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Foreword

Transseries find their origin in at least three different areas of mathematics:
analysis, model theory and computer algebra. They play a crucial role in
Ecalle’s proof of Dulac’s conjecture, which is closely related to Hilbert’s 16-th
problem.

I personally became interested in transseries because they provide an
excellent framework for automating asymptotic calculus. While developing
several algorithms for computing asymptotic expansions of solutions to non-
linear differential equations, it turned out that still a lot of theoretical work
on transseries had to be done. This led to part A of my thesis. The aim of
the present book is to make this work accessible for non-specialists. The book
is self-contained and many exercises have been included for further studies.
I hope that it will be suitable for both graduate students and professional
mathematicians. In the later chapters, a very elementary background in dif-
ferential algebra may be helpful.

The book focuses on that part of the theory which should be of common
interest for mathematicians working in analysis, model theory or computer
algebra. In comparison with my thesis, the exposition has been restricted to
the theory of grid-based transseries, which is sufficiently general for solving
differential equations, but less general than the well-based setting. On the
other hand, I included a more systematic theory of “strong linear algebra”,
which formalizes computations with infinite summations. As an illustration of
the different techniques in this book, I also added a proof of the “differential
intermediate value theorem?”.

I have chosen not to include any developments of specific interest to
one of the areas mentioned above, even though the exercises occasionally
provide some hints. People interested in the accelero-summation of diver-
gent transseries are invited to read Ecalle’s work. Part B of my thesis contains
effective counterparts of the theoretical algorithms in this book and work
is in progress on the analytic counterparts. The model theoretical aspects
are currently under development in a joint project with Matthias Aschen-
brenner and Lou van den Dries.
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The book in its present form would not have existed without the help of
several people. First of all, I would like to thank Jean Ecalle, for his support
and many useful discussions. I am also indoubted to Lou van den Dries and
Matthias Aschenbrenner for their careful reading of several chapters and their
corrections. Last, but not least, I would like to thank Sylvie for her patience
and aptitude to put up with an ever working mathematician.

We finally notice that the present book has been written and typeset
using the GNU TgXyacs scientific text editor. This program can be freely
downloaded from http://www.texmacs.org.

Joris van der Hoeven
Chevreuse 1999-2006



Introduction

The field with no escape

A transseries is a formal object, constructed from the real numbers and an
infinitely large variable x > 1, using infinite summation, exponentiation and
logarithm. Examples of transseries are:

— = I+ttt (1)
o = It te T2 e 2 (2)
ef _ ez+@ mg%ﬁ %ex+@ bg%r++ 3)
D(a) = YO D e e (5)

() = 1427243774474 ... (6)

p@) = o) =gt mtomt gt (7)

Y(@) = PN = ot e (8)

As the examples suggest, transseries are naturally encountered as formal
asymptotic solutions of differential or more general functional equations.
The name “transseries” therefore has a double signification: transseries are
generally transfinite and they can model the asymptotic behaviour of tran-
scendental functions.

Whereas the transseries (1), (2), (3), (6) (7) and (8) are convergent, the
other examples (4) and (5) are divergent. Convergent transseries have a clear
analytic meaning and they naturally describe the asymptotic behaviour of
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their sums. These properties surprisingly hold in the divergent case as well.
Roughly speaking, given a divergent series

N S GO (1)
f - ngl n n
like (4), one first applies the formal Borel transformation

FQ)=BNE)= (njinl)! = 1—1FC'

NE

1

3
I

n=1

If this Borel transform f can be analytically continued on [0, 4-00), then the
inverse Laplace transform can be applied analytically:

. [o ST o'} 67$C
Fa)=ehw= [~ Hoedo= [T £

The analytic function f obtained admits f as its asymptotic expansion. More-
over, the association f+ f preserves the ring operations and differentiation.
In particular, both f and f satisfy the differential equation

, 1
fef=—c

Consequently, we may consider f as an analytic realization of f. Of course,
the above example is very simple. Also, the success of the method is indirectly
ensured by the fact that the formal series f has a “natural origin” (in our case,
f satisfies a differential equation). The general theory of accelero-summation
of transseries, as developed by Ecalle [E92, E93], is far more complex, and
beyond the scope of this book. Nevertheless, it is important to remember that
such a theory ezists: even though the transseries studied in this this book are
purely formal, they generally correspond to genuine analytic functions.

The attentive reader may have noticed another interesting property which
is satisfied by some of the transseries (1-8) above: we say that a transseries
is grid-based, if

GB1. There exists a finite number my, ..., my of infinitesimal “transmono-
mials”, such that f is a multivariate Laurent series in my, ..., mg:

f= Z Z fm,...,akm?l“-mgk.

<Ka1€EZ vrKQarEZ

GB2. The property GB1 is recursively satisfied when replacing f by the
logarithm of one of the m;.

The examples (1-5) are grid-based. For instance, for (2), we may take m; =21

and my=e~*. The examples (6-8) are not grid-based, but only well-based. The
last example even cannot be expanded w.r.t. a finitely generated asymptotic
scale with powers in R. As we will see in this book, transseries solutions
to algebraic differential equations with grid-based coefficients are necessarily
grid-based as well. This immediately implies that the examples (6-8) are



Historical perspectives 13

differentially transcendental over R (see also [GS91]|). The fact that grid-
based transseries may be considered as multivariate Laurent series also makes
them particularly useful for effective computations. For these reasons, we will
mainly study grid-based transseries in this book, although generalizations to
the well-based setting will be indicated in the exercises.

The resolution of differential and more general equations using transseries
presupposes that the set of transseries has a rich structure. Indeed, the
transseries form a totally ordered field T (chapter 4), which is real closed
(chapter 3), and stable under differentiation, integration, composition and
functional inversion (chapter 5). More remarkably, it also satisfies the dif-
ferential intermediate value property:

Given a differential polynomial P € T{F'} and transseries f <
g€ T with P(f) P(g) <0, there exists a transseries h € T with
f<h<gand P(h)=0.

In particular, any algebraic differential equation of odd degree over T, like

PP e fT-T(D(zlogx)) f° f'=loglogx

admits a solution in T. In other words, the field of transseries is the first
concrete example of what one might call a “real differentially closed field”.

The above closure properties make the field of transseries ideal as a frame-
work for many branches of mathematics. In a sense, it has a similar status
as the field of real or complex numbers. In analysis, it has served in Ecalle’s
proof of Dulac’s conjecture — the best currently known result on Hilbert’s 16-
th problem. In model theory, it can be used as a natural model for many the-
ories (reals with exponentiation, ordered differential fields, etc.). In computer
algebra, it provides a sufficiently general formal framework for doing asymp-
totic computations. Furthermore, transseries admit a rich non-archimedean
geometry and surprising connections exist with Conway’s “field” of surreal
numbers.

Historical perspectives

Historically speaking, transseries have their origin in several branches of math-
ematics, like analysis, model theory, computer algebra and non-archimedean
geometry. Let us summarize some of the highlights of this interesting history.

1 Resolution of differential equations by means of power series

It was already recognized by Newton that formal power series are a powerful
tool for the resolution of differential equations [New71|. For the resolution
of algebraic equations, he already introduced Puiseux series and the Newton
polygon method, which will play an important role in this book. During the
18-th century, formal power series were used more and more systematically
as a tool for the resolution of differential equations, especially by Euler.
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However, the analytic meaning of a formal power series is not always clear.
On the one hand side, convergent power series give rise to germs which can
usually be continued analytically into multi-valued functions on a Riemann
surface. Secondly, formal power series can be divergent and it is not clear
a priori how to attach reasonable sums to them, even though several recipes
for doing this were already known at the time of Euler [Har63, Chapter 1].

With the rigorous formalization of analysis in the 19-th century, criteria for
convergence of power series were studied in a more systematic way. In partic-
ular, Cauchy and Kovalevskaya developed the well-known majorant method
for proving the convergence of power series solutions to certain partial differ-
ential equations [vK75]. The analytic continuation of solutions to algebraic
and differential equations were also studied in detail [Pui50, BB56] and the
Newton polygon method was generalized to differential equations [Fin89].

However, as remarked by Stieltjes [Sti86] and Poincaré [Poi93, Chapitre §],
even though divergent power series did not fit well in the spirit of “rigorous
mathematics” of that time, they remained very useful from a practical point
of view. This raised the problem of developing rigorous analytic methods to
attach plausible sums to divergent series. The modern theory of resummation
started with Stieltjes, Borel and Hardy [Sti94, Sti95, Bor28|, who insisted on
the development of summation methods which are stable under the common
operations of analysis. Although the topic of divergent series was an active
subject of research in the early 20-th century [Har63], it went out of fashion
later on.

2 Generalized asymptotic scales

Another approach to the problem of divergence is to attach only an asymptotic
meaning to series expansions. The foundations of modern asymptotic calculus
were laid by Dubois-Raymond, Poincaré and Hardy.

More general asymptotic scales than those of the form x%, 2® or 2® were
introduced by Dubois-Raymond [dBR75, dBR77], who also used “Cantor’s”
diagonal argument in order to construct functions which cannot be expanded
with respect to a given scale. Nevertheless, most asymptotic scales occur-
ring in practice consist of so called L-functions, which are constructed from
algebraic functions, using the field operations, exponentiation and logarithm.
The asymptotic properties of L-functions were investigated in detail by
Hardy [Harl0, Har11] and form the start of the theory of Hardy fields [Bou61,
Ros80, Ros83a, Ros83b, Ros87, Bos81, Bos82, Bos87].

Poincaré [Poi90] also established the equivalence between computations
with formal power series and asymptotic expansions. Generalized power series
with real exponents [LC93| or monomials in an abstract monomial group
[Hah07] were introduced about the same time. However, except in the case of
linear differential equations [Fab85, Poi86, Bir09], it seems that nobody had
the idea to use such generalized power series in analysis, for instance by using
a monomial group consisting of L-functions.

Z
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Newton, Borel and Hardy were all aware of the systematic aspects of
their theories and they consciously tried to complete their framework so as to
capture as much of analysis as possible. The great unifying theory nevertheless
had to wait until the late 20-th century and Ecalle’s work on transseries and
Dulac’s conjecture [E85, £92, £93, Bradl, Bra92, CNP93|.

His theory of accelero-summation filled the last remaining source of
instability in Borel’s theory. Similarly, the “closure” of Hardy’s theory of
L-functions under infinite summation removes its instability under functional
inversion (see exercise 5.20) and the resolution of differential equations. In
other words, the field of accelero-summable transseries seems to correspond
to the “framework-with-no-escape” about which Borel and Hardy may have
dreamed.

8 Model theory

Despite the importance of transseries in analysis, the first introduction of the
formal field of transseries appeared in model theory [Dah84, DG86]. Its roots
go back to another major challenge of 20-th century mathematics: proving
the completeness and decidability of various mathematical theories.

Godel’s undecidability theorem and the undecidability of arithmetic are
well-known results in this direction. More encouraging were the results on
the theory of the field of real numbers by Artin-Schreier and later Tarski-
Seidenberg [AS26, Tar31, Tar51, Sei54]. Indeed, this theory is complete, decid-
able and quantifier elimination can be carried out effectively. Tarski also
raised the question how to axiomatize the theory of the real numbers with
exponentiation and to determine its decidability. This motivated the model-
theoretical introduction of the field of transseries as a good candidate of a
non-standard model of this theory, and new remarkable properties of the real
exponential function were stated.

The model theory of the field of real numbers with the exponential function
has been developed a lot in the nineties. An important highlight is Wilkie’s
theorem [Wil96], which states that the real numbers with exponentiation form
an o-minimal structure [vdD98, vdD99|. In these further developments, the
field of transseries proved to be interesting for understanding the singularities
of real functions which involve exponentiation.

After the encouraging results about the exponential function, it is
tempting to generalize the results to more general solutions of differential
equations. Several results are known for Pfaffian functions [Kho91, Spe99],
but the thing we are really after is a real and/or asymptotic analogue of Ritt-
Seidenberg’s elimination theory for differential algebra [Rit50, Sei56, Kol73].
Again, it can be expected that a better understanding of differential fields
of transseries will lead to results in that direction; see [AvdD02, AvdDO1,
AvdD04, AvdDvdHO05, AvdDvdH] for ongoing work.
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4 Computer algebra and automatic asymptotics

We personally became interested in transseries during our work on automatic
asymptotics. The aim of this subject is to effectively compute asymptotic
expansions for certain explicit functions (such as “exp-log” function) or solu-
tions to algebraic, differential, or more general equations.

In early work on the subject [GG88, Sha90, GG92, Sal9l, Gru96, Sha04],
considerable effort was needed in order to establish an appropriate framework
and to prove the asymptotic relevance of results. Using formal transseries as
the privileged framework leads to considerable simplifications: henceforth,
with Ecalle’s accelero-summation theory in the background, one can con-
centrate on the computationally relevant aspects of the problem. Moreover,
the consideration of transfinite expansions allows for the development of a
formally exact calculus. This is not possible when asymptotic expansions are
restricted to have at most w terms and difficult in the framework of nested
expansions [Sha04].

However, while developing algorithms for the computation of asymptotic
expansions, it turned out that the mathematical theory of transseries still had
to be further developed. Our results in this direction were finally regrouped in
part A of our thesis, which has served as a basis for this book. Even though
this book targets a wider public than the computer algebra community, its
effective origins remain present at several places: Cartesian representations,
the incomplete transbasis theorem, the Newton polygon method, etc.

5 Non-archimedean geometry

Last but not least, the theory of transseries has a strong geometric appeal.
Since the field of transseries is a model for the theory of real numbers with
exponentiation, it is natural to regard it as a non-standard version of the
real line. However, contrary to the real numbers, the transseries also come
with a non-trivial derivation and composition. Therefore, it is an interesting
challenge to study the geometric properties of differential polynomials, or
more general “functions” constructed using the derivation and composition.
The differential intermediate value theorem can be thought of as one of the
first results in this direction.

An even deeper subject for further study is the analogy with Conway’s
construction of the “field” of surreal numbers [Con76]. Whereas the surreal
numbers come with the important notion of “earliness”, transseries can be dif-
ferentiated and composed. We expect that it is actually possible to construct
isomorphisms between the class of surreal numbers and the class of generalized
transseries of the reals with so called transfinite iterators of the exponential
function and nested transseries. A start of this project has been carried out
in collaboration with my former student M. Schmeling [Sch01]. If this project
could be completed, this would lead to a remarkable correspondence between
growth-rate functions and numbers.



Outline of the contents 17

Outline of the contents

Orderings occur in at least two ways in the theory of transseries. On the one
hand, the terms in the expansion of a transseries are naturally ordered by
their asymptotic magnitude. On the other hand, we have a natural ordering
on the field T of transseries, which extends the ordering on R. In chapter 1,
we recall some basic facts about well-quasi-orderings and ordered fields. We
also introduce the concept of “asymptotic dominance relations” <, which can
be considered as generalizations of valuations. In analysis, f < g and f < g
are alternative notations for f=0(g) and f=o0(g).

In chapter 2, we introduce the “strong C-algebra of grid-based series”
C M1, where M is a so called monomial monoid with a partial quasi-
ordering <. Polynomials, ordinary power series, Laurent series, Puiseux series
and multivariate power series are all special types of grid-based series. In
general, grid-based series carry a transfinite number of terms (even though
the order is always bounded by w*) and we study the asymptotic proper-
ties of C'[[IMNT.

We also lay the foundations for linear algebra with an infinitary sum-
mation operator, called “strong linear algebra”. Grid-based algebras of the
form C'[9]1, Banach algebras and completions with respect to a valuation
are all examples of strong algebras, but we notice that not all strong “serial”
algebras are of a topological nature. One important technique in the area of
strong linear algebra is to make the infinite sums as large as possible while
preserving summability. Different regroupings of terms in such “large sums”
can then be used in order to prove identities, using the axiom of “strong
associativity”. The terms in “large sums” are often indexed by partially ordered
grid-based sets. For this reason, it is convenient to develop the theory of grid-
based series in the partially ordered setting, even though the ordering < on
transmonomials will be total.

The Newton polygon method is a classical technique for the resolution
of algebraic equations with power series coefficients. In chapter 3, we will
give a presentation of this method in the grid-based setting. Our exposition
is based on the systematic consideration of “asymptotic equations”’, which
are equations with asymptotic side-conditions. This has the advantage that
we may associate invariants to the equation like the Newton degree, which
simplifies the method from a technical point of view. We also systematically
consider derivatives of the equation, so as to quickly separate almost multiple
roots.

Chapter 3 also contains a digression on Cartesian representations, which
are both useful from a computational point of view and for the definition of
convergence. However, they will rarely be used in the sequel, so this part may
be skipped at a first reading.
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In chapter 4, we construct the field T = C Izl of grid-based transseries
in x over an “ordered exp-log field” of constants C. Axioms for such constant
fields and elementary properties are given in section 4.1. In practice, one
usually takes C' = RR. In computer algebra, one often takes the countable
subfield of all “real elementary constants” [Ric97]. It will be shown that T is
again an ordered exp-log field, so it is also possible to take C'="T and construct
fields like R [z1l TyIl. Notice that our formalism allows for partially defined
exponential functions. This is both useful during the construction of T and
for generalizations to the multivariate case.

The construction of T proceeds by the successive closure of C [z®]
under logarithm and exponentiation. Alternatively, one may first close under
exponentiation and next under logarithm, following Dahn and Goring or
Ecalle [DG86, £92]. However, from a model-theoretical point of view, it is
more convenient to first close under logarithm, so as to facilitate general-
izations of the construction [Sch01]. A consequence of the finiteness properties
which underlie grid-based transseries is that they can always be expanded
with respect to finite “transbases”. Such representations, which will be studied
in section 4.4, are very useful from a computational point of view.

In chapter 5, we will define the operations 0, f , 0 and ™ on T and
prove that they satisfy the usual rules from calculus. In addition, they satisfy
several compatibility properties with the ordering, the asymptotic relations
and infinite summation, which are interesting from a model-theoretical point
of view. In section 5.4.2, we also prove the Translagrange theorem due to
Ecalle, which generalizes Lagrange’s well-known inversion formula for power
series.

Before going on with the study of differential equations, it is convenient
to extend the theory from chapter 2 and temporarily return to the general
setting of grid-based series. In chapter 6, we develop a “functional analysis”
for grid-based series, based on the concept of “grid-based operators”. Strongly
multilinear operators are special cases of grid-based operators. In particular,
multiplication, differentiation and integration of transseries are grid-based
operators. General grid-based operators are of the form

O(f)=Po+ P1(f) + Lo f, f) + -,

where each ®; is a strongly i-linear operator. The set 4(C [T, CINT) of
grid-based operators from C [9] into C' [N forms a strong C-vector space,
which admits a natural basis of so called “atomic operators”. At the end of
chapter 6, we prove several implicit function theorems, which will be useful
for the resolution of differential equations.

In chapter 7, we study linear differential equations with transseries coef-
ficients. A well-known theorem [Fab85] states that any linear differential equa-
tion over C[[z]] admits a basis of formal solutions of the form

(foR/Z) + -+ + fa(}/Z) logt z) 22 P WV,
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with fo, ..., fa € C[[z]], « € C, P € C[X] and p, d € N”. We will present
a natural generalization of this theorem to the transseries case. Our method
is based on a deformation of the algebraic Newton polygon method from
chapter 3.

Since the only transseries solution to f”+ f =0 is 0, the solution space of
an equation of order r does not necessarily have dimension r. Nevertheless, as
will be shown in section 7.7, one does obtain a solution space of dimension r
by considering an oscillatory extension of the field of transseries. A remarkable
consequence is that linear differential operators can be factored into first order
operators in this extension. It will also be shown that operators in T[d] can
be factored into first and second order operators.

It should also be noticed that the theory from chapter 7 is compatible with
the strong summation and asymptotic relations on T. First of all, the trace T},
of a linear differential operator L € T[J], which describes the dominant asymp-
totic behaviour of L, satisfies several remarkable properties (see section 7.3.3).
Secondly, any operator L € T[J] admits a so called distinguished strong right-
inverse L~!, with the property that (L~! g)y = 0 when b is the dominant
monomial of a solution to Lh=0. Similarly, we will construct distinguished
bases of solutions and distinguished factorizations.

Non-linear differential equations are studied in chapter 8. For simplicity,
we restrict our attention to asymptotic algebraic differential equations like

P(f)=0  (f=v),

with P € T{F} =T[F, F’,...], but similar techniques apply in more general
cases. The generalization of the Newton polygon method to the differential
setting contains two major difficulties. First, the “slopes” which lead to the
first terms of solutions cannot directly be read off from the Newton polygon.
Moreover, such slopes may be due to cancellations of terms of different degrees
(like in the usual case) or terms of the same degree. Secondly, it is much
harder to “unravel” almost multiple solutions.

In order to circumvent the first problem, we first define the differential
Newton polynomial Np € C{F} associated to the “horizontal slope” (it actu-
ally turns out that Np is always of the form Np = Q (F’)” with Q € C[F]).
Then the slope which corresponds to solutions of the form f =c¢m + .-
is “admissible” if and only if Np,  admits a non-zero root in C. Here Pyn
is the unique differential polynomial with Py (f)=P(m f) for all f. In sec-
tion 8.4, we next give a procedure for determining the admissible slopes. The
second problem is more pathological, because one has to ensure the absence of

iterated logarithms log;=log o%-x- olog with arbitrarily high [ in the expansions
of solutions. This problem is treated in detail in section 8.6.

The suitably adapted Newton polygon methods allows us to prove several
structure theorems about the occurrence of exponentials and logarithms into
solutions of algebraic differential equation. We also give a theoretical algo-
rithm for the determination of all solutions.
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The last chapter of this book is devoted to the proof the intermediate
value theorem for differential polynomials P € T{F}. This theorem ensures
the existence of a solution to P(f) =0 on an interval I = [g, h] under the
simple hypothesis that P admits a sign-change on I. The main part of the
chapter contains a detailed study of the non-archimedean geometry of T'. This
comprises a classification of its “cuts” and a description of the behaviour of
differential polynomials in cuts. In the last section, this theory is combined
with the results of chapter 8, and the interval on which a sign-change occurs
is shrunk further and further until we hit a root of P.

Notations

A few remarks about the notations used in this book will be appropriate.
Notice that a glossary can be found at the end.

1. Given a mapping f: A; X ---x A,,— B and S; C Ay, ..., S, C A,,, we write
f(S1,...,Sn)={f(a1,....,an): a1 €S4,...,an € Sy }.

Similarly, given a set S, we will write S >0 or S <1if a >0 resp. a <1
for all a € S. These and other classical notations for sets are extended to
families in section 2.4.1.

2. We systematically use the double index convention (f;); = f; ;. Given a
set & of monomials, we also denote fe=)_ & fmm (this is an exception
to the above notation).

3. Given a set S, we will denote by S~ its subset of strictly positive elements,
S= its subset of bounded elements, S<'= of negative infinitesimal ele-
ments, etc. If S CCIIMT is a set of series, then we also denote Sy ={ f.:
f €8S}, where f. = fon~-, and similarly for Sy, S<, etc. Notice that this is
really a special case of notations 1 and 2.

4. Intervals are denoted by (£, g), (f,9], [f,g) or [f, g] depending on whether
the left and right sides are open or closed.

5. We systematically denote monomials m,n,... in the fraktur font and fam-
ilies F, G, ... using calligraphic characters.

Those readers who are familiar with my thesis should be aware of the following
notational changes which occurred during the past years:

Former | X | K | X |~ | X || X ULt

New S| =~ XX EE =<
There are also a few changes in terminology:

Former New

normal basis transbasis

purely exponential transseries | exponential transseries

potential dominant — starting —

privileged refinement ~ unravelling
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Orderings

In this chapter, we will introduce some order-theoretical concepts, which pre-
pare the study of generalized power series in the next chapter. Orderings occur
in at least two important ways in this study.

First, the terms of a series are naturally ordered according to their asymp-
totic magnitudes. For instance, the support of 1 + 2 + 22 + - € RJ[[2]],
considered as an ordered set, is isomorphic to IN. More interesting examples
are

T4+21+ 28+ + 20+ 2120+ 28 20+ - + 23 + 21 23 +--- € R[[21]][[22]]

and
1 + =z 4+ 22 + -« +

22 + 2122 + z%zQ e
e R 21, 22]],
22 + 228 + 2222 4+ -+ [l ]]
+ F 4+ 4

whose supports are isomorphic to N x N and IN x N respectively. Here N x N
denotes the set IN? with the total anti-lexicographical ordering

(m,n)<(m/,n") e ((n<n)v(m<m' An=n'))
and N x N denotes the set N? with the partial product ordering
(m,n) < (m/,n') = (m<m' An<n’).

In general, when the support is totally ordered, it is natural to require
the support to be well-ordered. If we want to be able to multiply series, this
condition is also necessary, as shown by the example

(I4+z+22+)(1+27 42724,

For convenience, we recall some classical results about well-ordered sets and
ordinal numbers in section 1.2. In what follows, our treatment will be based on
well-quasi-orderings, which are the analogue of well-orderings in the context
of partial quasi-orderings. In sections 1.3 and 1.4, we will prove some classical
results about well-quasi-orderings.
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A second important occurrence of orderings is when we consider an algebra
of generalized power series as an ordered structure. For instance R[[z]] is
naturally ordered by declaring a non-zero series f, 2" + fny1 2"+ --- with
fn# 0 to be positive if and only if f, > 0. This gives R][[z]] the structure of a
so called totally ordered R-algebra.

In section 1.5, we recall the definitions of several types of ordered algebraic
structures. In section 1.6, we will then show how a certain number of typical
asymptotic relations, like <, <, < and ~, can be introduced in a purely
algebraic way. In section 1.8, we define groups and fields with generalized
exponentiations, and the asymptotic relations «, X X and 2. Roughly
speaking, for infinitely large f and g, we have f < g, if f* < g for all \. For
instance, z < e®, but x < 2199, for z — occ.

1.1 Quasi-orderings

Let E be a set. In all what follows, a quasi-ordering on F is reflexive and
transitive relation < on E; in other words, for all x,y, z € E we have

O1. z<x;

02. z<yANy<z=x< 2.

An ordering is a quasi-ordering which is also antisymmetric:

03. z<yANy<r=z=1y.

We sometimes write <pg instead of < in order to avoid confusion. A mapping
¢: E— F between two quasi-ordered sets is said to be increasing (or a mor-
phism of quasi-ordered sets), if < y= ¢(z) < p(y), for all z,y € E.

Given a quasi-ordering F, we say that x, y € F are comparable if x <y
or y<z. If every two elements in E are comparable, then the quasi-ordering
is said to be total. Two elements x, y € E are said to be equivalent, and
we write r =y, if e <yand y<z. If x <y and y#x, then we write z <y
(see also exercise 1.1(a) below). The quasi-ordering on F induces a natural
ordering on the quotient set E/= by X <Y & (Vzxe X ,VyeY ,x < y) and the
corresponding projection £ — E/= is increasing. In other words, we do not
really gain in generality by considering quasi-orderings instead of orderings,
but it is sometimes more convenient to deal with quasi-orderings.

Some simple examples of totally ordered sets are &, {0},{0,1},... and N.
Any set E can be trivially quasi-ordered both by the finest ordering, for which
r < y<x =y, and by the roughest quasi-ordering, for which all x,y € E satisfy
z < y. In general, a quasi-ordering < on F is said to be finer than a second
quasi-ordering <’ on F if z <y= 2z <’y for all z,y € E. Given quasi-ordered
sets IY and F', we can construct other quasi-ordered sets as follows:

1. The disjoint union E'II F' is naturally quasi-ordered, by taking the quasi-
orderings on E and F' on each summand, and by taking F and F' mutually
incomparable. In other words,

r<pury < (t€eENyeENz<gy)V(r e FAyEFANx<py).
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2. Alternatively, we can quasi-order E'II F', by postulating any element in E
to be strictly smaller than any element in F. This quasi-ordered set is
called the ordered union of F and F', and we denote it by FII F'. In other
words,

r<pnry < r<puryV(@ecEAycF).
3. The Cartesian product F x F' is naturally quasi-ordered by
(z,y)<pxr(z,y) & z<a' Ny <y
4. Alternatively, we can quasi-order E X F anti-lexicographically by
(@, y)<esr(z"y) & (@,y) <exr (@, y)Vy<y.

We write E' x F for the corresponding quasi-ordered set.

E F
o—o—o—oo—o—o—o—c<:
(: ENF EIF
ExF EXF

Fig. 1.1. Examples of some basic constructions on ordered sets.

5. Let E* be the set of words over E. Such words are denoted by sequences
X1+ Ty (With 21, ...,2, € E) or [21,...,2,] if confusion may arise. The empty
word is denoted by € and we define E*=E*\ {e}. The embeddability quasi-
ordering on E* is defined by x1 -+, < Y1+ Ym, if and only if there exists
a strictly increasing mapping ¢:{1,...,n} —{1,...,m}, such that z; <y,
for all 4. For instance,

2,31,15,7] <x- [2,8,35,17,3,7,1];
2,31,15,7) £n- [2,8,35,17,3,2,1].
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6. An equivalence relation ~ on E is said to be compatible with the quasi-
ordering if

r<yhe~z' Ny~y' =2'<y’
for all z,y,z’,y’ € E. In that case, F/~ is naturally quasi-ordered by
X</ Yo VreX VyeY,z<py),
and the canonical projection 7: F— E/~ is increasing.

If £ and F are ordered sets, then it can be verified that the quasi-orderings
defined in 1-6 above are actually orderings.

Let p: E— F be an increasing mapping between quasi-ordered sets (E, <)
and (F', <). Consider the quasi-ordering < on E defined by

rxye (@) <p(y).

Then < is finer than < and the mapping ¢ admits a natural factorization

(B, <) 5 (F,<)

| Te . (1.1)
(B.5)/=< % (Img,<)
Here 7 is the identity on E composed with the natural projection from (F, <)
on (E, <)/=x, ¢ is the natural inclusion of Im ¢ into F’ and ¢ is an isomor-
phism.

Exercise 1.1. Let E be a set.

a) A strict ordering on E is a transitive and antireflexive relation < on E
(i.e. z <z for no elements = € E). Given a quasi-ordering < show that the
relation < defined by z < y< z <y AyFx is a strict ordering. Show also
how to associate an ordering to a strict ordering.

b) Let < be a quasi-ordering on E. Show that the relation > defined by
r > y< y < xis also a quasi-ordering on E; we call it the opposite quasi-
ordering of <.

c) Let < be a quasi-ordering on E. Show that 2 <'y< x =y V< y defines an
ordering on E. Show that <'is the roughest ordering which is finer than <.

Exercise 1.2. Two quasi-ordered sets F and F' are said to be isomorphic, and we
write E2 F, if there is an increasing bijection between E and F', whose inverse
is also increasing. Prove the following;:

a) Il and x are commutative modulo 2 (i.e. EII F~ FI1E), but not IT and .
b) 11, x,IT and X are associative modulo 22.

¢) II is distributive w.r.t. x modulo 2.

d) II is right (but not left) distributive w.r.t. X modulo & (in other words

Ex(FIIG)= (Ex F)II(E X G)).
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Exercise 1.3. Let E be a quasi-ordered set. We define an equivalence relation on
E*, by taking two words to be equivalent if they are obtained one from another
by a permutation of letters. We call E® = E*/~ the set of commutative words
over E. Show that:

a) We define a quasi-ordering < on F by ugveIwe E,u<wAv~w.

b) For all ©1 Ty, y1+++ Ym € E*, we have 1+ Ty, < Y1 -+ Yy, if and only if there
exists an injection ¢:{1,...,m} —{1,...,n} with x; <y, for all i.

¢) The equivalence relation ~ is compatible with <, so that we may order E®
by the quotient quasi-ordering induced by <.

d) The quasi-ordering < is finer than < and we have a natural increasing
surjection B* — E°.

e) For all ordered sets E, F, prove that (EIl F)°X E°® x F°.

f) For all ordered sets E, F prove that there exists an increasing bijection
(ET F)°— E° x F°, whose inverse is not increasing, in general.

Exercise 1.4. Let E and F be ordered sets and denote by .#(E, F) the set of
mappings from F into F. For ¢, ¢ € Z(E, F), we define

<Y = VzeE,p(x)Lp(r)=>
Ay >z, 0(y) <P(y) A (V2 2y, 0(2) < (2))).

Prove that < defines an ordering on % (E, F'). Also prove the following proper-
ties:

a) If A={0}11{0}, then #(A,B)~ B X B.
b) If A={0,1}, then #(A,B)~ B x B.

¢) F(FUF,G)2.Z(E,G)x Z(F,G).

d) Z(EUF,G)= .7 (E,G)x Z(F,G).

Exercise 1.5. Show that the category of quasi-ordered sets admits direct sums
and products, pull-backs, push-outs, direct and inverse limits and free objects
(i.e. the forgetful functor to the category of sets admits a right adjoint).

1.2 Ordinal numbers

Let FE be a quasi-ordered set. The quasi-ordering on FE is said to be well-
founded, if there is no infinite strictly decreasing sequence in E. A total well-
founded ordering is called a well-ordering. A total ordering is a well-ordering
if and only if each of its non-empty subsets has a least element. The following
classical theorems are implied by the axiom of choice [Bou70, Mal79]:

Theorem 1.1. Ewvery set can be well-ordered. g
Theorem 1.2. (Zorn’s lemma) Let E be a non-empty ordered set, such

that each non-empty totally ordered subset of E has an upper bound. Then E
admits a mazimal element. O
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An ordinal number or ordinal is a set «, such that the relation € forms
a strict well-ordering on «. In particular, the natural numbers can “be defined
to be” ordinal numbers: 0 =@,1={0},2=1U{1},3=2U{2},.... The set
w={0,1,2,...} of natural numbers is also an ordinal. More generally, if « is
an ordinal, then so is «U{«a}. For all ordinals «, its elements are also ordinals.

5 : eceeee
W . 00 ®---
w2+1 : eee-.. e00.-- @
w2 : 900 .- 900 .- [ N N TR

Fig. 1.2. Some examples of ordinal numbers.

It is classical [Mal79] that the class of all ordinal numbers has all the
properties of an ordinal number: if «, 8 and ~ are ordinal numbers, then
ata,aef=p¢a,acfABEY=>acy,a€ BV FEaVa=[ and each non-
empty set of ordinals admits a least element for €. The following classification
theorem is also classical [Mal79):

Theorem 1.3. Each well-ordered set is isomorphic to a unique ordinal. [

The usual induction process for natural numbers admits an analogue for
ordinal numbers. For this purpose, we distinguish between successor ordinals
and limit ordinals: an ordinal « is called a successor ordinal if a = U {8}
for some ordinal § (and we write « = 8 + 1) and a limit ordinal if not (in
which case o= sea B). For example, the inductive definitions for addition,
multiplication and exponentiation can now be extended to ordinal numbers
as follows:

0 Successor ordinals 3+ 1 | Limit ordinals A >0
at0=0[a+(B+1)=(a+B)+1[atA=Ugze, a+8

- 0_ +1_ X
a’=1 aPtl=ab. o a=Ugen al

Table 1.1. Basic arithmetic on ordinal numbers.

Similarly, one has the transfinite induction principle: assume that a prop-
erty P for ordinals satisfies P(a) = P(«a+ 1) for all « and (Va € A, P(a)) =
P(\) for all limit ordinals A. Then P(«) holds for all ordinals .

The following theorem classifies all countable ordinals smaller than w®,
and is due to Cantor [Can99):

Theorem 1.4. Let aa<w® be a countable ordinal. Then there exists a unique
sequence of natural numbers ng,...,ng (with ng>0 if d>0), such that
a=wl-ng+- +w-ny+ne. U

Exercise 1.6. Prove the transfinite induction principle.
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Exercise 1.7. For any two ordinals «, 3, show that

a) a+ = all 8

b) a- = ax S.

In particular, + and - are associative and + is right distributive w.r.t. -,
by exercise 1.2.

Exercise 1.8. For all ordinals o, 8 and -, prove that
a) (af)1=al";
b) aPrtr=aPB. a".

Do we also have (a-3)Y=a”- 377

1.3 Well-quasi-orderings

Let E be a quasi-ordered set. A chain in E is a subset of E which is totally
ordered for the induced quasi-ordering. An anti-chain is a subset of E of pair-
wise incomparable elements. A well-quasi-ordering is a well-founded quasi-
ordering without infinite anti-chains.

