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It is well known that the operation of integration may lead to divergent formal
expansions like

∫

ee
z

= ee
z

(e−z + e−2z + 2 e−3z + 6 e−4z + � ) as soon as one
leaves the area of formal power series for the area of formal transseries. On
the other hand, from the analytic point of view, the operation of integra-
tion is usually “regularizing”, in the sense that it improves convergence rather
than destroying it. For this reason, it is natural to consider so called “integral
transseries” which are similar to usual transseries except that we are allowed
to recursively keep integrals in the expansions. Integral transseries come with
a natural notion of “combinatorial convergence”, which is preserved under the
usual operations on transseries, as well as integration. In this paper, we lay the
formal foundations for this calculus.

1. Introduction

A natural way to solve a differential equation like

f ′= e−2ez

+ f 2 (1.1)

for large z≻ 1 is to rewrite it in integral form

f =
∫

e−2ez

+
∫

f 2 (1.2)

and recursively replace the left-hand side by the right-hand side. This yields a
convergent expansion for f as an “integral transseries”

f =
∫

e−2ez

+
∫ (∫

e−2ez)2
+2
(∫

e−2ez)
(

∫ (∫

e−2ez)2
)

+� . (1.3)

More generally such infinite sums can occur recursively in the exponents. The aim
of this paper is to develop a systematic calculus for integral transseries.

We will work in the context of complex grid-based transseries [vdH01], which
is briefly recalled in section 2. An “integral transseries” is an infinite linear com-
bination of “integral transmonomials”, which are finite expressions formed from
certain “elementary monomials” using multiplication and integration. The ele-
mentary monomials are exponentials of integrals of “simpler” integral transseries.
The representation of a complex transseries by an integral transseries is far from
being unique, which provides a lot of flexibility for the computation with inte-
gral transseries.
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A major aim of the theory is to lift the usual operations on complex transseries,
such as differentiation, truncation, division, etc., to their representations by integral
transseries. Moreover, we want these operations to preserve “combinatorial conver-
gence”. For instance, even though the transseries represented by f in (1.3) is not
convergent, the expansion is said to be combinatorially convergent as an integral
transseries. Indeed, the main reason of being for integral transseries is that they
allow us to maintain a formal notion of convergence during our computations, there
where the represented transseries themselves are divergent.

Before introducing integral transseries in their full generality, we first introduce
the simpler notion of integral series in sections 3, 4 and 5. A first technical difficulty is
to impose suitable conditions on the supports of integral series. Since we work in the
grid-based context, we need a suitable analogue of the grid-based finiteness property.
This involves two ingredients: finite generation (cf. regular language specifications
in section 5.1) and an asymptotic descent condition (cf. the cycle condition in sec-
tion 5.2), which states roughly speaking that later terms in the expansion are smaller
and smaller from an asymptotic point of view. Moreover, because integral monomials
represent series and not merely monomials, we need this descent condition to be
sufficiently uniform. This motivates the introduction of the span of an integral series
in section 4.3 and frameworks in section 4.4. These notions allow to obtain quick
and rough bounds for the support of the transseries represented by an integral series
or monomial.

In order to lift computations with classical complex transseries to integral
transseries, the key step is a mechanism for rewriting integral transseries in a form
with a clear asymptotically dominant part. For instance, in order to compute a
fraction

1

(
∫

eez
)2− 4

∫ ∫

e2ez

it is necessary to first expand the denominator in such a way that it can be inverted.
Using integration by parts, one has

(
∫

eez

)2 =
e2ez

e2z
+

2 e2ez

e3z
+

4 eez

ez

∫ eez

e2z
+
(

∫ eez

ez

)2

(1.4)

4
∫ ∫

e2ez

=
e2ez

e2z
+

3 e2ez

2 e3z
+
∫ ∫ 11 e2ez

e2z
−
∫ ∫ 27 e2ez

2 e3z
(1.5)

whence

(
∫

eez

)2− 4
∫ ∫

e2ez

=
e2ez

2 e3z
(1 + ε)

ε =
8 e2z

eez

∫ eez

e2z
+

2 e3z

e2ez

(

∫ eez

ez

)2

−
22 e3z

e2ez

∫ ∫ e2ez

e2z
+

27 e3z

e2ez

∫ ∫

e2ez

e3z

Now 1 + ε admits a natural “integral transseries” inverse 1 − ε + ε2 + � . A
more systematic procedure for obtaining expansions like (1.4) and (1.5) will be the
object of sections 7 and 8. In section 6, we prepare this material by introducing the
integral transseries analogue of transbases and differentiation. Putting all techniques
together, we finally construct the field of integral transseries in section 9.
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Integral transseries can be seen as a natural generalization of Écalle’s arborified
moulds [EV04]. One advantage of the approach in this paper is that a systematic
calculus for integral transseries avoids the process of “arborification”. Even though
the latter technique also has a large degree of generality, our technique works in a
context as general as that of complex transseries, for which a satisfactory theory of
accelero-summation is not even known yet (but under development). Furthermore,
with more work, we think that our technique may be generalized so as to include
other types of operators, like infinite summation, and parameterized transseries.
Unfortunately, we also have to pay the price of a certain technicity in sections 7
and 8. It remains an interesting question how far the ideas in this paper may be
further simplified. A few ideas in this direction will be mentioned in the conclusion.
We plan to further develop the topic of integral transseries and its link with the
theory of accelero-summation in a forthcoming paper.

2. Complex transseries

2.1. Construction of complex transseries

The field of complex grid-based transseries has been constructed and studied
in [vdH01]. Below we will quickly present a classical variant of the construction.
We first endow C with the following total ordering:

x+ y i6x′+ y ′ i � x<x′∨ (x= x′∧ y6 y ′).

This givesC the structure of a totally orderedR-vector space, although the ordering
is not compatible with the multiplication.

Remark 2.1. In fact, it is possible to consider more general orderings on C and
vary the orderings during the construction [vdH01]. However, in this paper, we will
assume the above ordering, for simplicity.

Now consider the totally ordered monomial groups En and corresponding fields
En =C[[En]], which are inductively defined by

E0 = 1= exp 0

En = (expC z)⊕ expEn−1
↑

We call

E=E0∪E1∪�
the field of purely exponential complex transseries. Setting

E= E0∪E1∪� ,
we have E = C[[E]], because of the grid-based property. For each n ∈ N, let
E ◦ logn = C[[E ◦ logn]] denote the field obtained from E when replacing z by

logn z= log �n× log z. We call

T=E∪E ◦ log∪E ◦ log2∪�
the field of complex transseries. Setting

T=E∪E ◦ log∪E ◦ log2∪� ,
we again have T=C[[T]], because of the grid-based property.
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Remark 2.2. In the above construction, we essentially close the field C[[zC]] under
exponentiation and next under logarithm. In [vdH01], we proceed exactly the other
way around.

2.2. Differentiation and integration

We recursively define a strong derivation on En, by setting

(ef)′= f ′ ef

for monomials ef ∈En and extending by strong linearity. Next, we set

(f ◦ logn)
′ =

1

z log z � logl−1 z
f ′ ◦ logn

for f ∈E◦ logn. It is classical to verify that ′ is a strong derivation which satisfies

f ≺ g ∧ g � 1 � f ′≺ g ′. (2.1)

For all f ∈T�, the logarithmic derivative of f is denoted by f † = f ′/f .
Using general strongly linear algebra, it follows from (2.1) that ′ admits a dis-

tinguished strong right inverse
∫

, i.e. (
∫

f)==0 for all f . More specifically, one has

∫

m =

(

1

m†
+

m††

(m†)2
+

2m††−m††′

(m†)3
+� )m (2.2)

for all transmonomials m ∈ E \ {1}. It can also be checked that C[[En \ {1}]] and
C[z][[En]] are stable under integration for all n (and similarly for C[[E \ {1}]] and
C[z][[E]]). In particular, we have

En = exp
∫

En−1
2

in the inductive construction of E.

2.3. Flatness relations

In this paper, the flatness relations � ,  , D and C are defined in an R-expo-linear
way:

m� n � ∃µ∈R� :∀λ∈R�:mλ≺ nµ

m n � ∀λ∈R�:∃µ∈R�:mλ4 nµ

mD n � m n m

mC n � m

n
� m

For instance, z � eiz � ez and e(1+i)z D ez. A subset S of T is said to be flat if
m∈S∧ n m⇒ n∈S for all m, n∈T. We denote by ♭T the set of all flat subsets.
We have ∅, {1}∈ ♭T and ♭T is stable under arbitrary intersections.

Remark 2.3. The above definitions can be generalized to the case of more general
strong algebras C[[M]], where M is a partially ordered monomial group which
admits powers in a totally ordered ring R with 1> 0. In that case, we set

m� n � ∃µ∈R� :∀λ∈R�: mλ≺ nµ

m n � ∀λ∈R�:∃µ∈R�: mλ4 nµ
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The definitions remain valid if M is only a partially ordered monomial monoid which
can be embedded into a partially ordered group.

Given w ∈M, we define the flattened dominance and neglection relations ≺w,
4w, ≺w

∗ and 4w
∗ by

m≺wn ⇔ ∀v� w:m≺ v n

m4wn ⇔ ∃v� w:m4 v n

m≺w
∗ n ⇔ ∀v w:m≺ v n

m4w
∗ n ⇔ ∃v w:m4 v n

We also define the derived relations ≍w, ∼w, ≍w
∗ and ∼w

∗ by

m≍wn ⇔ m4wn4wm

m∼wn ⇔ m− n≺wm

m≍w
∗ n ⇔ m4w

∗ n4w
∗ m

m∼w
∗ n ⇔ m− n≺w

∗ m

Notice that m≍wn⇔m/n� w and m≍w
∗ n⇔m/n w

The differentiation ′ and the distinguished integration
∫

on T satisfy

suppm′ ≍m†
∗ m

supp
∫

m ≍m†
∗ m

for all m ∈ T \ {1} (the first relation is easily checked and the second one follows
from relation follows from (2.2)). We say that ′ and

∫

are flat .

Remark 2.4. In [vdH01], the flatness relations were defined in a C-expo-linear way
using

m� n ⇔ logm≺ log n

m n ⇔ logm4 log n

Equivalently, we may define them using

m� n ⇔ m†≺ n†

m n ⇔ m†4 n†

When replacing ≺ and 4 by the relations ≺∗ and 4∗ defined by

f ≺∗ g ⇔ ∃µ∈R�: ∀λ∈R� :λ f < µ g

f 4∗ g ⇔ ∀λ∈R�:∃µ∈R� :λ f 6 µ g

it is also possible to recover the R-expo-linear case.

2.4. Transbases

Classically, a transbasis is a tuple B = (b1,� , bn) of transseries with b1� � � bn

and such that

TB1. b1 = expl z for some l∈Z.

TB2. log bi∈C[[b1;� ; bi−1]] for all i > 1.
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The integer l − 1 is called the level of the transbasis and B is said to be a plane

transbasis if l = 1. We recall that the flatness relations � and  were defined in
an R-expo-linear way, whence C[[b1;� ;bi−1]]=C[[b1

R;� ;bi−1
R ]]. We denote by BR

the set of power products b1
α1 � bn

αn with α1, � , αn ∈R. The level of a transseries
f ∈T is the highest l such that f ∈E◦ expl+1.

In this paper, it will be convenient to consider a variant of the concept of trans-
bases. Given l∈Z, consider the differentiation

∂l =
1

(expl z)′
∂.

A differential transbasis of level l is a tuple B = (b1, � , bn) of transseries with
b1� � � bn and such that

DTB.
∂l bi

bi
∈C[[b1;� ; bi−1]] for all i.

We will sometimes denote b0= explz. We notice that C[[b1;� ;bi]] is stable under ∂l

for all i∈{1,� , l} and it has been proved in [vdH01] that C[b0][[b1;� ;bi]] is stable
under ∂l

−1.
In what follows, all transbasis will be considered to be differential. The following

incomplete transbasis theorem is proved in a similar way as the usual theorem for
non-differential transbases [vdH97]:

Theorem 2.5. (Incomplete transbasis theorem) Let B be a transbasis of

level l and f ∈T a transseries of level l ′. Then there exists a transbasis B̃ of level

min (l, l ′) such that f ∈C[[B̃R
]].

3. Truncation-closed representation modules

3.1. Representation modules

Let C be a constant field, M a monomial set and let C[[M]] be a strong C-module of
formal power series. Consider a set I and a strong C-module C[[I]] which admits I

as a strong basis. We will call elements of I monomials, even though we do not
necessarily have an ordering 4 on I. Assume that we have a strongly linear mapping

ˆ:C[[I]]→C[[M]],

such that M̂ is regular for all i∈I. Then we call C[[I]] a representation module and
we say that f represents f̂ for each f ∈ C[[I]]. We denote by ≡ the equivalence
relation on C [[I]] defined by f≡ g⇔ f̂ = ĝ . If M and I are monoids and ˆ preserves
multiplication, then we call C[[I]] a representation algebra.

