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In 2008, Kedlaya and Umans designed the first multivariate multi-point evaluation
algorithm over finite fields with an asymptotic complexity that can be made arbitrarily
close to linear. However, it remains a major challenge to make their algorithm efficient
for practical input sizes. In this paper, we revisit and improve their algorithm, while
keeping this ultimate goal in mind. In addition we sharpen the known complexity
bounds for modular composition of univariate polynomials over finite fields.

1. INTRODUCTION

Let 𝔸 be a commutative ring with unity, and let f ∈ 𝔸[x1, …, xn] be a multivariate
polynomial. The multi-point evaluation problem consists in evaluating f at several given
points 𝛼1,…,𝛼N in 𝔸n. Let g1, …, gn be polynomials in 𝔸[x] of degrees <d and let h be
a monic polynomial in 𝔸[x] of degree d. The modular composition problem consists in
computing f (g1,…,gn) modulo h. This is equivalent to the computation of the remainder
f (g1,…,gn) rem h of the Euclidean division of f (g1, …, gn) by h. It turns out that these
two problems are related and that they form important building blocks in computer
algebra. Theoretically speaking, Kedlaya and Umans have given efficient solutions to
both problems when 𝔸 is a finite ring of the form (ℤ/rℤ)[z]/(𝜃(z)) where 𝜃 is a monic
polynomial [34]. The design of practically efficient algorithms remains an important
challenge. The purpose of this paper is to revisit the algorithms by Kedlaya and Umans
in detail, to sharpen their theoretical complexity bounds, and get some insight into the
required data size for which this approach outperforms asymptotically slower algo-
rithms.

1.1. Related work
Let M(d) denote a complexity function that bounds the number of operations in 𝔸
required to multiply two polynomials of degree ⩽d in 𝔸[x]. We will often use the soft-
Oh notation: f (n)∈Õ(g(n)) means that f (n)=g(n) logO(1)(g(n)+3); see [13, chapter 25,
section 7] for technical details. The least integer larger or equal to x is written ⌈x⌉. The
largest integer smaller or equal to x is written ⌊x⌋. The 𝔸-module of polynomials of
degree <d is denoted by 𝔸[x]<d≔{P∈𝔸[x] :deg P<d}.
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Multi-point evaluation

In the univariate case when n= 1, the evaluation of f ∈𝔸[x]<d at d points in 𝔸 can be
achieved with O(M(d) log d) operations in 𝔸. We refer the reader to [13, chapter 10] for
the description of the well known algorithm based on remainder trees. Algorithms with
the smallest constant hidden in the “O” may be found in [6]. By allowing precompu-
tations that only depend on the set of points, this evaluation complexity even drops to
O((M(d) log d)/log log d) as shown in [23]. For specific sets of points, such as geometric
progressions or TFT points, multi-point evaluation requires only O(M(d)) operations
in 𝔸; see [4, 7, 21].

The univariate situation does not extend to several variables, unless the set S of eval-
uation points has good properties. For instance if S has the form S1×⋯×Sn with Si⊆𝔸,
then fast univariate evaluations may be applied coordinate by coordinate. Fast algo-
rithms also exist for suitable initial segments of such Cartesian products [29]. Other
specific families of sets of points are used for fast evaluation and interpolation of mul-
tivariate polynomials in sparse representation; see [1, 24] for some recent results.

In the bivariate case when n = 2, a smart use of the univariate case leads to a cost
Õ(ℓ3), where ℓ −1 bounds the partial degrees of f [36, Theorem 3]. In 2004, Nüsken and
Ziegler improved this bound to Õ(ℓ𝜛+1) [36, Result 4]—here the constant 𝜛>1.5 is such
that a n√ × n√ matrix over 𝔸 may be multiplied with another n√ ×n rectangular matrix
with O(n𝜛) operations in𝔸. When𝔸 is a field the best currently known bound𝜛<1.667
is due to Huang and Pan [30, Theorem 10.1].

In 2008, Kedlaya and Umans achieved a major breakthrough for the general case [33].
In [34, Corollary 4.3] they showed the following statement (simplified here for concise-
ness): let 𝜀 > 0 be a fixed rational value, given f (x1, …, xn) in (ℤ/ r ℤ)[x1, …, xn] with
partial degrees in any xi at most ℓ − 1, and evaluation points 𝛼1, …, 𝛼N in (ℤ/rℤ)n, then
f (𝛼1),…, f (𝛼N) can be computed with ((ℓn+N) log r)1+c𝜀 bit operations, provided that n⩽
ℓ 𝜀 and where c is a constant independent of f ,n,ℓ,N,r. This result was stated for random
access memory machines. In fact, some of the underlying arguments (such as the use
of lookup tables) need to be adapted to make them work properly on Turing machines.
This is one of our contributions in this paper. In a nutshell the Kedlaya–Umans algo-
rithm proceeds as follows (see section 3.1):
1. If |𝔸| = r is “sufficiently small”, then we exhaustively evaluate f at all points in 𝔸n,

using fast univariate multi-point evaluation with respect to each coordinate.
2. Otherwise, the evaluation of f at 𝛼1, …, 𝛼N is reduced to the evaluation of the

preimage f̄ of f in ℤ[x1,…,xn] at the preimages �̄�1,…, �̄�N of 𝛼1,…,𝛼N in ℤn. Through
the Chinese remaindering theorem, the latter evaluation overℤ further reduces to sev-
eral independent multi-point evaluation problems modulo “many” prime numbers
p1,…,ps that are “much smaller” than r. These evaluations of f̄ mod pi at �̄�1mod pi,…,
�̄�N mod pi are handled recursively, for i=1,…, s.

Modular composition

Let us first discuss the standard modular composition problem when n=1. Let f ,g and h
be polynomials in 𝔸[x] of respective degrees <d, <d and d, with h monic. The naive
modular composition algorithm takes O(d M(d)) operations in 𝔸. In 1978, Brent and
Kung [9] gave an algorithm with cost O(d2+ d� M(d)), which uses the baby-step giant-step
technique [39]. Their algorithm even yields a sub-quadratic cost O(d𝜛+ d� M(d)) when
using fast linear algebra; see [32, p. 185].
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The major breakthrough for this problem is again due to Kedlaya and Umans [33, 34]
in the case when 𝔸 is a finite field 𝔽q (and even more generally a finite ring of the form
(ℤ/r ℤ)[z]/(𝜃(z)) for any integer r and 𝜃 monic). For any fixed real value 𝜀 > 0, they
have shown that the composition f ∘g could be computed modulo h using O((d log q)1+𝜀)
bit operations.

The special case of power series composition corresponds to h(x)=xd. The best known
complexity bound in the algebraic model when 𝔸 is a field, written 𝕂 for convenience,
is still due to Brent and Kung: in [9], they achieved O( d� M(d) log1/2 d) operations in 𝕂,
under the condition that g′(0) is invertible and that the characteristic of 𝕂 is at least d/l,
where l≔� d/log d� �. The variant proposed by van der Hoeven [20, section 3.4.3] raises
the condition on g′(0). For fields with small characteristic p, Bernstein [3] proposed an
algorithm that is softly linear in d but linear in p. These algorithms have been gener-
alized to moduli h of the form ℏm in [25]; it is shown therein that such a composition
reduces to one power series composition at order m over 𝕂[z]/(ℏ(z)), plus m composi-
tions modulo ℏ, and one characteristic polynomial computation modulo ℏ. Let us finally
mention that an optimized variant, in terms of the constant hidden in the “O”, of the
Brent–Kung algorithm has been proposed recently by Johansson in [31], and that series
with integer, rational or floating point coefficients can often be composed in quasi-linear
time in suitable bit complexity models, as shown by Ritzmann [40]; see also [22].

Relationship between multi-point evaluation and modular composition

Multi-point evaluation and modular composition are instances of evaluation problems
at points lying in different extensions of 𝔸. The former case involves several points with
coordinates in 𝔸. The latter case implies one point in the extension 𝔸[x]/(h(x)). In the
next paragraphs we summarize known conversions between evaluation problems.

When n = 1, several algorithms are known for converting evaluations at any set of
points to specific sets of points. For instance evaluating at roots of unity can be done fast
thanks to the seminal FFT algorithm, so we usually build fast algorithms upon FFTs.
Typically fast polynomial products are reduced to FFTs over synthetic roots of unity
lying in suitable extensions of 𝔸 by means of the Schönhage–Strassen algorithm. And
since fast multi-point evaluation reduces to polynomial products, they thus reduce to
FFTs. Such reductions to FFTs are omnipresent in computer algebra.

Let us still assume that n=1. Let f ∈𝕂[x]<d, let 𝛼1,…, 𝛼d be given evaluation points
in a field 𝕂, and let 𝛽1, …, 𝛽d be pairwise distinct evaluation points in 𝕂. Let h(x) =
(x−𝛽1) ⋯ (x−𝛽d) and let g ∈ 𝕂[x]<d be such that g(𝛽i) = 𝛼i for i = 1, …, d. Setting
𝜌 = f ∘ g rem h we have 𝜌(𝛽i) = f (𝛼i). So the evaluations of f at 𝛼1, …, 𝛼d reduce to
evaluations and interpolations in degree d − 1 at the chosen points plus one modular
composition. Conversely given a modulus h, one may benefit from factorizations of h
to compose modulo h. We have studied this approach when h has factors with large
multiplicities in [25], when it splits into linear factors over ℂ in [26], and also when it
factors over an algebraic extension of 𝕂 in [27].

The key idea of Nüsken and Ziegler to speed up multi-point evaluation is a reduc-
tion to modular composition; then their aforementioned complexity bound follows from
a variant of the Brent–Kung algorithm. Assume n = 2. In order to evaluate f at d
points 𝛼1, …, 𝛼d they first compute h(x) = (x − 𝛼1,1) ⋯ (x − 𝛼d,1) and interpolate g∈𝕂[x]
such that g(𝛼i,1) = 𝛼i,2 for i= 1, …, d (assuming the 𝛼i,1 being pairwise distinct, which is
not restrictive). Then they compute 𝜌(x)= f (x,g(x)) rem h(x) and deduce f (𝛼i) as 𝜌(𝛼i,1).
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Over finite fields, Kedlaya and Umans showed an equivalence between multi-point
evaluation and modular composition. Using Kronecker segmentation, Theorem 3.1
from [34] reduces such a composition to multi-point evaluation for an increased number
of variables. Kedlaya and Umans' reduction in the opposite direction is close to the one
of Nüsken and Ziegler. Let 𝛽1,…,𝛽N be pairwise distinct points in 𝕂. For each j=1,…,n,
they interpolate gj ∈ 𝕂[x]<N such that gj(𝛽i) = 𝛼i, j for i = 1, …, N. Then they compute
𝜌= f (g1,…,gn) rem h, so that f (𝛼i)=𝜌(𝛽i).

1.2. Contributions

On machines with random access memory, arbitrary memory accesses admit a constant
cost. This does not reflect the actual behavior of real computers, on which memory is
organized into different levels, with efficient hardware support for copying contiguous
blocks of memory from one level to another. In this paper, we opted for the standard
Turing machine model with a finite number of tapes [38], which charges a “maximal
penalty” for non contiguous memory accesses. This means in particular that complexity
bounds established for this model are likely to hold for any more or less realistic alter-
native model. Our first contribution in the present paper is to show that Kedlaya and
Umans' complexity bounds hold in the Turing machine model.

Our second contribution concerns sharper and more precise bit complexity bounds.
For multi-point evaluation over 𝔸 ≔ ℤ/ r ℤ, we achieve softly linear time in the bit
size of r and obtain more general explicit bounds in terms of n, N, the partial and total
degrees of f , without the assumption n=do(1) as in [34, Corollary 4.3]. We also put into
evidence the advantage of taking N much larger than the dense size of the support of f .
In particular, we analyze the threshold for which the average cost per evaluation point
stabilizes. Our algorithm closely follows the main ideas of Kedlaya and Umans, but with
two notable changes. On the one hand, using precise estimates for the first Chebyshev
function, we obtain sharper bounds for the prime numbers to be used during the multi-
modular stage of the algorithm; see section 3.3. On the other hand, when log r becomes
very large, we fall back to the naive evaluation algorithm, and thereby achieve a softly
linear dependence in log r.

Let us now turn to multi-point evaluation over an extension ring of the form 𝔸≔
(ℤ/rℤ)[z]/(𝜃(z)), where 𝜃 is monic of degree k. Kedlaya and Umans proposed a reduc-
tion to multi-point evaluation overℤ/Rℤ, with R large, based on Kronecker substitution.
In section 4, we propose an alternative approach, based on univariate polynomial evalua-
tion, interpolation, and Chinese remaindering, to directly reduce to several compositions
over suitable finite prime fields.

Our detailed analysis of multi-point evaluation is used in section 6 in order to obtain
refined bounds for univariate modular composition. In [34, Corollary 7.2] it is shown
that univariate modular composition in degree d over a finite field 𝔽q can be done in
time d1+o(1) logo(1) q. Making use of the same reduction to multi-point evaluation, the
exponent in d1+o(1) can be made more explicit: in Theorem 6.2 we prove the bound

(d+1)
�28 loglog(d+1)log(d+1) �1/2�1+O� 1

loglog(d+1)�� Õ(d log q).

The new complexity bounds for multi-point evaluation are also crucial for our new bit
complexity bounds for multivariate modular composition and the application to poly-
nomial system solving in [28].
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Section 7 addresses the special case when 𝔸 is a field 𝕂 of small positive character-
istic p. We closely revisit the method proposed in [34, section 6], and again make the
complexity bound more explicit. Again we quantify the number of evaluation points
from which the average cost per point stabilizes, and we deduce a sharpened complexity
bound for modular composition.

2. COMPLEXITY MODEL AND BASIC OPERATIONS

We consider Turing machines with sufficiently many tapes. In fact seven tapes are usu-
ally sufficient to implement all useful complexity bounds for the elementary operations
on polynomials, series and matrices involved in the present paper (standard algorithms
may be found in [42]). The number of symbols used by the machine is not of the utmost
importance, since it only impacts complexity bounds by constant factors. In the sequel,
Turing machines will always have two symbols “0” and “1”, as well as a few specific
additional ones dedicated to data representation.

Some algebraic structures involve a natural bit size for representing their elements
(e.g. modular integers, finite fields); others involve a variable size (e.g. arbitrarily large
integers, arrays, polynomials). In both cases, elements are seen as sequences of symbols
on tapes ended by a specific symbol, written “#” in the sequel. Because heads of the
machine can just move one cell left or right at time, algorithms must take care of con-
suming data in the most contiguous way as possible. In particular, we notice that loop
counters must be used with care: for instance, the naive implementation of a loop “for i
from 1 to n” involves a non-constant number of O(log n) bit operations at each iteration:
to increment i by 1 and to test whether i is less than n. In this section we gather standard
data types and elementary operations needed in the next sections. We freely use well
known complexity bounds for polynomials and matrices from [13] and refer to [42] for
more details on Turing machine implementations.

Integers
We use binary representation for integers, so that n∈ℕ has bit size bs n≔⌈log2 (n+1)⌉.
A modular integer in ℤ/rℤ is represented by its natural representative in {0, …, r − 1}.
Integers may be added in linear time. The expression I(n)will represent a nondecreasing
cost function for multiplying two integers of bit sizes ⩽n, which satisfies I(n1) / n1 ⩽
I(n2)/n2 for all 0< n1⩽ n2. At present time the best known complexity bound is I(n) =
O�n log n 4log

∗n� = Õ(n), where log∗ n =min �k ∈ℕ : log …k× log n ⩽ 1�; see [16, 17, 18]
and historical references therein. The integer division in bit sizes ⩽n takes time O(I(n))
(see Lemma 2.15 below for instance), and the extended gcd costs O(I(n) log n) by [41].
Overall, all arithmetic operations in ℤ/rℤ take softly linear time.

Arrays
One dimensional arrays are sequences of elements ended with the symbol “#”.

Example 2.1. The vector (1,0, 1)∈𝔽2
3 is stored as 1#0#1##.

For bidimensional arrays we use column-major representation. Precisely an array
(Ai, j)1⩽i⩽r,1⩽ j⩽c of size r×c (r rows and c columns), is stored as the vector of its columns,
that is ((A1,1,…,Ar,1), (A1,2,…,Ar,2),…,(A1,c,…,Ar,c)). Such arrays are allowed to contain
elements of different types and sizes.
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Example 2.2. The matrix (((((((((((( 1 1
0 0 )))))))))))) over 𝔽2 is stored as 1#0##1#0###.

