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It is well known that the operation of integration may lead to divergent formal
expansions like [ e =e® (e7% +e 2"+ 2e 3%+ 6e *7 + ..) as soon as one
leaves the area of formal power series for the area of formal transseries. On
the other hand, from the analytic point of view, the operation of integra-
tion is usually “regularizing”, in the sense that it improves convergence rather
than destroying it. For this reason, it is natural to consider so called “integral
transseries” which are similar to usual transseries except that we are allowed
to recursively keep integrals in the expansions. Integral transseries come with
a natural notion of “combinatorial convergence”, which is preserved under the
usual operations on transseries, as well as integration. In this paper, we lay the
formal foundations for this calculus.

1. INTRODUCTION

A natural way to solve a differential equation like

fl=e"2¢" 4 f? (1.1)
for large z > 1 is to rewrite it in integral form
f=[e?+ [ f? (1.2)

and recursively replace the left-hand side by the right-hand side. This yields a
convergent expansion for f as an “integral transseries”

F=le 2w [ () w2 ([ o) ([ (e )+ (13)

More generally such infinite sums can occur recursively in the exponents. The aim
of this paper is to develop a systematic calculus for integral transseries.

We will work in the context of complex grid-based transseries [vdHO1], which
is briefly recalled in section 2. An “integral transseries” is an infinite linear com-
bination of “integral transmonomials”, which are finite expressions formed from
certain “elementary monomials” using multiplication and integration. The ele-
mentary monomials are exponentials of integrals of “simpler” integral transseries.
The representation of a complex transseries by an integral transseries is far from
being unique, which provides a lot of flexibility for the computation with inte-
gral transseries.
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A major aim of the theory is to lift the usual operations on complex transseries,
such as differentiation, truncation, division, etc., to their representations by integral
transseries. Moreover, we want these operations to preserve “combinatorial conver-
gence”. For instance, even though the transseries represented by f in (1.3) is not
convergent, the expansion is said to be combinatorially convergent as an integral
transseries. Indeed, the main reason of being for integral transseries is that they
allow us to maintain a formal notion of convergence during our computations, there
where the represented transseries themselves are divergent.

Before introducing integral transseries in their full generality, we first introduce
the simpler notion of integral series in sections 3, 4 and 5. A first technical difficulty is
to impose suitable conditions on the supports of integral series. Since we work in the
grid-based context, we need a suitable analogue of the grid-based finiteness property.
This involves two ingredients: finite generation (cf. regular language specifications
in section 5.1) and an asymptotic descent condition (cf. the cycle condition in sec-
tion 5.2), which states roughly speaking that later terms in the expansion are smaller
and smaller from an asymptotic point of view. Moreover, because integral monomials
represent series and not merely monomials, we need this descent condition to be
sufficiently uniform. This motivates the introduction of the span of an integral series
in section 4.3 and frameworks in section 4.4. These notions allow to obtain quick
and rough bounds for the support of the transseries represented by an integral series
or monomial.

In order to lift computations with classical complex transseries to integral
transseries, the key step is a mechanism for rewriting integral transseries in a form
with a clear asymptotically dominant part. For instance, in order to compute a

fraction
1
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it is necessary to first expand the denominator in such a way that it can be inverted.
Using integration by parts, one has

o e 2e2  4e® . e e \2
Um%=&+w+gfﬁ+ug) (1.4)
- e 11e 27 2¢°
Af [ e = e_ e3z +/ -/ 937 (1.5)
whence
2e”

z z e
(Jepoaff e = St
8e2? | e 2e3% €% \2 228 e2e” 27e
c= ISt (IS) - T S —/J

e° e e
z
626
e3z
Now 1 + ¢ admits a natural “integral transseries” inverse 1 — & + &2 + ... A

more systematic procedure for obtaining expansions like (1.4) and (1.5) will be the
object of sections 7 and 8. In section 6, we prepare this material by introducing the
integral transseries analogue of transbases and differentiation. Putting all techniques
together, we finally construct the field of integral transseries in section 9.
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Integral transseries can be seen as a natural generalization of Ecalle’s arborified
moulds [EV04]. One advantage of the approach in this paper is that a systematic
calculus for integral transseries avoids the process of “arborification”. Even though
the latter technique also has a large degree of generality, our technique works in a
context as general as that of complex transseries, for which a satisfactory theory of
accelero-summation is not even known yet (but under development). Furthermore,
with more work, we think that our technique may be generalized so as to include
other types of operators, like infinite summation, and parameterized transseries.
Unfortunately, we also have to pay the price of a certain technicity in sections 7
and 8. It remains an interesting question how far the ideas in this paper may be
further simplified. A few ideas in this direction will be mentioned in the conclusion.
We plan to further develop the topic of integral transseries and its link with the
theory of accelero-summation in a forthcoming paper.

2. COMPLEX TRANSSERIES

2.1. Construction of complex transseries
The field of complex grid-based transseries has been constructed and studied
in [vdHO1|. Below we will quickly present a classical variant of the construction.
We first endow € with the following total ordering:

rt+yi<e’'+yi <= z<z'V(e=2'ANy<y).
This gives C the structure of a totally ordered R-vector space, although the ordering

is not compatible with the multiplication.

REMARK 2.1. In fact, it is possible to consider more general orderings on € and
vary the orderings during the construction [vdH01|. However, in this paper, we will
assume the above ordering, for simplicity.

Now consider the totally ordered monomial groups €&, and corresponding fields
E,=C[I¢&,], which are inductively defined by

&) = 1=exp0
¢, = (expCz)@expE|

We call
E=EUEU---

the field of purely exponential complex transseries. Setting
E=CUeE U,

we have E = C[IE&]I, because of the grid-based property. For each n € N, let
[E o log, = CL¢ o log, I denote the field obtained from IE when replacing z by

log,, z =log v log z. We call
T=EUEologUEologaU---

the field of complex transseries. Setting
T=CUCologUEologaU---,

we again have T =C[I%1, because of the grid-based property.
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REMARK 2.2. In the above construction, we essentially close the field C[2®T under
exponentiation and next under logarithm. In [vdHO1], we proceed exactly the other
way around.

2.2. Differentiation and integration

We recursively define a strong derivation on IE,,, by setting

(el = fef
for monomials e/ € ¢, and extending by strong linearity. Next, we set
1

(folog,) = f'olog,

zlogz---log;_12
for f €eEolog,. It is classical to verify that ’ is a strong derivation which satisfies

f<gNhg*kl= f'<{g. (2.1)

For all f € T7, the logarithmic derivative of f is denoted by ff= f’/f.
Using general strongly linear algebra, it follows from (2.1) that ' admits a dis-
tinguished strong right inverse [, i.e. ([ f)==0for all f. More specifically, one has

1 mTT 9 mTT _ mTT’ 59
m={—+ + +o )m .
I <m* CUEARE ) (2:2)

for all transmonomials m € €\ {1}. It can also be checked that C[€&, \ {1}I and
C[z][&,1 are stable under integration for all n (and similarly for CL&\ {1}1 and
C[z][€1). In particular, we have

£, = €xp f E%—l

in the inductive construction of [E.

2.3. Flatness relations

In this paper, the flatness relations <, <, = and &2 are defined in an R-expo-linear
way:

m<«n < JpcR7:VIER" :m*<n”

m=<n < YAeR*:IpeR*: m<gn#

m==n <— m<xXn<<m

mSn < % ~<m
For instance, z < ¢ < e* and e'T9% = ¢*. A subset & of ¥ is said to be flat if
meGAn<Km=ne6 for all m,neT. We denote by bz the set of all flat subsets.
We have @, {1} € bt and bz is stable under arbitrary intersections.

REMARK 2.3. The above definitions can be generalized to the case of more general
strong algebras C'[9], where 9 is a partially ordered monomial group which
admits powers in a totally ordered ring R with 1> 0. In that case, we set

m<«n < 3JpcR:VYAe R :m*<n
m<n < VAeR7*:3pec R :m<gn
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The definitions remain valid if 91 is only a partially ordered monomial monoid which
can be embedded into a partially ordered group.

Given to € 9, we define the flattened dominance and neglection relations <,
'\<m> _<>,l’<v a‘nd %:‘J by

m=<,nh < Vo<Kmwm=<bvn
m=<yh & Jo<Kkmwm<on
m<pyn & Vo<<mw:m<on
m=<pn & Jh<Xmwm=<ovn

We also define the derived relations <y,, ~y, <i and ~§, by

M=ph & M<KLEN<Kpm
Mrph & m—n<,m
m=pn & m<pnLpm
mepn & m—n<gpm

Notice that m<pyn<&m/n<«Kw and m<jnem/n <X w
The differentiation " and the distinguished integration [ on T satisfy

suppm’ <I; m
supp [ m <i; m

for all m € T\ {1} (the first relation is easily checked and the second one follows
from relation follows from (2.2)). We say that " and [ are flat.

REMARK 2.4. In [vdHO1|, the flatness relations were defined in a C-expo-linear way
using

m=<«<n < logm<logn
m=<n < logm=<logn
Equivalently, we may define them using

m<n < mi<nf
m=<n < mignf
When replacing < and < by the relations <* and <* defined by
f<*g & IpeREVAER: AN f<pg
f<*g © YAeR*IpueR*Af< ug

it is also possible to recover the IR-expo-linear case.

2.4. Transbases

Classically, a transbasis is a tuple B = (by, ..., b,,) of transseries with by < - < b,
and such that

TB1. b, =exp; 2 for some [ € Z.
TB2. logb, € CIby;...;b; 11 for all > 1.
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The integer [ — 1 is called the level of the transbasis and 8 is said to be a plane
transbasis if [ =1. We recall that the flatness relations < and < were defined in
an R-expo-linear way, whence C[[by;...;b; 11 = CIb¥;...; 62 ;1. We denote by BF
the set of power products by --- b;" with aq, ..., @, € R. The level of a transseries
f €T is the highest [ such that f € Eoexp;,;.

In this paper, it will be convenient to consider a variant of the concept of trans-
bases. Given [ € Z, consider the differentiation

1
8[ = m 8
A differential transbasis of level [ is a tuple B = (by, ..., b,) of transseries with

b; <+ < b, and such that

DTB. 6;9 € CIby;...;0;,_11 for all 4.

We will sometimes denote by =exp;z. We notice that C[[by;...;b;1] is stable under 0,
for all i €{1,...,1} and it has been proved in [vdHO1]| that C[bo] [by;...; b;1 is stable
under 0; .