Example 3.1. Given a set I and a mapping ˆ:I→C[[M]] such that M̂ is regular for
all i∈I, let C[[I]] be the set of all mappings f :I→C such that (fi M̂ )i∈I is a summable
family in C[[M]]. A family F ∈F (C[[I]]) is said to be summable if (fi M̂ )(f ,i)∈F×I is
a summable family in C[[M]], in which case we set

∑

F : i� ∑

f∈F

fi.
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The strong summation is well-defined, since
∑

f∈F
fi M̂ is summable for all i∈I andM̂ � 0. The mapping ˆ extends to C[[I]] by strong linearity, giving C[[I]] the structure

of a representation module. Any other representation module with the same I and
ˆ on I can be embedded into C[[I]].

Example 3.2. Let C[[M]] be the strong C-algebra of grid-based series over a
monomial group M. Let ẑ1, � , ẑk be infinitesimal monomials in M and consider
the formal group Z= z1

Z� zk
Z. We have a natural multiplicative mapping ˆ: Z→M;

z1
α1 � zk

αk � ẑ1
α1 � ẑk

αk, which extends to C[[Z]] according to the previous example.
This gives C[[Z]] the structure of a representation algebra.

An f ∈C[[Z]] is called a Cartesian representation of f̂ . If M is generated by its
infinitesimal elements, then each series in C[[M]] admits a Cartesian representation
for a suitable Z.

Example 3.3. Let C[[I]] be a representation module with representation mapping
ˆ:C[[I]]→C [[M]]. A support function is a mapping supp:I→P(M) with supp i⊇
supp M̂ for all i ∈ I. Given f ∈ C [[I]], we set supp f =

⋃

i∈supp f
supp i, so that

supp f ⊇ supp f̂ .
A family (fi)i∈I ∈ C[[I]]I to be supp-summable if {i ∈ I: m ∈ supp fi} is finite

for all m∈M. The subset C[[I]]supp of C [[I]] of all f such that (fi i)i∈supp f is supp-
summable is a representation module for the supp-summability relation. We have
C[[I]]supp=C [[I]] for the trivial support function with supp i= supp M̂ for all i∈I.

3.2. Truncation operators

Let C [[I]] be a representation module with representation mapping ˆ: C[[I]] →

C[[M]] and a support function as in example 3.3. Given f̂ ∈C[[M]] and S⊆M, we
denote

f̂S=
∑

m∈S

f̂mm.

A strongly linear operator TS: C [[I]]→ C[[I]] is said to be a truncation operator
w.r.t. S, if

TO1. TS◦ TS=TS.

TO2. For all f ∈C[[I]], we have suppTS f ⊆S.

TO3. For all f ∈C[[I]], we have TS f = f̂S.

Two truncation operators TS and TT are said to be compatible if they commute. In
that case, TS∩T=TS◦TT is again a truncation operator.

Let S be a set of subsets of M, which is closed under complements and finite
intersections. Then we say that C[[I]] is S -truncation-closed if for each S ∈ S ,
there exists a truncation operator TS:C[[I]]→C[[I]] for each S∈S , and TS1∩S2

=
TS1
◦ TS2

= TS2
◦ TS1

for all S1,S2 ∈S . In what follows, given m,w ∈M, we will
sometimes use the notations (≻m)= {n∈m: n≻m}, (≻wm)= {n∈m:n≻wm}, etc.

Example 3.4. In the case of Cartesian representations from example 3.2, we may
simply take

TS:C[[Z]] � C[[Z]]

f 	 fŠ
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for all subsets S of M, where

Š= {x∈Z: x̂ ∈S}.

4. Integral series

4.1. Integral series

Let C [[M]] be a strong differential C-algebra for the derivation ′. Assume that ′

admits a regular and distinguished right inverse
∫

. Let X be a monomial group
together with a multiplicative mapping ˆ: X→C[[M]] such that x̂ is regular for all
x∈X. In what follows, we will assume that x̂ ∈M for x∈X.

We denote by I = X∫ the free formal structure generated by X, × and
∫

. In
other words, each element i ∈ I is a tree whose leafs are labeled by elements in X,
whose unary nodes are labeled by

∫

, and whose binary nodes are labeled by ×. For
instance, if X =eRz eRez

, then the following tree is an element of X∫ :

×

×

ez e−3ez

∫

ez eez

We will denote by #i the size of i, i.e. the number of leafs plus the number of integral
nodes of the tree i. We denote by #tot i the total size of i, i.e. when we also count
multiplicative nodes. For instance, the size of the above example tree is 4 and its
total size 6. We denote by lf i the finite subset of X of leafs of i. Elements of I are
called integral monomials . It may sometimes be useful to assume the existence of a
special integral node monomial 1 of size 0.

Each integral monomial i∈I induces a natural element M̂ ∈C [[M]]. Indeed, this
was already assumed if i∈X. If i= j1 j2 resp. i=

∫

j, then we recursively set

j1 j2 = N̂ 1 N̂ 2 resp.
∫

j =
∫ N̂

We also recursively define a non-trivial support function supp by

supp x = supp x̂ (x∈X)

supp j1 j2 = supp j1 supp j2

supp
∫

j =
⋃

m∈supp j

supp
∫

m

We let C[[I]] denote the (non-associative) representation algebra from example 3.3.
Elements of C[[I]] are called integral series and we call C[[I]] a representation

algebra of integral series with underlying monomial group M. For each f ∈C[[I]],
we denote lf f =

⋃

i∈supp f
lf i.

Remark 4.1. The multiplication on C[[M∫ ]] is not associative nor commutative.
In the sequel of this paper, this will not be a problem, since integral transseries are
mainly used for the purpose of representation. Nevertheless, it is possible to define
an associative (and/or commutative) variant of C[[M∫ ]].
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Let ∼ be the equivalence relation on I generated by all relations of the form
(i j) k∼ i (j k). This relation is compatible with the representation mapping ˆ as well
as the size function #. Assuming that 1∈I, it follows that I/∼ has the structure of
a multiplicative monoid and C[[I/∼]] has the structure of an associative represen-
tation algebra. The mapping ˆ:C[[I]]→C[[M]] naturally factors through C[[I/∼]].

4.2. Computations in C[[I]]

The mapping
∫

: I � C[[I]]; i� ∫

i naturally extends by strong linearity to C[[I]].
Indeed, given j∈I there is at most one i∈I with j∈ supp

∫

i={
∫

i}. Similarly, the
multiplication × extends to a strongly bilinear mapping ×:C [[I]]2→C [[I]]. Given
f ∈C [[I]], we denote by ×f and ×f the strongly linear operators on C[[I]] with

×f g = f g

×f g = g f

The operators
∫

, ×k and ×k (for monomials i) admit strongly linear left inverses
∫¯ , ×k and ×k whose action on monomials is given by

∫

i =

{

j if i=
∫

j

0 otherwise

×k i =

{

j if i= k j

0 otherwise

×k i =

{

j if i= j k

0 otherwise

Let f ∈C[[I]] be such that supp f ≺ 1. Then we claim that

(1+ f)−1 = 1− f + f2 +� =1− f + f f − f (f f)+ f (f (f f))−�
is a well-define multiplicative inverse of 1 + f modulo ≡. Indeed, supp (1 + f)−1⊆
(supp f)∗. Moreover, given i∈I and k with i∈ supp fk, we must have k6#tot i.

4.3. The span of an integral series

Consider an exponential transmonomial m∈E with m†≻ z. Then

(ez m ◦ exp)† = ez m† ◦ exp+1D m† ◦ exp

For arbitrary transmonomials m∈T it follows that

(expn
′ zm ◦ expn)

† ◦ lognD (expn+1
′ zm ◦ expn+1)

† ◦ logn+1D �
for a sufficiently large n. For such an n, we define the integral span of m by

ispanm = (exp ◦ d ◦ log)([expn
′ zm ◦ expn]

† ◦ logn).

We have

supp
∫

m ⊆ {n∈T: n≍ispanm
∗ d∫ m}.

Example 4.2. We have ispan ee2z

=ez, ispan ez = z and ispan 1= log z. Notice that

ispan ez (m ◦ exp)= (ispanm) ◦ exp.

Joris van der Hoeven 9



Assume now that M ⊆ T. For integral monomials i ∈ C[[M]]∫ , we recursively
define the span of i by

span x = 1

span i j = max {span i, span j}

span
∫

i = max {span i, ispan d M̂}
We have

supp i⊆{m∈M: m≍span id M̂}.
For f ∈ C[[M]]∫ such that lf f =

⋃

i∈supp f
lf i is finite (we say that f has finitely

generated support), we define span f =maxi∈supp f span i.

Example 4.3. We have span ezz

(
∫

ee2z

(
∫

ez)2)= ez.

4.4. Frameworks

A framework is a set F of subsets of M which is closed under arbitrary intersections
and such that {m} ∈F for each m∈M. The elements of F will be called frames .
For each subset S⊆M there exists a smallest frame which contains F and we denote
it by (S)F .

Example 4.4. Assume that M is a monomial group and define the flatness relations
as in remark 2.3. Then the set

F = F M=
⋃

S∈♭M,v∈M

Sv.

is a framework. Indeed, if (Fi)i∈I = (Si vi)i∈I is a family of elements in F with
⋂

i∈I
Fi� ∅, then

⋂

i∈I
Fi=(

⋂

i∈I
Si)v for any v∈

⋂

i∈I
Fi. If M is only a monomial

monoid which can be embedded in a monomial group G, then F ={F∩M:F∈F G}
is again a framework.

A framework function on I is a function F which associates a frame Fi∈F to
each integral monomial i∈I, so that

Fx = {x} if i= x∈X

Fj1j2 = (Fj1 Fj2)F

F∫ j ⊇

(

⋃

m∈Fj

supp
∫

m

)

F

In particular, supp i ⊆ Fi for all i ∈ I. We call Fi the frame for i. More generally,
given a set S of integral monomials, we call

FJ=(Fi: i∈ J)F

the frame for S. Given a representation algebra C[[I]] of integral series with a
framework function F: I → F as above, we call C[[I]] a framed representation

algebra .
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Example 4.5. Assume that M⊆T. Taking

Fi= {m∈M: m≍span i
∗ d M̂}

for all i∈I, we define a framework function on I.

4.5. Combinatorial convergence

Given an integral series f ∈C[[I]], the number of integral monomials i with #i=n
is finite for each fixed size n ∈ N. Therefore, we may define the majorating series

f̄ ∈ tR>[t] for f by

f̄ 4 ∑

i∈E∫

|fi| t
#i.

We say that f is combinatorially convergent if f̄ is convergent. We will denote the
set of combinatorially convergent series in C[[I]] by C[[I]]cv.

Proposition 4.6. The set C[[I]]cv is stable under + , × and
∫

.

Proof. This follows immediately from the facts that for all f , g∈C[[I]]cv, we have

f + g P f̄ + ḡ

f g P f̄ ḡ
∫

f = t f̄

Here ϕP ψ for ϕ, ψ ∈R>[t] if ϕn6 ψn for all n∈N. �

A family (fi)i∈I of elements in C[[I]]cv is said to be summable if (f̄i)i∈I is a
summable family of power series in R>{{t}}. In other words, {i ∈ I: f̄i,n � 0} is
finite for each n∈N and

∑

n∈N
(
∑

i∈I
f̄i) t

n∈R>{{t}}. The set C[[I]]cv is a strong
C-module for this infinite summation operator.

Consider a strongly linear mapping L: C[[I]] → C[[J]]. For each n, k ∈ N, let
L̄n,k = maxi∈I,si=n (L i)k ∈R>∪ { +∞}. We call L̄ =

∑

n
L̄n u

n =
∑

n,k
L̄n,k t

k un

the majorant series for L. Notice that L̄ is uniquely determined by the restriction
of L to I. We may also regard L̄ as a mapping on R> ∪ {+∞}[[t]] by setting
L̄ f̄ =

∑

n,k
L̄n,k f̄n t

k. We have

Lf P L̄ f̄

for all f ∈C[[I]]cv. If L̄ maps R>{{t}} into itself, then L maps C[[I]]cv into C[[J]]cv,
and we say that L is uniformly strong . This is the case if and only if (αn L̄n)n∈N is a
summable family inR>{{t}} for each α>0. In particular, if L̄ ∈R>{{t,u}} and there
exist constants α, β > 0 with L̄n,k =0 for all k <αn− β, then L is uniformly strong.