In the Turing machine model, it is not known how to perform transpositions of bidimen-
sional arrays in linear time. The following lemma shows how to do transpositions with
a logarithmic overhead. The special case when all entries have the same bit size was
treated before in [5, appendix]. Notice that transpositions do not preserve the total bit
size for non square matrices, due to changes in the number of “#” symbols.

LEMMA 2.3. Let A=(Ai, j) be an r×c matrix. Let bi, j denote the size of Ai, j for all i, j, and define
B≔∑i, j bi, j. Then A can be transposed in time O((B+ r c) logmin(r, c)).

Proof. We first handle the case r⩽c using the following “divide and conquer” algorithm.
If r=1, then the array (A1,1,…,A1,c) is encoded as A1,1##A1,2##…A1,c### and we write its
transpose A1,1#A1,2#…A1,c### on the output tape using one linear traversal. Otherwise,
we split A into two matrices H and L on separate tapes, where H is made of the r1≔⌊r/2⌋
first rows of A, and L of the r2≔⌈r/2⌉ remaining ones. We recursively transpose H and L
and glue the results together on the output tape.

Clearly, the case when r=1 can be handled in time O(B+r c), as well as the algorithm
for splitting A into H and L, and the algorithm for gluing the transposes of H and L
together into the transpose of A. Let C be a constant such that each of these algorithms
takes time at most C (B + r c). Let B1≔∑i⩽r1, j bi, j and B2≔∑r1<i, j bi, j. Let us show by
induction over r that the transposition algorithm takes time C (B+ r c) (4 log2 r+1). This
is clear for r=1. For r= r1+ r2>1, the computation time is bounded by

C(B1+ r1c) (4 log2 r1+1)+C(B2+ r2 c) (4 log2 r2+1)+2C(B+ r c)
⩽ C(B+ r c)(4 log2 r2+3)
⩽ C(B+ r c)(4 log2 r+1).

The case when r⩾c is handled in an essentially similar way, by reverting the steps of the
algorithm: if c=1, then A1,1#A2,1#…Ar,1### is rewritten into A1,1##A2,1##…Ar,1### using
one linear pass. If c >1, then we recursively apply the algorithm on the first ⌊c/2⌋ and
the last ⌈c/2⌉ columns, and merge the results in a linear pass. The entire computation
can be done in time O((B+ r c) log c)), by a similar complexity analysis as above. □

Univariate polynomials
For univariate polynomials we use dense representation, which means that a polynomial
of degree d is stored as the vector of its d+1 coefficients from degrees 0 to d. Additions
and subtractions take linear time in d. Let M(d) denote a cost function that yields an
upper bound for the number of operations in 𝔸 needed to multiply two polynomials
in 𝔸[x]<d. For a general ring 𝔸 one may take M(d)=O(d log d log log d) thanks to [10].
For finite fields better bounds exist, and we write M𝔽q(d) for the time taken by a Turing
machine to multiply two polynomials in 𝔽q[x]<d.

In what follows, any finite field 𝔽q with q= pk and p prime is always assumed to be
given as (ℤ/pℤ)[z]/(𝜃(z)) with 𝜃 monic and irreducible of degree k. Elements of 𝔽q are
stored as their natural representatives in (ℤ/pℤ)[z]<k. Additions and subtractions in 𝔽q
take linear time, one product takes time O(M𝔽p(k)) and one inversion O(M𝔽p(k) log k+
I(log p) log log p): see [13, part II], for instance. In [15, 19], it was shown that M𝔽q(d) =
O�d log q log(d log q)4log

∗(dlogq)�.
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Multivariate polynomials
For a polynomial f ∈𝔸[x1,…, xn] in a given number of variables n, we use the recursive
dense representation, by viewing f as an element of 𝔸[x1][x2] ⋯ [xn]. In particular, f
admits the same representation as its expansion f = f0+⋯+ fℓn−1 xℓn−1∈𝔸[x1,…,xn−1][xn]
as a univariate polynomial in xn. In our algorithms, the number of variables n is not
part of the representation of f , so it must be supplied as a separate parameter.

Example 2.4. The univariate polynomial f (x) = c0+ c1 x+⋯+ cd xd of degree d is repre-
sented by c0#c1#…cd##. The bivariate polynomial f (x1,x2)=c0,0+c0,1x1+(c1,0+c1,1x1) x2
is represented by c0,0#c0,1##c1,0#c1,1###.

The support supp f of f ∈𝔸[x1,…,xn] is defined as the set of monomials with nonzero
coefficients and we write |supp f | for its cardinality. Assuming that, apart from the
mandatory trailing “#” symbol, the representations of coefficients in 𝔸 do not involve
the “#” symbol (this can always be achieved through suitable renaming # ↝ #𝔸), we
denote the number of “#” symbols involved in the representation of f by | f |#. We notice
that |supp f |⩽ | f |#.

LEMMA 2.5. Let f ∈ 𝔸[x1, …, xn] be of partial degree <ℓi in xi for i = 1, …, n. Then | f |# ⩽
∑i=1

n ℓi⋯ ℓn+1⩽n𝜋+1, where 𝜋≔ ℓ1⋯ ℓn⩾|supp f |.

Proof. This follows by an easy induction over n: for n=0, we have nothing to do. If n>0
and f = f0+⋯+ fℓn−1xn

ℓn−1, then we get

| f |# ⩽ �
k<ℓn

| fk|#+1

⩽ ℓn(((((((((((((((((((�i=1
n−1

ℓi⋯ ℓn−1+1)))))))))))))))))))+1

⩽ �
i=1

n−1

ℓi⋯ ℓn+ ℓn+1 = �
i=1

n

ℓi⋯ ℓn+1,

which concludes the proof. □

If all the ℓi equal 1, then f is the constant polynomial c∈𝔸 and its representation is
c#…# with n+1 symbols “#”. If ℓi⩾2 for all i, then the number of # becomes O(𝜋).

LEMMA 2.6. Let f ∈ 𝔸[x1, …, xn] be a nonzero polynomial of total degree ⩽d. Then | f |# ⩽
∑i=0

n �d+ i
i �⩽n𝜌+1, where 𝜌≔�d+n

n �⩾|supp f |.

Proof. We use a similar induction as in the proof of Lemma 2.5:

| f |# ⩽ �
k<ℓn

| fk|#+1 ⩽ �
k⩽d

�
i=0

n−1

�k+ i
i �+1

= �
i=0

n−1

�
k⩽d

�k+ i
i �+1 = �

i=0

n

�d+ i
i �. □

If d= 0, then we already observed that | f |#= n+ 1. If d= 1, then | f |#⩽∑i=0
n �i+1

i �∼
n2/2. For the remainder of this subsection, we assume that the size of the elements in 𝔸
is bounded by a constant s𝔸. In particular, the total size of a multivariate polynomial f
is bounded by | f |#+|supp f | s𝔸.
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LEMMA 2.7. The partial degree bounds ℓ1 = 1 + degx1 f , …, ℓn = 1 + degxn f of a nonzero
polynomial f ∈𝔸[x1,…, xn] can be computed in time O(| f |# (n+ log 𝜋)+ |supp f | s𝔸), where
𝜋≔ ℓ1⋯ ℓn.
Proof. Recall that both n∈ℕ and f ∈𝔸[x1,…,xn] are considered to be the inputs. We use
the following recursive algorithm: if n=0, then we have nothing to do. If n>0, then we
write f = f0+⋯+ fℓn−1xn

ℓn−1 and recursively compute partial degree bounds degxi fk< ℓk,i
for the coefficients. We next return ℓ1 = maxk ℓk,1, …, ℓn−1 = maxk ℓk,n−1, ℓn. The lemma
clearly holds for n=1. By induction, the recursive computations can be done in time

O((| f |#− ℓn)(n−1+log (ℓ1⋯ ℓn−1))+ |supp f | s𝔸+ ℓn).

The computation of the maxima can be done using one linear pass in time

O(ℓn(log ℓ1+1+⋯+log ℓn−1+1))=O(ℓn (n−1+log (ℓ1⋯ ℓn−1))).

Determining ℓn requires an additional time O(ℓn log ℓn). Altogether, the computation
takes time O(| f |# (n+log(ℓ1⋯ ℓn))+ |supp f | s𝔸). □
LEMMA 2.8. The total degree d=deg f of a polynomial f ∈𝔸[x1,…,xn] can be computed in time
O(n | f |# log(d+3)+|supp f | s𝔸), under the convention that deg 0≔−1.

Proof. We use the following recursive algorithm: if n = 0, then we have nothing to
do. If n > 0, then we write f = f0 + ⋯ + fℓn−1 xn

ℓn−1 and recursively compute total
degree bounds deg fk ⩽ dk for the coefficients. We next return d = −1 if f = 0 and d =
max{dk+ k :k< ℓn,dk⩾0} otherwise. The complexity bound follows using a similar induc-
tion argument as in the previous lemma. □
Evaluation and multi-remaindering
In the following paragraphs we recall the costs of integer multi-remaindering and uni-
variate multi-point evaluation together with the inverse problems. The underlying
techniques are well known. They are recalled in the context of Turing machines for con-
venience.
LEMMA 2.9. Let r⩾2 be an integer, let a=(a1,…,am) be an array of integers in {0,…,r−1}, and
let p1,…,ps⩾2 be integers such that B≔p1⋯ ps⩾r. Then a rem p1,…,a rem ps may be computed
in time mÕ(log B).
Proof. We first compute the bidimensional array

a1 rem p1 … am rem p1
⋮ ⋮

a1 rem ps … am rem ps

in time mÕ(log B) by using fast multi-remaindering [13, chapter 10]. Then we appeal to
Lemma 2.3 to obtain a rem p1,…,a rem ps in time O(m log B log s)=mÕ(log B). □
LEMMA 2.10. Let r⩾2 be an integer, let f ∈ℤ[x1,…,xn] have its coefficients in {0,…, r−1}, and
let p1,…,ps⩾2 be integers such that B≔p1⋯ ps⩾r. Then f rem p1,…, f rem ps can be computed
in time 𝜌 Õ(log B)+O(s | f |#), where 𝜌≔|supp f |.
Proof. We first extract the vector v of all the nonzero coefficients of f in time
O(𝜌 log r+| f |#). We use the latter lemma on v, which incurs time 𝜌 Õ(log B). Then we
recover f rem pi from v rem pi and f , for i=1,…, s, in time O(𝜌 log pi+| f |#). □
LEMMA 2.11. Let p1, …, ps ⩾ 2 be pairwise coprime integers, let B ≔ p1 ⋯ ps, and let a1 ∈
(ℤ/p1ℤ)m,…,as∈(ℤ/psℤ)m. Then the unique vector a∈ℤm with entries in {0,…,B−1} such
that a≡ai rem pi for i=1,…, s can be computed in time mÕ(log B).
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Proof. First we transpose the bidimensional array a1, …, as of size m × s and then use
Chinese remaindering m times. By Lemma 2.3 and [13, chapter 10], this can be done in
time O(m log B log s)+mÕ(log B)=mÕ(log B). □

LEMMA 2.12. Let r ⩾ 2 be an integer and let a = (a1, …, am) be an array of polynomials in
(ℤ/rℤ)[x]<k. For any set of points 𝜉1,…, 𝜉K we may compute a1(𝜉1),…, am(𝜉1),…, a1(𝜉K),…,
am(𝜉K) in time m (k+K)(Õ(log2 k)+min(logm, logK)) Õ(log r).

Proof. We first compute the bidimensional array

a1(𝜉1) ⋯ am(𝜉1)
⋮ ⋮

a1(𝜉K) ⋯ am(𝜉K)

in time m (k + K) Õ(log2 k) Õ(log r), using fast univariate multi-point evaluation [13,
chapter 12]. We next transpose the array in time O(m K log rmin (log m, log K)), using
Lemma 2.3. □

LEMMA 2.13. Let r ⩾ 2 be an integer, let f ∈ (ℤ/ r ℤ)[z]<k[x1, …, xn], and let 𝜁1, …, 𝜁K be
elements in ℤ/rℤ. Then f (𝜁1,x1,…,xn),…, f (𝜁K,x1,…,xn) can be computed in time

𝜌 (k+K)(Õ(log2 k)+min(log 𝜌, logK)) Õ(log r)+O(K | f |#),

where 𝜌 is the cardinality of the support of f in the variables x1,…,xn.

Proof. We first extract the vector v∈((ℤ/rℤ)[z]<k)𝜌 of all the nonzero coefficients of f in
time O(𝜌 k log r+ | f |#) together with f #∈𝔽2[x1,…, xn] of the same support as f . We use
the latter lemma on v, which incurs time

𝜌 (k+K)(Õ(log2 k)+min(log 𝜌, logK)) Õ(log r).

Then for i = 1, …, K we recover the evaluation of f at z = 𝜁i from v(𝜁i) and f # in time
O(𝜌 log r+| f |#). □

LEMMA 2.14. Let r be a prime number, let 𝜁1, …, 𝜁K be distinct elements of ℤ/ r ℤ and let
b1,…,bK be vectors in (ℤ / r ℤ)m. Then the unique vector of polynomials a = (a1,…,am) ∈
((ℤ/rℤ)[z]<K)m with aj(𝜁i) = bi for i = 1, …, K and j = 1, …, m can be computed in time
mÕ(K log r).

Proof. We first transpose the m×K array made of b1,…,bm to obtain

b1,1 ⋯ b1,m
⋮ ⋮

bK,1 ⋯ bK,m

in time O(mK log r logK) by Lemma 2.3. We next obtain the result through m interpola-
tions, in time mÕ(K log r) by [13, chapter 12]. □

Lexicographic orders
We will have to use the lexicographic order on ℕn, written <lex, defined by

𝛼<lex𝛽 ⇔ (∃j∈{1,…,n}, 𝛼n=𝛽n∧⋯∧𝛼j+1=𝛽j+1∧𝛼j<𝛽j).

Notice that in the dense polynomial representation used here, coefficients are stored
accordingly to the lexicographic order on the exponent vectors; this corresponds to the
usual lexicographic monomial order induced by xn>lexxn−1>lex⋯>lexx1.
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Fixed point numbers
We use fixed point representation to approximate real numbers. The number a =
∑−n⩽i⩽m ai 2i, with ai ∈ {0, 1} and m, n ⩾ 0, is represented by amam−1⋯a0.a−1a−2⋯a−n#,
where “.” is a specific symbol of the machine. A negative number starts with the
symbol “-”. The bit size of a is O(m + n). The integer n is called the (absolute) pre-
cision. Additions, subtractions and reducing the precision take linear time. The product
of two fixed point numbers of bit size l takes time O(I(l))= Õ(l). We gather well known
results from [8].

LEMMA 2.15. Let a1 ≔ ∑−n1⩽i⩽m1
a1,i 2i and a2 ≔ ∑−n2⩽i⩽m2

a2,i 2i ≠ 0. An approximation
𝜒 of a1/a2 to precision 𝜏 ⩾ 0 such that � a1a2

− 𝜒� < 2−𝜏 can be computed in time O(I(m1+ n1+
m2+n2+𝜏)).

Proof. Without loss of generality we may assume 𝜏 ⩾max (n1 − n2, 0). We perform the
following long integer division in time O(I(m1+n1+m2+n2+𝜏)):

2n2+𝜏 a1=q2n2a2+ r, with 0⩽r<2n2a2.
Then we have

a1
a2
=2−𝜏 q+2−n2−t r

a2
, with 0⩽2−n2−𝜏 r

a2
<2−𝜏.

Consequently we may take 𝜒=2−𝜏q. □

LEMMA 2.16. Consider a fixed point number a≔∑−n⩽i⩽m ai 2i>0. An approximation 𝛽 of log a
with |log a−𝛽|<2−𝜏 for 𝜏⩾0 can be computed in time O(I(m+n+𝜏) log(m+n+𝜏)).

