (6.2), so Lβ/ω 𝔞⊑𝔟. This proves our claim that

∀𝔞∈Moβ, Lβ/ω 𝔞= {Lβ/ω 𝔞L
Moβ ∣ Lβ/ω 𝔞R

Moβ, 𝔞}Moβ. (6.3)

We now derive FEμ .

Proposition 6.10. For 𝔞∈Moβ, we have LβLβ/ω 𝔞=Lβ 𝔞−1.

Proof. We prove this by induction on (Moβ, ⊑). Let 𝔞∈Moβ be such that the result holds
on 𝔞⊏Moβ. By (6.3), we have

Lβ/ω 𝔞 = {Lβ/ω 𝔞L
Moβ ∣ Lβ/ω 𝔞R

Moβ, 𝔞}Moβ.
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Let 𝔞′ and 𝔞′′ range in 𝔞LMoβ and 𝔞RMoβ respectively. Proposition 6.8 and our induction hypothesis
yield:

LβLβ/ω 𝔞 = {{{{{{{{{{{{{{{{{{ℝ,LβLβ/ω 𝔞′+ 1
L<βLβ/ω 𝔞′ ||||||||| LβLβ/ω 𝔞′′−

1
L<βLβ/ω 𝔞

,Lβ 𝔞−
1

L<β 𝔞
,L<βLβ/ω 𝔞}}}}}}}}}}}}}}}}}}

= {{{{{{{{{{{{{{{{{{ℝ,Lβ 𝔞′−1+ 1
L<β 𝔞′ ||||||||| Lβ 𝔞′′−1−

1
L<β 𝔞

,Lβ 𝔞−
1

L<β 𝔞
,L<β 𝔞}}}}}}}}}}}}}}}}}}.

On the other hand, we have

Lβ 𝔞−1 = {{{{{{{{{{{{{{{{{{ℝ−1,Lβ 𝔞′+ 1
L<β 𝔞′

−1 ||||||||| Lβ 𝔞′′− 1
L<β 𝔞

−1,L<β 𝔞−1,Lβ 𝔞}}}}}}}}}}}}}}}}}}

= {{{{{{{{{{{{{{{{{{ℝ,Lβ 𝔞′+
1

L<β 𝔞′
−1 ||||||||| Lβ 𝔞′′− 1

L<β 𝔞
−1,Lβ 𝔞,L<β 𝔞}}}}}}}}}}}}}}}}}}.

In order to conclude that LβLβ/ω 𝔞=Lβ 𝔞− 1, it remains to show that Lβ 𝔞− 1<Lβ 𝔞− (L<β 𝔞)−1

and that Lβ Lβ/ω 𝔞 < Lβ 𝔞. The first inequality holds because (L<β 𝔞)−1 is a set of infinitesimal
numbers. An easy induction shows that Lβ/ω a< a for all a∈No>,≻. The second inequality
follows, because Lβ is strictly increasing on Moβ. This completes our inductive proof. □

Combining our results so far, we have proved that (No, (Lωη)η<ν) is a hyperserial skeleton of
force ν.

6.5 Confluence
We next prove that (No, (Lωη)η<ν) is ν-confluent.

Lemma 6.11. If μ is a non-zero limit ordinal, then the function groups ℰβ′ and ℰβ∗ are mutually
pointwise cofinal. In particular, we have Moβ=Moβ∗ and Trβ=Trβ∗.

Proof. For γ ∈ (0,β) and r∈ℝ>, we have EγHrLγ<Eγ since Hr <Eγ. We have

{Lρ,Eρ :ρ∈ (0,β)} ∠∠ℰβ∗,

whereas I2,μ yields

{EρHrLρ :ρ∈ (0,β)} ∠∠ℰβ′.

Therefore ℰβ′ ∠−ℰβ
∗. For ρ<β , there is η<μ with ρ<ωη. By (4.2), we have

Eρ < Eωη = Eωη+1T1Lωη+1 < Eωη+1H2Lωη+1,

which proves the inequality ℰβ∗∠−ℰβ′. □

Lemma 6.12. For each a∈No>,≻, any ⊑-minimal element of ℰα[a] is L<α-atomic.

Proof. Let 𝔄 denote the class of numbers 𝔞∈No>,≻ that are ⊑-minimal in ℰα[𝔞]. Any such
⊑-minimal number 𝔞 is also ⊑-minimal inℰβ′[𝔞]=ℰβ[𝔞]⊆ℰα[𝔞], hence L<β-atomic. Thus Lβ is
defined on 𝔄. It is enough to prove that 𝔄 is closed under Lβ in order to obtain that 𝔄⊆Moα.

Consider 𝔞∈𝔄, and recall that we have

Lβ 𝔞 = {{{{{{{{{{{{{{{{{{ℝ,Lβ 𝔞′+ 1
L<β 𝔞′

:𝔞′∈𝔞LMoβ ||||||||| Lβ 𝔞RMoβ− 1
L<β 𝔞

,L<β 𝔞}}}}}}}}}}}}}}}}}}. (6.4)

Assume for contradiction that Lβ 𝔞 is not ⊑-minimal in ℰα[Lβ 𝔞]. So there is a 𝔟 ∈ℰα[Lβ 𝔞]
with 𝔟⊏ Lβ 𝔞. This implies that 𝔟 lies outside the cut defining Lβ 𝔞, so 𝔟 is larger than a right
option of (6.4) or smaller than a lest option of (6.4).
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Assume first that 𝔟<Lβ 𝔞. So there is an 𝔞′∈𝔞LMoβ with 𝔟≼ Lβ 𝔞′. We have 𝔡α(𝔞)=𝔡α(𝔟) so
there is an n∈ℕ with

(Lβ ∘𝔡β)∘n(𝔟) ≍ (Lβ ∘𝔡β)∘n(Lβ 𝔞).