A uniformly strong mapping L:C[[I]]→C[[I]] is said to be a rewriting if Lf≡ f
for all f ∈C[[I]]. In that case Lf is said to be a rewriting of f and we write f &Lf .
If L maps I into itself, then we call L a monomial rewriting . In particular, consider a
mapping L:I→I such that there exist constants α, β>0 with Li≡ i, suppLi=supp i

and si6α+ β sLi for all i∈I. Then L extends uniquely to a monomial rewriting.

Example 4.7. The mapping which recursively replaces multiplications i j by mul-
tiplications j i determines a monomial rewriting.

Joris van der Hoeven 11



4.6. Mouldification

Assume that C is the constant field for the derivation on C[[M]]. Then for any f ,
g ∈C[[M]] there exists a constant cf ,g ∈C with

(
∫

f) (
∫

g) =
∫

f
∫

g+
∫

g
∫

f + cf ,g.

Let Imld be the subset of I of integral monomials of the form

x0

∫

x1

∫

x2� ∫ xl

with x0,� , xl∈X. We recursively define a product · on C[Imld] by

x · y = x y

x · (y
∫

j) = x y
∫

j

(x
∫

i) · y = x y
∫

i

(x
∫

i) · (y
∫

j) = x y (
∫

(i ·
∫

j)+
∫

(j ·
∫

i)+ c M̂ , N̂ )
for all x,y∈X and i, j∈Imld and extension by linearity. Here we understand that the
products x y are taken in X. We recursively define the mouldification mld i∈C [Imld]
of an integral monomial i∈I by

mld i = i (i∈Imld)

mld i j = (mld i) · (mld j) (i, j∈I \ Imld)

mld
∫

i = 1
∫

mld i (i∈I)

This definition extends to a strongly linear mapping mld:C[[I]]→C [[Imld]].
For several purposes, it is more convenient to work with moulds in C[[Imld]]

than general integral series in C[[I]]. However, the mapping mld generally destroys
combinatorial convergence, i.e. mld is not a rewriting. The convergence can often
be restored using the process of arborification [EV04], which corresponds more or
less to inverting the mapping mld in a nice way. In this paper, we will show that
most important operations can be carried out directly in C[[I]], while preserving
combinatorial convergence.

5. Grid-based integral series

Throughout this section, we assume that C[[I]]=C [[X∫ ]] is a framed representation
algebra of integral series with underlying monomial group M and framework func-
tion F: I→F .

5.1. Regular languages

A regular language specification is a finite set L of formal language symbols , together
with a rule of one of the following forms for each I ∈L :

R1. I4 {x}, with x∈X;

R2. I4 J1∪J2, with J1,J2∈L ;

12 Integral transseries



R3. I4 J1J2, with J1,J2∈L ;

R4. I4 ∫

J , with J ∈L .

The language symbols I ∈ L may regarded as subsets of I as follows. Consider
the set S of mapping σ: L → I, such that for all I ∈ L we have σ(I) ⊇ {x},
σ(I)⊇ σ(J1)∪ σ(J2), σ(I)⊇ σ(J1) σ(J2), resp. σ(I)⊇

∫

σ(J ), if I is specified by
R1, R2, R3 resp. R4. Then ∩ S: I � ⋂

σ∈S
σ(I) is again in S. We will regard

I ∈L as the subset (∩S)(I) of I. Subsets of this kind are called regular languages .

Example 5.1. For each finite subset F of X, the set F∫ generated by F, × and
∫

is a regular language. Notice that F∫ consists of the i ∈ I with lf i⊆ F. Inversely,
given a regular language specification L , let F⊆X be the finite set monomials x∈F,
such that I4 {x} for some I ∈L . Then each I ∈L is contained in F∫ and the set
lf f is finite for each f ∈C [[I]].

Given a regular language specification L , we say that I ∈L directly depends on

J ∈L , and we write I←J , if I4 J ∪K,I4 K∪J ,I4 JK,I4 KJ for some
K∈L , or I4 ∫

J . The transitive closure of the direct dependency relation ← is
denoted by←∗; we say that I depends on J , if I←∗J . The dependency relation←∗

is reflexive and transitive, but not necessarily anti-symmetric, since distinct language
symbols may mutually depend on each other.

Example 5.2. Reconsider the introductory equation (1.1). In its integral form (1.2),
this equation gives rise to the regular language specification

I1 4 ∫

I2;

I2 4 I3∪I4;

I3 4 {e−2ez

};

I4 4 I1 I1,

where we may take X = eRz eRez

, M = zN X and the natural embedding of X

into M for ˆ. We will show later that all integral monomials which occur in the
expansion (1.3) belong to I1.

Remark 5.3. In practice, in order to specify a regular language, it will often be con-
venient to regroup non interdependent rules together. For instance, the language I1
from example 5.2 may simply be specified by

I14 ∫

({e−2ez

}∪I1 I1).

Remark 5.4. Consider a regular language specification L and a language
symbol I ∈ L such that I ←∗ J1 for no J1 ∈ L with J1 4 {x} for some x.
Then I = ∅ as a subset of I. A language specification which contains no sym-
bols I of the above type is said to be well-rooted .

5.2. Grid-based languages

Let L be a regular language specification. An arc is a sequence

I0 *m1 I1 *m2 � *ml−1 Il−1 *ml Il, (5.1)

Joris van der Hoeven 13



such that I0∈L and for all k ∈{1,� , l}, we have Ik∈L , mk∈M and either

• Ik4 Ik−1∪J or Ik4 J ∪Ik−1 and mk = 1.

• Ik4 Ik−1J or Ik4 JIk−1 and mk∈ suppJ .

• Ik4 ∫

Ik−1 and mk∈ suppFIk−1

∫

.

If I0 = Il, then we call (5.1) a cycle in L . A cycle (5.1) is said to be minimal if
I0 � {I1, � , Il−1}. Notice that each two language symbols Ik and Ik ′ in a cycle
mutually depends on each other.

We say that L satisfies the cycle condition , if m1� ml≺ 1 for every cycle (5.1).
In that case, we say that L is a grid-based language specification and the elements
of L are called grid-based languages . A grid-based subset of I is an arbitrary subset
of a grid-based language. Series in C [[I]] with grid-based support are called grid-

based integral series . We denote by C[[I]] the representation algebra of such grid-
based series.

Remark 5.5. In relation to remark 5.3 it is often useful to consider a slightly
more general notion of arcs by allowing sub-arcs Ip *mp+1 � *mq

Iq to be replaced
by one-step arcs Ip .mp+1�mq

Iq in the case when the languages Ip+1, � , Iq−1 are
unique with the properties that Ip→Ip+1→� →Iq−1→Iq and Ik � {Ip,Iq} for all
k ∈{p+1,� , q− 1}.

Example 5.6. The language specification from example 5.2 is grid-based. Indeed,
it suffices to verify the cycle condition for minimal cycles. Up to cyclic permutation,
such minimal cycles are necessarily of the form

I1 *m I2 *1 I4 *n I1.
It is easily verified that FIk

⊆ ( eez

) and suppIk4eez e−2ez

for all k. Consequently,
m∈ supp

∫

4 z log z� and n4ee
z e−2ez

, whence m n≺ 1. If we set

I34 {eez

},

then we notice that the cycle condition is no longer satisfied.

Example 5.7. Any grid-based subset of M is also a grid-based subset of M∫ .

5.3. Derivation trees

Let L be a regular language specification and define

S = {1}∪
⋃

I4 ∫ J ∈L

suppFJ

∫

∪
⋃

I4 {x}∈L

supp x ⊆ M,

Consider a S×L -labeled tree T with children U1,� , Ur. Assume that the roots of
T ,U1,� ,Ur are labeled by (m,I), (n1,J1),� , (nr,Jr). We say that T is a derivation

tree if this is recursively the case for U1,� , Ur and either

• I4 {x}, r=0 and m∈ supp x.
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• I4 J1∪K or I4 K∪J1 for some K∈L , r=1 and m =1.

• I4 J1J2, r= 2 and m =1.

• I4 ∫

J1, r= 1 and m∈ suppFJ1
.

We denote by TL the set of all such derivation trees. Given T ∈ TL , we define
mT ∈M, IT ∈L and iT ∈IT as follows:

• mT is the product of all s where (s, I) ranges over all labels of T .

• iT is obtained from T by substituting each label (s,I) by x, × or
∫

, depending
on whether I4 {x}, I4 J1J2 resp. I4 ∫

J , and by eliminating all nodes
(s,I) with I4 J1∪J2.

• IT =I, where (s, I) is the label of the root of T .

Example 5.8. For the language specification L from example 5.2, the tree

(1,I4)

(e−3z, I1)

(1,I2)

(e−2ez

,I3)

(e−5z ,I1)

(1, I2)

(e−2ez

, I3)

is a derivation tree T ∈ TL for the triple (m, i, I) with m = e−8z e−4ez

, i =
(
∫

e−2ez

) (
∫

e−2ez

) and I = I4.

Proposition 5.9. For each triple (m, i, I) with i ∈ I ∈L and m ∈ supp i, there

exists a T ∈TL with m = mT, i= iT and I =IT.

Proof. We recursively construct T =Tm,i,I as follows:

• If I4 {x}, then Tm,i,I is reduced to its root labeled by (m,I).

• If I4 J1∪J2, then we choose k ∈{1, 2} with i∈Jk, and set

Tm,i,I = (1,I)

Tm,I ,Jk

• If I4 J1J2, i= j1 j2 and m = n1 n2 with nk∈ supp jk (k= 1, 2), then

Tm,i,I = (1,I)

Tm,j1,J1 Tn2,j2,J2

• If I4 ∫

J , i=
∫

j and m = s n with s∈ suppFJ

∫

and n∈ supp j, then

Tm,i,I = (s,I)

Tn,j,J
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It is easily verified by recursion that m = mT , i = iT and I = IT . �

If T = Tm,i,I is a derivation tree constructed as in the proof of the proposition,
then we say that T is a derivation tree for the triple (m, i, I). For instance, T is a
derivation tree for (mT , iT , IT) in example 5.8.

Lemma 5.10. Consider a subtree S of a derivation tree T with respect to a grid-

based language specification L . If IS =IT, then mS<mT.

Proof. The derivation tree T is of the form

(sl,Il)

Ul,1 � (sl−1,Il−1)

Ul−1,1 � 

(s1, I1)

U1,1 � S � U1,p1

� Ul−1,pl−1

� Ul,pl

(5.2)

where the expanded subtrees are Ul,ql
,� , U1,q1 =S. Denoting by (s0,I0) the label of

the root of S and mk = mUk,1
� mUk,pk

/mUk,qk
for all k ∈{1,� , l}, we have a cycle

I0 *m1 I1 *m2 � *ml−1 Il−1 *ml Il, (5.3)

since IS =I0 = Il = IT . We conclude that mT = m1� ml mS4mS. �

5.4. Summability of grid-based integral series

Let L be a grid-based language specification. We say that a derivation tree T ∈TL

is cycle-free, if it does not contain a subtree T of the form (5.2) with IT =IS. Given
I ∈L , let Icf be the set of monomials i∈I such that (i,I)=(iT ,IT) for some cycle-
free derivation tree T . Clearly, Icf is finite.

Now consider I0, � , Il = I0 with I0 → � → Il and I0 � {I1, � , Il−1}. For
k ∈{1,� , l}, we define the set SIk−1→Ik

⊆M by

• If Ik4 Ik−1∪J or Ik4 J ∪Ik−1, then SIk−1→Ik
=1.

• If Ik4 Ik−1J or Ik−14 JIk−1, then SIk−1→Ik
= suppJ cf.

• If Ik4 ∫

Ik−1, then SIk−1→Ik
= suppFIk−1

∫

.

Clearly, for every m1∈SI0→I1,� ,ml∈SIl−1→Il
, we have a cycle (5.1), so

SI0→�→Il
=SI0→I1� SIl−1→Il

≺ 1.

Let E be the finite union of all SI0→�→Il
, where I0,� , Il are as above.

Lemma 5.11. For every i∈I ∈L , we have

supp i⊆ (suppIcf) E∗.
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Proof. Let m∈ supp i. We will prove that m∈ (supp Icf) E∗ by induction over the
minimal size of a derivation tree Tm,i,I for (m, i, I). This is clear if i is cycle-free.
Otherwise, Tm,i,I admits a subtree T of the form (5.2) with IS = IT . Modulo the
replacement of T by a subtree, we may assume without loss of generality that the
Ui,j and S are all cycle-free. By the definition of SI0→�→Il

, we now have mT/mS∈E.
Now consider the derivation tree U which is obtained from Tm,i,I when replacing T
by S. By the induction hypothesis, we have mU ∈ (supp Icf) E∗. We conclude that
m = (mT/mS)mU ∈ (suppIcf) E∗. �

Theorem 5.12. Consider the set C[[M∫ ]] of integral series over a grid-based

differential algebra C[[M]] and assume that supp
∫

is grid-based on C[[M]]. Then

all strong linear combinations over grid-based subsets of M∫ are summable.