In what follows, all transbasis will be considered to be differential. The following
incomplete transbasis theorem is proved in a similar way as the usual theorem for
non-differential transbases [vdH97|:

THEOREM 2.5. (INCOMPLETE TRANSBASIS THEOREM) Let B be a transbasis of
level | and f € T a transseries of level I'. Then there exists a transbasis B of level
min (1,1) such that f € CLB"T.

3. TRUNCATION-CLOSED REPRESENTATION MODULES

3.1. Representation modules

Let C' be a constant field, 9t a monomial set and let C[[91]] be a strong C-module of
formal power series. Consider a set J and a strong C-module C[[J]] which admits J
as a strong basis. We will call elements of J monomials, even though we do not
necessarily have an ordering < on J. Assume that we have a strongly linear mapping

= C[[3]] = Cflom]],

such that 1 is regular for all i€ J. Then we call C[[J]] a representation module and
we say that f represents f for each f € C[[J]]. We denote by = the equivalence
relation on C[[J]] defined by f=g< f=g. If M and T are monoids and " preserves
multiplication, then we call C'[[J]] a representation algebra.

EXAMPLE 3.1. Given a set J and a mapping “: J— C[[90]] such that 1 is regular for
alli€J, let C[[J]] be the set of all mappings f:J— C such that ( fi1)icyis a summable
family in C[[9]]. A family F € .#(C[[7J]]) is said to be summable if (fi1)(ryerx7is
a summable family in C[[90]], in which case we set

Z F:i»—>z fi-

fer
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The strong summation is well-defined, since fer fi1 is summable for all i €T and
1#+0. The mapping " extends to C[[J]] by strong linearity, giving C[[J]] the structure
of a representation module. Any other representation module with the same J and
" on J can be embedded into C[[J]].

ExaMPLE 3.2. Let C'[PNT be the strong C-algebra of grid-based series over a
monomial group M. Let 3, ..., 3; be infinitesimal monomials in 9T and consider
the formal group 3 =3%--3Z We have a natural multiplicative mapping ": 3 — 9;
300 30— 37 3%, which extends to C'[31 according to the previous example.
This gives C'[3] the structure of a representation algebra.

An feCI3] is called a Cartesian representation of f. If 90 is generated by its
infinitesimal elements, then each series in C'[91]] admits a Cartesian representation
for a suitable 3.

EXAMPLE 3.3. Let C[[J]] be a representation module with representation mapping
“ O3] — C[[M]]. A support function is a mapping supp: J — Z2(9M) with suppi2D
supp 1 for all i € 3. Given f € C[[J]], we set supp f = supp i, so that
supp f 2supp f.

A family (fi)ier € C[[T3]]' to be supp-summable if {i € [: m € supp f;} is finite
for all me M. The subset C[[J|amp of C[[T]] of all f such that ( fii)iesupp s IS SUPD-
summable is a representation module for the supp-summability relation. We have
C[3)]sapp = C[|7]] for the trivial support function with suppi=suppi for alli€J.

i€supp f

3.2. Truncation operators

Let C][J]] be a representation module with representation mapping “: C[[J]] —
C[[9M]] and a support function as in example 3.3. Given f € C[[9]] and & CIN, we

denote
fe=>_ fam.

mes

A strongly linear operator Tg: C[[J]] — C][J]] is said to be a truncation operator
w.r.t. G, if

TO1. TeoTs=Ts.

TO2. For all feC[[J]], we have suppTs f C 6.

TO3. For all f € C[[T]], we have Yg\f = fe.

Two truncation operators Tg and Tx are said to be compatible if they commute. In
that case, Tens=Tgo T is again a truncation operator.

Let . be a set of subsets of 9, which is closed under complements and finite
intersections. Then we say that C[[J]] is /-truncation-closed if for each & € .7,
there exists a truncation operator Te: C[[J]] — C[[J]] for each & €., and Tg,ns, =
Ts,0ls,=Ts,0Ts, for all 61,5, € .. In what follows, given m, to € 9, we will
sometimes use the notations (> m)={nem:n>m}, (>, m)={nem:n>,m}, etc.

EXAMPLE 3.4. In the case of Cartesian representations from example 3.2, we may
simply take
Ts:CL3] — CI3T
f— fs
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for all subsets & of 91, where
S={re3tec6).

4. INTEGRAL SERIES

4.1. Integral series

Let C[[9]] be a strong differential C-algebra for the derivation '. Assume that '
admits a regular and distinguished right inverse [ . Let X be a monomial group
together with a multiplicative mapping “: X — C[[91]] such that ¢ is regular for all
r€ X. In what follows, we will assume that r € 9t for r € X.

We denote by J =X the free formal structure generated by X, x and /. In
other words, each element i € J is a tree whose leafs are labeled by elements in X,
whose unary nodes are labeled by [, and whose binary nodes are labeled by x. For
instance, if X =e®? e’ then the following tree is an element of X I

*
ez/e\ |

=3¢ o7g

eZ

We will denote by #i the size of i, i.e. the number of leafs plus the number of integral
nodes of the tree i. We denote by #%*1{ the total size of i, i.e. when we also count
multiplicative nodes. For instance, the size of the above example tree is 4 and its
total size 6. We denote by 1fi the finite subset of X of leafs of i. Elements of J are
called integral monomials. It may sometimes be useful to assume the existence of a
special integral node monomial 1 of size 0.

Each integral monomial i € J induces a natural element t € C'[[90]]. Indeed, this
was already assumed if i€ X. If i=j;jo resp. i= [ j, then we recursively set

jij2 = J1)2 Tesp.
Ji=17]j
We also recursively define a non-trivial support function supp by

suppr = suppi (r€X)

SUppjija = SuppjiSuppjs
sﬁﬁpfj = U suppf m
MESUPP j

We let C[[J]] denote the (non-associative) representation algebra from example 3.3.
Elements of C[[J]] are called integral series and we call C[[J]] a representation
algebra of integral series with underlying monomial group M. For each f € C[[T]],
we denote If f =[] Ifi.

i€supp f

REMARK 4.1. The multiplication on C[[9]] is not associative nor commutative.
In the sequel of this paper, this will not be a problem, since integral transseries are
mainly used for the purpose of representation. Nevertheless, it is possible to define
an associative (and/or commutative) variant of C[[90]].
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Let ~ be the equivalence relation on J generated by all relations of the form
(ij)€~i(j€). This relation is compatible with the representation mapping ~ as well
as the size function #. Assuming that 1 €7, it follows that J/~ has the structure of
a multiplicative monoid and C[[J/~]] has the structure of an associative represen-
tation algebra. The mapping “: C[[J]] — C[[9N]] naturally factors through C[[J/~]].

4.2. Computations in C[[J]]

The mapping [ :J— C[[J]];i— [ i naturally extends by strong linearity to C[[J]].
Indeed, given j € J there is at most one i € J with j€supp [ i={[ i}. Similarly, the
multiplication x extends to a strongly bilinear mapping x: C[[J]]? — C|[J]]. Given
f€C[[T]], we denote by sx and X s the strongly linear operators on C[[J]] with

X9 = fyg
Xpg = gf

The operators [, ¢x and x (for monomials i) admit strongly linear left inverses
[, ¥ and X whose action on monomials is given by

Ti- {% ifi= [j

otherwise

[ dfi=g
¢ o 0 otherwise

[ ifi=je
e 0 otherwise

Let f € C[[J]] be such that supp f < 1. Then we claim that
A+ )t =l=f+ ==+ ff=f DN+ =

is a well-define multiplicative inverse of 1+ f modulo =. Indeed, supp (1+ f)~!1C

(supp f)*. Moreover, given i € J and k with i € supp f*, we must have k < #%4.

4.3. The span of an integral series

Consider an exponential transmonomial m € & with m' > z. Then
(e*moexp)i=e"mlioexp+1=mioexp
For arbitrary transmonomials m € ¥ it follows that
(exp;, zmoexp,) olog, X (exp) i 2moexp, 1) olog, 1 X
for a sufficiently large n. For such an n, we define the integral span of m by

ispanm = (exp o 0 olog) ([exp;, 2 m o exp,]| o log,,).
We have
supp [ m € {n€ T n={panm 0 m)-

EXAMPLE 4.2. We have ispane®” = e, ispan e”= z and ispan 1 =1log z. Notice that

ispan e (m o exp) = (ispanm) o exp.
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Assume now that 9 C T. For integral monomials i € C[[M]];, we recursively
define the span of i by

spany = 1
spanij = max {spani,spanj}
=X
span [ i = max {spani,ispand;}
<«

We have
suppiC {m € W m =gpani0: }-

For f € C[[M]]; such that If f = Uiesuppf If i is finite (we say that f has finitely
generated support), we define span f =maxcsupp f Span i.

EXAMPLE 4.3. We have spane®’([ e ([ ¢%)?) =e.

4.4. Frameworks

A framework is a set # of subsets of 9 which is closed under arbitrary intersections
and such that {m} € .% for each m € M. The elements of .# will be called frames.
For each subset & C 901 there exists a smallest frame which contains § and we denote

it by (6)3

EXAMPLE 4.4. Assume that 91 is a monomial group and define the flatness relations
as in remark 2.3. Then the set
F=Fm= |J 6o
Sebhon,0eM
is a framework. Indeed, if (§;)ic; = (&; 0;)ics is a family of elements in .# with
N;c; SiF D, then N, Ti=((,.; &:)v for any v e, _, Fi. If M is only a monomial

monoid which can be embedded in a monomial group &, then . ={FNM:F€ F s}
is again a framework.

A framework function on J is a function § which associates a frame §; € % to
each integral monomial i € J, so that

S = {r} ifi=reX

Siin = (85 8i)z

5 2 ( U s f m>
mEgj F

In particular, supp i C §; for all i € J. We call §; the frame for i. More generally,
given a set & of integral monomials, we call

S3= (i€

the frame for &. Given a representation algebra C][J]] of integral series with a
framework function §: J — F as above, we call C[[J]] a framed representation
algebra.
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EXAMPLE 4.5. Assume that 91 C . Taking
Si: {m eMNM:m X:panibi}

for all i€ J, we define a framework function on J.

4.5. Combinatorial convergence

Given an integral series f € C[[J]], the number of integral monomials i with #i=n
is finite for each fixed size n € N. Therefore, we may define the majorating series

f €tR>[t] for f by
f = Z |fi|t#i'
ie@ff

We say that f is combinatorially convergent if f is convergent. We will denote the
set of combinatorially convergent series in C[[J]] by C[[J]]*".

