
On Numbers, Germs, and Transseries

Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven

Abstract

Germs of real-valued functions, surreal numbers, and transseries are three
ways to enrich the real continuum by infinitesimal and infinite quantities.
Each of these comes with naturally interacting notions of ordering and deriva-
tive. The category of H-fields provides a common framework for the relevant
algebraic structures. We give an exposition of our results on the model theory
of H-fields, and we report on recent progress in unifying germs, surreal num-
bers, and transseries from the point of view of asymptotic differential algebra.

Contemporaneous with Cantor’s work in the 1870s but less well-known, P. du Bois-
Reymond [10]–[15] had original ideas concerning non-Cantorian infinitely large and
small quantities [34]. He developed a “calculus of infinities” to deal with the growth
rates of functions of one real variable, representing their “potential infinity” by an
“actual infinite” quantity. The reciprocal of a function tending to infinity is one
which tends to zero, hence represents an “actual infinitesimal”.

These ideas were unwelcome to Cantor [39] and misunderstood by him, but
were made rigorous by F. Hausdorff [46]–[48] and G. H. Hardy [42]–[45]. Hausdorff
firmly grounded du Bois-Reymond’s “orders of infinity” in Cantor’s set-theoretic
universe [38], while Hardy focused on their differential aspects and introduced the
logarithmico-exponential functions (short: LE-functions). This led to the concept
of a Hardy field (Bourbaki [22]), developed further mainly by Rosenlicht [63]–[67]
and Boshernitzan [18]–[21]. For the role of Hardy fields in o-minimality see [61].

Surreal numbers were discovered (or created?) in the 1970s by J. H. Con-
way [23] and popularized by M. Gardner, and by D. E. Knuth [55] who coined the
term “surreal number”. The surreal numbers form a proper class containing all
reals as well as Cantor’s ordinals, and come equipped with a natural ordering and
arithmetic operations turning them into an ordered field. Thus with ω the first
infinite ordinal, ω − π, 1/ω,

√
ω make sense as surreal numbers. In contrast to

non-standard real numbers, their construction is completely canonical, naturally
generalizing both Dedekind cuts and von Neumann’s construction of the ordinals.
(In the words of their creator [24, p. 102], the surreals are “the only correct ex-
tension of the notion of real number to the infinitely large and the infinitesimally
small.”) The surreal universe is very rich, yet shares many properties with the
real world. For example, the ordered field of surreals is real closed and hence, by
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Tarski [72], an elementary extension of its ordered subfield of real numbers. (In
fact, every set-sized real closed field embeds into the field of surreal numbers.)
M. Kruskal anticipated the use of surreal numbers in asymptotics, and based on
his ideas Gonshor [40] extended the exponential function on the reals to one on the
surreals, with the same first-order logical properties [29]. Rudiments of analysis
for functions on the surreal numbers have also been developed [1, 26, 68].

Transseries generalize LE-functions in a similar way that surreals generalize
reals and ordinals. Transseries have a precursor in the generalized power series
of Levi-Civita [57, 58] and Hahn [41], but were only systematically considered in
the 1980s, independently by Écalle [32] and Dahn-Göring [27]. Écalle introduced
transseries as formal counterparts to his “analyzable functions”, which were central
to his work on Dulac’s Problem (related to Hilbert’s 16th Problem on polynomial
vector fields). Dahn and Göring were motivated by Tarski’s Problem on the model
theory of the real field with exponentiation. Transseries have since been used in
various parts of mathematics and physics; their formal nature also makes them
suitable for calculations in computer algebra systems. Key examples of transseries
are the logarithmic-exponential series (LE-series for short) [30, 31]; more gen-
eral notions of transseries have been introduced in [49, 69]. A transseries can
represent a function of a real variable using exponential and logarithmic terms,
going beyond the more prevalent asymptotic expansions in terms of powers of
the independent variable. Transseries can be manipulated algebraically—added,
subtracted, multiplied, divided—and like power series, can be differentiated term-
wise: they comprise a differential field. However, they carry much more struc-
ture: for example, by virtue of its construction, the field of LE-series comes with
an exponential function; there is a natural notion of composition for transseries;
and differential-compositional equations in transseries are sometimes amenable to
functional-analytic techniques [50].

The logical properties of the exponential field of LE-series have been well-un-
derstood since the 1990s: by [73] and [30] it is model-complete and o-minimal.
In our book [4] we focused instead on the differential field of LE-series, denoted
below by T, and obtained some decisive results about its model theory. Following
A. Robinson’s general ideas we placed T into a suitable category ofH-fields and, by
developing the extension theory of H-fields, showed that T is existentially closed as
an H-field: each system of algebraic differential equations and inequalities over T
which has a solution in an H-field extension of T already has one in T itself.
In [4] we also prove the related fact that T is model-complete; indeed, we obtain
a quantifier elimination (in a natural language) for T. As a consequence, the
elementary theory of T is decidable, and model-theoretically “tame” in various
ways: for example, it has Shelah’s non-independence property (NIP).

Results from [4] about existential closedness, model completeness, and quanti-
fier elimination substantiate the intuition, expressed already in [32], that T plays
the role of a universal domain for the part of asymptotic differential algebra that
steers clear of oscillations. How far does this intuition lead us? Hardy’s field of
LE-functions embeds into T, as an ordered differential field, but this fails for other
Hardy fields. The natural question here is: Are all maximal Hardy fields elemen-
tarily equivalent to T? It would mean that any maximal Hardy field instantiates
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Hardy’s vision of a maximally inclusive and well-behaved algebra of oscillation-free
real functions. Related is the issue of embedding Hardy fields into more general
differential fields of transseries. Positive answers to these questions would tighten
the link between germs of functions (living in Hardy fields) and their transseries
expansions. We may also ask how surreal numbers fit into the picture: Is there
a natural isomorphism between the field of surreal numbers and some field of gen-
eralized transseries? This would make it possible to differentiate and compose
surreal numbers as if they were functions, and confirm Kruskal’s premonition of a
connection between surreals and the asymptotics of functions.