Thus

(Lβ ∘𝔡β)∘(n+1)(𝔞′) ≍ (Lβ ∘𝔡β)∘(n+1)(𝔞).

This contradicts the ⊑-minimality of 𝔞.
Now consider the other case when 𝔟>Lβ 𝔞. In particular, 𝔟must be larger than a right option

of (6.4). Symmetric arguments imply that we cannot have 𝔟 ≽ Lβ 𝔞′′ for some 𝔞′′ ∈ 𝔞RMoβ. So
there must exist a γ <β with 𝔟⩾Lγ 𝔞. If μ is a limit ordinal, then γ < μ− so Lemma 6.11 yields
𝔡β(Lγ 𝔞)=𝔞, whence 𝔡β(𝔟)≽𝔞. If μ is a successor ordinal, then there is a k∈ℕ with γ ⩽β/ωk, so

𝔡β(𝔟) ⩾ 𝔡β(L(β/ω)k 𝔞) = L(β/ω)k 𝔞

and Proposition 6.10 yields Lβ 𝔡β(𝔟)≽Lβ 𝔞−k≽Lβ 𝔞. In both cases, we thus have Lβ 𝔡β(𝔟)≽Lβ 𝔞.
For any integer n>1, we deduce that

(Lβ ∘𝔡β)∘n(𝔟) ⩾ (Lβ ∘𝔡β)∘n(𝔞) > (Lβ ∘𝔡β)∘(n+1)(𝔞) = (Lβ ∘𝔡β)∘n(Lβ 𝔞).

This contradicts the fact that 𝔟 lies in ℰα[Lβ 𝔞].
We have shown that the cases 𝔟<Lβ𝔞 and 𝔟>Lβ 𝔞 both lead to a contradiction. Consequently,

Lβ 𝔞 is ⊑-minimal in ℰα[Lβ 𝔞] and we conclude that Lβ𝔄⊆𝔄, as claimed. □

Corollary 6.13. (No, (Lωη)η<ν) is ν-confluent.

Proof. We already know that (No, (Lωη)η<μ) is μ-confluent by I1,μ . Recall that (No,⊑) is well-
founded, so each classℰα[a] for a∈No>,≻ contains a ⊑-minimal element. Lemma 6.12 therefore
implies that No is ν-confluent. □

The corollary implies that (No, (Lωη)η<ν) is a confluent hyperserial skeleton of force ν. More-
over, the class No≻,β is that of {-minima and thus ⊑-minima in the convex classes

ℒβ[a] = {b∈a+No≺ :b=a∨ (∃γ <β,a< `β
↑γ ∘ |a−b|−1)},

for a∈No>,≻. In other words, we have No≻,β = Smpℒβ. In order to conclude that No≻,β is

a surreal substructure, we still need to prove that the convex partition ℒβ is thin. This will be
done at the end of section 6.6 below.

Proposition 6.14. The cut equation (6.1) is uniform.

Proof. Let (𝔏𝔞,ℜ𝔞) be a cut representation in Moβ and write 𝔞≔ {𝔏𝔞 ∣ ℜ𝔞}Moβ. We have

ℒβ[Lβ 𝔏𝔞] < ℒβ[Lβ 𝔞] < ℒβ[Lβℜ𝔞].
By (4.6), this shows that

Lβ 𝔞 ∈ (((((((ℝ,Lβ 𝔩+ 1
L<β 𝔩

: 𝔩∈𝔏𝔞 ||||||| Lβℜ𝔞− 1
L<β 𝔞

,L<β 𝔞))))))).
In particular, the number

φ ≔ {{{{{{{{{{{{{{ℝ,Lβ 𝔩+ 1
L<β 𝔩

: 𝔩∈𝔏𝔞 ||||||| Lβℜ𝔞− 1
L<β 𝔞

,L<β 𝔞}}}}}}}}}}}}}}
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is well-defined, with φ ⊑ Lβ 𝔞. As in the proof of Proposition 6.8, we have Lβ 𝔞 ⊑ φ, whence
φ=Lβ 𝔞. We conclude that the cut equation (6.1) is uniform. □

6.6 Hyperexponentials
We have shown that (No, (Lωη)η<ν) is a hyperserial skeleton of force (ν, μ). In order to prove
that (No, (Lωη)η<ν) has force (ν, ν), it remains to prove that every β-truncated number φ has
a hyperexponential Eβφ. This is the purpose of this subsection.

Proposition 6.15. We have Lβ Moβ=No≻,β, and Eβ has the following cut equation on No≻,β:

∀φ∈No≻,β, Eβφ= {{{{{{{{{{{{{{{{{{{{{{{{{{E<βφ, E<β(((((((((((((
1

φR
No≻,β−φ))))))))))))

),ℰβ′EβφLNo≻,β ||||||||||||| ℰβ′EβφR
No≻,β}}}}}}}}}}}}}}}}}}}}}}}}}}. (6.5)

Proof. We prove the result by induction on (No≻,β,⊑). Let φ∈No≻,β such that Eβ is defined
on φ⊏No≻,β with the given equation. We will first show that the number

𝔞 ≔ {{{{{{{{{{{{{{E<βφ,E<β((((((( 1
φR

No≻,β−φ))))))),ℰβ′EβφLNo≻,β ||||| ℰβ′EβφRNo≻,β}}}}}}}}}}}}}} (6.6)

is well-defined. We will then prove that Lβ 𝔞=φ.
Let φ ′ ∈ φL

No≻,β and φ ′′ ∈ φR
No≻,β. If φ ′ ∈ (φ ′′)LNo≻,β, then Eβφ ′′ >ℰβ′ Eβ φ ′ by the definition

of Eβφ ′′. Soℰβ′Eβφ ′<ℰβ′Eβφ ′′. Otherwise, we have φ ′′∈ (φ ′)RNo≻,β, whenceℰβ′Eβφ ′′>Eβφ ′ by
definition of Eβφ ′, so ℰβ′Eβφ ′<ℰβ′Eβφ ′′. So we always have

ℰβ′EβφLNo≻,β < ℰβ′EβφRNo≻,β.