PROPOSITION 4.6. The set C[[J]]* is stable under +, x and [.
PROOF. This follows immediately from the facts that for all f, g € C[[J]]¢", we have
F+g < f+g
77 9 Is
I

Here ¢ <9 for ¢, € R7[t] if o, < 4, for all n € N. O

y/AN

/AN
T+~
Q@

A family (f;)sc; of elements in C[[J]]° is said to be summable if (f;)ics is a
summable family of power series in R*{t}}. In other words, {i € I: f;, # 0} is
finite for each n€ N and > (>, ; fi)t" € R*{{t}}. The set C[[J]]* is a strong
C-module for this infinite summation operator.

Consider a strongly linear mapping L: C[[J]] — CJ[[J]]. For each n, k € N, let
Ly =maxXicy s=n (Li), € RPU{ + o0} We call L = Yo L,u"= an Ly g tFun
the majorant series for L. Notice that L is uniquely determined by the restriction
of L to 3. We may also regard L as a mapping on R* U {+oo}[[t]] by setting
Lf :ka L1, [ t*. We have

Lf < Lf
for all f € C[[I]]". If L maps RZ{{t}} into itself, then L maps C[[J]]* into C[[J]]<",
and we say that L is uniformly strong. This is the case if and only if (a" L,,)nen is a
summable family in R*{{t}} for each a > 0. In particular, if L € R*{{t,u}} and there
exist constants o, 3> 0 with L, ;=0 for all k <an — 3, then L is uniformly strong.

A uniformly strong mapping L: C[[J]] — C[[J]] is said to be a rewriting if L f= f
for all f € C[[J]]. In that case L f is said to be a rewriting of f and we write f > L f.
If L maps J into itself, then we call L a monomial rewriting. In particular, consider a
mapping L:J — J such that there exist constants o, 3> 0 with Li=1, supp Li=suppi
and si<a+ (s for all i€J. Then L extends uniquely to a monomial rewriting.

EXAMPLE 4.7. The mapping which recursively replaces multiplications ij by mul-
tiplications ji determines a monomial rewriting.
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4.6. Mouldification

Assume that C' is the constant field for the derivation on C[[9]]. Then for any f,
g € C[[9M]] there exists a constant ¢y , € C' with

UNDUa=Ffla+[aff+erg

Let 3™ be the subset of J of integral monomials of the form

Fof ?1f ICQ"'f b

with 1o, ..., 11 € X. We recursively define a product - on C[J™q] by

£y = vy
t-(wfj) =r0f]
(cht)nzzcnfi
@[O0 =) G SD+[ G D)+es)

for all ¢,y € X and i,j € ™4 and extension by linearity. Here we understand that the
products ry are taken in X. We recursively define the mouldification mldie C[J™!]
of an integral monomial i € J by

mldi = i (ieJmld)
mldij = (mldi)-(mldj) (i,j€T\IT™)
mld [(i = 1[ mldi (1€7)

This definition extends to a strongly linear mapping mld: C[[J]] — C[[3™]].

For several purposes, it is more convenient to work with moulds in C[[J
than general integral series in C[[J]]. However, the mapping mld generally destroys
combinatorial convergence, i.e. mld is not a rewriting. The convergence can often
be restored using the process of arborification [EV04], which corresponds more or
less to inverting the mapping mld in a nice way. In this paper, we will show that
most important operations can be carried out directly in C[[J]], while preserving
combinatorial convergence.

)

5. GRID-BASED INTEGRAL SERIES

Throughout this section, we assume that C[[J]] = C[[X]] is a framed representation
algebra of integral series with underlying monomial group 991 and framework func-
tion §:J — Z.

5.1. Regular languages

A regular language specification is a finite set .Z of formal language symbols, together
with a rule of one of the following forms for each Z € .Z":

R1. T:={;}, with r e X;
R2. 7:= jl U j2a with jl, jQ GZ;
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R3. 7:= jl jz, with jl,jzeg;
R4. 7= [ J, with J€.Z.

The language symbols 7 € . may regarded as subsets of J as follows. Consider
the set S of mapping o: £ — J, such that for all Z € £ we have o(Z) D {r},
o(Z)20(J)Ua(P), o(Z)D0(Th) o(J), resp. o(Z) D [ o(T), if T is specified by
R1, R2, R3 resp. R4. Then N S:Z— [ _4 0(Z) is again in S. We will regard
T €.Z as the subset (N.S)(Z) of 3. Subsets of this kind are called regular languages.

EXAMPLE 5.1. For each finite subset § of X, the set S generated by §, x and f
is a regular language. Notice that § consists of the i € J with 1fi C §. Inversely,
given a regular language specification .Z, let § C X be the finite set monomials ¢ € §,
such that 7:= {r} for some Z € . Then each Z € £ is contained in § and the set
If f is finite for each f e C[[Z]].

Given a regular language specification .2, we say that Z € .Z directly depends on
JeZ and wewrite Z—J, U T:=JUK,Z7:=KUJ,7T:=JK,7:=KJ for some
KeZ, orT:=[J. The transitive closure of the direct dependency relation « is
denoted by «*; we say that Z depends on J, if Z+«+* 7. The dependency relation «*
is reflexive and transitive, but not necessarily anti-symmetric, since distinct language
symbols may mutually depend on each other.

EXAMPLE 5.2. Reconsider the introductory equation (1.1). In its integral form (1.2),
this equation gives rise to the regular language specification

Il = fI27
IQ = 13U1—4,
Iy = {e 2},
1, = L1y,

where we may take X = eB®* B¢ 9t = 2N X and the natural embedding of X
into M for . We will show later that all integral monomials which occur in the
expansion (1.3) belong to Z;.

REMARK 5.3. In practice, in order to specify a regular language, it will often be con-
venient to regroup non interdependent rules together. For instance, the language 7;
from example 5.2 may simply be specified by

Il = f ({G_QGZ} UIl Il)

REMARK 5.4. Consider a regular language specification . and a language
symbol Z € & such that Z «* J; for no J; € £ with J; := {¢} for some p.
Then 7 = & as a subset of J. A language specification which contains no sym-
bols Z of the above type is said to be well-rooted.

5.2. Grid-based languages

Let .Z be a regular language specification. An arc is a sequence

m 1

L2538 BT, (5.1)
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such that Zp € £ and for all k€ {1,...,1}, we have Z}, € £, m; € M and either
o I, =T, UJorZl,=JUZL,_; and mp=1.
o TI.:=T,_1J or I,:=JIj_1 and my €supp J.
o Zp:= [Ty and mk€suppgzk71f.

If 7o = 7;, then we call (5.1) a cycle in Z. A cycle (5.1) is said to be minimal if
To ¢ {7y, ..., Z,_1}. Notice that each two language symbols Z; and Z;s in a cycle
mutually depends on each other.

We say that .Z satisfies the cycle condition, if m;---m; <1 for every cycle (5.1).
In that case, we say that .Z is a grid-based language specification and the elements
of £ are called grid-based languages. A grid-based subset of J is an arbitrary subset
of a grid-based language. Series in C[[J]] with grid-based support are called grid-
based integral series. We denote by C'[[J] the representation algebra of such grid-
based series.

REMARK 5.5. In relation to remark 5.3 it is often useful to consider a slightly
more general notion of arcs by allowing sub-arcs 7, R S 1, to be replaced
by one-step arcs Z, Metl M Z, in the case when the languages Z,.1, ..., Z,_; are
unique with the properties that 7, —Z,41— - —Z,_1—Z, and Z ¢ {Z,,Z,} for all
ke{p+1,..,q—1}.

EXAMPLE 5.6. The language specification from example 5.2 is grid-based. Indeed,
it suffices to verify the cycle condition for minimal cycles. Up to cyclic permutation,
such minimal cycles are necessarily of the form

L5, L1, 51,

It is easily verified that §7, C (X e®") and Supp Zp <=2 for all k. Consequently,
mesupp [ < zlogz- and n< e, whence mn < 1. If we set

Ig = {eez},

then we notice that the cycle condition is no longer satisfied.

EXAMPLE 5.7. Any grid-based subset of 9 is also a grid-based subset of 9.

5.3. Derivation trees
Let .Z be a regular language specification and define
S={1yu J swps,SU |J swprcm,
I.=[JeZ I.={1}e&

Consider a & x Z-labeled tree T' with children Uy, ..., U,. Assume that the roots of
T,Uy,...,U, are labeled by (m,Z), (ny, J1), ..., (0., J;.). We say that T is a derivation
tree if this is recursively the case for Uy, ..., U, and either

e 7:={r},r=0and mesuppr.
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e T:=TJ1UKorZ:=KUJ for some Ke.Z,r=1and m=1.
o I =" Jpr=2andm=1.
e I:=[J,r=1andméesuppg,,

We denote by 7« the set of all such derivation trees. Given T € 7, we define
mr €M, Ir € £ and ir € Iy as follows:

e my is the product of all s where (s,7) ranges over all labels of T'.

e irisobtained from 7" by substituting each label (s,Z) by ¢, x or [ , depending
on whether 7 :={¢}, Z:= J; Jo resp. L := f J, and by eliminating all nodes
(E,Z) with 7 := jl U jg.

o Ip=17, where (s,7) is the label of the root of 7T

EXAMPLE 5.8. For the language specification .Z from example 5.2, the tree

(1,Zy)

(e73.1y) (e, 1)

(1,Zy) (1,Z5)

(e72¢" I3) (e 2", I3)

is a derivation tree T € 7 for the triple (m, i, Z) with m = e 8 7% { =

(f e2) ([ ) and T =T,

PROPOSITION 5.9. For each triple (m,i,Z) with i€ € £ and m € supp i, there
exists a T € Ty with m=myp, i=ip and T =1r.

PROOF. We recursively construct T'= Ty, ; 7 as follows:
o If 7:={r}, then T\y;7 is reduced to its root labeled by (m,Z).
o If 7:=7J,UJ, then we choose k € {1,2} with i € J}, and set

Twiz = (1,7)

Tz, 7
o If7:= jl jg, 1:]1]2 and m=nny with nkEsﬁp\pjk (k’: 1,2), then

Toiz = (1,7)

Tm7j17«71 Tn27j2,\72
o IfZ7:=[J,i=/jand m=sn with s €suppg, [ and nesuppj, then

Twiz = (8,7)

Thja
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It is easily verified by recursion that m=my, i=iy and Z =Zr. 0

If T'=Tizis a derivation tree constructed as in the proof of the proposition,
then we say that T is a derivation tree for the triple (m,i,Z). For instance, T is a
derivation tree for (mg,ir,Zr) in example 5.8.