Proof. We write a = 2k b with k∈ℤ and 1 < b⩽ 2 so log a= k log 2 + log b. By using [8,
Theorem 6.1], log 2 and log b may be computed to precisions ⌈log2(max(|k|, 1))⌉+𝜏+1
and 𝜏 + 1 respectively in time O(I(m+ n+ 𝜏) log(m+ n+ 𝜏)). Let us write 𝜆 and 𝛽 the
respective approximations, which satisfy

|log 2−𝜆|<2−(⌈log2(max(|k|,1))⌉+𝜏+1)=2−(𝜏+1)/(max(|k|, 1))

and |log b−𝛽|<2−(𝜏+1). Then |log a−k𝜆−𝛽|<2−𝜏. □

LEMMA 2.17. Consider a fixed point number a≔∑−n⩽i⩽m ai2i>0. An approximation 𝛽 of a√
to precision 𝜏⩾0 such that | a√ −𝛽|<2−𝜏 may be computed in time O(I(m+n+𝜏) log(m+n+
𝜏)).

Proof. We write a = 2k b with k ∈ 2 ℤ and 1 < b ⩽ 4, so we have a√ = 2k/2 b� . By
using [8, Lemma 2.3], b� may be approximated to precision k / 2 + 𝜏 + 1 in time
O(I(m+n+𝜏)log(m+n+𝜏)). □

3. FAST MULTI-POINT EVALUATION

In this section r is an integer with r⩾2 and f is a polynomial in (ℤ/rℤ)[x1,…, xn] with
partial degree <ℓi in xi for i=1,…,n, and total degree ⩽d. We assume that f is given in
recursive dense representation for (ℤ/rℤ)[x1][x2] ⋯ [xn], as described in the previous
section, so the size of its representation is O(𝜋 log r + | f |#) where 𝜋 ≔ ℓ1 ⋯ ℓn and | f |#
represents the number of # in the representation of f . The upper bounds ℓi and d for the
partial and total degrees are not necessarily sharp. Throughout this section, we assume
that ℓ1,…, ℓn,d⩾1 and that these bounds satisfy

ℓ̄≔max(ℓ1,…, ℓn)⩽d+1 and d+n⩽ ℓ1+⋯+ ℓn. (3.1)
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We wish to evaluate f at N points in (ℤ/rℤ)n, written 𝛼1,…,𝛼N.

3.1. Overview of the multi-modular approach
In order to evaluate f at a point 𝛼∈ (ℤ/rℤ)n the initial idea consists in performing the
evaluation over ℤ, that is to say by discarding the modulus r. We write f̄ ∈ ℤ[x] for
the natural preimage of f with coefficients in {0, …, r − 1}, and �̄� ∈ ℤn for the natural
preimage of 𝛼with entries in {0,…,r−1}. In order to compute f̄ (�̄�)we construct an ad hoc
sequence of primes p1,…,ps such that p1⋯ps> f̄ (�̄�). In this way, f̄ (�̄�) may be recovered
by Chinese remaindering from f̄ (�̄�) rem p1,…, f̄ (�̄�) rem ps.

Minimizing the bit size of p1 ⋯ ps is of the utmost importance for efficiency. For
this purpose we introduce the following quantity 𝜎 which bounds the cardinality of the
support of f both in terms of the partial and total degrees:

𝜎≔min�𝜋,�d+n
n ��.

On the other hand the quantity

𝜑≔min ((((((((((((((((((
(ℓ1+⋯+ ℓn,d+1+⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈

log �d+n−1
n−1 �

log 2 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉))))))))))))))))))
)∈ℕ (3.2)

is used as a bound for logr f̄ (�̄�). It satisfies the following inequality to be used several
times in the proofs when n⩾2:

𝜑⩾min((((((((((d+n,d+1+ log(n−1)
log 2 ))))))))))⩾d+1⩾ ℓ̄. (3.3)

LEMMA 3.1. Let f̄ ∈ℤ[x1,…,xn] have coefficients in {0,…, r−1} and let �̄�∈{0,…, r−1}n. Then

0⩽ f̄ (�̄�)<r𝜑.

Proof. We first prove that
f̄ (�̄�)< rℓ1+⋯+ℓn. (3.4)

This inequality trivially holds when n=1. Suppose by induction that it holds up to n−1
variables. Then f̄ (�̄�)<∑j=0

ℓn−1 rℓ1⋯ℓn−1(r−1)j<rℓ1+⋯+ℓn again holds for n variables.
On the other hand we have

f̄ (�̄�) ⩽ �
j=0

d

�j+n−1
n−1 �(r−1)j+1

⩽ �
j=0

d

�j+n−1
n−1 �(r−1) r j

⩽ �d+n−1
n−1 ��

j=0

d

(r−1) r j < �d+n−1
n−1 � rd+1. (3.5)

The conclusion simply follows from the assumption r⩾2. □

Given f ∈(ℤ/rℤ)[x1,…,xn] and N evaluation points 𝛼1,…,𝛼N in (ℤ/rℤ)n, the multi-
point evaluation algorithm of this section works as follows:
1. If r is “sufficiently small”, then we evaluate f at all points in (ℤ/rℤ)n and read off

the needed values. This task is detailed in the next subsection.
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2. Otherwise we compute prime numbers p1, …, ps such that p1 ⋯ ps ⩾ r𝜑. This is
addressed in sections 3.3 and 3.4.

3. We evaluate f̄ at all �̄�1,…, �̄�N modulo pi for i=1,…, s by calling the algorithm recur-
sively.

4. We reconstruct the values of f̄ at all �̄�1,…, �̄�N by Chinese remaindering and perform
the final divisions by r.

We will be able to take all the pi of the order of 𝜑 log r. Therefore, the bit size of the
modulus when entering the first recursive call is of the order 𝜑 log r, then 𝜑 log(𝜑 log r)
at depth 2, then 𝜑 log(𝜑 log(𝜑 log r)) at depth 3, etc. The total bit size of all recursive
problems to be solved at depth t turns out to grow with 𝜑 t. In section 3.5 we study the
complexity of the algorithm in terms of the depth t. Section 3.6 is devoted to finding
a suitable value for t to end the recursive calls. Roughly speaking, the property “suffi-
ciently small” from step 1 becomes “log r is of the order 𝜑 log𝜑”, so the time spent in the
exhaustive evaluation of step 1 is of the order (𝜑 log 𝜑)n.

3.2. Exhaustive evaluation
We begin with studying the base case of the multi-modular algorithm, i.e. the exhaustive
evaluation at all points of (ℤ/rℤ)n. We recall that this algorithm is used for sufficiently
small values of r. We regard the evaluation of f ∈ (ℤ/ r ℤ)[x1, …, xn] at all points in
(ℤ/rℤ)n as a vector in (ℤ/rℤ)rn.

LEMMA 3.2. Let f ∈(ℤ/rℤ)[x1,…,xn] be of partial degree<ℓi in xi for i=1,…,n. All the values
of f at (ℤ/rℤ)n can be computed in time

n (ℓ̄n+ rn) Õ(log2 ℓ̄ log r).

Proof. Detecting if f is the constant polynomial c takes time O(n + log r). If so, then it
suffices to copy c onto the destination tapes rn times. This costs Õ(n log r)+O(rn log r).
From now we assume that f is not a constant, whence n⩾1, d⩾1 and ℓ̄⩾2.

We interpret f ∈(ℤ/rℤ)[x1,…,xn] as a univariate polynomial f = f0+⋯+ fℓn−1xn
ℓn−1

and recursively evaluate the coefficients f0, …, fℓn−1 at all points in (ℤ/ r ℤ)n−1. After
one rn−1× ℓn matrix transposition of cost O(rn−1 ℓ̄ log ℓ̄ log r), this yields a vector of rn−1

univariate polynomials

f (a1,…,an−1,xn)= f0(a1,…,an−1)+⋯+ fℓn−1(a1,…,an−1)xn
ℓn−1∈(ℤ/rℤ)[xn]<ℓn,

where (a1, …, an−1) ranges over (ℤ/rℤ)n−1. Using rn−1 multi-point evaluations of these
polynomials at all an∈{0,…, r −1} of cost rn−1max(r, ℓ̄) Õ(log2 ℓ̄ log r), we finally obtain
the vector of all f (a1,…,an)with (a1,…,an)∈(ℤ/rℤ)n. Denoting by T(n, ℓ̄) the cost of the
algorithm, we thus obtain

T(n, ℓ̄) ⩽ ℓ̄T(n−1, ℓ̄)+ rn−1max(r, ℓ̄) Õ(log2 ℓ̄ log r).

By induction over n, it follows that

T(n, ℓ̄) ⩽ nmax(r, ℓ̄)n Õ(log2 ℓ̄ log r),

which implies the claimed bound. □

In order to evaluate f at a specific sequence 𝛼1, …, 𝛼N of points in (ℤ/rℤ)n, we next
wrap the latter lemma in the following algorithm that simply reads off the requested
values once the exhaustive evaluation is done. This task is immediate in the RAM model,
but induces a logarithmic overhead on Turing machines.
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Algorithm 3.1
Input. f ∈(ℤ/rℤ)[x1,…,xn]; a sequence 𝛼1,…,𝛼N of points in (ℤ/rℤ)n.
Output. f (𝛼1),…, f (𝛼N).

1. Evaluate f at all points of (ℤ/rℤ)n sorted lexicographically.
2. For j from 1 to ⌈N/rn⌉ do

a. Set a≔(j−1) rn+1 and b≔min(j rn,N).
b. Sort the vectors of pairs (i−a, 𝛼i)a⩽i⩽b into (𝜏(i−a),𝛼𝜏(i−a)+a)a⩽i⩽b accordingly to

the second coordinate (where 𝜏 denotes a permutation of {0,…,b− a}).
c. Deduce the vector (𝜏(i−a), f (𝛼𝜏(i−a)+a))a⩽i⩽b by using the exhaustive evaluation

of step 1.
d. Sort the latter vector according to the first coordinate in order to obtain (i − a,

f (𝛼i))a⩽i⩽b.
3. Return f (𝛼1),…, f (𝛼N).

PROPOSITION 3.3. Algorithm 3.1 is correct and takes time

n(ℓ̄n+ rn) Õ(log2 ℓ̄ log r)+O(Nn log rmin(logN,n log r)).

Proof. The cost of step 1 is given in Lemma 3.2. In the Turing machine model the loop
counter j and the bounds a and b do not need to be explicitly computed in step 2. Instead
it suffices to allocate an array of rn bits once on an auxiliary tape and use it to split
the sequence of evaluation points into subsequences of rn elements—except the last one
which has cardinality N rem rn.

With this point of view in mind, each step 2.b and 2.d requires time

O((b− a)(n log r) log(b−a)),

so the sum over all the values of j is

O(Nn log rmin(logN,n log r)).

Each step 2.c takes time O(rn n log r). The total cost of all steps 2.c is therefore bounded
by O((N+ rn)n log r). □

3.3. The first Chebyshev function
Multi-modular techniques classically involve bounds on the first Chebyshev function

𝜗(𝛽)≔ �
2⩽p⩽𝛽,pprime

log p.

For many applications, crude estimates on 𝜗 suffice. For our refined complexity analysis
of the Kedlaya–Umans algorithm, we rely on the somewhat better estimate

𝜗(𝛽)=𝛽+O(((((((((( 𝛽
log 𝛽)))))))))). (3.6)

More precisely, it was shown by Barkley Rosser and Schoenfeld [2, Theorem 31] that, for
all 𝛽⩾569,

𝛽((((((((((1− 0.47
log 𝛽))))))))))<𝜗(𝛽)<𝛽((((((((((1+ 0.47

log 𝛽)))))))))).
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Even sharper bounds may be found in [12], but they will not be necessary here. From
now on 𝛾 represents a constant in ℝ>≔{x∈ℝ:x>0} such that

|𝜗(𝛽)−𝛽|⩽𝛾 𝛽
log 𝛽 for all 𝛽>1. (3.7)

LEMMA 3.4. There exists 𝛾∈ℝ> such that

𝛽=x+𝛾 x
log x ⟹ 𝛽−2𝛾 𝛽

log 𝛽 ⩾x
holds for all x⩾2.

Proof. For fixed �̄� and large x, one has

2𝛾 𝛽
log 𝛽 =2𝛾

x�1+ 𝛾
log x�

log x+log�1+ 𝛾
log x�

∼2𝛾 x
log x .

Taking 𝛾>2𝛾 and x sufficiently large (say x>A), it follows that

𝛽−2𝛾 𝛽
log 𝛽 =x+𝛾 x

log x −2𝛾 𝛽
log 𝛽 ⩾x.

Then it suffices to further increase �̄� so that the implication also holds on the
interval [2,A]. □

In the rest of this section the constant �̄� of the lemma will be used via the following
function:

𝜇(r) ≔ 1
log r +𝛾

1+ 1
log r

log(r log r) = O(((((((((( 1
log r)))))))))). (3.8)

It is also convenient to introduce the function

B(r) ≔ (1+𝜇(𝜑))𝜑 log r (3.9)

that will bound the inflation of the modulus at successive recursive calls of our main
algorithm. We will write B∘t≔B∘…t× ∘B for the t-th iterate of this function.

3.4. Computing prime numbers
Generating prime numbers is a standard task. In the next paragraphs we include the
needed results for completeness.

LEMMA 3.5. Given a positive integer 𝛽, we may generate all the primes ⩽𝛽 in time O(𝛽 log3𝛽).

Proof. We use the well known Eratosthenes sieve. On the same tape we generate all
the integer multiples of 2 not larger than 𝛽, followed by all the multiples of 3 not larger
than 𝛽, then all the multiples of 4 not larger than 𝛽, etc. The total number of multiples
generated in this way is O(𝛽/2+ 𝛽/3 + 𝛽/4 +⋯+𝛽/𝛽)=O(𝛽 log 𝛽). These multiples
can all be generated in time O(𝛽 log2 𝛽). Then we sort these integers in increasing order
and remove duplicates in time O(𝛽 log3 𝛽). The integers ⩽𝛽 which are not listed in this
way are exactly the requested prime numbers, which can thus be deduced with further
O(𝛽 log 𝛽) bit operations. □

The following algorithm computes consecutive prime numbers larger than a given
integer 𝛽

¯
, such that their product exceeds a given threshold �̄�.
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Algorithm 3.2
Input. Positive integers 𝛽

¯
and �̄�⩾2.

Output. The shortest sequence of consecutive primes p1,…,ps with 𝛽
¯
<p1 and p1⋯ ps⩾�̄�.

1. Set 𝜏≔2.
2. Compute all the consecutive prime numbers 𝜋1<⋯<𝜋t less or equal to 2𝜏.
3. If ∏1⩽i⩽t, 𝛽

¯
<𝜋i

𝜋i<�̄�, then increase 𝜏 by 1 and go back to step 2.

4. Compute the first index a such that 𝜋a>𝛽
¯
, and set b0≔ a and b1≔ t.

5. If 𝜋a⩾�̄�, then return 𝜋a.
6. While b0<b1 do

a. Compute c≔⌊(b0+b1)/2⌋.
b. If 𝜋a⋯𝜋c<�̄�, then b0≔ c+1, else b1≔ c.

7. Return 𝜋a,…,𝜋b1.

PROPOSITION 3.6. Algorithm 3.2 is correct and takes time Õ(𝛽
¯
+ log �̄�). In addition we have

ps=O(𝛽
¯
+ log �̄�).

Proof. After step 3 we have ∏1⩽i⩽t, 𝛽
¯
<𝜋i

𝜋i⩾ �̄�, so the rest of the algorithm corresponds
to a binary search to obtain the minimal index b1 such that ∏a⩽i⩽b1 𝜋i ⩾ �̄�. During the
“while” loop of step 6 we have ∏a⩽i<b0 𝜋i < �̄� and ∏a⩽i⩽b1 𝜋i ⩾ �̄�. So when b0= b1 the
minimal sequence is actually found. Since b0⩽c⩽b1−1 at each step of the “while” loop,
either b0 increases or b1 decreases strictly. Consequently the algorithm returns the correct
result.

We exit step 3 once 𝜗(2𝜏) − 𝜗(𝛽
¯
) ⩾ log �̄�. Thanks to (3.6), this condition is met for

2𝜏=O(𝛽
¯
+ log �̄�), after time Õ(𝛽

¯
+ log �̄�), by Lemma 3.5. The binary search also takes

time Õ(𝛽
¯
+log �̄�). □

3.5. The main recursion
We are now ready to present the multi-modular evaluation algorithm. The parameter t
indicates the allowed depth for the recursive calls.