We also have E<β φ ′′ < Eβ φ ′′, so E<β φ <ℰβ′ Eβ φ ′′. This proves that E<β φ <ℰβ′ Eβ φRNo≻,β. It
remains to show that

E<β((((((( 1
φR

No≻,β−φ))))))) < ℰβ′Eβ(φRNo≻,β).

Note that φR
No≻,β>ℒβ[φ], so by the definition ofℒβ[φ], we have

Lβ
↑<β((((((( 1

φR
No≻,β−φ))))))) < φ < φR

No≻,β. (6.7)

Hence E<β((φR
No≻,β−φ)−1)<EβφRNo≻,β, which completes the proof that 𝔞 is well-defined.

Let us now prove that Lβ 𝔞=φ. Note that 𝔞∈Moβ by Proposition 3.2. First assume that μ is
a limit ordinal. Lemma 6.11 yields //E<β //∠∠ℰβ, so we may write

𝔞 = {{{{{{{{{{{{{{𝔡β(φ), 𝔡β((((((( 1
φR

No≻,β−φ))))))),EβφLNo≻,β ||||| EβφRNo≻,β}}}}}}}}}}}}}}Moβ
.

By (4.6), for b∈No>,≻ the classes that ℒβ[Lβ b] and Lβ b± (L<β b)−1 are mutually cofinal and
coinitial. Moreover, we have Lβ Eβψ = ψ for all ψ ∈ φ⊏No≻,β, by our hypothesis on φ. Hence,
Proposition 6.14 and (4.6) imply

Lβ 𝔞 = {{{{{{{{{{{{{{ℝ,ℒβ[Lβ 𝔡β(φ)],ℒβ[[[[[[[Lβ 𝔡β((((((( 1
φR

No≻,β−φ)))))))]]]]]]],ℒβ[φL
No≻,β] ||||||| φRNo≻,β− 1

L<β 𝔞}}}}}}}}}}}}}}.
Note that Lβ 𝔞∈ (φLNo≻,β ∣ φRNo≻,β)No≻,β, so φ⊑Lβ 𝔞. Now Lβ 𝔡β(φ)∈ℒβ[Lβφ]<φ. We also have

Lβ 𝔡β((((((( 1
φR

No≻,β−φ))))))) ∈ Lβℰβ′[[[[[[[ 1
φR

No≻,β−φ]]]]]]],
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where

Lβℰβ′[[[[[[[ 1
φR

No≻,β−φ]]]]]]] = Lβℰβ
∗[[[[[[[ 1
φR

No≻,β−φ]]]]]]] (by Lemma 6.11)

∠∠Lβ
↑<β((((((( 1

φR
No≻,β−φ)))))))

< φ. (by (6.7))

So Lβ 𝔡β(φRNo≻,β−φ)−1<φ. Since φ∈No≻,α, the inequality ℒβ[φL
No≻,β]<φ follows from Propo-

sition 3.2. Finally, we have by definition that 𝔞>E<β((φRNo≻,β−φ)−1), so φR
No≻,β− (L<β 𝔞)−1>φ.

This proves that Lβ 𝔞⊑φ, so Lβ 𝔞=φ.
Assume now that μ is a successor ordinal. For all b∈No>,≻, the sets E<βφ, E<β 𝔡β(φ), and

Eβ/ωℕ𝔡β(φ) are mutually cofinal. So we can rewrite (6.6) as

𝔞 = {{{{{{{{{{{{{{Eβ/ωℕ𝔡β(φ),Eβ/ωℕ𝔡β((((((( 1
φR

No≻,β−φ))))))),ℰβ′EβφLNo≻,β ||||| ℰβ′EβφRNo≻,β}}}}}}}}}}}}}}
= {{{{{{{{{{{{{{Eβ/ωℕ𝔡β(φ),Eβ/ωℕ𝔡β((((((( 1

φR
No≻,β−φ))))))),EβφLNo≻,β ||||| EβφRNo≻,β}}}}}}}}}}}}}}Moβ

.

As in the limit case, Proposition 6.14 yields

Lβ 𝔞 = {{{{{{{{{{{{{{ℝ,ℒβ[Lβ
↑<β 𝔡β(φ)],ℒβ[[[[[[[Lβ↑<β 𝔡β((((((( 1

φR
No≻,β−φ)))))))]]]]]]],ℒβ[φL

No≻,β] ||||||| φRNo≻,β− 1
L<β 𝔞}}}}}}}}}}}}}}.

Let γ <β . There is an n∈ℕ with γ <β/ωn. Since Lβφ<φ− (n+1), we have

φ > Lβ
↑β/ω(n+1)𝔡β(φ) ⩾ Lβ

↑γ 𝔡β(φ)+1.