We believe that answers to these questions are within grasp due to advances
in our understanding during the last decade as represented in our book [4]. We
discuss these questions with more details in Sections 3, 4, 5. In Section 1 we set
the stage by describing Hardy fields and transseries as two competing approaches
to the asymptotic behavior of non-oscillatory real-valued functions. (Section 5
includes a brief synopsis of the remarkable surreal number system.) In Section 2
we define H-fields and state the main results of [4].

We let m, n range over N = {0, 1, 2, . . . }. Given an (additive) abelian group A
we let A ̸= := A \ {0}. In some places below we assume familiarity with very basic
model theory, for example, on the level of [4, Appendix B]. “Definable” will mean
“definable with parameters”.

1 Orders of Infinity and Transseries

Germs of continuous functions

Consider continuous real-valued functions whose domain is a subset of R containing
an interval (a,+∞), a ∈ R. Two such functions have the same germ (at +∞)
if they agree on an interval (a,+∞), a ∈ R, contained in both their domains;
this defines an equivalence relation on the set of such functions, whose equivalence
classes are called germs. Addition and multiplication of germs is defined pointwise,
giving rise to a commutative ring C. For a germ g of such a function we also let g
denote that function if the resulting ambiguity is harmless. With this convention,
given a property P of real numbers and g ∈ C we say that P

(
g(t)

)
holds eventually

if P
(
g(t)

)
holds for all sufficiently large real t in the domain of g. We identify each

real number r with the germ of the constant function R → R with value r. This
makes the field R into a subring of C.

Following Hardy we define for f, g ∈ C,

f ≼ g : ⇐⇒ for some c ∈ R>0 we have |f(t)| ⩽ c|g(t)| eventually,
f ≺ g : ⇐⇒ for every c ∈ R>0 we have |f(t)| < c|g(t)| eventually.

The reflexive and transitive relation ≼ yields an equivalence relation ≍ on C by
setting f ≍ g :⇐⇒ f ≼ g and g ≼ f , and ≼ induces a partial ordering on the
set of equivalence classes of ≍; these equivalence classes are essentially du Bois-
Reymond’s “orders of infinity”. Thus with x the germ of the identity function on R:

0 ≺ 1 ≺ log log x ≺ log x ≺
√
x ≺ x ≍ −2x+ x sinx ≺ x2 ≺ ex .
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One way to create interesting subrings of C is via expansions of the field of real
numbers: any such expansion R̃ gives rise to the subring H(R̃) of C consisting of

the germs of the continuous functions R → R that are definable in R̃.

Hausdorff fields

A Hausdorff field is by definition a subfield of C. Simple examples are

Q, R, R(x), R(
√
x), R(x, ex, log x). (1.1)

That R(x, ex, log x) is a Hausdorff field, for instance, follows from two easy facts:
first, an element f of C is a unit iff f(t) ̸= 0 eventually (and then either f(t) > 0
eventually or f(t) < 0 eventually), and if f ̸= 0 is an element of the subring
R[x, ex, log x] of C, then f ≍ xk elx(log x)m for some k, l,m ∈ N. Alternatively, one

can use the fact that an expansion R̃ of the field of reals is o-minimal iff H(R̃)
is a Hausdorff field, and note that the examples above are subfields of H(Rexp)
where Rexp is the exponential field of real numbers, which is well-known to be
o-minimal by Wilkie [73].

Let H be a Hausdorff field. Then H becomes an ordered field with (total) or-
dering given by: f > 0 iff f(t) > 0 eventually. Moreover, the set of orders of infinity
in H is totally ordered by ≼: for f, g ∈ H we have f ≼ g or g ≼ f . In his landmark
paper [48], Hausdorff essentially proved that H has a unique algebraic Hausdorff
field extension that is real closed. (Writing before Artin and Schreier [2], of course
he doesn’t use this terminology.) He was particularly interested in “maximal” ob-
jects and their order type. By Hausdorff’s Maximality Principle (a form of Zorn’s
Lemma) every Hausdorff field is contained in one that is maximal with respect to
inclusion. By the above, maximal Hausdorff fields are real closed. Hausdorff also
observed that maximal Hausdorff fields have uncountable cofinality; indeed, he
proved the stronger result that the underlying ordered set of a maximal Hausdorff
field H is η1: if A,B are countable subsets of H and A < B, then A < h < B for
some h ∈ H. A real closed ordered field is ℵ1-saturated iff its underlying ordered
set is η1. Standard facts from model theory (or [36]) now yield an observation that
could have been made by Hausdorff himself in the wake of Artin and Schreier [2]:

Corollary 1.1. Assuming CH (the Continuum Hypothesis), all maximal Haus-
dorff fields are isomorphic.

This observation was in fact made by Ehrlich [35] in the more specific form that
under CH any maximal Hausdorff field is isomorphic to the field of surreal numbers
of countable length; see Section 5 below for basic facts on surreals. We don’t know
whether here the assumption of CH can be omitted. (By [37], the negation of CH
implies the existence of non-isomorphic real closed η1-fields of size 2ℵ0 .) It may
also be worth mentioning that the intersection of all maximal Hausdorff fields is
quite small: it is just the field of real algebraic numbers.

4



Hardy fields

A Hardy field is a Hausdorff field whose germs can be differentiated. This leads to
a much richer theory. To define Hardy fields formally we introduce the subring

Cn := {f ∈ C : f is eventually n times continuously differentiable}

of C, with C0 = C. Then each f ∈ Cn+1 has derivative f ′ ∈ Cn. A Hardy field is a
subfield of C1 that is closed under f 7→ f ′; Hardy fields are thus not only ordered
fields but also differential fields. The Hausdorff fields listed in (1.1) are all Hardy

fields; moreover, for each o-minimal expansion R̃ of the field of reals, H(R̃) is a
Hardy field. As with Hausdorff fields, each Hardy field is contained in a maximal
one. For an element f of a Hardy field we have either f ′ > 0, or f ′ = 0, or f ′ < 0,
so f is either eventually strictly increasing, or eventually constant, or eventually
strictly decreasing. (This may fail for f in a Hausdorff field.) Each element of
a Hardy field is contained in the intersection

⋂
n Cn, but not necessarily in its

subring C∞ consisting of those germs which are eventually infinitely differentiable.
In a Hardy field H, the ordering and derivation interact in a pleasant way: if
f ∈ H and f > R, then f ′ > 0. Asymptotic relations in H can be differentiated
and integrated: for 0 ̸= f, g ̸≍ 1 in H, f ≼ g iff f ′ ≼ g′.