Proof. Let G be a grid-based subset of M∫ , so that I ⊆G for I ∈L some grid-
based language specification L . Let S and TL be as in the previous section and
notice that S is grid-based.

Now give S×L the natural ordering (s1, I1)4 (s2, I2)⇔ s14 s2∧ I1 = I2 and
order TL by Higman’s imbrication ordering [vdH04, Section 1.4], with the additional
requirement that the imbrication preserves roots. Then Kruskal’s theorem implies
that the set of S×L -labeled trees is well-quasi-ordered for the opposite ordering
of 4. We claim that the mapping

ϕ: TL � M

T 	 mT

preserves the ordering 4.
So assume that Tm,i,I<Tm̃, M̃ ,Ĩ and let us prove by induction over the size of Tm,i,I

that m< m̃. Write

Tm,i,I = (s,I)

Tn1,j1,J1
� Tnp,jp,Jp

Tm̃, M̃ ,Ĩ = (s̃, Ĩ )

Tñ1, Ñ 1,J̃1
� Tñp̃ , Ñ p̃ ,J̃p̃

Since the imbrication of Tm,i,I into Tm̃, M̃ ,Ĩ preserves roots, we have

• (s,I)< (s̃, Ĩ ), so that Ĩ =I, p̃= p and J̃k =Jk for all k.

• Each Tñk, Ñ k,Jk
admits a subtree of the form Tñ̃k, Ñ̃ k,Jk

with Tnk,jk,Jk
<Tñ̃k, Ñ̃ k,Jk

.

Now the induction hypothesis implies that that nk < ñ̃k for all k. By lemma 5.10,
we also have ñ̃k< ñk for all k. It follows that

m = s n1� nk < s̃ ñ1� ñk = m̃.

This completes the proof of our claim.
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Now let I ∈L and consider a family (ci M̂ )i∈I with ci∈C. Let S be the set of
triples (m, i, I) with i ∈ I and m ∈ supp i. Then the family (ci M̂m m)(m,i,I)∈S refines
(ci M̂ )i∈I. By proposition 5.9, each triple (m, i, I)∈ S admits a (distinct) derivation
tree Tm,i,I ∈ TL . By what precedes, it follows that (ci M̂m m)(m,i,I)∈S is a well-based
family. From lemma 5.11, we conclude that (ci M̂ )i∈I is a grid-based family. �

Theorem 5.12 implies in particular that supp I =
⋃

i∈I
supp i is grid-based

for all I ∈L . If I � ∅, then we denote d̂I = dsuppI. A truncation operator TS on
C[[M∫ ]] is said to be compatible with the grid-based structure, if for every grid-
based language I ⊆M∫ , there exists a grid-based language TSI so that TS maps
C[[I]] into C[[TSI]].

6. Differentiation

Throughout this section, we assume that C[[I]] = C[[X∫ ]] is a representation
algebra of grid-based series with underlying monomial group M⊆T and framework
function F:I→F .

6.1. Stability properties under boolean operations

Proposition 6.1. The intersection of a grid-based and a regular language is a grid-

based language.

Proof. Consider a grid-based and a regular language specification L resp. L̃ . In
view of remark 5.3, we may assume that each language symbol I ∈L resp. Ĩ ∈ L̃

is specified by a rule of the form

I 4 J1×K1∪� ∪Jp×Kp∪
∫

L1∪� ∪ ∫ Lq∪{x1,� , xr} (6.1)

Ĩ 4 J̃1×K̃1∪� ∪ J̃p̃×K̃p̃ ∪
∫

L̃1∪� ∪ ∫ L̃q̃ ∪{x̃1,� , x̃ r̃} (6.2)

Let L ∩× L̃ be the regular language specification, whose symbols are formal inter-
sections I ∩ Ĩ with I and Ĩ as above, and so that each I ∩ Ĩ is specified by

I ∩ Ĩ 4 (⋃
i,ι̃

(Ji∩ J̃ι̃)× (Ki∩ K̃ι̃)
)

∪
(

⋃

i,ι̃

∫

(Li∩ L̃ι̃)
)

∪{x1,� , xr}∩{ x̃1,� , x̃ r̃}.

Since any cycle I0∩ Ĩ0 *m1 � *ml Il∩ Ĩl in L ∩× L̃ induces a cycle I0 *m1 � *ml Il in L ,
we conclude that L ∩× L̃ is a regular language specification. �

Proposition 6.2. The set difference between a grid-based and a regular language

is a grid-based language.

Proof. Consider a grid-based and a regular language specification L resp. L̃ ,
where each language symbol I ∈L resp. Ĩ ∈L̃ is specified by a rule of the form (6.1)
resp. (6.2). Let L ×− L̃ be the regular language specification, whose symbols are
formal differences I\Ũ with I as in (6.1) and where Ũ = Ĩ1∪� ∪Ĩu is a finite union,
where each Ĩs is specified by

Ĩs4 J̃s,1×K̃s,1∪� ∪ J̃s,p̃s
×K̃s,p̃s

∪
∫

L̃s,1∪� ∪ ∫ L̃s, q̃s
∪{x̃s,1,� , x̃s,r̃s

}.
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Each formal symbol I\Ũ is specified by

I\Ũ 4 ⋃

i

⋃

S1∐S2=T

(

Ji \
⋃

(s,ι̃ )∈S1

J̃s,ι̃

)

×
(

Ki \
⋃

(s,ι̃ )∈S2

K̃s,ι̃

)

∪

⋃

i

Li \ (L̃1,1∪� ∪ L̃1, q̃1
∪� ∪ L̃u,1∪� ∪ L̃u, q̃u

) ∪

{x1,� , xr} \ {x̃1,1,� , x̃1,r̃1
,� , x̃u,1,� , x̃u,r̃u

},

where T stands for the set of pairs (s, ι̃ ) with s∈{1,� , u} and ι̃ ∈{1,� , p̃s}. Since
any cycle I0 \ Ũ0 *m1 � *ml Il ∩ Ũl in L ×− L̃ induces a cycle I0 *m1 � *ml Il in L , we
conclude that L ×− L̃ is a regular language specification. �

6.2. Uniform restrictions on the support

Consider i ∈ I, v ∈T, w∈T, and a relation ♦ among ≺, ≍, ≻, ≺w, ≍w, ≻w, ≺w
∗ ,

≍w
∗ , ≻w

∗ , � ,  and D . Then we define

i≪w ⇔ span i� w;

i. w ⇔ span i w;

i♦ v ⇔ M̂ ♦ v.

These relations generalize to grid-based integral series f ∈C[[I]], by requiring that
they hold uniformly for all monomials in a grid-based language I ⊇ supp f . More
precisely, denoting by G the set of all grid-based languages, we define

f≪w ⇔ (∃I ∈G , supp f ⊆I ∧ (∀i∈I , i≪w))

f. w ⇔ (∃I ∈G , supp f ⊆I ∧ (∀i∈I , i. w))

f♦ v ⇔ (∃I ∈G , supp f ⊆I ∧ (∀i∈I , i♦ v))

Notice that these definitions indeed extend the case when f is a monomial, since {i}
is a grid-based language for every i∈I. We say that f ∈C[[I]] is regular , if f=cd+δ
for certain c∈C, d∈X and δ≺ x̂. In that case, we denote df = d.

Given a subset S of I and f ∈ C[[I]], we recall that fS =
∑

i∈S
fi i. More

generally, if F is a subset of C[[I]], then we denote FS = {fS: f ∈ F}. These
notations are particularly useful if S is one of the sets

≪w = {i∈I: i≪w}. w = {i∈I: i. w}

♦ v = {i∈I: i♦ v}

Restrictions on the support combine in a natural way. For instance, we have

C[[I]]≪w,�w= {f ∈C[[I]]: ∃I ∈G , supp f ⊆I ∧ (∀i∈I , i≪w∧ i� w)},

because of proposition 6.1.

Proposition 6.3. Let v,w∈M and ♦∈ {≻, ≍, ≺}. Given i∈ I with i≪w, we

define

T♦wv i=

{

i if i♦wv

0 otherwise
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Then T♦wv extends by strong linearity into an operator T♦wv:C[[I]]≪w→C[[I]]≪w.

Proof. Given f ∈ C[[I]]≪w, there exists a grid-based language specification L

and I ∈L with f ∈C[[I]] and I ≪w. Then the support of g=
∑

i∈supp f
fiT♦wv i

is included in I, so T♦wv f = g ∈C[[I]] is well-defined. �

Remark 6.4. It can be shown that one actually has imT♦wv=C[[I]]≪w,♦wv.

6.3. Logarithmic derivatives

Let C[[I]] be an algebra of grid-based integral series. A logarithmic derivation on X

is a mapping †: X→C[[I]] such that

LD1. x† = x̂ †, for all x∈X.

LD2. x†∈C for all x∈X with x̂ †∈C.

LD3. x† is regular for all x∈X with x̂ † � C.

LD4. x†≪ x̂ † for all x∈X with x̂ † � C.

LD5. (xλ)† =λ x† for all x∈X and λ∈R.

LD6. d(xy)† = dy† for all x, y∈X with x̂� ŷ.

In that case, and in virtue of the next sections, we say that C[[I]] is a differential

representation algebra of grid-based series. We say that † is finitely based if

lclG= G∪ lf (G†)∪ lf (lf (G†)†)∪�
is finite for all finite G⊆X.

Given x∈X, we will also denote ux= x†. Assuming that x̂ †� C, let c∈C, d∈X and
δ≺ d̂ be such that ux=cd+δ. Then ux admits a natural inverse vx modulo ≡ given by

vx= c−1 d−1 (1+ c−1 d−1 δ)−1.

If I is a grid-based language with suppδ⊆I, I≺ d̂ and I≪ d̂, then J =d−2I (d−1I)∗

is a grid-based language with supp vx⊆ {d
−1} ∪ J , J ≺ d̂−1 and J ≪ d̂. It follows

that vx is also a regular grid-based series. In the sequel, we will denote Ux= {d}∪I

and Vx={d
−1}∪J . If x̂ †∈C�, then we set Ux=Vx={1} and vx=ux

−1. If x̂ †=0, then
we take Ux= ∅.

Assume now that X=GR for some finite set G, that M= zNBR for some plane
differential transbasis B=(b1,� ,bn) of transmonomials, and that b1= ŷ1,� ,bn = ŷn

for certain y1, � , yn ∈ X. In that case we say that the differential representation
algebra C[[I]] is triangular and the above notations may be extended to more
general monomials i ∈ I: given i ∈ I with M̂ = zα0 b1

α1 � bn
αn and x = y1

α1 � yn
αn,

we let ui = ux and vi = vx (if x 
 1). Furthermore, given w = bi " ez, consider
I=Uy1∪� ∪Uyi

\{dyi
}. Then for all x= cd+ δ with x̂D bi, we have supp δ⊆I, I ≺ d̂

and I≪ d̂. Similarly, with J =d−2I (d−1I)∗ as above, we have suppvx⊆{d
−1}∪J ,

J ≺ d̂−1 and J ≪ d̂. Setting Uw = {d} ∪ I and Vw = {d−1} ∪ J , we may therefore
assume that Ux⊆Uw and Vx⊆ Vw for all x ∈ X with x̂ D w. If w = ez, then we take
Uw=Vw= {1}.
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6.4. Differentiation

Let us now define a strong derivation ′:C[[I]]→C[[I]]. We first define the deriva-
tive of each monomial in I:

x′ = (x†) x (x∈GR)

(i j)′ = i′ j + i j′

(
∫

i)′ = i

Clearly, i′ = M̂ ′ for all i∈I.

Proposition 6.5. The mapping ′:I→C[[I]] extends to a strongly linear mapping
′:C[[I]]→C[[I]], which represents the derivation on C[[M]].

Proof. Consider a grid-based language specification L . For each I ∈L , we define
a new language symbol ∂I by

• If I4 {x}, then ∂I4 UxI.

• If I4 J1∪J2, then ∂I4 ∂J1∪ ∂J2.

• If I4 J1J2, then ∂I4 (∂J1)J2∪J1 (∂J2).