In particular φ >ℒβ[Lβ
↑γ 𝔡β(φ)]. We saw in (6.7) that Lβ

↑γ 𝔡β((φRNo≻,β− φ)−1)< φ , whence

ℒβ[Lβ
↑γ 𝔡β((φRNo≻,β−φ)−1)]<φ. We also obtain the inequalities

ℒβ[φL
No≻,β] < φ < φR

No≻,β− (L<β 𝔞)−1

in a similar way as in the limit case.
We conclude that φ=Lβ 𝔞 holds in general. It follows by induction that the formula for Eβ is

valid. In particular Lβ:Moβ⟶No≻,β is surjective. □

With Proposition 6.15, we have completed the proof of 𝐈1,ν . By (4.7), we haveℰβω[a]=ℰβω′ [a]
for all a∈No>,≻. Given a∈No≻,β, we also deduce from (4.6) that the set a± (L<β Eβ a)−1 is
cofinal and coinitial in ℒβ[a]. The convex partition defined by ℒβ is thus thin. By Proposi-
tion 3.3, the class No≻,β is a surreal substructure with uniform cut equation

∀a∈No, ΞNo≻,βa= {ℝ,ℒβ[ΞNo≻,βaL] ∣ ℒβ[ΞNo≻,βaR]} (6.8)

For a∈No, we have ℒβ[ΞNo≻,βa]<ΞNo≻,βaR, so ΞNo≻,βa<ΞNo≻,βaR− (L<βEβΞNo≻,βa)
−1. We

deduce that the following equivalent is equivalent to (6.8):

ΞNo≻,βa = {{{{{{{{{{{{{{{{{{{{{{ℝ,ΞNo≻,βa′+
1

L<βEβΞNo≻,βa′
:a′∈aL ||||||||||| ΞNo≻,βaR−

1
L<βEβΞNo≻,βa}}}}}}}}}}}}}}}}}}}}}}. (6.9)

6.7 End of the inductive proof
We now prove I2,ν , I3,ν and Theorem 1.1.
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Lemma 6.16. If μ is a limit ordinal, then we have EβT1Lβ>E<β on No>,≻.

Proof. Let a∈No>,≻. We have ♯β(Lβa+1)>♯β(Lβa), so (4.8) yields

𝔡β(Eβ(Lβa+1)) = Eβ(♯β(Lβa+1)) ≻ Eβ(♯β(Lβa)) = 𝔡β(a).

We deduce that Eβ(Lβa+1)>ℰβa so Eβ(Lβa+1)>E<βa by Lemma 6.11. □

Proposition 6.17. For r , s∈ℝ with s>1 and γ <ρ <α, we have EγHr Lγ<EρHsLρ on No>,≻,
i.e. 𝐈2,ν holds.

Proof. Throughout this proof, we consider inequalities and equalities of functions on No>,≻.
Write γ =βm+ ι and ρ=βn+θ where m,n<ω and ι,θ <β . We have

EγHrLγ = EβmEιHrLιLβm and

EρHrLρ = EβnEθHsLθLβn.

If m=n, then ι<θ , so I2,μ yields EιHrLι<EθHsLθ , whence EγHrLγ<EρHsLρ. Assume that m<n.
If μ− is a successor ordinal, then there is p<ω with ι<β/ωp. By I2,μ , we have EθHsLθ⩾Hs>Tp.
So Eβ (EθHs Lθ) Lβ > Eβ Tp Lβ = Eβ/ωp. We conclude by noting that Eβ/ωp > Eι> EιHr Lι. If μ− is
a limit ordinal, then EθHsLθ>T1 so Eβ (EθHsLθ)Lβ>Eι>EιHrLι by Lemma 6.16. It follows that
for k ∈ℕ>, we have Eβ(k+1) EθHs Lθ Lβ(k+1)> Eβk EιHr Lι Lβk. An easy induction on k yields
the result. □

Proposition 6.18. Moα′ is the class of L<α-atomic numbers, i.e. 𝐈3,ν holds.

Proof. Let a∈No>,≻. By Corollary 6.13, the simplest element ofℰα[a] is L<α-atomic. Since
ℰα[a]=ℰα′[a], we deduce that Moα′ ⊆Moα.

Conversely, given 𝔞∈Moα, we have 𝔟≔πℰα′(𝔞)∈Moα′ ⊆Moα. Now 𝔟∈ℰα′[𝔞], so by I2,ν , there
are r , s∈ℝ> and γ<α with Eγ(rLγ 𝔞)<𝔟<Eγ(sLγ 𝔞). Hence, Lγ 𝔟≍Lγ 𝔞, Lγ 𝔟=Lγ 𝔞 and 𝔟=𝔞. We
conclude that 𝔞∈Moα′ . □

In particular, the class Moα is a surreal substructure. We have proved I1,ν , I2,ν , and I3,ν , so
we obtain the following by induction:

Theorem 6.19. The field (No, (Lωη)η∈On) is a confluent hyperserial skeleton of force (On,On).

Combining this with Propositions 4.3 and 4.6, we obtain Theorem 1.1. Let us finally show
that (No, ∘) contains only one L<On-atomic element.

Proposition 6.20. The number ω is the only L<On-atomic element in No. For all a∈No>,≻,
there is γ ∈On with Lγa≍Lγω.