Extending Hardy fields

Early work on Hardy fields focussed on solving algebraic equations and simple first
order differential equations: Borel [17], Hardy [43, 44], Bourbaki [22], Marić [59],
Sjödin [71], Robinson [62], Rosenlicht [63]. As a consequence, every Hardy field H
has a smallest real closed Hardy field extension Li(H) ⊇ R that is also closed
under integration and exponentiation; call Li(H) the Hardy-Liouville closure of H.
(Hardy’s field of LE-functions mentioned earlier is contained in Li(R).) Here is a
rather general result of this kind, due to Singer [70]:

Theorem 1.2. If y ∈ C1 satisfies a differential equation y′P (y) = Q(y) where
P (Y ) and Q(Y ) are polynomials over a Hardy field H and P (y) is a unit in C,
then y generates a Hardy field H⟨y⟩ = H(y, y′) over H.

Singer’s theorem clearly does not extend to second order differential equations:
the nonzero solutions of y′′ + y = 0 in C2 do not belong to any Hardy field. The
solutions in C2 of the differential equation

y′′ + y = ex
2

(1.2)

form a two-dimensional affine space y0 + R sinx + R cosx over R, with y0 any
particular solution. Boshernitzan [21] proved that any of these continuum many
solutions generates a Hardy field. Since no Hardy field can contain more than one
solution, there are at least continuum many different maximal Hardy fields. By
the above, each of them contains R, is real closed, and closed under integration and
exponentiation. What more can we say about maximal Hardy fields? To give an
answer to this question, consider the following conjectures about Hardy fields H:
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A. For any differential polynomial P (Y ) ∈ H{Y } = H[Y, Y ′, Y ′′, . . . ] and f < g
in H with P (f) < 0 < P (g) there exists y in a Hardy field extension of H
such that f < y < g and P (y) = 0.

B. For any countable subsets A < B in H there exists y in a Hardy field exten-
sion of H such that A < y < B.

Conjecture A for P ∈ H[Y, Y ′] holds by [28]. Conjecture A implies that all maximal
Hardy fields are elementarily equivalent as we shall see in in Section 2. Conjec-
ture B was first raised as a question by Ehrlich [35]. The conjectures together
imply that, under CH, all maximal Hardy fields are isomorphic (the analogue of
Corollary 1.1). We sketch a program to prove A and B in Section 3.

Transseries

Hardy made the point that the LE-functions seem to cover all orders of infinity that
occur naturally in mathematics [42, p. 35]. But he also suspected that the order of
infinity of the compositional inverse of (log x)(log log x) differs from that of any LE-
function [43]; this suspicion is correct. For a more revealing view of orders of infinity
and a more comprehensive theory we need transseries. For example, transseries
lead to an easy argument to confirm Hardy’s suspicion [30, 49]. Here we focus
on the field T of LE-series and in accordance with [4], simply call its elements
transseries, bearing in mind that many variants of formal series, such as those
appearing in [69] (see Section 4 below), can also rightfully be called “transseries”.

Transseries are formal series f =
∑

m fmm where the fm are real coefficients
and the m are “transmonomials” such as

xr (r ∈ R), x− log x, ex
2 ex , ee

x

.

One can get a sense by considering an example like

7 ee
x +ex/2 +ex/4 +··· −3 ex

2

+5x
√
2 − (log x)π + 42 + x−1 + x−2 + · · ·+ e−x .

Here think of x as positive infinite: x > R. The transmonomials in this series
are arranged from left to right in decreasing order. The reversed order type of
the set of transmonomials that occur in a given transseries can be any countable
ordinal. (In the example above it is ω + 1 because of the term e−x at the end.)
Formally, T is an ordered subfield of a Hahn field R[[GLE]] where GLE is the
ordered group of transmonomials (or LE-monomials). More generally, letM be any
(totally) ordered commutative group, multiplicatively written, the m ∈ M being
thought of as monomials, with the ordering denoted by ≼. The Hahn field R[[M]]
consists of the formal series f =

∑
m fmm with real coefficients fm whose support

supp f := {m ∈ M : fm ̸= 0} is well-based , that is, well-ordered in the reversed
ordering ≽ of M. Addition and multiplication of these Hahn series works just as
for ordinary power series, and the ordering of R[[M]] is determined by declaring
a nonzero Hahn series to be positive if its leading coefficient is positive (so the
series above, with leading coefficient 7, is positive). Both R[[GLE]] and its ordered
subfield T are real closed. Informally, each transseries is obtained, starting with
the powers xr (r ∈ R), by applying the following operations finitely many times:

6



(1) multiplication with real numbers;

(2) infinite summation in R[[GLE]];

(3) exponentiation and taking logarithms of positive transseries.

To elaborate on (2), a family (fi)i∈I in R[[M]] is said to be summable if for each m
there are only finitely many i ∈ I with m ∈ supp fi, and

⋃
i∈I supp fi is well-

based; in this case we define the sum f =
∑

i∈I fi ∈ R[[M]] of this family by
fm =

∑
i∈I(fi)m for each m. One can develop a “strong” linear algebra for this

notion of “strong” (infinite) summation [52, 69]. As to (3), it may be instructive
to see how to exponentiate a transseries f : decompose f as f = g + c + ε where
g :=

∑
m≻1 fmm is the infinite part of f , c := f1 is its constant term, and ε its

infinitesimal part (in our example c = 42 and ε = x−1 + x−2 + · · ·+ e−x); then

ef = eg · ec ·
∑
n

εn

n!

where eg ∈ M is a transmonomial, and ec ∈ R,
∑

n
εn

n! ∈ R[[GLE]] have their usual
meaning. The story with logarithms is a bit different: taking logarithms may also
create transmonomials, such as log x, log log x, etc.