A final segment is a subset F' of E, such that r e FAz <y=y € F,
for all x, y € E. Given an arbitrary subset A of F, we denote by

fin(A)={yecE:Jxc A,z <y}

the final segment generated by A. Dually, an initial segment is a subset [
of E, such that ye INz<y=x €, for all z, y € . We denote by

in(A)={yeE:Jxc A, y<z}
the initial segment generated by A.

Proposition 1.5. Let E be a quasi-ordered set. Then the following are equiv-
alent:

a) E is well-quasi-ordered.

b) Any final segment of E is finitely generated.

¢) The ascending chain condition w.r.t. inclusion holds for final segments
of E.

d) Each sequence x1,xa,... € E admits an increasing subsequence.

e) Any extension of the quasi-ordering on E to a total quasi-ordering on E
yields a well-founded quasi-ordering.

Proof. Assume (a) and let F' be a final segment of E and G C F' the subset
of minimal elements of F'. Then G is an anti-chain, whence finite. We claim
that G generates F. Indeed, in the contrary case, let z1 € F' \ fin(G). Since
21 is not minimal in F, there exists an z9 € F\fin(G) with z1 > x2. Repeating
this argument, we obtain an infinite decreasing sequence 1 > x > ---. This
proves (b). Conversely, if xi, x2, ... is an infinite anti-chain or an infinite
strictly decreasing sequence, then the final segment generated by {z1, za,...}
is not finitely generated. This proves (a) < (b).
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Now let F} C F5 C--- be an ascending chain of final segments. If the final
segment F'=J F, is finitely generated, say by G, then we must have G C F},,
for some n. This shows that (b) = (¢). Conversely, let G be the set of minimal
elements of a final segment F'. If x1,x9, ... are pairwise distinct elements of G,
then fin(x1) & fin(x1, x2) & --- forms an infinite strictly ascending chain of final
segments.

Now consider a sequence x1, o, ... of elements in F, and assume that <
is a well-quasi-ordering. We extract an increasing sequence x;,, ;,, ... from it
by the following procedure: Let F;, be the final segment generated by the xy,
with k > 4, and zy > x;, (Fy = E by convention) and assume by induction
that the sequence z1, xs,... contains infinitely many terms in F,. Since F), is
finitely generated by (b), we can select a generator x;, ,, with 4,11 >4, and
such that the sequence 1, z9, ... contains infinitely many terms in Fj, 1. This
implies (d). On the other hand, it is clear that it is not possible to extract
an increasing sequence from an infinite strictly decreasing sequence or from a
sequence of pairwise incomparable elements.

Let us finally prove (a) < (e). An ordering containing an infinite anti-chain
or an infinite strictly decreasing sequence can always be extended to a total
quasi-ordering which contains a copy of —IN, by a straightforward application
of Zorn’s lemma. Inversely, any extension of a well-quasi-ordering is a well-
quasi-ordering. O

The most elementary examples of well-quasi-orderings are well-orderings
and quasi-orderings on finite sets. Other well-quasi-orderings can be con-
structed as follows.

Proposition 1.6. Assume that E and F are well-quasi-ordered sets. Then

a) Any subset of E with the induced ordering is well-quasi-ordered.

b) Let o: E — F be a morphism of ordered sets. Then Im ¢ is well-quasi-
ordered.

¢) Any ordering on E which extends <pg is a well-quasi-ordering.

d) E/~ is well-quasi-ordered, for any compatible equivalence relation ~ on E.

e) ENLF and ETLF are well-quasi-ordered.

f) Ex F and E x F are well-quasi-ordered.

Proof. Properties (a), (b), (e) and (f) follow from proposition 1.5(d). The

properties (¢) and (d) are special cases of (b). O
Corollary 1.7. (Dickson’s lemma) For each n € N, the set N™ with the
partial, componentwise ordering is a well-quasi-ordering. O

Theorem 1.8. (Higman) Let F is be a well-quasi-ordered set. Then E* is
a well-quasi-ordered set.

Proof. Our proof is due to Nash-Williams [NW63]. If < denotes any ordering,
then we say that (z1,zo,...) is a bad sequence, if there do not exist i < j with
x; < . A quasi-ordering is a well-quasi-ordering, if and only if there are no
bad sequences.



1.4 Kruskal’s theorem 29

Now assume for contradiction that s = (wi, we, ...) is a bad sequence
for <g+. Without loss of generality, we may assume that each w; was chosen
such that the length (as a word) of w; were minimal, under the condition that

w; € E*\ﬁn(wl, ...,wifl).

We say that (wi, we,...) is a minimal bad sequence.

Now for all ¢, we must have w; # €, so we can factor w; = z; u;, where z;
is the first letter of w;. By proposition 1.5(d), we can extract an increasing
sequence Z;,, Ti,,... from 1, xa,.... Now consider the sequence
s'= (wl, ceey Wig—1, Uiy y Wis, )

By the minimality of s, this sequence is good. Hence, there exist j < k with
u;; <~ ug,,. But then,

Wi = Tj; Wi ; SEr Ty Wij, = Wy

which contradicts the badness of s. O

Exercise 1.9. Show that E is a well-quasi-ordering if and only if the ordering
on E/= is a well-quasi-ordering.

Exercise 1.10. Prove the principle of Noetherian induction: let P be a property
for well-quasi-ordered sets, such that P(E) holds, whenever P holds for all proper
initial segments of E. Then P holds for all well-quasi-ordered sets.

Exercise 1.11. Let E and F be well-quasi-ordered sets. With % (E, F) as in
exercise 1.4, when is % (E, F)) also well-quasi-ordered?

Exercise 1.12. Let E be a well-quasi-ordered set. The set In(E) of initial seg-
ments of FE is naturally ordered by inclusion. Show that In(E) is not necessarily
well-quasi-ordered. We define E to be a strongly well-quasi-ordered set if In(E)
is also well-quasi-ordered. Which properties from proposition 1.6 generalize to
strongly well-quasi-ordered sets?

Exercise 1.13. A limit well-quasi-ordered set is a well-quasi-ordered set F, such
that there are no final segments of cardinality 1. Given two well-quasi-ordered
sets ¥ and F', we define F and F to be equivalent if there exists an increasing
injection from F into F' and vice versa. Prove that a limit well-quasi-ordered set
is equivalent to a unique limit ordinal.

1.4 Kruskal’s theorem

An unoriented tree is a finite set T' of nodes with a partial ordering <, such
that 7" admits a minimal element root(T"), called the root of T, and such
that each other node admits a predecessor. Given a,b €T, we recall that a is
a predecessor of b (and b a successor of a) if a <pb and ¢ <pa for any c€ T with
c<rb. A node without successors is called a leaf. Any node a € T naturally
induces a subtree T, = {b € T: b >ra} with root a. Since T is finite, an easy
induction shows that any two nodes a,b of T' admit an infimum a Abw.r.t. <p
for which a Ab<7a, aANb<7band c<raAb for all ce T with ¢ <7a and ¢ <7b.
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An oriented tree (or simply tree) is an unoriented tree T', together with
a total ordering <Jr which extends <r and which satisfies the condition

adrbAa ;{Tb/\aégpa’/\bégpb’ = a' 47l

It is not hard to see that such a total ordering <7 is uniquely determined by
its restrictions to the sets of <p-successors for each node a.

Two unoriented or oriented trees T" and U will be understood to be equal
if there exists a bijection ¢: T'— U which preserves < resp. < and <. In
particular, under this identification, the sets of unoriented and oriented trees
are countable.

Given a set E, an FE-labeled tree is a tree T together with a labeling
I: T — E. We denote by ET the set of such trees. An E-labeled tree T" may
be represented graphically by

T= (1.2)

N
T - T,

where z=1[(root(T)) and Ty =T,,,...,T,=T,, € ET are the subtrees associated
to the successors ay <y -+ < ay, of root(T). We call T1, ..., T}, the children of
the root and n its arity. Notice that we may have n=0.

Ezample 1.9. We may see usual trees as {e}-labeled trees, where {e} is the set
with one symbolic element e. The difference between unoriented and oriented
trees is that the ordering on the branches is important. For instance, the two
trees below are different as oriented trees, but the same as unoriented trees:

7\ SR

NN NN
AA

If F is a quasi-ordered set, then the embeddability quasi-ordering on E T is
defined by T <gT T’, if and only if there exists a strictly increasing mapping
o: T — T’ for dr, such that p(a Ab) = p(a) A ¢(b), and I(a) <g I(¢(a)), for
all a,beT. An example of a tree which embeds into another tree is given by

6 <nT 7
AN

NN
1 2 5131/1\1
5 8
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The following theorem is known as Kruskal’s theorem:

Theorem 1.10. If E is a well-quasi-ordered set, then so is ET.

Proof. Assume that there exists a bad sequence T, T5, .... We may assume
that we have chosen each

T;= z;
of minimal cardinality (assuming that T7, ..., T;_1 have already been fixed),

i.e. T1,T5, ... is a “minimal bad sequence”. We claim that the induced quasi-
ordering on S = {T; ;: j < n;} is a well-quasi-ordering. Indeed, suppose the
contrary, and let

T; 40, T

1,010 Lig, jas ee

be a bad sequence. Let k be such that i; is minimal. Then the sequence

Ty, ....15 1, T; T;

koJky Lkt k410 000

is also bad, which contradicts the minimality of T3, T5,.... Hence, S is well-
quasi-ordered, and so is F x S*, by Higman’s theorem and proposition 1.6(f).
But each tree T; can be interpreted as an element of E x S*. Hence, {T1,T5,...}
is a well-quasi-ordered subset of E T, which contradicts our assumption that
T1,T5,... is a bad sequence. O

Remark 1.11. In the case when we restrict ourselves to trees of bounded arity,
the above theorem was already due to Higman. The general theorem was
first conjectured by Vézsonyi. The proof we have given here is due to Nash-
Williams.

Exercise 1.14. Let X be a quasi-ordered set and let 2 be an ordered set of
operations on X. That is, the elements of 2 are mappings f: X"/ — X. We say
that such an operation f is extensive, if for all x € X™/ and 1<i<ny, we have

Ti <Xf(xla "'7Inf)

We say that the orderings of X and 2 are compatible, if for all f <qg, x€ X™
and y € X™, we have

f(x17"'7xnj) ng(yly eeey ygn)’

whenever there exists an increasing mapping ¢: {1, ..., ny} — {1, ..., ng} with
xiéxy(p(i) for all 1<’L<nf

Assume that these conditions are satisfied and let G be a subset of X. The
smallest subset of X which contains G and which is stable under €2 is said to
be the subset of X generated by G w.r.t. Q, and will be denoted by (G)q. If G
is a well-quasi-ordered subset of X and the ordering on 2 is well-quasi-ordered,
then prove that (G)gq is well-quasi-ordered.
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1.5 Ordered structures

In what follows, all monoids, groups and rings will be commutative and all
rings unitary. The following ordered structures will be encountered frequently
throughout this book. Recall that we systematically understand all orderings
to be partial (contrary to what is customary for certain structures).

e An ordered monoid is a monoid X with an ordering < such that
OM. z<ynz' <y = za’'<yy’
for all x,y,x’,y’ € X. If X is rather an additive monoid (in which case X
is assumed to be abelian), then OM becomes
OA. z<yna'<y'=z+a2'<y+vy'.

e An ordered ring is a ring R with an ordering < with the following prop-
erties:

OR1. 0<1;

OR2. z<yrne' <y’ =z+2'<y+y/;
OR3. 0<2zA0<L<y=0< 2y,

for all z,y,2’,y € R.

o An ordered field is a field K with an ordering < which makes K an ordered
ring and such that 0 < x=-0< z ! for all x € K. Notice that this latter
condition is automatically satisfied if < is total.

e An ordered R-module over an ordered ring R is an R-module M with an
ordering < which satisfies
OML1. z<yAz'<y'=z+2'<y+y;

OM2. 0<AINO<<z2=0< A\,
forall A€ R and z,y,z’,y’' € M. Any abelian group is trivially an ordered
Z-module.

e An ordered R-algebra is a morphism ¢: R — A of ordered rings, i.e. an
increasing ring morphism of an ordered ring R into an ordered ring A. As
usual, we denote A x = @(\) z, for A € R and = € A. Notice that A is in
particular an ordered R-module. Any ordered ring R is trivially an ordered
Z-algebra.

Let S be an ordered abelian group, ring, R-module or R-algebra. We denote
5S> = {xeS:x>0};
5z = {z€S:z>0};
S§* = {x€S:240};
S< {reS:x<0};
S< = {zeS:z<0}.

We observe that the ordering < is characterized by SZ. If S is totally ordered,
then we define the absolute value of z € S by |z| =z if x>0 and |z| = —x,
if £<0.
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Example 1.12. @@ and R are the most common examples of totally ordered
fields. N and Z are respectively a totally ordered monoid and a totally ordered
group. The complex numbers form an ordered abelian group when setting
u < v < Reu < Rev. However, this ordering is partial and not compatible
with the multiplication. Notice that u and u+ yi are incomparable for u € C
and y € R7.

Example 1.13. The ring of germs at +oo of infinitely differentiable real valued
functions on intervals (a, +00) with a € R can be ordered by f < g, if there
exists an 29 € R, such that f(z) < g(x) for all z >x. A totally ordered subfield
of this ring is called a Hardy field.

Ezxample 1.14. The above definitions naturally generalize to the case of quasi-
orderings instead of orderings. If A is a quasi-ordered abelian group, then A/=
is an ordered abelian group, and similarly for quasi-ordered rings, R-mod-
ules, etc.

Example 1.15. Let A and B be two quasi-ordered abelian groups, rings, R-
modules or R-algebras. Their direct sum A @ B:= A x B is naturally quasi-
ordered by the product quasi-ordering

(z,y) < (2", y) <z Ay<y

Similarly, the anti-lexicographical direct sum A® B:= A x B of A and B is
A x B with the anti-lexicographical quasi-ordering

(@, y) < (2" y)e @<z’ Ay=y)Vy<y'
If A and B are ordered, then so are A® B and A& B.

Example 1.16. Let A and B be two quasi-ordered abelian groups, rings, R-
modules or R-algebras. Their tensor product A® B is naturally quasi-ordered,
by declaring an element of A ® B to be positive if it is a sum of elements of the
form x ® y with x >0 and y > 0. Similarly, we define the anti-lexicographical
tensor product A ® B: its set of positive elements is additively generated by
elements in A ® B of the form z @ y + 1 @ y1 + -+ + , ® Yn, with 2,y >0
and y1 R+ -+ y, R<y. If A and B are ordered, then the same does not
necessarily hold for

Exercise 1.15. Let R be a totally ordered integral domain and let K be its
quotient field.

a) Show that x >r0Ay>r0=2y>r0, for all z,y € R.
b) If <gis a total ordering, then show that there exists a unique total ordering
on K, which extends <g, and for which K is an ordered field.

Exercise 1.16. Let R be a totally ordered ring.

a) Show that xy = 0= (z2=0V y2=0), for all z, y € R. In particular, if R
contains no nilpotent elements, then R is an integral domain.
b) Show that R may contain nilpotent elements.
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¢) Show that R may contain zero divisors which are not nilpotent.
d) Show that positive non-nilpotent elements are larger than any nilpotent
element in R.

Exercise 1.17. Let A, B and C be quasi-ordered rings. Prove the following
properties:

a) (ApB)®C=2A®(B®C) and (A& B)&Cx2Ad (B O);

b) (A B)@(C A®(B®C)and(A®B)®C A® (B® O);
)A®(B@C) (AB)®(A®C) and (A®B)C2(ARC)® (B®C);
dA® (BHC)~2 (A® B)d (A C), but not always (4 d B) ® C
(A®C)& (B®C).

Exercise 1.18.

a) Show that the categories of ordered abelian groups, rings, R-modules and
R-algebras (its morphisms are increasing morphisms of abelian groups,
rings, etc.) admit direct sums and products, pull-backs, push-outs, direct
and inverse limits and free objects (i.e. the forgetful functor to the cat-
egory of sets admits a right adjoint).

b) Show that the same thing holds for the categories of ordered torsion free
groups, rings without nilpotent elements, torsion free R-modules and ordered
R-algebras A without nilpotent elements, and such that the mapping R— A,
A= A1 is injective.

¢) What can be said about the operations & and ® introduced above?

Exercise 1.19. Let S be an ordered abelian group, ring, R-module or R-algebra.
We wish to investigate under which circumstances the ordering < can be
extended into a total ordering.

a) If S is an ordered abelian monoid, prove that < can be extended into a total
ordering if and only if S is torsion free (i.e. nz=0= 2z =0, for all n>0 and
z € S). Hint: use Zorn’s lemma.

b) If S is an ordered ring without nilpotent elements, prove that < can be
extended into a total ordering if and only if S is an integral domain, such that

ai+-+ai+(b3+-+02)z=0=a,=0,

for all a1,...,an,b1,...,bm,x €S, such that > 0. Hint: first reduce the problem
to the case when all squares in S are positive. Next reduce the problem to
the case when a>0Ab>0ANax=b=1z>0, for all a,b,z € S.

¢) Generalize b to the case when S is an ordered ring, which may contain
nilpotent elements.

d) Give conditions in the cases when S is an ordered R-module or an ordered
R-algebra without nilpotent elements.

Exercise 1.20. Let S be an ordered group, ring, R-module or R-algebra. For
each morphism ¢: S — T of S into a totally ordered structure 7" of the same kind
as S, we define a relation <, on S by z <,y < ¢(x) < p(y). Let E be the set
of all such relations <, on S.

a) Prove that < = Nc cp $' is a quasi-ordering.
b) Show that < is an ordering, if and only if < can be extended into a total
ordering on S.
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¢) Let = the equivalence relation associated to < and let S =S/Z. Show that
the ordered set S can be given the same kind of ordered algebraic structure
as S, in such a way that the natural projection w: S — Sisa morphism. We
call § the closure of S.

d) S is said to be perfect if 7 is a bijection. Prove that the closure of S is perfect.

e) Show that an ordered abelian group S is perfect if and only if nz>0=-2>0,
foraln>0and z € S.

f) Show that an ordered ring without nilpotent elements is perfect, if and only
if 22> 0, forall z€S and az=bAa>0Ab>0=2>0, for all a,b,z € S.

g) Under which conditions is an ordered R-module perfect? And an ordered R-
algebra without nilpotent elements?

1.6 Asymptotic relations

Let f and g be two germs of real valued functions at infinity. Then we have
the following classical definitions of the domination and neglection relations <
resp. <:

fgg & f=0(g9) & FCeR,TxgeR, Va2 a0, |f(2)] <C |g(x)]

f=<g e f=o0(g) & Ve>0,3z0€R,Vz=x0,|f(2)] <c|g(z)]
Considered as relations on the R-algebra of germs of real valued functions
at infinity, < and < satisfy a certain number of easy to prove algebraic
properties. In this section, we will take these properties as the axioms of
abstract domination and neglection relations on more general modules and
algebras.

Let R be aring and M an R-module. In all what follows, we denote by R*

the set of non-zero-divisors in R. A dominance relation is a quasi-ordering <
on M, such that for all A€ R, p€ R* and z, y, 2z € M, we have

Dl1. (zxz2Ay=<kz2)=>x—y=<2;
D2. dzxzand yx py.

Notice that D1 and D2 imply that Oy ={z € M:x <y} is a submodule of M

for each y € M. If x < y, then we say that = is dominated by y, and we also

write z=0(y). If x <y and y <z, then we say that = and y are asymptotic,

and we also write < y. We say that < is total, if t<yor y<z forallx,yc M.
A neglection relation is a strict ordering < on M (i.e. an anti-reflexive,

transitive relation), such that for all A€ R and p€ R* and z,y, z € M, we have

N1. (z<zAy<z)=r—y<z;

N2. z<y=Azx<pyand py< rz=y<z.

N3. (z<zAy<z)=>x<y+=z.

Notice that o, ={x € M:z <y} is a submodule of M if 0 € 0,,. However, this is
not always the case, since 0 £0. If x <y, then we say that x can be neglected
w.r.t. y, and we also write z =o0(y). If x — y <z, then we also say that x and
y are equivalent, and we write z ~ y. Indeed, ~ is an equivalence relation:

Y= (2 —yYy<zAy—c=<z)=>r—y<y=y—c<y=y~=.
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Similarly,
(E~yny~z)=(r—y<yhy—z=<y)=y—z2=<(@-y) +y=ux,
whence
(x~yANy~z)=(x—y<aAy—z<x)=>r—2<T=>T~2.

We say that < is compatible with a dominance relation <, if xr <y=2x<xy
and x ~ y=x <y, for all z, y € M. In that case, we call M an asymptotic
R-module. We say that < and < are associated, if < is the strict ordering
associated to <, le. s <y (xxyAyLz) forall z,ye M.

Proposition 1.17.

a) Let < be a dominance relation such that the strict ordering < associated
to < satisfies N1 and N2. Then < also satisfies N3.

b) Let < and < be a dominance and a neglection relation. If < and < are
associated, then they are compatible.

Proof. Assume that < satisfies the condition in (a), and let x, y, z € M be
such that v <z and y <z. If 24 y+ 2z, then y+ 2z < z implies y + z < z and
z < z: contradiction. Hence, we have 25 y+z and r <z y+ 2.

As to (b), assume that < and < are associated. Then we clearly have
r<y=x<y. Furthermore, r~y=2—-y<r=2—y<r=y< 2. Similarly,
r~y=y~xr=z=<y. Hence, t~y=xxy. O

Proposition 1.18. Let K be a totally ordered field and V an ordered K-vector
space. Then V is an asymptotic K-vector space for the relations < and <
defined by

r<xy & Ve K, Jue K, A x< uy;
<y & JueK,VAeK A x<py.

Moreover, if V is totally ordered, then < is associated to <.

Proof. Let us first show that < is a quasi-ordering. We clearly have x < x for

allzeV since Az < Az forall \e K. If t<y =<z and X € K, then there exists

apeK with Az << pyand ave K with Ax < py<vz. Let us next prove D1.

Assume that z < z and y < z and let A € K. Then there exist pu, v € K with

Ax<pzand —Ay<vz whence A (z —y) < (p+v)z. Asto D2, let z €V,

a€ K and € K*. Then for all A\ € K, we have Aaxz < Aaxz and Ax < (\/B) Bz.
In order to prove the remaining relations, we first notice that

z<y< (0<yVO>y) AVAEK Az <|y]).

Indeed, if x <y, then there exists a € K with Az < py for all A. In particular,
0< py, whence either 0 <y (if £ >0) or 0< —y (if < 0). Furthermore, for all
A€ K, we have A |p|z < py, whence Az <|y|. Let us show that < is a strict
ordering. We cannot have z < z, since |z| £ |z|. If x < y < 2z, then we have
Ax<|y|<|z| for all Ae K.
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Let us now prove N1. If z <z, y < z and A € K, then 2 A z < |z| and
-2y <|z|, whence AM(z —y) <|z|. Asto N2,let a€ K, e K* and \e K. If
xz <y, then (Aa/|B]) x <|y|, whence Aa<|By|. If Sz <ay, then a=£0 and
(A al/B) Bz <|ayl|, whence Az < |y|. Let us finally prove N3. Assume that

x=<2z, y<zand A€ K. Then 2y < |z| implies %|z| <|y+z|. From 2z <|z|
it thus follows that )\gc<%|z| <ly+z|.

Assuming that V is totally ordered, the relation < is associated to <,
since z < y< y 4 x. In general, we clearly have z < y =z < y. Furthermore, if
x~y, then both y —z <|z| and x <|z|, whence y < 2|x|. Similarly, x <2|y|,
so that x < y. a

If R is a totally ordered ring, then R cannot have zero-divisors, so its
ring of quotients 2(R) = (R*)~! R is a totally ordered field. Moreover, for
any ordered, torsion-free R-module, the natural map M — 2(R) ® M is an
embedding. This allows us to generalize proposition 1.18 to the case of totally
ordered rings.

Corollary 1.19. Let R be a totally ordered ring and M an ordered, torsion-
free R-module. Then M is an asymptotic R-module for the restrictions to M
of the relations < and < on Z(R)® M. Moreover, if M is totally ordered,
then < s associated to <. O

Assume now that A is an R-algebra. A dominance relation on A is defined
to be a quasi-ordering <, which satisfies D1, D2 and for all x,y, z € A:

D3. zxy=>zr2=xy=.

A neglection relation on A is a strict ordering <, which satisfies N1, N2, N3,
and for all x,y € A and z € A*:

N4. z<y=zx2<y=z

An element x € A is said to be infinitesimal, if x <1. We say that x is bounded,
if x<1 (and unbounded if not). Elements with x <1 are called archimedean. If
all non-zero elements of A are archimedean, then A is said to be archimedean
itself. In particular, a totally ordered ring said to be archimedean, if it is
archimedean as an ordered Z-algebra. If < and < are compatible, then we
call A an asymptotic R-algebra.

Proposition 1.20. Let R be a totally ordered ring and A a non-trivial totally
ordered R-algebra. Define the relations < and < on A as in corollary 1.19.
Then A is an asymptotic R-algebra and < is associated to <.

Proof. Let z,y,z € A be such that z < y, and let A € 2(R). Then there exists
apu€2(R) with Ax < py. If z>0, then we infer that Az z < pyz, whence
rz<yz. If 2<0, then we obtain —z z < —y 2, whence again x z 5 yz, by D2.
This proves D3. As to N4, let z, y, 2 € A be such that x < y. Then for all
A€ 2(R), we have (A z/|z]) x <|yl|, whence Az z=(Az/|z|)z |z| <|yz|. O
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Ezample 1.21. Let A be a totally ordered R-algebra. We may totally order
the polynomial extension Ale] of A by an infinitesimal element € by setting
ap+aie+--+aqe?>0, if and only if there exists an index ¢ with ag=---=
a;—1=0< a;. This algebra is non-archimedean, since 1 ¢ =2 >--.. Similarly,
one may construct an extension Alw] with an infinitely large element w, in
which 1 <w <w?<---.

Exercise 1.21.

a) Given a totally ordered vector space V over a totally ordered field K, show
that

r<xy & INeEK,|z[<Ay;
<y & VAeK, Az <]yl

b) Given a totally ordered module M over a totally ordered ring R, show that

rxy & INER,Fue R [pz|<Ay;
r<y & VAER,Vue R Az <|pnyl.

Exercise 1.22. Let A be a totally ordered ring. Is it true that the relations <

and < are totally determined by the sets of infinitesimal resp. bounded elements
of A?

Exercise 1.23. Prove that the sets of infinitesimal and bounded elements in
a totally ordered ring A are both convex (a subset B of A is convex if for
all x, z € B and y € A, we have x < y < z = y € B). Prove that the set of
archimedean elements has two “convex components”, provided that 0 < 1.

Exercise 1.24. Show that the nilpotent elements of a totally ordered ring A
are infinitesimal. Does the same thing hold for zero divisors?

Exercise 1.25. Let K be a field. We recall that a valuation on K is a mapping
v: K*—T of K* into a totally ordered additive group, such that

V1. v(zy)=v(z)+v(y) for all z,y € K*.
V2. v(z+y) > min (v(z),v(y)), for all z,y € K* with x +y € K*.

Show that the valuations on K correspond to total dominance relations.

Exercise 1.26.

a) Let R be any ring and define x 5 y, if and only if V2z€ R,y2=0=xz2=0,
for all z,y € R. Show that < is a domination relation, for which R is the set
of bounded elements, and R* the set of archimedean elements.

b) Assume that R is a ring with a compatible dominance relation and neglection
relation. Show that we may generalize the theory of this section, by replacing
all quantifications over A € R resp. p € R* by quantifications over A < 1
resp. p < 1. For instance, the condition D2 becomes z < y= Az < py for
all z,ye M, Ax1and px1.
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Exercise 1.27. Let R be a perfect totally ordered ring and M a perfect ordered
R-module. Given z,y € M, we define x < y resp. = < y, if ¢(z) < ¢(y) resp.
»(z) < ¢(y) for all morphisms @: M — N of M into a totally ordered R-module
N. Prove that < and < compatible domination and neglection relations. Prove
that the same thing holds, if we take a perfect ordered R-algebra A instead of M.

Exercise 1.28. Let M be an R-module with a dominance relation <. Let D
be the set of total dominance relations <’ on M, with <’ D <. Prove that

<=Ngep 5~

1.7 Hahn spaces

Let K be a totally ordered field and V' a totally ordered K-vector space. We
say that V' is a Hahn space, if for each x,y € V with x <y, there exists a A€ K,
with x~ A\ y.

Proposition 1.22. Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Then V admits a basis by, ..., b, with by <---<b,.

Proof. We prove the proposition by induction over the dimension n of V. If
n =0, then we have nothing to prove. So assume that n > 0, and let H be
a hyperplane in V of dimension n — 1. By the induction hypothesis, H admits
a basis a1 <+ <a,_1.

We claim that there exists an x € V' \ H, such that z is asymptotic to none
of the a;. Indeed, if not, let ¢ be minimal such that there exists an z €V \ H
with z =< a;. Since V is saturated, there exists a A € K with z ~ X a;. Then
T — Aa; < a;, whence © — A a; X aj with j <, since x—Xa; €V \ H. This
contradicts the minimality of 4.

So let x € V \ H be such that = is asymptotic to none of the a;. Since
x<a;Vaxa; Ve a; forall i, the set {ay, ..., an—1, ¢} is totally ordered
w.r.t. <. U

Exercise 1.29. Show that any totally ordered R-vector space is a Hahn space.
Do there exist other totally ordered fields with this property?

Exercise 1.30. Let K be a totally ordered field and V a finite dimensional
Hahn space over K. Assume that b; <--- < b, and b} < ... < b}, are both bases
of K and denote by B resp. B’ the column matrices with entries by, ..., b, resp.
b, ..., by,. Show that B’=T B for some lower triangular matrix 7.

Exercise 1.31.

a) Prove that each Hahn space of countable dimension admits a basis which is
totally ordered w.r.t. <.

b) Prove that there exist infinite dimensional Hahn spaces, which do not admit
bases of pairwise comparable elements for <.
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1.8 Groups and rings with generalized powers

Let G be a multiplicative group. For any x € G and n € Z, we can take the
n-th power 2™ of = in G. We say that G is a group with Z-powers. More
generally, given a ring R, a group with R-powers is an R-module G, such that
R acts on G through exponentiation. We also say that G is an exponential
R-module. If R and G are ordered, then we say that G is an ordered group
with R-powers if 1 <z AN0<a=1<z? for all z€G and a € R.

Ezxample 1.23. Let G be any group with R-powers and let S be an R-algebra.
Then we may form the group G°I* with S-powers, by tensoring the R-mod-
ules G and S. However, there is no canonical way to order G°I% if G, R and S
are ordered.

A ring with R-powers is a ring A, such that a certain multiplicative sub-
group A* of A carries the structure of a group with R-powers. Any ring A
is a ring with Z-powers by taking the group of units of A for A*. If A is an
ordered ring, then we say that the ordering is compatible with the R-power
structure if

Ve AXVAER, z>0=z>0.

An ordered field with R-powers is an ordered field K, such that the ordered
group K* = K~ of strictly positive elements in K has R-powers.

Ezample 1.24. The field C(z) is a field with Z-powers by taking C(z)* =
C(z)*. The field R(z) is a totally ordered field with Z-powers for the ordering

>0« JxoeR, Vo >, f(zx)>0.

from example 1.13.

Let A be an asymptotic ring with R-powers, i.e. A is both an asymptotic
ring and a ring with R-powers, and 1z or z <1 for allz € A*. Given z € A%,
we denote ||z || == if x3=1 and ||z|| =2~ otherwise. Then, given z,y € A*,
we define

z=<y < 3INER,IpcR |zt <y
r<y < YAER,Vue R 2> <|ly"|,

and we say that x is flatter than y resp. flatter than or as flat as y. If
r X y X x, then we say that x is as flat as y and we write z X y. Given
x € K, the set of y € K* with y =« is also called the comparability class of
x. Finally, if y/x < x, then we say that « and y are similar modulo flatness,
and we write 22 y.

Ezample 1.25. Consider the totally ordered field R(z)(e”) with Z-powers and
the natural asymptotic relations < and < for £ — oo. Then we have z < e*,
et ¢ elOOOw and e® % T elOOOw_
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Let A be an asymptotic ring with R-powers and consider a subring A°
with R-powers such that A”>* = A”N A*. The subring A’ is said to be flat if

Vee A Vye AX o< y= Tz’ € A", 2’ =< z).
In that case, we define

rxty & Jpe A rxoy;
=<ty & VYoecA"* z<oy,

for 2,y € A. In virtue of the next proposition, we call <¥ a flattened dominance
relation and <* a flattened neglection relation.

Proposition 1.26.

a) A is an asymptotic ring with R-powers for <* and <F.
b) If for all z,y € A and ¢ € A>* we have

rSYNpyRr=r<90Y, (1.3)

then <% and <! are associated.

Proof. Assume that z <4z and y <!z so that = < @z and y < 9 z for certain
@, e A»*. We also have ¢ < 1) or 1) < ¢, so, by symmetry, we may assume
that ¢ < 9. Now x <9z, whence x — y < 9 2z, which proves D1. We trivially
have D2, since z < y=x <y for all z, y € A. The properties D3, N1, N2, N3,
N4 and the quasi-ordering properties directly follow from the corresponding
properties for < and <.

Assume now that z <% y. Then in particular < y, whence = < y and
r <'y. Furthermore, if we had y < x, then we would both have z < ¢ ¥
and y < ¢! z for some ¢ € A*>*, which is impossible. This proves that
r=<ty=aetyny4in

Conversely, assume that we have z < y and y 4* z, together with (1.3).
Then z < @y for some ¢ € A>* and y £ Yz for all ¢ € A»*. Given 1) € A»*,
we then have 1y £ z, since otherwise y < ¢ ~'z. Applying (1.3) to x, ¢y and
@~ !, we conclude that <1y and x <¥y. O

Ezample 1.27. Given an element ¢ € A, we may take A’ =(z € A*:z < @) to
be the ring generated by all x € A* with =< ¢. Then we define

< = <F
<, = <k

We may also take A”=(z € A*: 2= ), in which case we define

* i
<5 = <%

For instance, if A=R(z)(e%), then 20e® < e??, 11%e? <exe® and f <} g for
all f,ge A7,
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Exercise 1.32. Let K be a totally ordered field with R-powers and let L be its
smallest subfield with R-powers.

a) Show that K has a natural asymptotic L-algebra structure with R-powers.
b) Show that & and < are characterized by

rXy & INER,Fpe R |zt <y
Ty & VYAER,Yuc R x> <||yH].

Exercise 1.33. Consider A* as a “quasi-ordered vector space” for < and the
R-power operation. Show that we may quotient this vector space by =< and
that < and <K correspond to the natural dominance and neglection relations
on this quotient.



2

Grid-based series

Let C be a commutative ring, and 9 a quasi-ordered monomial monoid. In
this chapter, we will introduce the ring C'[9T of generalized power series
in 91 over C'. For the purpose of this book, we have chosen to limit ourselves
to the study of grid-based series, whose supports satisfy a strong finiteness
property. On the other hand, we allow 9t to be partially ordered, so that
multivariate power series naturally fit into our context. Let us briefly discuss
these choices.

In order to define a multiplication on C'[2t], we have already noticed
in the previous chapter that the supports of generalized power series have to
satisfy an ordering condition. One of the weakest possible conditions is that
the supports be well-based and one of the strongest conditions is that the
supports be grid-based. But there is a wide range of alternative conditions,
which correspond to the natural origins of the series we want to consider (see
exercises 2.1 and 2.7). For instance, a series like

1 1 1
f:__|_ +——+-

x ? T
is the natural solution to the functional equation

fl@)=a"1+ f(a%).

However, f is not grid-based, whence it does not satisfy any algebraic differ-
ential equation with power series coefficients (as will be seen in chapter 8).

Actually, the setting of grid-based power series suffices for the resolution
of differential equations and that is the main reason why we have restricted
ourselves to this setting. Furthermore, the loss of generality is compensated
by the additional structure of grid-based series. For example, they are very
similar to multivariate Laurent series (as we will see in the next chapter) and
therefore particularly suitable for effective purposes [vdH97]. In chapter 4, we
will also show that grid-based “transseries” satisfy a useful structure theorem.
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Although we might have proved most results in this book for series with
totally ordered supports only, we have chosen to develop theory in a partially
ordered setting, whenever this does not require much additional effort. First of
all, this lays the basis for further generalizations of our results to multivariate
and oscillating transseries [vdH97, vdHO1a|. Secondly, we will frequently have
to “fully expand” expressions for generalized series. This naturally leads to
the concepts of grid-based families and strong linear algebra (see sections 2.4,
2.5.3 and 2.6), which have a very “partially-ordered” flavour. Actually, certain
proofs greatly simplify when we allow ourselves to use series with partially
ordered supports.