Algorithm 3.3
Input. f ∈(ℤ/rℤ)[x1,…, xn]; a sequence 𝛼1, …, 𝛼N of points in (ℤ/rℤ)n; a nonnegative

integer t; 𝜑 as defined in (3.2).
Output. f (𝛼1),…, f (𝛼N).
Assumption. r>𝜑.

1. If t=0 or if f is a constant polynomial, then use Algorithm 3.1.
2. Call Algorithm 3.2 with 𝜑 and r𝜑 to compute the shortest sequence of consecutive

prime numbers p1<⋯<ps with p1>𝜑 and p1⋯ps⩾r𝜑.
3. Let f̄ be the canonical preimage of f in ℤ[x1,…,xn], with coefficients in {0,…, r−1}.

Let �̄�i represent the canonical preimage of 𝛼i in {0,…, r−1}n, for i=1,…,N.
Compute f̄ rem pj and (�̄�i)1⩽i⩽N rem pj, for j=1,…, s.

4. For j from 1 to s, compute f̄ (�̄�1),…, f̄ (�̄�N) modulo pj by calling the algorithm recur-
sively with t−1.
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5. Use Chinese remaindering to recover f̄ (�̄�1),…, f̄ (�̄�N).
6. Compute the remainders by r of these values to obtain and return f (𝛼1),…, f (𝛼N).

PROPOSITION 3.7. Algorithm 3.3 is correct. Assume n⩾2, that (3.1) holds, and that f has partial
degree <ℓi in xi for i=1,…,n and total degree ⩽d. When t=0 the algorithm takes time

(N+ rn) Õ(n(log2 d+logN) log r).

For a fixed value of t⩾1 the algorithm takes time

(N+B∘t(r)n) Õ(n𝜑t logN log r),
where B is defined in (3.9).

Proof. Lemma 3.1 ensures that the multi-modular approach works well, whence the cor-
rectness of the algorithm. From now assume n⩾2 and d⩾1. Inequality (3.1), combined to
the definition of 𝜑, implies 𝜑⩾3. If 𝜑 is bounded, then so are n, d, and 𝜎. Consequently
we may freely assume that r is sufficiently large in the cost analysis. From (3.7), for all
𝛽⩾𝜑 we obtain

|𝜗(𝛽)−𝜗(𝜑)−(𝛽−𝜑)|⩽𝛾(((((((((( 𝛽
log 𝛽 +

𝜑
log 𝜑)))))))))).

Since u↦u/log u is increasing for all u⩾exp 1, we deduce

|𝜗(𝛽)−𝜗(𝜑)−(𝛽−𝜑)|⩽ 2𝛾𝛽
log 𝛽.

The condition 𝜗(𝛽)−𝜗(𝜑)⩾𝜑 log r is therefore satisfied whenever

𝛽− 2𝛾𝛽
log 𝛽 ⩾((((((((((1+ 1

log r))))))))))𝜑 log r. (3.10)

By Lemma 3.4, there exists 𝛾 such that (3.10) is satisfied when 𝛽 is larger than

𝜑log r(((((((((((((((((
(((((((
(
(
1+ 1

log r +𝛾
1+ 1

log r

log��1+ 1
log r�𝜑 log r�)))))))))))))))))

)))))))
)
)

⩽ 𝜑log r((((((((((((((((((
((((
(
(
1+ 1

log 𝜑 +𝛾
1+ 1

log 𝜑
log(𝜑 log 𝜑)))))))))))))))))))

))))
)
)
= (1+𝜇(𝜑))𝜑 log r.

It follows that
pi⩽(1+𝜇(𝜑))𝜑 log r. (3.11)

From p1⋯ps−1< r𝜑, we deduce that

p1⋯ps<(1+𝜇(𝜑)) r𝜑𝜑 log r ≔B, so log B=O(𝜑 log r).

By Proposition 3.6, step 2 takes time Õ(𝜑 log r). The number of “#” in the representation
of f is O((d + 1)n) by Lemma 2.5. Consequently the multi-remaindering of f in step 3
takes time 𝜎 Õ(log B)+O(s (d+1)n)= (d+1)n Õ(log B) by Lemma 2.10. By Lemma 2.9
the multi-remaindering of �̄�1,…, �̄�N takes time n NÕ(log B). In total step 3 contributes to

(nN+(d+1)n) Õ(𝜑 log r).

16 FAST MULTIVARIATE MULTI-POINT EVALUATION REVISITED



Step 5 costs N Õ(logB) by Lemma 2.11. The cost of step 6 is also dominated by N Õ(logB).
Let Ct(ℓ , d, r,N) denote the cost function of Algorithm 3.3, for t being fixed. In other

words, the constants hidden in the “O” of the rest of the proof do not depend on ℓ ≔
(ℓ1,…, ℓn),d,r,N but on t. Since 𝜑⩾d+1 by (3.3), we have r> ℓ̄. Proposition 3.3 yields the
cost of step 1:

C0(ℓ ,d, r,N) = n(ℓ̄n+ rn) Õ(log2 ℓ̄ log r)+nNO(logN log r)
= nNO(logN log r)+nrn Õ(log2 d log r)
= (N+ rn) Õ(n (log2 d+logN) log r). (3.12)

By summing the costs of steps 2 to 6, we deduce that

Ct(ℓ ,d, r,N)=(nN+(d+1)n) Õ(𝜑 log r)+�
i=1

s

Ct−1(ℓ ,d,pi,N). (3.13)

Consequently, if t=1, using the bounds (3.11), (3.12), and

�
i=1

s

Õ(log pi)= Õ(log B)= Õ(𝜑 log r),

the cost of Algorithm 3.3 simplifies as follows:

C1(ℓ ,d, r,N) = (nN+(d+1)n) Õ(𝜑 log r)+�
i=1

s

(N+pi
n) Õ(n(log2 d+logN) log pi)

⩽ (nN+(d+1)n) Õ(𝜑 log r)
+ (N+((1+𝜇(𝜑))𝜑 log r)n) Õ(n(log2 d+logN)𝜑 log r).

Using (3.3) again gives (d+1)n⩽𝜑n, whence

C1(ℓ ,d, r,N)=(N+B(r)n) Õ(n𝜑 logN log r).

Now assume by induction that Ct−1(ℓ , d, r, N) = (N + B∘(t−1)(r)n) Õ(n 𝜑t−1 log N log r)
holds for some t⩾2. Combining (3.11) and (3.13) we deduce that:

Ct(ℓ ,d, r,N) = (nN+(d+1)n) Õ(𝜑 log r)+�
i=1

s

(N+B∘(t−1)(pi)n) Õ(n𝜑 t−1 logN log pi)

= (nN+(d+1)n) Õ(𝜑 log r)+(N+B∘t(r)n)�
i=1

s

Õ(n𝜑 t−1 logN log pi)

= (nN+(d+1)n) Õ(𝜑 log r)+(N+B∘t(r)n) Õ(n𝜑 t logN log r).

We claim that B∘t(r) ⩾ (1 + 𝜇(𝜑)) 𝜑 log 𝜑 for all t ⩾ 1 which implies Ct(ℓ , d, r, N) =
(N+B∘t(r)n) Õ(n 𝜑t log N log r) and concludes the proof. The latter claim is proved by
induction on t. It clearly holds for t=1. Assume it holds for t −1. Then, using 𝜑⩾3, we
verify that

B∘t(r) = (1+𝜇(𝜑))𝜑 log(B∘(t−1)(r)) ⩾ (1+𝜇(𝜑))𝜑 log((1+𝜇(𝜑))𝜑 log 𝜑)
⩾ (1+𝜇(𝜑))𝜑 log 𝜑,

which concludes the proof of the claim. □
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3.6. The main complexity bound
In order to complete Algorithm 3.3, we still have to specify how to set the parameter t
in terms of ℓ , d, r. It is natural to let t increase as a function of r. Yet we cannot take t
arbitrarily large because the complexity in Proposition 3.7 involves a factor 𝜑t. The key
idea here is to observe that, if r is very large, namely when 𝜎 = O(log log r), then we
may use the naive algorithm to evaluate f independently at each 𝛼i. This leads to the
following complexity bound.

LEMMA 3.8. We may evaluate f ∈(ℤ/rℤ)[x1,…,xn] at a point (a1,…,an) in (ℤ/rℤ)n in time
| f |# Õ(log r)=(n𝜎 +1) Õ(log r).

Proof. If n = 0, then f is constant and we just copy the input. If n > 0, then we expand
f = f0 + ⋯ + fℓn−1 xn

ℓn−1 as a univariate polynomial in xn and recursively evaluate
f0,…, fℓn−1 at the point (a1,…,an−1). This yields a univariate polynomial f (a1,…,an−1,xn)=
f0(a1,…,an−1) + ⋯ + fℓn−1(a1, …, an−1) xn

ℓn−1 ∈ (ℤ/ r ℤ)[xn] in xn that we evaluate at an
using Horner's method. Using induction over n, it is not hard to show that the algo-
rithm essentially performs O(| f |#) ring operations in ℤ/rℤ, which can be done in time
| f |# Õ(log r). We finally recall that | f |#⩽n𝜎+1, by Lemmas 2.5 and 2.6. □

We are now ready to present the top level multi-point evaluation procedure. Recall
that the bit size of an integer n∈ℕ is given by bs n≔⌈log2 (n+1)⌉.

Algorithm 3.4
Input. f ∈(ℤ/rℤ)[x1,…,xn]; a sequence 𝛼1,…,𝛼N of points in (ℤ/rℤ)n.
Output. f (𝛼1),…, f (𝛼N).

1. If n= 1, then compute the output f (𝛼1), …, f (𝛼N) using the univariate multi-point
evaluation algorithm.

2. Compute ℓ1,…, ℓn,d, 𝜎,𝜑.
3. Compute the bit size bs r of r and then the bit size bs(bs r) of bs r.

If 𝜎 ⩽ bs(bs r) + 3, then compute the output f (𝛼1), …, f (𝛼N) using the naive algo-
rithm.

4. Compute the bit size bs 𝜑 of 𝜑.
If 𝜑<8 or 4 r⩽𝜑bs 𝜑, then compute the output f (𝛼1),…, f (𝛼N) using Algorithm 3.1.

5. Compute the output f (𝛼1),…, f (𝛼N) using Algorithm 3.3 with parameter t≔5.

PROPOSITION 3.9. Algorithm 3.4 is correct and takes time

(1+𝜀(ℓ ,d, r))n (N+(𝜑 log 𝜑)n) Õ(n𝜑5 logN log r),

where 𝜀(ℓ ,d, r) is a function which tends to 0 when max(n, ℓ1,…, ℓn,d, r) tends to infinity.

Proof. When we arrive at step 5 with 𝜑⩾8 and 4 r>𝜑bs 𝜑, the inequality bs 𝜑⩾4 holds,
whence r>𝜑. Consequently the assumption of Algorithm 3.3 is satisfied. This proves the
correctness of the algorithm thanks to Propositions 3.3 and 3.7.

If n=1, then multi-point evaluation costs

O(⌈N/d⌉Mℤ/rℤ(d) log d)=⌈N/d⌉ Õ(𝜑 log r),

which is below the bound of the proposition. From now on we assume that n⩾2. Recall
that 𝜑⩾d+1 by (3.3).

The quantities ℓ1,…, ℓn,d may be obtained in time

O(𝜎 log r+n (d+1)n log(d+1))=𝜑n Õ(n log 𝜑+log r),
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by combining Lemmas 2.5, 2.7 and 2.8.
By the subproduct tree technique, we may compute 𝜋 in time Õ(log 𝜋) =

Õ(n log(d+1)) = Õ(n log 𝜑), and �d+n
n � in time Õ(n log(d + n)) = Õ(n log 𝜑). The

cost for summing ℓ1 + ⋯ + ℓn is Õ(n log(d + n)) = Õ(n log 𝜑). We may also com-
pute �d+n−1

n−1 � in time Õ(n log(d+ n))= Õ(n log 𝜑) and then easily deduce �log �d+n−1
n−1 �/

log 2� as the bit size of �d+n−1
n−1 �−1. Overall the cost of step 2 is negligible.

Let log2 denote the logarithm function in base 2. The bit size bs r=⌈log2(r+1)⌉ of r
and then bs(bs r) may be obtained in time Õ(log r). We have 0⩽bs r− log2(r+1)<1 and
0⩽bs(bs r)− log2(bs r+1)<1, whence

|log2 log2(r+1)−bs(bs r)| ⩽ |log2(bs r+1)− log2 log2(r+1)|+ |bs(bs r)− log2(bs r+1)|

⩽ �log2(((((((((( bs r+1
log2(r+1)))))))))))�+1

⩽ log2�1+
2

bs r−1�+1 < 3. (3.14)

The naive evaluation in step 3 costs n 𝜎N Õ(log r) by Lemma 3.8. So when 𝜎⩽bs(bs r)+3
this cost drops to NÕ(n log r).

From now we may assume that bs(bs r)+3<𝜎. If 𝜑 is bounded, then so are all other
parameters n, d, 𝜎 by (3.3) and r, whence the execution takes time O(1). If 𝜑 ⩾ 8 and
4 r⩽𝜑bs 𝜑, then we have

r ⩽ 1
4 𝜑(log2(𝜑+1)+1) = 1

4 𝜑(((((((((( log(𝜑+1)
log 2 +1))))))))))

< 𝜑log 𝜑 2log(𝜑+1)+1
4log 𝜑 = 𝜑 log 𝜑((((((((((12 + 2 log(1+1/𝜑)+1

4log 𝜑 ))))))))))
⩽ 𝜑log 𝜑,

so we may use Proposition 3.3 to bound the time of step 4 by

n (ℓ̄n+ rn) Õ(log2 ℓ̄ log r)+O(Nn log rmin(logN,n log r))
= O(nN logN log r)+(𝜑 log 𝜑)n Õ(n log2𝜑 log r)
= (N+(𝜑 log 𝜑)n) Õ(n log2𝜑 logN log r).

Let us now consider step 5, where we have 𝜑⩾8 and 4 r>𝜑bs 𝜑, whence r>𝜑, as previ-
ously mentioned. For our complexity analysis, we may freely assume that r is sufficiently
large. In particular, by using (3.14), inequality bs(bs r)+3<𝜎 implies

log log r⩽log log(r+1)⩽log2 log2(r+1)⩽bs(bs r)+3<𝜎.

On the one hand 𝜎⩽𝜋 implies log 𝜎⩽log ℓ1+⋯+log ℓn⩽ ℓ1+⋯+ ℓn. On the other hand
𝜎⩽�d+n

n �= d+n
n �d+n−1

n−1 � implies log 𝜎⩽log(d+1)+log �d+n−1
n−1 �/log 2. Consequently we

have log∘3 r<𝜑 and deduce:

B(r) = (1+𝜇(𝜑))𝜑 log r = O(𝜑 log r)
B∘2(r) = (1+𝜇(𝜑))𝜑 logB(r) = O(𝜑(log log r+log 𝜑))
B∘3(r) = (1+𝜇(𝜑))𝜑 logB∘2(r) = O(𝜑(log log log r+log 𝜑)) = O(𝜑2)
B∘4(r) = (1+𝜇(𝜑))𝜑 logB∘3(r) = O(𝜑 log 𝜑)

B∘5(r) = (1+𝜇(𝜑))𝜑 logB∘4(r) = (1+𝜇(𝜑))((((((((((1+O(((((((((( log log 𝜑log 𝜑 ))))))))))))))))))))𝜑 log 𝜑.
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Therefore the cost of Algorithm 3.3 with parameter t=5 is

((((((((((1+O(((((((((( log log 𝜑log 𝜑 ))))))))))))))))))))
n
(N+(𝜑 log 𝜑)n) Õ(n𝜑5 logN log r),

by Proposition 3.7 and equation (3.8).
By gathering costs of each step we thus obtain that Algorithm 3.4 takes time

((((((((((1+ c log log 𝜑log 𝜑 ))))))))))
n
(N+(𝜑 log 𝜑)n) Õ(n𝜑5 logN log r),

for some universal constant c>0. Finally we set

𝜀(ℓ ,d, r)≔{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{ c log log 𝜑log 𝜑 if bs(bs r)+3<𝜎 and 𝜑⩾8 and 4 r>𝜑bs 𝜑

0 otherwise.
(3.15)

to conclude the proof. □

THEOREM 3.10. There exists a function 𝜀(ℓ , d, r) which tends to 0 when max (n, ℓ1,…, ℓn, d, r)
tends to infinity, such that the following assertion holds. Let f ∈(ℤ/rℤ)[x1,…,xn] be of partial
degree <ℓi in xi for i= 1,…, n and of total degree d, and let 𝛼1, …, 𝛼N be a sequence of points in
(ℤ/rℤ)n. Then, we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜀(ℓ ,d, r))n (N+(𝜑 log 𝜑)n) Õ(n2𝜑5 log r), with 𝜑 defined in (3.2).