The formal definition of T is inductive and somewhat lengthy; see [31, 33, 52]
or [4, Appendix A] for detailed expositions. We only note here that by virtue of
the construction of T, series like 1

x +
1
ex +

1
eex

+ · · · or 1
x +

1
x log x +

1
x log x log log x + · · ·

(involving “nested” exponentials or logarithms of unbounded depth), though they
are legitimate elements of R[[GLE]], do not appear in T; moreover, the sequence
x, ex, ee

x

, . . . is cofinal in T, and the sequence x, log x, log log x, . . . is coinitial in
the set {f ∈ T : f > R}. The map f 7→ ef is an isomorphism of the ordered
additive group of T onto its multiplicative group of positive elements, with in-
verse g 7→ log g. As an ordered exponential field, T turns out to be an elementary
extension of Rexp [30].

Transseries can be differentiated termwise; for instance,
(∑

n n!
ex

xn+1

)′
= ex

x .
We obtain a derivation f 7→ f ′ on the field T with constant field {f ∈ T : f ′ = 0} =
R and satisfying (exp f)′ = f ′ exp f and (log g)′ = g′/g for f, g ∈ T, g > 0.
Moreover, each f ∈ T has an antiderivative in T, that is, f = g′ for some g ∈ T.
As in Hardy fields, f > R ⇒ f ′ > 0, for transseries f . We also have a dominance
relation on T: for f, g ∈ T we set

f ≼ g :⇐⇒ |f | ⩽ c|g| for some c ∈ R>0

⇐⇒ (leading transmonomial of f) ≼ (leading transmonomial of g),

and as in Hardy fields we declare f ≍ g :⇐⇒ f ≼ g and g ≼ f , as well as
f ≺ g :⇐⇒ f ≼ g and g ̸≼ f . As in Hardy fields we can also differentiate and
integrate asymptotic relations: for 0 ̸= f, g ̸≍ 1 in T we have f ≼ g iff f ′ ≼ g′.

Hardy’s ordered exponential field of (germs of) logarithmic-exponential func-
tions embeds uniquely into T so as to preserve real constants and to send the germ x
to the transseries x; this embedding also preserves the derivation. However, the
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field of LE-series enjoys many closure properties that the field of LE-functions
lacks. For instance, T is not only closed under exponentiation and integration, but
also comes with a natural operation of composition: for f, g ∈ T with g > R we
can substitute g for x in f = f(x) to obtain f ◦ g = f(g(x)). The Chain Rule
holds: (f ◦ g)′ = (f ′ ◦ g) · g′. Every g > R has a compositional inverse in T: a
transseries f > R with f ◦ g = g ◦ f = x. As shown in [52], a Newton diagram
method can be used to solve any “feasible” algebraic differential equation in T
(where the meaning of feasible can be made explicit).

Thus it is not surprising that soon after the introduction of T the idea emerged
that it should play the role of a universal domain (akin to Weil’s use of this term in
algebraic geometry) for asymptotic differential algebra: that it is truly the algebra-
from-which-one-can-never-exit and that it marks an almost impassable horizon for
“ordered analysis” [32, p. 148]. Model theory provides a language to make such
an intuition precise, as we explain in our survey [3] where we sketched a program
to establish the basic model-theoretic properties of T, carried out in [4]. Next we
briefly discuss our main results from [4].

2 H-Fields

We shall consider T as an L-structure where the language L has the primitives 0,
1, +, −, · , ∂ (derivation), ⩽ (ordering), ≼ (dominance). More generally, let K be
any ordered differential field with constant field C = {f ∈ K : f ′ = 0}. This yields
a dominance relation ≼ on K by

f ≼ g :⇐⇒ |f | ⩽ c|g| for some positive c ∈ C

and we view K accordingly as an L-structure. The convex hull of C in K is
the valuation ring O = {f ∈ K : f ≼ 1} of K, with its maximal ideal O :=
{f ∈ K : f ≺ 1} of infinitesimals.

Definition 2.1. An H-field is an ordered differential field K such that (with the
notations above), O = C + O, and for all f ∈ K we have: f > C ⇒ f ′ > 0.

Examples include all Hardy fields that contain R, and all ordered differential sub-
fields of T that contain R. In particular, T is an H-field, but T has further basic
elementary properties that do not follow from this: its derivation is small, and it
is Liouville closed. An H-field K is said to have small derivation if it satisfies
f ≺ 1 ⇒ f ′ ≺ 1, and to be Liouville closed if it is real closed and for every f ∈ K
there are g, h ∈ K, h ̸= 0, such that g′ = f and h′ = hf . Each Hardy field H has
small derivation, and Li(H) is Liouville closed.

Inspired by the familiar characterization of real closed ordered fields via the
intermediate value property for one-variable polynomial functions, we say that
an H-field K has the Intermediate Value Property (IVP) if for all differential
polynomials P (Y ) ∈ K{Y } and all f < g in K with P (f) < 0 < P (g) there is
some y ∈ K with f < y < g and P (y) = 0. Van der Hoeven showed that a certain
variant of T, namely its H-subfield of gridbased transseries, has IVP; see [51].
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Theorem 2.2. The L-theory of T is completely axiomatized by the requirements:
being an H-field with small derivation; being Liouville closed; and having IVP.

Actually, IVP is a bit of an afterthought: in [4] we use other (but equivalent)
axioms that will be detailed below. We mention the above variant for expository
reasons and since it explains why Conjecture A from Section 1 yields that all
maximal Hardy fields are elementarily equivalent. Let us define an H-closed field
to be an H-field that is Liouville closed and has the IVP. All H-fields embed into
H-closed fields, and the latter are exactly the existentially closed H-fields. Thus:

Theorem 2.3. The theory of H-closed fields is model complete.