Let us illustrate the last point with a simple but characteristic example.
Given a classical power series f and an “infinitesimal” generalized power series
g, we will define their composition f o g. In particular, when taking f(z) =
Z;}io 2" /n!, this yields a definition for the exponential e9 = fo g of g. Now
given two infinitesimal series g; and go, the proof of the equality e91 T 92 =91 92
is quite long in the totally ordered context. In the partially ordered context,
on the contrary, this identity trivially follows from the fact that e*1 722 =e?1e?2
in the ring Q[[#1, z2]] of multivariate power series.

2.1 Grid-based sets

Let 99t be a commutative, multiplicative monoid of monomials, quasi-ordered
by <. A subset & C 91 is said to be grid-based, if there exist my,..., M, 0y, ...,
n, €M, with mq,...,m,, <1, and such that

& C{my,...,mp }* {n1, ..., }. (2.1)
In other words, for each monomial v € &, there exist k1, ..., k, € N and [ with

n:m]fl---mf,;"nl.
Notice that we can always take n =1 if the ordering on 9 is total.

By Dickson’s lemma, grid-based sets are well-quasi-ordered for the oppo-
site quasi-ordering of = (carefully notice the fact that this is true for the
opposite quasi-ordering of < and not for =< itself). Actually, a grid-based
set is even well-quasi-ordered for the opposite ordering of <' (recall that
r<'yex=yVar<y). More generally, a subset of 9t which has this latter
property is said to be well-based.

Proposition 2.1. Let & and $ be grid-based subsets of 9. Then

a) Each finite set is grid-based.

b) BUSH is grid-based.

¢) B9 is grid-based.

d) If <1, then &* is grid-based.
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Proof. The first three assertions are trivial. As to the last one, we will prove
that & < 1 implies that there exist elements v1,...,0, <1 in 9, with

& C{oy,...,0, %

This clearly implies the last assertion. So assume that we have ® <1 and (2.1).
For each [, the set

{(k1, .oy ko) € N mflccmbrn, < 1)
is a final segment of N™. Let F] be a finite set of generators of this final
segment and let

0= {miemlr g (ky, .. k) € B3

Then {v1,...,0,} =B U---UYB, U{my,...,m,, } fulfills our requirements. O

Fig. 2.1. Illustration of a grid-based set with three base points ny, no, ng
and two infinitesimal generators m; and m,. Notice that we used “logarithmic
paper” in the sense that multiplication by m; or ms corresponds to a trans-
lation via one of the vectors in the picture. Alternatively, one may write
M = 2", where z is a formal variable and T is a formal ordered additive “value
group” which is “anti-isomorphic” to 9. Instead of representing monomials
I, one may then represent their values in I'.

Exercise 2.1. Show that proposition 2.1 also holds for the following types of
subsets of Mi:

a) Well-based subsets;

b) Countable well-based subsets;

¢) R-finite subsets, when 9 is an ordered group with R-powers. Here an
R-finite subset of 9 is a well-based subset, which is contained in a finitely
generated subgroup with R-powers of 901;

d) Accumulation-free subsets, when 9 is an ordered group with R-powers. Here
an accumulation-free subset of M is a subset &, such that for all m,n € M
with n <1, there exists an € > 0, such that

Vo e, (on®<m=(Vd>0,0n®<m)).
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Exercise 2.2. Assume that 9 is a group. Show that Z-finite subsets of 9 are
not necessarily grid-based.

Exercise 2.3. f M=2R={2*a R}, with 2% = 28 < o < 3, then accumulation-
free subsets of M are also called Levi-Civitian subsets. Show that infinite Levi-
Civitian subsets of 9 are of the form {z**, 2**,...}, with lim,,_, oc o, = + 0.

Exercise 2.4. Assume that 9 is a partially ordered monomial group with
Q-powers. A subset & of M is said to be weakly based, if for each injective
morphism ¢: 9 — 9N of M into a totally ordered monomial group M with
Q-powers we have:

1. The image (&) is well-ordered.
2. For every n €M, the set {m € &: ¢(m) =n} is finite.

Show that proposition 2.1 also holds for weakly based subsets and give an
example of a weakly based subset which is not well-based.

Exercise 2.5.

a) For grid-based sets €; <1 and €, <1, show that there exists a grid-based set
D <1 with D*= ¢ N E3.

b) Given a grid-based set © < 1, does there exist a smallest grid-based set € <1
for inclusion, such that © C &*? Hint: consider {z; 25 2, 22}* N {22 25 %, 23}*

for a suitable ordering on z% 2Z.

2.2 Grid-based series

Let C be a commutative, unitary ring of coefficients and 9 a commutative,
multiplicative monoid of monomials. The support of a mapping f: 91— C is
defined by

supp f={meM: f(m)+0}.

If supp f is grid-based, then we call f a grid-based series. We denote the set
of all grid-based series with coefficients in C' and monomials in 9t by C [9]].
We also write fin = f(m) for the coefficient of m € 9t in such a series and
> meon Jmmfor f. Each fom with m€supp f is called a term occurring in f.

Let (f;)icr be a family of grid-based series in C'[91. We say that (f;)ier
is a grid-based family, if |J,.; supp fi is grid-based and for each m € 9 there
exist only a finite number of ¢ € [ with m € supp f;. In that case, we define its

sum by
Sofi=> (Z fi,m)m- (2.2)

icl meM i€l

This sum is again a grid-based series. In particular, given a grid-based series f,
the family (fmm)meon is grid-based and we have f=3%7 . fmm.
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Let us now give C[9M] the structure of a C-algebra; we will say that
C [N is a grid-based algebra. C and 901 are clearly contained in C'[90t] via
c—c-1lresp. m—1-m. Let f,ge CI9MIT. We define

fra= > (fot gm)m
meEsupp fUsupp g
and

fg= Z S gnmn.

(m,n)Esupp f Xsupp g

By propositions 1.6 and 2.1, f 4+ g and fg are well-defined as sums of grid-
based families. It is not hard to show that C'[9M] is indeed a C-algebra. For
instance, let us prove the associativity of the multiplication. For each v € 90,
we have

((fg)h)o= Z (f@)mha= Z S’ G n.

mesupp fg m’€Esupp f
nesupp h m’/Esupp g
mn=uv nesupp h

m/m’’n=v

The right hand side of this equation is symmetric in f, g and h and a similar
expression is obtained for (f (gh))y.

Let g € C[[2]] be a power series and f € C [9M] an infinitesimal grid-based
series, i.e. m <1 for all m € supp f. Then we define

gof= > In feny e fim, M1 My,

my-mp € (supp f)*

where the sum ranges over all words over the alphabet supp f. The right
hand side is indeed the sum of a grid-based family, by Higman’s theorem and
proposition 2.1. In section 2.5.3, we will consider more general substitutions
and we will prove that (gh)o f=(go f)(ho f) and (hog)o f=ho(go f) for
all g,heC[[7]].

In particular, we have ((1 + 2) o f) ((1 + 2)"to f) =1 for all f with
supp f < 1. This yields an inverse for all elements g € C[9] of the form
g=1+ f with supp f <1. Assume now that C is a field and that 91 is a totally
ordered group. Then we claim that C IO is a field. Indeed, let f £ 0 be
a series in C'[9MT and let f, 0 be its dominant term (i.e. ? is maximal for <
in supp f). Then we have

TR A I
fl—fa1°1<m) .

Ezample 2.2. Let 90t be any multiplicative monoid with the finest ordering for
which no two distinct elements are comparable. Then C IO is the polyno-
mial ring C[].
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Ezample 2.3. Let A be any ordered abelian monoid and z < 1 a formal,
infinitely small variable. We will denote by z4 the formal ordered multiplica-
tive monoid of powers z* with o € A, where 2 < 28 a > 3 (i.e. A and 24 are
anti-isomorphic). We call C' [z the ring of grid-based series in z over C and
along A. If A is clear from the context, then we also write C'[z] = C [24].
The following special cases are classical:

a) C'[z™1 is the ring C[[2]] of formal power series in 2.

b) C'[z%T is the field C((z)) of Laurent series in z. Elements of C' [2%] are
of the form > fn2" with v €Z.

c) C[2R] is the field of Puiseuz series in z. Elements of C'[2®] are of the
form 7 o, fn 2" with v €% and k€ N>.

d) CI2N"] is the ring C[[z1, ..., 2,]] of multivariate power series, when N™
is given the product ordering.

e) C[2%2"] is the ring C((21, ..., 2n)) of multivariate Laurent series, when Z"
is given the product ordering. We recall that a multivariate Laurent series
f€C((#1y-..,2n)) is the product of a series in C[[z1,..., z,]] and a monomial
200 20m e 22 Given f € CL2"T7, let {27+ 2079:1< j < p} be the
set of dominant monomials of f. Then we may take a; = mini¢j<p Bi,;
for each 1.

Often, we rather assume that z -1 is an infinitely large variable. In that case,
24 is given the opposite ordering 2% < 28 < a < f3.

Example 2.4. There are two ways of explicitly forming rings of multivariate
grid-based series: let z1,..., z,, be formal variables and Ay, ..., A, ordered addi-
tive monoids. Then we define the rings of natural grid-based power series resp.
recursive grid-based power series in zy, ..., z, over C' and along A, ..., A, by

CLzM,...,22T7 = Clz x - x 27
CLzM 22T = CLe % x 227,
If Ay=--=A,,= A, where A is clear from the context, then we simply write

Clz,...,zodl = CLz, ... 25T
Clz;.;z,] = CLzfy...; 220,

Any series f in C[z; ...; 2,1 may also be considered as a series in
C[[z0---[2,] and we may recursively expand f as follows:

[ = Z fanZgn

an, €A

fan,...,ag Z fozn,...,cxl Zf‘l~

a1 €A

Notice that C'[[z1;...; 2,1 g C 1 [z,0, in general (see exercise 2.6).
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Exercise 2.6. Show that, in general,

Cllzy, ...,z ; Cllzy;.; 2,1 ; Cllz1--[z,01

and
Cllzi;...; 20l £ Cllzo(1); -5 Zom)D s

for non-trivial permutations o of {1,...,n}.

Exercise 2.7. Show that the definitions of this section generalize to the case
when, instead of considering grid-based subsets of 91, we consider subsets of one
of the types from exercise 2.1 or 2.4. Accordingly, we have the notions of well-
based families, well-based series, accumulation-free series, etc. The C-algebra of
well-based series in 9 over C' will be denoted by C[[9]].

Now consider the monomial group

M =2 X expRx x expRexpax X -,

where z,exp x,expexp x,... = 1. The order type of a series is the unique ordinal
number which is isomorphic to the support of the series, considered as an ordered
set. Determine the order types of the following series in C[[9]], as well as their
origins (like an equation which is satisfied by the series):

fx+f+ vz + \/\/E+---;
mtoat it ot ottt ot o e

a)l +;+...;

x expz expexpa:

b) 1424 Lt L +zy tomt ot ot o e o
q1+2w 3w+4w

d) -+ 2+—+--~-

) l+it+ ottt ottt ottt ot
)

)1

g

Also determine the order types of the squares of these series.

Exercise 2.8. Let C be a Noetherian ring and let 9t be a well-based monomial
monoid. Show that C'[9MT is a Noetherian ring.

Exercise 2.9. For all constant rings C' and monomial groups, let C[[9N]] either
denote the ring of well-based, countably well-based, R-finite or accumulation-
free series over M in C. In which cases do we have C[[9t x M]] = C[[M]][[MN]] for
all M and N?

Exercise 2.10. Let 9 be a monomial group and let < be the equivalence
relation associated to < as in exercise 1.1(c) Let U={meM:m =<1} and let 7!
be a right inverse for the projection m: I — M/<. Show that we have natural
embeddings

v: CIOM/=<T Y] — CIMI

Z Z fompmn — Z Z fonm t(m)n

ned meMm/x neyd meM/x
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and

v: CIMI — CUIM/=<1
Z Z foam tm)n — Z Z S, nmn.
meM/=< neld meM/x neu
Show that the embeddings v; and vs are strict, in general.

Exercise 2.11. Let 9 be a quasi-ordered monomial group and 9 an “ideal” of
I in the sense that mn € 9, for all m € M and n € N. Define a ring structure
on CION\NT, such that mn=0 in CTIM\NT, for all m,n € M\N with mn e N.

2.3 Asymptotic relations

2.3.1 Dominance and neglection relations

Let f € CIIMI be a grid-based power series. The set of maximal elements
for < in the support of f is called its set of dominant monomials. If this set is
a singleton, then we say that f is regular, we denote by 9 or d(f) its unique
dominant monomial, by cy = fy, its dominant coefficient, and by 7y =cy 0y
its dominant term. If 7, is invertible, then we also denote ¢y = T—ff —1, so that
f= Tf(l + (5f).

Notice that any grid-based series f can be written as a finite sum of regular
series. Indeed, let 01,...,0, be the dominant monomials of f. Then we have

fZX; Z Jmm |,

L= m€in(a1,...,01)\in(01,...,0i_1)

where we recall that in(d1,...,9;)={meMm=x0;V---Vm=<0;}.

Assume that C' is an ordered ring. We give C'[91] the structure of an
ordered C-algebra by setting f > 0, if and only if for each dominant mono-
mial 9 of f, we have f,>0 (see exercise 2.12).

Assume now that C' and 9 are totally ordered, so that each non-zero series
in C[[ONT is regular. Then we define a dominance relation < on C [T,
whose associated strict quasi-ordering < is a neglection relation, by

F=9e (F=0V(F£0Ag# 0N <0,)).

For non-zero f and g, we have

f%g - af%ag;
[=g & =<0y
f=xg & 0p=0g4

f~g & Tr=14
Given fe C[IMI, we define its canonical decomposition by

f=F-+rI<+7<
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where fo =3 ., fum, fo= fiand fx =} fumm are respectively
the purely infinite, constant and infinitesimal parts of f. We also define
fe=fotfx fx=fx+ f<and fy=f— fs; we call f5 the bounded part of
f. The canonical decomposition of C'[[9] itself is given by:

Cmll =CcMml, eCeoCIMI ,
where

CIMI,. = COIMT = {feCOIMD: fo=f};
CIMI. = CIM=] = {feCIMI: fx=f}.

Similarly, we define CIMI . = COIM7] = {f € CIMI: f» = f} and
CIMIx=CIM-T ={feCIMI: fx=f}.

4

Example 2.5. Let f=-"—¢c C[Lx%] with 2= 1. Then the canonical decom-

x—1
position of with f is given by
f= s + f~ +  f<
I I |
424 1 1fx—1

Warning 2.6. One should not confuse C' [ . with C' [ ~, since C [T
is strictly contained in C'[9] ™, in general. We always do have C'[IN] = =
CIMI < and CIMI<=CI[MI <.

Proposition 2.7. Assume that C is a totally ordered integral domain and M
a totally ordered monomial group. Then

a) CIOT is a totally ordered C-algebra.

b) The relations < and < coincide with those defined in proposition 1.20.
¢) If C is a field, then CIIM] is a Hahn space over C.

d) CI9 4 is the set of bounded elements in C' [IN].

e) CIOT & is the set of infinitesimal elements in C [INT .

Proof. Given f in C'[91l, we have either f =0, or ¢y >0 (and thus f >0),
or ¢y <0 (and thus f <0). This proves (a).

Assume that f<g,ie. f=0o0r f£0ANg#0AVs <0, If f=0, then
clearly | f| < |g|. If f 0, then either 2y <0, and ¢|4|—|7| = |cg| > 0 implies
Ifl <lgl, or 95 =04 and cjac,q|—|c,f| = |cf cg| > 0 implies |cgy f| < [2 ¢fg].
Inversely, assume that f# g, i.e. f#0 and either g=0or 0y >0, If g=0,
then clearly |\ f| > | g| =0, for all A€ C* and p € C. Otherwise, d|\ 5| =0
and [pg|=0or 0,4 =0, for all \€ C* and p € C, so that 0|y 5|_|.q =0 and
again |\ f|>|ug|. We conclude that the above definition of < coincides with
the definition in proposition 1.20, using exercise 1.21(b). This proves (b), since
for both definitions of < we have f<g&< g4 f.
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If C is a field, then for f, g € CIMI7, we have f = g & 0 =04 =
Ty="T(cs/eq) g [~ (cp/cg) g. This shows (c). If f€ CIMI is bounded, then
either f =0 and clearly fe CIMI g, or f#0AD ;<1 and m=<0;=<1 for all
mesupp f, whence again f € C [T <. If fis unbounded, then 0>~ 1, whence
f¢ CIMI 5. This proves (d), and (e) is proved similarly. O

In the case when 91 is not necessarily totally ordered, we may still define
the constant and infinitesimal parts of a series f € CIIMI by fo= frand fx=
> m<1 fme We say that f is bounded resp. infinitesimal, if f€C ® C[IMI <
resp. f € CIMI <. In other words, f is bounded resp. infinitesimal, if for all
méesupp f, we have m<1, resp. m<1.

2.3.2 Flatness relations

Assume now that C' is both a totally ordered R-module and a totally ordered
field with R-powers, for some totally ordered ring R, and assume that 91
is a totally ordered group with R-powers. Let f € C[I9I~ and write
f=cpop (1 +e) withe < 1. Given X € R, let my(2) = (1 + )M € C[[2]].
Then we define

f)‘zc?b? (mroe). (2.3)
In this way, we give the field C[9] the structure of a C-algebra with
R-powers, by taking
COMI* ={f € CIMN*:cpeC*}.
Indeed, Ty 0e=(mym,) oe=(myroe) (my0¢) for all A, p € R and infinitesimal

eec C'IIMI.

Proposition 2.8. Let C, 9 and R be as above and let < and <K be defined
as in section 1.8. For m € M, denote ||m|=m if m =1 and |m|| =m™!
otherwise. Then, given f,g€ CIIMT >, we have

a) f*ge (GNER,3pe R[04 <0));
b) f<ge (VA€ R, Yue R0} < |[ok])).

Proof. The characterizations of =< and <« immediately follow from the fact
that fA=<0} for all feCIMI">. O

2.3.3 Truncations

Let 91 be an arbitrary monomial monoid and f € CI[9M1. Given a subset
G CNM, we define the restriction fg € CLEN CCIMI of f to &S by

fe= Z fmm.

me&Nsupp f
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For instance, f. = fon-, fx= f{1}, f<= fon< and f{m}= fmm. By our general
notations, we recall that Fe ={fs: f € F'}, for sets F C C'[9M]. Notice that
M, = NMoy- =M™, M =M, ete.

Given two series f, g € C IO, we say that f is a truncation of g (and
we write f < g), if there exists a final segment § of supp g, such that f= gz.
The truncation < is a partial ordering on C [9t].

Let (f;)ic; € CIMI! be a non-empty family of series. A common trunca-
tion of the f; is a series g € C[9NT, such that g < f; for all i€ I. A greatest
common truncation of the f; is a common truncation, which is greatest for <.
Similarly, a common extension of the f;is a series g € C' [9]], such that f;<lg
foralliel. A least common extension of the f;is a common extension, which
is least for Q. Greatest common truncations always exist:

Proposition 2.9. Any non-empty family (f;)icr € CIIMD! admits a greatest
common truncation.

Proof. Fix some j € I and consider the set .# of initial segments § of supp f;,
such that f; < f; for all i € I. We observe that arbitrary unions of initial seg-
ments of a given ordering are again initial segments. Hence §Fmax=|J seF §is
an initial segment of each supp f;. Furthermore, for each m € F,ax, there exists
an § € Z with fj,&,m = fj7m = fi,m for all : € I. Hence fj73max = fi7gn\ax d fi
for all ¢ € I. This proves that fz . is a common truncation of the f;. It is
also greatest for <, since any common truncation is of the form f; 3 for some
initial segment § € F of Fmax With f; 5 < i 5uan: O

Exercise 2.12. Let C be an ordered ring and 97 a monomial group. Given
A€ C?Z and series f, g€ CIMI>, determine the sets of dominant monomials of
Af, f+gand fg. Show that C[9M] is an ordered C-algebra.

Exercise 2.13. Assume that C'is a perfect ordered ring and 91 a perfect ordered
monoid.

a) Show that C'[OM] is a perfect ordered C-algebra.

b) Let < and < be defined as in exercise 1.27. Show that 27 4+ 23 £ z; — 2 in
Cllz1, 2]

c) For f,ge CIMI and g regular, show that f < g, if and only if supp f <.

d) For f,ge CIMI and g regular, show that f < g, if and only if supp f <,.

In other words, there is no satisfactory way to define the relations < and <
purely formally, except in the case when the second argument is regular.

Exercise 2.14.

a) Let C be an ordered ring and let 9 be a monomial set, i.e. a set which is
ordered by <. Show that the set C[[9]] of series f: 91 — C with well-based
support has the natural structure of an ordered C-module. Show also that
this ordering is total if the orderings on C' and 91 are both total.

b) Prove Hahn’s embedding theorem [Hah07]: let V' be a Hahn space over a
totally ordered field C. Then V /< is a totally ordered set for >/=< and V
may be embedded into C[[V /x]].
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c) If V. C C[[9M]] in proposition 1.22, then show that V' admits a unique basis
(b1,...,by), such that by <--- <b, and b; 5,y =0s,; for all 4,5 € {1,...,n}.

Exercise 2.15.

a) Let L D K be a field extension and 9t a monomial set. Given a K-subvector
space V of K[[9M]], show that L ® C[[9]] is isomorphic to the L-subvector
space of L[[90]], which is generated by V.

b) Let L O K be an extension of totally ordered fields. Given a Hahn space V
over K, show that L ® x V has the structure of a Hahn space over L.

Exercise 2.16. Let 9 be a totally ordered monomial group and let 9> C 9
be a flat subset (i.e. Ym €M, ¥n €M m L n=mecIM®).

a) Show that C'[9°] is a flat subring of C' [9MT.
b) Characterize the relations <# and <*.

Exercise 2.17. Generalize the notion of truncation to the well-based setting.
A directed index set is an ordered set I, such that for any 7, j € I, there exist a
kel withi<kand j<k. Let (f;);es be a <-increasing family of series in C'[[90]],
ie. f; < f; whenever i < j. If 9 is Noetherian or totally ordered, then show that
there exists a least common extension of the f;. Show that this property does
not hold in the grid-based setting.

2.4 Strong linear algebra

Just as “absolutely summable series” provide a useful setting for doing analysis
on infinite sums (for instance, they provide a context for changing the order
of two summations), “grid-based families” provide an analogue setting for
formal asymptotics. Actually, there exists an abstract theory for capturing
the relevant properties of infinite summation symbols, which can be applied in
both cases. In this section, we briefly outline this theory, which we call “strong
linear algebra’.

2.4.1 Set-like notations for families

It will be convenient to generalize several notations for sets to families. We
will denote families by calligraphic characters F, G, ... and write % (S) for
the collection of all families with values in S. Explicit families (f;);e; will
sometimes be denoted by (f;:4 € I). Consider two families F = (f;);er € S*
and G=(g;) € S7, where I, J and S are arbitrary sets. Then we define
FUG = (hi)icrus, where h;= { gz i 225

FxG = (fi,95)G,5)erx

More generally, if I=]] and G; = (fi)iec1, for all j € J, then we denote

9=+

jeJ

jeJIj’
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Given an operation ¢: Sy X -« x S, — T and families Fr, = (fx,i)icr, € S,ﬁ’”‘ for
k=1,...,n, we define

O(F1s s Fn) = (@(f1i15 05 Frin)) (irsenesin) €115 o X L (2.4)

It is also convenient to allow bounded variables to run over families. This
allows us to rewrite (2.4) as

Qp(}-la ---a]:n) = (‘P(fl; ceey fn))f1€f1,m,fn€fn
Similarly, sums of grid-based families F = (fi);ie7r € C [9MT! may be denoted

by
SNF=N =Y 1

fer iel

We say that F = (fi)icr and G=(g;);jes are equivalent, and we write F =G,
if there exists a bijection ¢: I — J with f; = g,(;) for all ¢ € I. If ¢ is only
injective, then we write 7 C G. If I CJ and ¢ is the natural inclusion, then
we simply write F C G.

2.4.2 Infinitary operators

The main idea behind strong linear algebra is to consider classical algebraic
structures with additional infinitary summation operators » . These sum-
mation symbols are usually only partially defined and they satisfy natural
axioms, which will be specified below for a few structures. Most abstract
nonsense properties for classical algebraic structures admit natural strong
analogues (see exercise 2.20).

A partial infinitary operator on a set S is a partial map

b: P(k;S)— S,
where s is an infinite cardinal number and

P(k;S) = U S,

ICk

We call k the maximal arity of the operator ®. For our purposes, we may
usually take k = w, although higher arities can be considered [vdH97]. The
operator ®: Z(k; S) — S is said to be strongly commutative, if for all equiv-
alent families F and G in #(k; S), we have F € dom ® < G € dom ¢ and
Fedom® = o(F)=>(G).

It is convenient to extend commutative operators ® to arbitrary families
F = (fi)ier € ST of cardinality card I < k. This is done by taking a bijec-
tion ¢: I — J with J C x and setting ®(F) = ®((f,-1(;))jes), whenever
(fo-1(j))jes € dom ®. When extending ® in this way, we notice that the
domain dom ® of ® really becomes a class (instead of a set) and that ® is not
really a map anymore.
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2.4.3 Strong abelian groups

Let A be an abelian group with a partial infinitary operator > : #(x; A) —~ A.
We will denote by . (A) the domain of . We say that A is a strong abelian
group, if

SA1l. ) is strongly commutative.

SA2. For all I Cx and O;=(0);er, we have > Or=0.

SA3. For all z € A and S; = (z), we have Y S;==.

SAA4. For all F,Ge.7(A), we have > FUG=> F+> G.
SA5. For all F € .(A) and decompositions F' =[], ; G;, we have

2.2 9= F

JjeJ

SA6. For all F=(n; f;)ics €. (A) with (nj);es € (N>)/, we have

Z fj:Z F.

JjEJ
1<i<n;
We understand that F € .#(A), whenever we use the notation ) F. For

instance, SA2 should really be read: for all I C x and Oy = (0);¢1, we have
Ore S (A) and >, O;r=0.

Remark 2.10. Given a strong abelian group A, it is convenient to extend the
summation operator Y to arbitrary families F € .#(A): we define F to be
summable in the extended sense if and only if G=(f € F: f#0) is summable
in the usual sense; if this is the case, then we set >~ F=>" G.

Example 2.11. Any abelian group A carries a trivial strong structure, for which
Fes(A)if only if (f€F: f+#0) is a finite family of elements in A.

We call SA5 the axiom of strong associativity. It should be noticed that
this axiom can only be applied in one direction: given a large summable
family 7, we may cut it into pieces G;, which are all summable and whose
sums are summable. On the other hand, given summable families G; such that
(3 Gj)jeis again summable, the sum ) HjEJ G, is not necessarily defined:
consider (1 —1) + (1 —1)+---=0. The axiom SA6 of strong repetition aims
at providing a partial inverse for SA5, in the case when each piece consists
of a finite number of repetitions of an element.

Remark 2.12. In SA5, we say that the family F refines the family (3 G;) ;e
In order to prove identities of the form ) F=>" G, a common technique is
to construct a large summable family H, which refines both F and G.
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2.4.4 Other strong structures
Let R be a ring with a strong summation > (which satisfies SA1-SA6). We
say that R is a strong ring if
SR. For all F,G € .(A), we have

S Fe=(Y F) (> 9).

Let M be a module over such a strong ring R and assume that we also have
a strong summation on M. Then M is said to be a strong R-module if

SM. For all F € .(R) and G € .7 (M), we have

S Fe=(Y F) (> 9).

Notice that SM is trivially satisfied when R carries the trivial strong struc-
ture. We say that M is an ultra-strong R-module, if we also have

UM. For all ()\i)ie[ ERI and (fi)ie[ Ey(M), we have (/\1 fi)iejey(M)

A strong R-algebra (resp. an ultra-strong R-algebra) is an R-algebra A,
together with a strong summation, for which A carries both the structures
of a strong ring and a strong R-module (resp. an ultra-strong R-module).

Let M and N be two strong R-modules. A linear mapping ¢: M — N is
said to be strong if it preserves the infinite summation symbols, i.e.

SL. For all F € # (M), we have Y o(F)=p(>. F).
In the case of ultra-strong modules, this condition implies
@( > A 331) =D pim) =) Aip(w),
icl iel iel

whenever (\;);e; € R and (z;);c; €. (M). Notice that strong abelian groups
and rings can be considered as strong Z-modules resp. Z-algebras, so the
definition of strongly linear mappings also applies in these cases.

Exercise 2.18. Let F=(f;)ic;r € Al and G=(g;);c7 € A’. Prove that
FrG & (V€A card{iel: fi=a}=card{jeJ:g;=1});
FCG & (VzeA card{iel: fi=a}<card{jeJ:g;=z}).
Deduce that F~ G FC GO F.

Exercise 2.19.

a) Let C =R, or a more general Banach algebra. Consider the infinite summa-
tion operator on C, which associates ZiEJN x; to each absolutely summable
family (x;);en. Show that C is a strong ring for this operator (and the usual
finite summation operators).

b) Given a set S, show how to construct the free strong R-module in S.
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c) Let # be a oc-algebra on a set E. We define Mgy to be the free strong
R-module in #, quotiented by all relations Ziel U,= Hiel U, for at most
countable families (U;);c; € %!, whose members are mutually disjoint. Show
that finite measures can then be interpreted as strongly linear mappings
from M4 into RR.

Exercise 2.20. Strong abelian groups, rings, modules and algebras form
categories, whose morphisms are strongly linear mappings. Show that these
categories admit direct sums and products, direct and inverse limits, pull-backs,
push-outs and free objects (i.e. the forgetful functor to the category of sets
admits a left adjoint).

2.5 Grid-based summation

Let C M be a grid-based algebra as in section 2.2. Given a countable family
Fe Z(CIMI), we define F to be summable if and only if F is a grid-based
family, in which case its sum is given by formula (2.2). After extension of the
strong summation operator to arbitrary families using remark 2.10, it can be
checked that the notions of strong summation and summation of grid-based
families coincide.

2.5.1 Ultra-strong grid-based algebras
Proposition 2.13. C' I is an ultra-strong C-algebra.

Proof. The proof does not present any real difficulties. In order to familiarize
the reader with strong summability, we will prove SA5 and SR in detail. The
proofs of the other properties are left as exercises.

Let F be a countable grid-based family and F = ]_[j ¢ Y; a decomposition

of F. For each me M, let F.n=(f€F: fu+#0) and Gjm=(f €G;: fu#0),
so that

-7:;m: H gj;m (25)

jeJ
Now G, is a grid-based family for all j € J, since |J feg, Supp f<y fer SUpPP f
and Gj.m € F.m is finite for all m € 9. Furthermore,

U swp > G,y U swpf= ] suwpf,
jeJ i€ feg, feF

and the set {j € J: (> Gj)m#0} C{j € J: Gj,m# D} is finite for all m e M,
because of (2.5). Hence, the family (3" G;) e is grid-based and for all me 9,

we have <Zzgj>mzz Yo=Y fa=(X 7).

jeJ JE€J fE€Gjm fE€EFm

This proves SA5.
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Now let F and G be two grid-based families. Then

U supp fg C U (supp f) (supp g)

(f,9)€EF %G (f,9)€EFxG
- < U suppf)( U suppg)
fer geg

is grid-based. Given m € M, the couples
(o,) € (| J supp f)x (| J suppg)
fer 9€G

with v to = m form a finite anti-chain; let (o1, 1), ..., (05, t0,) denote those
couples. Then

((f,9)€F xG:(fg)m#0)
C ((f,9)eFxG:3kef{l,...n}, fo,#0A g, #0)

is finite, whence (fg)(y,¢)e 7 xg is a grid-based family. Given m € 901, and using
the above notations, we also have

(( 3 fg)m= S0 e

f,9)€EFXG (f,9)€FxG 1<k<n

> (XF)(X9),

1<k<n

(Z7)(X9)),

This proves SR. 0

2.5.2 Properties of grid-based summation
Let CI[9M be a grid-based algebra. Given F € .#(C[9), let

termF = (fmM)fer mesupp f

monF = (M)feF mesupp f
We have
FesCIMI) & termFe L (CIMD) (2.6)
< monF e .Z(CIMD) (2.7)
Indeed,

U swpf= |J swpf= |J swpf

fer fEterm F f€mon F
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and for every m € 901,

card (f € F: fu#0) = card (f €term F: f, £0)
= card (f €mon F: fn #0).

Moreover, if F is a grid-based, then term F refines F.
It is convenient to generalize proposition 2.1 to grid-based families. Given
F=(f)ier € CIMI!, we denote
F<1 & (Viel, fi<1)
Fro= (fu fi)iwinerr

Proposition 2.14. Given grid-based families F,G € F(C[[9M]), we have

a) FIIG is grid-based.
b) FG is grid-based.
¢) If F <1, then F* is grid-based.

Proof. Properties (a) and (b) follow from SA4 and SR. As to (¢), let & be
the well-based set of pairs (f, m) with f € F and m € 9, for the ordering

(fym)<(g,n)m=<n.

Now consider the family 7 = (Ty)wes* With 7 = fi,m, =+ fi,m, m1 - m; for each
word to = (f1, mq) -+ (f1,my) € &*. This family is well-based, since &* is well-
based and the mapping 1+ 7, increasing. Moreover,

U suppTC< U Suppf>*,
TeT feF

so 7T is a grid-based. Hence F* is grid-based, since 7 refines F*. 0

2.5.3 Extension by strong linearity

Let CI9MT and C'INI be two grid-based algebras. A mapping ¢: M —
C' I[N is said to be grid-based if grid-based subsets & C 9t are mapped to
grid-based families (¢o(Mm))mes.

Proposition 2.15. Let ¢: 9 — CINT be a grid-based mapping. Then ¢
extends uniquely to a strongly linear mapping ¢: C[IN] — C I[N .

Proof. Let f € CIOMI. Then (¢(m))mesupp  is a grid-based family, by defi-
nition, and so is (fm ¢(M))mesupp - We will prove that

g:CIMmMI1 — CINnl
[ — Z fm p(m)
mesupp f
is the unique strongly linear mapping which coincides with ¢ on 9.
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Given A€ C and f € C M we clearly have g(A f) =A@ (f), by SM. Now
let 7€ 7(CIMD) and &= ;- supp f. We claim that

(fm (p(m))(ﬁm)e}'x &
is grid-based. Indeed,

U supp fm p(m) C U supp p(m)

(fm)eFx6& mes

is grid-based. Secondly, given n €1, the set {m € &: p(m),# 0} is finite, since
(¢(m))mee is grid-based. Finally, for each m € & with ¢(m),#0, the family
(f € F: fm+#0) is finite. Hence, the family ((f,m) €F X &: fn p(m)y #0) is
finite, which proves our claim. Now our claim, together with SA5, proves that

P(F)=(Ymes fup(m))reris grid-based and

DFE) = DY fme(m)

fEF mes

= Z fm p(m)

(f,mEFXS

= 3 fmem) = ¢(XF).

mes feF

This establishes the strong linearity of .

In order to see that ¢ is unique with the desired properties, it suffices
to observe that for each f € CIMI, we must have ¢(fm m) = fm @(m) by
linearity and ¢(f) = Emesupp f fm @(m) by strong linearity. O

Proposition 2.16. Assume, with the notations from the previous proposition
that ¢ preserves multiplication. Then so does ¢.

Proof. This follows directly from the fact that the mappings (f, g)— ¢(fg)
and (f, g) — @(f) ¢(g) are both strongly bilinear mappings from C [911]2
into C'[91, which coincide on 92,

Strong bilinearity will be treated in more detail in section 6.2. Translated
into terms of strong linearity, the proof runs as follows. Given m € 901, we first
consider the mapping &m: n— @(mn) = p(m) p(n). Its extension by strong
linearity maps g € C' [9M] to

Z gn@(mn):¢< Z gnmn>:¢(mg)ﬂ

nesupp g
but also to
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We next consider the mapping x: m— &n(g). Its extension by strong linearity
maps f€C[IIMI to

3 fm¢<mg>:¢< > fmmg>=¢(fg),

mesupp f mesupp f
but also to

o Jme(m) ()=o) ¢(9). .

mesupp f

Proposition 2.17. Let p: M — CIN] and : N — C TV be two grid-based
mappings. Then

—

pop=1op.