• If I4 ∫

J , then ∂I4 J .
Clearly, if f ∈ C[[I]] with I ∈ L , then f ′ ∈ C[[∂I]]. Now consider a cycle
C0 *m1 � *ml Cl which involves one of the languages of the form ∂I with I ∈L . Since
none of the J ∈L and none of the Ux depend on ∂I, it follows that the cycle has
the form ∂I0 *m1 � *ml ∂Il for certain I1,� ,Il∈L and modulo remark 5.5. But then
I0 *m1 � *ml Il is also a cycle, whence m1 � ml ≺ 1. We conclude that the ∂I with
I ∈L are grid-based languages.

Given i ∈ I ∈L , the above discussion shows that i′ belongs to the grid-based
language ∂I. In order to prove that the mapping I → C[[∂I]] extends by strong
linearity, we still need to show that for every j∈∂I there exists only a finite number
of i∈I with j∈ supp i′. Indeed, by induction over the size of i, it is easily seen that
i is necessarily obtained from j through the replacement of a subtree k of j by

∫

k

or the replacement of a subtree of the form k x with k∈ supp x† by x. �

6.5. Support properties of differentiation

Assume that I=C[[I]] is triangular, with M = zNBR.

Proposition 6.6. There exist grid-based subsets S∫ , S∫¯ and S∂ of C[zZ][[BR]]

such that for all f ∈ I we have

supp
∫

f ⊆ S∫ supp f

supp
∫¯f ⊆ S∫¯ supp f

supp f ′ ⊆ S∂ supp f

Proof. It suffices to prove the support bounds for monomials f = i.
If m ∈ supp

∫

i, then there exists an n ∈ supp i with m ∈ supp
∫

n ⊆
(suppC[z]BR

∫

) n. Consequently, we may take S∫ = suppC[z]BR

∫

.
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If m ∈ supp
∫¯ i, then i is of the form i =

∫

j and m ∈ supp j. Consequently,
d∫ m ∈ supp

∫

m ⊆ supp i, so we may take S∫¯ = {dm/
∫

m: m ∈ zN GR}. We notice
that S∫¯ is a finite set.

Let us finally show that we may take S∂ = S∫¯ ∪ supp U , where U =
⋃

x∈X
Ux

is a finite union up to duplicates. We use induction over the size of i. If i ∈ GR,
then have supp i ⊆ (supp ℓi) i ⊆ S∂ i. If i = j1 j2, then by the induction hypothesis
supp (j1 j2)

′⊆ (S∂ supp j1) supp j2∪ supp j1 (S∂ supp j2)=S∂ supp i. Finally, if i=
∫

j,
then supp i′ = supp

∫¯ i⊆S∫¯ supp i. �

Proposition 6.7. Let v∈B be such that v†D w∈B. Then I v,≪w is stable under

differentiation.

Proof. Let L be a grid-based language specification with I v and I≪w for all
I ∈L . Given i∈I ∈L , let us prove by induction over the size of i that i′∈I v,≪w. If
I4 {x}, then x̂ v implies ∂I4 Ux{x}⊆I v,≪w. If i= j1 j2, then j1, j2, j1

′ , j2∈I v,≪w

implies i′ = j1
′ j2 + j1 j2

′ ∈ I v,≪w. Finally, if i=
∫

j, then i′= j∈ I v,≪w. �

6.6. Combinatorial convergence

Proposition 6.8. Assume that † maps X into C[[I]]cv. Then the set C[[I]]cv is

stable under differentiation.

Proof. Given a finite subset of Y of X, let

ϕ=1 + t
∑

x∈Y

x†

For all i∈I with lf i⊆Y, we claim that

∂ iP #i t#i−1 ϕ

Indeed, using induction over #i, we have

∂ x = x† x= x† tP ϕ

∂ (j1 j2) P (#j1 t
#j1−1 ϕ) j2 + j1(#j2 t

#j2−1 ϕ) = (#j1 j2) t
#j1j2−1 ϕ

∂ (
∫

j) = j̄ = t#
∫

j−1
P (#

∫

j) t#
∫

j−1 ϕ

By strong linearity, we conclude that

∂f P f̄ ′ ϕ

for all f ∈C[[I]]cv with lf f ⊆Y, whence ∂f ∈C[[I]]cv. We conclude by recalling
that lf f is finite for each f ∈C[[I]]cv. �

7. First order expansions

Throughout this and the next section, we assume that C[[I]] = C[[X∫ ]] is a
triangular differential representation algebra of grid-based series with underlying
monomial group M = zN BR, framework function F: I → F and logarithmic
derivation †: X→C[[I]]. The objective of this and the next section is to construct
truncation operators T♦wv on I=C[[I]] for all ♦∈{≻,≍,≺}, v∈BR and w∈B.
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In this section, we start with the construction of T♦wv on J4wv, where

J = I.w,≍w
∗ v

J = I.w,≍w
∗ v

We assume that w=bk is fixed and perform the construction simultaneously for all
possible values of v∈BR.

7.1. Expansion of monomials

Given i∈J4wv, we define T≻wv i, T≍wv i and T≺wv i by induction over the size of i. We
always take

T≻wv i = 0

If i≺wv, then we take

T≍wv i = 0

T≺wv i = i

If i≍wv, then it will be convenient to denote ⊤=T≍wv and ⊥=T≺wv. We distinguish
the following cases:

1. [i∈X]. We take

⊤(i) = i

⊥(i) = 0

2. [i = j1 j2]. We take

⊤(i) = ⊤(j1)⊤(j2)

⊥(i) = ⊤(j1)⊥(j2)+⊥(j1) j2

3. [i =
∫

j]. If v†� w, then we set

⊤(i) =
∫

⊤(j)

⊥(i) =
∫

⊥(j)

If v†D w, then we take

w = ⊤(vi)

⊤(i) = w⊤(j)

⊥(i) =
∫

T≺w N̂ (j− (w⊤(j))′)

=
∫

[⊥(j)−w ′⊤(j)−wT≺w N̂ ′(⊤(j)′)] (7.1)

Remark 7.1. The relation (7.1) needs some further explanations. We first observe
that the definitions of T≻wv i, T≍wv i and T≺wv i coincide with those from proposi-
tion 6.3 in the case when i ∈ I≪w. This ensures that ⊤(vi) is well-defined. We will
show below (proposition 7.7) that ⊤(j)∈J≍w N̂ ,≪w. From proposition 6.7, it follows
that ⊤(j)′ ∈ J≪w. This ensures that T≺w N̂ ′(⊤(j)′) is well-defined. Finally, it can be
shown that w ′⊤(j)≺w N̂ , which justifies the simplification

∫

T≺w N̂ (w ′⊤(j)) =
∫

w ′⊤(j).
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7.2. Expansion of the language specifications

Consider a grid-based language I ⊆ J4wv. Given a grid-based language specifica-
tion L with I ∈L , then we notice that I only depends on languages J ∈L with
J . w. Modulo removing all other languages, we may thus assume without loss of
generality that J . w for all J ∈L .

In order to show that the definitions of T≻wv i, T≍wv i and T≺wv i for monomials
i∈I extend by strong linearity to C[[I]], we first have to specify regular languages
T≻wvI, T≍wvI and T≺wvI with respect to which T≻wv f , T≍wv f and T≺wv f can be
expanded for f ∈C[[I]]. We proceed along similar lines as for the construction of
T≻wv i, T≍wv i and T≺wv i.

Since d̂I4wv, we take T≻wvI4 ∅. If d̂I≺wv, then we take

T≍wvI 4 ∅

T≺wvI 4 I

If d̂I ≍w v, then we abbreviate ⊤I = T≍wv I, ⊥I = T≺wv I and distinguish the
following cases:

1. [I4 {x}]. We take

⊤(I) 4 I

⊥(I) 4 ∅

2. [I4 J1∪J2]. We take

⊤(I) 4 T≍wv(J1)∪T≍wv(J2)

⊥(I) 4 T≺wv(J1)∪T≺wv(J2)

3. [I4 J1J2]. We take

⊤(I) 4 ⊤(J1)⊤(J2)

⊥(I) 4 ⊤(J1)⊥(J2)∪⊥(J1)J2

4. [I4 ∫

J ]. If v†� w, then we set

⊤(I) 4 ∫

⊤(J )

⊥(I) 4 ∫

⊥(J )

If v†D w, then we take

W 4 ⊤(Vw)

⊤(I) 4 W⊤(J )

⊥(I) 4 ∫

[⊥(J )∪W ′⊤(J )∪WT≺w d̂J
′ (⊤(J )′)]

By induction over the size of i, it is straightforward to verify that ⊤(i)∈C[[⊤(I)]]
and ⊥(i)∈C[[⊥(I)]] for all i.

Remark 7.2. If J ≪w for all J ∈L , then case 4 with v†D w never occurs, and
it is easily checked that ⊤(J )⊆J and ⊥(J )⊆J for all J ⊆L . We will show in
proposition 7.3 below that ⊤(J )⊆ J≍w N̂ ,≪w. It follows that W and T≺w d̂J

′ (⊤(J )′)
are well-defined grid-based languages.
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7.3. Frames for the expanded languages

Proposition 7.3. For I ∈L with I ⊆J4wv, we have

T≻wvI = ∅

T≍wvI ⊆ J≍wv,≪w

T≺wvI ⊆ J≺wv,

Moreover, if I ⊆J4wv,≪w, then T≺wvI ⊆J≺wv,≪w.

Proof. The inclusions are clear if d̂I≺wv. So assume that d̂I≍wv and let i∈⊤I.
Let us prove by induction over the minimal size of a derivation tree for (m, i,⊤I)
with m∈ supp i that i≍wv and i≪w. We distinguish the following cases:

I4 {x}. We must have i = x. Now x= d̂I≍wv and x≪w.

I4 J1 ∪ J2. Let k∈{1,2} be such that i∈⊤Jk. Then we must have ⊤Jk� ∅,
whence d̂Jk

= d̂I. By the induction hypothesis, we get i≍wv and i≪w.

I4 J1 J2. We obtain i = j1 j2 with j1 ∈ ⊤J1 and j2 ∈ ⊤J2. By the induction
hypothesis, we have j1 ≍w d̂J1, j2 ≍w d̂J2 and j1, j2 ≪ w. It follows that
i≍w d̂J1 d̂J2 = d̂I≍wv and i= j1 j2≪w.

I4 ∫

J . If M̂ †� w, then i =
∫

j with j ∈ ⊤J . By the induction hypothesis,
we have j ≍w d̂J and j ≪ w. Since M̂ † � w, it follows that i ≪ w and
i =
∫

j≍w

∫

d̂J ≍w d̂I. If M̂ †D w, then i = j1 j2 with j1∈W and j2∈⊤J . By
the induction hypothesis, we get j2≍w d̂J and j2≪w. Since W ⊆ J≍ww,≪w,
we also have j1≍ww and j1≪w. It follows that i≍ww d̂J ≍w d̂I and i≪w.

The other inclusions are proved in a similar way. �

Proposition 7.4. Given I ∈L and ♦∈{≻,≍,≺} with I ⊆J4wv, we have

FT≻wv I = ∅

FT≍wv I ⊆ FI ∩ (≍w v)

FT≺wv I ⊆ FI

Proof. The inclusions are clear if d̂I ≺w v. Assume therefore that d̂I ≍w v. If
I ⊆ J≍wv, then also I ⊆ J≪w, whence T♦wv I ⊆ I and FT♦wv I ⊆ FI. Otherwise, we
must have FI = (≍w

∗ v), since d̂I ∈ FI ⊆ (≍w
∗ v) and FI * (≍wv). We conclude by

proposition 7.3. �

7.4. Extension by strong linearity

Proposition 7.5. The languages T≻wvI, T≍wvI and T≺wvI are grid-based.

Proof. For languages of the form T≻wvI = ∅ there is nothing to prove. The case
when J ≪w for all J ∈L has also been dealt with in remark 7.2.

Consider a cycle C0*m1 � *ml Cl which involves a language of the form ⊤(I). Then
none of the Cj can be in L ∪{W}, since none of the languages in L ∪{W} depend
on ⊤(I). Consequently, the cycle is of the form

⊤(I0)*m1 � *ml ⊤(Il),
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with di= d̂Ii
for all i. For all i, let ni= d̂W if⊤(Ii)4W⊤(Ii−1) and ni=mi otherwise.

Then, using proposition 7.4,

I0 *n1 � *nl Il

is again a cycle with m1� ml4 n1� nl≺ 1.
Let us next consider a cycle C0 *m1 � *ml Cl which involves a language of the form

⊥(I). Then none of the Cj can be a language of the form J , ⊤(J ), T≺w d̂J
′ (⊤(J )′)

or W , with J ∈L . Consequently, the cycle is of the form

⊥(I0)*m1 � *ml ⊥(Il),

with di = d̂Ii
for all i. For all i with Ii4 JIi−1 or Ii4 Ii−1J and mj ∈ supp⊤(J )

or mj ∈ supp J , let nj = d̂J < mj. For the other j, let nj = mj. Then, using
proposition 7.4,

I0 *n1 � *nl Il

is again a cycle with m1� ml4 n1� nl≺ 1. �

Proposition 7.6. T≻wv, T≍wv and T≺wv extend to C[[I]] by strong linearity.