Here is an unexpected byproduct of our proof of this theorem:

Corollary 2.4. H-closed fields have no proper differentially algebraic H-field ex-
tensions with the same constant field.

IVP refers to the ordering, but the valuation given by ≼ is more robust and more
useful. IVP comes from two more fundamental properties: ω-freeness and new-
tonianity (a differential version of henselianity). These concepts make sense for
any differential field with a suitable dominance relation ≼ in which the equivalence
f ≼ g ⇐⇒ f ′ ≼ g′ holds for 0 ̸= f, g ≺ 1.

To give an inkling of these somewhat technical notions, let K be an H-field
and assume that for every ϕ ∈ K× for which the derivation ϕ∂ is small (that is,
ϕ∂O ⊆ O), there exists ϕ1 ≺ ϕ in K× such that ϕ1∂ is small. (This assumption is
satisfied for Liouville closedH-fields.) Let P (Y ) ∈ K{Y }̸=. We wish to understand
how the function y 7→ P (y) behaves for y ≼ 1. It turns out that this function
only reveals its true colors after rewriting P in terms of a derivation ϕ∂ with
suitable ϕ ∈ K×.

Indeed, this rewritten P has the form a · (N + R) with a ∈ K× and where
N(Y ) ∈ C{Y } ̸= is independent of ϕ for sufficiently small ϕ ∈ K× with respect
to ≼, subject to ϕ∂ being small, and where the coefficients of R(Y ) are infinitesimal.
We call N the Newton polynomial of P . Now K is said to be ω-free if for all P as
above its Newton polynomial has the form A(Y ) · (Y ′)n for some A ∈ C[Y ] and
some n. We say that K is newtonian if for all P as above with N(P ) of degree 1
we have P (y) = 0 for some y ∈ O. For H-fields, IVP =⇒ ω-free and newtonian;
for Liouville closed H-fields, the converse also holds.

Our main result in [4] refines Theorem 2.3 by giving quantifier elimination for
the theory of H-closed fields in the language L above augmented by an additional
unary function symbol ι and two extra unary predicates Λ and Ω. These have
defining axioms in terms of the other primitives. Their interpretations in T are as
follows: ι(f) = 1/f if f ̸= 0, ι(0) = 0, and with ℓ0 := x, ℓn+1 := log ℓn,

Λ(f) ⇐⇒ f < λn := 1
ℓ0

+ 1
ℓ0ℓ1

+ · · ·+ 1
ℓ0···ℓn for some n,

Ω(f) ⇐⇒ f < ωn := 1
(ℓ0)2

+ 1
(ℓ0ℓ1)2

+ · · ·+ 1
(ℓ0···ℓn)2 for some n.

Thus Λ and Ω define downward closed subsets of T. The sequence (ωn) also appears
in classical non-oscillation theorems for second-order linear differential equations.
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The ω-freeness of T reflects the fact that (ωn) has no pseudolimit in the valued
field T. Here are some applications of this quantifier elimination:

Corollary 2.5.

(1) “O-minimality at infinity”: if S ⊆ T is definable, then for some f ∈ T we
either have g ∈ S for all g > f in T or g /∈ S for all g > f in T.

(2) All subsets of Rn definable in T are semialgebraic.

Corollaries 2.4 and 2.5 are the departure point for developing a notion of (differ-
ential-algebraic) dimension for definable sets in T; see [5].

The results reported on above make us confident that the category of H-fields
is the right setting for asymptotic differential algebra. To solidify this impression
we return to the motivating examples—Hardy fields, ordered differential fields of
transseries, and surreal numbers—and consider how they are related. We start
with Hardy fields, which historically came first.

3 H-Field Elements as Germs

After Theorem 1.2 and Boshernitzan [19, 21], the first substantial “Hardy field”
result on more general differential equations was obtained by van der Hoeven [53].
In what follows we use “d-algebraic” to mean “differentially algebraic” and “d-
transcendental” to mean “differentially transcendental”.

Theorem 3.1. The differential subfield Tda of T whose elements are the d-alge-
braic transseries is isomorphic over R to a Hardy field.

The proof of this theorem is in the spirit of model theory, iteratively extending by
a single d-algebraic transseries. The most difficult case (immediate extensions) is
handled through careful construction of suitable solutions as convergent series of
iterated integrals. We are currently trying to generalize Theorem 3.1 to d-algebraic
extensions of arbitrary Hardy fields. Here is our plan:

Theorem 3.2. Every Hardy field has an ω-free Hardy field extension.

Theorem 3.3 (in progress). Every ω-free Hardy field has a newtonian d-algebraic
Hardy field extension.

These two theorems, when established, imply that all maximal Hardy fields are
H-closed. Hence (by Theorem 2.2) they will all be elementarily equivalent to T,
and since H-closed fields have the IVP, Conjecture A from Section 1 will follow.

In order to get an even better grasp on the structure of maximal Hardy fields,
we also need to understand how to adjoin d-transcendental germs to Hardy fields.
An example of this situation is given by d-transcendental series such as

∑
n n!!x

−n.

By an old result by É. Borel [16] every formal power series
∑

n ant
n over R is the

Taylor series at 0 of a C∞-function f on R; then
∑

n anx
−n is an asymptotic

expansion of the function f(x−1) at +∞, and it is easy to show that if this series
is d-transcendental, then the germ at +∞ of this function does generate a Hardy
field. Here is a far-reaching generalization:
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Theorem 3.4 (in progress). Every pseudocauchy sequence (yn) in a Hardy field H
has a pseudolimit in some Hardy field extension of H.

The proof of this for H-closed H ⊇ R relies heavily on results from [4], using also
intricate glueing techniques. For extensions that increase the value group, we need
very different constructions. If succesful, these constructions in combination with
Theorem 3.4 will lead to a proof of Conjecture B from Section 1:

Theorem 3.5 (in progress). For any countable subsets A < B of a Hardy field H
there exists an element y in a Hardy field extension of H with A < y < B.