Proof. We may compute 𝜅, 𝜈 ∈ℕ with |𝜅− log2 N|<1 and |𝜈 − n log2(𝜑 log 𝜑)|<1 in time
Õ(log N + log n+ log 𝜑) thanks to the lemmas from the end of section 2. If 𝜅 ⩽ 𝜈, then
N = O((𝜑 log 𝜑)n) and the result directly follows from Proposition 3.9. Otherwise we
apply the evaluation algorithm several times with sets of evaluation points of cardinality
at most 2𝜈≍(𝜑 log 𝜑)n=O(N). □

4. EXTENSION RINGS

In this section r⩾2 and k⩾2 represent integers and we study multi-point multivariate
evaluation over 𝔸≔ (ℤ/rℤ)[z]/(𝜃(z)), where 𝜃 is a monic polynomial in (ℤ/rℤ)[z]
of degree k. The approach developed in the next paragraphs lifts this problem to an
evaluation problem over (ℤ/ r ℤ)[z], so that fast univariate evaluation/interpolation
in z may be used.

4.1. Reduction to prime fields
We endow ℤ[z] with the usual norm ‖.‖∞:

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖�i⩾0 ci zi‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖∞≔max(|c0|, |c1|, |c2|,…).

LEMMA 4.1. For all i⩾1 we have ‖(1+z+⋯+zk−1)i‖∞⩽ki−1.

Proof. The proof is done by induction on i. The inequality is an equality for i= 1. Then
we verify that ‖(1+z+⋯+zk−1)i+1‖∞⩽k ‖(1+ z+⋯+ zk−1)i‖∞ holds for i⩾1. □
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LEMMA 4.2. Consider f̄ ∈ ℤ[z][x1, …, xn] of partial degree <ℓi in xi for i = 1, …, n and total
degree ⩽d in x1, …, xn, and let �̄� ∈ℤ[z]n. Assume that f̄ and �̄� have their coefficients in {0, …,
r−1} and degrees ⩽k−1 in z. Then we have deg f̄ (�̄�)⩽K and ‖ f̄ (�̄�)‖∞<R, where

K ≔ (d+1)(k−1),
R ≔ kdmin�rℓ1+⋯+ℓn,�d+n−1

n−1 � rd+1�.

Proof. The degree bound is clear. Now consider the polynomials

F ≔ �
0⩽e1<ℓ1,…,0⩽en<ℓn

e1+⋯+en⩽d

x1
e1⋯xn

en

A ≔ (r−1)+⋯+(r−1)zk−1.

From Lemma 4.1 we obtain

‖ f̄ (�̄�)‖∞ ⩽ ‖(AF)(A,…,A)‖∞
⩽ �

0⩽e1<ℓ1,…,0⩽en<ℓn
e1+⋯+en⩽d

(r−1)1+e1+⋯+en ke1+⋯+en

⩽ kd �
0⩽e1<ℓ1,…,0⩽en<ℓn

e1+⋯+en⩽d

(r−1)1+e1+⋯+en.

The conclusion follows by applying (3.4) and (3.5) to the polynomial (r−1)F. □

Algorithm 4.1
Input. 𝔸≔(ℤ/rℤ)[z]/(𝜃(z)); f ∈𝔸[x1,…,xn]; a sequence 𝛼1,…,𝛼N of points in 𝔸n.
Output. f (𝛼1),…, f (𝛼N).
Assumption. 𝜃 is monic of degree k.

1. Compute ℓ1,…, ℓn,d, 𝜎,𝜑,K,R, the bit size bs r of r, and the bit size bs(kbs r).
2. If 𝜎 ⩽ bs(k bs r), then use the naive evaluation algorithm to compute and return

f (𝛼1),…, f (𝛼N).
3. Call Algorithm 3.2 with max (K, log R) and R to compute the minimal sequence of

the smallest prime numbers p1<⋯<ps such that p1>max(K, logR) and p1⋯ ps⩾R.
4. Let f̄ be the canonical preimage of f inℤ[z][x1,…,xn]with degrees<k in z and with

integer coefficients in {0,…, r−1}.
Let �̄�i represent the similar preimage of 𝛼i in ℤ[z]n, for i=1,…,N.
Compute f̄ rem pj and (�̄�i)1⩽i⩽N rem pj, for j=1,…, s.

5. For j from 1 to s do
a. Specialize f̄ rem pj for z=0,…,K.
b. Specialize �̄�1 rem pj,…, �̄�N rem pj for z=0,…,K.
c. For z=0,…,K, evaluate f̄ rem pj at �̄�1 rem pj,…, �̄�N rem pj by using the algorithm

from Theorem 3.10.
d. Interpolate f̄ (�̄�1) rem pj,…, f̄ (�̄�N) rem pj.

6. Use Chinese remaindering to recover f̄ (�̄�1),…, f̄ (�̄�N).
7. Compute the remainders by r and 𝜃 of these values to obtain and return f (𝛼1), …,

f (𝛼N).
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PROPOSITION 4.3. Algorithm 4.1 is correct. Assume n⩾2 and that f has partial degree <ℓi in xi
for i=1,…,n and total degree ⩽d. Then there exists a function 𝜂(ℓ ,d,r,k) which tends to 0 when
max(n, ℓ1,…, ℓn,d, r,k) tends to infinity, such that the cost of Algorithm 4.1 is

(1+𝜂(ℓ ,d, r,k))n(N+(𝜑 log 𝜑)n) Õ(n2𝜑5K logR).

Proof. The correctness follows from Lemma 4.2. The quantities ℓ1,…,ℓn,d may be obtained
in time

O(𝜎 k log r+n2 (d+1)n(1+log (d+1)))=𝜑n Õ(n2 log 𝜑k log r),

by Lemmas 2.5, 2.7 and 2.8. As in the beginning of the proof of Proposition 3.9, the cost
for deducing 𝜎 and 𝜑 is negligible. The degree k of 𝜃 may be obtained in time Õ(k log r).
Then, computing K requires time Õ(log(k d)). To obtain R we first evaluate rℓ1+⋯+ℓn in
time Õ((ℓ1+⋯+ ℓn) log r)= Õ(n d log r) and then �d+n−1

n−1 � rd+1 in time Õ(n log(d+1)+
d log r)= Õ(nd log r). Overall step 1 takes negligible time

𝜑n Õ(n2 log 𝜑k log r). (4.1)

If 𝜎 ⩽bs(kbs r), then the naive algorithm in step 2 runs in time

nN𝜎 Õ(k log r)=nNÕ(k log r), (4.2)

by adapting Lemma 3.8. Proposition 3.6 implies that step 3 takes time

Õ(K+logR), (4.3)

and we have pi = O(K + log R) whence p1⋯ ps ⩽ B ≔ c′ R (K + log R), for a universal
constant c′.

The cost of step 4 is obtained by adapting Lemmas 2.9 and 2.10 to 𝔸:

k(nN+n(d+1)n) Õ(log B)=k (nN+n (d+1)n) Õ(logR+logK). (4.4)

Let us now examine the cost of step 5. For fixed j, the specializations of f̄ rem pj and the
�̄�i rem pj for z=0,…,K in steps 5.a and 5.b require time

(nN+(d+1)n) Õ(K log pj),

by Lemmas 2.12 and 2.13. By Theorem 3.10, the evaluations in step 5.c take time

K (1+𝜀(ℓ ,d,pj))n�N+(𝜑 log 𝜑)n� Õ(n2𝜑5 log pj),

where (3.15) implies 𝜀(ℓ , d, pj) ⩽ c log log 𝜑
log 𝜑 . The cost of step 5.d is N Õ(K log pj) by

Lemma 2.14. It follows that the total cost of step 5 is

�
j=1

s

(nN+(d+1)n) Õ(K log pj)

+ K((((((((((1+ c log log 𝜑log 𝜑 ))))))))))
n
(N+(𝜑 log 𝜑)n)�

j=1

s

Õ(n2𝜑5 log pj)

= (nN+(d+1)n) Õ(K log B)+((((((((((1+ c log log 𝜑log 𝜑 ))))))))))
n
(N+(𝜑 log 𝜑)n) Õ(n2𝜑5K log B)

= ((((((((((1+ c log log 𝜑log 𝜑 ))))))))))
n
(N+(𝜑 log 𝜑)n) Õ(n2𝜑5K logR). (4.5)
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The cost of step 6 is provided by Lemma 2.11, that is

NKÕ(log B)=NÕ(K logR). (4.6)
Finally the cost of step 7 is

NÕ(K log B)=NÕ(K logR). (4.7)

Summing all costs from (4.1)–(4.7), we obtain the total cost of the algorithm

((((((((((1+ c log log 𝜑log 𝜑 ))))))))))
n
(N+(𝜑 log 𝜑)n) Õ(n2𝜑5K logR).

We conclude that the function

𝜂(ℓ ,d, r,k)≔{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{ c log log 𝜑log 𝜑 if bs(kbs r)<𝜎

0 otherwise

satisfies the requirement of the proposition. □

THEOREM 4.4. There exists a function 𝜂(ℓ ,d,r,k) which tends to 0when max(n,ℓ1,…,ℓn,d,r,k)
tends to infinity, such that the following holds. Let 𝔸≔ (ℤ/r ℤ)[z]/(𝜃(z)) with 𝜃 monic of
degree k, let f ∈𝔸[x1,…,xn] be of partial degree <ℓi in xi for i=1,…,n and of total degree d, and
let 𝛼1,…,𝛼N be a sequence of points in 𝔸n. Then, we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜂(ℓ ,d, r,k))n(N+(𝜑 log 𝜑)n) Õ(n2d𝜑6 k log r).

Proof. If n = 1, then we use fast univariate multi-point evaluation. Otherwise we use
Proposition 4.3 in combination with logR⩽d log k+𝜑log r. □

4.2. Corollaries in terms of partial and total degrees
The first corollary is a complexity bound in terms of the partial degrees, while the second
one concerns the total degree.

COROLLARY 4.5. Let 𝜀> 0 be a fixed real value. Let 𝔸≔(ℤ/rℤ)[z]/(𝜃(z)) with 𝜃 monic of
degree k, let f ∈𝔸[x1, …, xn] be of partial degree <ℓ̄ in xi for i= 1,…, n, and let 𝛼1, …, 𝛼N be a
sequence of points in 𝔸n. Then we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜀)n(N+(n ℓ̄ log(n ℓ̄))n) Õ(n9 ℓ̄7 k log r).

Proof. We apply Theorem 4.4 with d,𝜑⩽n ℓ̄. □

COROLLARY 4.6. Let 𝜀> 0 be a fixed real value. Let 𝔸≔(ℤ/rℤ)[z]/(𝜃(z)) with 𝜃 monic of
degree k, let f ∈𝔸[x1,…,xn] be of total degree ⩽d, and let 𝛼1,…,𝛼N be a sequence of points in 𝔸n.
Then we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜀)n(N+((3d+2n) log(3d+2n))n) Õ(n2d (d+n)6 k log r).

Proof. We apply Theorem 4.4 with ℓi⩽d+1 and make use of the well known inequality
�2n

n �⩽4n. If d⩽n−1, then

𝜑⩽d+1+⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈
⌈ log �d+n−1

n−1 �

log 2 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉
⌉⩽d+1+

log �2(n−1)
n−1 �

log 2 +1⩽d+2n.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23



Otherwise,

𝜑⩽d+1+⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈
log �d+n−1

d �

log 2 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⩽d+1+
log �2 d

d �

log 2 +1⩽d+2+2d=3d+2.

In both cases we thus have 𝜑⩽3d+2n. □

5. KRONECKER SEGMENTATION

If the partial degrees are large with respect to the number of the variables, then we may
use Kronecker segmentation on f in order to decrease the dependency in 𝜑 in the com-
plexity bounds from the two previous sections. We first analyze the cost of Kronecker
segmentation on Turing machines and then show how to reduce the complexity of multi-
point evaluation. Throughout this section, 𝔸 is an effective ring whose elements occupy
at most s𝔸 cells on tapes and whose arithmetic operations take softly linear time.

5.1. Univariate case
Let ℓ

˘
1, …, ℓ

˘
m be integers ⩾2. The Kronecker substitution map is the unique 𝔸-algebra

morphism determined by

Kℓ
˘
1,…,ℓ

˘
m
: 𝔸[x1,…,xm] → 𝔸[x]

xi ↦ xℓ
˘
1⋯ℓ

˘
i−1.

When restricted to the space of polynomials of partial degree <ℓ
˘
i in xi, it becomes an

𝔸-linear isomorphism onto the space of polynomials in 𝔸[x] of degree <ℓ
˘
1 ⋯ ℓ

˘
m. The

Kronecker segmentation associated to ℓ
˘
1, …, ℓ

˘
m transforms the univariate polynomial

f ∈𝔸[x] of degree <ℓ
˘
1⋯ ℓ

˘
m into the multivariate polynomial f

˘
=Kℓ

˘
1,…,ℓ

˘
m

−1 ( f ), so that

f (x)= f
˘
�x,xℓ

˘
1,xℓ

˘
1ℓ
˘
2,…,xℓ

˘
1⋯ℓ

˘
m−1�.

Algorithm 5.1
Input. f =∑0⩽i<ℓ fi xi∈𝔸[x]; a sequence ℓ

˘
1,…, ℓ

˘
m of integers ⩾2.

Output. Kℓ
˘
1,…,ℓ

˘
m

−1 ( f ).

Assumption. ℓ⩽ ℓ
˘
1⋯ ℓ

˘
m.

1. If m=1, then return f (x1).
2. For i=0,…, ℓ

˘
m −1, call the algorithm recursively on Fi(x)≔∑0⩽ j<ℓ

˘
1⋯ℓ

˘
m−1

fj+ℓ
˘
1⋯ℓ

˘
m−1i x

j

and integers ℓ
˘
1,…, ℓ

˘
m−1 to obtain F

˘
i≔Kℓ

˘
1,…,ℓ

˘
m−1

−1 (Fi).
3. Return ∑0⩽i<ℓ

˘
m

F
˘

i(x1,…,xm−1)xm
i .

PROPOSITION 5.1. Algorithm 5.1 is correct and takes time O(mℓ
˘
1⋯ ℓ

˘
m s𝔸).

Proof. The correctness is clear. Let K(ℓ
˘
1, …, ℓ

˘
m) represent the cost function of the algo-

rithm. Step 1 takes linear time in the size of f , that is K(ℓ
˘
1)=O(ℓ

˘
1 s𝔸). Step 2 requires one

linear traversal and ℓ
˘
m recursive calls, whence

K(ℓ
˘
1,…, ℓ

˘
m)=O(ℓ

˘
1⋯ ℓ

˘
ms𝔸)+ ℓ

˘
mK(ℓ

˘
1,…, ℓ

˘
m−1).

By induction over m, it follows that K(ℓ
˘
1,…, ℓ

˘
m)=O(mℓ

˘
1⋯ ℓ

˘
m s𝔸). □
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The cost of the Kronecker substitution, stated in the next proposition, will be needed
in section 7 only.

PROPOSITION 5.2. Let f ∈𝔸[x1,…,xm] be of partial degree<ℓi in xi for i=1,…,n. The Kronecker
substitution Kℓ

˘
1,…,ℓ

˘
m
( f ) of f may be computed in time O(mℓ

˘
1⋯ ℓ

˘
m s𝔸).

Proof. The proof is done by induction on m. We will require in addition that Kℓ
˘
1,…,ℓ

˘
m
( f )

is zero padded up to degree ℓ
˘
1⋯ ℓ

˘
m −1 (at the end, we may clearly remove trailing zeros

in linear time). The case m=1 corresponds to a simple zero padding up to degree ℓ1−1,
which takes time O(ℓ1 s𝔸). If m⩾2, then we write f = f0+⋯+ fℓ

˘
m−1xm

ℓ
˘
m−1, we recursively

compute Kℓ
˘
1,…,ℓ

˘
m−1
( fi) for i=0,…, ℓ

˘
m −1, and concatenate the results onto the output tape.