Proof. This follows directly from the uniqueness of extension by strong lin-
earity, since ¥ o ¢ and v o ¢ coincide on 9. O

In section 2.2, we defined the composition ¢ o f for ¢ € C[[z]] and
infinitesimal f € C'[9MT]. We now have a new interpretation of this def-
inition as follows. Consider the mapping ¢: 2N — C I, which maps 2"
to f™ By proposition 2.1 and Higman’s theorem, (f™),en is a grid-based
family, whence we may extend ¢ by strong linearity. Given g € C|[z]], we have

gof = > In fny s [, m1emy

my---mpy € (supp f)*

- Z Z g”fml'“fmnml"'mn

n€N (my,...,my)E(supp f)™

= Z In Z .fml"'fmnml"‘mn

neN (my,...,mp) € (supp f)™
= Z gn [ =¢(9).
neN

Now propositions 2.16 and 2.17 respectively imply that
(gh)e f=(go f)(hof)

and
(hog)o f=ho(gof)
for all g, h € C[[z]]. More generally, we have

Proposition 2.18. Let f1,..., fi be infinitesimal grid-based series in C [9N]
and consider the mapping

022N = I

ezt o [
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Given g € C[[#1, ..., zk]], we define go (f1,..., fx) = &(g). Then
a) For g,h € C[[z,..., zk]], we have

(gh)o (fi,-s f)=g0 (f1,-s fr) ho (f1, ey fE)-

b) For heC||=,..., 2] and infinitesimal g1, ..., g1 € C[[#1, ..., 2]], we have

(ho g1y gi)) o (f1sees fk) =ho(gio(f1,-es fh)seens Gro (f1,05 fi))-

Exercise 2.21. Assume that C is a strong ring and 9 a monomial monoid.
A family 7 € 7 (C[91) is said to be grid-based, if |J ;. -supp f is grid-based
and (fm)fer €7 (C), for each m € M. Show that this definition generalizes the
usual definition of grid-based families and generalize proposition 2.13.

Exercise 2.22. Give R the strong field structure from exercise 2.19(a) and

RIMT the strong ring structure from exercise 2.21. Show that the strong sum-

mation on RIMI does not necessarily satisfy US. Prove that it does satisfy

the following axiom:

RS. Let F € (RIMI) and Gy €. (R?) be such that >~ Gy=1for all f€F.
Then (A f)fer e, € (RIMD).

Exercise 2.23. Generalize the results from this section to the case when we
consider well-based (or R-finite, accumulation-free series, etc.) series instead of
grid-based series.

2.6 Asymptotic scales

Let C both be an R-module and a field with R-powers, for some ring R, and
let M be an ordered monomial group with R-powers. The the definition of
f* in (2.3) generalizes to the case when f € CI9MT is a regular series with
cy € C*. As before, the group C [9M1 * of such f has R-powers.

Proposition 2.19. Let 9 be another ordered monomial group with R-powers
and let p:9M— CINT be a grid-based mapping such that

o p(m)eCINT*, for all me M.
e o(mn)=p(m)pn) and p(m*) = p(m)*, for all m,n€M and A\ € R.
e The mapping 00 : M —N, M D ,(m) 5 increasing.

Then
a) p(fg)=¢(f) @(g) and p(fA)=@(f)*, for all f,g€ CIMD* and A€ R.
b) If kerdop=1, then ¢ is injective.

Proof. By proposition 2.16, ¢ preserves multiplication. Let f=c;0;(1+4¢)€
CIMI * be a regular series and A € R. Then

P =) (1+2)*0¢(e) =)™ (1+ (€)Y,
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by the propositions of the previous section. Furthermore, 0 o ¢ is strictly
increasing (otherwise, let m € 9t be such that m < 1, but 9,(m) = 1. Then
(¢(m™)nen is not grid-based). Hence, 1+ ¢(¢) is in CINT *, and so are cy
and ¢(9y). Therefore,

D)=t 1+ @(e)* = (cro@s) 1+ ¢(e)) =0 (/),

since C'[[MT * is a group with R-powers. This proves (a).

Assume now that ker 0 o ¢ = 1. Then 0 o ¢ is injective and strictly
increasing. Given f € C [9M] with dominant monomials 01, ..., 0, the mono-
mials 0y(0,), «+vy 0p(a,) are pairwise distinct. Consequently, the dominant
monomials of ¢ ( f) are precisely the maximal elements for < among the 9,a,).
In particular, if f # 0, then there exists at least one such maximal ele-
ment, so that ¢(f)+#0. This proves (b). O

An asymptotic scale in CIOI is a subgroup & of C'IMI* with
R-powers, such that 0|g: & — 9 is injective. Then & is naturally ordered
by f =g 05 =04 for all f, g € &. The previous proposition now shows
that we may identify C'[&]1 with a subset of C' [9t] via the strongly linear
extension Ug of the inclusion vg: © — C' [[PNT. This identification is coherent
in the sense that ’g o Uz = Dyg(g), for any asymptotic scale T in CL&T,
by proposition 2.17.

A basis of an asymptotic scale & is a basis of &, when considering & as
an exponential R-module. If 9B is such a basis, then 0y is a basis of 0g. In
particular, if 0g = 9, then 0y is a basis of 9. In this case, the bijection
0js: & — M is called a scale change and its restriction to B a base change.
We also say that B is an asymptotic basis for C'[9N] in this case.

When dealing with finite bases, it will often be convenient to consider them
as ordered n-tuples B = (by,...,b,) instead of sets without any ordering.

Exercise 2.24. Generalize the results from this section to the case when we
consider well-based series instead of grid-based series. In the definition of asymp-
totic scales, one should add the requirement that the natural inclusion mapping
S —CIMI be well-based (i.e. well-based subsets of & are mapped to well-based
families).

Exercise 2.25.

a) Assume that 91 is a perfect monomial group, i.e. m” 1= m < 1, for all
meM and n > 1. Prove that a series f € C' [T is invertible, if and only if f
is regular. Hint: show that for each dominant monomial m of f &€ C'I[9M1,
there exists an extension <’ of the ordering on 91, such that n <’m, for all
nesupp f.

b) Prove that the above characterization of invertible series does not hold for
general monomial groups.
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Exercise 2.26. Let K be a field and 9t be a monomial group with K-powers.
Assume that 9t admits a finite basis B = (by,..., b,).

a) Let B'=(b{,...,b},,) be another asymptotic basis of C'IMI. Show that n'=n
and that there exists a square matrix

>\1,1 )\l,n
Py = : : ;
)\n,l >\n,n

such that (B’) =B">"= that is, (b)) =b}"" - b)"" for all n.

b) Show that P‘B,%’ P«Bry% :Idn

c) If CIMN =C1by,...,b,1 =Cb1,...,b,], then show that the matrix Py »
is diagonal, modulo a permutation of the elements of B’.

d) If M =C[by;...; 6,0 =C[b1;...;6,T, then show that the matrix Py o
is lower triangular.
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The Newton polygon method

Almost all techniques for solving asymptotic systems of equations are explic-
itly or implicitly based on the Newton polygon method. In this section we
explain this technique in the elementary case of algebraic equations over grid-
based algebras C'[91, where C is a constant field of characteristic zero
and 97 a totally ordered monomial group with Q-powers. In later chapters of
this book, the method will be generalized to linear and non-linear differential
equations.

In section 3.1, we first illustrate the Newton polygon method by some
examples. One important feature of our exposition is that we systemat-
ically work with “asymptotic algebraic equations”, which are polynomial
equations P(f) = 0 over C[9M] together with asymptotic side-conditions,
like f < v. Asymptotic algebraic equations admit natural invariants, like
the “Newton degree”, which are useful in the termination proof of the method.
Another important ingredient is the consideration of equations P’(f) = 0,
P"(f)=0, etc. in the case when P(f)=0 admits almost multiple roots.

In section 3.2, we prove a version of the implicit function theorem for
grid-based series. Our proof uses a syntactic technique which will be further
generalized in chapter 6. The implicit function theorem corresponds to the
resolution of asymptotic algebraic equations of Newton degree one. In sec-
tion 3.3, we show how to compute the solutions to an asymptotic algebraic
equation using the Newton polygon method. We also prove that C'[9] is
algebraically closed or real closed, if this is the case for C.

The end of this chapter contains a digression on “Cartesian representa-
tions”, which allow for a finer calculus on grid-based series. This calculus is
based on the observation that any grid-based series can be represented by
a multivariate Laurent series. By restricting these Laurent series to be of a
special form, it is possible to define special types of grid-based series, such as
convergent, algebraic or effective grid-based series. In section 3.5, we will show
that the Newton polygon method can again be applied to these more special
types of grid-based series.
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Cartesian representations are essential for the development of effective
asymptotics [vdH97], but they will only rarely occur later in this book (the
main exceptions being section 4.5 and some of the exercises). Therefore, sec-
tions 3.4 and 3.5 may be skipped in a first reading.

3.1 The method illustrated by examples

3.1.1 The Newton polygon and its slopes

Consider the equation

23

z
1—22

P(f)=) Pifi=2f0rz fPrfr=2 3+ [+

i>0

and a Puiseux series f = ¢ z# + --- € C[¢][2®1, where ¢ # 0 is a formal
parameter. We call y=val f the dominant exponent or valuation of f. Then

a=min val(P;z"")=min {3, p+1,2 4,3 p, 4 p1,5 1 +4,6 pu+ 3}

2

is the dominant exponent of P(f) € C[c][2®] and
Np .u(c):=P(f)a=0 (3.2)

is a non-trivial polynomial equation in ¢. We call Np .« and (3.2) the Newton
polynomial resp. Newton equation associated to z*.

Let us now replace ¢ by a non-zero value in C, so that f =cz* + ... €
CI2RT. If £ is a solution to (3.1), then we have in particular Np_,x(c) = 0.
Consequently, Np_,» must contain at least two terms, so that a occurs at least
twice among the numbers 3, u+ 1,2 p,3 p,4 1,5 p+4,6 p+ 3. It follows that

3
ne{2,1,0, —5}.

We call 2,1, 0 and —% the starting exponents for (3.1). The corresponding

2

monomials 22, z, 1 and 273/2 are called starting monomials for (3.1).

The starting exponents may be determined graphically from the Newton
polygon associated to (3.1), which is defined to be the convex hull of all
points (¢, v) with v > val P;. Here points (i, v) € N x @ really encode points
(f%, 2¥) € fN x 2® (recall the explanations below figure 2.1). The Newton
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polygon associated to (3.1) is drawn at the left hand side of figure 3.1. The
diagonal slopes

(1,2%) — (f.2) (h=2)
(f,2) — (f%41) (p=1)
(/21 — (41 (p=0)
(f41) — (f%27) (n=—3)

correspond to the starting exponents for (3.1).

Given a starting exponent p € @Q for (3.1), a non-zero solution ¢ of the
corresponding Newton equation is called a starting coefficient and ¢ z* a
starting term. Below, we listed the starting coefficients ¢ as a function of u
in the case of equation (3.2):

I Np . ¢ | multiplicity
2 c+1 —1 1
1 A+ —1 1
O|c*—2c3+c2| 1 2
ol St |- 1

Notice that the Newton polynomials can again be read off from the Newton
polygon. Indeed, when labeling each point (f?, 2#) by the coefficient of z#
in P;, the coefficients of Np .« are precisely the coefficients on the edge with
slope pu.

Given a starting term ¢ z# € C 2%, we can now consider the equation
P(f) = 0 which is obtained from (3.1), by substituting ¢ z* + f for f, and
where f satisfies the asymptotic constraint f < z*. For instance, if cz# =129,
then we obtain:

P(f) = 22 fO04(62%) fo+ (1522 +524+1) f4+
(202341024 +2) f3+ (1523 +102%+1) f2+
(623+5z4+ z )f—l—z4+23+%:0 (f<1)  (33)

1— 22 1— 22

The Newton polygon associated to (3.3) is illustrated at the right hand side of
figure 3.1. It remains to be shown that we may solve (3.3) by using the same
method in a recursive way.

3.1.2 Equations with asymptotic constraints and refinements

First of all, since the new equation (3.3) comes with the asymptotic side-con-
dition f <1, it is convenient to study polynomial equations with asymptotic
side-conditions

P(f)=0 (f=z") (3.4)
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ZQ ZQ
1 1 )
T -
1 92 1 N N

Fig. 3.1. The left-hand side shows the Newton polygon associated to the
equation (3.1). The slopes of the four edges correspond to the starting expo-
nents 2, 1, 0 and —% (from left to right). After the substitution

f=1+7F (F=1),

we obtain the equation (3.3), whose Newton polygon is shown at the right-
hand side. Each non-zero coefficient P; .« in the equation (3.1) for f induces
a “row” of (potentially) non-zero coefficients IE’;,Z(: in the equation for f, in
the direction of the arrows. The horizontal direction of the arrows corre-
sponds to the slope of the starting exponent 0. Moreover, the fact that 1 is
a starting term corresponds to the fact that the coefficient of the lowest left-
most induced point vanishes.

in a systematic way. The case of usual polynomial equations is recovered by
allowing v = —oo. In order to solve (3.4), we now only keep those starting
monomials z# for P( f)=0 which satisfy the asymptotic side condition z# <z,
ie. pu>v.

The highest degree of Np .« for a monomial z# < 2" is called the Newton
degree of (3.4). If d >0, then P is either divisible by f (and f=0 is a solution
to (3.4)), or (3.4) admits a starting monomial (and we can carry out one step
of the above resolution procedure). If d=0, then (3.4) admits no solutions.

Remark 3.1. Graphically speaking, the starting exponents for (3.4) correspond
to sufficiently steep slopes in the Newton polygon (see figure 3.2). Using
a substitution f=2z" f , the equation (3.4) may always be transformed into an
equation

P(f)=0 (f=1)

with a normalized asymptotic side-condition (the case ¥ = —oo has to be
handled with some additional care). Such transformations, called multiplica-
tive conjugations, will be useful in chapter 8, and their effect on the Newton
polygon is illustrated in figure 3.2.
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2R 2Q

~

d =2, fN d=+2 f~N

Fig. 3.2. At the left-hand side, we have illustrated the Newton polygon for
the asymptotic equation P(f) =0 (f < z'/?). The dashed line corresponds
to the slope 1/2 and the edges of the Newton polygon with slope > 1/2 have
been highlighted. Notice that the Newton degree d = 2 corresponds to the
first coordinate of the rightmost point on an edge with slope > 1/2. At the
right-hand side, we have shown the “pivoting” effect around the origin of the
substitution f=2z'/2f on the Newton polygon.

Given a starting term ¢ =7=cz" or a more general series ¢ =czt+--- €
CI2R1, we next consider the transformation

f=e+f (F=29), (3.5)

with 2”7 < z#, which transforms (3.4) into a new asymptotic polynomial equa-
tion

P(f)=0 (f=2"). (3.6)

Transformations like (3.5) are called refinements. A refinement is said to be
admissible, if the Newton degree of (3.6) does not vanish.

Now the process of computing starting terms and their corresponding
refinements is generally infinite and even transfinite. A priori, the process
therefore only generates an infinite number of necessary conditions for Puiseux
series f to satisfy (3.4). In order to really solve (3.4), we have to prove that,
after a finite number of steps of the Newton polygon method, and whatever
starting terms we chose (when we have a choice), we obtain an asymptotic
polynomial equation with a unique solution. In the next section, we will prove
an implicit function theorem which guarantees the existence of such a unique
solution for equations of Newton degree one. Such equations will be said to
be quasi-linear.

Returning to our example equation (3.1), it can be checked that each of
the refinements

f=-2+7 (f <2%;
f= el (F=ek
f = —iz324f (f <273/2)
f iz7324 f (f%z_B/Q)
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leads to a quasi-linear equation in f . The case

f=1+f (f=1)

leads to an equation of Newton degree 2 (it will be shown later that the
Newton degree of (3.6) coincides with the multiplicity of ¢ as aroot of Np ,u).
Therefore, the last case necessitates one more step of the Newton polygon
method:

F=—ivEit+i (F=z?);

F=ivitf (F==?)

For both refinements, it can be checked that the asymptotic equation in f
is quasi-linear. Hence, after a finite number of steps, we have obtained a
complete description of the set of solutions to (3.1). The first terms of these
solutions are as follows:

fr = —22—222— 42413255025+ O(27);
fir = —2+322—823+4621— 20025+ O(2%);
frrn = 1_i21/2+%2+%z3/2—2;2-1—0(35/2);
frv = 141224 22 = 3232224 0(:5/2),
Jv = —12_3/2—1—%z—iz3/2_%z5/2+0(23);

fvr = 12_3/2—1—%24—123/24—%25/2—1—0@3).

3.1.3 Almost double roots

Usually the Newton degrees rapidly decreases during refinements and we are
quickly left with only quasi-linear equations. However, in the presence of
almost multiple roots, the Newton degree may remain bigger than two for
quite a while. Consider for instance the equation

<f—1i2>2:¥ (3.7)

over C[[z;ell, with z <1 and € < 1. This equation has Newton degree 2, and
after n steps of the ordinary Newton polygon method, we obtain the equation

n N2
(F-£5) =2 U=,

which still has Newton degree 2. In order to enforce termination, an additional
trick is applied: consider the first derivative

2f——2 g

1—2
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of the equation (3.7) w.r.t. f. This derived equation is quasi-linear, so it

admits a unique solution )

T1-z

Now, instead of performing the usual refinement f =1+ f (f < 1) in the
original equation (3.7), we perform refinement

f=o+f (F=1).

2

This yields the equation

f2=e2 (f=<1).
Applying one more step of the Newton polygon method yields the admissible
refinements

= —+f (F=oy
= e+ f (f<8).

S

In both cases, we obtain a quasi-linear equation in f :

—2ef+f =0 (f=e)
28f+f2 =0 (f=<e).

In section 3.3.2, we will show that this trick applies in general, and that the
resulting method always yields a complete description of the solution set after
a finite number of steps.

Remark 3.2. The idea of using repeated differentiation in order to handle
almost multiple solutions is old [Smi75] and has been used in computer algebra
before [Chi86, Gri91]. Our contribution has been to incorporate it directly into
the Newton polygon process, as will be shown in more detail in section 3.3.2.

3.2 The implicit series theorem

In the previous section, we have stressed the particular importance of quasi-
linear equations when solving asymptotic polynomial equations. In this sec-
tion, we will prove an implicit series theorem for polynomial equations. In the
next section, we will apply this theorem to show that quasi-linear equations
admit unique solutions. The implicit series theorem admits several proofs (see
the exercises). The proof we present here uses a powerful syntactic technique,
which will be generalized in chapter 6.

Theorem 3.3. Let C be a ring and M a monomial monoid. Consider the
polynomial equation

Py ft+-+Py=0 (3.8)

with coefficients Py, ..., P, € CIMI, such that Po1 = 0 and Py € C*.
Then (3.8) admits a unique solution in C [9M<T.
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Proof. Since P, ; € C*, the series P, is invertible in C' [9<1. Modulo division
of (3.8) by P1, we may therefore assume without loss of generality that P;=1.
Setting Q; = —PF; for all i< 1, we may then rewrite (3.8) as

f=Qo+ Qa2 f?+- 4 Qnf" (3.9)

Now consider the set .7 of trees with nodes of arities in {0, 2,...,n} and such
that each node of arity i is labeled by a monomial in supp @;. To each such tree

t= v €7
th o b
we recursively associate a coefficient ¢; € C' and a monomial m; € 9 by

¢t = QioCt o Ciy
my = DMy, - My,

1

Now we observe that each of these monomials m; is infinitesimal, with

m¢ € (supp Qo) - (supp Qo Usupp Q2 U+ Usupp Q)" (3.10)

Hence the mapping ¢+ m; is strictly increasing, when .7 is given the embed-
dability ordering from section 1.4. From Kruskal’s theorem, it follows that
the family (c;my)ie & is well-based and even grid-based, because of (3.10). We
claim that f=3%",_, c;m; is the unique solution to (3.9).

First of all, f is indeed a solution to (3.9), since

F= 2 > X e oaom o
1€{0,2,...,n} vEsupp Q; t1,....t;,€T /\\ /l\
tp -t t1 - 4

i

= Z Z Z (Qiv0) (ctymy,) - (e, my,)

1€{0,2,...,n} vEsupp Q; t1,....t;, €T

- ¥ ( > Qi,nn> 1y em

1€{0,2,...,n} vEsupp Q; j=1t;€T
= Y Qifi=Qut Qaf 4 Qufn

1€{0,2,...,n}
In order to see that f is the unique solution to (3.8), consider the polynomial
R(5) = P(f + 0). Since f <1, we have R; = P; + o(1) for all 4, whence in
particular R; =14 o(1). Furthermore, P(f)=0 implies Rp=0. Now assume
that g <1 were another root of P. Then § = g — f <1 would be a root of R,
so that

§=(Ri+Ra6+-+Rp_10"H"LR(§)=0, (3.11)
since Ry + Rod+ -+ R, 16" 1=1+0(1) is invertible. O
Exercise 3.1. Generalize theorem 3.3 to the case when (3.8) is replaced by
Po+ Py f+ P f? 4 =0,
where (P;);en € CIML] is a grid-based family with Py 1 =0 and Py, € C*.
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Exercise 3.2. Give an alternative proof of theorem 3.3, using the fact that (3.9)
admits a unique power series solution in Z[[Qs Qo, ..., @n Q5] Qo, when
considered as an equation with coefficients in Z[[Qo, @2, ..., @n]]-

Exercise 3.3. Assuming that 90 is totally ordered, give yet another alternative
proof of theorem 3.3, by computing the terms of the unique solution by trans-
finite induction.

Exercise 3.4. Let C((z1, ..., zn)) denote the ring of non-commutative power
series in z1, ..., z, over C. Consider the equation
f(g(z1,..., 2n), 21,5 ey 20) =0 (3.12)

with f € C{{y, #1, ..., zn)), f1 =0 and invertible f,. Prove that (3.12) admits
a unique infinitesimal solution g € C'((z1, ..., zn)).

3.3 The Newton polygon method

3.3.1 Newton polynomials and Newton degree

Let C be a constant field of characteristic zero and 9t a totally ordered
monomial group with Q-powers. Consider the asymptotic polynomial equation

P,f" 4+ +P=0 (f=<v), (3.13)

with coefficients in C'[9] and v € 9. In order to capture ordinary polyno-
mial equations, we will also allow v = Tgy, where Tgy is a formal monomial
with Ton > 9. A starting monomial of f relative to (3.13) is a monomial m <o
in 9, such that there exist 0 <i < j <n and n€ I with PimixPj mJ =<n and
P, m* < n for all other k. To such a starting monomial m we associate the
equation

NP,m(C):P7L,n/mdcn+"'+P0,n:0, (314)

and Np , is called the Newton polynomial associated to m. A starting term
of f relative to (3.13) is a term 7 = ¢ m, where m is a starting monomial
of f relative to (3.13) and ¢ € C# a non-zero root of Np m. In that case, the
multiplicity of T is defined to be the multiplicity of c as a root of Np . Notice
that there are only a finite number of starting terms relative to (3.13).

Proposition 3.4. Let f be a non-zero solution to (3.13). Then 75 is a starting
term for (3.13). O

The Newton degree d of (3.13) is defined to be the largest degree of the
Newton polynomial associated to a monomial m < v. In particular, if there
exists no starting monomial relative to (3.13), then the Newton degree equals
the valuation of P in f. If d=1, then we say that (3.13) is quasi-linear. The
previous proposition implies that (3.13) does not admit any solution, if d=0.
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Lemma 3.5. If (3.13) is quasi-linear, then it admits a unique solution

in C'[OMT.

Proof. If Py = 0, then our statement follows from proposition 3.4, since
there are no starting monomials. Otherwise, our statement follows from the-
orem 3.3, after substitution of fn for fin (3.13), where n is chosen <-maximal
such that 0p, = 0p,n'~1! for all 4, and after division of (3.13) by 2 p,. O

3.3.2 Decrease of the Newton degree during refinements

A refinement is a change of variables together with the imposition of an
asymptotic constraint:

f=e+f (=0, (3.15)

where ¢ <v and b <v. Such a refinement transforms (3.13) into an asymptotic
polynomial equation in f:

Pofr4-+Py=0 (f=<0), (3.16)
where
1 "k .
= — ({L) = k—i

for each i. We say that the refinement (3.15) is admissible if the Newton degree
of (3.16) is strictly positive.

Lemma 3.6. Consider the refinement (3.15) with 0 =0,. Then

a) The Newton degree of (3.16) coincides with the multiplicity of ¢ as a root
of Np w. In particular, (3.15) is admissible if and only if cm is a starting
term for (3.13).

b) The Newton degree of (3.16) is bounded by the Newton degree of (3.13).

Proof. Let d be maximal such that P, m? = P, m’ for all 4, and denote
n="0(P;)m%. Then d is bounded by the Newton degree of (3.13) and

5 _ 1x(k k—i
Pi = ﬁkz_i(z’)PW
1 "k —k k—i o k—i
= ﬁkz_ji(i)wk,nmwo(l))nm (c+0(1)*'m
LG i i
= ﬁz\@g}m(c)nm +o(nm?),

for all 7. In particular, denoting the multiplicity of c as a root of Np by d,
we have Péx nm~? Moreover, for all i > d, we have P,<nm™t Hence, for

any i >d and @ < m, we have Piwi < ]565 m¢. This shows that the Newton
degree of (3.16) is at most d.
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Let us now show that the Newton degree of (3.16) is precisely d. Choose
m <m large enough, so that

for all i <d. Then deng}ﬁl:cZ. O

If one step of the Newton polygon method does not suffice to decrease
the Newton degree, then two steps do, when applying the trick from the next
lemma:

Lemma 3.7. Let d be the Newton degree of (3.13). If f admits a unique
starting monomial m and Np w a unique root ¢ of multiplicity d, then

a) The equation
PUD(g) =0 (p=v) (3.18)

is quasi-linear and its unique solution satisfies ¢ =cm+o(m).
b) The Newton degree of any refinement

f=¢+F (f=v)
relative to (3.16) with 5205 is strictly inferior to d.

Proof. Notice first that Np/ = Np , for all polynomials P and monomials m.
Consequently, (3.18) is quasi-linear and c¢ is a single root of Np-1) . This
proves (a).

As to (b), we first observe that Py_; = P41 (p) = 0. Given @ < v, it
follows that Np ., ; = 0. In particular, there do not exist o % 0, 8 # 0
with Np 5(¢) = a (¢ — B)4. In other words, Np & does not admit roots of
multiplicity d. We conclude by lemma 3.6. O

3.3.3 Resolution of asymptotic polynomial equations

Theorem 3.8. Let C be an algebraically closed field of characteristic zero
and M a totally ordered monomial group with Q-powers. Then CIIMI is
algebraically closed.

Proof. Consider the following algorithm:

Algorithm polynomial_solve
Input: An asymptotic polynomial equation (3.13).
Output: The set of solutions to (3.13).

1. Compute the starting terms ¢ my,...,c, m, of f relative to (3.13).

2. If v=1 and ¢; is a root of multiplicity d of Np n,, then let ¢ be the unique
solution to (3.18). Refine (3.15) and apply polynomial_solve to (3.16).
Return the so obtained solutions to (3.13).
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3. For each 1 <i<v, refine
f:cimi—i—f (]Z"<mi)

and apply polynomial_solve to the new equation in f . Collect and return
the so obtained solutions to (3.13), together with 0, if P is divisible by f.

The correctness of polynomial_solve is clear; its termination follows from
lemmas 3.6(b) and 3.7(b). Since C is algebraically closed, all Newton poly-
nomials considered in the algorithm split over C'. Hence, polynomial_solve
returns d solutions to (3.13) in C'[9T, when counting with multiplicities.
In particular, when taking v = Ty = 9N, we obtain n solutions, so C [IN] is
algebraically closed. g

Corollary 3.9. Let C be a real closed field and 9 a totally ordered monomial
group with Q-powers. Then C IO is real closed.

Proof. By the theorem, a polynomial equation P(n) = 0 of degree n over
CIOMI admits n solutions in C[i] [9MT, when counting with multiplicities.
Moreover, each root ¢ € C[i] 9T \ C'IMT is imaginary, because

. p—Rep
1_—Imcp e CIMI [¢]

for such ¢. Therefore all real roots of P are in C [91]. g

Corollary 3.10. The field C[2R1 of Puiseur series over an algebraically
resp. real closed field C' is algebraically resp. real closed. 0

Exercise 3.5. Consider an asymptotic algebraic equation (3.13) of Newton
degree d. Let 71, ..., 7% be the starting terms of (3.13), with multiplicities ux, ...,
wi. Prove that

fn e+ g < d

Also show that p;+ -+ pr=d if C is algebraically closed.

Exercise 3.6.

a) Show that the computation of all solutions to (3.13) can be represented
by a finite tree, whose non-root nodes are labeled by refinements. Applied
to (3.1), this would yields the following tree:

o

/ v

f==2+f f=—z+] f=1+7 f=—i274f f=iam ¥4
=22 f=<z f=1 f~<z’3/2 f<z*3/2

f=1-iz24f  f=1+4i2'24f
f<21/2 f<zl/2
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b) Show that the successors of each node may be ordered in a natural way, if C
is areal field, and if we restrict our attention to real algebraic solutions. Prove
that the natural ordering on the leaves, which is induced by this ordering,
corresponds to the usual ordering of the solutions.

Exercise 3.7.

a) Generalize the results of this chapter to asymptotic equations of infinite
degree in f, but of finite Newton degree.

b) Give an example of an asymptotic equation of infinite degree in f, with
infinitely many solutions.

Exercise 3.8. Consider an asymptotic polynomial equation
P(f)=0 (f=<v)
of Newton degree d, with P € CIOMI[F] and v € M. Consider the monomial
monoid U =M x FN with
mFPi<lemu <1V (moi=1A7>0).
a) Show that there exists a unique invertible series v € C [T such that P =u P

is a monoic polynomial in C 9N [F].
b) Show that deg P =d.

3.4 Cartesian representations

In this section, we show that grid-based series may be represented by (finite
sums of) multivariate Laurent series in which we substitute an infinitesimal
monomial for each variable. Such representations are very useful for finer
computations with grid-based series.

3.4.1 Cartesian representations

Let CIONT be a grid-based algebra. A Cartesian representation for a series
f € CIMT is a multivariate Laurent series f € C((31, ..., 31)), such that
f=¢(f) for some morphism of monomial monoids ¢: 3%--- 3% — 9. Writing
f=g3% 3% with g € C[[31,..., x|, we may also interpret f as the product
of a “series” ¢(¢§) in ¢(31),-.., ¢(§x) and the monomial m = (3§ --- 37%).

More generally, a semi-Cartesian representation for f € C[IIMI is an
expression of the form

f=¢(g)mit-+@(g) my,
where g1, ..., g1 € C[[31, -vs 3)], M1, ..., My € M and @2 31 - 35 — Mis a
morphism of monomial monoids.
Proposition 3.11.

a) Any grid-based series f € C[IM] admits a semi-Cartesian representation.
b) If M is a monomial group, which is generated by its infinitesimal elements,
then each grid-based series f € C [T admits a Cartesian representation.
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Proof.
a) Let my,...,mp €M< and ny,...,n; € M be such that

suppfg{mlv"'vmk}* {nla"'anl}'
For each v € supp f, let
ny = card {(az, ..., ax, 1) ENF x {1,...;[}:o=m{" - my*n; }.
Let

~ fmfl'“mgkﬂi 300 30k
9i= E — 31 "k

n. o1 LT
al,,..7ak€]Nk my my i

for all 1 <3<l andlet @: 3N 3N =M 30 305 m{t ... m*. Then
f=e(g)m+-+o(g) .
b) For certain my41,...,m, € M~ and §; ; € Z, we may write
m= e,

for all 1<i<1I. Let ¢: 37 32—, 391+ 357> mi?-m)” and

l
F=30 Gaeh 3.
i=1

Then f=4v(f). O

Cartesian or semi-Cartesian representations f; = ¢1(f;) and fo = @o(fo) are
said to be compatible, if f; and f, belong to the same algebra C((31,...,3%))
of Laurent series, and if ¢ = ps.

Proposition 3.12.
a) Any fi1,..., fn € CIIMI admit compatible semi-Cartesian representations.

b) If M is a monomial group, which is generated by its infinitesimal elements,
then any fi,..., fn € CIIMT admit compatible Cartesian representations.

Proof. By the previous proposition, fi,..., f;, admit semi-Cartesian represen-
tations f; = @;(f;), where f; € C((3i,1, .., 3i.k,)) and @iz 37 -+ 37, — M for
each i. Now consider

n ki
3N
A — o
i=1 j=1
n ki n ki
;e ~ ;e
H 57’)31 H Vi 31)3J
i=1 j=1 i=1 j=1

Then f; = 1/;( ;) for each i, where Fj is the image of f; under the natural
inclusion of C((3;,1, > 34,k,)) 080 C((31,15 s 31, kys -+ 3n, 15 -1 dn,k,))- Lhis
proves (a); part (b) is proved in a similar way. O
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3.4.2 Inserting new infinitesimal monomials

In proposition 3.12 we drastically increased the size of the Cartesian basis in
order to obtain compatible Cartesian representations. The following lemma
is often useful, if one wants to keep this size as low as possible.

Lemma 3.13. Let 31, ..., 3k, M1, ..., My be infinitesimal elements of a totally
ordered monomial group M with Q-powers, such that my, ..., my € 3% ... 2.
Then there exist infinitesimal 3}, ..., 3% € 3% - 332 with 31, «..) 3k, M1,y oo,

m e ()N ().

Proof. Tt suffices to prove the lemma for [ = 1; the general case follows by
induction over [. The case [ = 1 is proved by induction over k. For k = 0,
there is nothing to prove. So assume that k > 1 and let m; = 37" --- 32* with
Qaq, ..., € Z. Without loss of generality, we may assume that ay >0, modulo
a permutation of variables. Putting n =3 --- 377", we now distinguish the
following three cases:

1. If n < 1, then there exist infinitesimal 3| --- 3.1 € 3% --- 3%_,, such that
315053k —1,0E€ 31N+ (31— 1), by the induction hypothesis. Taking 37, = 3,
we now have 3, m; =n3p* € (31)N -+ (31)%, since ay > 0.

2. If n=1, then m; =3*, and we may take 31 =31, ..., 3% = 3k-

3. If n > 1, then there exists infinitesimal 3] --- 3, _1 € 3% --- 3%_1, such that
3 s Ve e DN (6N, Taking 3% =35 500 g,

we again have 3, = 3t n ™% my = (32)* € G1)N - Gr)Y. O

When doing computations on grid-based series in C'[91], one often works
with respect to a Cartesian basis 3= (31,...,3%) of infinitesimal elements in 901.
Each time one encounters a series f € C'[9M] which cannot be represented
by a series in C((31,..., 3%)), one has to replace 3 by a wider Cartesian basis
3 = (31, ..., 31/) with 31, ..., 32 € 1N --- (3)N. The corresponding mapping
C((31,.531) = C((34, .-+, 37)) is called a widening. Lemma 3.13 enables us
to keep the Cartesian basis reasonably small during the computation.

3.5 Local communities

Let C be a ring and 99t a monomial group which is generated by its infinites-
imal elements. Given a set Ay C C[[31, ..., jx]] for each k € N, we denote by
C 9N 4 the set of all grid-based series f € C 9], which admit a Cartesian
representation f € Ay 37 - 3% for some k € N. In this section, we will show
that if the Ay, satisfy appropriate conditions, then many types of computations
which can be carried out in C'[9M] can also be carried out in C [N 4.
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3.5.1 Cartesian communities

Let C be a ring. A sequence (A)ren with Ax C C[[31, ---, 3x]] is said to be
a Cartesian community over C, if the following conditions are satisfied:
CC1. ;€ A;.

CC2. Ay is a C-algebra for each k € N.

CC3. The Ay are stable under strong monomial morphisms.

In CC3, a strong monomial morphism is strong C-algebra morphism which
maps monomials to monomials. In our case, a monomial preserving strong
morphism from C[[31, ..., 3x]] into C[[31, ..., 3%/]] is always of the form

o:Cll31, 536l — Cllan o 3071);
FGrsemsn) — FGI g a ™ ),

where o ; € N and 3 o ; # 0 for all i. In particular, CA3 implies that

the Ay are stable under widenings.

Proposition 3.14. Let (Ag)ren be a Cartesian community over C and let 9t
be a monomial group. Then C'[[IMN] 4 is a C-algebra.