Proof. The proposition is clear for T≻wv. For i∈I with i≺wv, we also have {k∈I:
i∈ suppT≍wv(k)}= ∅ and {k∈I: i∈ suppT≺wv(k)}= {i}. Given i∈I with i≍wv, let

Φ(i) = {k∈I: i∈ suppT≍wv(k)}

Ψ(i) = {k∈I: i∈ suppT≺wv(k)}

We also define

Π1(i) = {k∈I: i∈ k I}

Π2(i) = {k∈I: i∈I k}

I(i) = {k∈I: i =
∫

k}

∆(i) = {k∈I: i∈ supp ∂ k}

Let us prove by induction over the size of i∈I that Φ(i) and Ψ(i) are finite. Now

Φ(i) ⊆ {i}∪Φ(Π1(i)) Φ(Π2(i))∪
∫

Φ(I(i))∪
∫

Φ(Π2(i))

Ψ(i) ⊆ Φ(Π1(i)) Ψ(Π2(i))∪Ψ(Π1(i)) Π2(i)∪
∫

Ψ(I(i))∪
∫

Φ(Π2(I(i)))∪
∫

Φ(∆(Ψ(Π2(i))))

By the induction hypothesis, the sets at the right hand sides are finite. �

7.5. Properties of the truncation operators

Proposition 7.7. The operators T≻wv, T≍wv, T≺wv on J4wv are projections with

imT≻wv = 0

imT≍wv = J≍wv,≪w

imT≺wv = J≺wv,

Also, the restriction of T≺wv to J4wv,≪w is a projection on J≺wv,≪w.
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Proof. The operator T≻wv = 0 is clearly a projection with im T≻wv = 0. By
construction, we also have T≍wv i = i and T≺wv i = i for i ∈ J≍wv,≪w resp. i ∈ J≺wv.
Given f ∈C[[I]] with I ⊆J≍wv,≪w, it follows that T≍wvf = f ∈C[[I]] and similarly
for T≺wv. We conclude by proposition 7.3. �

Proposition 7.8. Let ♦, ♦̂∈ {≻,≍,≺} and ṽ≍w
∗ v. Then the operators P =T♦wv

and P̃ =T♦wṽ on J4wv satisfy P̃ ◦P =P ◦ P̃.

Proof. The result is clear when ṽ≍wv or M̂ ≺wv. Assume therefore that M̂ ≍wv≺wṽ.
If ♦̃ � ≺ , then T♦̃wṽ i = T♦̃wṽ T♦wv i = 0. If ♦̃ = ≺ , then T♦̃wṽ i = i and
T♦̃wṽT♦wv i=T♦wv i. �

Let us denote by suppw f the flattened support of f ∈ I in M/≍w. By proposi-
tion 6.6, there exists sets S∫

,w, S∫¯ ,w and S∂,w of BR/≍w with

supp
∫

f ⊆ S∫ supp f

supp
∫¯f ⊆ S∫¯ supp f

supp f ′ ⊆ S∂ supp f

Proposition 7.9. There exist a grid-based set S≺,w4 1 such that the operators

T≍wv and T≺wv on I4wv satisfy

suppwT≍wv f ⊆ suppw f (7.2)

suppwT≺wv f ⊆ S≺,wsuppw f (7.3)

Proof. It suffices to prove both bounds for monomials f = i. The bound (7.2)
directly follows from the fact that T≍wv i∈ I≍wv. Taking

S≺,w= {m∈S∫

,w∪S∂,wS∫

,w∪S∫

,wS∫

,w: m4w1}∗,

we prove (7.3) by induction over the size of i. In the case when i ≺w v, we have
T≍wv i= i and we are done, so assume that i≍wv. If i∈X, then T≍wv i= i and we are
again done. If i= j1 j2, then

supp⊥ i⊆ (S≺,wsuppw j1) (S≺,wsuppw j2)= S≺,wsuppw i.

Assume now that i =
∫

j. If M̂ †D w, then we denote u = d̂w D w, so that suppww=

suppww
′ = {u} and M̂ ≍ u N̂ . Let n∈ suppw⊤ i. We distinguish three cases:

1. [ M̂ † D w and n ∈ suppw

∫

w ′ ⊤ j] Since suppw ⊤ j = {d N̂}, we have
n ≍w u2 d N̂ ≍w u d M̂ . This shows that n ∈ u suppw i ⊆ S≺,w suppw i, since
u∈ suppw

∫

and u≺w1.

2. [ M̂ †D w and n∈ suppw

∫

wT≺w N̂ ′((⊤ j)′)] Since (⊤ j)′≪w, we have

suppwT≺w N̂ ′((⊤ j)′)⊆ suppw(⊤ j)′

It follows that n ∈ a1 u suppw (⊤ j)′ with a1 ∈ S∫

,w and a1 4w u. Since
suppw⊤ j = {d N̂}= {d M̂/u}, we also have n∈ a1 a2 suppw i with a2∈S∂,w and
a24wu−1. Hence n∈ a1 a2 suppw i∈S≺,wsuppw i.
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3. [n ∈ suppw

∫

⊤ j] Let m1, m2, m3, m4 = n, a1 = m2/m1, a2 = m3/m2 and
a3 =m4/m3 be as in the following diagram:

m1∈ suppw i  m4∈ suppw⊤ i

a1∈S∫

,w � a3∈S∫

,w

m2∈ suppw j .a2∈S≺,w
m3∈ suppw⊤ j

with a1 = dm2/
∫

m2
and a3∈m3

−1 supp
∫

m3, so that a34 d∫ m3/m3
. If m3$ m2,

then a1 a34 dm2/
∫

m2
d∫ m3/m3

4 1, whence a1 a3∈S≺,w and a1 a2 a3∈S≺,w. If
m3� m2, then a2 D m2, whence a1, a3� a2 and a1 a3 = 1. Again, we obtain
a1 a2 a3 = a2∈S≺,w. �

7.6. Combinatorial convergence

Proposition 7.10. Assuming that † maps X into Icv, the T♦wv with ♦∈ {≻, ≍,
≺} map J4wv

cv into itself.

Proof. Let ψ ∈ tR>[t] be such that tP ψ and

⊤viP vi P ψ

for all i∈I with M̂ †D w. We claim that for all i∈ J4wv, we have

⊤ i P M̄ ◦ ψ.
Indeed, using induction over the size if i, we are always in one of the following cases:

⊤ i∈{0, i} ⇒ ⊤ iP MP M̄ ◦ ψ
⊤ i=(⊤ j1) (⊤ j2) ⇒ ⊤ i=⊤ j1⊤ j2 P (N1 ◦ ψ) (N2 ◦ ψ)= M ◦ ψ

⊤ i =
∫

⊤ j ⇒ ⊤ i= t⊤ jP t N ◦ ψP ψ N ◦ ψ= M ◦ ψ
⊤ i=⊤vi⊤ j ⇒ ⊤ i= ψ⊤ j P ψ N ◦ ψ= M ◦ ψ

By strong linearity it follows that ⊤f P f̄ ◦ ψ for all f ∈ J4wv
cv . Using a similar

induction it can be checked that

⊥ i P M̄ ◦ (2 ψ)

for all i∈ J4w v,≪w. Indeed, in the product case, we have

⊥(j1 j2)P ψ#j1 (2 ψ)#j2 + (2 ψ)#j1 t#j2 P (2 ψ)#j1j2.

We deduce that ⊥f P f̄ ◦ (2 ψ) for all f ∈ J4wv,≪w
cv . Setting ξ = 4 ψ (ϕ ◦ (2 ψ)),

with ϕ as in the proof of proposition 6.8, we finally claim that

⊥ i P ξ [( M̄ ◦ ψ)′ ◦ (2 ψ)]

for all i∈ J4w v. Indeed, using induction, we have

⊥(j1 j2) P ψ#j1 ξ [(ψ#j2)′ ◦ (2 ψ)] + t#j2 ξ [(ψ#j1)′ ◦ (2 ψ)]

P ξ [(ψ#j1 (ψ#j2)′+ ψ#j2 (ψ#j1)′) ◦ (2 ψ)]

= ξ [(ψ#j1j2)′ ◦ (2 ψ)]
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in the multiplicative case and

⊥
∫

j P t⊥ j+
∫

(vi⊤ j)′ ◦ (2 ψ)

P t ξ [(ψ#i−1)′ ◦ (2 ψ)]+ [t ϕ (ψ#i)′] ◦ (2 ψ)

= t ξ [(ψ#i−1)′ ◦ (2 ψ)]+
1

2
ξ [(ψ#i)′ ◦ (2 ψ)]

P ξ [(t#i◦ ψ)′ ◦ (2 ψ)]

in the integral case. We conclude that T♦wv f ∈J4wv
cv for all f ∈J4wv

cv . �

8. Full expansions

8.1. Higher order expansions

Let A 4 1 be a grid-based subset of BR/≍w and m ∈ BR. We will denote by
Jm;A=C[[Jm;A]] the set of all series f ∈J for which there exists a grid-based language
specification L with

• suppwI ⊆mA and f ∈C[[I]] for some I ∈L .

• suppwI ⊆ d̂I A for all I ∈L.

Given v≍w
∗ m and ♦∈{≻,≍,≺}, let us now define the grid-based operator

T♦wv:Jm;S≺,wA → Jm;S≺,wA∩J♦wv

We proceed by induction over

p= pm,v= card {n∈S≺,wA:m<wn≻wv}.

The case p = 0 has been dealt with in the previous section. Assume therefore
that p > 0. Let m̃ be the maximal element of (S≺,w A m)≺wm. Then im T≺wm ⊆
Jm;S≺,wA∩J≺wv⊆Jm̃;S≺,wA. Moreover, pm̃,v<p, so we already have constructed T♦wv

on Jm̃;S≺,wA. Given i∈ Jm;S≺,wA we now define

T≻wv i = T≍wm i+T≻wvT≺wm i

T≍wv i = T≍wvT≺wm i

T≺wv i = T≺wvT≺wm i

Similarly, given a grid-based language I ⊆Jm;S≺,wA, we define

T≻wvI 4 T≍wmI ∪T≻wvT≺wmI

T≍wvI 4 T≍wvT≺wmI

T≺wvI 4 T≺wvT≺wmI

so that T♦wv i∈T♦wvI for all i∈I. Since T≺wm i∈T≺wmI ⊆Jm̃;S≺,wA, we notice that
T♦wv T≺wm i and T♦wv T≺wm I are well-defined. We also notice that the definitions
extend the previous definitions on Jm̃;S≺,wA if M̂ ≺wm resp. d̂I≺wm, since T≍wm and
T≺wm are respectively the zero and the identity operator on Jm̃;S≺,wA. By strong
linearity, we thus obtain the desired operator T♦wv on Jm;S≺,wA, which extends its
previous definition on Jm̃;S≺,wA. Since any f ∈J belongs to Jm;A for some m and A,
it follows that T♦wv is defined on J.
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Proposition 8.1. Assuming that † maps X into Icv, the T♦wv with ♦∈{≻,≍,≺}
map Jcv into itself.

Proof. Assume that f ∈ Jcv ∩ Jm;S≺,wA. Let us show by induction over p = pm,v

that T♦wv f ∈ Jcv. We have already treated the case p = 0 in proposition 7.10. In
particular, T≍wm f , T≺wm f ∈J

cv∩Jm̃;S≺,wA, with m̃ as above. Now

T≻wv f = T≍wm f +T≻wvT≺wm f

T♦wv f = T♦wvT≺wm f (♦∈{≍,≺})

We conclude by the induction hypothesis. �

8.2. Properties of higher order expansion

Proposition 8.2. The operators T≻wv, T≍wv and T≺wv on J are projections with

imT≻wv = J≻wv,≪w

imT≍wv = J≍wv,≪w

imT≺wv = J≺wv

Furthermore, the restriction of T≺wv to J≪w is a projection on J≺wv,≪w.