The complexity bound is straightforward. □

Only the univariate Kronecker segmentation is actually needed for the modular
composition algorithm of the next section. In the rest of this section we introduce the
multivariate segmentation and make use of it in order to speed up multi-point eval-
uation.

5.2. Multivariate case
Now consider a multivariate polynomial f ∈𝔸[x1, …, xn] of partial degree <ℓi in xi for
i=1,…,n. For i=1,…,n, let ℓ

˘
i,1,…, ℓ

˘
i,mi be integers such that

ℓi⩽ ℓ
˘
i,1⋯ ℓ

˘
i,mi, mi=1 and ℓ

˘
i,1=1 whenever ℓi=1, and ℓ

˘
i, j⩾2 otherwise. (5.1)

We introduce the multivariate Kronecker substitution map

Kℓ
˘
1,1,…,ℓ

˘
n,mn

: 𝔸[x1,1,…,x1,m1,…,xn,1,…,xn,mn] → 𝔸[x1,…,xn] (5.2)

xi, j ↦ xi
ℓ
˘
i,1⋯ℓ

˘
i,j−1 (1⩽ i⩽n, 1⩽ j⩽mi).

This map restricts to an 𝔸-linear isomorphism between polynomials of partial
degree <ℓ

˘
i, j in xi, j and polynomials in 𝔸[x1, …, xn] of partial degree <ℓ

˘
i,1 ⋯ ℓ

˘
i,mi in xi.

In this context, the Kronecker segmentation of f is defined as Kℓ
˘
1,1,…,ℓ

˘
n,mn

−1 ( f ).

PROPOSITION 5.3. Let f ∈ 𝔸[x1, …, xn] be of partial degree <ℓi in xi for i = 1, …, n, and let
ℓ
˘
i,1,…, ℓ

˘
i,mi be integers satisfying (5.1). The Kronecker segmentation Kℓ

˘
1,1,…,ℓ

˘
n,mn

−1 ( f ) of f may be
computed in time

O(n
˘
𝜋
˘
(s𝔸+n)),

where n
˘
≔m1+⋯+mn and 𝜋

˘
≔ ℓ
˘
1,1⋯ ℓ

˘
1,m1⋯ ℓ

˘
n,1⋯ ℓ

˘
n,mn.

Proof. If n = 1, then we may use Proposition 5.1. Otherwise we consider f in the form
f =∑0⩽i<ℓn

fi(x1, …, xn−1) xn
i . Let K(ℓ

˘
1,1, …, ℓ

˘
n,mn) represent the cost of the segmentation

of f . By Lemma 2.5 the representation size of each fi is O(ℓ1⋯ ℓn−1 (s𝔸+n)). If ℓn⩾2, then
Proposition 5.1 gives

K(ℓ
˘
1,1,…, ℓ

˘
n,mn)⩽O(mn𝜋

˘
(s𝔸+n))+ ℓ

˘
n,1⋯ ℓ

˘
n,mnK(ℓ

˘
1,1,…, ℓ

˘
n−1,mn−1).

Otherwise, we simply have K(ℓ
˘
1,1, …, ℓ

˘
n,mn) = O(𝜋 (s𝔸 + n)) + K(ℓ

˘
1,1, …, ℓ

˘
n−1,mn−1). It

follows that K(ℓ
˘
1,1,…, ℓ

˘
n,mn)=O((mn+mn−1+⋯+m1)𝜋

˘
(s𝔸+n)). □
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5.3. Application to multi-point evaluation
In the rest of this section we explain how to decrease the cost of multi-point evaluation
using Kronecker segmentation of f .

Recall that ℓ̄≔max(ℓ1,…, ℓn). Let m̄⩾1 be an integer. For i=1,…,n with ℓi>1, let

mi≔⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈
log ℓi

log ℓ̄
m̄⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉.

We thus have
log ℓi

log ℓ̄
m̄⩽mi<

log ℓi

log ℓ̄
m̄+1

which implies
log ℓ̄

m̄+ log ℓ̄
log ℓi

< log ℓi
mi

⩽ log ℓ̄
m̄ ,

whence
ℓi
1/mi⩽ ℓ̄1/m̄. (5.3)

If ℓi=1, then we set mi≔1 so that inequality (5.3) still holds. In addition, if mi⩾2, then
ℓi> ℓ̄1/m̄, whence log ℓ̄

log ℓi
< m̄, and

ℓ̄1/(2m̄)< ℓi
1/mi. (5.4)

Notice that we have m̄=max(m1,…,mn). For all 1⩽ i⩽n we introduce

ℓ
˘
i, j≔�ℓi

1/mi� for j=1,…,mi −1, and ℓ
˘
i,mi≔⌈ℓi/(ℓ

˘
i,1⋯ ℓ

˘
i,mi−1)⌉,

so ℓ
˘
i,1=⋯= ℓ

˘
i,mi−1⩽ ℓ

˘
i,mi and ℓi⩽ ℓ

˘
i,1⋯ ℓ

˘
i,mi hold. From

ℓi
1/mi −1< ℓ

˘
i, j⩽ ℓi

1/mi, (5.5)
for j=1,…,mi −1, and

ℓi/(ℓ
˘
i,1⋯ ℓ

˘
i,mi−1)⩽ ℓ

˘
i,mi< ℓi/(ℓ

˘
i,1⋯ ℓ

˘
i,mi−1)+1 (5.6)

we deduce that
ℓ
˘
i,1⋯ ℓ

˘
i,mi< ℓi+ ℓi

(mi−1)/mi= ℓi�1+ ℓi
−1/mi�⩽2 ℓi. (5.7)

In a dual manner to the Kronecker substitution map (5.2) associated to the ℓ
˘
i, j we intro-

duce the map

Eℓ
˘
1,1,…,ℓ

˘
n,mn

: 𝔸n → 𝔸n
˘

(x1,…,xn) ↦ �x1,x1
ℓ
˘
1,1,…,x1

ℓ
˘
1,1⋯ℓ

˘
1,m1−1,…,xn,xn

ℓ
˘
n,1,…,xn

ℓ
˘
n,1⋯ℓ

˘
n,mn−1�,

where n
˘
≔m1+⋯+mn. Letting f

˘
=Kℓ

˘
1,1,…,ℓ

˘
n,mn

−1 ( f ) we thus have

f = f
˘
∘Eℓ

˘
1,1,…,ℓ

˘
n,mn

.

In this way we reduce the multi-point evaluation in n variables and partial degree
bounds (ℓ1,…, ℓn) to evaluation in n

˘
variables and partial degree bounds (ℓ

˘
1,1,…, ℓ

˘
1,m1,…,

ℓ
˘
n,1,…, ℓ

˘
n,mn). Notice that this segmentation generically builds a polynomial f

˘
of total

degree close to the sum of its partial degrees. The cardinality of the support of f
˘

is the
same as of the support of f , but its number of “#” symbols in the representation is larger.
From (5.7) we deduce that

𝜋
˘
≔ ℓ
˘
1,1⋯ ℓ

˘
1,m1⋯ ℓ

˘
n,1⋯ ℓ

˘
n,mn⩽2n𝜋. (5.8)
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The latter 2n may be replaced by a smaller value cn with c>1 arbitrarily close to 1 when-
ever min (ℓ1, …, ℓn) is sufficiently large. The reduction process is summarized in the
following algorithm.

Algorithm 5.2
Input. f ∈𝔸[x1,…,xn]; a sequence 𝛼1,…,𝛼N of points in 𝔸n; an integer m̄⩾1.
Output. Kℓ

˘
1,1,…,ℓ

˘
n,mn

−1 ( f ); Eℓ
˘
1,1,…,ℓ

˘
n,mn

(𝛼1),…,Eℓ
˘
1,1,…,ℓ

˘
n,mn

(𝛼N).

1. Compute ℓ1,…, ℓn, ℓ̄ and then mi and ℓ
˘
i, j for i=1,…,n and j=1,…,mi.

2. Build f
˘
≔Kℓ

˘
1,1,…,ℓ

˘
n,mn

−1 ( f ).
3. For all i=1,…,N compute 𝛼

˘
i≔�𝛼i,1, 𝛼i,1

ℓ
˘
1,1,…,𝛼i,1

ℓ
˘
1,1⋯ℓ

˘
1,m1−1,…,𝛼i,n, 𝛼i,n

ℓ
˘
n,1,…,𝛼i,n

ℓ
˘
n,1⋯ℓ

˘
n,mn−1�.

4. Return f
˘

and 𝛼
˘
1,…,𝛼

˘
N.

PROPOSITION 5.4. Algorithm 5.2 is correct and takes time

O(n𝜋 log 𝜋)+nÕ(m̄ log ℓ̄)+O(n
˘
𝜋
˘
(s𝔸+n))+N (n

˘
+log 𝜋

˘
) Õ(s𝔸).

Proof. The correctness is clear from the definitions. The quantities ℓ1, …, ℓn, ℓ̄ may be
obtained in time O(𝜋 s𝔸+n𝜋 (n+log𝜋))=𝜋O(s𝔸+n2+n log𝜋) by Lemmas 2.5 and 2.7.
Then we use a binary search to determine mi as the first integer such that ℓi

m̄ ⩽ ℓ̄mi in
time Õ(m̄ log ℓ̄). By Proposition 5.3 the segmentation in step 2 takes time O(n

˘
𝜋
˘
(s𝔸+n)).

Using binary powering, step 3 involves O(n
˘
+log𝜋

˘
) operations in𝔸 for each point 𝛼i. □

THEOREM 5.5. Let 𝜀>0 be a fixed real value and let m̄⩾2 be a fixed integer. Let𝔸≔(ℤ/rℤ)[z]/
(𝜃(z)) with 𝜃 monic of degree k, let f ∈𝔸[x1,…,xn] be of partial degree <ℓi in xi for i=1,…,n,
and let 𝛼1,…,𝛼N be a sequence of points in 𝔸n. Then, we may compute f (𝛼1),…, f (𝛼N) in time

(1+𝜀)2m̄n (N+(m̄n)m̄n ℓ̄n log m̄n((1+𝜀) m̄n ℓ̄1/m̄)) Õ(n10 ℓ̄7/m̄ k log r),

where ℓ̄≔max(ℓ1,…, ℓn).

Proof. We may freely assume that max (n, ℓ̄, k, log r) is sufficiently large, so that the cost
of multi-modular evaluation is

(1+𝜀)n(N+(𝜑 log 𝜑)n) Õ(n2d𝜑6 k log r)
= (1+𝜀)n(N+(n ℓ̄ log(n ℓ̄))n) Õ(n9 ℓ̄7 k log r),

by Theorem 4.4. If ℓ̄⩽n1/7, then we deduce the complexity bound

(1+𝜀)n (N+n2n ℓ̄n) Õ(n10k log r),
so we are done.

From now we assume that n1/7⩽ ℓ̄. If ℓ̄ is bounded, then so is n, and we may appeal
to the naive evaluation algorithm; the conclusion follows by adapting Lemma 3.8 to 𝔸.
We may thus further assume that ℓ̄ is sufficiently large to satisfy

1
(1− ℓ̄−2/m̄)m̄−1+ ℓ̄−1/m̄⩽1+𝜀.

If mi=1, then ℓ
˘
i,mi= ℓi

1/mi⩽ ℓ̄1/m̄. Otherwise, (5.3), (5.4), (5.5), and (5.6) imply

ℓ
˘
i,mi<

ℓi

(ℓi
1/mi −1)mi−1

+1= ℓi
1/mi

(1− ℓi
−1/mi)mi−1

+1⩽ ℓ̄1/m̄

(1− ℓ̄−2/m̄)m̄−1+1,
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whence

ℓ
˘
i,mi<(((((((((((( 1

(1− ℓ̄−2/m̄)m̄−1+ ℓ̄−1/m̄)))))))))))) ℓ̄1/m̄.

For all 1⩽ i⩽n we thus have ℓ
˘
i,mi⩽(1+𝜀) ℓ̄1/m̄. It follows that

d
˘
≔ ℓ

˘
1,1+⋯+ ℓ

˘
n,mn −n

˘
⩽ ℓ

˘
1,1+⋯+ ℓ

˘
n,mn ⩽ (1+𝜀) m̄n ℓ̄1/m̄

and

𝜑
˘
≔ min(((((((((((((((((

((
(
(ℓ
˘
1,1+⋯+ ℓ

˘
n,mn,d

˘
+1+⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈⌈

⌈⌈
⌈
⌈ log (((((((d

˘
+n
˘
−1

n
˘
−1 )))))))

log 2 ⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉⌉
⌉⌉
⌉
⌉
)))))))))))))))))
))
)
) ⩽ (1+𝜀) m̄n ℓ̄1/m̄.

Using Proposition 5.4, we compute f
˘

and the 𝛼
˘

i by Algorithm 5.2 in time

O(n𝜋 log 𝜋)+nÕ(m̄ log ℓ̄)+O(n
˘
𝜋
˘
(k log r+n))+N (n

˘
+ log 𝜋

˘
) Õ(k log r)

= O(n2 ℓ̄n log ℓ̄)+nÕ(m̄ log ℓ̄)+O(m̄n𝜋
˘
(k log r+n))+nN log ℓ̄ Õ(k log r)

= (1+𝜀)nm̄ nm̄ ℓ̄n Õ(n log ℓ̄+ k log r)+nN log ℓ̄ Õ(k log r)
= (1+𝜀)nm̄ (N+nm̄ ℓ̄n) Õ(n log ℓ̄ k log r).

Then Theorem 4.4 ensures that the evaluation of f
˘

at all the 𝛼
˘

i takes time

(1+𝜂(ℓ
˘
,d
˘
, r,k))m̄n (N+(𝜑

˘
log 𝜑

˘
)n
˘

) Õ(n
˘
2d
˘
𝜑
˘
6 k log r), (5.9)

where ℓ
˘
≔ (ℓ

˘
1,1, …, ℓ

˘
1,m1, …, ℓ

˘
n,1, …, ℓ

˘
n,mn). Now we further assume that max (n, ℓ̄, r, k) is

sufficiently large such that
𝜂(ℓ

˘
,d
˘
, r,k)⩽𝜀.

Then the cost (5.9) rewrites into

(1+𝜀)m̄n (N+(1+𝜀)m̄n (m̄n)m̄n ℓ̄n log m̄n((1+𝜀) m̄n ℓ̄1/m̄)) Õ(n9 ℓ̄7/m̄ k log r). □

5.4. Consequence in terms of total degree
In the univariate case it is well known that a polynomial of degree d may be evaluated
at d points in softly linear time. In the multivariate setting we wish to reach softly linear
time for the evaluation in degree d, with n variables, at �d+n

n � points. Although such
a complexity bound seems out of reach for the present techniques, the aim of this section
is to prove a slightly weaker bound. We start with a simple lemma.

LEMMA 5.6. For all positive integers n and d we have

log �d+n
n �⩽n log((((((((((1+ d

n))))))))))+d log(((((((1+ n
d))))))).

Proof. The bound is proved as follows:

log�n+d
n � = �

i=1

n

log((((((((((1+ d
i ))))))))))

⩽ �
i=1

n

�
i−1

i
log((((((((((1+ d

t ))))))))))dt

= �
0

n
log((((((((((1+ d

t ))))))))))dt = n log((((((((((1+ d
n))))))))))+d log(((((((1+ n

d))))))). □
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PROPOSITION 5.7. Let 𝜀>0 be a fixed rational value. Let 𝔸≔(ℤ/rℤ)[z]/(𝜃(z)) with 𝜃 monic
of degree k, let f ∈𝔸[x1,…,xn] be of total degree⩽d and let 𝛼1,…,𝛼N be in 𝔸n with N⩽dn. Then
we may compute f (𝛼1),…, f (𝛼N) in time Õ(max(n2,d(1+𝜀)n)k log r).

Proof. If d=1, then Lemma 3.8 ensures evaluation time n2 Õ(dn k log r). From now on we
may assume d⩾2.

First we examine the case when d⩽ 𝛾 n for a constant 𝛾 > 0 to be fixed. Lemma 5.6
combined to the fact that the function 𝛾↦ log(1+𝛾)+ 𝛾 log(1+ 1/𝛾) is nondecreasing
yields

log �d+n
n �⩽n((((((((((log((((((((((1+ d

n))))))))))+ d
n log�1+ n

d�))))))))))⩽(log(1+𝛾)+𝛾 log(1+1/𝛾))n.