Proof. We clearly have C C C'IOMT 4. Let f, § € CI9MD 4. Mimicking the
proof of proposition 3.12, we observe that f and g admit compatible Cartesian
representations f, g € Ay 3% .- 32 Then f+ g, f — g and fg are Cartesian
representations of f +4, f — g resp. fﬁ. O

3.5.2 Local communities

A local community is a Cartesian community (Ag)ren, which satisfies the

following additional conditions:

LC1. For each f € Ay with [37] f =0, we have f/31, € Aj;.

LC2. Given g€ Ay and fi,..., fr € A, we have go (f1,..., fx) € A

LC3. Given f € Apy1 with [39 - 3041] f = 0 and [39 -+ 30 3441] f € C*, the
unique series ¢ € C[31,...,3%]] with fo (31,...,3%, ©) =0 belongs to Ay.

In LC1 and LC3, the notation [3" - 37| f stands for the coefficient of

370 ---32" in f. The condition LC3 should be considered as an implicit function

theorem for the local community. Notice that Ay is stable under 9/93; for

all {iel,...,k}, since

ﬁ: fO (517 "'751+3k+17"'75k) — fO
03 3k+1

(315-+,3%,0). (3.19)

Remark 3.15. In [vdH97], the conditions LC2 and LC3 were replaced by
a single, equivalent condition: given f € Ayy; as in LC3, we required that
im ¢ C Ay, for the unique strong C-algebra morphism ¢: C[31, ..., jr+1]] —
Cl31, --» 3&)], such that @i, 50 = deqsa,....5.] and ©(f) = 0. We also
explicitly requested the stability under differentiation, although (3.19) shows
that this is superfluous.
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Example 3.16. Let C be a subfield of C and let Apy=C{{31,...,31}} be the set
of convergent power series in k variables over C, for each k € N. Then the Ay,
form a local community. If 9t is a monomial group, then C{M} =C IMT 4
will also be called the set of convergent grid-based series in 9t over C.

FEzample 3.17. For each k €N, let Ay, be the set of power series in C[[31,...,3%]],
which satisfy an algebraic equation over C|31,...,3x]. Then the Ay form a local
community.

3.5.3 Faithful Cartesian representations

In this and the next section, A= (Ag)ren is a local community. A Cartesian
representation f € C((31, ..., 3x)) is said to be faithful, if for each dominant
monomial 0 of f, there exists a dominant monomial 3" of f, with 9 <.

Proposition 3.18. Let (A;)ien be a local community and f € Ax. Then
a) For each 1<i<k and a €7Z, we have [3%] f € Ar_1.

b) For each initial segment JC 3%--- 32, we have

fr=)" fame A

meJ

Proof. For each «, let fo,=[3%] f- We will prove (a) by a weak induction over «.
If =0, then [30] f=fo(1,+,3%-1,0) € Ap_1. If @ >0, then

e = LR sk = — (B )sk
3k

By the weak induction hypothesis and LC1, we thus have [3%] f € Ay.

In order to prove (b), let © ={91,...,09;} be the finite anti-chain of maximal
elements of J, so that J=in(91,...,9;). Let n be the number of variables which
effectively occur in @, i.e. the number of i € {1,...,k}, such that d;=37"---37*
with «; # 0 for some j. We prove (b) by weak induction over n. If n=0, then
either /=0 and f3=0,0rl=1,0;={1} and f3=f.

Assume now that n >0 and order the variables 31, ..., 3% in such a way that
31 effectively occurs in one of the 0;. For each a € N, let

Jo = {mejzn - srpm3zpredh
Do = {mezl 3 1mapeD}.

We observe that
Jo=in(DoIl- Da) N3N - 30 1.

In particular, if v is maximal with ®, # &, then J, =7, for all @ > v and

j:jo o..n jl/flaz_l I jVﬁZ—HNa
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so that

fr = fogosh++ foo1a, 130 "+

<f — Josh == fklzz*) iz
3k Jusi

Moreover, for each «, at most n — 1 variables effectively occur in the set
Do II -« 1T D, of dominant monomials of J,. Therefore f; € Ay, by the
induction hypothesis. 0

Proposition 3.19. Given a Cartesian representation

feAt 37

of a series f e CIIMT, its truncation
7 AN/
F= Fimeststimmesme 7. sy € AksT 3

1s a faithful Cartesian representation of the same series f 0

3.5.4 Applications of faithful Cartesian representations

Proposition 3.20. Let f € C[MT 4 be series, which is either

a) infinitesimal,
b) bounded, or
¢) regular.

Then f admits a Cartesian representation in Ag3% 3% for some k€ N, which
is also infinitesimal, bounded resp. regular.

Proof. Assume that f is infinitesimal and let f € Ay 32 --- 3% be a faithful

Cartesian representation of f, with dominant monomials 94, ..., 9; < 1. For
each i€ {1,...,1}, let

fi: fin(ah--wai) - fin(alw--:ai—l) € Akﬁlz 5%;
with 97, =0;. Then f= fi+--+ f; and

!
~ 01
f:Z fi Q. ki
i=1 !

iAs an infinitesimal Cartesian representation of f in Ay, when setting 3., =
0,/01 for each i € {1,...,1}. This proves (a).

If f is bounded, then let g € A; be an infinitesimal Cartesian represen-
tation of ¢ :f — f{l}. Now f=g+ f{l}gg---gge Ay is a bounded Cartesian

representation of f. This proves (b).
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Assume finally that f +0 is regular, with dominant monomial 9. Let g € Ay,
be a bounded Cartesian representation of § = f/ﬁ Since §o# 0, the series g
is necessarily regular. Now take a Cartesian monomial d which represents 0
(e.g. among the dominant monomials of a faithful Cartesian representation

of 9). Then f= g0 is a regular Cartesian representation of f . O

3.5.5 The Newton polygon method revisited

Theorem 3.21. Let (Ax)ren be a local community over a ring C and let 9
be a monomial monoid. Consider the polynomial equation

P f 4+ Py=0 (3.20)

with coefficients Py, ....P,eC [T 4, such that (}50)1 =0 and (151)1 e C*.
Then (3.20) admits a unique solution in C [T 4.

Proof. By proposition 3.20, there exist bounded Cartesian representations
Py, ..., P € Ay, for certain 34, ..., 3 € M. Now consider the series

P=Py+Prjrt1+-+ Pnjhi1 € Akt1.
We have [30 -39, 1] P=0and 3030 3}+1] P € C*, so there exists a f € A, with
Po(ali"'iﬁkﬂf):PO+P1f+.'.+P’I’Lfn:O7

by LC3. We conclude that f € C'[9MT 4 satisfies P, fn + 4+ Py=0. The
uniqueness of f follows from theorem 3.3. 0

Theorem 3.22. Let (Ag)ken be a local community over a (real) algebraically
closed field C and 9M a totally ordered monomial group with Q-powers. Then
CIMI 4 is a (real) algebraically closed field.

Proof. The proof is analogous to the proof of theorem 3.8. In the present case,
theorem 3.21 ensures that ¢ € C'[9] 4 in step 2 of polynomial_solve. [

Exercise 3.9. Let C be a ring, 9 a monomial monoid and (Ag)ren a local
community. We define C'[9] 4 to be the set of series f in C' [9MT, which admit
a semi-Cartesian representation

F=¢(fymite+o(f)m,
with fi,..., f, € Ay, for some k €N, ¢: 33 - 5N — M and my,...,m, € M. Which

results from this section generalize to this more general setting?

Exercise 3.10. Let C be a field. A series f in C[[31, ..., 3x]] is said to be dif-
ferentially algebraic, if the field generated by its partial derivatives 8%+ +i f/
(031)% +-- (O31) % has finite transcendence degree over C. Prove that the collection
of such series forms a local community over C.
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Exercise 3.11. Assume that C' is an effective field, i.e. all field operations can
be performed by algorithm. In what follows, we will measure the complexity of
algorithms in terms of the number of such field operations.

a) A series f € C[[31,...,35]] is said to be effective, if there is an algorithm which
takes o, ..., oy € N on input, and which outputs fa,,.. «,. Show that the
collection of effective series form a local community.

b) An effective series f € C[[31, ..., 3%]] is said to be of polynomial time com-
plexity, if there is an algorithm, which takes n € N on input and which
computes fa,, .« forall aq,...,an, with ag + -+, <k in time (”:k)o(l).
Show that the collection of such series forms a local community. What about
even better time complexities?

Exercise 3.12. Let (Ag)ren be a local community and let

feApst 3%

be a Cartesian representation of an infinitesimal, bounded or regular grid-based
series f in CIOT. Show that, modulo widenings, there exists an infinitesimal,
bounded resp. regular Cartesian representation of f, with respect to a Cartesian
basis with at most k elements.

Exercise 3.13. Let (Ax)ren be a local community over a field C.

a) If feCIMI 4 < and g € Ay, then show that go f e CIMT 4.
b) If 9 is totally ordered, then prove that C'[M 4 is a field.

Exercise 3.14. Let (Ag)ren be a local community over a field C' and let 9
be a totally ordered monomial group. Prove that f., fo, f< € CI9MT 4 for any
feCmml 4, and

CIMIa=CIMIa,-0COCIMI 4 <.

Exercise 3.15. Let (Ag)ren be a Cartesian community. Given monomial
groups 9 and N, let &/ (COIIMI, CINT) be the set of strong C-algebra
morphisms from CIMI into CINIT and &/ (CIMI, COIND)a the set of
pe(CIMN,CIND), such that p(m)e CINT 4 for all me M.

a) Given ¢ € & (CIMI, CIND )4 and ¢ € & (CONT, CLVI )4, where U is
a third monomial group, prove that o p € & (CIMI,C IV ).

b) Given ¢ € Z(CIMI, CINT )4 and ¢ € &(COINT, CIMIT) such that
1[)0 kp:Idc[[gm]], prove that w S %(C’[[‘TCI] 5 C’[[?JJI]])A

Exercise 3.16. Let C be a subfield of C and let 9t and 9t be monomial groups
with 91 C M. Prove that C{M} = CIMI N C{MN}. Does this property
generalize to other local communities?

Exercise 3.17. Let (Ag)ren be the local community from example 3.17 and
let 9 be a totally ordered monomial group. Prove that C'[9]] 4 is isomorphic
to the algebraic closure of C[9].

Exercise 3.18. Does theorem 3.22 still hold if we remove condition LC2 in the
definition of local communities?
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Exercise 3.19. Consider the resolution of P(f)=0 (f<v), with P CI[IMI 4
and v € IMN.

a) Given a starting term ¢ m of multiplicity d, let n be minimal for < such
that P;m?<n for all 5. Show that there exist Cartesian coordinates 31, ..., 3%
with m,n €3%...3Z, in which P;m?/n admits a bounded Cartesian represen-
tations wu; for all 0 <i<n=degP.

b) Consider a bounded Cartesian representation ¢ € Ay with ¢ ~ ¢ and let
=3, (f) U "~ Given o €327 327 et

Qo= e F.
i=0
Show that Q=73 Qtv is a series in CIFY™, . 51 ™) a

c) For each p € {0, ..., d}, let J, be initial segment generated by the w such
that val Qw < p, and §, its complement. We say that g, is the part of
multiplicity > u of ¢ as a zero of ug+ -+ +u, F". Show that ¢z € A can
be determined effectively for all .

d) In polynomial_solve, show that refinements of the type

f=om+f (f<m),

where ¢ € Cy, is the unique solution to 8¢~ (ug + -+ + u,, F™)/0F¢~1, may
be replaced by refinements

f=¢z,m+f (f<m).
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Transseries

Let C be a totally ordered exp-log field. This means that C'is a totally ordered
field with an exponential function and a partial logarithmic function which
satisfies similar properties as those defined on the real numbers. Axioms for
exp-log fields will be given in section 4.1. For the moment, the reader may
assume that C' =R.

The aim of this chapter is the construction of the totally ordered exp-log
field C'[[«10 of grid-based transseries in z over C'. This means that C'[[«10 is
a field of grid-based series with an additional exponential structure. Further-
more, C'[TzIl contains = as an infinitely large monomial. Actually, the field
C Izl carries much more structure: in the next chapter, we will show how
to differentiate, integrate, compose and invert transseries. From corollary 3.9,
it also follows that C' [[«10 is real closed. In chapter 9, this theorem will be
generalized to algebraic differential equations.

As to the construction of C'[[zl, let us first consider the field C'[x1 =
C[z°T. Given an infinitesimal series f, we may naturally define

exp f = 1+ f+5f2+-
log(1+f) = f—5+

Using the exp-log structure of C', these definitions may be extended to
Clzlgx = C @ Clall < for exp and to C~ + C Lzl < for log. However,
nor the logarithm of x, nor the exponential of any infinitely large series f are
defined. Consequently, we have to add new monomials to ¢ in order to obtain
a field of grid-based series which is stable under exponentiation and logarithm.

Now it is easy to construct a field of grid-based series I which is stable
under logarithm (in the sense that log f is defined for all strictly positive f).
Indeed, taking .= C[...;loglog x;log z; 1, we set

log z®0---logn™x =aglogx +--- + @p logn i1 @
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for monomials log % ---log"™ = (here log,, =log o o log stands for the n-th
iterated logarithm). For general f €L~ we define

log f=logds+logcy+log(l1+4dy),

where log(14d5) =65 — %5% +--- as above.

In order to construct a field T = C[IIMI of grid-based series with an
exponentiation, we first have to decide what monomial group 91 to take. The
idea is to always take exponentials of purely infinite series for the monomials
©>+2 is a monomial. On the other hand, e®’*o+z " j
w4 ysing

in 9. For instance, e
not a monomial and we may expand it in terms of e

S

2 -1 2 2 1 2
er +z+x :er +z+x—1ez +r+§x—26r +z+

More generally, as soon as each purely infinite series in T admits an exponen-
tial, then T is closed under exponentiation: for all f €T we take

exp f=exp f- exp fxexp fx,

with exp fx=1+ f<+ % (f<)?+--- as above.

In section 4.2, we first study abstract fields of transseries. These are totally
ordered fields of grid-based series, with logarithmic functions that satisfy some
natural compatibility conditions with the serial structures. Most of these
conditions were briefly motivated above. In section 4.3 we construct the field
C'[Mz1l of transseries in . We start with the construction of the field L
of logarithmic transseries. Next, we close this field under exponentiation by
repeatedly inserting exponentials of purely infinite series as new monomials.
In section 4.4, we prove the incomplete transbasis theorem, which provides a
convenient way to represent and compute with grid-based transseries.

4.1 Totally ordered exp-log fields

A partial exponential ring is a ring R with a partial exponential function
exp: R— R, such that

El. exp0=1.

E2. expy=exp(y — z)expuz, for all z,y € dom exp.

The second condition stipulates in particular that y —x € domexp, whenever
x,y € domexp. If domexp= R, then we say that R is an ezponential ring. If
exp is an exponential function, then we will also write e for exp x and exp,,
for the n-th iterate of exp (i.e. expp=1d and exp,,+1 =expoexp, for all be N).

The field R of real numbers is a classical example of an exponential field.
Moreover, the real numbers carry an ordering and it is natural to search for
axioms which model the compatibility of the exponential function with this
ordering. Unfortunately, an explicit set of axioms which imply all relations
satisfied by the exponential function on IR has not been found yet. Neverthe-
less, Dahn and Wolter have proposed a good candidate set of axioms [DW84].
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We will now propose a similar system of axioms in the partial context. For
each n € N, we denote the Taylor expansion of exp x at order n by

1 n—1
We also denote
1 if n=0
Nn: ’ .
{ (n—1)!, otherwise

so that N, E,, € Z[x]. An ordered partial exponential ring is a partially ordered
ring R, with a partial exponential function exp: R— R, which satisfies E1, E2
and

E3. Na,expx > Nay, Eop(x), for all x € domexp and n € N.

If domexp = R, then we say that R is an ordered exponential ring.

Proposition 4.1. Let R be an ordered ring in which 0= 2%>0. Given
a partial exponential function on R which satisfies E1, E1 and E1, we have

Nayexpx = Nay, Eop(z) = =0,

for all n € N and z € dom exp.

Proof. Assume that expx = Fs,(z). We cannot have x < —2n, since otherwise

Noy Eop( Z 2k+1 (2k+1+4z) 22k <0.

If —2n <z, then

0 > Naopgo(E2ni2(r) —expx)
= Nonia(Eani2(x) — Eap(z)) =22"(2n+1+1x),

whence z =0. ]
Proposition 4.2. R is a totally ordered exponential field.

Proof. Let ne€ N. For x > —2n, we have

22k
>
exp x — Eap(x Z ) <1+2I€—|—1) 0.
For x < —2n, we have shown above that Fs,(z) <0<expz. O

Proposition 4.3. Let R be an ordered partial exponential ring. Then

a) exp is injective.
b) s <y<expx<expy, for all z,y € domexp.
¢) If domexp is a Q-module, then

VneN,dx, € R,Vr €domexp, x>xz¢9=expx>a"™.
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Proof. Assume that exp x =exp y, for some z,y € R. Then
exp(y —z) =expyexp (—x)=exprexp(—z)=1
and similarly exp(z — y) = 1. Hence,

1l = exply—2) 2 1+y—=
1 = exp(z—y) =2 1+z—y,

so that both y <z and z < y. This proves that x =y, whence exp is injective.
Assume now that x < y for some z, y € domexp. Then

exp(y—xz)=21l+y—ax>1
Consequently,
expy=exp(y —T)expr > expx

and exp y > exp x, by the injectivity of exp. Inversely, assume that exp z <
exp y for some z, y € domexp. Then

142z —y<exp(x —y) =exprexp(—y) <expyexp(—y) =1,

whence x < y. We again conclude that x < y, since exp y # exp x. This
proves (b).
If n=0, then (c) follows from (b). If n> 0, then exp(z/2n) > (z/2n)+1

implies
expa>(g5+1)7 > (55) >
for all z > (2n)2 O

Instead of axiomatizing partial exponential functions on a ring, it is also
possible to axiomatize partial logarithmic functions. The natural counterparts
of E1, E2 and E3 are

L1. logl1=0.
L2. logy= log% + log z, for all z, y € dom log.
L3. Na, x> Nay, Eap(logx), for all x € domlog and n € N.

Notice that the second condition assumes the existence of a partial inversion
T %, whose domain contains domlog. The n-th iterate of log will be denoted
by log,.

In a similar fashion, we define a partial logarithmic ring to be a ring R with
a partial logarithmic function which satisfies L1 and L2. An ordered partial
logarithmic ring is an ordered ring R with a partial logarithmic function which
satisfies L1, L2 and L3. In the case when domlog= R~ for such a ring, then
we say that R is an ordered logarithmic ring.

Proposition 4.4.

a) Let R be a partial exponential ring, such that exp is injective. Then the
partial inverse log of exp satisfies L1 and L2.

b) If R is an ordered partial exponential ring, then exp is injective, and its
partial inverse log satisfies L1, L2 and L3.
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¢) Let R be a partial logarithmic ring, such that log is injective. Then the
partial inverse exp of log satisfies E1 and E2.

d) If R is an ordered partial logarithmic ring, then log is injective, and its
partial inverse exp satisfies E1, E2 and E3.

Proof. Let R be a partial exponential ring, such that exp is injective. Then
we clearly have L1. Now assume that z = exp z’ € dom log = im exp. Then
(exp z') - (exp(—z’)) = 1, whence exp(—2') = 1/z € dom log. Furthermore,
if y =exp y’ € dom log = im exp, then exp y’ = exp(y’ — z’) exp 2/,
so that exp(y’ — 2’) = y/x. Consequently, y/z € im exp = dom log and
log y —logx =y’ — 2’ =log(y/z). This proves L2 and (a). As to (b), if R is
an ordered partial exp-log ring, then exp is injective by proposition 4.3(a).
The property L3 directly follows from E3.

Assume now that R is a partial logarithmic ring, such that log is injective.
We clearly have E1. Given z=logz’ and y=log 3’ in dom exp=imlog, we have
log y =log(y/x) + log x and in particular log(y/x) € dom exp. It follows that
expy’/expz’=y/x=exp(logy —logx)=exp(y’ —’). This proves E2 and (¢).

Assume finally that R is an ordered partial logarithmic ring. Let x, y €
dom log be such that logx =1log y. Then

z/y>1+log(x/y)=1+logz —logy=1.

Hence z > y, since y € domlog =y > 0. Similarly, y >« and x =y, which proves
that log is injective. The property E3 directly follows from L3. |

If (a) and (c) (resp. (b) and (d)) are satisfied in the above proposition,
then we say that R is a partial exp-log ring (resp. an ordered partial exp-log
ring). An ordered exp-log ring is an ordered partial exp-log ring R, such that
domexp =R and imexp= R~. An ordered (partial) exponential, logarithmic
resp. exp-log ring, which is also an ordered field is called an ordered (partial)
exponential, logarithmic resp. exp-log field. In a partial exp-log ring, we extend
the notations exp,, and log,, to the case when n € Z, by setting exp,, =log_,,
and log, =exp_,, if n<0.

Assume now that R is a ring with C-powers, for some subring C C R.
An exponential resp. logarithmic function is said to be compatible with the
C-powers structure on R if
E4. exp () f) = (exp f)?, for all f € domexp and A € C; resp.

L4. log f*= \log f, for all f€domexp and A€ C.
Here we understand that imexp C R* in E4 and domlog C R* in L4. Notice
that E4 and L4 are equivalent, if exp and log are partial inverses. Notice

also that any totally ordered exp-log field C' naturally has C-powers: set
M =exp(plogA) for all A€ C~ and peC.

Exercise 4.1. Let R be an exponential ring. Show that for all x € R, we have
expr=0=1=0.

Exercise 4.2. Show that the only exponential function on the totally ordered
field of real numbers R is the usual exponential function.



94 4 Transseries

Exercise 4.3. Let R be a totally ordered exponential field. Show that the
exponential function on R is continuous. That is, for all x and € >0 in R, there
exists a 6 >0, such that [expz’ —expz|<e, for all 2’ € R with |z’ —z| < §. Show
also that the exponential function is equal to its own derivative.

Exercise 4.4. Let R be an ordered partial exponential ring. Given x € dom exp
and n € N, prove that

a) expx > Eapi1(z), if £>0.
b) expz < Eapy1(x), if <0.

4.2 Fields of grid-based transseries

Let C be a totally ordered exp-log field, ¥ a totally ordered monomial group
with C-powers. Assume that we have a partial logarithmic function on the
totally ordered field T = C'[¥1 with C-powers. We say that T is a field of
grid-based transseries (or a field of transseries) if

T1. domlog=T".
T2. logme Ty, for al me <. -
T3. log(1+¢)=loe, for all e € T, where [=3 7" | (_+zk e C[7]].

Intuitively speaking, the above conditions express a strong compatibility
between the logarithmic and the serial structure of T.

Example 4.5. Assume that T is a field of transseries, such that z € €., and

. . . 3 e 2 e—1 .,
such that T is stable under exponentiation. Then z% e® tz°+z°+z is a

. . . 2 —rx— 1. . . —
monomial in ¥. The series e* /(!=#7") is not a monomial, since 2/(1 —z~1).
We have

x2 w2+gj 1
ex = e ex
p(l—z_l) p 11—z 1
2 224 224
= e-e% +r_|_e.e —|—2672+
T 2 x

On the other hand, /(=271 ig g monomial, since
e’/(1—z Y)=e+e¥/z+ - €T,
Proposition 4.6. Let T be a field of transseries. Then

a) Given f €T~ the canonical decomposition of log f is given by

log f = (log )~ + (log f)= + (log f)<
I I I

logos logcy log (14 0y)
b) Given f,g€T>, we have
f<g & (log f)-<(logg)-;
f=g < (log f)s=(log g);
f=<g & (log f)- <(log g):;
f~g & (log f);-=(log g)..
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c) Given f,geT> ", we have
f=Xg & log f<logy;
f=<g < log f<logg;
[Xg & log fxlogy;
fRyg & log f~logyg
d) For all f € T, we have log f € T, log f < f and log f < f.

Proof.
a) Follows from L1, L2, T2 and T3.
b) We have
f<g & %<7y,
< 050y
& (log f).- =logd s <logd, = (log g).
The other relations are proved in a similar way.
c¢) We have
fXg & 3pel, fxg”
& Juel,(log f)- < (ulog g)-=pu(log g)-
< log fxlogyg.

The other relations are proved similarly.

d) Let f € T>>~. Then (log f). > 0, by (b), whence g = log f € T>"".
Furthermore,

log(g/3)+1<(g/3)=3(logg—log3) <g.
Consequently, 2log g < g, since log g € T->~ = log g > 3log 3. It follows that
C+logg<2logg<yg.
Since exp is total on C, we infer that C~ log f < f. Therefore, log f < f.
Finally, logs f <log f and (c¢) imply that log f << f by (c¢). O

The following lemma, which is somehow the inverse of proposition 4.6(a) and
(d), will be useful for the construction of fields of transseries.

Lemma 4.7. Let log be a partial function on T, which satisfies T1, T2 and

a) log (m*n)=Alogm+logn, for all m,n€¥ and A€ C.
b) log f=logds+logcy+1ody, forall feT>.
¢) 0<logm—=<m, for all me¥,.

Then log is a logarithmic function, which is compatible with the ordering and
C-powers on T. Hence, T is a field of grid-based transseries.
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Proof. We clearly have L1. Given f, g€ T~, we also have

log(f/g) = IOgUf/g—l—lOgcf/g—i—lodf/g

log (21/0,) +1og (¢s/eg) +1Lo (Y i)

= logdoy—logdy+logcy—logecy+1lods—1lod,
= log f—logg.

Here

5f—59)=zo5f—zo5g

(315,

by proposition 2.18 and the fact that l(?;zzj) =1(z1) — l(2z2) in C[[z1, 22]].
This proves L2.
Let us now show that

f> Es,(log f) :1+1ogf+...+m(log £zt

for all f € T>\{1} and n € N. Assume first that f<1. If f~ 1, then we have

22n Z2n+l 5?”
J = Eanllog f) = ( CIIRCLES] +) elods~ Gy >0

Otherwise, cy > Foy(logcy) and
f—Ean(log f)~cy—logey—1>0.
If f<1, then log f =—log(1/f) € T<". Consequently,

f = Ean(log f) ~ — j (log frEr-t>o.

1
(2n—1)
If f > 1, let us show that (log f)* < f, for all k € N, which clearly implies
that f > Fsp(log f). We first observe that log ¢ € T~ for all p € T-:",
since log 0, € TY € T>~ and log ¢ = log 0, + O(1). Furthermore, log ¢ ~
log 9, < 0y, < ¢, for all ¢ € T>>~. Taking ¢ = Doy = Dloga,, We get
10g Dlog f < Dloga, = k log Diog f < log dp = 0, f < 05 = (log f)¥ < f. This
proves L3.

Let us finally show that log f*= Alog f for any f €T> and A€ C. Denoting
= (1+2)* € C[[z]], we have

log f* log(ci‘c D}W)\O(Sf)
Aogds+ Aloges+1lo(myody—1)
= Alogos+Alogcy+Alody

= MAlog f.

Indeed, proposition 2.18 implies that [ o (my o 6y — 1) = A [ o dy, since
I(ma(z) = 1) =Al(z) is a formal identity in C[[z]]. O
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Exercise 4.5. Let T be a field of transseries.

a) Show that exp f =eo f for all fe T, where e=3>".7 | %zk e C[7]]
b) For each f € dom exp, show that

expf = (exp f.) - (exp fx) - (exp f<)
I I I
Dexp f Cexp f (1 + 6GXP f)

¢) For each f € dom exp N T>~, show that exp f € T>~, f < exp f and
f<Kexp f.

Exercise 4.6. Let e(z) = Y 1 | % 20U(z) = Y00, % 2¥ and ) =

Z;OZO % 2 be as above. Prove the following formal identities:

a) e(z1 + 2z2) =e(z1) e(22);
b) 1(Zm2) =1(z1) — U(z)
) e(l(z))=1+2;

d) U(ma(z) = 1)=Xl(2).

Hint: prove that the left and right hands sides satisfy the same (partial) differ-
ential equations and the same initial conditions.

Exercise 4.7. Let T = C[I%1 be a field of transseries and consider a flat
subset T of T (e. VM €T, Vne T mKn=me T*).

a) Show that there exists an initial segment J of T, such that
T ={ef: feT,,0,€7}.
b) Show that T = C[%" x T¢I, where
Th={ef: f€T, ,supp fNI=0}.

We call T the steep complement of T°.

4.3 The field of grid-based transseries in x

Let C be a fixed totally ordered exp-log field, such as R, and x a formal
infinitely large variable. In this section, we will construct the field C [Tz1l of
grid-based transseries in x over C. We proceed as follows:

e We first construct the field
L=C[LLI =CL...;loglog x;log z; 1l

of logarithmic transseries in x.

e Given a field of transseries T = C'[[T], we next show how to construct
its exponential extension Texp = C [Zexpll: this is the smallest field of
transseries with Texp 2 T and such that exp f is defined in Teyp, for
all feT.
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e We finally consider the sequence

lL g ILexp g 1Lexpﬁzxp C..

of successive exponential extensions of IL. Their union
Cllzll =ELULexpU-=CLEU LexpU---T

is the desired field of grid-based transseries in = over C.

4.3.1 Logarithmic transseries in

Consider the field L = C L1, where
L= % log§ = % log€z x €.
Given a monomial m=x°...logp* x € £, we define logm by
log (2 ---logp* ) = aglog x + -+ + ay logg +1 .
We extend this definition to I, by setting

log f=logdy+logcy+1lody

for each feIL>. Here we recall that =377 | (71]):“ 2F e O[[2]).

Proposition 4.8. 1L is a field of transseries.

Proof. Clearly, log (m*n) = Xlogm +logn, for all m,n€ £ and A € C. Now let
me L, . Then m=log z---logy*z, for certain a;, ..., ax € C with o; > 0. Hence,
0<logm<m, since logm~ a;log; 1« and 0 < a;log; 1z <logf 'z logp*z=m.
Now the proposition follows from lemma 4.7. ]

4.3.2 Exponential extensions

Let T=C[I%]I be a field of transseries and let
Texp=exp %y

be the monomial group of formal exponentials exp f with f € ., which is
isomorphic to the totally ordered C-module T : we define (exp f)* (exp g) =
exp(Af+g)andexp fi=expgs f2gforall f,geT, and AeC.

Now the mapping v: T — Texp, m — exp(log m) is an injective morphism
of monomial groups, since m < n < logm < log n < v(m) < v(n) for all m,
n € T. Therefore, we may identify T with its image in Texp and T with
the image of the strongly linear extension ¥ of v in Texp = CL%expll. We
extend the logarithm on T to Teyp, by setting logm = f € T’y for monomials
m=exp f € Texp, and log f=logds+1logcs+1lody for general f € (Texp)”-

Proposition 4.9. Ry is a field of transseries.
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Proof. By construction, log (m*n)=Alogm+logn, for all m,n € Ty, and A€ C.
Given m € Texp -, we have logm € T CT>. Consequently, logm and loglogm
are both in T, and proposition 4.6(d) implies that loglog m < log m. Hence,
(loglogm). < (logm). and log f <exp((loglogm), ) <exp((log f).) = f. We
conclude by lemma 4.7. O

4.3.3 Increasing unions

Proposition 4.10. Let I be a totally ordered set and let (T;);er be a family of
fields of transseries of the form T;=C L%, such that T; C%; and T; C'Ty,
whenever i < j. Then T=CLU,c; Tl =U,c; Ti is a field of transseries.

Proof. Clearly |J,.; TiCCILU,;; T:d. Inversely, assume that

iel
fectr| 1.
iel
Since f is grid-based, there exist my,...,m,,n € Uiel T, such that

supp f C{my,...,m, }*n.

For sufficiently large i € I, we have my,...,m,,n€%;, since [ is totally ordered.
Hence, supp f CT; and f € T;. This proves that CL J,.; T:1 € U,; T
Similarly, one verifies that T is a field of transseries, using the fact that given
fi,., fn €T, we actually have f1,..., f, € T; for some i € I. O

4.3.4 General transseries in x

Let (Lp)nen be the sequence defined by Lo=1IL and L, 1 =1L, exp for all n.
By propositions 4.8, 4.9 and 4.10,

Cllal =LoULi ULy U---

is a field of transseries. We call it the field of grid-based transseries in x over C.
The exponential height of a transseries in C [zl is the smallest index n,
such that f €IL,. A transseries of exponential height 0 is called a logarithmic
transseries.

Intuitively speaking, we have constructed C'[[zIl by closing C' [« first
under logarithm and next under exponentiation. It is also possible to construct
C[Mz1 the other way around: let IE,, be the smallest subfield of C[I«1I,
which contains log, x and which is stable under grid-based summation and
exponentiation. We have ClzIl = Eg U [E; U Es U -+« of CMzIl. The
logarithmic depth of a transseries in C[[xIl is the smallest number n € N,
such that f e E,.

We will write C/ [Lz10 for the field of transseries of exponential height < p
and logarithmic depth < ¢. We will also write Cp, 21l =L, =] Cylz10
and C/MlzIl =E,= Cyx10.

geN
peEN
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Example 4.11. The divergent transseries
1+logze ™ +2!log?ze 2%+ 3llog3ze 3% + ... (4.1)

is an example of a transseries of exponential height and logarithmic depth 1.

The transseries e*/(1=%"") and ¢/ =27 from example 4.5 have exponential
height 1 resp. 2 and logarithmic depth 0.

For the purpose of differential calculus, it is convenient to introduce slight
variations of the notions of exponential height and logarithmic depth. The
level of a transseries is the smallest number n € Z for which f €E_,,. The field
E=1IE_; of transseries of level > 1 is called the field of exponential transseries.
The depth of a transseries is the smallest number n € N with f ek, _;.

Ezample 4.12. The transseries (4.1) has level —1 and depth 2. Both transseries

/=271 and /=" have level 0 and depth 1. The transseries
expexp (z 4+ e7°") has level 2 and depth 0.

4.3.5 Upward and downward shifting

In this section, we define the right compositions of transseries in x with exp x
and logz. Given f e C [z, we will also denote foexpz and fologx by f1
resp. f| and call them the upward and downward shifts of f. The mappings
1,1:CMzll — C MMzl are strong difference operators and will be constructed
by induction over the exponential height.
For monomials m=z*log® z---log," x € £, we define

(z*log* .- logn" )T = exp®zx®..-logn™m;

(xz*0log* x---logp™x)| = log*xlogy' x---logyn, .
Extending these definitions by strong linearity, we obtain mappings

1:COMzll — C'MaIN
1:CMzl — COMa0.
Now assume that we have further extended these mappings into mappings
1:CPMzIl — CPTzI
1:CPMzIl — CPI«I0.
Then we define

(exp /)T = exp(f1);
(exp )l = exp(fl),

for monomials m = exp f € exp CP[[zIl.. Extending these definitions by
strong linearity, we obtain mappings

1:CPHM2l — CPH2[M2I0
1:CPTMzl — CPTl@zI.
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By induction over p, we have thus defined T and | on C'[[zIl. Notice that T
and | are mutually inverse, since f]| = f for all f € CP[[[zIl] and p € N, by
induction over p.

There is another way of interpreting right compositions of transseries in x
with exp x and log x as formal substitutions = +— exp = and z +— log z,
considered as mappings from C [Tzl into C [Lexp 1l resp. C [[logx1l. Postu-
lating that these mappings coincide with the upward and downward shiftings
amounts to natural isomorphisms between C [zl and C[Texp zIl resp.

C'Mlog 210

Exercise 4.8. Let T be any non-trivial field of grid-based transseries. Prove
that there exists a strongly linear ring homomorphism ¢: L — T.

Exercise 4.9. For all p, g € N, prove that

ClMlogxM C C’g“ [Mz1;

CIT M2l CCY, , Mlog 210

E,=C Mog,«1;

C# [MzI =C Mog§ « X exp CZ M« - 1.

a
b

C

d

NI NN N

Exercise 4.10. Given f € CMzI1~>'~, we call con f = log o f o exp the
contraction and dil f =exp o f olog the dilatation of f. Determine dil (z + 1),
dildil (z + 1) and dildildil (z 4+ 1). Prove that for any f € C[IzIl~'", we have
cong f ~exp;x for some | € Z and all sufficiently large kK € N. Here cony denotes
the k-th iterate of con.