The case H ⊆ C∞, B = ∅ was already dealt with by Sjödin [71]. The various “the-
orems in progress” together with results from [4] imply that any maximal Hardy
fields H1 and H2 are back-and-forth equivalent, which is considerably stronger
than H1 and H2 being elementarily equivalent. It implies for example

Under CH all maximal Hardy fields are isomorphic.

This would be the Hardy field analogue of Corollary 1.1. (In contrast to maximal
Hausdorff fields, however, maximal Hardy fields cannot be ℵ1-saturated, since their
constant field is R.) When we submitted this manuscript, we had finished the proof
of Theorem 3.2, and also the proof of Theorem 3.4 in the relevant H-closed case.

Related problems

Some authors (such as [71]) prefer to consider only Hardy fields contained in C∞.
Theorem 3.2 and our partial result for Theorem 3.4 go through in the C∞-setting.
All the above “theorems in progress” are plausible in that setting.

What about real analytic Hardy fields (Hardy fields contained in the subring Cω

of C consisting of all real analytic germs)? In that setting Theorem 3.2 goes
through. Any d-algebraic Hardy field extension of a real analytic Hardy field is
itself real analytic, and so Theorem 3.3 (in progress) will hold in that setting as
well. However, our glueing technique employed in the proof of Theorem 3.4 doesn’t
work there.

Kneser [54] obtained a real analytic solution E at infinity to the functional
equation E(x + 1) = expE(x). It grows faster than any finite iteration of the
exponential function, and generates a Hardy field. See Boshernitzan [20] for results
of this kind, and a proof that Theorem 3.5 holds for B = ∅ in the real analytic
setting. So in this context we also have an abundant supply of Hardy fields.

Similar issues arise for germs of quasi-analytic and “cohesive” functions [32].
These classes of functions are somewhat more flexible than the class of real analytic
functions. For instance, the series x−1 + e−x +e− ex + · · · converges uniformly
for x > 1 to a cohesive function that is not real analytic.

Accelero-summation

The definition of a Hardy field ensures that the differential field operations never
introduce oscillatory behavior. Does this behavior persist for operations such as
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composition or various integral transforms? In this connection we note that the
Hardy field H(R̃) associated to an o-minimal expansion R̃ of the field of reals is
always closed under composition (see [61]).

To illustrate the problem with composition, let α be a real number > 1 and let
y0 ∈ C2 be a solution to (1.2). Then z0 := y0(αx) satisfies the equation

α−2z′′ + z = eα
2x2

. (3.1)

It can be shown that {y0 + sinx, z0} generates a Hardy field, but it is clear that
no Hardy field containing both y0 + sinx and z0 can be closed under composition.

Adjoining solutions to (1.2) and (3.1) “one by one” as in the proof of The-
orem 3.1 will not prevent the resulting Hardy fields to contain both y0 + sinx
and z0. In order to obtain closure under composition we therefore need an alter-
native device. Écalle’s theory of accelero-summation [32] is much more than that.
Vastly extending Borel’s summation method for divergent series [17], it associates
to each accelero-summable transseries an analyzable function. In this way many
non-oscillating real-valued functions that arise naturally (e.g., as solutions of al-
gebraic differential equations) can be represented faithfully by transseries. This
leads us to conjecture an improvement on Theorem 3.1:

Conjecture 3.6. Consider the real accelero-summation process where we systemat-
ically use the organic average whenever we encounter singularities on the positive
real axis. This yields a composition-preserving H-field isomorphism from Tda onto
a Hardy field contained in Cω.

There is little doubt that this holds. The main difficulty here is that a full proof
will involve many tools forged by Écalle in connection with accelero-summation,
such as resurgent functions, well-behaved averages, cohesive functions, etc., with
some of these tools requiring further elaboration; see also [25, 60].

The current theory of accelero-summation only sums transseries with coeffi-
cients in R. Thus it is not clear how to generalize Conjecture 3.6 in the direction
of Theorem 3.3. Such a generalization might require introducing transseries over a
Hardy field H with suitable additional structure, as well as a corresponding theory
of accelero-summation over H for such transseries. In particular, elements of H
should be accelero-summable over H in this theory, by construction.

4 H-Field Elements as Generalized Transseries

Next we discuss when H-fields embed into differential fields of formal series. A
classical embedding theorem of this type is due to Krull [56]: any valued field has a
spherically complete immediate extension. As a consequence, any real closed field
containing R is isomorphic over R to a subfield of a Hahn field R[[M]] with divisible
monomial group M, such that the subfield contains R(M). We recently proved an
analogue of this theorem for valued differential fields [7]. Here a valued differential
field is a valued field of equicharacteristic zero equipped with a derivation that is
continuous with respect to the valuation topology.

12



Theorem 4.1. Every valued differential field has a spherically complete immediate
extension.

For a real closed H-field K with constant field C this theorem gives a Hahn field
K̂ = C[[M]] with a derivation ∂ on K̂ making it an H-field with constant field C

such that K is isomorphic over C to an H-subfield of K̂ that contains C(M). A
shortcoming of this result is that there is no guarantee that ∂ preserves infinite
summation. In contrast, the derivation of T is strong (does preserve infinite sum-
mation). An abstract framework for even more general notions of transseries is
due to van der Hoeven and his former student Schmeling [69].

Fields of transseries

To explain this, consider an (ordered) Hahn field R[[M]] with a partially defined
function exp obeying the usual rules of exponentiation; see [52, Section 4.1] for
details. In particular, exp has a partially defined inverse function log. We say
that R[[M]] is a field of transseries if the following conditions hold:

(T1) the domain of the function log is R[[M]]>0;

(T2) for each m ∈ M and n ∈ supp logm we have n ≻ 1;

(T3) log(1 + ε) = ε− 1
2ε

2 + 1
3ε

3 + · · · for all ε ≺ 1 in R[[M]]; and

(T4) for every sequence (mn) in M with mn+1 ∈ supp logmn for all n, there exists
an index n0 such that for all n ⩾ n0 and all n ∈ supp logmn, we have
n ≽ mn+1 and (logmn)mn+1 = ±1.