We fix the constant 𝛾 sufficiently small such that �d+n
n � ⩽ (1 + 𝜀)n. By Lemma 3.8, the

evaluations can be achieved in time (1+𝜀)n Õ(dn k log r).
From now we may assume that 𝛾 n < d holds. If d is bounded, then so is n and

Lemma 3.8 again leads to an evaluation time Õ(dn k log r). Consequently we may fur-
ther assume that d is sufficiently large to satisfy

d⩾3 and (3+2/𝛾) log((3+2/𝛾)d)⩽d𝜀. (5.10)

Setting m̄≔⌈7/𝜀⌉, Theorem 5.5 provides us with the time complexity bound

(1+𝜀)2m̄n (N+(m̄n)m̄n(d+1)n log m̄n((1+𝜀) m̄n(d+1)1/m̄)) Õ(n10(d+1)7/m̄ k log r).

For a universal constant c⩾1, this bound simplifies to

(1+𝜀)O(n)ncn logcn dÕ(dn+𝜀 k log r).

Whenever ncn log cn d⩽d𝜀n the latter cost further simplifies to

(1+𝜀)O(n) Õ(d(1+𝜀)n+𝜀k log r)=(1+𝜀)O(n) Õ(d(1+2𝜀)n k log r).

We now consider the other case when d𝜀n< ncn log cn d, so we have d𝜀< nc logc d, hence
d=logO(1)(dn). In this case, Corollary 4.6 gives the cost

(1+𝜀)n(dn+((3d+2n) log(3d+2n))n) Õ(n2d(d+n)6 k log r),

which is bounded from above by

(1+𝜀)n (dn+((3d+2n) log(3d+2n))n) Õ(dO(1)k log r)
⩽ (1+𝜀)n ((3+2/𝛾) log((3+2/𝛾)d))n Õ(dnk log r)
⩽ (1+𝜀)n Õ(d(1+𝜀)nk log r), by (5.10).

In all cases with d⩾2, we have thus proved the complexity bound

(1+𝜀)n Õ(d(1+2𝜀)nk log r).

Since d⩾2, we have (1+𝜀)n= dnlog(1+𝜀)/logd⩽d2𝜀n, so the total running time is bounded
by Õ(d(1+4𝜀)n k log r). We conclude by applying this for 𝜀/4 instead of 𝜀. □

6. MODULAR COMPOSITION

In this section, 𝕂 is an effective field, h is a monic polynomial in 𝕂[x] of degree d, and
f , g are two polynomials in 𝕂[x]<d. We want to compute f ∘ g rem h. We first describe
and analyze the algorithm in the algebraic complexity model and then return to Turing
machines in the case when 𝕂 is a finite field.
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Let 𝛿 ≔ 7� . This precise choice of 𝛿 will be motivated below. We let n be an integer
such that

�n−𝛿(((((((((( log(d+1)
log log(d+1)))))))))))

1/2
�<1. (6.1)

In particular, we have

n=𝛿(((((((((( log(d+1)
log log(d+1)))))))))))

1/2

((((((((((1+O(((((((((((((((((((( log log(d+1)
log(d+1) ))))))))))

1/2

))))))))))))))))))))
and

1
n = 1

𝛿 (((((((((( log log(d+1)
log(d+1) ))))))))))

1/2

((((((((((1+O(((((((((((((((((((( log log(d+1)
log(d+1) ))))))))))

1/2

)))))))))))))))))))),
so that

(d+1)1/n > (d+1)
1
𝛿�

loglog(d+1)
log(d+1) �1/2(1+o(1))

⩾ exp�1𝛿 (log(d+1)log log(d+1))1/2 (1+ o(1))� (6.2)

tends to +∞ for large values of d. Now we define

ℓi ≔ ⌊(d+1)1/n⌋ (1⩽ i⩽n−1)
ℓn ≔ ⌈(d+1)/(ℓ1⋯ ℓn−1)⌉,

so that d+1⩽ ℓ1⋯ ℓn. If d is sufficiently large, then ℓi⩾2 for all i. In addition, from

(d+1)1/n −1< ℓi⩽(d+1)1/n (1⩽ i⩽n−1)
and

(d+1)/(ℓ1⋯ ℓn−1)⩽ ℓn<(d+1)/(ℓ1⋯ ℓn−1)+1,
we deduce

ℓ1⋯ ℓn<(d+1)+(d+1)(n−1)/n=(d+1)(1+(d+1)−1/n)⩽2(d+1). (6.3)

We are now ready to state the modular composition algorithm.

Algorithm 6.1
Input. f ,g,h∈𝕂[x]; N distinct points 𝛾1,…,𝛾N in 𝕂.
Output. f ∘g rem h.
Assumptions. d≔deg h, deg f < d, deg g< d, D≔ ℓ1+⋯+ ℓn − n, and N≔D (d − 1)+ 1,

where n is as in (6.1).
1. Compute n, ℓ1,…, ℓn.

If one of the ℓi is less than 2, then use the naive modular composition algorithm.
2. Build F≔Kℓ1,…,ℓn

−1 ( f ).
3. Compute a1≔g, a2≔gℓ1 rem h,..., an≔gℓ1⋯ℓn−1 rem h.
4. Compute 𝛼i≔(a1(𝛾i),…,an(𝛾i)) for i=1,…,N.
5. Evaluate F at 𝛼i for i=1,…,N.
6. Interpolate 𝜌∈𝕂[x]<N such that 𝜌(𝛾i)=F(𝛼i) for i=1,…,N.
7. Return 𝜌 rem h.

The following proposition summarizes the cost in terms of arithmetic operations in 𝕂.

PROPOSITION 6.1. Algorithm 6.1 is correct and takes O(n D M(d) log d +M(D d) log(D d))
operations in 𝕂 plus the multi-point evaluation of step 5.
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Proof. If d is sufficiently large, then ℓi⩾2 for all i. Step 3 performs

O(M(d) log(ℓ1⋯ ℓn−1))=O(M(d) log d)

operations in 𝕂 in view of (6.3). Steps 4 and 6 respectively take time O(n DM(d) log d)
and O(M(Dd) log(Dd)). Step 7 takes O(M(Dd)) additional operations in 𝕂. □

From now we return to the Turing machine model.

THEOREM 6.2. Let f , g, h be polynomials in 𝔽q[x] such that h is monic of degree d and f , g have
degrees <d. We assume that 𝔽q is given as 𝔽p[z]/(𝜃(z)) with p prime and 𝜃 monic of degree k.
Then f ∘g rem h may be computed in time

(d+1)
�28 loglog(d+1)log(d+1) �1/2�1+O� 1

loglog(d+1)�� Õ(d log q).

Proof. The integer d can be computed in time Õ(d log q). Without loss of generality we
may suppose d⩾ 2, so that log log(d+ 1)> 0. Since log n=O(log log d), Lemmas 2.15,
2.16 and 2.17 allow us to routinely compute n in time Õ(log log d). We compute ℓ1 as the
largest integer such that ℓ1n⩽ d+1, in time Õ(log d), and deduce ℓn with additional cost
Õ(log d).

The sum L≔ ℓ1+⋯+ ℓn may be bounded from above as follows:

L ⩽ (n−1)(d+1)1/n+ d+1
ℓ1⋯ ℓn−1

+1

⩽ (n−1)(d+1)1/n+ d+1
((d+1)1/n−1)n−1+1

⩽ (n−1)(d+1)1/n+ (d+1)1/n

(1− (d+1)−1/n)n−1+1

⩽ (n−1)(d+1)1/n((((((((((1+ 1
(n−1)(1− (d+1)−1/n)n−1+

1
(n−1)(d+1)1/n)))))))))).

From (6.2) we obtain

log (((((((((( 1
(1−(d+1)−1/n)n−1)))))))))) = −(n−1) log(1−(d+1)−1/n)

= (n−1)(d+1)−1/n (1+O((d+1)−1/n)).

Since (n−1)(d+1)−1/n= o(1) we deduce that

1
(1− (d+1)−1/n)n−1=exp((n−1)(d+1)−1/n(1+O((d+1)−1/n)))=1+o(1).

It follows that

L=(n−1)(d+1)1/n�1+O�1n��, (6.4)
whence

Ln=O((n−1)n (d+1)). (6.5)
We then obtain

log L= log(d+1)
n +log(n−1)+O�1n�=

log(d+1)
n ((((((((((1+O(((((((((( n log n

log(d+1)))))))))))))))))))))
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and

n log((((((((((1+O(((((((((( n log n
log(d+1))))))))))))))))))))) = O(((((((((( n2 log n

log(d+1)))))))))))((((((((((1+O(((((((((( n log n
log(d+1)))))))))))))))))))))

= O((((((((((((((((((
((((
(
(�𝛿 2 log(d+1)

log log(d+1)�log log(d+1)
log(d+1) ))))))))))))))))))

))))
)
)

= O(1),

which imply that (log L)n=O�� log(d+1)
n �

n
�. Combined with (6.5), this yields

(L log L)n = O(((((((((((n−1)n (d+1)(((((((((( log(d+1)
n ))))))))))

n

))))))))))
= O((d+1)(log(d+1))n)

= O(((((((((((d+1)exp((((((((((log log(d+1)((((((((((𝛿(((((((((( log(d+1)
log log(d+1)))))))))))

1/2
+1))))))))))))))))))))))))))))))

= O�(d+1)
1+ loglog(d+1)

log(d+1) �𝛿� log(d+1)
(loglog(d+1))�

1/2+1��

= O�(d+1)
1+ 𝛿2

n +O� loglog(d+1)log(d+1) ��.

On the other hand, thanks to (6.4), we have

N=D(d−1)+1⩽L (d+1)+1=O(n(d+1)1+1/n). (6.6)

First we handle the case when q⩾N. We may generate N pairwise distinct 𝛾1,…,𝛾N∈𝔽q

in time NÕ(log q)=(d+1)1/n Õ(d log q) and use Algorithm 6.1. Step 5 takes time

(1+𝜂(ℓ ,L−n,p,k))n (N+(L log L)n) Õ(n2L7 log q),

by Theorem 4.4. This bound simplifies into

(1+ c)n(d+1)
𝛿2+7

n +O� loglog(d+1)log(d+1) �
Õ(d log q),

for some constant c>0. Notice that

𝛿 2+7
n =�𝛿+ 7

𝛿�(((((((((( log log(d+1)
log(d+1) ))))))))))

1/2

((((((((((1+O(((((((((((((((((((( log log(d+1)
log(d+1) ))))))))))

1/2

)))))))))))))))))))),
so 𝛿= 7� minimizes 𝛿+ 7

𝛿 . Now

(1+ c)n=(d+1)
nlog(1+c)
log(d+1) =(d+1)

�� log(d+1)
loglog(d+1)�

1/2+O(1)� 𝛿log(1+c)
log(d+1) =(d+1)

O(((((((((( 1
(log(d+1)loglog(d+1))1/2)))))))))),

so step 5 takes

(d+1)
2 7� � loglog(d+1)log(d+1) �1/2�1+O� 1

loglog(d+1)�� Õ(d log q).

Step 2 of Algorithm 6.1 takes time O(n ℓ1 ⋯ ℓn log q) = Õ(d log q) by Proposition 5.1
and (6.3). The cost for other steps, as analyzed by Proposition 6.1, amounts to

O(nLM(d) log d+M(Ld) log(Ld))

operations in 𝔽q, which simplifies into Õ(d1+1/n log q). We are done with the case q⩾N.
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It remains to deal with the case q < N. Basically we construct a suitable algebraic
extension 𝔽qe of 𝔽q and run Algorithm 6.1 over 𝔽qe instead of 𝔽q. In fact we need qe⩾N
to hold. We compute the first integer ě such that q ě⩾N, in time Õ(log N)= Õ(log d), so
we have ě=O(logN). We next compute the smallest integer e⩾ ě that its coprime with k.
Since e= ě+O(k)=O(log N), this takes time k Õ(log(ě+ k))= Õ(log N)= Õ(log d). We
proceed with the construction of an irreducible polynomial 𝜂∈𝔽p[y] of degree e. Using
[43, Theorem 3.2], this can be done in time

p� Õ(e4 log4 p)=N1/(2k) Õ(log4 N)=NÕ(log4 d).

This includes the computation of the irreducible factorization of e: the primes <e can be
computed in time Õ(e) by Lemma 3.5, so the prime factors of e may be deduced in time
Õ(e)= Õ(logN).

We let 𝜇(u) represent the monic part of the resultant Resz(𝜃(z), 𝜂(u − z)) in z and we
write A(u)z − B(u) for the corresponding subresultant of degree 1 in z. It is well known
that 𝜇 is irreducible and that A is invertible modulo 𝜇 (see for instance [43, Lemma 2.4]).
Setting 𝜈(u)=A(u)−1B(u)mod 𝜇(u), we then have the following isomorphism:

𝔽p[z,y]/(𝜃(z),𝜂(y)) → 𝔽p[u]/(𝜇(u)) (6.7)
z ↦ 𝜈(u)
y ↦ u−𝜈(u).

We identify 𝔽p[u]/(𝜇(u)) to 𝔽pke ≡ 𝔽qe. We may obtain 𝜇 and 𝜈 in time Õ(e k2 log p) =
Õ(log3 N) (see [35, Corollary 31] for fast algorithms, but it would be sufficient here to
appeal to naive methods). An element of 𝔽q represented by a(z) mod 𝜃(z) may be sent
into𝔽p[u]/(𝜇(u)) in time Õ(e k2 log p). For the backward conversion we simply replace u
by y+ z and reduce modulo 𝜃(z) and 𝜂(y), which takes time Õ(e2 k2 log p)= Õ(log4 N).
Consequently applying Algorithm 6.1 over𝔽qe instead of𝔽q only involves and additional
overhead of logO(1) d in the total complexity. □

Remark 6.3. Instead of relying on Theorem 4.4 in step 5, one might wonder whether it
is interesting to consider Theorem 5.5. It turns out that the same complexity analysis
applies with n≈𝛿� log(d+1)

m̄ log log(d+1)�
1/2, with a similar complexity result.

Remark 6.4. In practice, the case when q < N at the end of the proof can be handled
more efficiently by constructing irreducible polynomials by means of a faster, although
probabilistic Las Vegas algorithm; see [13, chapter 14] and [43] for instance. It is also
worth it to build an extension of 𝔽q of smooth degree e with gcd (e, k)=1, which allows
the isomorphism (6.7) to be computed more efficiently [27].

7. FIELDS OF SMALL POSITIVE CHARACTERISTIC

For the case when𝕂 is a field of small characteristic p, Kedlaya and Umans also designed
an algebraic algorithm for fast multi-point evaluation [34, Theorem 6.3]. This algorithm
turns out to be somewhat more efficient than those from the previous sections. In the
present section, we adapt their techniques and prove a complexity bound in terms of the
total degree instead of the partial degrees. We also refine their complexity estimates for
multi-point evaluation and modular composition.

The base field is written 𝔽q with q= pk and p prime; we assume it is explicitly given
as 𝔽p[z] / (𝜃(z)) with 𝜃 monic and irreducible of degree k. We let 2 < 𝜔 ⩽ 3 represent
a constant such that two n×n matrices can be multiplied with O(n𝜔) ring operations.
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7.1. Multi-point evaluation
We begin with p-th root extractions in 𝔽q. It is well known that such root extractions
reduce to linear algebra via the so-called Pietr-Berlekamp matrix of the isomorphism
𝛼 ↦ 𝛼p of 𝔽q in the canonical basis 1, …, zk−1. Once the inverse of this matrix is known,
each root extraction takes O(k2) ring operations in 𝔽p, and k root extractions take O(k𝜔)
ring operations in 𝔽p. We could use this strategy in this section but it would involve
an extra factor k𝜔−1 in our complexity estimates. Instead, since we focus on the case
when p remains small, it is worth using the following algorithm, borrowed from [34,
Theorem 6.1] and originating from [37].

Algorithm 7.1
Input. 𝛼∈𝔽p[z]<k, 𝜃∈𝔽p[z] monic and irreducible of degree k.
Output. 𝛽∈𝔽p[z]<k such that 𝛽p=𝛼 rem 𝜃.