Exercise 4.11. A field of well-based transseries is a field of well-based series of
the form T = C[[%]], which satisfies T1, T2, T3 and

T4. Let (m;);en be a sequence of monomials in ¥, such that m;; € supp logm;,
for each ¢ € N. Then there exists an index ig, such that for all i > iy and all
n € supp log m;, we have n=m;; and (logm;)m,,, ==+1.

Show that the results from sections 4.3.1, 4.3.2 and 4.3.3 generalize to the well-
based context.

Exercise 4.12. Define a transfinite sequence (C[[[z]]])a = (C[[[Ta]]])« of fields
of well-based transseries as follows: we take To = £, To11 = (Ta)exp for each

ordinal o and Ty =J,, ., Ta, for each limit ordinal A.

a) Prove that C*[[[z]]] &€ C#[[[x]]] for all ordinals o< 8. Hint: one may consider
the transfinite sequence of transseries (fo)a>o0 defined by

fa — 1'2 _ § efg olog.
0<fB<a

b) If we restrict the supports of well-based transseries to be countable, then
prove that the transfinite sequence (C'*[[[z]]]) stabilizes. Hint: find a suit-
able representation of transseries by labeled trees.
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Exercise 4.13.

a) Prove that T1, T2 and T3 do not imply T4.

b) A transseries f € T> ™ is said to be log-confluent, if there exists an index i,
such that for all ¢ > iy, we have 044, ,, f =10g 0104, s Prove that T4 implies
the log-confluence of all transseries in T>>".

¢) Prove that T1, T2, T3 and the log-confluence of all transseries in T>>~ do
not imply T4.

Exercise 4.14.

a) Prove that there exists a field of well-based transseries T in the sense of
exercise 4.11, which contains the transseries

2
; 2 logd @+ -
r emz QIOEz z+e

b) Prove that the functional equation
g(l‘) — ezQ+g(log2 z)+logx

admits a solution in T.

4.4 The incomplete transbasis theorem

A transbasis is a finite basis B = (by, ..., b,,) of an asymptotic scale, such that

TB1. by,...,b, 1 and by < -+ < b,,.

TB2. b; =exp;x, for some [ € Z.

TB3. 10g b,eC [[bl; ey b, 11 — for all 1 <i< n.

The integer [ in TB2 is called the level of the transbasis B. We say that 9B is a
transbasis for f €T (or that f can be expanded w.r.t. B),if fe€C[Lby;...;b,T.

Remark 4.13. Although the axiom TB3 is well-suited to the purpose of this
book, there are several variants which are more efficient from a computational
point of view: see exercise 4.15.

Ezxample 4.14. The tuple (z, eV?, erﬂ) is a transbasis for e@+ 1" and so is
(z,eTDV®) Neither (z,e”, e ") nor (z,e”, e, e T¢%) is a transbasis.

Theorem 4.15. Let B be a transbasis and f € C[lxz1l a transseries. Then

f can be expanded w.r.t. a super-transbasis B of B. Moreover, B may be
chosen so as to fulfill the following requirements:

a) The level of B is the minimum of the levels of B and f.
b) If B and f belong to a flat subring of CzI of the form CMMzIl’ =
CIZ’1, then so does B.

Proof. Let [ be the level of B =(by,...,b,). Without loss of generality, we may
assume that f € COexp;z10. Indeed, there exists an I’ with f € C° [Texpy z1;
if I’ < I, then we insert exp; z, ..., exp;_1 = into B. We will now prove the
theorem by induction over the minimal p, such that f € Cg Mexp; 1. If p=0,
then we clearly have nothing to prove. So assume that p > 0.
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Let us consider the case when f = e9, with ¢ € C[Iby; ...; b,11. We
distinguish three cases:
g is bounded. We may take B =B,
g #*logb; for each 4. B = (b1, ..., by, e‘g*l, b;+1,..., b,) is again a transbasis
for some i € {1,...,n} and

f=e9" eI=edx —etlo-l o= (1+g~ +%(g*)2+...)

can be expanded w.r.t. 8. Moreover, B satisfies the extra requirements (a)
and (b). Indeed, B has level [ and

e e CMzll’ = el9-le CM2T°,
since el9-| = eI,

g <logb; for some . We rewrite g= \;logb; + g, with g < g. If g is again
equivalent to some log b;, then 7 <4, and we may rewrite § =\;logb; + ¢,
with § < §. Repeating this procedure, we end up with an expression of
the form

g= )\il 10g bil —+ 4 )‘% 10g blk +h,

with 41 > --- > i, and where h is either bounded or infinitely large with

hlogb;, for all j. By what precedes, e and f=e9= b

i A
s i --bik’“eh may
be expanded w.r.t. a super-transbasis B of B which satisfies the additional

requirements (a) and (b).
This proves the theorem in the case when f=e9 with g€ C'[by;...;0,1.
Assume now that f is a general grid-based transseries in Cg [Mexp; z10.
Then supp f is contained in a set of the form e90T 91N+ +9:N where g, ..., gr €
C’g,l Mexp; 21 s and e, ..., e% < 1. Moreover, if f e CMzT" then we may
choose go, g1, ..., gr € C [Lz1°. Indeed, setting

§i= Z gi,mmeCl]Ix]]]b

) meT, ,emec TP
for all 4, we have

90+ 91N+ +giN b oot g1 N+ 4G N

Using the induction hypothesis, and modulo an extension of B, we may there-
fore assume without loss of generality that go,..., gx € C'[[by;...;b,1. By what
precedes, it follows that there exists a super-transbasis B of B for edo ..., eIk
which satisfies the requirements (a) and (b). By strong linearity, we conclude
that B is the required transbasis for f- 0

Exercise 4.15. Consider the following alternatives for TB3:

TB3-a. logb, € C[by;...;6,T ., for all 1 <i<m;
TB3-b. logb; € C'[by;...;b;-1, for all 1 <i<n, where i* is such that 01046, X bs+;
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TB3-c. logb; € CIby;...;0,_11 for all 1 <i< n;
TB3-d. logb; € C[by;...;b,, 1 for all 1 <i< n.
We respectively say that 9B is a heavy, normal, light or sloppy transbasis.
a) Show that TB3-a = TB3-b = TB3-c = TB3-d.
b) Show that theorem 4.15 holds for any of the above types of transbases.

Exercise 4.16. Find heavy, normal, light and sloppy normal transbases with
respect to which the following “exp-log transseries” can be expanded:

e zte ¢

a) e° 5
b) e ;

IDDD
c) el

IUUU 1000
d) et —l—el* i

)

e) loglog (ze*®" + 1) —expexp (loglog x + )

More precisely, an exp-log transseries (resp. function) is a transseries (resp.
function) built up from x and constants in C, using the field operations 4, —,
X, /, exponentiation and logarithm.

Exercise 4.17. Let B = (b4, ..., b,) be a transbasis. Prove that there exists a
unique transbasis B = (b1, ..., b,), such that

i B9=3C

i, g5, =1 forall 1<i<n.

iii. (logb;)s, , =0 forall I<i<j<n.

Exercise 4.18. Let A be a local community.

a) If f and B belong to C'[[zIl 4 in theorem 4.15, then show that B may be
chosen to belong to C' [zl 4 as well.

b) Show that (a) remains valid if LC3 is replaced by the weaker axiom that
for all f € Axt1 we have f(z1,..., 2,,0) € Aj.

¢) Given a transbasis B C C'[[x1l 4, show that C[[by;...; 6,1 4 CCMzIl 4 and
that the coefficients of recursive expansions of f & C[[by;...;b,1 4 are again
in Cby;...;6,0 4.

d) Given f € CMxIl 4, show that f., fx € C Mz 4.

4.5 Convergent transseries

Assume now that C = R and let us define the exp-log subfield C{{z}
of C'lzIl convergent transseries in x. The field Cp{{z ]} of convergent
transseries of exponentiality < p is defined by induction over p by taking
Coff= =C{L} and Cpr1{{z ]} = C{exp Cpf{z B} Here we notice that
log £ C Cof{z B+, so that Coff{z}} C C1{f{z P C ---, by induction. Now
we define C'{{z J} =, . Cif{z J}- By exercises 3.13 and 3.14, the set C {{z J}
is an exp-log subfield of C'[Iz1l.
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Let ¢ be the ring of germs at infinity of real analytic functions at infinity.
We claim that there exists a natural embedding C'{{z J} — ¢, which preserves
the ordered exp-log field structure. Our claim relies on the following lemma:

Lemma 4.16. Let 9 be a totally ordered monomial group and @: M — 4>
an injection, which preserves multiplication and <. Then for each f € C{M},

o(f)= Z Jm p(m)

mesupp f

is a well-defined function in 4 and the mapping ¢:C{M} — G is an injective
morphism of totally ordered fields.

Proof. Let f=1(f) be a regular convergent Cartesian representation for f,
with f € C((21,...,21)). Let U =(0,¢)* be such that f is real analytic on U.
Consider the mapping

§xm (p(9(20))(2); -0 9(D(20)) (2))-

Since ¢ preserves <, we have {(x) € U, for sufficiently large x. Hence,
O(f)(x) = f o&(x) is defined and real analytic for all sufficiently large .

Assume now that f >0 and write f =Gz ... 20, where § is a convergent
series in 21, ..., 2z with §(0,...,0)>0. Then

y 1.
G(z1y.mey 2) >§g(0,...,0) >0

for (z1,..., 2k) € U, when choosing ¢ sufficiently small. Hence,

P (f)(x) = go&(x) p(P(z1" - 21%)) (2) >0,

for all sufficiently large x, i.e. ¢(f) > 0. Consequently, ¢ is an injective,
increasing mapping and it is clearly a ring homomorphism. O

Let us now construct embeddings ¢,: Cp{{z J} — ¢, by induction over p.
For p=0, the elements in £ may naturally be interpreted as germs at infinity,
which yields a natural embedding @g: Cof{z } — ¢ by lemma 4.16. Assume
that we have constructed the embedding ¢, and consider the mapping

ppr1:expCpffrlf. — ¢
exp f = exp 4y,(f).

Clearly, ¢p,+1 is an injective multiplicative mapping. Given f, g€ Cpf{z J}}-,
we also have

exp f<expg & [f<g
= g—feT>"
= 0<@p(g) —@p(f) =1
= exp ¢,(g)/exp 4,(f) -1
& ppt1(exp f) < ppri(exp g).
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Applying lemma 4.16 on ¢,11, we obtain the desired embedding @, 1:
Cpr1f{z P — ¢. Using induction over p, we also observe that ¢, ; coin-
cides with ¢, on Cp{{x J} for each p. Therefore, we have a natural embedding
of C{{z}} into ¢, which coincides with ¢, on each Cp,{{z J}}.

Remark 4.17. In the case of well-based transseries, the notion of convergence
is more complicated. In general, sums like e™% + e 7P T 4 e7*P2% 1 ... only
yield quasi-analytic functions and for a more detailed study we refer to [E92,
E93|. For natural definitions of convergence like in exercise 4.21, it can be
hard to show that convergence is preserved under simple operations, like
differentiation.

Exercise 4.19.

a) Given f e CIINI, let

F=Y" |fulm
meMm

We say that F €. (C{M}) is summable in C{M}Y, if F is grid-based and

S F e C{9}}. Show that this defines a strong ring structure on C{MM}.
b) Let F be a family of elements in ¢. Define f=3Y F by f(z) :Zfe]: f(x),

whenever there exists a neighbourhood U of infinity, such that f is defined

on U for each f € F and such that ) F is normally convergent on each

compact subset of U. Show that this defines a strong ring structure on ¥.
¢) Reformulate lemma 4.16 as a principle of “convergent extension by strong

linearity”.

Exercise 4.20. Prove that

‘,1/"271 ‘,1/"2 1 ‘,1/"2 3 z') .
/e =55 —&——43636 +—8I5e +. g C{z.

Exercise 4.21. Let T = C|[[[z]]] be the field of well-based transseries of finite
exponential and logarithmic depths. Given o € R, let & be the set of infinitely
differentiable real germs at infinity and % the set of infinitely differentiable real
functions on (o, — ).

a) Construct the smallest subset T°? of T, together with a mapping
@7: T — €7, such that
CT1. If 0> exp;0, then log;z € T and ¢(log; x) =log;.
CT2. If feT issuch that logm € TV for all m €supp f and Y | fm (m)]
is convergent on (o, —), then f €T and p?(f)=>"_ fump(m).
Show that T is a ring.
b) Show that T<">7 CT"" for 7> 0. Denoting TV =J_ . T, show that

there exists a mapping ¢: T — %, such that ¢(f) is the germ associated
to p(f) for every o with f €T 7. Show also that T is a field.
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Operations on transseries

One of the major features of the field T = C' [Tzl of grid-based transseries
in x is its stability under the usual operations from calculus: differentiation,
integration, composition and inversion.

What is more, besides the classical properties from calculus, these oper-
ations satisfy interesting additional properties, which express their compati-
bility with infinite summation, the ordering, and the asymptotic relations <,
<, etc. Therefore, the field of transseries occurs as a natural model of “ordered
or asymptotic differential algebra”, in addition to the more classical Hardy
fields. It actually suggests the development of a whole new branch of model
theory, which integrates the infinitary summation operators. Also, not much
is known on the model theory of compositions.

In section 5.1, we start by defining the differentiation w.r.t. x as the unique
strongly linear C-differentiation with 2’ =1 and (ef)’ = f’e/ for all f. This
differentiation satisfies

f=ghg#1 = ['=g
f>0Nf=1 = f'>0

In section 5.2, we show that the differentiation has a unique right inverse [
with the property that ([ f)= =0 for all f & T; for this reason, we call [ f
the “distinguished integral” of f. Moreover, the distinguished integration is
strongly linear and we will see in the exercises that one often has ([ f) ([ g)=
J1Ja+]glt

In section 5.3, we proceed with the definition of a composition on T. More
precisely, given g € T~'~, we will show that there exists a unique strongly
linear C-difference operator o, with o,(z) = g and o,(ef) =e°*f) for all f.
This difference operator satisfies

f=1 = o4(f)

-1
fZ20 = o4(f)20
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Moreover, the composition defined by fo g=o4(f) is associative and compat-
ible with the differentiation: (fo g)'=g’'(f'og) for all f€T and g€ T>".
Finally, the Taylor series expansion fo(z+4d)=f+ f'd+ % f" 62+ - holds
under mild hypotheses on f and 6.

In section 5.4, we finally show that each g € T~~ admits a unique func-
tional inverse ¢'™ with go ¢!V = g™ o g =2. We conclude this chapter with
Ecalle’s “Translagrange theorem” [E03], which generalizes Lagrange’s classical
inversion formula.

5.1 Differentiation

Let R be a strong totally ordered partial exp-log C-algebra. A strong deriva-
tton on R is a mapping 0: R— R; f+— f'=0f, which satisfies
D1. 0¢=0, for all ce C.

D2. 0 is strongly linear.
D3. 9(fg)=(0f) g+ fOg, for all f,geR.

We say that 0 is an exp-log derivation, if we also have
D4. 9(exp f)=(9f)exp f, for all fe€domexpC R.
We say that 0 is (strictly) asymptotic resp. positive, if
D5. f<g=0f<0g, forall f,ge€ R with g*1.

D6. f~1=(f>0=0f>0), for all f€R.

In this section, we will show that there exists a unique strong exp-log deriva-
tion 0 on T, such that dx = 1. This derivation turns out to be asymptotic
and positive. In what follows, given a derivation 9 on a field, we will denote
by fi= f'/f the logarithmic derivative of f 0.

Lemma 5.1. Let T = CI%T be an arbitrary field of transseries and let
0:T— T be a mapping, which satisfies d(mn)=(m)n+man for all m,ne<.
Then

a) 0 is a grid-based mapping, which extends uniquely to a strong derivation
on T.
b) If O(logm)=90m/m for all m€ X, then O is an exp-log derivation on T.

Proof. Let & be a grid-based subset of T, so that
& C{my,....,m,}*n

for certain monomials m; <1,...,m, <1 and n in . For any m{*---m>i"ne ¥,
we have

On Qn

(M. m27n) = (almir—i—--- +anml+nT) mft e mrn,
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Hence supp v’ C (supp mI U---Usupp ml Usuppnf)v for all v €&, and 9 a grid-
based mapping. The strongly linear extension of 0 is indeed a derivation, since
(f,9)—(fg) and (f,g)— f’ g+ fg’ are both strongly bilinear mappings from
T? into T, which coincide on T2 (a proof which does not use strong bilinearity
can be given in a similar way as for proposition 2.16). This proves (a).

As to (b), assume that (logm)’=m' for all m € T. Obviously, in order to
prove that 0 is a strong exp-log derivation, it suffices to prove that (log f)'= fT
for all f € T>. Now each f €T~ may be decomposed as f=cm (1+¢), withce
C>, me¥ and € < 1. For each k€ N>, we have ((_L]:ﬂak)’: (—1)k—tek=1g/,
Hence,

(log (1+e))'=e'/(1+e)=(1+¢)T,
by strong linearity. We conclude that

(log )" = (logc)’+ (logm)"+ (log (1 +¢))’
= mi+(1+e)f=(em(1+e)t O

Proposition 5.2. There exists a unique strong exp-log derivation 0 on T
with dx =1.

Proof. We will show by induction over p € N that there exists a unique strong
exp-log derivation 0 on C,[[zIl = C[%,] with 0z =1. Since this mapping J
is required to be strongly linear, it is determined uniquely by its restriction
to ¥,. Furthermore, 0 will be a strong exp-log derivation, if its restriction
to ¥, satisfies the requirements of lemma 5.1.

For p =0, the derivative of a monomial m = x®° ... log(;" x € Ty must be
given by

(CEO‘D“' ]Og‘;qx)/: <%+ _|_m01[—(‘)1gqm> xao...log;‘qx

in view of axioms D3 and D4 and the requirements of lemma 5.1 are easily
checked.

If p >0, then the induction hypothesis states that there exists a unique
strong exp-log derivation 0 on Cp_1 [MzIl with Ox = 1. In view of D4, any
strong exp-log derivation on Cp [zl should therefore satisfy

(ef)'=f"el,

for all ef € T, =exp C,_1 2T ». On the other hand, when defining (ef)’ in
this way, we have

(el e?) =(f'+g") el T9=(f"el)ed +e/(g' e?) = (ef) e+ e/ (e9)

for all e/, ev ¢ % p. Hence, there exists a unique strong derivation 0 with dr =1
on CplzIl, by lemma 5.1. Moreover, 0 is a strong exp-log derivation, since

(loge)' = f'=(f"ef) /el = (ef)'/ef

for all monomials ef € Tp. O
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zlogz logyz—

Fig. 5.1. We will often adopt a geometric point of view for which the deriva-
tive O is a function on the “transline” T. Due to the highly non-archimedean
character of T, it is difficult to sketch the behaviour of this function. An
attempt has been made in the left figure above. The two squares corre-
spond to the regions where both coordinates are infinitesimal resp. bounded.
Notice that 0 is locally decreasing everywhere (the small curves), although
its restriction to Ty is increasing (the fat curve). At the right hand side,
we also sketched the behaviour of the functions m — 0, and m+— 0.+ for
transmonomials (using logarithmic coordinates).

Proposition 5.3. For all f €T, we have

f1 = e (f")
FUo= 2 (f'D).

Proof. The mappings di: f+— (e7* (f1’))] and da: f — (2 (f]’))] are both

strong exp-log derivations with dy * = do * = 1. We conclude by proposi-

tion 5.2. O

Proposition 5.4. Let B =(by,...,b,) be a transbasis.

a) If by=x or by=expz, then C[by;...; 0,1 is stable under 0.

b) If by=logix and logi_1x,...,x €B, then C[by;...; 0,1 is stable under 0.

Proof. Let us prove (a) by induction over n. Clearly, C [x1 and C [expz] are
stable under differentiation. So assume that n > 1 and that C'[[by;...;b,_11
is stable under differentiation. Then b;, = (log b,,)’ b, € C [[by;...;b,1. Hence

(63 ... b2 = (a1 bl + -+ an b,i) 6% ... 6% € O [by;...; b,T1,

for all monomials b{*--- 6% € BC. Consequently, C' [by;...;b,T is stable under
differentiation, by strong linearity.
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As to (b), we first observe that (by o expy, ..., b, 0 exp;) is also a trans-
basis, so C'[[b; o expy; ...; b, o exp/]l is stable under differentiation. Given
fe€CIby;...; 6,0, we now have

f" = (foexpiolog)’

1
= TogzTogyz \(Joexpy)’olog) € ClLby;...: b, T O

Proposition 5.5. The derivation 9 on T is asymptotic and positive.

Proof. Let B = (b, ..., b,) be a transbasis with b; = e®. We will first prove
by induction over n, that 0 is asymptotic and positive on C'[[by;...; 6,1, and
f'=1,for all f>=1in C[by;...;6,0. This is easy in the case when n=1. So
assume that n > 1.

Given a monomial m=b$"--- bo", we first observe that

mf = albi—l—---—kanbl
= a1+ az(logbs)' + -+ ap(log b,)’
belongs to C'[[by;...;b,_11. Moreover,

b) = (log b;)’ < (log b,)" =6,

for all 1 <i < n, by the induction hypothesis. Actually, the induction hypoth-
T

esis also implies that bI =1<b], since log b,, = 1. Consequently, m' = bl,
if av, #0.
Secondly, let m=bS" ... b9 and n=b%" .. b’* be monomials with m <n=£1.

If @, =0,=0, then m’<n’ by the induction hypothesis. If o, < 3, then
m’ € Clby;...;6,_10 60"
n e Clby;...;b, 10 b7,
whence m’ <n’. If a, = 8, # 0, then
m’=bl m~<bln=n’

Hence m’ < n’ in all cases. Given f € C[[by;...; b1 with f # 0 and f %1,
we thus get m’ <%, for all m € supp f \ {0f}, whence f'~ cy0%, by strong
linearity.

Let us now prove that the induction hypothesis is satisfied at order n.
Given f,ge Clby;...; 0,0, with 134 f < g% 1, we have

flrepdy=egg~g'.

If f =1, we still have f’' < ¢/, since f’ = f;& and fy < f < g. Now let
f € Clby; ...; b,17~. By the induction hypothesis, we have D} > 0, since
log f € C[by;...;6,,_117~. We conclude that

f/NCfD}ZCfU}Df>0.
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At this point, we have proved that O is asymptotic and positive on
C'[by;...; b,01. By theorem 4.15(a), this also proves that 0 asymptotic and
positive on Colexp 2. Now let f, g € C;llexp 21l be such that f < g% 1.
Then

f=(foexpiolog)’ =
(foexpy) (goexpy)’
x--logi_1x x-logi_1x
= (goexpiolog) =g'.

Similarly, if f € C;[lexp «1l is such that f>1 and f >0, then

i
f,:—(foexpl) > 0. O
x---log x

Remark 5.6. A transbasis B = (by, ..., b,) of level 1 will also be called a plane
transbasis. The two facts that C [by;...; b1 is stable under differentiation for
each i and m’ < m for allm=b{"--- b2+ 1, make plane transbases particularly
useful for differential calculus.

By theorem 4.15(a), we notice that any exponential transseries can be
expanded with respect to a plane transbases. Computations which involve
more general transseries can usually be reduced to the exponential case using
the technique of upward and downward shifting.

Exercise 5.1. For all f, g€ T, prove that

FSgNF<1Ag=<1 = flx=gT;
f=1Agktl = f'<gt
Exercise 5.2. For all f, g€ T% with f%1 and g% 1, show that
fXg & fisgh
=g & fi<gl;
29 & fi=gl
g & fi~gh

Exercise 5.3. Let f€T. Prove that
1
/ B —
a) fr-lef >x10g1’10g10g1’~--'
b) f'>0& ((f>1AFf>0)V(f<1IA f£<0)).
¢) f'>0 (WA, f>XN) V@A NeC, Vel p<A=pu< f<N).

In the case of (a), notice that we may for instance interpret f’>
as a relation in a field of well-based transseries in x.

1
x log x log log « -

Exercise 5.4. Consider a derivation 0 on a totally ordered C-algebra R, which
is also a field. We say that O is asymptotic resp. positive, but not necessarily
strictly, if

D5’. fxg=0f=<0g, forall f,g€ R with g%1.
D6’. f>1=(f>0=0f=>0), for all feR.
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If d is an asymptotic derivation, prove that fd is again an asymptotic derivation
for any f € R. Given positive derivations dy, ..., d,, prove that fidy+-+ fnd,
is again a positive derivation. Prove that neither the set of asymptotic, nor the
set of positive derivations necessarily form a module.

Exercise 5.5. Let T=C[MzIl--- [z, 1. Characterize

a) The strong C-module of all strong exp-log derivations on T.

b) The set of all (not necessarily strictly) asymptotic strong exp-log derivations
on T.

¢) The set of all (not necessarily strictly) positive strong exp-log derivations
on T.

Exercise 5.6. Let ¥° 3 x be a flat subset of the set ¥ of transmonomials and
let T¢ be its steep complement (see exercise 4.7).

a) Show that T°=C [%°] is stable under differentiation.
b) Considering T as a strong T’-algebra, show that there exists a unique
strongly T°-linear mapping 0% T — T with 9% m# = (m#)’ for all m# € T*.

¢) Show that
( 3 fmﬁmﬁ)': ST fhemit 3 fuedtme

mieTd mieTd mieT!

for all feT.

Exercise 5.7. Let f be a convergent transseries. Prove that f’ is convergent
and that the germ at infinity associated to f’ coincides with the derivative of
the germ at infinity associated to f. In other words, C{{z }} is a Hardy field.

Exercise 5.8. Construct a strong exp-log derivation on the field C[[[z]]] of well-
based transseries of finite exponential and logarithmic depths. Show that there
exists a unique such derivation 9 with dx = 1, and show that 9 is asymptotic
and positive. Hint: see [vdH97|.

5.2 Integration

In this section, we show that each transseries f € T admits an integral in T.
Since the derivative of a transseries vanishes if and only if it is a constant,
we infer that f admits a unique, distinguished integral [ f, whose constant
term ([ f)= vanishes. The distinguished property immediately implies that
mapping [ : f+ [ fislinear. We will show that [ is actually strongly linear.

Proposition 5.7. There exists a unique right inverse [ : T — T of 9, such
that the constant term ([ f)= of [ f vanishes for all f € T. This right inverse
s strongly linear.
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Proof. We will first consider the case when f € [E is exponential. Let B =
(b1,...,b,) be a plane transbasis for f. Consider the double sum

Jf=r<z+ Z Z Joo F e, (5.1)

mesupp f\{1} k>0
where

1 .
mf’
1 ’
Far = ot fmE—1 for k> 1.

Fm,O =

We will show that the family (fun Fink M)mesupp £\{1},k>0 is grid-based, so
that (5.1) defines an integral of f.

Let us first study the Fy, j for a monomial m="0b7"--- by with a; #0. We
observe that m’= (o b +---+ a; b)) m=<0,sm. Setting

Di = Db;f;
©; = ((suppb]U--Usuppb])o; )0,
©<i = :Dlu---U:Di_l

we thus have supp m’ C ®; m and supp Fn,o C D;/07. Moreover, for any
0 € supp Fin i, we have supp v’ C D, b. Now define families Ty, i by

1
Tm,o = term (F)
Tok = —Tmo0Tm k-1

where
Tn/ykfl = ((U/)nm v m)UeTk_l,m€©<i'

Then Fiy py=>" T i for all k€ N. Setting T, = Uke]N T, i, We have

mon7, S ((mon®;)(mon 7y 0))* (mon Ty o)

mon 7y, o C mon®;/07,

~

whence 7y, is grid-based by proposition 2.14(c¢) and (2.7). We conclude that
J m=3"2¢ Furm is well-defined, and

[ m = Z (Fr;l7k+mTFm7k)m
k>0

Z m (Fu g — Fogt1) m=ml Fp gm=m.
k>0

Let us now show that the mapping [ :BC T is grid-based. Given a grid-
based subset & of B, we may decompose

S\ {1} =&, 1111 &,,
where the &; (i=1,...,n) are given by
@i:{meﬁzm%bi}.
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By what precedes, [] T is grid-based for each . Hence, [ is a grid-

mes;
based mapping which extends uniquely to T by strong linearity. Furthermore,

given m=b{"--- b with «; #0, we have ©; CC[by;...;b;,_11, so that
supp fum Fn,cm C C[by;...; 0,11 b5 3 {1}.

This implies that [ is a distinguished, strongly linear integral on C°Mexp 0.
Assume now that we have defined a distinguished, strongly linear inte-
gral [ on CP[lexpTl. We claim that we may extend [ to CP*![lexp Tl by

Jr=( e Dl (5.2)
Indeed, (5.2) defines a distinguished integral, since

(f eIl =2((e )=
and

(J e"fNl==(e"fl)x=0,
for all f € CPT![Mexp zI. Its distinguished property implies that it extends
the previous integral on CP [Texp Il . Its strong linearity follows from the fact
that we may see | as the composition of four strongly linear operations. Our
proposition now follows by induction over p. O
Proposition 5.8. Let B =(by,...,b,) be a transbasis.

a) If by=x or by=expx, then C'[[by;...;b;11 [logb1] is stable under [ for alli.
b) If by =log;x and log;_1 z,...,x € B, then C'[by;...; b, [log by] is stable
under | .

Proof. We will consider the case when by =e” and i =n. The other cases follow
by upward shifting. Now given

f= fazt 4+ fo
with fo,..., fa€ C[by;...; 0,1, we claim that
[ f=F:=gap1a 4+ + go,
where go, ..., ga+1 € C'[[by;...; b, ] are given by
ga+1 = fax/(d+1);

ga = fa-r,</d+ [ (fa—(d+1)ga+1)y
gd—1 fa—2.=/(d=1)+ [ (fa—1—dga)s;

g = [ (fo—g1)%-
Indeed, it is easily checked that F'= f. Furthermore,

Fe=go==(f (fo—91)¢)==0,
whence F'= [ f, by the distinguished property of integration. 0
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Exercise 5.9. Let m= 1 be a transmonomial. Show that there exists a unique
transmonomial n <X m, so that n’ is a transmonomial.

Exercise 5.10. Let f,g€T.

a) If [ f<1and [ g=<1, then show that

UNUa=fflag+[ag]fF (5.3)

b) Give a necessary and sufficient condition for (5.3) to hold.
¢) Prove that there does not exist a strong integration on C'((e®)) so that (5.3)
holds for all f, g€ C((e)).

Exercise 5.11. Show that [ e”” is divergent. Deduce that Ik e*” is not an exp-
log function.

Exercise 5.12. Let p: H— T an embedding of a Hardy field into T =R [Tzl
The embedding ¢ is assumed to preserve the differential ring structure and
the ordering. Given f € H, show that ¢ can be extended into an embedding

@:H([ f)—T.

5.3 Functional composition

Let R and S be strong totally ordered partial exp-log C-algebras. A strong
difference operator of R into S is an injection §: R— S, which satisfies

Al. dc=c, for all ceC.
AZ2. § is strongly linear.
A3. 6(fg)=46(f)d(g), for all f,g€R.

If S = R, then we say that ¢ is a strong difference operator on R. We say
that § is an exp-log difference operator, if we also have

A4. §(exp f)=expd(f), for all f € RNdom exp.
We say that § is asymptotic resp. increasing, if

A5. f<1=6(f)<1,forall f€R.
A6. f>0=06(f)>0, for all feR.

In this section, we will show that for each g € T~ ", there exists a unique
strong exp-log difference operator o, on T, such that og4(z) =g¢. This allows
us to define a composition on T by

o:TxT>" — T
(fvg) = Og(f)'

We will show that this composition is associative, that it satisfies the chain
rule, and that we can perform Taylor series expansion under certain condi-
tions.
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Lemma 5.9. Let T=C[T] CT=CIZD be arbitrary fields of transseries

and let 6: T — T be a mapping, which satisfies §(m n) = 8(m) 6(n) and

1<m=dm)eT”" for all mneT. Then

a) 0 is a grid-based mapping, which extends uniquely to a strong, asymptotic
and increasing difference operator from T into T.

b) If 6(logm) =logd(m) for all me X, then the extension of 6 to T is an exp-
log difference operator.

Proof. Let & be a grid-based subset of T with & C {my, ..., m,}* n, for
certain monomials my, ..., m,; < 1 and n in €. Then the family F* with
F=(6(m;))1<i<n is grid-based, by proposition 2.14(c). It follows that §: T —T
is grid-based, since (0(v))vece S F* 0(n). By proposition 2.16, the extension
of § to T is a strong difference operator. If f € T=, then §(m) < 1 for all
m € supp f, whence 6(f) =3 fmd(m) < 1. This proves that ¢ is asymptotic
and, given f € T7, it also follows that §(f) ~ d(7f) =c;8(0y). In particular,
if f>0, then §(f)>0. This completes the proof of (a).

Now assume that 6(logm) =1log §(m) for all m € . In order to prove (b),
it obviously suffices to show that d(log f) = log 6(f) for all f € T>. Now
each f € T> may be decomposed as f =cm (1 +¢), withce C”, me ¥

and € < 1. For each k € N”, we have 5((71]):_1 k) = (711):_1 5(¢)*. Hence,
d(log (14¢))=log (1+4(e)), by strong linearity. We conclude that

d(log f) = d(logc)+ d(logoy) +d(log(l+¢))
= logc+1logd(vs)+1log (14 d(e))
= log(cd(vf) (146(¢)))
= logd(cos(l+¢))
= logd(f). O

Proposition 5.10. Let g € T>>~. Then there exists a unique strong exp-
log difference operator oy on T with og(x) = g. This difference operator is
asymptotic and increasing.

Proof. We will show by induction over p € N that there exists a unique strong

exp-log difference operator o, from Cp[lz1l = C[T,1 into T with oyx =g,

and we will show that this difference operator is asymptotic and increasing.
For p=0, the axioms A3 and A4 imply that

og(xo‘ﬂ... 10g2‘q x) = gO‘O... loggqg

for all monomials z*°--- loggqx €%p. If x>0... logg“m ~=1,ie. ap=-=a;_1=0
and «; > 0 for some i, we also get

og(xz®---logyx) € T,
since

log{i " g+ logy"g < logf'g e T~ 7.

This completes the proof in the case when p=0, by lemma 5.9.
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If p > 0, then the induction hypothesis states that there exists a unique
strong exp-log difference operator o,: Cp,_1 eIl — T with o4(z) =g, and o,
is asymptotic and increasing. In view of A4, any extension of o4 to C), 21l
should therefore satisfy o,(ef) =e®#f) for all e/ € ¥, =exp C,_1 Mz ,. On
the other hand, when defining o, in this way on %, we have

og(efrel2) = eCo(fitf2) — gog(f1) gog(f2) — og(ef) 0, (e9)

for all ef1,e/2€ T,,. Similarly,

(f=fonel=1) = (f>0Af=1)
= o4(f)eT>"
= og(ef):eog(ef)ET>’>

for all e/ € % p. This completes the proof in the general case, by lemma 5.9. [

Proposition 5.11.

a) fo(goh)=(fog)oh, forall f€T and g,heT>".

b) (fog)=9g'(f'og), forall f €T and g€ T>>".

c) Let f,6 €T be such that 6 <2 and m' 6 <1 for all m€supp f. Then

Jolz+8)=F+['0+5 "6+ (5.4)

Proof. Property (a) follows from proposition 5.10 and the fact that (op) o (o4
and og4op are both strong exponential difference operators which map z
to goh.

Let ® be the set of f €T, for which (fog)' =g’ (f'og). We have z € ®
and ® is stable under grid-based summation, since the mappings f+— (fog)’
and g’ (f’og) are both strongly linear. ® is also stable under exponentiation
and logarithm: if f € ®, then

(efog) = (efo9)
(fog)elos
g’ (f'og)elo
g ((f'el)oyg)
= g/ ((ef) 0g)

and f >0 implies

((log f)og)" = (log(fog))’

9'(f'eg)/feoyg

9" ((log f)" o g).

This proves (b), since the smallest subset ® of T which satisfies the above
properties is T itself.
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As to (c), we first have to prove that the right hand side of (5.4) is
well-defined. Let § < x be a transseries in T and denote by T” the set of
transseries f, such that m® § < 1 for all m € supp f. Given a transmono-
mial m, we have

mi§ <1< (logm)' <1/6<logm=< [ 1/6em<el 1/,
since 1/6 > 1/z. We infer that
sz{fET:Vmesuppf,m«efl/‘s}.