The first three axioms record basic facts from the standard construction of trans-
series. The fourth axiom is more intricate and puts limits on the kind of “nested
transseries” that are allowed. Nested transseries such as

y =
√
x+ e

√
log x+e

√
log log x+e···

(4.1)

are naturally encountered as solutions of functional equations, in this case

y(x) =
√
x+ ey(log x) . (4.2)

Axiom (T4) does allow nested transseries as in (4.1), but excludes series like

u =
√
x+ e

√
log x+e

√
log log x+e··· + log log log x + log log x + log x,

which solves the functional equation u(x) =
√
x + eu(log x) + log x; in some sense,

u is a perturbation of the solution y in (4.1) to the equation (4.2).
Schmeling’s thesis [69] shows how to extend a given field of transseries K =

R[[M]] with new exponentials and nested transseries like (4.1), and if K also comes
with a strong derivation, how to extend this derivation as well. Again, (T4) is
crucial for this task: naive termwise differentiation leads to a huge infinite sum that
turns out to be summable by (T4). A transserial derivation is a strong derivation
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on K such that nested transseries are differentiated in this way. Such a transserial
derivation is uniquely determined by its values on the log-atomic elements: those
λ ∈ K for which λ, log λ, log log λ, . . . are all transmonomials in M.

We can now state a transserial analogue of Krull’s theorem. This analogue is
a consequence of Theorem 5.3 below, proved in [6].

Theorem 4.2. Every H-field with small derivation and constant field R can be
embedded over R into a field of transseries with transserial derivation.

For simplicity, we restricted ourselves to transseries over R. The theory naturally
generalizes to transseries over ordered exponential fields [52, 69] and it should be
possible to extend Theorem 4.2 likewise.

Hyperseries

Besides derivations, one can also define a notion of composition for generalized
transseries [49, 69]. Whereas certain functional equations such as (4.2) can still
be solved using nested transseries, solving the equation E(x + 1) = expE(x)
where E(x) is the unknown, requires extending T to a field of transseries with com-
position containing an element E(x) = expω x > T, called the iterator of expx. Its
compositional inverse logω x should then satisfy logω log x = (logω x)−1, providing
us with a primitive for (x log x log2 x · · · )−1:

logω x =

∫
dx

x log x log2 x · · ·
.

It is convenient to start with iterated logarithms rather than iterated exponentials,
and to introduce transfinite iterators logα x recursively using

logα x =

∫
dx∏

β<α logβ x
(α any ordinal).

By Écalle [32] the iterators logα x with α < ωω and their compositional inver-
ses expα x suffice to resolve all pure composition equations of the form

f◦k1 ◦ ϕ1 ◦ · · · ◦ f◦kn ◦ ϕn = x where ϕ1, . . . , ϕn ∈ T and k1, . . . , kn ∈ N.

The resolution of more complicated functional equations involving differentiation
and composition requires the introduction of fields of hyperseries: besides exponen-
tials and logarithms, hyperseries are allowed to contain iterators expα x and logα x
of any strength α. For α < ωω, the necessary constructions were carried out in [69].
The ultimate objective is to construct a field Hy of hyperseries as a proper class,
similar to the field of surreal numbers, endow it with its canonical derivation and
composition, and establish the following:

Conjecture 4.3. Let Φ be any partial function from Hy into itself, constructed
from elements in Hy, using the field operations, differentiation and composition.
Let f < g be hyperseries in Hy such that Φ is defined on the closed interval [f, g]
and Φ(f)Φ(g) < 0. Then for some y ∈ Hy we have Φ(y) = 0 and f < y < g.

One might then also consider H-fields with an additional composition operator
and try to prove that these structures can always be embedded into Hy.
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5 Growth Rates as Numbers

Turning to surreal numbers, how do they fit into asymptotic differential algebra?

The H-field of surreal numbers

The totality No of surreal numbers is not a set but a proper class: a surreal a ∈
No is uniquely represented by a transfinite sign sequence (aλ)λ<ℓ(a) ∈ {−,+}ℓ(a)
where ℓ(a) is an ordinal, called the length of a; a surreal b is said to be simpler
than a (notation: b <s a) if the sign sequence of b is a proper initial segment
of that of a. Besides the (partial) ordering <s, No also carries a natural (total)
lexicographic ordering <. For any sets L < R of surreals there is a unique simplest
surreal a with L < a < R; this a is denoted by {L |R} and called the simplest or
earliest surreal between L and R. In particular, a = {La |Ra} for any a ∈ No,
where La := {b <s a : b < a} and Ra = {b <s a : b > a}. We let aL range over
elements of La, and aR over elements of Ra.

A rather magical property of surreal numbers is that various operations have
natural inductive definitions. For instance, we have ring operations given by

a+ b :=
{
aL + b, a+ bL

∣∣ aR + b, a+ bR
}

ab :=
{
aLb+ abL − aLbL, aRb+ abR − aRbR

∣∣
aLb+ abR − aLbR, aRb+ abL − aRbL

}
.

Remarkably, these operations make No into a real closed field with < as its field
ordering and with R uniquely embedded as an initial subfield. (A set A ⊆ No is
said to be initial if for all a ∈ A all b <s a are also in A.)

Can we use such magical recursions to introduce other reasonable operations?
Exponentiation was dealt with by Gonshor [40]. But it remained long open how to
define a “good” derivation ∂ on No such that ∂(ω) = 1. (An ordinal α is identified
with the surreal of length α whose sign sequence has just plus signs.) A positive
answer was given recently by Berarducci and Mantova [8]. Their construction goes
in two parts. They first analyze No as an exponential field, and show that it is
basically a field of transseries in the sense of Section 4. A transserial derivation
on No is determined by its values at log-atomic elements. There is some flexibility
here, but [8] presents a “simplest” way to choose these derivatives. Most important,
that choice indeed leads to a derivation ∂BM on No. In addition:

Theorem 5.1 (Berarducci-Mantova [8]). The derivation ∂BM is transserial and
makes No a Liouville closed H-field with constant field R.

This result was further strengthened in [6], using key results from [4]:

Theorem 5.2. No with the derivation ∂BM is an H-closed field.