1. Expand 𝜃 p−1(z) into a0(zp)+a1(zp)z+⋯+ap−1(zp)zp−1, where aj∈𝔽p[z]<k.
2. Expand 𝛼(z)𝜃p−1(z) into b0(zp)+b1(zp)z+⋯+bp−1(zp)zp−1, where bj∈𝔽p[z]<k.
3. Select i such that ai≠0, compute 𝛽≔ai

−1bi rem 𝜃, and return 𝛽.

PROPOSITION 7.1. Algorithm 7.1 is correct and takes O(M(p k) +M(k) log k) ring operations
in 𝔽p plus O(k) inversions in 𝔽p.

Proof. The identity 𝛽p=𝛼 rem𝜃 is equivalent to 𝛽(zp) 𝜃 p−1(z)=𝛼(z) 𝜃 p−1(z) rem𝜃(zp). For
all 0⩽ j⩽ p − 1 we have 𝛽(zp) aj(zp)= bj(zp) rem 𝜃(zp) and thus 𝛽 ai= bi rem 𝜃. Since 𝜃 is
irreducible, ai is invertible modulo 𝜃. We are done with the correctness.

The computations in steps 1 and 2 take O(M(p k)) ring operations in 𝔽p. Step 3
requires O(p k +M(k) log k) ring operations in 𝔽p plus O(k) inversions in 𝔽p by using
fast extended gcds. □

The next algorithm, borrowed from [34, section 6], performs multivariate multi-point
evaluations by reduction to the univariate case.

Algorithm 7.2
Input. 𝔽q explicitly given as 𝔽p[z]/(𝜃(z)), where 𝜃 is a monic irreducible polynomial of

degree k in 𝔽p[z]; f ∈𝔽q[x1, …, xn] of total degree ⩽d; a sequence 𝛼1, …, 𝛼N of points
in 𝔽q

n.
Output. f (𝛼1),…, f (𝛼N).

1. Compute the total degree d of f .
2. Let h≔pc be minimal such that c∈ℕ and h⩾max(d (n−1)+2,n+1).
3. Build a monic irreducible polynomial 𝜆 ∈ 𝔽p[z] of degree c, and find a primitive

root 𝜂 of unity of maximal order h−1 in 𝔽p[z]/(𝜆(z)).
4. Reinterpret 𝜆 as an element of 𝔽q[u], let 𝕃≔𝔽q[u]/(𝜆(u)), and reinterpret 𝜂 as an

element of 𝕃.
5. For i from 1 to N do

a. Compute 𝛽i≔�𝛼i,1, 𝛼i,2
1/p, 𝛼i,3

1/p2,…,𝛼i,n
1/pn−1

�∈𝔽q
n.

b. Interpolate gi∈𝕃[y]<n such that gi(𝜂 j−1)=𝛽i, j for j=1,…,n.

6. Let f ∗(y)≔ f �y, yh, …, yhn−1�, compute 𝛾i(y)≔ f ∗(gi(y)) modulo E(y)≔ yh−1− 𝜂 for
i=1,…,N.

7. Return (𝛾1(1),…,𝛾N(1)).
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PROPOSITION 7.2. Algorithm 7.2 is correct. If n⩾2, then it takes time

(N+pn−1nn−1dn) Õ(pn3d log q).

Proof. For i=1,…,N and j=1,…,n we write ḡi, j(y)≔ gi(y)hj−1
rem E(y). Let 𝜎 j represent

the endomorphism of 𝕃[y] that rises coefficients to the h j-th power. Then

ḡi, j(y)≡𝜎 j−1(gi)�yhj−1
�≡𝜎 j−1(gi)(𝜂 j−1y)mod E(y).

In particular ḡi, j(y) has degree ⩽n − 1 whence ḡi, j(1)= 𝛼i, j, by the assumption h⩾ n+1.
Now

𝛾i(y)≡ f �gi(y),gi
h(y),…,gi

hn−1
(y)�≡ f (ḡi,1(y),…, ḡi,n(y))mod E(y).

Since f (ḡi,1(y),…, ḡi,n(y)) has degree⩽d (n−1)<h−1=degE, we deduce that it coincides
with 𝛾i(y), whence 𝛾i(1) = f (ḡi,1(1), …, ḡi,n(1)) = f (𝛼i,1, …, 𝛼i,n). We are done with the
correctness.

Step 1 takes time

O��d+n
n �log q+n2�d+n

n �log(d+1)� = O(n2(d+1)n log(d+1)log q)

= O(n22n dn log d log q)
= O(nn+2dn log d log q).

By Lemmas 2.6 and 2.8. Steps 2 and 4 take negligible time.
By construction, we have

pc−1⩽max(d (n−1)+1,n)⩽nd,

c=O(log(nd)), and h⩽pnd. (7.1)

In step 3, the construction of 𝜆 may be done deterministically in time

Õ(p1/2 c5)= Õ(p1/2 log5(dn))=O(pdn)

by means of [43, Theorem 3.2] (this includes the computation of the irreducible factor-
ization of c).

Now [44, Theorem 1.1] provides us with a universal constant 𝛾 such that there exists
a monic polynomial 𝜂(z) of degree l with p l<𝛾 p c7, for which 𝜂(z)mod𝜆(z) is a primitive
element. It thus suffices to enumerate all the monic polynomials of increasing degrees
l = 1, 2, 3, … and to stop as soon as one discovers a primitive one. The loop terminates
after testing O(pc7) candidates.

Verifying that a candidate polynomial 𝜂 is a primitive element for the multiplicative
group of 𝔽p[z]/(𝜆(z)) can be done as follows. We first compute the irreducible factor-
ization of pc−1 in time Õ(pc/4) (see for instance [11, Theorem 1.1]). We next verify that

𝜂 (p
c−1)/𝜋≠1mod 𝜆

for each prime divisor 𝜋 of pc − 1 in time Õ(c log2 pc). Altogether, this allows us to
compute 𝜂 deterministically in time

Õ(pc/4)+O(pc8 log2 pc)=O(pnd).

Now each step 5.a requires n−1 extractions of p-th roots in 𝔽q. In total, they take time

nNÕ(p log q),
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by Proposition 7.1. The total cost of step 5.b is NÕ(nc log q).
Since the partial degrees of f are ⩽d and since h ⩾ d + 1, the polynomial f ∗ is the

Kronecker substitution Kh,…,h( f ), following the notation of section 5.1. The univariate
polynomial f ∗ in step 6 may be obtained in time

O(nhn log q)=O(n(pnd)n log q)

by Proposition 5.2, thanks to (7.1) and the assumption that n⩾2.
Then the simultaneous evaluation of f ∗ at N points in 𝔼=𝕃[y]/(E(y)) takes

(N+deg f ∗) Õ(log2(deg f ∗)),

operations in 𝔼 which corresponds to time

(N+dhn−1) Õ(log2(dhn−1)ch log q) (since deg f ∗⩽dhn−1)
= (N+pn−1nn−1dn) Õ(pn3d log q) by (7.1).

The final evaluations in step 7 take time NÕ(hc log q)=NÕ(pnd log q). □

Remark 7.3. Notice that 𝕃 is not necessarily a field. As an optimization, it is worth taking
e = c /gcd (k, c) and build the extension 𝕃 = 𝔽q[u] / (𝜃(u)) of degree e of 𝔽q. Then we
compute a primitive root 𝜂 in 𝕃 of order h − 1. In practice, it is also worth using faster
probabilistic algorithms in step 3.

7.2. Modular composition
Let us now reanalyze the complexity of Algorithm 6.1 when using Algorithm 7.2 for
multi-point evaluations. For simplicity we assume that p is a fixed prime number, so the
constant hidden in the “O” below actually depends on p. This time, we let n be an integer
such that

�n−(((((((((( log(d+1)
log(p log(d+1))))))))))))

1/2
�<1. (7.2)

THEOREM 7.4. Let p be a fixed prime number. Let f , g, h be polynomials in 𝔽q[x] such that h is
monic of degree d and f ,g have degrees <d. We assume that 𝔽q is given as 𝔽p[z]/(𝜃(z)) with 𝜃
monic irreducible of degree k. Then f ∘g rem h may be computed in time

(d+1)
2� log(plog(d+1))log(d+1) �1/2�1+O�� log(plog(d+1))log(d+1) �1/2��

Õ(d log q).

Proof. We adapt the proof of Theorem 6.2 and use (7.2) for the value of n instead of (6.1).
Here, it is important for p to be fixed, in order to benefit from the same kind of asymptotic
expansions as in the case of Theorem 6.2:

n=(((((((((( log(d+1)
log(p log(d+1))))))))))))

1/2

((((((((((1+O(((((((((((((((((((( log(p log(d+1))
log(d+1) ))))))))))

1/2

))))))))))))))))))))
and

1
n =(((((((((( log(p log(d+1))

log(d+1) ))))))))))
1/2

((((((((((1+O(((((((((((((((((((( log(p log(d+1))
log(d+1) ))))))))))

1/2

)))))))))))))))))))).
In particular (d+1)1/n still tends to +∞ for large values of d.

The main change is the use of Proposition 7.2 to obtain the following cost for step 5
of Algorithm 6.1:

(N+pn−1nn−1Ln) Õ(n3L log q).
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By using (6.4), (6.5), (6.6), and the fact that n=O(log1/2 d), the latter cost is bounded by

(n(d+1)2/n+pn−1n2n−1 (d+1)1/n) Õ(d log q).

We then need to upper bound the term

pn−1n2n−1 (d+1)1/n ⩽ (d+1)
1
n+

nlogp
log(d+1)+

2nlogn
log(d+1)

⩽ (d+1)
1
n((((((((((1+ n2log�pn2�

log(d+1) )))))))))).
Now for sufficiently large d, we have

n2 log(pn2) = log(d+1)
log(p log(d+1)) ((((((((((1+O(((((((((((((((((((( log(p log(d+1))

log(d+1) ))))))))))
1/2

))))))))))))))))))))
× log(((((((((( p log(d+1)

log(p log(d+1)) ((((((((((1+O(((((((((((((((((((( log(p log(d+1))
log(d+1) ))))))))))

1/2

))))))))))))))))))))))))))))))
⩽ log(d+1)((((((((((1+O(((((((((((((((((((( log(p log(d+1))

log(d+1) ))))))))))
1/2

)))))))))))))))))))).
It follows that

pn−1n2n−1(d+1)1/n⩽(d+1)
2� log(plog(d+1))log(d+1) �1/2�1+O�� log(plog(d+1))log(d+1) �1/2��

.

On the other hand, we have

(d+1)2/n=(d+1)
2� log(plog(d+1))log(d+1) �1/2�1+O�� log(plog(d+1))log(d+1) �1/2��

,

which concludes the proof. □

For small fixed values of p, Theorem 7.4 therefore improves upon Theorem 6.2. This
happens roughly whenever 4 log(p log(d + 1)) ≪ 28log log(d+1), which rewrites into
p≪log6(d+1). A more precise complexity analysis in terms of the parameter p could be
developed under the latter condition.

8. CONCLUSION

An important application of the present results concerns polynomial system solving, for
which we prove new complexity bounds in [28]: the key algorithms are the Kronecker
solver [14] and fast multivariate modular composition. For the latter problem, we mostly
follow the strategy deployed in the proof of Proposition 5.7.

Besides technical adaptations to Turing machines and various refinements within
the asymptotic complexity bounds, our main improvements upon Kedlaya and Umans'
algorithms concern complexity analyses in terms of the total degree, and the way we
appeal to the naive evaluation algorithm as a fallback in Theorem 3.10. In particular,
our complexity bounds are quasi-optimal with respect to the bit size of the elements
in the ground ring.

Another major motivation behind our work is to understand how relevant the new
complexity bounds are for practical implementations. Unfortunately, the input sizes for
which our optimized variants of Kedlaya and Umans' algorithms become faster than
previous approaches still seem to be extremely large. It is instructive to discuss, even in
very informal terms, the orders of magnitude of the cross-over points.
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n 6 7 8 9 10 11 12 13 14 15 16 18 21 26 43
ℓ̄ =⌈n7/(n−5)⌉ 279936 908 129 47 26 17 12 10 8 7 6 5 4 3 2
⌊log10 ℓ̄ n⌉ 32 21 17 15 14 14 13 13 13 13 12 13 13 12 13

Table 8.1. Efficiency threshold orders for the complexity bound of Theorem 3.10.

n 6 7 8 9 10 11 12 16 27
ℓ̄ =⌈n5/(n−3)⌉ 20 12 8 7 6 5 4 3 2
⌊log10 ℓ̄ n⌉ 8 8 7 8 8 8 7 8 8

Table 8.2. Efficiency threshold orders for the complexity bound of Proposition 3.7 with t=3.

In the univariate case n = 1 over ℤ/ r ℤ, fast algorithms for multi-point evaluation
allow for an average evaluation cost per point of Õ(log2 d log r), by means of the classical
subproduct tree technique [13, chapter 10], and as soon as the number of points is of
the order of the degree. In the same spirit, in order to minimize the average cost per
evaluation point, Theorem 3.10 indicates that it is favorable to take N of the order of
(𝜑 log 𝜑)n (that is larger than the cardinality of the support of f ).

To simplify the discussion, we discard the factor (1 + 𝜀(ℓ , d, r))n occurring in The-
orem 3.10, and we focus on the case when ℓ1 = ⋯ = ℓn = ℓ̄ and d = n (ℓ̄ − 1). So when
N = (𝜑 log 𝜑)n, the average cost per point roughly becomes Õ(n2 𝜑5 log r). Recall that
this average cost is ℓ̄n Õ(log r) with the naive approach. The ratio between both bounds
is therefore of the order Õ(n7 ℓ̄5) (log log r)O(1)/ ℓ̄n. In Table 8.1 we report on the first
values of ℓ̄ such that (n7 ℓ̄5)/ ℓ̄n⩽1, namely ℓ̄=⌈n7/(n−5)⌉, along with the closest integer to
log10 ℓ̄n. Whenever the same value of ℓ̄ is encountered for different values of n, we only
display the case with smallest ℓ̄n. We observe that the sizes of the corresponding input
polynomials are not realistic for a common workstation.

The above factor n2 𝜑5 corresponds to the value t = 5 in Algorithm 3.3. In practice
it turns out to be more interesting to use smaller values for t. In fact, it is worth using
Algorithm 3.3 with t=3 whenever log r<𝜑<r, since

B∘3(r) = (1+𝜇(𝜑))𝜑 logB∘2(r)
= (1+O(𝜇(𝜑)))𝜑 log(O(𝜑 log 𝜑))

= ((((((((((1+O(((((((((( log log 𝜑log 𝜑 ))))))))))))))))))))𝜑 log 𝜑,
and the cost given in Proposition 3.7 drops to (N + B∘3(r)n) Õ(n2 𝜑3 log r). Table 8.2
displays the first resulting values of ℓ̄ for which (n5 ℓ̄3)/ ℓ̄n⩽1. Considering for instance
that r is a 64 bit integer, we may thus use Algorithm 3.3 with t=3 whenever log r≃44<
𝜑 < 264. Consequently, for input polynomial sizes of about 100 MB, the fast algorithm
might start to be of interest. Yet, the orders of magnitude considered here are quite opti-
mistic and we expect the actual thresholds to be larger.

In small positive characteristic p>0, Proposition 7.2 seems more promising for prac-
tical purposes. For N ⩾ pn−1 nn−1 dn, the average cost per evaluation point drops to
Õ(p n3 d log q). The efficiency ratio with respect to the naive algorithm is thus of the
order pn3d/�d+n

n �. For instance, with p = 2 and n = 2, this ratio rewrites into 32 d /
((d+2)(d+1)). Consequently, Algorithm 7.2 might be relevant in practice for input data
of a few kilobytes. However we are not aware of such an efficient implementation.
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For the above reasons, faster software implementations of multivariate multi-point
evaluation and modular composition remain major challenges. At least, we hope that our
new detailed complexity bounds will stimulate more theoretical and practical research
in this area. For example, is it possible to decrease the contribution of (𝜑 log 𝜑)n in
Theorem 3.10? Or, still in Theorem 3.10, could one decrease the exponent 5 of 𝜑? Is
it possible to improve upon the constant 28 in Theorem 6.2?
Acknowledgments . We thank the anonymous referees for their helpful comments.
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