LEMMA 5.10. Consider a subtree S of a derivation tree T with respect to a grid-
based language specification L. If Tg =1Ly, then mg = mr.

PRrROOF. The derivation tree T is of the form
(51,1—1) (5.2)

//\\

UL1 .. 9 .. ULPl

where the expanded subtrees are Uj 4, ..., Uy 4, = S. Denoting by (s, Zy) the label of
the root of S and my=my, - my,  /my, forall k€ {1,...,l}, we have a cycle

To BT B "B BT, (5.3)
since Zg =7y =7Z;=Zp. We conclude that myr=m;---m;mg<<mg. O

5.4. Summability of grid-based integral series

Let .Z be a grid-based language specification. We say that a derivation tree T'€ T
is cycle-free, if it does not contain a subtree T' of the form (5.2) with Zr=Zg. Given
T €%, let I be the set of monomials i € Z such that (i,Z) = (i, Zr) for some cycle-
free derivation tree T'. Clearly, Z¢ is finite.

Now consider Z, ..., ) = Zy with Zyp — -+ — 7, and Zy ¢ {7y, ..., Z;_1}. For
ke{l,...,l}, we define the set Sz,_, .7, CIN by

o If7,:=7, 1UJ or Zj:=J ULy, then &7, .7, =1
o If7Zy:=Ty 1J orZy_y:=JIj_1, then &1, 7, = supp J .
o If Ik::ka,l, then GIk—l"Ikzsupngk_lf‘
Clearly, for every my € 81,1, ...,y € &7,_,_,7,, we have a cycle (5.1), so
Sz n, =677, 61,7, < 1.

Let & be the finite union of all &¢,_..._.7,, where Iy, ...,Z; are as above.

LEMMA 5.11. For every i€ Z € £, we have

SWPD i C (STPPI*) €.
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PROOF. Let m€suppi. We will prove that m € (supp Z<) ¢* by induction over the
minimal size of a derivation tree Ty ;7 for (m, i, 7). This is clear if i is cycle-free.
Otherwise, Ty ;7 admits a subtree 7" of the form (5.2) with Zg = Zy. Modulo the
replacement of T" by a subtree, we may assume without loss of generality that the
Ui j and S are all cycle-free. By the definition of &7,_..._.7,, we now have mp/mg € €.
Now consider the derivation tree U which is obtained from 7y, ;7 when replacing 7'
by S. By the induction hypothesis, we have my € (supp Z¢) ¢*. We conclude that
m= (my/mg) my € (Supp Z) &*. O

THEOREM 5.12. Consider the set CI9N 1 of integral series over a grid-based
differential algebra C 9T and assume that supp [ is grid-based on C' IO . Then
all strong linear combinations over grid-based subsets of M, are summable.

PROOF. Let & be a grid-based subset of M, so that Z C & for 7 € £ some grid-
based language specification .Z. Let & and 7« be as in the previous section and
notice that & is grid-based.

Now give & x .Z the natural ordering (s1,Z;) < (82, Z) < 51 < 52 A Z; = Z5 and
order Ty by Higman’s imbrication ordering [vdH04, Section 1.4|, with the additional
requirement that the imbrication preserves roots. Then Kruskal’s theorem implies
that the set of & x Z-labeled trees is well-quasi-ordered for the opposite ordering
of <. We claim that the mapping

@:Tg — M

T — mr
preserves the ordering <.

So assume that Ty 7% T ; 7 and let us prove by induction over the size of Ty i 7
that m = m. Write

Tmiz = (s,7)
1N
Tn1,117j1 ~Tnp7)p7\7p
Tﬁy”,f = (ng)
P RN
aLjLd Tﬁﬁﬁﬁ,jﬁ

Since the imbrication of Ty ;7 into T ; 7 preserves roots, we have
e (5,7)=(5,7),s0that Z=71, p=p and J,= Ji for all k.

e FEach T§, 5,7, admits a subtree of the form 75 =, with Ty, 5, 7,715 5, 7.

Now the induction hypothesis implies that that ny = ﬁk for all k. By lemma 5.10,
we also have n; =1y, for all k. It follows that

m=sn;--Ng >= 50 N =M.

This completes the proof of our claim.
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Now let Z € . and consider a family (¢;1);ez with ¢; € C. Let S be the set of
triples (m,i,7) with i € Z and m € supp i. Then the family (¢; imm)(m,i1)es refines
(¢i1)iez. By proposition 5.9, each triple (m,i,7Z) € S admits a (distinct) derivation
tree T,z € 7. By what precedes, it follows that (c; 1mm)m,i1)es is a well-based
family. From lemma 5.11, we conclude that (¢;1)ie7 is a grid-based family. U

Theorem 5.12 implies in particular t?at supp Z = UieI supp i is grid-based
forall 7 € . If 7 # @, then we denote 07 = 0gppz. A truncation operator Tig on
CIM; 1 is said to be compatible with the grid-based structure, if for every grid-
based language 7 C 9, there exists a grid-based language TsZ so that T's maps
C[IZ] into CITsZT.

6. DIFFERENTIATION

Throughout this section, we assume that CI[J] = CIX 1 is a representation
algebra of grid-based series with underlying monomial group 9t C ¥ and framework
function §:J — #.

6.1. Stability properties under boolean operations

PROPOSITION 6.1. The intersection of a grid-based and a reqular language is a grid-
based language.

PROOF. Consider a grid-based and a regular language specification .Z resp. £ . In
view of remark 5.3, we may assume that each language symbol Z € & resp. Z € £
is specified by a rule of the form

T := HhxKiU-UJxKyU [ LiU-U[ LU{x1, .00} (6.1)

T := N xKiU-UT;x KU [ LU U [ LaU{Ey, ..., 7} (6.2)
Let Z R .Z be the regular language specification, whose symbols are formal inter-
sections ZNZ with Z and Z as above, and so that each ZNZ is specified by

INZ:= ( U (TN T7) x (/Ciﬂ/éz)) U ( U / (ﬁzﬂéz)> U{es, e b {0 ER )
Since any cycle ZoNZy = - B T,N7Z in £ R % induces a cycle 7y 3 - BT in L,
we conclude that .2 R .Z is a regular language specification. O

PROPOSITION 6.2. The set difference between a grid-based and a reqular language
15 a grid-based language.

PrOOF. Consider a grid-based and a regular language specification £ resp. £,
where each language symbol TeZLresp. I €% isspecified by a rule of the form (6. 1)
resp. (6.2). Let £ x % be the regular language specification, whose symbols are

formal differences T\U with T as in (6.1) and where i =Z;U--- UZ, is a finite union,
where each Z; is specified by

fs :\73,1 Xlés,lu"'uz,ﬁs XIés,ﬁsufﬁs,lu"'UfEs,ijsu{is,la-“ais,fs}'
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Each formal symbol Z \Z:{ is specified by

=) U (m\ U i,;)x(/ci\ U iCS,E)U

i S110Se=T (875)631 (8,[)682

UL\ (£iiu ULy U UL U UL, 5) U

{;17 "'7?7‘}\{?1,17 ) ilfp RS iu717 RS iu,f’u}a

where 7 stands for the set of pairs (s,7) with s€{1,...,u} and 7 €{1,...,p, }. Since
any cycle IO\Z;{OE --;ﬂ IT,NU in £ % £ induces a cycle Ty = - 27, in .2, we
conclude that .Z x £ is a regular language specification. OJ

6.2. Uniform restrictions on the support
Consider i€J, 0 €%, w e X, and a relation { among <, =<, >, <w, =<, ", <1
=%, =1, <, ¥ and <. Then we define

i<t & spani<tu;

i<t & spani=<to;

i & 1O,

These relations generalize to grid-based integral series f € C[[J1l, by requiring that
they hold uniformly for all monomials in a grid-based language Z O supp f. More
precisely, denoting by ¢ the set of all grid-based languages, we define

f<w & (AZeY,supp fCINMETL,i<w))
[€w & (FTZeY,supp fCIANVIET,iLw))
fOv & (IZ €9, supp fCINMETL,idv))
Notice that these definitions indeed extend the case when f is a monomial, since {i}
is a grid-based language for every i€ J. We say that f € C[LJ]1 is reqular, if f=c0+46

for certain c€ C, 0€ X and 6 <. In that case, we denote 07 =0.
Given a subset & of J and f € CIJT, we recall that fe =}, fii. More

generally, if F is a subset of C[[JT, then we denote Fg = {fs: f € F}. These
notations are particularly useful if G is one of the sets

< = {iedikw}
< = {iedikLw}
So = {ieT:idv}
Restrictions on the support combine in a natural way. For instance, we have

CIID <o «w={f€CIIN:FTZ €Y, supp f CTAMVETL,i<wAIK)},

because of proposition 6.1.

PROPOSITION 6.3. Let v,t0 € 9t and { € {>, =<, <}. Given i €T with i < tv, we

define
Tomniz{ i if i0po

0 otherwise
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Then Ty, extends by strong linearity into an operator Ty, o CLIT < — CIIT « 1o

ProOOF. Given f € CIJI] <, there exists a grid-based language specification .
and Z € £ with fe CIZ] and Z < . Then the support of g=>_ Tool
is included in Z, so T, f = g€ CILZ] is well-defined. O

i€supp f fi

REMARK 6.4. It can be shown that one actually has im T o = CILIT <o, ¢ 0-

6.3. Logarithmic derivatives

Let C[I[JT be an algebra of grid-based integral series. A logarithmic derivation on X
is a mapping T: ¥ — C[IJT such that

LD1. ¢ =if, for all r€ %

LD2. feC for all r € X with tTe C.
LD3. t'is regular for all r € X with §7¢ C.
LD4. < if for all r € X with tf¢ C.
LD5. (t))T=Xzf for allr€ X and A€ R.
LD6. 0, =0, for all r,p € X with ¥ <.