Proof. The number ω lies in Moωμ for all μ∈On, so it is L<On-atomic. For ν∈On, the number
Eωνω= {E<ωνω ∣ ∅} is an ordinal. As a sign sequence, the number Lωνω= {∅ ∣ L<ωνω}No>,≻ is ω
followed by a string containing only minuses [2, Lemma 2.6]. Since the sequences (Eωνω)ν∈On
and (Lωνω)ν∈On are strictly increasing and strictly decreasing respectively, the classes {Eωνω :
ν∈On} and {Lωνω :ν∈On} are respectively cofinal and coinitial in No>,≻= {a∈No :ω⊑a}. Thus
for a∈No>,≻, there is ν∈On with Eωνω>a>Lωνω, whence Lων+1ω≍Lων+1a. □

7 Remarkable identities
In this section, we give various identities regarding the function groups introduced in Sec-
tion 6.1. In what follows, ν is a non-zero ordinal and α≔ων .
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7.1 Simplified cut equations for Lα and Eα
Given φ∈No>,≻, let E⊲α≔ {E(α/ω)nφ :n∈ℕ} if ν is a successor ordinal and E⊲αφ≔ {φ} if ν is
a limit ordinal. In this subsection, we will derive the following simplified cut equations for Lα
on Moα and Eα on No≻,α:

∀𝔞∈Moα, Lα 𝔞 = {Lα 𝔞L
Moα ∣ Lα 𝔞R

Moα,L<α 𝔞}No≻,α (7.1)

= {{{{{{{{{{ℝ,Lα 𝔞′+ 1
L<α 𝔞′

:𝔞′∈𝔞L
Moα | Lα 𝔞′′− 1

L<α 𝔞′′
,L<α 𝔞:𝔞′′∈𝔞L

Moα}}}}}}}}}}, (7.2)

∀φ∈No≻,α, Eαφ = {E⊲α 𝔡α(φ),EαφL
No≻,α | EαφR

No≻,α}Moα (7.3)

= {E<αφ,ℰαEαφL
No≻,α | ℰαEαφR

No≻,α}. (7.4)

For all a∈No>,≻, the set E⊲α 𝔡α(a) contains only L<α-atomic numbers, so (7.3) is indeed a cut
equation of the form {ρ ∣ λ}Moα.

Remark 7.1. The changes with respect to (6.1) and (6.5) lie in the occurrence of 𝔞′′ instead of 𝔞
in (7.2) and the (related) absence of the lest option E<α((φR

No≻,α−φ)−1) in (7.4). So (7.2) and (7.4)
give lighter sets of conditions than those in (6.1) and (6.5) to define Lα and Eα. This seemingly
meager simplification will be crucial in further work. Indeed, combined with Proposition 3.1,
this allows one to determine large classes of numbers a,b with a⊑b⟹Eαa⊑Eαb.

First note that the cut equations (7.1) and (7.3) if they hold are uniform (see [6, Remark 1]).
Moreover, we claim that (7.1,7.2) are equivalent and that (7.3,7.4) are equivalent. Indeed, recall
that for a thin convex partition Π of a surreal substructure S and any cut representation (L,R)
in SmpΠ, one has

{L ∣ R}SmpΠ = {Π[L] ∣ Π[R]}S.

For 𝔞′∈𝔞L
Moα and 𝔞′′∈𝔞R

Moα the classes Lα 𝔞′+ (L<α 𝔞′)−1 and ℒα[Lα 𝔞′] are mutually cofinal
by (4.6). Similarly, Lα 𝔞′′− (L<α 𝔞′′)−1 andℒα[Lα 𝔞′′] aremutually coinitial. By Lemma 6.11, the
classes E<αφ andℰα[E⊲α 𝔡α(φ)] are mutually cofinal. So it is enough to prove that (7.1) and (7.3)
are valid cut equations for Lα and Eα respectively.

Lemma 7.2. If ν is a successor ordinal, then the identities (7.1) and (7.3) hold.

Proof. Let 𝔞∈Moα and set

φ ≔ {Lα 𝔞L
Moα ∣ Lα 𝔞R

Moα,L<α 𝔞}No≻,α

= {{{{{{{{{{ℝ,Lα 𝔞′+ 1
L<α 𝔞′

:𝔞′∈𝔞L
Moα ∣ Lα 𝔞′′−

1
L<α 𝔞′′

,L<α 𝔞 :𝔞′′∈𝔞R
Moα}}}}}}}}}}.

We have ℒα[Lα 𝔞L
Moα]<φ<L<α 𝔞 so in view of (6.1), it is enough to prove that φ <Lα 𝔞R

Moα−
(L<α 𝔞)−1 to conclude that φ=Lα 𝔞. Let 𝔞′′∈𝔞R

Moα. If 𝔞′′∈ℰα∗[𝔞], then the inequality φ<Lα 𝔞′′
entails φ <ℒα[Lα 𝔞′′] whence φ < Lα 𝔞′′ − (L<α 𝔞′′)−1 and φ < Lα 𝔞′′ − (L<α 𝔞)−1. Otherwise,
we have 𝔞<L<α 𝔞′′, so Lα 𝔞<Lα 𝔞′′− 2, and Lα 𝔞′′− (L<α 𝔞)−1>Lα 𝔞+ 1. It is enough to prove
that Lα 𝔞+1⩾φ. Recall that

Lα 𝔞+1 = {{{{{{{{{{Lα 𝔞,Lα 𝔞′+ 1
L<α 𝔞′

+1 : 𝔞′∈𝔞L
Moα ∣ Lα 𝔞R

Moα− 1
L<α 𝔞

+1,L<α 𝔞}}}}}}}}}}
by (3.1). We see that Lα 𝔞′+

1
L<α 𝔞′

<Lα 𝔞+ 1 for all 𝔞′∈𝔞L
Moα. We have 1− 1

L<α 𝔞
≻ 1

L<α 𝔞R
Moα so

Lα 𝔞R
Moα− 1

L<α 𝔞
+1>φ. Thus φ⩽Lα 𝔞+1. So (7.1) holds.
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Now let ψ ∈No≻,α and set

𝔟 ≔ {Eα/ωℕ𝔡α(ψ ),EαψL
No≻,α ∣ EαψR

No≻,α}Moα.