Embedding H-fields into No

In the remainder of this section we consider No as equipped with the deriva-
tion ∂BM, although Theorems 5.1 and 5.2 and much of what follows hold for other
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transserial derivations. Returning to our main topic of embedding H-fields into
specific H-fields such as No, we also proved the following in [6]:

Theorem 5.3. Every H-field with small derivation and constant field R can be
embedded as an ordered differential field into No.

How “nice” can we take the embeddings in Theorem 5.3? For instance, when can
we arrange the image of the embedding to be initial? The image of the natural
embedding T → No is indeed initial, as has been shown by Elliot Kaplan.

For further discussion it is convenient to introduce, given an ordinal α, the set
No(α) :=

{
a ∈ No : ℓ(a) < α

}
. It turns out that for uncountable cardinals κ,

No(κ) is closed under the differential field operations, and in [6] we also show:

Theorem 5.4. The H-subfield No(κ) of No is an elementary submodel of No.

In particular, the H-field No(ω1) of surreal numbers of countable length is an ele-
mentary submodel of No. It has the η1-property: for any countable subsets A < B
of No(ω1) there exists y ∈ No(ω1) with A < y < B. This fact and the various
“theorems in progress” from Section 3 imply:

Under CH all maximal Hardy fields are isomorphic to No(ω1).

This would be an analogue of Ehrlich’s observation about maximal Hausdorff fields.

Hyperseries as numbers and vice versa

The similarities in the constructions of the field of hyperseries Hy and the field of
surreal numbers No led van der Hoeven [52, p. 6] to the following:

Conjecture 5.5. There is a natural isomorphism between Hy and No that asso-
ciates to any hyperseries f(x) ∈ Hy its value f(ω) ∈ No.

The problem is to make sense of the value of a hyperseries at ω. Thanks to
Gonshor’s exponential function, it is clear how to evaluate ordinary transseries
at ω. The difficulties start as soon as we wish to represent surreal numbers that
are not of the form f(ω) with f(x) an ordinary transseries. That is where the
iterators expω and logω come into play:

expω ω := {ω, expω, exp2 ω, . . . | }
logω ω := {R | . . . , log2 ω, logω, ω}

exp1/2 ω := expω
(
logω

(
ω + 1

2

))
:=

{
ω2, exp log2 ω, exp2 log

2
2 ω, . . .

∣∣∣ . . . , exp2 √logω, exp
√
ω
}

The intuition behind Conjecture 5.5 is that all “holes in No can be filled” using
suitable nested hyperseries and suitable iterators of exp and log. It reconciles
two a priori very different types of infinities: on the one hand, we have growth
orders corresponding to smooth functional behavior; on the other side, we have
numbers. Being able to switch between functions (more precisely: formal series
acting as functions) and numbers, we may also transport any available structure
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in both directions: we immediately obtain a canonical derivation ∂c (with constant
field R) and composition ◦c on No, as well as a notion of simplicity on Hy.

Does the derivation ∂BM coincide with the canonical derivation ∂c induced by
the conjectured isomorphism? A key observation is that any derivation ∂ on No
with a distinguished right inverse ∂

−1 naturally gives rise to a definition of logω:

logω a := ∂
−1(∂a log′ω a) where

log′ω a := 1

/∏
n

logn a (a ∈ No, a > R).

(For a family (ai) of positive surreals,
∏

i ai := exp
∑

i log ai if
∑

i log ai is defined.)
Since ∂BM is transserial, it does admit a distinguished right inverse ∂

−1
BM. According

to [8, Remark 6.8], ∂BMλ = 1/ log′ω λ for log-atomic λ with λ > expn ω for all n.
For λ = expω ω and setting exp′ω(a) :=

∏
n logn expω a for a ∈ No>0, this yields

∂BMλ = exp′ω ω, which is also the value we expect for ∂cλ. However, for λ =
expω(expω ω) we get ∂BMλ = exp′ω(expω ω) whereas we expect ∂cλ = (exp′ω ω) ·
exp′ω(expω ω). Thus the “simplest” derivation ∂BM makingNo anH-field probably
does not coincide with the ultimately “correct” derivation ∂c on No. Berarducci
and Mantova [9] use similar considerations to conclude that ∂BM is incompatible
with any reasonable notion of composition for surreal numbers.

The surreal numbers from a model theoretic perspective

We conclude with speculations motivated by the fact that various operations de-
fined by “surreal” recursions have a nice model theory. Examples: (No;⩽,+, · )
is a model of the theory of real closed fields; (No;⩽,+, · , exp) is a model of the
theory of Rexp; and (No;⩽,+, · , ∂BM) is a model of the theory of H-closed fields.
Each of these theories is model complete in a natural language. Is there a model
theoretic reason that explains why this works so well?

Let us look at this in connection with the last example. Our aim is to define a
derivation ∂ on No making it an H-field. Let a ∈ No be given for which we wish
to define ∂a, and assume that ∂b has been defined for all b ∈ La ∪ Ra. Let ∆a be
the class of all surreals b for which there exists a derivation ∂ on No with ∂a = b
and taking the prescribed values on La∪Ra. Assembling all conditions that should
be satisfied by ∂a, it is not hard to see that there exist sets L,R ⊆ No such that
∆a = {b ∈ No : L < b < R}. We are left with two main questions: When do we
have L < R, thereby allowing us to define ∂a = {L |R}? Does this lead to a
global definition of ∂ on No making it an H-closed field? It might be of interest to
isolate reasonable model theoretic conditions that imply the success of this type of
construction. If the above construction does work, yet another question is whether
the resulting derivation coincides with ∂BM.
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[17] É. Borel, Mémoire sur les séries divergentes, Ann. Sci. École Norm. Sup. 16 (1899),
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[36] P. Erdős, L. Gillman, M. Henriksen, An isomorphism theorem for real-closed fields,

Ann. of Math. (2) 61 (1955), 542–554.
[37] J. Esterle, Solution d’un problème d’Erdös, Gillman et Henriksen et application à
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