In that case, and in virtue of the next sections, we say that C[[J] is a differential
representation algebra of grid-based series. We say that T is finitely based if

Il & =& Ul (&1 Ul (I (SHT U

is finite for all finite & C X.
Given r € X, we will also denote u,=r!. Assuming that ¢ C, let c€ C, 9 € X and
0 <0 be such that u,=c0+9. Then u, admits a natural inverse v, modulo = given by

sz C*l 071 (1 + C*l 071 5)71_

If 7 is a grid-based language with suppd CZ, Z <0 and Z <0, then 7 =227 (v~17)*
is a grid-based language with suppv, C {0} U J, J <0 " and J < 0. It follows
that v, is also a regular grid-based series. In the sequel, we will denote U, ={d}UT
and V,={0"1}U J. If t1 € C7, then we set U=V, = {1} and v,=n; ". If T=0, then
we take U, = @.

Assume now that X = &R for some finite set &, that 9 = zNBE for some plane
differential transbasis B = (by, ..., b,) of transmonomials, and that by =94,...,b,=19,
for certain vy, ..., y, € X. In that case we say that the differential representation
algebra C[IJ1 is triangular and the above notations may be extended to more
general monomials i € J: given i € J with 1 = 22 bf* --- b" and ¢ = p* -+ yon,
we let u; = u, and v; = v, (if ¥ # 1). Furthermore, given tv = b; » ¢*, consider
T=Uy,U---Uly, \ {0y, }. Then for all g =c0+J with £ < b;, we have suppd CZ, T <0
and Z < 0. Similarly, with 7 =0"2Z (0~ Z)* as above, we have suppv, C {0~} U 7,
J <0 " and J < 0. Setting U= {0} UZ and V,, = {07} U J, we may therefore
assume that U, C Uy, and V, C V), for all r € X with ¢ X to. If to =e* then we take
Un=Vw=1{1}.
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6.4. Differentiation

Let us now define a strong derivation : C[[J]] — CILJT. We first define the deriva-
tive of each monomial in J:

ro= (e (resh)
(i) = Vj+if’
() =i

Clearly, i’ =1’ for allie 3.

PROPOSITION 6.5. The mapping ": T — CLJIT extends to a strongly linear mapping
""CIJ31 — CIJ3T, which represents the derivation on CILINT].

PRrROOF. Consider a grid-based language specification .. For each 7 € ., we define
a new language symbol 0Z by

o If 7:={r}, then 0Z:=U,T.

o If7:= 77U, then 07 :=07,U0JJs.

o IfZ:=717, then 0Z:=(0J1) JoU J1 (0T).
o IfZ:=/[J,thendI:=J.

Clearly, if f € CIZI with Z € %, then f' € CLOZ1. Now consider a cycle
Co=2 ... B ¢, which involves one of the languages of the form 0Z with Z € .Z. Since
none of the J € 2 and none of the U, depend on 07, it follows that the cycle has
the form 0Zy = --- 2 97, for certain 7, ..., 7; € .% and modulo remark 5.5. But then
To3 ... M7 is also a cycle, whence my --- m; < 1. We conclude that the 0Z with
7 € .Z are grid-based languages.

Given i € T € £, the above discussion shows that i’ belongs to the grid-based
language 0Z. In order to prove that the mapping Z — C[L0Z]1 extends by strong
linearity, we still need to show that for every j € 9Z there exists only a finite number
of i€Z with j €suppi’. Indeed, by induction over the size of i, it is easily seen that
i is necessarily obtained from j through the replacement of a subtree £ of j by [ ¢
or the replacement of a subtree of the form £ with £ € suppx' by 1. O

6.5. Support properties of differentiation
Assume that 1= C[J] is triangular, with 9t = 2NBE,

PROPOSITION 6.6. There ezist grid-based subsets &, & and Sy of C[zZ [BR]
such that for oll f €1 we have

supp [ f C & supp f
supp [ f € & supp f
supp f € Sosupp f

PrOOF. It suffices to prove the support bounds for monomials f=i.
If m € supp [ i, then there exists an n € supp i with m € supp [ n C
(suppegzesr [ ) n. Consequently, we may take & = suppeyjus | -
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If m € supp f_ i, then i is of the form i = [ j and m € supp j. Consequently,
O/ m€supp [ m CSupp i, so we may take S; = {dm/ymme 2N BB We notice
that 6[ is a finite set.

Let us finally show that we may take Gy = Gf U supp U, where U = U;ex U,

is a finite union up to duplicates. We use induction over the size of i. If i € B,
then have supp i C (supp 4;) i € Sy i. If i =jj jy, then by the induction hypothesis
SUpp (j1j2)' C (&9 SUPP 1) SUPP j2 USUPD j1 (G SUpD j2) = Gpsuppi. Finally, if i= [ j,
thensﬁﬁ)i’:sﬁﬁ)fiQGfsﬁﬁ)i. O
PROPOSITION 6.7. Let v €8 be such that vT X0 €B. Then I, «w is stable under
differentiation.

PROOF. Let .Z be a grid-based language specification with Z < v and Z < 1o for all
TeZ. GivenieZ e Z, let us prove by induction over the size of i that i’ € [« «r. If
Z:={r}, then t < v implies 07 :=U{r} Cl«p «w- If i=)1]2, then ji,i2,j1,72 € Ixp <
implies i’ =j1j2 +J1j5 € I«o,«n- Finally, if i= [ j, then i'=j € I«y <. O

6.6. Combinatorial convergence

PROPOSITION 6.8. Assume that T maps X into CILIN. Then the set CILIT is
stable under differentiation.

PROOF. Given a finite subset of ) of X, let

g0:1+tzg

3S0))
For all i€J with 1f1 C%Q), we claim that

i #itH—1gp
Indeed, using induction over #i, we have
= rlr=rTt<dyp
I(1j2) < (F#n M1 @) ja+i1(F#2 P27 @) = (Hirja) tH1727 1
o(f5) = i=t"t @ ety

By strong linearity, we conclude that

S
3

af < f'¢
for all f € CILIT with If f C%), whence 0f € CLIT". We conclude by recalling
that If f is finite for each f e C[LJIT . O

7. FIRST ORDER EXPANSIONS

Throughout this and the next section, we assume that CILJ] = CLX;1 is a
triangular differential representation algebra of grid-based series with underlying
monomial group MM = 2N BR, framework function §: J — .# and logarithmic
derivation T: X — C[IJT. The objective of this and the next section is to construct
truncation operators Ty, on I=C[LJ] for all $ € {>=, =, <}, b € BE and w € B.
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In this section, we start with the construction of 7%, , on Jg ., where

~

~
J = ng,xﬁ,n

J = Hgm,x:;n

We assume that 1o = by, is fixed and perform the construction simultaneously for all
possible values of v € BE,

7.1. Expansion of monomials

Given i€ J<, o, we define T3 i, T i and T ,i by induction over the size of i. We
always take

T vt = 0
If i <0, then we take

T. i = 0

T_<mni - i

If i <\, 0, then it will be convenient to denote T =1L _,and L =T, _,. We distinguish
the following cases:

1. [ie X]. We take
T =1
1G) = 0
2. [i=j1j2). We take
T = T01) T(2)
L) = TG1) LG2) +LG1) 2
3. [i=[j]. If o' < 1o, then we set

= ()
L) = J L0O)

If b7 =< 10, then we take

w = T(v)
T = wT()
L) = [T<«;i0—-(wT(3)))
= [ [L0G)—w'TG) —wT,;(TG)] (7.1)

REMARK 7.1. The relation (7.1) needs some further explanations. We first observe
that the definitions of 7% i, 7L 1 and T i coincide with those from proposi-
tion 6.3 in the case when i € J«,. This ensures that T (v;) is well-defined. We will
show below (proposition 7.7) that T(j) € J<;j «w. From proposition 6.7, it follows
that T(j)’ € J«w. This ensures that T ;/(T(j)’) is well-defined. Finally, it can be

shown that w’ T(j) <), which justifies the simplification
J T« (' T(G)= [ w'T().
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7.2. Expansion of the language specifications

Consider a grid-based language Z C J< . Given a grid-based language specifica-
tion .Z with Z € £, then we notice that Z only depends on languages J € .2 with
J < 1w. Modulo removing all other languages, we may thus assume without loss of
generality that J < for all J € .Z.

In order to show that the definitions of T\ i, 7% i and T i for monomials

i €7 extend by strong linearity to C[[Z1, we first have to specify regular languages
T, oI, 1<, .7 and T ,T with respect to which T , f, T o f and T _, f can be

=0
expanded for f € CIZI. We proceed along similar lines as for the construction of
T, oi, T viand T ,i.

Since 7 <wb, we take T, ,Z:=0. If 7 <o v, then we take

TXmUI = @
T<muz- = :Z—

If 97 <y b, then we abbreviate TZ = T
following cases:

1. [Z:={r}]. We take

vwZ, 17 =T, ,7 and distinguish the

2. |Z:= 71U J|]. We take

T(I) = Txmu(jl)UTxmn(j2)
L) -

Il
I
3

s
X
C
}ﬂ
ER
)

3. |Z:=TJ1 Jo]. We take
T(@) = T(7) T(%)
L(Z) == T(%) L(F)UL(TR) T
4. [Z:= [ J|. If o' < 10, then we set
T@ = [T
1) = [ L(

J)
J)
If o7 =< 10, then we take
W = T(Vm)

T(IZ) = WT(J)

LZ) = [ (DWW T(T)UWT, 5, (T(T))]
By induction over the size of i, it is straightforward to verify that T(i) e CLT(Z)I
and L (i) e CIL(Z)] for all i.

REMARK 7.2. If J < 1o for all J €.%, then case 4 with v’ < v never occurs, and
it is easily checked that T(J)C J and 1L(J)C J for all 7 C.%. We will show in
proposition 7.3 below that T(J) C J=,j,<w. It follows that W and T ;5. (T(J)’)
are well-defined grid-based languages.
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7.3. Frames for the expanded languages

PROPOSITION 7.3. ForZ €. with T CJ4, v, we have

T>_m :Z— = g
To vl C J=po<mw
T—<mUI g 3-<mt]7

Moreover, if T CJ<, v.<w, then T oI C I, v <o

PROOF. The inclusions are clear if 07 < 0. So assume that 07 =,0 and let i€ TZ.
Let us prove by induction over the minimal size of a derivation tree for (m,i, T Z)
with m € suppi that i <, v and i < . We distinguish the following cases:
T :={z}. We must have i=g. Now r=07=pb and ¢ < 0.
T:=J1U T, Let ke{l1,2} besuch that i€ T J;. Then we must have T J, #+ &,
whence 07 =07. By the induction hypothesis, we get i <0 and i < tv.
Z:= J1 J2. We obtain i =) js with j; € le and js € T Jo. By the induction
hypothesm we have j; =<p 07, j2 =w 0, and ji, jo < . It follows that
1Am‘OJ1‘OJQ_DIAmU and 1_]1]2<<m
I:=[J.Ifi" <, theni= [ jwithje TJ. By the induction hypothesis,
we have j =, 07 and j < . Since it < v, it follows that i < w and
i=[j=p[ 07=<p0z. If 1T X 10, then i=jijs with j; €W and j;€ TJ. By
the induction hypothesis, we get jo <y, 07 and jo < 1v. Since W C J= . <o,
we also have j; <, w and j; <. It follows that ixmwﬁj =07 and i < 1.