By uniformity of (7.1), we have

Lα 𝔟 = {LαEα/ωℕ𝔡α(ψ ),ψL
No≻,α ∣ ψR

No≻,α,L<α 𝔟}No≻,α,

whence Lα 𝔟 ⊒ {ψL
No≻,α ∣ ψR

No≻,α}No≻,α = ψ . Conversely, 𝔟 > Eα/ωℕ 𝔡α(ψ ) and 𝔟 > E<α ψ , so

ψ < L<α 𝔟. We have Lα Eα/ωℕ 𝔡α(ψ ) = Lα 𝔡α(ψ ) +ℕ. Since Lα 𝔡α(ψ ) < Lα/ω 𝔡α(ψ ) ≺ ψ , this
yields Lα Eα/ωℕ 𝔡α(ψ )<ψ . This proves that ψ lies in the cut defining Lα 𝔟. We conclude that
ψ =Lα 𝔟, hence (7.3) holds. □

We now assume that ν is a limit ordinal. For z∈No, define

F (z) ≔ {𝔡α(ΞNo≻,αz),F (zL) ∣ F (zR)}Moα, and

Ξz ≔ {ℝ,Ξz′+ (L<αF (z′))−1 :z′∈zL ∣ ΞzR− (L<αF (z))−1}.

Lemma 7.3. For all z∈No, we have

F (z) is defined (7.5)

Ξz is defined (7.6)

Ξz = ΞNo≻,αz (7.7)

F (z) = Eα Ξz (7.8)

Proof. We prove the result by induction on (No,⊑). Let z∈No be such that (7.5), (7.6), (7.7)
and (7.8) hold for all y∈No with y⊏z.

For z′′∈zR and z′∈zL, we have 𝔡α(ΞNo≻,αz)⩽𝔡α(ΞNo≻,αz′′)<F (z′′). We have F (z′)<F (z′′)
by definition of F (z′′) if z′∈ (z′′)L and by definition of F (z′) if z′′∈ (z′)R. This proves that F (z)
is defined.

Let z′ ∈ zL and z′′ ∈ zR. If z′ ∈ (z′′)L, then we have Ξz′′ >Ξz′ + (L<α F (z′))−1 by defini-
tion of Ξz′′. Since F (z′)< F (z) and F (z), F (z′)∈Moα, we have Lγ F (z′)≺ Lγ F (z) for all γ <
α . We deduce that Ξz′′ − (L<α F (z))−1>Ξz′ + (L<α F (z′))−1. If z′′ ∈ (z′)L, then Ξz′ <Ξz′′ −
(L<α F (z′))−1 by definition of Ξz′. Since F (z′)< F (z), we obtain Ξz′′ − (L<α F (z))−1>Ξz′ +
(L<αF (z′))−1. This proves that Ξz is defined.

Since (7.7) and (7.8) hold on z⊏, we have

Ξz = {ℝ,ΞNo≻,αz′+ (L<αEα ΞNo≻,αz′)−1 :z′∈zL ∣ ΞNo≻,αzR− (L<αEα ΞNo≻,αz)
−1}

By (6.9), this yields Ξz=ΞNo≻,αz, so (7.7) holds for z.
From (7.7), we get 𝔡α(ΞNo≻,α z)=𝔡α(Ξz). By Proposition 6.14 and our assumption that (7.8)

holds on z⊏, we have

LαF (z) = {ℝ,ℒα[Lα 𝔡α(Ξz)],ℒα[LαF (zL)] ∣ LαF (zR)− (L<αF (z))−1,L<αF (z)}
= {ℝ,ℒα[Lα 𝔡α(Ξz)],ℒα[ΞzL] ∣ ΞzR− (L<αF (z))−1,L<αF (z)}.

Recall that Ξz= {ℝ,ℒα[ΞzL] ∣ ΞzR− (L<αF (z))−1}. Therefore it suffices to show that Ξz lies in
the cut (ℒα[Lα 𝔡α(Ξz)] ∣ L<αF (z)) to conclude that LαF (z)=Ξz and thus that F (z)=EαΞz. Now
Lα 𝔡α(Ξz)<ℰα∗[Ξz] so Lα 𝔡α(Ξz)≺Ξz and ℒα[Lα 𝔡α(Ξz)]<Ξz. We have F (z)>𝔡α(Ξz), where
F (z)∈Moα. Since ν is a limit ordinal, Lemma 6.11 implies that F (z)>E<α Ξz, so Ξz<L<αF (z).
This completes the proof that F (z)=EαΞz. □

Corollary 7.4. The identities (7.1), (7.2), (7.3), and (7.4) all hold.
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Proof. It is enough to prove (7.1) and (7.3). The identity (7.3) follows from (7.7) and (7.8). In
order to obtain (7.1), we consider 𝔞∈Moα, set ψ ≔ {Lα 𝔞L

Moα ∣ Lα 𝔞R
Moα,L<α 𝔞}No≻,α, and we show

that 𝔞=Eαψ . Since (7.3) is uniform, we have

Eαψ = {𝔡α(ψ ),EαLα 𝔞L
Moα ∣ EαLα 𝔞R

Moα,EαL<α 𝔞}Moα
= {𝔡α(ψ ), 𝔞L

Moα ∣ 𝔞R
Moα,EαL<α 𝔞}Moα.