Proof. Given i∈Jm;A, let us prove by induction over pm,v that i∈J≻wv,≪w implies
T≻wv i= i. If pm,v=0, then we are done by proposition 7.7. Otherwise, we have eitherM̂ ≍wm or M̂ ≺wm. In the first case, we obtain T≍wmi= i and T≺wmi=0. In the second
case, we get T≍wm i = 0 and T≻wv T≺wm i = i, by induction. Similarly, i ∈ J≍wv,≪w

implies T≍wv i= i and i∈J≺wv implies T≺wv i= i. It follows that T≻wv, T≍wv and T≺wv

are the identity operators on J≻wv,≪w, J≍wv,≪w resp. J≺wv.
Given a grid-based language I ⊆ Jm;A, let us now prove by induction over pm,v

that T≻wv I ⊆ J≻wv,≪w, T≍wv I ⊆ J≍wv,≪w, T≺wv I ⊆ J≺wv and T≺wv I ⊆ J≺wv,≪w

whenever I ⊆ J≪w. If pm,v = 0, then we are done by proposition 7.7. Otherwise,
we have T≺wmI ⊆Jm̃;A (where m̃ is the maximal element of (S≺,wAm)≺wm), so the
induction hypothesis implies

T≻wvT≺wmI ⊆ J≻wv,≪w

T≺wvI =T≍wvT≺wmI ⊆ J≍wv,≪w

T≺wvI =T≺wvT≺wmI ⊆ J≺wv

and T≺wvI=T≺wvT≺wmI ⊆J≺wv,≪w if I ⊆J≪w. Since T≍wmI ⊆J≍wm,≪w⊆J≻wv,≪w,
we conclude that T≻wvI =T≍wmI ∪T≻wvT≺wmI ⊆J≻wv,≪w. �

Proposition 8.3. Let ♦, ♦̃∈ {≻,≍,≺} and ṽ≍w
∗ v. Then the operators P =T♦wv

and P̃ =T♦̃wṽ on J satisfy P̃ ◦P =P ◦ P̃.

Proof. Without loss of generality, we may assume that ṽ < v. We prove that
P̃ ◦P =P ◦ P̃ on C[[Im;A]] by induction over p= pm,v. If p=0, then we are done by
proposition 7.8. So assume that p> 0. Let R=T≍wm if ♦=≻ and R= 0 if ♦� ≻.
Setting Q=T≺wm, we have P =R+P ◦Q. The induction hypothesis combined with
strong linearity implies

P̃ ◦P ◦Q=P ◦ P̃ ◦Q (8.1)
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Now we distinguish three cases:

m ≺w ṽ. If ♦̃� ≺, then
P ◦ P̃ = P̃ ◦P =0.

If ♦̃=≺, then we get

P ◦ P̃ =P = P̃ ◦P .

m ≍w ṽ. If ♦̃=≻, then

P ◦ P̃ = P̃ ◦P =0.

If ♦̃=≍, then P̃ =R, so that

P̃ ◦P = R ◦R+ P̃ ◦P ◦Q=R+P ◦ P̃ ◦Q=R+P ◦R ◦Q=R

P ◦ P̃ = R ◦R+P ◦Q◦R=R

If ♦̃=≺, then P̃ =Q, whence

P̃ ◦P =Q◦R+ P̃ ◦P ◦Q= 0+P ◦ P̃ ◦Q=P ◦ P̃ .

m ≻w ṽ. Let R̃=T≍wm if ♦̃=≻ and R̃=0 if♦� ≻, so that P̃ = R̃+ P̃ ◦Q. Then

P̃ ◦P = P̃ ◦R+ P̃ ◦P ◦Q

= R̃ ◦R+ P̃ ◦Q◦R+ P̃ ◦P ◦Q

= R̃ ◦R+ P̃ ◦P ◦Q

and similarly P ◦ P̃ = R ◦ R̃ + P ◦ P̃ ◦ Q. Now R and R̃ commute, since
we have either R̃ = R or R = 0 or R̃ = 0. From (8.1), we conclude that
P̃ ◦P =P ◦ P̃ . �

8.3. Recursive expansions

We finally have to extend T≻wv, T≍wv and T≺wv from J to I. By induction, we may
assume that we have done this for w̃ = bk̃ with k̃ = k+ 1 and that propositions 8.5
and 8.6 below already hold for k̃ and w̃ instead of k and w. In particular, T≍w̃v is
a projection of I on J.

Now consider a monomial i∈I which is not in J. Then we set

T≻wv i = T≻w̃v i +T≻wvT≍w̃v i

T≍wv i = T≍wvT≍w̃v i

T≺wv i = T≺wvT≍w̃v i+T≺w̃v i

Similarly, given a language I ⊆I but I * J, we set

T≻wvI 4 T≻w̃vI ∪T≻wvT≍w̃vI

T≍wvI 4 T≍wvT≍w̃vI

T≺wvI 4 T≺wvT≍w̃vI ∪T≺w̃vI

so that T♦wv i∈ T♦wvI for each i ∈ I and ♦∈ {≻, ≍, ≺}. Notice that the defining
relations remain valid if i ∈ I or I ⊆ J, by the induction hypotheses. By strong
linearity, the operators T≻wv, T≍wv and T≺wv on J therefore extend to I.
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Proposition 8.4. Assuming that † maps X into Icv, the T♦wv with ♦∈{≻,≍,≺}
map Icv into itself.

Proof. If w is the largest element of B, then we are done by proposition 8.1.
Otherwise, we use induction and assume that we have proved the assertion for all
larger w̃" w. Given f ∈ Icv, it follows that T≻w̃v f , T≍w̃v f , T≺w̃v f ∈ I

cv. Now

T≍wv f = T≍wvT≍w̃v f

T♦wv f = T♦wvT≍w̃v f +T♦w̃v f (♦∈{≻,≺})

We conclude by proposition 8.1. �

8.4. Properties of recursive expansion

Proposition 8.5. The operators T≻wv, T≍wv and T≺wv on I are projections with

imT≻wv = I{i∈I:i≻wv∧i≪ M̂/v}

imT≍wv = I≍wv,≪w

imT≺wv = I{i∈I:i≺wv∧i. v/ M̂}
Furthermore, the restrictions of T≻wv and T≺wv to I≪w are projections on I≻wv,≪w

resp. I≺wv,≪w.

Proof. If k=n, then we are done by proposition 8.2. If k <n, then the induction
hypotheses at the beginning of this section imply that the above properties are
already satisfied for the operators T≻w̃v, T≍w̃v and T≺w̃v.

Assume now that i∈I is such that i≻wv and i≪ M̂/v. If i∈J, then proposition 8.2
implies T≻wv i = i. Otherwise, the induction hypothesis implies T≻w̃v i = i and
T≍w̃v i = T≍w̃v T≻w̃v i = T≻w̃v T≍w̃v i ∈ I≍w̃v ∩ I≻w̃v = {0}. This shows that T≻wv i =
T≻w̃v i+T≻wvT≍w̃v i= i. In a similar way, if i∈I is such that i≺wv and i. M̂/v, then
T≺wv i= i. Finally, if i∈I is such that i≍wv and i≪w, then i∈J, so T≍wv i= i, by
proposition 8.2.

Given a grid-based language I ⊆I, the induction hypothesis and proposition 8.2
also imply

T≻wvI ⊆ {i∈I: i≻w̃v∧ i≪ M̂/v}∪ J≻wv,≪w= {i∈I: i≻wv∧ i≪ M̂/v}
T≍wvI ⊆ J≍wv,≪w=I≍wv,≪w

T≺wvI ⊆ {i∈I: i≺w̃v∧ i. M̂/v}∪J≺wv= {i∈I: i≺wv∧ i. M̂/v}
Finally, if I ⊆I≪w, then we obtain

T≻wvI ⊆ I≻w̃v,≪w∪ J≻wv,≪w= I≻wv,≪w

T≺wvI ⊆ I≺w̃v,≪w∪ J≺wv,≪w= I≺wv,≪w

This completes the proof. �

Proposition 8.6. Let ♦, ♦̃∈ {≻,≍,≺}, v, ṽ∈BR and w= bk, w̃= bk̃ with k6 k̃.

The the operators P =T♦wv, P̃ =T♦̃w̃ṽ on I satisfy P̃ ◦P =P ◦ P̃.
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Proof. If k=n, then we are done by proposition 8.3. If k <n, then the induction
hypotheses at the beginning of this section imply that we have commutation when k
is replaced by k + 1. Notice that we do not necessarily have k̃ = k + 1 contrary to
before, but merely k̃ > k.

Let us first assume that w� w̃. Let Q=T≍bk+1
v and denote R=T♦bk+1

v if ♦� ≍
and R= 0 otherwise. Then P =R+P ◦Q, so the induction hypothesis implies

P ◦ P̃ = R ◦ P̃ +P ◦Q ◦ P̃

= P̃ ◦R+P ◦ P̃ ◦Q

P̃ ◦P = P̃ ◦R+ P̃ ◦P ◦Q

Moreover, by proposition 8.3, P and P̃ commute on the image of Q. We conclude
that P and P̃ commute everywhere.

Assume now that w̃=w. Let Q̃=T≍bk+1
ṽ and denote R̃ =T♦̃bk+1

ṽ if ♦̃� ≍ and

R̃ = 0 otherwise. If ṽ ≍bk+1
v, then Q̃ = Q, Q ◦ R̃ = R̃ ◦ Q = 0 and the induction

hypothesis implies

P ◦ P̃ = R ◦ R̃ +P ◦Q◦ R̃ +P ◦ P̃ ◦ Q̃

= R ◦ R̃ +P ◦ P̃ ◦ Q̃

= R̃ ◦R+ P̃ ◦P ◦Q

= P̃ ◦P

Assume now that ṽ�bk+1
v. We have already shown above that P (or P̃ ) and Q (or

Q̃ or R or R̃) commute. We also have Q ◦ Q̃= Q̃ ◦Q= 0. Consequently,

P ◦ P̃ = R ◦ R̃ +P ◦Q ◦ R̃ +R ◦ P̃ ◦ Q̃+P ◦Q ◦ P̃ ◦ Q̃

= R ◦ R̃ +P ◦Q ◦ R̃ +R ◦ P̃ ◦ Q̃

= R̃ ◦R+ R̃ ◦P ◦Q+ P̃ ◦ Q̃ ◦R

= P̃ ◦P

This completes the proof. �

8.5. Extension of the transbasis

Let us now consider an extension B̆ of the transbasis B with a new element w̆

between bk and w̃= bk+1. Likewise, assume that we have extensions M= zNB̆
R of

M, X̆ of X with ˆ: X̆→M and Ĭ = X̆∫ of I, together with a logarithmic derivation
on X̆ which extends the one on X.

Denote the truncation operators on C[[Ĭ]] as constructed above by T̆♦wv for all
w∈ B̆, v∈ B̆

R and ♦∈{≻,≍,≺}. If w∈B and v∈BR, then we want to show that

the restriction of T̆♦wv to C[[I]] coincides with T♦wv. Denoting by I the canonical
injection of C[[I]] into C[[Ĭ]], we thus have to show that T̆♦wv◦ I = I ◦T♦wv.

In the cases when i ∈ J or i ∈ I and w< w̃, the definitions of T̆♦wv i and T♦wv i

clearly coincide. Assume therefore that w= bk. If ♦=≍, then

T̆≍wv◦ I = T̆≍wv◦ T̆≍w̆v◦ T̆≍w̃v◦ I

= T̆≍wv◦ T̆≍w̆v◦ I ◦T≍w̃v
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Now for i ∈ supp im T≍w̃v we have i ≍w
∗ v and i. w, whence i ≍w̆ v and i≪ v̆. It

follows that T̆≍w̆v i= i and T̆≍wv i=T≍wv i, whence T̆≍wv◦ I= I ◦T≍wv. If ♦� ≍, then
T̆♦wv◦ I = (T̆♦w̃v+ T̆♦w̆v◦ T̆≍w̃v+ T̆♦wv◦ T̆♦w̆v◦ T̆≍w̃v) ◦ I

= I ◦ T♦w̃v+ T̆♦w̆v◦ I ◦ T≍w̃v+ T̆♦wv◦ T̆♦w̆v◦ I ◦ T≍w̃v

= I ◦ T♦w̃v+I ◦T♦wv◦ T≍w̃v

= I ◦ T♦wv

Indeed, in a similar way as above, we have

T̆♦wv◦ T̆♦w̆v◦ I ◦T≍w̃v= T̆♦wv◦ I ◦T≍bk+1
v= I ◦T♦wv◦T≍w̃v.

Furthermore, for i∈ supp imT≍w̃v we have T̆♦w̆v i= 0, since ♦� ≍.
9. Integral transseries

9.1. The set of exponential integral transseries

In this section, we will construct the representation algebra E∫ of integral exponen-
tial transseries, with ˆ:E∫ → zNE. Using induction over n ∈N, we first construct
a differential representation algebra En,

∫ =C[[Yn,
∫ ]] of grid-based integral series,

with underlying monomial group zNEn, and such that

IH1. For each m∈En, there exists a “privileged” x= m̌∈Yn,
∫ with m = x̂.