The other inclusions are proved in a similar way. O

PROPOSITION 7.4. Gien I €L and € {>, =<, <} withZT CJ<, o, we have

8107 = 9
Sre,e7 © SN (Xwb)
S1o,.7 © 7

PROOF. The inclusions are clear if 97 <, v. Assume therefore that 07 =<, v. If
T C J=,v, then also T C J«, whence Ty, wZ C 7 and §r,, ,7 € §7. Otherwise, we
must have §7 = (<}, ), since 07 € 7 C (= v) and Fz € (Xwb). We conclude by
proposition 7.3. U

7.4. Extension by strong linearity

PROPOSITION 7.5. The languages T\ I, T

X 0

Zand T, .1 are grid-based.

PROOF. For languages of the form 7\ ,Z = @ there is nothing to prove. The case
when J < w for all J € % has also been dealt with in remark 7.2.

Consider a cycle Cy== --- =3 C; which involves a language of the form T(Z). Then
none of the C; can be in £ U{WW}, since none of the languages in .2 U{W} depend
on T(Z). Consequently, the cycle is of the form

T(ZO) oo T(Zh),
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with 9; =0z, for all i. For all 4, let n;=0yy if T(Z;):= W T(Z;_1) and n; =m; otherwise.
Then, using proposition 7.4,
Ty - BT,
is again a cycle with my---my<ny .-y <1.
Let us next consider a cycle Cy— --- = C; which involves a language of the form

1(Z). Then none of the C; can be a language of the form 7, T(7), T 5, (T(J)’)
or W, with J € .Z. Consequently, the cycle is of the form

1L(T) BB 1(1),

with Dizﬁzi for all 4. For all ¢ with Z;:= JZ;_; or Z;:=7; 1 J and m;€supp T (J)
or m; € supp J, let n; = 07 = m;. For the other j, let n; = m;. Then, using
proposition 7.4,

e L

is again a cycle with my---my<ny -y <1. O

PROPOSITION 7.6. T, o, Tx o and T, extend to CLZI by strong linearity.

—~t

PROOF. The proposition is clear for T\ _,. For i€J with i <, v, we also have {¢€J:
iesuppTL,o(8)} =@ and {t€T:icsupp T, (&)} ={i}. Given i€ T with ixy0, let

P(i) = {teTicsuppTL, o(¢)}
V(i) = {¢€TiecsuppTx,.(¥)}

We also define

(i) = {¢e€T:ictT}
(i) = {¢€T:ieTt}
1) = {teTi=[ ¢}
A(l) = {t€T:iesupp ot}

Let us prove by induction over the size of i € J that ®(i) and V(i) are finite. Now

¢(i) < {ifue(IL(i) ¢(IL®1)u [ 1)U [ o(Tly(i)
V(i) C© O(INL(i)) U(lly(i)) U W(ThL (1) Ha(i) U
J v v [ e(M(I) U [ S(AW(IL(i)))

By the induction hypothesis, the sets at the right hand sides are finite. ([l

7.5. Properties of the truncation operators

PROPOSITION 7.7. The operators T, v, T v, T<,0 on J<, v are projections with

w0
iIIl T>‘mU — 0
HnTxmu = Jxmn,<<m
m7. o = Jz,0

Also, the restriction of T< y to Jg v «w @5 a projection on J= o «ro-
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PrROOF. The operator 7\ , = 0 is clearly a projection with im 7. , = 0. By
construction, we also have 7. ,i=1and T ,i=1for i € J= o «w resp. i € J<, v
Given fe CIZT with Z CJ~ o «w, it follows that 7L , f= f € CIZ] and similarly
for T ,. We conclude by proposition 7.3. O

PROPOSITION 7.8. Let <, &€ {~,=, <} and v <}, v. Then the operators P="T,
and P =Ty, 5 on Jx,, satisfy PoP=Po P,

PROOF. The result is clear when v <,,0 or 1 <, 0. Assume therefore that 1 <, 0 <, 0.
If & # <, then Ty o i=Ts 3 Topwi=0. If =<, then T ;i=1and
T<>mUT<>\'UUI_T<>\’U01 |:|

Let us denote by supp,, f the flattened support of f €T in 9M/=<,,. By proposi-
tion 6.6, there exists sets S/ Gf » and Sy, of B R/<, with

supp [ f C & supp f

Swp [ f C & supp f
STpD /' C Gosupp f

PROPOSITION 7.9. There exist a grid-based set & w < 1 such that the operators
T. o and T, on I , satisfy

STy f (7.2)
& - 1o STPDy f

SUPPw T o f

-
SUPPw T<o [ C

PROOF. It suffices to prove both bounds for monomials f = i. The bound (7.2)
directly follows from the fact that 7. ,i€I._,. Taking

6<,m:{m€6‘[,mUGa7m6f7mU6T’m6f,mmﬁml}*,

we prove (7.3) by induction over the size of i. In the case when i <, v, we have
T. »i=1iand we are done, so assume that ixp,v. If i€ X, then 7L _,i=1i and we are
again done. If i=j;js, then

Sﬁp\p 1icC (6<,m Sﬁp\pmh) (6<,m Sﬁp\pmjg) = 6<,m Sﬁp\Pm i
Assume now that i= [ j. If 1= 1w, then we denote u=19, X tv, so that Supp,w =
SUpppw’ ={u} and 1 xuj. Let n€supp, Ti. We distinguish three cases:

1. [i" ¥ o and @ € supp, | w’ Tj| Since supp, Tj = {9}, we have
n <y u? 05 Xy u 0;. This shows that T € U Supp,, i € &< SUPDy, 1, Since
T ESUPD, [ and u < 1.

2. [i"=w and nesupp, [ wTx,;/((Tj))| Since (Tj) < o, we have

SUPPr T<,7((T})") € SUpPy (T5)’

It follows that T € a; uw Supp,, (Tj)’ with a; € S w and a1 < u. Since
SUppy, Tj= {05} = {0:/u}, we also have W € @] 63 SUPD,, i with @ € Sy, and
dy <pU . Hence € T G2 SUPDy i € S < 1o SUPDy I-
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3. [ﬁ € Sﬁp\pm f T]] Let mp, My, M3, My = N, aA; = mg/ml, Ay — mg/mz and
az=my/m3 be as in the following diagram:

WESﬁp\pmi ~ meSﬁp\mei
CTlE@f*’mJ( TchG(‘nym

_ . mEeES . .
3 € SUPDyj  —5" 3 € SUPDy T j

with a; = Omy/ [ my and as € mg_l supp f mgs, so that ag < 0/ my/ms- If mz > mo,
then a; as < O/ [ my O mg/ms = 1, whence a1 a3 € 6 p and ayaz a3 € G . If
m3 << my, then as = my, whence ay, a3 < as and a; a3 = 1. Again, we obtain
aaxaz=0a € 6<,m- O

7.6. Combinatorial convergence

PROPOSITION 7.10. Assuming that T maps X into 1, the T, with { € {=, =<,
<} map JZ , into itself.

PROOF. Let ¢ € t R?[t] be such that ¢ < and
Toidn Q¥

for all i€ J with 17X to. We claim that for all i € J<,,, we have
i 1o,

Indeed, using induction over the size if i, we are always in one of the following cases:

Tie{0,i} = Tidi<ioy

Ti=(Tj)(Tj2) = Ti=ThT)2L(iov) (zoy) =101
Ti=[Tj = Ti=tTjdtjoyLpjorp=ioy)
Ti=TuTj = Ti=yTjyjor=ioy

(G
By strong linearity it follows that T f < f o4 for all f € J% . Using a similar
induction it can be checked that

1id10(29)

for all i € J<,, v,.«w- Indeed, in the product case, we have
(]1 ]2) 1/}#]1 ( w)#)z + (2 1/})#11 tii2 g (2 1/})#11)2_
We deduce that L f < f o (2¢) for all f € JZ , cn Setting £ =41 (v o (21)),
with ¢ as in the proof of proposition 6.8, we finally claim that
LiQ¢[(toy) o(29)]
for all i € 34, ». Indeed, using induction, we have
L(inje) QL PE[(¥72) 0 (29)] +72 £ [(471) 0 (29)))]

L (WP (W) 72 (Y1) ) 0 (29))]
= £[(¥*12) 0 (29)]
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in the multiplicative case and
L[5 < tTi+ [ (uTi)e(2y)
tE[(WH) 0 (29)] + [t (7)o (29)
= &[T o 2v)]+ 3 € [(¥*) 0 (20)]
< L[(tFrorp) o (29)]
in the integral case. We conclude that Ty . f € JZ , for all f € JZ .. O

V/ANR/AN

8. FULL EXPANSIONS

8.1. Higher order expansions

Let 24 < 1 be a grid-based subset of BE/x<, and m € BE. We will denote by
Jma=C[JImad the set of all series f €.J for which there exists a grid-based language
specification . with

o Supp,ZCmA and fe€ CLZ] for some Z € .Z.
o SWpp,Z Cor AforallTeL.
Given v <jm and € {>, <, <}, let us now define the grid-based operator

T<>run: Jm§6<,mm - Jm§6<,mmm‘]]<>mn
We proceed by induction over
P=Pmp=card{T€ G nA:miz=pyn-,0}.