We have 𝔡α(ψ )<𝔞 because ψ <L<α 𝔞, and EαL<α 𝔞>𝔞 because Eα >E<α on No>,≻. Since 𝔞=
{𝔞L

Moα ∣ 𝔞R
Moα}Moα, we deduce that Eαψ =𝔞. □

Remark 7.5. The simplified cut equations for Eα,Lα can be viewed as alternative definitions
for those functions, since they hold inductively on their domain of definition. It is unclear how
to develop our theory directly upon these alternative definitions. In particular, does there exists
a direct way to see that the cut equation (7.2) is warranted, and that the corresponding function
satisfies Rμ and Mμ?

7.2 Identities involving Trα and Trα* .

Proposition 7.6. Defining Trα≔Smpℒα′ as in Section 6.1, we have Trα=No≻,α.

Proof. Let φ ∈No≻,α. We have Eαℒα[φ]=ℰα[Eα φ] by [5, Proposition 7.22]. Recall that
ℰα[a]=ℰα′[a] for all a∈No>,≻. Now ℰα′ ∘ Eα = Eα ∘ℒα′ by definition of ℒα′ , so Eαℒα[φ]=
Eαℒα′[φ] andℒα[φ]=ℒα′[φ]. By definition ofTrα , we conclude thatTrα=Smpℒα=No≻,α. □

Assume that ν is a successor ordinal. Then we have No≻,α=No≻,α+ℝ by (4.4), so the func-
tions Tr ΞNo≻,α and ΞNo≻,αTr are both strictly increasing bijections from No onto No≻,α.

Lemma 7.7. Assume that ν is a successor ordinal. Then for r∈ℝ, we have Tr ΞNo≻,α=ΞNo≻,αTr
on No.

Proof. Let us abbreviate Ξ≔ΞNo≻,α. We prove the lemma by induction on (No,⊑)× (ℝ,⊑).
Let (z, r)∈No×ℝ with

Ξy+ s = Ξ(y+ s)

whenever (y, s)∈No×ℝ is strictly simpler than (z, r). We let z′, z′′, r′, r′′ denote generic ele-
ments of zL,zR, rL, rR and we note that r′, r′′∈ℝ. By (6.8), we have

Ξ(z+ r) = {{{{{{{{{{Ξ(z′+ r)+ 1
L<αEα Ξ(z′+ r)

, Ξ(z+ r′)+ 1
L<αEα Ξ(z+ r′) |||||

Ξ(z+ r′′)− 1
L<αEαΞ(z+ r′′)

, Ξ(z′′+ r)− 1
L<αEαΞ(z′′+ r)}}}}}}}}}}No>,≻

= {{{{{{{{{{Tr Ξz′+ 1
L<αEαTr Ξz′

, Tr ′Ξz+
1

L<αEαTr ′Ξz |||||
Tr ′′Ξz−

1
L<αEαTr ′′Ξz

, Tr Ξz′′−
1

L<αEαTr Ξz′′}}}}}}}}}}No>,≻
.

Recall that ν is a successor ordinal. Since (4.2) holds for all a∈No>,≻, the sets L<αEα𝒯a and
L<αEαa are mutually cofinal and coinitial. Moreover Ts(z+b)=Tsz+b for all s∈ℝ and b∈No,
so

Ξ(z+ r) = {{{{{{{{{{Tr(((((Ξz′+ 1
L<αEαΞz′))))), Tr ′(Ξz+

1
L<αEαΞz)|

Tr ′′(Ξz− 1
L<αEα Ξz), Tr(((((Ξz′′−

1
L<αEα Ξz′′)))))}}}}}}}}}}No>,≻

.
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By (3.1), we have

Tr Ξz = {{{{{{{{{{Tr(((((Ξz′+ 1
L<αEαΞz′))))), Tr ′Ξz | Tr ′′Ξz, Tr(((((Ξz′′−

1
L<αEαΞz′′)))))}}}}}}}}}}No>,≻

.

The numbers Tr Ξz,Tr ′Ξz and Tr ′′Ξz are α-truncated so Tr Ξz lies in the cut

(((((((((((�r ′ Tr ′(Ξz+
1

L<αEα Ξz) |||||||||||�r ′′ Tr ′′(Ξz−
1

L<αEα Ξz))))))))))))No>,≻
.

We deduce that Tr Ξz=ΞTrz. The result follows by induction. □

Lemma 7.8. If ν is a successor ordinal, then we have𝒯∠∠ℒα
∗ on No>,≻. Consequently,Trα∗=No≻>.

Proof. The set E<α is pointwise cofinal in ℰα
∗. So LαE<αEα is pointwise cofinal in ℒα

∗. For
γ <α , there is n∈ℕ such that γ ⩽α/ωn. We have

LαEγEα ⩽ LαEα/ωnEα = (LαEα/ωEα)
∘n = (LαEαT1)∘n = T1

∘n = Tn ∈ 𝒯.

We deduce that 𝒯∠∠ℒα
∗ on No>,≻, whence Trα∗=Smp𝒯=No≻>. □

7.3 Identities involving Moα and Moα* .

Lemma 7.9. If ν is a successor ordinal, then for z∈No we have

ΞMoα(z−1) = Lα/ωΞMoαz.