Let us show that T” is stable under differentiation. By the strong linearity of
the differentiation, it suffices to prove that m’ € T?, for all transmonomials m
with m < e/ /9. If m—=<<z, then n KXz < el 1/5, for all n€suppm’. If m» x,
then n/m <« m for all n € suppm’, whence nXm < el 19,

Now consider a transbasis B = (by, ..., by,), such that b; =log, z,...,z€B
and by, ..., b, € T°. By theorem 4.15(b), any f € T° can be expanded with
respect to such a transbasis. Let

% =supp bIU--- U supp b};<%,

so that supp f/C (supp f)®D C B, for all f€CIBCT. Now let f € CIBCT,
[ €N, and consider the family 7; of all terms

To,(my,nq)- (my,ng) = % (fU U) (nlu ml) (5‘11 nl) ((U myp-- ml—l)l]:u ml) (5111 nl)'
Then
1
N oy

Moreover, setting 7 =[], en i, we have
mon 7 C mon( f) (mon(®) mon(d))*,

so T is grid-based, by proposition 2.14(c¢). Since 7 refines the family
(li, f® §1en, it follows that the Taylor series in (5.4) is well-defined. For
a similar reason, the mapping B¢ — T; v — 2120 l—l, v® ¢ is grid-based,
so the mapping C BT — T; f— 2120 %f(l) 8! is actually strongly linear.
Now let ® be the subset of T” of all f, such that (5.4) holds. Clearly,
x € ® and P is stable under strongly linear combinations. We claim that ® is
also stable under exponentiation and logarithm. Indeed, assume that f € ®
and ef € T°. Then 1/ f'<0./0L; =68, f//f" =6, f"/f" =4, ..., since dgs, f/,
f"....eT’ Hence f(™§" <1 for all n>1, which allows us to expand

A = (efyo(atd)=eltT 0tz
= ef(1+6+%f”52+---+(5+%f”52+---)2+...).
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We have to show that A coincides with

el + (ef)’5+%(ef)”52

= of (Lt /645 (S + 178+,

B

But this follows from the fact that we may see A= B as a formal identity in the
ring C[[ef,d, f/, f”,...]]. Indeed, A and B satisfy the same differential equation

% = (f/+f//5+%f”/52+“.)14
= f’A+(g;f, '+ gﬁ, f”’+---)5;
OB 0B ., OB

% = f/B+<8f/ f//+af// f/”+"'>57

and [6°)A = [6"]B = e/. Similarly, one may show that ® is stable under
logarithm. This proves (¢), since the smallest subset of T”, which contains x
and which is stable under strongly linear combinations, exponentiation and
logarithm, is T? itself. O

Exercise 5.13. Let f€T and geT>".

a) Prove that the exponentiality of fo g equals the sum of the exponentialities
of fand g.

b) Prove that the exponential height resp. logarithmic depth of fo gis bounded
by the sum of the exponential heights resp. logarithmic depths of f and g.

¢) Improve the bound in (b) by taking into account the exponentialities of f
and g.

Exercise 5.14. Let f,h € T and g € T~ be such that A < g. Under which
condition do we have

fO(g+h):ng+(f’Og)h+%(f”09)h2+...?

Exercise 5.15. Let f € T and let D a grid-based family of transseries, such
that m*d <1, for all m € supp f and 6 € D. prove that

fo(s+¥ D)= ¥ ll!f(lwl---al.

6,6, €D

Exercise 5.16. Let m be a transmonomial in T and g € T~ a transseries,
such that mo g 3 x and n «< log m o g for all n € supp g. Prove that mo g is
a transmonomial.

Exercise 5.17. Show that R{{z}}} is stable under composition.

Exercise 5.18. Let A= (ay, ..., a,,) and B = (by, ..., b,,) be two transbases and
consider two series f € C'llay; ..., a ] and g € CLby; ...; b,1~>~. Construct
a transbasis for fo g of size < m+n.
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5.4 Functional inversion

5.4.1 Existence of functional inverses

Theorem 5.12. Any g€ T>" admits a functional inverse g™ € T>~ with

inv inv _
g

og=gog™=uz.

Proof. Without loss of generality, one may assume that g=x + ¢, where e <1
is exponential. Indeed, it suffices to replace g by log;_, 0 goexp; for sufficiently
large I, where p is the exponentiality of ¢g. Let 8 =(b; =€",...,b,) be a plane
transbasis for €. We will prove that g admits a functional inverse of the form
f=x 4+ 6, where § < 1 can be expanded with respect to a plane transbasis
(a1, ..., a,) which satisfies

an = bno($+50)
Apn—1 = bn—lo(x+50,0)

Let us first assume that the constant coefficient €9 of € in b,, vanishes.
Then proposition 5.11(c¢) implies that

Kf::fo(x—i—s)—f:f’a+%f”62+--- (5.5)
for any feCz;by;...;6,1. In particular, for every m e z€ b§ .- bS, we have
supp% CR:={z7} bI, s bl} supp €)*.

Now the functional inverse of ¢ is given by

g™ = z—Ka+ K2z — K32+ .

= ) (CDN(E)e, (K (Kt1)e (8- #)
(B1,., br) € R
Since Kx = ¢ € C[lby; ...; b, and K maps C[[by; ...; b,1 into itself, we
conclude that ¢"™ =2z 44, with § € C[by;...; 6,1 <.

The general case is proved by induction over n. If n=1, then we must have
g0 =0, so we are done. So assume that n > 1. By the induction hypothesis,
there exists a functional inverse f =z +6 for g =2+ € =x + g, such that
6 € Cllay;...;a,-11 <, where

ap—-1 = 671_10(334—50)
tn_2 = bp_s0(x+d0,0)

Now

gof=x+(g—g)ofeClay;...;a,0,



122 5 Operations on transseries

where a, =bpo f, and ((g—§) o f)o=0. It follows that go f has a functional
inverse of the form (go f)i“" =x+n with n € Clay;...;a,0 and ny=0. We

conclude that ¢V = f o(go f)™ is a functional inverse of g and we have

ginvzfo(x+n):f+f’n+%f”n2+---ec[[a1;...;an11. 0

5.4.2 The Translagrange theorem

We define a scalar product on T by
(f.9)=(f9)=
Given transseries M, N € T and f € T>'", let us denote
f[M7N]: (Mo f,N).

When taking transmonomials for M and N, then the coefficients fiar
describe the post-composition operator with f. More precisely, for all m,
ne ¥ we have

(mo fla= f[m,n*l]'

Theorem 5.13. Let M, N, e <1 be exponential transseries and f =z + €.
Then g= v satisfies

g, N = = fiv .
Proof. Since h— = ([ h), for all h €T, we have

gmny=(Mog,N) = [[ (Mog)N'];;
fivomg=(No f,M') = [[ (Nof)M',.

Since [[ (No f)M']—[[ (No f) M|,z and g — x are exponential, we have
[ (Nof)y Me=[(] (Nof)M)o g
Using the rule ([ h)og= [ (hog)g’, it follows that
[J (No f) M'lo=[[ N (M"cg)g'le=[] N (Mo g)a
Now integration by parts yields
g, N+ fiv oy = (Mo g) N'lo+[[ N (Mo g)]a=[N(Mog)
But [N (Mo g)],=0, since N (M o g) is exponential. O

The theorem generalizes to the case when M, N and ¢ are no longer
exponential, by applying the following rule a finite number of times:

f[M,N] = (IOg ofo eXp)[Moexp7Noexp]~
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Corollary 5.14. Let M, N,e <1 be transseries of depths <l and f=x+¢.
Then g= v satisfies
9IM N flogf) = — JIN M logi)-
Exercise 5.19. Let g=x + ¢ where ¢ is exponential and let K be as in (5.5).

a) Show that we do not always have ¢V =12 — Kz + K2z +---.
b) Give a necessary and sufficient condition for which

gV =x— Ko+ K?>z+--

Exercise 5.20.

a) A classical theorem of Liouville [Lio37, Lio38| states that (z log x)™" is
not an exp-log function. Show that there exists no exp-log function f with
f=(log xloglog x)™™ (see [Harll]| for a variant of this problem).

b) Show that there exists no exp-log function f with f < el eﬁ. Hint: use
exercise 5.11.

¢) Assume that g €T~ " is not an exp-log function. Show that there exists an
n € N, such that there exists no exp-log function f with f<exp,g.

Exercise 5.21. Show that R{{z}}} is stable under functional inversion.

Exercise 5.22. Classify the convex subgroups of (T>>~,0). Hint: G is a convex
subgroup of T~ if and only if its contraction con G is a convex subgroup.

Exercise 5.23. Show that Lagrange’s inversion formula is a special case of
theorem 5.13.

Exercise 5.24. Show that theorem 5.13 still holds when M = z and N is
exponential.

Exercise 5.25. Let M, N be transseries and let f € T>~ be a transseries of
level 0. Show that for all sufficiently large I, the inverse g= fiV satisfies

g, N1 =~ 1] (Nlogi), M /10g(]-

If one allows [ =w, then show that the formula holds for transseries of arbitrary
levels.
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Grid-based operators

Besides multiplication and strong summation, we have introduced other inter-
esting operations on the field of transseries in the previous chapter, like differ-
entiation, integration, composition and functional inversion. In this chapter
we will perform a theoretical study of an even larger class of operations on
transseries, which contains the above elementary operations, but also many
natural combinations of them.

This theoretical study is carried out best in the context of “grid-based
modules”. Let C' be a ring. In chapter 2, we defined a grid-based algebra to
be a strong C-algebra of the form C [9]], where 91 is a monomial monoid.
An arbitrary subset & of 9 is called a monomial set and the set CI&T of
strong linear combinations of elements in & a grid-based module.

In section 6.1, we start by generalizing the notion of strongly linear
mappings from chapter 2 to the multilinear case. Most natural elementary
operations like multiplication, differentiation, right composition, etc. can then
be seen as either linear or bilinear “grid-based operators”. In section 6.3,
we next introduce the general concept of a grid-based operator. Roughly
speaking, such an operator is a mapping ®: C' [ — C' NI which admits
a “generalized Taylor series expansion”

Q=04+ @1 + Po+ -1,
such that there exists a d-linear grid-based operator

Oy CIMI4— CIND

with

for each d. If C' O @Q, then such Taylor series expansions are unique and we
will show that the ®4 may be chosen to be symmetric.
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Multilinear grid-based operators may both be reinterpreted as general
grid-based operators and linear grid-based operators using the “syntactic
sugar isomorphisms”

cooy o---aom,, 1 = Cryd x--- x CIM,,1
Cmmy x - xM, 1 = CIOHT @@ CIM,]T

The first isomorphism also provides a notion of grid-based operators in several
variables.

As promised, many operations can be carried with grid-based operators:
they can be composed and one may define a natural strong summation on
the space of grid-based operators ®: C'[9] — C'INMI. An explicit strong
basis of “symmetric atomic operators” for this space will be established in sec-
tion 6.4.2. Last but not least, we will prove several implicit function theorems
for grid-based operators in section 6.5. These theorems will be a key ingredient
for the resolution of differential (and more general functional equations) in
the next chapters.

6.1 Multilinear grid-based operators

6.1.1 Multilinear grid-based operators

Let M, ..., M,, and N be strong modules over a ring C. A mapping
P: My x - x M,,— N

is said to be strongly multilinear, if for all F; € S (M), ..., Fm € S (Mp,), we
have M(Fy,..., Fm) € L (N) and

(Y Fin 3 Fu) =D (s Fn).

If My, ..., M,,, and N are grid-based modules, then we also say that ® is
a multilinear grid-based operator.

FEzample 6.1. Given monomial monoids 9t and I, all strongly linear map-
pings L: C[MI — CINT are multilinear grid-based operators. Denoting
$=C 91, we have in particular the following important types of linear grid-
based operators:

1. Left multiplication operators x;:$— 3, g— fg, with f€35.

2. Strong derivations d:$ — $. If $ admits R-powers, then such derivations
should also satisfy d fA =\ (df) f* 1, whenever f* is well-defined for f €3
and A€ R.

3. Strong integrations; these are partial, strongly linear right inverses I:$ — 3
of strong derivations d:$ — 3, i.e. dI =1d.
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4. Strong difference operators §: $ — 5. If $ admits R-powers, then such
difference operators should also satisfy § f* = (6 f)*, whenever f* is well-
defined for f€3$ and A€ R).

5. Strong summation operators; these are partial, strongly linear right
inverses X: $ — $ of finite difference operators, ie. (6 — Id) ¥ = Id,
for some strong difference operator 6: 5 — 5.

Ezample 6.2. Given a monomial monoid 9, the multiplication -: CI91%2—
CIMT and the scalar product CIMI2 — C; (f, g) — (f, g) = (f g)= are
strongly bilinear mappings.

Example 6.5. Compositions

(I)n(fn,la---a fn,’mn))
of multilinear grid-based operators
U:Nyx-+xN, — V
@i:Mi,lx---xMi,mi — NZ‘ (izl,...,n)

are again multilinear grid-based operators.

Ezample 6./4. The m-linear grid-based operators of the form ®: C' [91;1 x --- X
CIM,, 1 — CINT form a C-module. For instance, if d: $ — $ is a strong
derivation, where $ = C [9N]], then strong differential operators of the form

L=L,d" +-+Lg

are linear grid-based operators. In section 6.4.1, we will see that we may
actually define strong summations on spaces of grid-based operators.

6.1.2 Operator supports

Let &:C'[91 1 x--- x C [N, 1 — C I[N be an m-linear grid-based operator,
such that 91y, ...,9,,, and M are all subsets of a common monomial group &.
Then the operator support of L is defined by

]
supp ® = U supp 2(my, ..., M) )
ml e mm
(m1,...,mm)€9ﬁ1 X oo X My

The operator support is the smallest subset of &, such that

supp ®(f1, ..., fm) € (supp @) (supp f1) --- (supp fmm), (6.1)
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for all (f1,..., fm) €CIIHT x --- x CIM,, 1. Given &1 CMy, ..., S, T,
we also denote

SUPPG; x - x 6, =Supp @ |c 6,1 - x OIS, T-

Ezample 6.5. We have

supp- = {1};
supp ¥ o H ®;, C (supp¥) (supp @4) - (supp ®,,),
i=1

for multilinear operators ®5: C [9M ] X --- x CIM,,, I - COIND (k=1,...,n)
and ¥:CIONT x --- x CIN, 0 — C Y.

Exercise 6.1. Let Lq,..., Ly: C[9MT — C IO be infinitesimal linear grid-based
operators (i.e. supp L; <1 for i=1,..., k).

a) Show that f(Li1, ..., Li) is well-defined for non-commutative series f €
C{{Z1y0eey 2n))- t

b) Determine the largest subspace of T'=C [LzIl on which e? is a well-defined
bijection.

Exercise 6.2.

a) Is a multilinear grid-based operator necessarily a multilinear well-based oper-
ator?

b) Show that C[[9M~]]* = C[[MM7]] for well-based series, if 9 is totally ordered.
Here C[[9M=]]* denotes the strong dual of C[[IN<]].

¢) Show that (b) does not hold for grid-based series. How to characterize
cromn*?

Exercise 6.3.
a) Let T” = C[T°] = T .- be the set of transseries f € T with m < e® for all
m e supp f and consider the space P of operators
L=>" L,o"eT[[d]], (6.2)
neN

such that UHEN supp Ly, is a grid-based. Show that @ operates on T? and
that P is stable under composition.

b) Let T°=C [%°] = T'<.- and consider the space 2> of operators (6.2), such
that (Ln)nen is a grid-based family. Show that Z1» operates on T® and
that P is stable under composition.

6.2 Strong tensor products

It is often useful to consider multilinear mappings
My x--xM,,—N
as linear mappings

Mi®--®@M;u—N.
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A similar thing can be done in the strongly linear setting. We will restrict
ourselves to the case when Mi,..., M, are grid-based modules, in which case
the tensor product has a particularly nice form:

Proposition 6.6. Let My, ..., 90, be monomial sets and denote
M=M1 X --- x M.
Consider the mapping
pw:CIOGHI x - x CIM,,, I — CIMI
(Froes F) = S Froms e Frnomn (M1, M)

meMm

This mapping is well-defined and strongly multilinear. Moreover, for every
strongly multilinear mapping

o: OOy x--- x M1 — N

into an arbitrary strong C-module, there exists a unique strongly linear map-
ping

L:CI9MI — N,
such that ® =Lo pu.

Lemma 6.7. Let F be a grid-based family of monomials in M. Then there
exist grid-based families Gi € F (M1), ..., Gm € F (M) with FC Gi X -+ X Gpy.

Proof. Let & be the projection of & = Ufe}‘ supp f on My, for k=1,...,m.
We have &, C e,éN’l e;{\{pk {fk,1; s fi,qi } for certain e ; <1 and fi ;. Given
m € Gy, we will denote

degm =min {i; + - —|—ipk:m:e§§71--- e;f’;,k f;w»}.
Given m € M, we define its multiplicity by

p(m)=card (f € F: fm#0).
Given my € &y, let

(i) = max {p(m, . W)
Vi e {1, . m},mi S Gi/\degmi < degmk}.

Then for all (mq,...,m;,) €S, we have

plmy, .., mpy) < max{ﬂl(ml)v“'vum(mm)}
< pa(my) - (M)

Hence
-:Fg gl X X gm

for Qk = (mk)mkeGk,i€{17---,Nk(mk)} (k = 1, vey m) O
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Proof of proposition 6.6. Given grid-based subsets &, CIMM with k=1,...,m,
the set & x --- X &,, is clearly a grid-based subset of 91. This implies
that p is well-defined. More generally, given grid-based families of terms
T F(CMy) (k=1,...,m), the family u(71,...,Tm) € .F(CM) is again grid-
based. Now consider arbitrary grid-based families Fy € .7 (C [9M;1) and let

T =term Fy, for k=1,...,m. Then
,u(z 717---72 Tm)

(3 Fin D Fa)
= W, T)

Z M(fl, ...,fm).

This shows that p is multilinear.
Inversely, if & is a grid-based subset of 91, then its projections (&)
on My, for j =1,...,m are again grid-based, and we have

G Cmi(B) X -+ X T (B).
Consequently, given a strongly multilinear mapping
o:CMGI x--- x CIM,,I — N,
the mapping
L.Coml — N

Z fom — Z fm ®(m)

meM meM

is well-defined. Moreover, if F € .(C 9T ), then the above lemma implies
that there exist Gy € .Z (My) (k=1,...,m) with mon F C G; X -+ X G,,, whence

L(monF)C ®(Gy, ..., Gm).

It follows that L(mon F), L(term F) and L(F) are summable families in N.
Finally, using strong associativity, we have

LY temF) = L< 3 ( 3 c)m)

me cmeterm F

- Z( 3 c)q>(m)

meM cméEterm F
= Z L(term F).
We conclude that L(Y" F)=>" L(F). O

We call O] ® --- @ CIM,,, T = COMy x --- x M, 1 (together with
the mapping p) the strong tensor product of C[I91, ..., CIM,, . An
immediate consequence of proposition 6.6 is the principle of extension by
strong multilinearity:
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Corollary 6.8. Let My, ..., M,, and N be monomial monoids and assume
that ¢ is a mapping, such that

(So(m]-’ "'7mm))(mly--wmm)e@lx'“><®m

s a grid-based family for any grid-based subsets &1 CMy, ..., &, CIN,,. Then
there exists a unique strongly multilinear mapping

o:CIOMI x--- x CIM,,, T — CINT

with D on, 5o x M, = P

Proof. Using extension by strong linearity, there exists a unique strongly
linear mapping L: C' IMy X -+ X M, I — C TN, with Lign, x... xm,, = - Then
® = Lo p is the unique mapping we are looking for. |

Exercise 6.4. When do we have Z(CI[9T,CINT )= CIMI*® C LN, where
Z(CIMI,CINT) denotes the space of strongly linear mappings from C [
into CIND?

Exercise 6.5.

a) Generalize proposition 6.6 to the case of well-based series.

b) Show that a well-based family (f;);c; € C[[9M]]’ corresponds to an element
of C[[I xMm]].

c) Define a family F € .Z(CI[MI) to be super-grid-based F = (fi)icy with
JC2N"and f= E(i,m) fim (i,m) €CILI x MI. Show that C [T is a strong
C-algebra for super-grid-based summation.

d) Give an example of a grid-based family which is not super-grid-based.

Exercise 6.6. Show that tensor products exist in the general strongly linear
setting (see also exercise 2.20). Hint:

a) Let My, ..., M, be strong modules. Consider the set F' of all mappings f:
My X +++ X M,, — C, whose support is contained in a set S; X +-» X Sy, such
that each S; is a summable subset of M;. Construct a natural embedding
v: My X+« X M,, — F and give F' the structure of a strong C-module.

b) Let Z be the strong submodule of F, which is generated by all elements of
the form

(Z )\ill‘il,..., Z )‘i,,,,xi,,,,)_ Z >‘i1"'>\im (Iil,...,l‘im),

el im €I 1€l

im €1
where the Ij, are mutually disjoint. Then the strong quotient
Mi®--QM,=F/Z

with p1=mp,zov satisfies the universal property of the strong tensor product.
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6.3 Grid-based operators

6.3.1 Definition and characterization

Let 9 and 9 be monomial sets. A mapping ®: C[9MT] — C [N is said to
be a grid-based operator if there exists a family (®;);en of multilinear grid-
based operators ®;: C [9]*— C [NT, such that for all F € .7 (C M), the

family ((i%(fl,..., fi))ieN, fi,.... e is grid-based, and

@(Z}'): S @il fie fi): (6.3)

€N
fioe fi€EF

We call (®;);cn a multilinear family for ®. Considering the family of a single
element f € C[IMI, the formula (6.3) reduces to

o(f) = > ®i(f),  with (6.4)

1€N

Assuming that C' O @Q, each ®; is uniquely determined and we call it the
homogeneous part of degree i of ®:

Proposition 6.9. Let ®: C M — CINT be a grid-based operator and let
O CIMT ' — CINT be multilinear grid-based operators, such that (6.4) holds
forall feCOMI. If C OQ and =0, then ®;=0 for each i € N.

Proof. We observe that it suffices to prove that ®; =0 for each ¢ € N, since

the ®; are symmetric and C' D @ is torsion-free. Assume the contrary and let
feCIMI be such that ®;(f)+#0 for some i. Choose

mes= U supp ®;(f) # 2.
ieEN
Since (®;(f))ien is a grid-based family, there exist only a finite number of
indices 7, such that m € supp ®;(f). Let 41 <--- <1, be those indices.
Let ¢ = @4, (f)m for all k € {1, ..., n}. For any [ € {1, ..., n}, we have
®;, (I f)m =1 cj, by multilinearity. On the other hand,

‘I)(lf)m:‘bil(lf)m+"'+‘I’in(lf)m:0

for each [, so that
1 ... 1 1
: : i |=0.

n't ... ntn Cn

The matrix on the left hand side admits an inverse with rational coefficients
(indeed, by the sign rule of Descartes, a real polynomial ay 2%t + --- + a, %"
cannot have n distinct positive zeros unless o3 =--- = a,, =0). Since C D Q,
it follows that ¢y =---=c¢, =0. This contradiction completes the proof. O
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Proposition 6.10. Let ®: CIMI — CINT be a grid-based operator and
assume that C D Q. Then there exist a unique multilinear family ((i)i)ie]N
for ®, such that each ®; is symmetric.

Proof. Let ((i)i)iE]N be an arbitrary multilinear family for ®. Then the ®;
defined by

. 1 -

‘Pi(fl,-'-,fz'):ﬁ D Dl foryses Foli)-

ceS;

form a multilinear family of symmetric operators for ®. Moreover, each ®; is
determined uniquely in terms of ®; by

™ 1 i
(I)Z(f17’fl):?Jc,{1ZZ} (_1) Jl@l(j;] f])

We conclude by proposition 6.9. O

Assume that 9T and 91 are subsets of a common monomial group &. If we

have C' D Q and ® and (®;);en are as in proposition 6.10, then we call
supp ¢ = supp <i>0 U supp <i>1 Usupp Cﬁg U---
the operator support of ®. For all f € CIMI, we have
supp ®(f) C (supp @) (supp f)*.

Notice also that supp ®; = supp ®; for all i.

6.3.2 Multivariate grid-based operators and compositions

In a similar way that we have the natural isomorphism
CMy x--x9,,1 =~ CIHOIMMI ®---CIMN,,. T,
for tensor products, we also have a natural isomorphism

cmou - oM, 1 — CI[OD x - x CIM,Q,

[ ( S fem 3 m)

meN, me,,

for Cartesian products. This allows us to reinterpret mappings “in sev-
eral series” C[9H] x -« x CMI[IM,, ] — N as mappings “in one series”
crom, I --- I <M, 1 — N. In particular, any multilinear grid-based oper-
ator ®: CI9OHT x -« x CIIM,, 1 — CONT can be seen as a grid-based
operator in from C 9 I --- IT91,,, 1 into CIH]. More generally, the nat-
ural isomorphism may be used in order to extend the notion of grid-based
operators to mappings C' [T x --- x C [, 1 — C I[N
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Let &: CIMMT — CINT and ¥: C' [NT — CITVI be two grid-based

operators. Then Wo ® is again a grid-based operator. Indeed, let (®;);en and

(¥;)jen be multilinear families for ® and ¥. Then for all F € 7(CI[IM),

we have
\Ifocb(Z}') = vl Y ®ifr.n fi)
ieN
Fro fi€K
- Z U i(Diy(f1,15 0005 f1i0)5
JEN

s
i1, €N %

f1,117---:f]1,z'1€f Ci,(fi150 fii))

fj,17~~~’:fj,ij€]'—

so that the (\I/\c>/<1>)l defined by

(Tod)= > Uo0(d,..., b))
JEN
iy i =1
form a multilinear family for ¥o ®.

Exercise 6.7. Assume that C' D Q and let ®: C[9MT — C'I[NT be a grid-based
operator. Is it true that for any & ¢ supp ® there exists an f € C IO with

supp ®(f) € & (supp f)*?

Exercise 6.8. Define the “derivative” of a grid-based operator ®: C[9M] —
con.

Exercise 6.9.

a) Characterize the intervals J of the set of infinitesimal transmonomials ¥
(ie. for all m,n€TJ and v €T, we have m < v xn=v €7J), such that for all
g €x+ CIJ1, the operator oy is a grid-based operator on C'[JT.

b) With J as in (a), show that the operators C[J1? — C[IJ3T; (e, J) —
(x+¢e)o(x—08)—z and CIIN — CIIT;e— (z+¢)™ —z are grid-based.

6.4 Atomic decompositions

6.4.1 The space of grid-based operators

Let Z(M, ..., M,,, N) be the space of strongly multilinear operators
®: My X - X My, — N. Then Z(M, ..., M,,, N) is clearly a C-module.
More generally, a family (®;);c; of elements in Z(Mj, ..., M,,, N) is said
to be summable, if for all 1 € # (M), ..., Fm € % (M,,), we have

I1 ®(#F,.... Fn) € Z(N).

icl
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In that case, we define the sum ), _, ®;€ Z(M,..., My, N) by

Vi (e fm) — Y Bilfrseens fin)-
iel iel
This gives £ (M, ..., My, N) the structure of a strong C-module.
Similarly, let ¢(C [T, C [NT) denote the space of grid-based operators
O: CIOMT — CMNT. This space is clearly a C-module. A family (®;),cs €
G(CIMD, CINT)’ is said to be summable, if for all F € . (CI[IMT), the
family
(,i(f1-0s fi))jed ieN, (fr,., i) €Fi
is a grid-based family. In that case, the sum
DB f > By(f)
jeJ jeJ
is a grid-based operator and ¢ (C [9T,C INT ) is a strong C-module for this
summation. In particular, we have
P=P)+ P+ Py +--- (65)

for all ® € Z(CIMI, CINT). We call (6.5) the decomposition of ® into
homogeneous parts.

6.4.2 Atomic decompositions

Let My, ..., M,,, and DT be monomials sets. Given m; € My, ..., m,,, € M,,, and
n €N, the operator

Qe C LT X - x C M, D — CIND
with
Qm1,...,mm,n(f1a ceey fm) = Cfl,m1 fm,mmn

is an m-linear grid-based operator. Operators of this form, which are said
to be atomic, form a strong basis of Z(CIM.1, ..., CIM, T, CIND),
since any operator ® € Z(C[9M1, ..., CI[9M,, 1, CIYT) may be uniquely
decomposed as

= Z (I)(mlv"'7mm)an1,...,mm,n- (66)

myEMy,..., My €Ny
neNn

We call (6.6) the atomic decomposition of ®. More generally, an atomic family
is a summable family A = (cy Qa)ac.a, with ¢, € C and Q, =0
where iy 1, ..., la,m €9 and 0, €N.

Assume now that C' O Q. Given a grid-based operator ®: C[9M1 —
C'[N, let the ®; be as in proposition 6.10. Then we have

~ /\
b = Z @i(mh---,mi)n le,‘..,mi,n (6-7)

my---m; EM* neN

ia,lw--:ia,rmUa’
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and we call this formula the atomic decomposition of ®. More generally,
a family A = (¢q Qa)aca, where ¢, € C and Q, = 2 is called

ia, 1y i, (als0ar
an atomic family, if the family A = (co Qa)ac.a is summable in ¢(C [T,
CInd).

Since the ®; in (6.7) are symmetric, the atomic decomposition is slightly
redundant. Let ~ be the equivalence relation on 9t*, such that my --- m; ~
ny -1y if and only if j =4 and there exists a permutation of indices «, such
that n; =mg ;) for all i. Given me IM*/~, m;---m,, €m and n€ N, we define

—

Clearly, Q4 » does not depend on the choice of m; ---m,, € m and operators of
the form Q4 , will be called symmetric atomic operators. Setting

o)=Y di(my,.,my),
my-em;EM
for all m € 9MM*/~, the decomposition
o= ) () Vin
MEM*/~ nEN

is unique. We call it the symmetric atomic decomposition of ®.

6.4.3 Combinatorial interpretation of atomic families

Consider an atomic family A with Q,: C [9]] lal 5 O INT for each a € A.
We may interpret the {2, as combinatorial boxes with inputs iy 1,...,1a,|a| €M
and output 0, € M. We define a partial ordering on A by a < o’ << 0, < 04
Given a subset & of MM, we denote by Ag the atomic family of all « € A with
{ia,15.-110,ja} € 6. Finally, given a monomial set 91, we denote by Doy the
atomic family (Qw,m)meom, so that > Dy is the identity operator on C'[9T.

Remark 6.11. A convenient way to check whether a family A= (¢, Qa)acAa is
atomic is to prove that for each grid-based subset & C 9t we have

1. The set 0.4 is grid-based.

2. For each n €M, there exist only a finite number of a € Ag with 0, =n.

Consider two atomic families A and B, where Q.: CINT!*l — C[VD and
Qp: C I 1Bl - N for all @€ A and 8 € B. We define their composition
to be the family (¢ Qc)ceaop with formal index set

AOB:{ao(ﬂla"'aﬂhﬂ):
A EAN B, ooy Bla| EBAO =ia 1 A Aog =ia,jal}
and
Cao(B1,...;81a)) — CaCBi ' CBas

an(ﬂl,...,ﬁ‘a‘) = Qiﬁlvl""’iﬁlv‘51""'7iﬁ\a\v17""iﬁ\a\v‘5\04\"00‘.
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We may see the a o (f1, ..., f]o|) as combinatorial structures, such that the
outputs 0g, of the §j coincide with the inputs i, of a (see figure 6.1).
A similar computation as at the end of section 6.3.2 yields:

Proposition 6.12. Let A and B be two atomic families as above. Then Ao B
is again an atomic family and

S AoB = (3 Ao (Y B). O

Bo (01,02,043)

. . . teees

Fig. 6.1. Combinatorial interpretation of the composition of atomic opera-
tors.

Exercise 6.10. Show that the mapping

OLI,...,Lk:C<<Z17~~-azk>> — 3(0[[9)?]],0[[93?]])
f — f(Ll,,Lk)

from exercise 6.1 is a strong C-algebra morphism.

Exercise 6.11. Show that (M, ..., M,,, N) and £ (M; ® -+ ® M,,, N) are
naturally isomorphic as sets. Show that this natural isomorphism also preserves
the strong C-module structure.

Exercise 6.12. Show that an atomic family A is summable, if and only if Ag
is grid-based for every grid-based subset & C 91.

Exercise 6.13. Generalize the theory from sections 6.3 and 6.4 to the well-
based setting.

6.5 Implicit function theorems
Let 2 and 91 be monomial sets which are contained in a common monomial
monoid. Consider a grid-based operator

O:CIMI xCMNN — CId
(f,g9) — @(f,9)
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together with its atomic decomposition ® =73 A. We say that

o s strictly extensive in f if 0, <io,, Whenever i, ;€ 9.

o & is extensive in f with multipliers in a set &, if 0, € iy, € whenever
in, €M

e & is contracting in f if ®(fa,9) — D(f1,9) < fo— f1 for all f1, foe CIMI
and g € C[NT. Here we write f < g if for all m € supp f, there exists an
neEsupp g with m<n.

If ® is strictly extensive in f, then we have in particular

/\
q)(fa g)m = ( Z A{m’em:m’>m}Hm)(f7 g)m

for all fe CIIMT, g CINT and me M. Consequently, @ is also contracting
in f, since ®(fa2, g)m = P(f1, g)m, whenever f1, foc CIIMI, g€ CINT and
m €M are such that fi ,= fa, for all n>m.

Given a grid-based operator ® as above, the aim of the implicit function
theorems is to construct a grid-based operator ¥: C' [01 — C [9M1, such that

(¥(g),9)="¥(9) (6.8)

for all g € CIMT. In the well-based context, a sufficient condition for the
existence (and uniqueness) of such an operator is the strict extensiveness of
® in f. In the grid-based context we need additional conditions in order to
preserve the grid-based property. In this section, we present three possible
choices for these extra conditions, which lead each to a grid-based implicit
function theorem.

6.5.1 The first implicit function theorem

Theorem 6.13. Consider a grid-based operator

O:CIMI xCMNI — CIMI
(f,9) — @(f,9),

which is extensive in f with multipliers in a grid-based set € <1. Then for each
g € CINT, there exists a unique V(g) which satisfies (6.8) and the operator
U: C NI — CIMI is grid-based. Furthermore, for all g€ CINT, we have

supp ¥(g) C (supp (0, g)) €*.
If C 2 Q, then we also have
supp ¥ C (supp @) ™.
Proof. Let &= A be the atomic decomposition of ¢. Consider the family
B=1l4en Bg, where the By are recursively defined by

By = Anm
Bit1 = (A\An)o (Bs11Dy)
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See figure 6.2 for the illustration of a member of B. We claim that B is an
atomic family. Indeed, let & C91 be a grid-based set. Let us prove by induction
over d that

supp o, C & &4 (6.9)

for all ¢ € By,s. This is clear if d = 0. If d > 1, then we may write ¢ =
ao (0, ..., Ba), where iy = 0g, € MM for at least one k. By the induction
hypothesis, we have supp 0, C & ¢?=1 5o that o, € 05, € C 6 2. This
shows that quBg o € 6 €&*. Moreover, given m € G &*, there are only
a finite number of d with m € & &%, It follows that B is an atomic family, by
remark 6.11 and the fact that each By is atomic.

7

Fig. 6.2. Illustration of a member of Bs. The white dots correspond to
elements of 91 and the black dots to elements of 91. The light boxes belong
to A and the dark ones to Dg.

Now consider the grid-based operator
U=>"B:CIMI x CINT —CIMI.

Identifying C IO x C'I[NT and CIIMIINT via the natural isomorphism,

we have
(¥(9),9)=¥(9)+9=(>_ BlIDy)(g),
for all g€ CINT. Similarly, for all (f, g) € CIMI x CINT, we have

(I)rest(fa g) = (I)(fa g) - q)(oa g) = (Z A \ A‘J’l)(fa g)
Applying proposition 6.12, we conclude that

U(g) = (D Bo)(g)+ (D B\Bo)(g)

(> Ax)(9)+ (D (A\ Ax) o (BT Dw))(g)
(0, 9) + Prest(¥(9), 9)

= ®(¥(9),9),
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for all g€ CINI. As to the uniqueness of ¥(g), assume that fi, fo € C I[N
are such that ®(f1, g) = f1 and ®( f2, g) = f2. Then we have

Q(f2,9) = @(f1,9)=fo— fi= fo— f1,

which is only possible if fo= fi.