The case p = 0 has been dealt with in the previous section. Assume therefore
that p > 0. Let m be the maximal element of (&%, 2 M) m Then im T, C
I waNJ 20 C Jaie ,a Moreover, pg o < p, so we already have constructed Te, o
on Jae. o Given i€ Jm e o we now define

T>-mni = Txmmi‘|“T>mnT<mmi
Tvmni = TxmnT-<mmi

=

T ot = ThoT<mi
Similarly, given a grid-based language Z C Jm;e_ 2, We define

T}mUZ = TXmmIUT>'mUT<mmZ
Tv UI = TxmnT_<mmI

—~t

To 0l = T2 0T< mZ

so that Ty i€ Te,0Z for alli€Z. Since T mi€ Ty wI CJme. .2, We notice that
Towo T<ymi and To o T2 m L are well-defined. We also notice that the definitions
extend the previous definitions on Jxe. 2 if 1 <pwm resp. 07 <M, since T. mand
T.,m are respectively the zero and the identity operator on Jme. 2. By strong
linearity, we thus obtain the desired operator T¢,,» on Jue. 2, Which extends its
previous definition on Jge_ 2 Since any f €.J belongs to Jye for some m and A,

it follows that T, , is defined on J.
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PROPOSITION 8.1. Assuming that T maps X into I%, the T, with € {~, =, <}
map J< into itself.

PROOF. Assume that f € JN Jy e 2. Let us show by induction over p = pm
that T, f € J¢. We have already treated the case p =0 in proposition 7.10. In
particular, 7= o f, T m f € I NJs6_ .2, With m as above. Now

T>-mnf = Txmmf+T>mnT<mmf
T<>mnf - T<>\uUT‘<mmf (Qe{x7_<})

We conclude by the induction hypothesis. O

8.2. Properties of higher order expansion

PROPOSITION 8.2. The operators T, v, T, v and T o on J are projections with

mT, o = Jo o<
m Txmn = Jxmn,<<m
m7-., = J<,0

Furthermore, the restriction of T< , to J«w is a projection on J- o <ro-

PROOF. Given i€ Jum.q, let us prove by induction over py , that i € J. o «w implies
T, oi=1i. If pyo=0, then we are done by proposition 7.7. Otherwise, we have either
1 <pmor 1 <,m. In the first case, we obtain 7. ni=1and 7% ,i=0. In the second
case, we get 1L mi=0and T , T mi=1, by induction. Similarly, i € J= o«
implies 7L ,i=1and i€ J< , implies T ,i=1i. It follows that T\ ,, T~ ,and T ,
are the identity operators on Jy  y «w, J= v <w r€sp. J= v

Given a grid-based language Z C Jun.q, let us now prove by induction over py
that TL v Z C Js o< T=y0Z € J=po,<ior T<poZ C J<po and T v T C J< o<
whenever 7 C Jcw. If pmy =0, then we are done by proposition 7.7. Otherwise,
we have T nmZ C Jaa (Where m is the maximal element of (& ,2AM)< ), so the
induction hypothesis implies

Te 0T mZ C Jopo,<wo
T<mnI:TxmnT<mmI C 3xmu,<<m
T-<ngZT-<mnT<mmZ - 3-<m0
and TZ owZIT=T oT<,mZ CI<,0<wif T CJcrw. Since Tu mZ CI= m<w S JImpo <o
we conclude that T, Z =T, wZUT. T wZ CJm, o< [

PROPOSITION 8.3. Let &, O € {~,=, <} and v<{,v. Then the operators P="T,
and P =Ty, 5 on T satisfy PoP=PoP.

PROOF. Without loss of generality, we may assume that v = v. We prove that
PoP=PoP onC [Jmal by induction over p=py . If p=0, then we are done by
proposition 7.8. So assume that p>0. Let R=T.  if $=> and R=0if {+ .
Setting () =T, m, we have P =R+ Po (). The induction hypothesis combined with
strong linearity implies

PoPoQ=PoPoQ (8.1)
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Now we distinguish three cases:

m <, 0. If $+ <, then
If =<, then we get

m <, 0. If<~>:>—, then
PoP=PoP=0.

If &= =, then P = R, so that

PoP = RoR+PoPoQ=R+PoPoQ=R+PoRoQ=R
PoP = RoR+PoQoR=R

If &= <, then P = Q, whence
PoP=QoR+PoPoQ=0+PoPoQ=PoP.

m > 0. Let R=T. nif 0=> and R=01if $+ >, so that P=R+ P o Q. Then

PoP = PoR+PoPoQ
= éoR—i—]SoQoR—l—]SoPoQ
— RoR+PoPoQ

and similarly Po P = Ro R+ Po P o Q. Now R and R commute, since
we have either R = R or R = 0 or R = 0. From (8.1), we conclude that
PoP=PoP. UJ

8.3. Recursive expansions

We finally have to extend T\ ., Tx , and 7. , from J to I. By induction, we may

assume that we have done this for to =b; with k =k +1 and that propositions 8.5
and 8.6 below already hold for k& and o instead of k and tv. In particular, T. o is
a projection of T on J.

Now consider a monomial i € J which is not in J. Then we set

jl‘luni = T>501+T>mUTX@Ui
Tooi = TopoTeyi

= b

T_<mni — T—<mUTXr§Ui+T-<r{]Ui
Similarly, given a language Z CJ but Z € J, we set

T, ol = Th;,nIUThunTx‘;,nI
T~ I = T TI-.,7T

b Xpwb £ Xpo

T—<\UUI = T—<|UUTV UIUT_<‘{]UI

~r

so that T, vi € T 0 Z for each i€Z and < € {>, <, <}. Notice that the defining
relations remain valid if i € J or Z C J, by the induction hypotheses. By strong
linearity, the operators 7\ ,, 7%, and T, on J therefore extend to I.
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PROPOSITION 8.4. Assuming that T maps X into I%, the T, with {€{=, =<, <}
map I into itself.

PROOF. If 1 is the largest element of B, then we are done by proposition 8.1.
Otherwise, we use induction and assume that we have proved the assertion for all
larger w > to. Given f €I, it follows that T, _, f, T o f, T« f € I¢. Now

Txmuf = TxmnTx‘;,nf
Towo | = TogoTxgof+Togo f (Qe{~ =<}

We conclude by proposition 8.1. O

8.4. Properties of recursive expansion

PROPOSITION 8.5. The operators Ty, T, and T<_, on I are projections with

m T>mn = H{iejzi>\un/\i<<i/n}
m Txmn = me v, < 1o
m7T. o = [icgizyoni<o/i}

Furthermore, the restrictions of 1\, and T, to L« are projections on I, «w

resp. I, o <w-

PROOF. If k=n, then we are done by proposition 8.2. If k£ <n, then the induction
hypotheses at the beginning of this section imply that the above properties are
already satisfied for the operators T\ _,, T, and T .

Assume now that i€ J is such that i>>,0 and i< 1 /v. If i€ J, then proposition 8.2
implies T\, i = i. Otherwise, the induction hypothesis implies 7, ., i = i and
Te oi=T o Tv vi=T T vi€lo NI _,={0}. This shows that T\ ,i=
Ty oi+ T 0T, vi=1. In a similar way, if i € J is such that i <, v and i < 1 /v, then
T, oi=1. Finally, if i€ J is such that i<, and i <, then i€ J, so T ,i=1i, by
proposition 8.2.

Given a grid-based language Z C7J, the induction hypothesis and proposition 8.2
also imply

T, I C
TxmnI g 3xmn,<<m:jxmu,<<m
To0Z C {{€Ti<pp AL/} UJ< o={i€Ti<poANiL1/0}

{ieTir-go NI/} UJ ocn={1€Ti-p,0ANiK1/0}

Finally, if 7 C J«, then we obtain

Trol S TrgocnUdrpo<n=Ir,0<m
Ti0Z C T 0<nUT<po<n=J<p0<mw
This completes the proof. O

PROPOSITION 8.6. Let b, e {>,=, <}, v,0€BR and o =by, 10 =>b; with k<k.
The the operators P =T, v, P =T 5 on I satisfy PoP=PoP.
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PROOF. If k=n, then we are done by proposition 8.3. If £k <n, then the induction
hypotheses at the beginning of this section imply that we have commutation when &
is replaced by k£ + 1. Notice that we do not necessarily have k=k+1 contrary to
before, but merely k> k.

Let us first assume that ro << w. Let Q=T oanddenote R=Ty,  oif + =

and R=0 otherwise. Then P= R+ Po (), so the induction hypothesis implies

PoP = RoP+PoQoP
= f)oRJrPopoQ
PoP = PoR+PoPoQ

Moreover, by proposition 8.3, P and P commute on the image of Q. We conclude
that P and P commute everywhere.
Assume now that w=tv. Let Q) =T, s and denote R = T<~>bk+la if {#+ =< and

R = 0 otherwise. If b =p,,, 0, then Q=Q, QoR=RoQ=0 and the induction
hypothesis implies

PoP = RoR+PoQoR+PoPoQ
= RoR+PoPoQ
= RoR+PoPoQ
= PoP
Assume now that v %y, ,, v. We have already shown above that P (or P) and Q (or
Q@ or R or R) commute. We also have Qo Q = @Q o Q =0. Consequently,

PoP = RoR+PoQoR+RoPoQ+PoQoPoQ
= ROR+POQOR+RopoQ
= RoR+RoPoQ+PoQoR
= PoP

This completes the proof. O]

8.5. Extension of the transbasis

Let us now consider an extension 9B of the transbasis B with a new element tv
between b, and to = ka Likewise, assume that we have extensions I = NBR of
m, Xof X with : X >0 and T=X 1 of J, together with a logarithmic derivation

on X which extends the one on X.
Denote the truncation operators on C [3T as constructed above by T<> v for all
weB, veBand O e{~,=, <} IfweB and v € BE, then we want to show that

the restriction of T, to CLJT coincides with Ty, Denoting by I the canonical
injection of C[[JT into CIJIT, we thus have to show that Tp_ool=T10Ts._,.

In the cases when i € J or i € J and 1 = 10, the definitions of T o1 and T, i
clearly coincide. Assume therefore that ro=b,. If ==, then

Txmnol = 7. UOT\/VUOZVI/~UOI
= T t,oTvvnoIoTv.n

—~t
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Now for i € supp im 7, we have i <{, b and i < v, whence i X3 v and i < v. It
follows that Txﬁ’ni:i and T;mni:Tv o1, whence T;mnoI:IoTv o If O # <, then

TOmUOI = (TO@U+TO&;UOTX&UJFTOWOTOMOTX@U)OI
= IoT<>‘ﬁt,—|—7vj<>ﬁ’noIOTX60+T<>NUOT<>MOIoTx‘ﬁn
= loTy ot1oTy 00T
= IOTO‘UU

Indeed, in a similar way as above, we have

TOmUOTOr{,UOIOTXﬁaU:TOmUOIOTkaHU:IOTOmUOTXran-

Furthermore, for i € suppim 7L, we have T%’n i=0, since { # <.