IH2. For all f1,� , fp∈En,
∫ , there exists a triangular differential representation

subalgebra C[[X∫ ]]⊆En,
∫ of grid-based series with f1,� , fp∈C[[X∫ ]].

In IH2, we call X a triangular set for f . We notice that the union of two triangular
sets is again a triangular set.

Given v,w∈En with w� 1, we claim that the operators T♦wv with ♦∈{≻,≍,≺}
are naturally defined on En,

∫ . Indeed, given f ∈En,
∫ , there exists a triangular set X

for f , v̌ and w̌. In sections 7 and 8, we have shown that T♦wv f is a well-defined
element of C[[X∫ ]]. Moreover, because of section 8.5, the value of T♦wv f does not
depend on the choice of X.

Taking E0,
∫ ={1}∫ and 1̌=1, the induction hypotheses IH1 and IH2 are clearly

satisfied for n=0. Assume that En−1,
∫ has been constructed and let

En−1,
∫

∗ = {f ∈En−1,
∫ : supp f ⊆E2}.

The set

Yn = exp
∫

En−1,
∫

∗

is clearly a monomial group with R-powers and we have a natural mapping
ˆ: Yn,

∫ →C[[zNEn]] defined by

exp
∫

f = exp
∫

f̂

i j = M̂ N̂
∫

i =
∫ M̂
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We define a logarithmic derivative on Yn as follows. Given x=e
∫

f ∈Yn with f̂ � C,
we may write f̂ = c d+ δ with c∈C� , d∈En and δ≺ d. Now we set

x†4 c ď+T≺ezd,<ez1 f.

Since supp f ⊆E2, we notice that T≺ezd,<ez1 f ∈ (En−1,
∫ )≺d,<1,≪d.

We extend the mapping ˇ: En−1→Yn−1 into a mapping ˇ: En→Yn as follows.

If m∈En \En−1 is such that there exists an f ∈ (En−1,
∫

∗ )cv with m = e
∫

f̂ , then we

arbitrarily take such an f and set m̌ =e
∫

f. Otherwise, we simply take m =e
∫

m†

.
Let us prove IH2, which will complete the induction. Given f1, � , fp ∈ En,

∫ ,
the set F = lf(f1) ∪ � ∪ lf(fn) is finite. By the induction hypothesis, there exists a
triangular differential representation subalgebra C[[X∫ ]] ⊆ En−1,

∫ of grid-based
series with F†⊆C[[X∫ ]]. Taking X̃=XFR, we then obtain a triangular differential
representation subalgebra C[[X̃∫ ]] ⊆ En,

∫ of grid-based series with f1, � , fn ∈

C[[X̃∫ ]].

We clearly have E0,
∫ ⊆E1,

∫ ⊆E2,
∫ ⊆� . The set

E∫ =E0,
∫ ∪E1,

∫ ∪E2,
∫ ∪�

is called the set of exponential integral transseries. For f ∈E∫ , the smallest n with
f ∈En,

∫ is called the exponential height of f . Setting Y= exp
∫

E∫
∗ , the finiteness

property implies that E∫ =C[[Y∫ ]] and Y∫ =Y0,
∫ ∪Y1,

∫ ∪� .

9.2. The set of general integral transseries

By induction over the exponential height n, let us now construct a strongly linear
mapping · ◦ exp:En,

∫ →En+1,
∫ which maps integral monomials to integral mono-

mials. So assume that n=0 or that n>0 and that we already have mapping · ◦ exp:
En−1,

∫ →En,
∫ . Given a monomial i∈En,

∫ , we recursively define i ◦ exp by

e
∫

f ◦ exp = e(
∫

f)◦exp (f = 0∨ f ∈En−1,
∫

∗ )

(j1 j2) ◦ exp = (j1 ◦ exp) (j2 ◦ exp)

(
∫

j) ◦ exp =
∫

(e
∫

1 (f ◦ exp))

This definition has a natural analogue for language specifications:

{e
∫

f} ◦ exp = {e(
∫

f)◦exp}

(J1∪J2) ◦ exp = J1 ◦ exp∪J2 ◦ exp

(J1J2) ◦ exp = (J1 ◦ exp) (J2 ◦ exp)

(
∫

J ) ◦ exp =
∫

(e
∫

1 (J ◦ exp))

Hence, · ◦ exp extends by strong linearity to En,
∫ . Now for each l ∈ Z, the

representation algebra

E∫ ◦ expl
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of C[[zN E]] ◦ expl with derivation ∂l =
1

expl
′ z
∂ is formally isomorphic to the

representation algebraE∫ ofC[[zNE]] with derivation ∂. By what precedes, we may
therefore embed each E∫ ◦ expl into E∫ ◦ expl−1 (for instance, e

∫

1∈E∫ is identified
with e(z∂)−1 e(z∂)−1 11∈E∫ ◦ log), so that

E∫ ⊆E∫ ◦ log⊆E∫ ◦ log2⊆�
The set

T∫ =E∫ ∪E∫ ◦ log∪E∫ ◦ log2∪�
is called the set of integral transseries. Setting

Z =Y∪Y ◦ log∪Y ◦ log2∪� ,
we have T∫ =C[[Z∫ ]].

Proposition 9.1. Let f ∈T∫ , v,w∈T and ♦∈{≻,≍ ,≺}. Then

a) There exists a g ∈T∫

,♦w v with ĝ = f̂♦w v.

b) There exists an h∈T∫

,♦v with ĥ = f̂♦v.

Proof. In the case when f ∈E∫ , v,w∈E, w≻1 we may take g=T♦w vf . Similarly,
if supp f ⊆ E and v ∈ E, then we take h= T♦ez v f . The general case is reduced to
one of the above cases modulo a sufficient number of upward shiftings. �

Corollary 9.2. Each f ∈T∫ with f 
 0 admits a multiplicative inverse modulo ≡.

Proof. Writing f̂ = c d (1 + ε) with c d∈C� T and ε≺ 1, we may take

f−1 = c−1 ď−1 (1+ ε)−1,

where g ∈T∫

,≺1 is such that ĝ = ε. �

9.3. Combinatorial convergence

An integral transseries f in E∫ is said to be combinatorially convergent if f is com-
binatorially convergent as an integral series and if x† is recursively combinatorially
convergent for every x∈ lf(f). The inclusions

lf (f + g) ⊆ lf f ∪ lf g

lf (f g) ⊆ lf f ∪ lf g

lf
∫

f = lf f

together with proposition 4.6 imply:

Proposition 9.3. The set E∫
cv is stable under + , × and

∫

. �

Proposition 9.4. The set E∫
cv is stable under postcomposition with exp.

Proof. Given f ∈E∫cv, let us prove by induction over the exponential height n of f
that f ◦ exp∈E∫cv.
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For each x∈ lf f , we have either n= 0 and x ◦ exp= x = 1, or n> 0 and x = e
∫

g,
where g has exponential height 6n−1. In the second case, the induction hypothesis
implies that (x ◦ exp)† =e

∫

1 (g ◦ exp)∈E∫cv. Since

lf (f ◦ exp)⊆ (lf f) ◦ exp∪{e
∫

1},

it follows that x†∈E∫cv for all x∈ lf (f ◦ exp).
Furthermore, the postcomposition with exp send monomials i∈ supp f to mono-

mials i ◦ exp∈ supp f ◦ exp with #i ◦ exp>#i. It follows that

f ◦ exp P
1

1− t
f̄ .

This shows that f ◦ exp∈E∫cv. �

Proposition 9.4 implies that E∫cv◦ exp⊆E∫
cv and more generally

E∫
cv⊆E∫

cv◦ log⊆E∫
cv◦ log2⊆� .

We call

T∫

cv=E∫
cv∪E∫cv◦ log∪E∫cv◦ log2∪�

the set of combinatorially convergent integral transseries. We denote Ecv, Tcv, etc.
the images of E∫cv, T∫

cv, etc. under ˆ. The following is an immediate consequence of
proposition 9.3:

Proposition 9.5. The set T∫

cv is stable under + , × and
∫

. �

Proposition 9.6. Given f1, � , fp ∈ E∫
cv, there exists a triangular set X with

f1,� , fp∈C[[X∫ ]]cv and such that † maps X into E∫
cv.

Proof. We prove the proposition by induction over the maximal exponential
height n of f1, � , fp. If n = 0, then the result is clear, so assume n > 0. The
set F = lf(f1) ∪ � ∪ lf(fp) is finite. By the induction hypothesis, there exists
a triangular set X with F† ⊆ C[[X∫ ]]cv and such that † maps X into E∫

cv. Taking

X̃ = X FR, we have f1, � , fn ∈ C[[X̃∫ ]]cv. Let us show that † maps X̃ into E∫
cv.

So let x∈ X̃ with x̂ † � C. Writing ĝ = c d+ δ, where x=e
∫

g, we have

x† = c ď+T≺ezd,<ez1 g.

By the construction of ˇ, we have ď∈C[[X]]cv. Since g∈C[[X∫ ]]cv, proposition 8.4
also implies that T≺ezd,<ez1 g ∈C[[X∫ ]]cv. �

Proposition 9.7. Let v,w∈Ecv and ♦∈{≻,≍ ,≺} with w≻1. Then T♦wv maps

E∫
cv into itself.

Proof. Given f ∈E∫cv, let X be a triangular set with f ∈C[[X∫ ]]cv and such that
† maps X into E∫

cv. By proposition 8.4, we now have T♦wv f ∈C[[X∫ ]]cv⊆E∫
cv. �

In a similar way as proposition 9.1 and its corollary, one may now prove:
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Proposition 9.8. Let f ∈T∫

cv, v,w∈Tcv and ♦∈{≻,≍ ,≺}. Then

a) There exists a g ∈T∫

,♦w v
cv with ĝ = f̂♦w v.

b) There exists an h∈T∫

,♦v
cv with ĥ = f̂♦v.

Corollary 9.9. Each f ∈T∫

cv with f 
 0 admits a multiplicative inverse modulo ≡.

10. Conclusion

In this paper, we have laid the foundations for the formal calculus with integral
transseries. We intend to further develop this theory in a forthcoming paper. Let
us briefly mention a few points which still have to be investigated in more detail.

First of all, from the foundational point of view, we have chosen to work
with “uniform” arcs and cycles. It is also possible to consider “individual” arcs and
cycles of the form

(i0,I0)*m1 (i1, I1)*m2 � *ml−1 (il−1, Il−1)*ml (il,Il),

such that i0∈I0∈L and for all k∈{1,� , l}, we have ik∈Ik∈L , mk∈M and either

• Ik4 Ik−1∪J or Ik4 J ∪Ik−1, ik = ik−1 and mk = 1.

• Ik4 Ik−1J or Ik4 JIk−1, ik = ik−1 j resp. ik = j ik−1 and mk∈ supp j.

• Ik4 ∫

Ik−1, ik =
∫

ik−1 and mk∈ suppFik−1

∫

.

We expect that languages which verify the weaker “individual” cycle condition can
always be rewritten into languages which verify the usual uniform cycle condition,
using the technique of “loop unrolling”.

More generally, given an arbitrary regular language L, one may define
its “descending part” L� : it consists of those integral monomials i such that any “cycle
in the derivation tree of i” satisfies the individual cycle condition. Again, L� may be
computed using the process of loop unrolling. Another application of loop unrolling
in combination with truncation is to rewrite an arbitrary grid-based language spec-
ification L into an equivalent language specification L̃ modulo ≡, such that for
every I 4 ∫

J ∈ L̃ , we have m D n for all m, n ∈ FJ . In particular, in the
cycle condition, this implies that d(suppFJ

∫

) = d(suppFj

∫

) for all j∈J .
Another interesting topic from the foundational point of view is to systematically

work with operators of either one of the forms

Ix: f 	 x−1
∫

x f

Jx: f 	 d(
∫

x)†
−1 x−1

∫

x f

instead of usual integration. These operators have the advantage of being closer
to arborified moulds and may make it easier to develop the theory of accelero-
summation. Secondly, operators of the form e Jx with e≺ 1 are naturally “infinites-
imal” on suitable frames, and it should be possible to rewrite arbitrary grid-based
languages as a tree whose leafs are languages which are constructed using products,
infinitesimal operators and repetition.
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Finally, it remains to be shown that the set of integral transseries is stable under
many other operations, such as composition and functional inversion (when defined),
formal alien differentiation, the resolution of quasi-linear differential equations, and
so on. Of course, the consideration of additional operators besides integration, such
as infinite summation, is another interesting topic.
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