Proof. This can be seen as a converse to the proof of the identity (6.3). We proceed by
induction on (No,⊑). Let z be such that the relation holds on z⊏. By (6.3), we have

Lα/ωΞMoαz = {Lα/ω (ΞMoαz)L
Moα ∣ Lα/ω (ΞMoαz)R

Moα,ΞMoαz}Moα
= {Lα/ωΞMoαzL ∣ Lα/ωΞMoαzR,ΞMoαz}Moα
= {ΞMoα(zL−1) ∣ ΞMoα(zR−1),ΞMoαz}Moα (by the inductive hypothesis)

= ΞMoα {zL−1 ∣ zR−1, z}
= ΞMoα(z−1) by (3.1).

We conclude by induction. □

Noting that Eα/ω=EαT1Lα on No>,≻, the previous relation further generalizes as follows.

Proposition 7.10. Assume that ν is a successor ordinal and let r∈ℝ. Then

ΞMoαTr = EαTrLαΞMoα (7.9)

Proof. We proceed by induction. Let (z, r)∈No×ℝ be such that

ΞMoαTsy = EαTsLα ΞMoαy

for all strictly simpler (y, s)∈No×ℝ with respect to the product order ⊑×⊑. For s∈ℝ, let ϕs
be the function b⟼EαTsLαb on No>,≻ and let 𝔞≔ΞMoαz. By (3.1) and (3.2), we have

ΞMoα(z+ r) = {ℝ,ℰα ΞMoα(zL+ r),ℰα ΞMoα(z+ rL) ∣ ℰαΞMoα(zR+ r),ℰαΞMoα(z+ rR)}
= {ℝ,ℰαϕr(𝔞L

Moα),ℰαϕrL(𝔞) ∣ ℰαϕr(𝔞R
Moα),ℰαϕrR(𝔞)}.

By (7.1), Lemma 7.7 and (3.1), we have:

TrLα 𝔞 = {TrLα 𝔞L
Moα,TrLLα 𝔞 ∣ TrRLα 𝔞,TrLα 𝔞R

Moα,L<α 𝔞}Trα.
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We deduce that

ϕr(𝔞) = {E<αTrLα 𝔞,ℰαϕr(𝔞L
Moα),ℰαϕrL(𝔞) ∣ ℰαϕrR(𝔞),ℰαϕr(𝔞R

Moα),ℰαEαL<α 𝔞}
= {E<αLα 𝔞,ℰαϕr(𝔞L

Moα),ℰαϕrL(𝔞) ∣ ℰαϕrR(𝔞),ℰαϕr(𝔞R
Moα),EαL<α 𝔞}.

It is enough to prove that E<αLα 𝔞<ΞMoα(z+ r)<EαL<α 𝔞 to conclude that ϕr(𝔞)=ΞMoα(z+ r).
Towards this, fix an n∈ℕ with −n⩽ r ⩽n. Lemma 7.9 yields

ΞMoα(z+ r) ⩽ ΞMoα(z+n) = Eα/ωn 𝔞 < EαL<α 𝔞
ΞMoα(z+ r) ⩾ ΞMoα(z−n) = Lα/ωn 𝔞 > E<αLα 𝔞.

We conclude by induction that (7.9) holds. □

Remark 7.11. For r , s∈ℝ, we have ϕr+s=ϕr ∘ϕs, and ϕ1=Eα/ω. Therefore we can see (ϕr)r∈ℝ
as a system of fractional and real iterates of the hyperexponential function Eα/ω on No>,≻. The
previous proposition shows that the action of those iterates on L<α-atomic numbers reduces to
translations, modulo the parametrization ΞMoα. In particular, one can compute the functional
square root of exp on Moω in terms of sign sequences using the material from [3].

Proposition 7.12. If ν is a successor ordinal, then Moα∗=Moα�No≻.

Proof. For θ∈No≻, we have θL+ℕ<θ<θR−ℕ. By Lemma 7.9, it follows that Eα/ωℕΞMoαθL<
ΞMoα θ <Lα/ωℕΞMoα θR. This implies that ℰα∗ΞMoα θL<ΞMoα θ <ℰα∗ΞMoα θR, so ΞMoα θ is ℰα∗-
simple.

Conversely, consider θ ∈No>,≻ such that ΞMoαθ is ℰα∗-simple. We have ΞMoαθL⊆ (ΞMoαθ )L
and ΞMoαθR⊆ (ΞMoαθ )R, whence Eα/ωℕΞMoα θL<ΞMoα θ <Lα/ωℕΞMoαθR. We obtain θL+ℕ<
θ <θR−ℕ, which proves that θ ∈No≻. □

Proposition 7.13. We have EαTrα∗=Moα∗.

Proof. Let φ∈Trα∗. So φ∈Trα. By Proposition 3.1, the number Eαφ is simplest in

Eα(ℰα∗[φ]∩Trα) = ℰα∗[Eαφ]∩Moα.

Since Moα∗⊆Moα, we have Eα φ ⊑ℰα∗[Eαφ]∩Moα∗ so Eαφ ⊑ 𝔡α∗(Eα φ). We deduce that Eαφ =
𝔡α∗(Eαφ), so Eαφ is ℰα∗-simple. Conversely, let 𝔞∈Moα∗. By Proposition 3.1 the number Lα 𝔞 is
simplest in Lα(ℰα∗[𝔞]∩Moα)=ℒα

∗[Lα 𝔞]∩No≻,α. Since Trα∗⊆No≻,α, we have Lα 𝔞⊑ℒα
∗[Lα 𝔞]∩

Trα∗ so Lα 𝔞⊑♯α∗(Lα 𝔞). We deduce that Lα 𝔞⊑♯α∗(Lα 𝔞) is ℒα
∗-simple. □

Corollary 7.14. If ν is a successor ordinal, then Moα∗=Eα No≻>.
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