9. INTEGRAL TRANSSERIES

9.1. The set of exponential integral transseries

In this section, we will construct the representation algebra £ of integral exponen-
tial transseries, with ":E; — #NE. Using induction over n € N, we first construct
a differential representation algebra [, j =C[Q), ;I of grid-based integral series,

with underlying monomial group 2™ &,, and such that
IH1. For each m € €, there exists a “privileged” r=m €9, ; with m= z.

IH2. For all f1,..., f, €E, |, there exists a triangular differential representation
subalgebra CIX 1 CIE,  of grid-based series with fi,..., f, € CLX, 1.

In TH2, we call X a triangular set for f. We notice that the union of two triangular
sets is again a triangular set.

Given v, 1w € €, with w1, we claim that the operators Ty, , with $ € {>, =<, <}
are naturally defined on [, ;. Indeed, given f€IE, |, there exists a triangular set X
for f, v and w. In sections 7 and 8, we have shown that Ty, . f is a well-defined
element of C[LX; . Moreover, because of section 8.5, the value of T, . f does not

depend on the choice of X.
Taking € y ={1}, and 1=1, the induction hypotheses IH1 and IH2 are clearly
satisfied for n=0. Assume that [£, ; ; has been constructed and let

no1) ={f€E, 1 :supp f C El}.
The set

mn: €xp f E;fl,f

is clearly a monomial group with R-powers and we have a natural mapping
"D, s — CLzN ¢, defined by
— ~
exp [ f = exp [ f
i) =

Ti=Ji
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We define a logarithmic derivative on 2),, as follows. Given = el fe ), with f ¢ C,
we may write f =c0+4 8 with c€ CF, 0 € €, and § <. Now we set

XT = Cé +T<ezb,%ezl f

Since supp f C €L, we notice that T .0 -1 f € (En_1,1 ) <0,1,<0-

We extend the mapping ": €, 1 — %), 1 into a mapping “: &, — ), as follows.
If me¢&,\ &, is such that there exists an f € (Ej,_; ;) with m = el f, then we
arbitrarily take such an f and set m=el’. Otherwise, we simply take m=el ™

Let us prove IH2, which will complete the induction. Given fi, ..., f, € E, f,
the set § =1f(f;) U--- UIf(f,) is finite. By the induction hypothesis, there exists a
triangular differential representation subalgebra CI[X 1 C I, ;  of grid-based
series with §TC C [X ;1. Taking X= X FR, we then obtain a triangular differential
representation subalgebra CLX; 1 C E,  of grid-based series with fi, ..., fu €
CIX 1.

We clearly have Eo,f - El,f - :[E27f C.... The set

Ef ::[E()J’ UELI U]E27f U---

is called the set of exponential integral transseries. For f € K[, the smallest n with
J €E, | is called the exponential height of f. Setting ) =exp i EY, the finiteness
property implies that E; =CI[Y ;1 and Y =Yo,y UY1,y U---.

9.2. The set of general integral transseries

By induction over the exponential height n, let us now construct a strongly linear
mapping - o exp: [,  — E, 1 ; which maps integral monomials to integral mono-
mials. So assume that n =0 or that n >0 and that we already have mapping - oexp:
En o1y —E. . Given a monomial i€ &, [, we recursively define ioexp by

el foexp = el/ oo (f=0VfeE, 1)
(jle)OGXP = (jloexp) (ngeXp)
(f Joexp = [ (el ' (foexp))

This definition has a natural analogue for language specifications:

{e/ TYoexp = {el Doery
(J1UTs)oexp = JroexpU Jpoexp
(J1 J2)oexp = (Jroexp) (J20exp)
(f T)eexp = [ (] (T oexp))

Hence, - o exp extends by strong linearity to E, ;. Now for each | € 7Z, the
representation algebra

E; oexp
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of CIzN &I o exp; with derivation 0, = % 0 is formally isomorphic to the
exp; z

representation algebra [ of C [zN ¢ with derivation 0. By what precedes, we may
therefore embeqleach E [ ©expy into E [ ©€expi—1 (for instance, /e s identified
with e(®0) e g E; olog), so that

]Ef glEf ologQIEf ology C---
The set
Ty=E;UE[ ologUE ologaU-:

is called the set of integral transseries. Setting

3=PUYologUYologaU---,
we have T :(D[[BJ’]].

PROPOSITION 9.1. Let f€T,, 0, €T and $€{~,<,<}. Then
a) There exists a g€ T ¢, 0 with § = f<>m .
b) There exists an h € T ¢, with h = f<>n-

PROOF. In the case when f €[, v,10 € €, to -1 we may take g=T%, , f. Similarly,
if supp f C € and v € &, then we take h =Ty _., f. The general case is reduced to
one of the above cases modulo a sufficient number of upward shiftings. O

COROLLARY 9.2. Each f €T with f#0 admits a multiplicative inverse modulo =.

PROOF. Writing f =c0(1+4¢) with c0 € C7 T and ¢ < 1, we may take
fl=c o (14¢e)7 Y

where g € T’ 4 is such that g =e¢. O

9.3. Combinatorial convergence

An integral transseries f in [ is said to be combinatorially convergent if f is com-
binatorially convergent as an integral series and if ¢' is recursively combinatorially
convergent for every r € If(f). The inclusions

f(f+g) C lf fUlfg
If(fg) C If fUlfg
If [ f = 1f f

together with proposition 4.6 imply:
PROPOSITION 9.3. The set ‘jv is stable under +, x and [. O
PROPOSITION 9.4. The set IE}" is stable under postcomposition with exp.

PROOF. Given f € E, let us prove by induction over the exponential height n of f
that foexp e Ef".
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For each r€lf f, we have either n=0 and roexp=r=1, or n >0 and ;:efg,
where ¢ has exponential height <n — 1. In the second case, the induction hypothesis

implies that (roexp)i=el !(goexp)e E}. Since

If (foexp)C (lff)oeXpU{ef 1}

it follows that ¢’ e Ef for all € lf (f oexp).

Furthermore, the postcomposition with exp send monomials i € supp f to mono-
mials ioexp € supp f oexp with #ioexp > #i. It follows that

1
d——F.
foexp & o— f
This shows that foexp e E}". O

Proposition 9.4 implies that [}’ oexp C E}” and more generally

E}VCEI O]_OgCEfVOIOgQ Q
We call
TP =EfUE} ologUE} ologa U
the set of combinatorially convergent integral transseries. We denote £V, T, etc.

the images of I}, T, etc. under “. The following is an immediate consequence of
proposition 9.3:

PROPOSITION 9.5. The set T is stable under +, x and [. O

PROPOSITION 9.6. Given fi, ..., f, € C", there exists a triangular set X with
Jiooo [p€ CLX DY and such that T maps X into Ef.

PrROOF. We prove the proposition by induction over the maximal exponential
height n of fi, ..., fp,. If n = 0, then the result is clear, so assume n > 0. The
set § = Uf(f1) U -~ U lf(f,) is finite. By the induction hypothesis, there exists
a triangular set X with §T C C[X 71" and such that f maps X into E" . Taking

X = ¥ §®, we have fi, s fn € @[[%f]]cv Let us show that T maps X into Ef
So let re X with §f ¢ C. ertmg G=c0o+0, where r =e/ 9, we have

t=c0+T< 05.19

By the construction of ~, we have 0 € CILXT . Since g€ C X, I, proposition 8.4
also implies that 7% .5 »..19€ C [X, 0. O

PROPOSITION 9.7. Let v,t0 € €V and € {>,=<, <} with vo>1. Then T¢,,, maps
i into dtself.

PROOF. Given fe€E}, let X be a triangular set with f € CLX; 1" and such that
f maps X into E}". By proposition 8.4, we now have Ty, f € CLX; TV CE}. O

In a similar way as proposition 9.1 and its corollary, one may now prove:
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PROPOSITION 9.8. Let f €T}, b,w €T and { € {~,x,<}. Then
a) There exists a g€ T o, o with § = f<>m o
b) There exists an h € T ., with h = f<>n-

COROLLARY 9.9. Each f € T} with f#0 admits a multiplicative inverse modulo =.

10. CONCLUSION

In this paper, we have laid the foundations for the formal calculus with integral
transseries. We intend to further develop this theory in a forthcoming paper. Let
us briefly mention a few points which still have to be investigated in more detail.

First of all, from the foundational point of view, we have chosen to work
with “uniform” arcs and cycles. It is also possible to consider “individual” arcs and
cycles of the form

(1071.0) = (ilaIl) = (il*hz’lfl) = (ilaIl)a

such that ig€Zp€ ¥ and for all k€ {1,...,1}, we have i, € Z;, € £, my, € M and either

[} Ik::Ik,1Uj01" IkZ: jUkal, ik:ik,1 and mkzl

o I.:=T, 1J or Ijy:=TJTp_1, ip=1r_1j resp. ix =jir_1 and my € SUppj.

o Tp:=[Th 1, k= [ i)_1 and mk€supp3ik_lf )

We expect that languages which verify the weaker “individual” cycle condition can
always be rewritten into languages which verify the usual uniform cycle condition,
using the technique of “loop unrolling”.

More generally, given an arbitrary regular language L, one may define
its “descending part” £*: it consists of those integral monomials i such that any “cycle
in the derivation tree of i” satisfies the individual cycle condition. Again, £! may be
computed using the process of loop unrolling. Another application of loop unrolling
in combination with truncation is to rewrite an arbitrary grid-based language spec-
ification .Z into an equivalent language specification % modulo =, such that for
every 7 := f J € .,S,Z, we have m = n for all m, n € §7. In particular, in the
cycle condition, this implies that d(suppg, [ ) =0(suppg, [ ) for all j€ 7.

Another interesting topic from the foundational point of view is to systematically
work with operators of either one of the forms

Ip f — g_lf tf
Jo f — D&lwflf rf

instead of usual integration. These operators have the advantage of being closer
to arborified moulds and may make it easier to develop the theory of accelero-
summation. Secondly, operators of the form e J, with ¢ <1 are naturally “infinites-
imal” on suitable frames, and it should be possible to rewrite arbitrary grid-based
languages as a tree whose leafs are languages which are constructed using products,
infinitesimal operators and repetition.
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Finally, it remains to be shown that the set of integral transseries is stable under
many other operations, such as composition and functional inversion (when defined),
formal alien differentiation, the resolution of quasi-linear differential equations, and
so on. Of course, the consideration of additional operators besides integration, such
as infinite summation, is another interesting topic.
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