Let us finally prove the bounds on the supports. The first one follows
directly from (6.9). The second one follows from the fact that the operator
support of an element in B is the product of the operator supports of all
combinatorial boxes on the nodes of the corresponding tree. O

6.5.2 The second implicit function theorem

Theorem 6.14. Consider a grid-based operator
O:CIMI xCIMNI — CIoml
(f.9) — @(f,9)
such that
€ = supp @ U (supp ®2) m U (supp ®3) m?U---

is grid-based and infinitesimal for all m € M. Then, for each g € CINT,
there exists a unique ¥(g) which satisfies (6.8) and the operator U:C [N] —
C M1 is grid-based.

Proof. Let g€ C [, with support & =supp g. There exist finite sets § and
D <1, such that E CFD*. Let

@:( U em>+©*

meg

¢ |J e

meg(DUE)*

Then we have € <1 and

We now observe that ®(-, g) maps C' [§ (D UE)*T into itself, so we may apply
theorem 6.13 to this mapping with the same &. This proves the existence and
uniqueness of ¥(g). With similar notations as in theorem 6.13, it also follows
that B is again a grid-based atomic family, so that ¥ =" B is a grid-based
operator. ]

6.5.3 The third implicit function theorem

Theorem 6.15. Consider a grid-based operator

o:CIMI x CINT — COMI
(fr9) — @(f,9),
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which is strictly extensive in f. Assume that
& =supp PoUsupp P, U---

is grid-based and & < 1. Then for each g€ C I[N, there exists a unique V(g)
which satisfies (6.8) and the operator ¥:C' I[NNI — CIIMI is grid-based.

Proof. With the notations of the proof of theorem 6.13, let us first show that
Bg is a well-based family for every grid-based set & CO. For each o € A, let
@ =04/(ia,1° ia,|a|) €B. To each 8 € Bg, we associate a tree 3 € (611&)T,
by setting 3 = o0 if € Dn1l By, and

ao(ﬁh"'aﬂ\od): o
SN
Br - Bla

for ao (B,..., Bla|) € B\ Bo. Since @ is strictly extensive in f, this mapping is
strictly increasing. Furthermore, the inverse image of each tree in (S1I&) 7 is
finite and (S11®) T is well-based by Higman’s theorem. This together implies
that Bg is well-based.

Let us show that Bg is actually a grid-based. For each tree 8 € (G118)T,
let 05= Haeé l(a), so that 05 =o0p for all € B. Now consider

T= {(07 ) (Blv'-'v Bl)) €6 x (6H6)T* 0a Ugl"' 051 =< 1}

Let § be the finite subset of <-maximal elements of ¥. Notice that we may
naturally interpret elements

(@,(Br,s B)) €G X (G1IG) T
as trees

a e6Gus)’.

B By
Given a grid-based set A and m € 2, let us denote

resmm:{%:neﬁl,n<m}.
Consider
E=[&U{oz:T €F}U U resss [ |\ {1}

SETF
[€l(3)

We claim that € satisfies the hypothesis of theorem 6.13.
Indeed, consider ¢ =ao (f1,..., B|a|) € Bs N Bg and let us show by induction
over d that o¢ €i. 1 € for every k with og, € M. Now

¢ = (& ) (617---7 Bk*l? Bk{»lﬂ"'a 6|a\)) <<’
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for some ¢’ € F. In other words, there exists an embedding ¢: ¢’/ — ¢ which
fixes the root. Consider a factorization ¢ =)o ¢’ of this embedding through
a tree @ with og € i¢ i €, such that a €im ¢’ for all a € w with I(¢(a)) #(a),
and such that

dy=card{be:Vaew,b=1(a)=1(b)#1(a)}
is minimal. Assume for contradiction that d, 0. We distinguish three cases:

Case 1. [(¢(a))+#(a) for some a €w.
Consider the tree &’ with the same nodes as @ and l5/(b) =15(b) if b£a
and l;/(a) = l:(¢(a)). Then we may factor ¢» = £ o 1)’ through &’ with
55251/,—1 and 05/ €05 ECH 1 C.

Case 2. arity(¢(a)) > arity(a) for some a € @.
Let £ be a child of %(a) whose root is not in the image of . Then we
may factor 1= £ o1’ through a tree w’ which is obtained by adding & as
a child to a at the appropriate place, in such a way that d¢ =d, —card <.
Moreover, since k € By U --- U By_1, the induction hypothesis implies that
0z €€, so that o5 =0505 € i§7k ¢.

Case 3. we are not in cases 1 and 2.
Since 4 # 0, there exists a b € ¢ \ im ¢ with a successor ¢ = ¥(a). Let
K1,...,kp be the children of b, so that c is the root of &; for some i. Consider
the tree w’ which is obtained by substituting the subtree A of @ with root
a by

X/

///I\\\

Ri—1 A Ri41 -

By the induction hypothesis, we have o5/ €05 &, so that 05 €05 ECic 1 €.
Furthermore, we may factor ¢ = ¢ o 1’ through @’ in such a way that
§¢=0y+card X —card \ .

In each of these three cases, we have thus shown how to obtain a factorization
p =& o (Y o) through a tree w’ with d¢ < dy and o5/ € icp €. This
contradiction of the minimality assumption completes the proof of our claim.
We conclude the proof by applying theorem 6.13 and by noticing that B is
grid-based, so that ¥ =>" Bisa grid-based operator. g

Exercise 6.14. Give an example of a contracting mapping which is not strictly
extensive.

Exercise 6.15. In the first implicit function theorem, show that the condition
that f has multipliers in a grid-based set € <1 cannot be omitted. Hint: consider

the equation f(z)=z+ f(v/z).

Exercise 6.16. Give an example where the second implicit function theorem
may be applied, but not the first. Also give an example where the third theorem
may be applied, but not the second.
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Exercise 6.17. Prove the following implicit function theorem for well-based
series:

Let ®: C[[OM]] x C[MN]] — C[[M]]; (f, g) — F(f, g) be a well-
based operator which is extensive in f. Then for each g € C[[91]],
there exists a unique ¥(g) which satisfies (6.8) and the operator
O: C[[N]] — C[[9N]] is well-based.

6.6 Multilinear types

One obtains interesting subclasses of grid-based operators by restricting
the homogeneous parts to be of a certain type. More precisely, let 9t be
a monomial monoid and let 7 be a set of strongly multilinear mappings
®: CIIMT 1®1 — CIIMT. We say that 7 is a multilinear type if

MT1. The constant mapping {0} f is in 7, for each fe CIIMI.
MT?2. The projection mapping 7;: CIIMI* — CIMT is in .7, for each

ie{l,....k}.
MT3. The multiplication mapping -: C [9M12 — C [M] is in 7.
MT4. If U, ®q,..., @‘\m € 7, then Yo (dyq,..., @‘\m) €.
Given subsets Uy, ..., 0,201, ..., 200, of M, we say that a strongly multilinear
mapping

O: CIY0 x--- x CCY, 0 — CIWT x--- x CC[W, ]

is an atom of type 7, if for i=1, ..., w, there exists a mapping ®;: C [T ?—
CIMI in 7, such that m; o ® coincides with the restriction of the domain
and image of ®; to C [0 X --- x C[W, I resp. CI[2,; 1. We say that o is

of type .7, if ® is the sum of a grid-based family of atoms of type 7. A grid-
based operator

O: CTYU x--- x CIY, I — CIW T x--- x CIW,, 1
is said to be of type .7, if ®; is of type .7 for all i.

Ezxzample 6.16. For any set .% of grid-based operators C'[9M] — C[9%1,
there exists a smallest multilinear type 7 = () which contains .. Taking
T =C 9T to be the field of grid-based transseries, interesting special cases
are obtained when taking ./ ={9} or ./ ={[ }. Grid-based operators of type
({0}) resp. ({[ }) are called differential resp. integral grid-based operators.

Exercise 6.18. Show that compositions of grid-based operators of type 7 are
again of type 7.

Exercise 6.19. State and prove the implicit function theorems from the pre-
vious section for grid-based operators of a given type 7.

Exercise 6.20. For which subfields of T and g € T>'~ do the grid-based
operators of types ({o,4}) and ({0}) coincide?
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Linear differential equations

Let L=L, 0.+ + Lo€ T[J] be a linear differential operator with transseries
coefficients and g € T. In this chapter, we study the linear differential equation

Lf=g. (7.1)

In our grid-based context, it is convenient to study the equation (7.1) in
the particular case when Ly, ..., L, and g can be expanded w.r.t. a plane
transbasis 9B. In order to solve the equation f " =1, we necessarily need
to consider solutions in C[z]. Therefore, we will regard L as an operator on
CILzNBCT = C[z] [BCT. Assuming that we understand how to solve (7.1)
for Le CIBC1[0] and f, g€ CLzNBCT and assuming that we understand
how this resolution depends on B and upward shiftings, the incomplete trans-
basis theorem will enable us to solve (7.1) in the general case.

A first step towards the resolution of (7.1) is to find candidates for dom-
inant terms of solutions f. It turns out that the dominant monomial of L f
only depends on the dominant term of f, except if 7€ c* 91, where $y, is
a finite set of “irregular” monomials. The corresponding mapping T7:7f+— 7L ¢
is called the trace of L, and its properties will be studied in section 7.3. In
particular, we will show that T7, is invertible.

In section 7.4 we will show that the invertibility of the trace implies the
existence of a strong right inverse L' of L. Moreover, the constructed right
inverse is uniquely determined by the fact that (L' g), =0 for all h € H, (for
which we call it “distinguished”). Furthermore, we may associate to each h € H,
a solution A" =h — L~1 L ~b to the homogeneous equation Lh=0 and these
solutions form a “distinguished basis” of the space H, of all solutions.

Now finding all solutions to (7.1) it equivalent to finding one particular
solution f=L~! g and the space H, of solutions to the homogeneous equation.
Solving the homogeneous equation Lh =0 is equivalent to solving the Riccati
equation

Ri(f)=0, (7.2)
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which is an algebraic differential equation in f = h' (see section 7.2). In
section 7.5, we will show that (7.2) is really a “deformation” of the algebraic
equation L, f" 4 --- + Lo = 0, so we apply a deformation of the Newton
polygon method from chapter 3 to solve it. In fact, we will rather solve the
equation “modulo o(1)”, which corresponds to finding the dominant monomials
in 91, of solutions to the homogeneous equation (see section 7.6).

Of course, an equation like f” + f = 0 does not admit any non-trivial
solutions in the transseries. In order to guarantee that the solution space Hy,
of the homogeneous equation has dimension r, we need to consider transseries
solutions with complex coefficients and oscillating monomials. In section 7.7
we will briefly consider the resolution of (7.1) in this more general context. In
section 7.8 we will also show that, as a consequence of the fact that dim Hy, =r,
we may factor L as a product of linear operators.

7.1 Linear differential operators

7.1.1 Linear differential operators as series

Let T = CI%1 = CMzIl be the field of grid-based transseries in x over
a real-closed exp-log field of constants C. In what follows, it will often be
convenient to regard linear differential operators L= L, 0" +--- + Lo € T[] as
elements of C[0][[%1. In particular, each non-zero operator L admits a dom-
inant monomial

0, =max< {01,,...,0L,.}
and a dominant coefficient
cL=Lo, =Ly, 0"+ 4 Lo, €C[0],
for which we will also use the alternative notation
L.=cr.
Similarly, the asymptotic relations <, <, <¥, < etc. extend to T[9]. In order

to avoid confusion with the support of L as an operator, the support of L as
a series will be denoted by suppger L.

Proposition 7.1. Given K, L€ T[0]* with L<1, we have
CKIL—=CKC],.

Proof. Without loss of generality, one may assume that K <1, modulo division
of K by 0g. Then

KL=cgecr+ Z Z Z (]:) Ki,ij,nmn(i*’“)akﬂ.

0<7,7 0<k<i mx1,nx1
m<1lvn<1

Now each term in the big sum at the right hand side is infinitesimal. O
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7.1.2 Multiplicative conjugation

Given a linear differential operator L € T[] and a non-zero transseries h, there
exists a unique linear differential operator Ly, such that

Lun(f)=L(h f)

for all f. We call L a multiplicative conjugate of L. Its coefficients are given

by .
Lani=Y (z) Ljhi=0. (7.3)

j=i
Notice that L><h1h2: L><h1,><h2 for all hl, ha € T#

Proposition 7.2. If h» x, then
L><h =p hL.

Proof. From h » x it follows that 2 =<;, h for all i. Then (7.3) implies
Lyn <n h L. Conversely, we have

L=Lyun,/m <h h™' Ly 0

7.1.3 Upward shifting

In order to reduce the study of a general linear differential equation L f =g
over the transseries to the case when the coefficients are exponential, we
define the upward shifting L1 and downward shifting L| of L to be the unique
operators with

LN = &N
(LH(f) = (LHL

for all f. In other words, the resolution of L f = g is equivalent to the resolution
of (LT)(f1)=g7. The coefficients of LT and L] are explicitly given by

(L1)i = Zsj,ie*jw (L;1), (7.4)
(L) = Zsj,ixi(l/jl)a (7.5)

where the s; ;,.5; ; € Z are Stirling numbers of the first resp. kind, which are
determined by

flogz)) = zj:sj,ix_jf(i)(logﬂf)-
i=0
J

NP = 3 86w fO(er).

0
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Upward and downward shifting are compatible with multiplicative conjuga-
tion in the sense that

Lth = (LT)th
Lxhl = (Ll)xhi

for all h € T#. We will denote by T1; resp. |; the [-th iterates of T and |.

Exercise 7.1. Let g€ T>'~ and L € T[0].
a) Show that there exists a unique Lo, € T[0] with

Log(fog)=L(f)oyg
for all feT.
b) Give an explicit formula for L, ; for each i € N.
c) Show that L+ Lo, is a ring homomorphism.

Exercise 7.2. Let ¢ € T# and § = ¢ 0. Denote by ¢T the field T with

differentiation 0.

a) Show that each L € (¥T)[d] can be reinterpreted as an operator L¢ € T[d)].

b) Given L € T[d], let 0,(L) € (¥T)[d] be the result of the substitution of &
for 9in L. If [ ¢~'€T>", then show that 0,(L)?= Loy ,1.

Exercise 7.3. Let g€ T>>" and ¢=1/¢’, so that (T,0)X (Tog,pd); fr— fog.
a) Given L € P . (see exercise 6.3), let 0,(L) =3 _\ Ln (9 0)". Show that
0,(L) naturally operates on T yes. Also show that the space Zr  , of all
such operators only depends on .
b) Same question, but for L € ..
¢) Under which condition on g can the operator L = 0,(L) in either of the above
questions be rewritten as an operator of the form ZneN L,om?

Exercise 7.4. Let T°=C[%°1 ¢ {C, T} be a flat subspace of T.

a) Extend the definition of 21+ in exercises 6.3 and 7.3 to the present case.

b) Let T” C T2 be two flat subspaces of T of the above type. Characterize
@Tbl n _@Taz.

Exercise 7.5. Let ge T~".

a) Determine ¢ € T so that o, =e*®?.
b) Given A € C, construct the M-th iterate g°* of g.
¢) Determine the maximal flat subspace T®=C [%"] of T such that o, € Zps.

Exercise 7.6. Let g1,..., gr €  + T e+, <. Consider an operator

k
3
i=1

s

Ti—
Ai,j Og; o,
0

where Aiyj € T«em. 7=

a) Show that L € Pt . and let Lo, L1, ... be such that L=3" . L, 0™
b) Assuming that L # 0, show that there exists a v < ry + - + 7 with
0r, =max,eN0r,-
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Exercise 7.7. Let T’ be as in exercise 7.3(a) or (b), and A€ C.

a) Given E=3% . E,(p0)" € P with 9p=max0g, <1 and Ep<1. Show
that
_1\n+1
log(1+E) = > %E"e%,
n>1

1 n
expE = ZEE € Dr»

n=0
A
A n __
(1+E)Y = HEZN <n)E =exp(Alog (1+ E)) € D
are well-defined.
b) Let ¢ € T»7> £=1logp, K=¢+E and L=log (1+ ¢~ ' E). Show that
1 1 1

exp (Aog (K)

log (K')
KA

are well-defined.
c) Given a transmonomial m € ¥ with m > 1 and m » z, show that

OMm)=m (m~Lom)MN1)

is well-defined. Extend the definition of 8* to Ty 4 , and show that 97!
corresponds to the distinguished integration.

7.2 Differential Riccati polynomials

7.2.1 The differential Riccati polynomial
Given a transseries f € T, we may rewrite the successive derivatives of () as
FO=U(f f, (7.6)
where the U; € Z{F'} are universal differential polynomials given by
Uy =1
U1 = FU+ U]

For instance:

Uy = 1
U, = F

Uy = F?2+F'

U3 = F3+3FF' +F"

Uy = F*4+6F*F +4FF" +3(F')2+F"

In particular, for each linear differential operator L = L, 0" +--- 4+ Lo € T[],
there exists a unique differential polynomial Ry = L, U, + - + Lo Uy € T{F'}
such that

L(f)=Rc(f") f (7.7)
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for all feT. We call Ry, the differential Riccati polynomial associated to L.
Notice that Ry is uniquely determined by the polynomial

RL,alg:LrFr‘f'"“FLOET[F],

which is called the algebraic part of Rp.

7.2.2 Properties of differential Riccati polynomials

Let P € T{F } be a differential polynomial with transseries coefficients. Like in
the case of differential operators, we may consider P as a series in C{F } [¥1,
where T denotes the set of transmonomials. Given ¢ € T we also define Py,
to be the unique differential polynomial in T{F'}, such that

Pio(f)=P(e+f)

for all f€T. We call Py, an additive conjugate of P. Additive conjugates of
the differential Riccati polynomials correspond to multiplicative conjugates of
the corresponding linear differential operators:

Proposition 7.3. For all L and ¢ € T#, we have
Ry, t=R,1p, . (7.8)

Proof. For all f €T, we have
(e Lxo) ()= "Ll f)=e ' Re(fT+ o) o f =Ry 4 ,1(f),

so (7.8) follows from the uniqueness property of differential Riccati polyno-
mials. U

Given a linear differential operator L =L, 0"+ --- + Lo € T[0], we call
L'=rL,0" "'+ + L €T[9]

the derivative of L.

Proposition 7.4. For all L € T[J], we have

_ ORp .
Ry = 5F (7.9)
Rprag = R g (7.10)
Proof. We claim that % =i U;_1 for all 4 > 1. Indeed, % =1 and, using
induction,
3U¢+1 oU; 0?2 U; 0? U; i
% = U,+F==2 g4 22t p@®
or = Ut et arart Tt gpiar
- , . ] .8U¢_1 ’ . (9Ui_1 (i)
= U1+ZFU1—1+Z 8F F++ZWF

= Ui+iFU;_1+iU/_4
= (i+1HU;
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for all i >2. Our claim immediately implies (7.9) and (7.10). O

Corollary 7.5. For all L=L, 0"+ -+ Lo € T[9] and ¢ € T, we have

Rty = Ry (9)Up+- + Ri(p) U (7.11)
R tpatz = - Ryo(@) F 4+ Ri(9). (7.12)

Exercise 7.8. Prove that
" /n
Un(F+G)=Y" (i)Ui(F) Un—i(G).
i=0
Exercise 7.9. Show that

Rpy = Rplye=;
RLl = RLLX:m

where Ry 7T and Ry | are defined in section 8.2.3.

7.3 The trace of a linear differential operator

Let L: C I[N — CINT be a linear grid-based operator. A term v =cm €
C7 9 is said to be reqular for L, if Lf is regular for all f € CIMI with
7(f) = v and if 7(L f) does not depend on the choice of such an f. In
particular, a monomial in 9 is said to be regular for L if it is regular as
a term. We will denote by Rz, C 9N the set of all regular monomials for L and
by $1, €N the set of irregular monomials. The mapping

TL:C* R, — C*M
v — 7(Lv)
is called the trace of L. For all vy, vs € CF Ry, we have
V] I Vg = TL(Ul) < TL(UQ). (713)

Given a linear differential equation L f = g over the transseries T with g0,
finding a term v with T7(v) =74 corresponds to finding a good candidate for
the first term of a solution. In the next section we will show that this first
term may indeed be completed into a full solution.

7.3.1 The trace relative to plane transbases

Let L € CIBT[0] be a linear differential operator, where B = (by, ..., b,,) is
a plane transbasis. We will consider L as a grid-based operator on C' [N BT,
so that its trace 77, =T7.» is a mapping from N\ \ 91, into 2NBC,



152 7 Linear differential equations

Proposition 7.6. Given z'm € 2N BC, we have

r'MmENL <= Lym «(2")=0.

Proof. Modulo replacing L by 8(Lxm) ! Lxm, we may assume without loss
of generality that m =1 and L < 1. Let j be minimal with L, ;# 0, so that
L.(z%) =0 if and only if i < j.

Now i < j implies L(z%) = (L — L.)(2") <e= 1. Furthermore, L, -a=(1) <
e~ 7 for all but the finite number of « such that L.(e~**)=0. It follows that
L(z") < L(e=®) for a sufficiently small o> 0, whence z° € $1.

If i > j, then L.(2%) <2'~J. Given n€ 2N BC with n < 2%, we have either
N < 1 or n = 2% with k < 4. In the first case, L(n) = Lyu(1) < Ly <es 1.
In the second case, we have either k¥ < j and L(n) <e= 1 or & > j and
L(n)=<2*=7 <27, So we always have L(n) <x'~7. Hence z° € §, by strong
linearity. O

Proposition 7.7. For every m € BC there exists a unique n € BC with
Lyn=m.

Proof. Let m € B¢ and consider v = m/0oy, = b{" --- b%". We will prove the
proposition by induction over the maximal ¢ such that «;# 0. If such an ¢ does
not exist, then we have nothing to prove. Otherwise, proposition 7.2 implies

~ m m X
v:= =p, —— =pM...p%i T,
(L) UbFR(L)
It follows that v = b‘f‘l bf"_i’ll for certain @y, ..., &;_1. By the induction

hypothesis, there exists an it with L yoi  5=<m. Hence Lyn=m for n=nbj".
Furthermore, given ¢ € B¢ \ {1}, we have Ly, =<, m e, m. This proves the
uniqueness of n. O

Proposition 7.8. The trace Ty, of L is invertible.

Proof. Let 7 =ca'm € 2N B, By the previous proposition, there exists a
unique A with Lz < m. Modulo the replacement of L by m~! L, ; we may
assume without loss of generality that m = n = 1. Let 7 be minimal with
L. j#0. Then

1+ _E _ et i
L(JZ j)_k>- L*,k 8$k +OEZ(1)_TL*7]J: —|—O(J) )
Setting =7
ct! i
=1 J,
(Z+])'L*7J

we thus have T (v) =7. Notice that proposition 7.6 implies 2°t7 ¢ 6. a
Ezample 7.9. Let B = (e,e°") and consider the operator
L=e"2203-2e7%0%4+0+1.
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Given m=¢®*“+% and K =m~! Ly, we have
K = e 2293+
((B3a—2)e " +3be 2%) 0%+
(1—4a+3a?+(6ab—4b+3a)e " +3b%e 27) 9+
(a®—2a*+a)e*+3a%b—4ab+b+3a®>—2a+1+
(3ab®>—2b?+3ab+a)e T+ b3e 2.

Now the following cases may occur:

Case [7e CK :Z:imEfJL TL(:z:im)
ad{0,1} |e®|a(a—1)2 no a(a—1)%e*z'm
a=0,0#-1]1|b+140 no (b+1)z'm
a=0,0=_1|1 p) =0 iz’ ‘m (if i#0)
a=1 1 2 no 22'm

7.3.2 Dependence of the trace on the transbasis

Let L € CIB“I[0], where B is a plane transbasis and let us study the
dependence of the trace T, =17, of L on B. Given a plane supertransbasis

B of B, proposition 7.6 implies that SﬁL;@ NzN|C = ;e and TL;&B clearly
coincides with 77, on C7* 2NBC \ .. Similarly, if B is a second transbasis
such that C [2NBT and CL[zNBCT coincide as subsets of T, then 8=
(00T7)(Hr;») and Ty goTr=TroTy,s, where I.C [N BT — C 2N BT
denotes the “identification mapping”.

Proposition 7.10. Let B = (¢%, by, ..., by1). Then e =Hr,s] and
Tp.8(T)=Tr;m(v)T forallve CF (2NBC\ Hr.m).

Proof. We clearly have
Tpps(vl) =7(L1(01) =7(L(0)T) =7(L(v)T =Tr;m(v)1

for all v € C7 (2N B\ H1.). Given

n=(logz)/z'm e (log z)Nz¢ B,

let us show that n € Hr s < nl € H,,.5. Modulo replacing L by
(L xm) ! Lym, we may assume without loss of generality that m=1and Lx<1.

Assume that n € $.5, so that j = 0, i € N and L.(z°) = 0. Then
L =L, + 0c=(1) implies LT = LT + 0ge=(1) and LTy eic = LyT xoiz + 0ge=(1).
Hence LT yeiz o« =Ly xeie . Since Ly (z*) =0, we also observe that Ly ;i o . =0,
whence LT,z 0 =0. But this means in particular that

LT xeie :L*Txe”7*(1) = L*Txe“‘,b(L*TXCm),O:O-

In other words, nf € ;.4
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Assume now that n ¢ .9 and let k be minimal with L, ; # 0. Then
L.n)=n® =, 2% L0 so

L, Xeim(xj) = n(k)T e e(iik)w-
On the other hand, L,]=<e %%, whence L, iz < e’ )% This is only possible
if LT yeie<eli=R)% and LT xeiz «(x7)#0. In other words, nl ¢ 1.3 O
Proposition 7.11. Let B be a transbasis of level 1—I < 1 containing

log;_1 z, ..., z and denote Gy = (log; )N BC. Let L € CIBC] and let
1. be the set of singular monomials of L as an operator on C[Sx1l. Then

Nrs=9rNGx.

Proof. Clearly, 5.3 € 91N Sx. Assume for contradiction that there exists
anme (HLNGx)\ Hr,». Then there exists an n€ T with n<m and Lm =< Ln.
Let 9B’ be a super-transbasis of 9B for n, of level 1 — I, and which contains
log;_1x,...,x. Setting B = {logy/—12,...,log; x }, proposition 7.10 now implies

NL1ss1,N6w1,=91,.91, V681, =918 lv—1=9810
Hence, mTl/ ¢ ﬁLTM%,Tl’ so that (Lm)Tl/ = LTZ/(mTl/) - LTl’(nTl’) = (Ln)Tl/.
This contradiction completes the proof. O

Proposition 7.12. Let L € T[B]7é be a linear differential operator on T. Then
the trace T, of L is invertible.

Proof. Given 7€ C# %, the incomplete transbasis theorem implies that there
exists a transbasis 8 for 7 like in proposition 7.11. By proposition 7.8, there
exists an v1; € eN B\ Hr1,.01, with Tpp,(v1;) =71, By proposition 7.11,
we have v e C7 Ry, and Ty(v) =T, (v]) 1= O

7.3.3 Remarkable properties of the trace
Assume again that L € C [B°] (9], where 9B is a plane transbasis.
Proposition 7.13. The set

_ (Lxm)
e
is finite.
Proof. Considering A1, ..., A, as indeterminates, the successive derivatives of
= Db} - b\ satisfy

m® /m=U;(A b] 4+ + Aubl) € C[A, ..., A [BCT,

where the U; are as in (7.6). Consequently, we may see

p=tom_ ZZ( ) LU (1) &'
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as an element of C[\y, ..., \,] [B1[9] for each i.

Assume for contradiction that § is infinite. Since § C suppser I:, there
exists an infinite sequence vy > vy > --- of elements in §. For each v;, let
n; = b - b2 be such that v; = 0(Lxy,)/n;. Now each v; induces an
ideal I; of ClAy, ..., Ay], generated by all coefficients of Ly with o = v;.
We have Z; C Z; C - and each (@;11,1, ..., Qi41,n) 1S & zero of Z;, but not
of Z; 1. It follows that Z; & Za & ---, which contradicts the Noetherianity
of C[A1,..., An)- d

Corollary 7.14. There exist unique strongly linear mappings
A:CLzNBO\H 1 — CLaNBT
AL COI2NBCD — CI2NBC\ 9.0
which extend Ty, and T; . Furthermore,
a) suppAC{l,....,27"}F and supp A~ C{l,...,2a"} F L.
b) Ta=Ty, and Ta—=T7 " O

Proposition 7.15. Given K, L C BT (0", we have

Arr=9 1T, (HK))
and
Tkr,=TkgoTy.

Proof. Let m € My \ o(T; ' ($K)). Then for all n < m, we have Ln < Lm
and KLn < KLm. By strong linearity, it follows that KL f < KLm for
all f € ClzN BT with f < m. This shows that m € Ry and Hrp C
H (T H(9k))-

Conversely, let m € §;, and assume that Lm # 0. Then Ln > Lm for all
n<m with n>= 77 '(7(Lm)). If 27 v € H, then proposition 7.6 implies i < r
and z7v € §y, for all j <i. Hence T} *(7(Lm)) <e=m and we may choose n so
that n ¢ TL_l(f_)K). But then KLn> KLm and m € Hg . If m € §Hy, satisfies
Lm =0, then we clearly have m € k.

Similarly, let m = 2% v € g N im T, and denote @ = ?(7; *(m)). Then
Kn = Km for all n < m with Km # 0 = n = T (7(Km)). Moreover,
we may choose n € Ry such that n = (supp L m)<, and K(x7 v) # 0 =
n > T (7(K (27 v))) for all j <i. This ensures that Kn > KL m. Denoting
fi=0(T7 '(n)) <, we conclude that KL A=< Kn> KL, whence i € k.

As to second identity, let v € CF Rpp. Then Lv ~ Tp(v) and Tp(v) ¢
C# §g implies KLv ~ K(T1(v)). Hence Tk (v) =7(KLv) = 7(K (T1(v)) =
TK(TL(’U)). O

Exercise 7.10. Prove the propositions of section 7.3.3 for operators L € T[J].
Exercise 7.11. Generalize the results from this section to the well-based setting.

Exercise 7.12. Let L=140,41 —20;4: € ZT,,.. Determine Ry.
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7.4 Distinguished solutions

Let 9t and 91 be monomial sets, such that 91 is totally ordered. Given
a linear grid-based operator L: CIIMI — CINI and g € CINI, we say
that f e CI[OMI is a distinguished solution to the equation

Lf=y, (7.14)

if for any other solution f € C [9MT, we have fa(f _pn=0. Clearly, if a distin-

guished solution exists, then it is unique. A mapping L~': C NI — C [T
is said to be a distinguished right inverse of L, if LL™' =1d and L™! g is
a distinguished solution solution to (7.14) for each g € CINT . A distinguished
solution to the homogeneous equation

Lh=0 (7.15)
is a series h € C' [T with ¢, =1 and ha(fi) =0 for all other solutions & with
0, #0p,. A distinguished basis of the solution space Hy, of (7.15) is a strong

basis which consists exclusively of distinguished solutions. If it exists, then
the distinguished basis is unique.

Remark 7.16. Distinguished solutions can sometimes be used for the renor-
malization of “divergent” solutions to differential equations; see [vdHO1b| for
details.

7.4.1 Existence of distinguished right inverses

Theorem 7.17. Assume that the trace Ty, is invertible and both Tt and TL_1
extend to strongly linear mappings

A:CIMR D — CIN
A~L.Ccl — CINR.T.
Assume also that supp L and supp A~! are grid-based. Then
a) L admits a distinguished and grid-based right inverse
L= NI — CIR.I.
b) The elements hY = — L=' Ly with b € H1 form a distinguished basis
fO’I" HL.

Proof. Let R =L — A. Then the operator R A~! is strictly extensive, and
the operator (Id + RA~1) A coincides with L on C'[9.I. Now consider the
functional

(f.9)=g-RA™'.
By theorem 6.14, there exists a strongly linear operator

U=(Id4+RA ) '=Id—RA'+(RAT)2 4+,
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such that ®(¥(g), g) =¥(g) for all g € CINT. Consequently,
L7'=A"1Id+ RA™H)~L.CINT — CIR.T

is a strongly linear right inverse for L. Given h € Hf, we also observe that
0, € 9r; otherwise, 1o, = Tp(m5) # 0. Consequently, f = L~! g is the
distinguished solution of (7.14) for all g € C 91 . This proves (a).

As to (b), we first observe that

LhW=Lh—LL 'LhH=0
for all h € 1. The solution AY is actually distinguished, since
supp h" N $Hr, € {h}
and 0, € 9, for all he Hp. In fact, we claim that
hY ~h. (7.16)
Indeed, if L' LH > b, then we would have 071 Ly €RL, so
Ly<L(L='Lh)=Lh,
which is impossible. Now let h be an arbitrary solution to (7.15) and consider
h = Y hyh.
R heEHL

h = h—L'Lh="Y" hyh".

heHL
Then we have ﬁh = hy for all h € Hz, by the distinguished property of the h?
and (7.16). Consequently, h —h e H, N C IR, T = {0}. This proves (b). O

Corollary 7.18. Let B = (by, ..., b,) be a plane transbasis and let L €
C BT[] be a linear differential operator on CLz™N BCT. Then L admits
a distinguished right inverse L= and Hy admits a finite distinguished basis.

Proof. In view of proposition 7.8 and corollary 7.14, we may apply theorem
7.17. By general differential algebra, we know that Hy, is finite dimensional. [J

Corollary 7.19. Let L € T[0] be a linear differential operator on T. Then L
admits a distinguished rTight inverse and Hy, admits a finite distinguished basis.

Proof. Given g € T, let us first prove that L f = g admits a distinguished
solution. Let B be a transbasis for g as in proposition 7.11 and consider

f=L17"(g11)ls- Then
Lf=Lu(f1)l=L1(L1 (g1)li=g-
From proposition 7.11, it follows that

fo=(LT7 (g11))p1, =0
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for all
heHrNGp=(Hr1,NGst,)li=9r1,;31, L

Hence f is the distinguished solution to L f = g. In particular, the construction
of L=!g:= f is independent of the choice of B. The operator L~ is strongly
linear, since each grid-based family in .% (T) is also a family in #(C[&x1)
for some B as above, and L~ is strongly linear on C'[Sx]l. 0
Ezample 7.20. With L as in example 7.9, we have

L’lew:%ew—i—l—%xe’w—l—(x—l)e’%—i—(—%x—l—%’)e’w—l—---.

7.4.2 On the supports of distinguished solutions

Let %8 = (b1, ..., by) be a plane transbasis and let L € C[$BC1[J] be a linear
differential operator on C [z™N BT of order 7.

Proposition 7.21. The operator support of L™ is bounded by
supp L~ C U 0%,

where
T = {1,...,xr}{ﬁm€’3c};
w = {1,...,xr}< U —SUEFZQYL)X"‘\{H)LJ{;U1,x2,...}
meBC xm

are grid-based sets and 20 < 1.

Proof. With the notations from the proof of theorem 7.17,

supp A=t C U;
supp (RA™Y) C 2.

It follows that

suppL~! = suppA~t(Id+RAH!
C (supp A~ (supp (RAT!))*
C U™
Recall that U is finite, by proposition 7.13. This also implies that 20 is grid-
based. g

Proposition 7.22. Given d € N, let

CIB D [x)qa = {feCIB D [z]:deg, f <d}
C CLzNBCD =C[x][BCT.
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Setting s =card $H;, <r, we have

a) L maps C BT [z]4 into C BT [z]4.

b) L=t maps CIBT[z]q into CIBCD [2]4
¢) H, COIBT [z

Proof. For all f= fyxl+..-+ fo € CIBD[z]4, we have

Lf = wadfd+"'+wafl+Lf0
= (Lf) a4+ LD f)++(Lf)z+ L' fL)+Lfo
= (Lfd)xd+---—|—(L(d—1) fd—|—---—|—Lf1)x—|—(L(d) fa+-+Lfo).

This shows (a). As to (b), let g€ C[B 1 [x]q and consider

D = {g'meRpi<d+card{heH:h=m}};
J = {z'meaNBYi<d+card{h€H: Luy=m}}
(00 L)(D).

Then T}, is a bijection between C# © and C# J and L maps C[®1 into
C[31. By theorem 7.17, it follows that the restriction of L to C[®]1 admits
a distinguished right inverse, which necessarily coincides with the restriction
of L™ to C'[JT. This proves (b), since C [DT C C I[B T [z]4+s and CL[IT D
C [B1 [x]4. Moreover, for each element h" of the distinguished basis of Hy,,
we have h' =h+ L~ Lhe CI[BC1[z];. This proves (c). O

Exercise 7.13. Show that Ty =T} "

Exercise 7.14. Show that we actually have H;, CC[B°1[x],_, in proposition
7.22(c).

Exercise 7.15. Let B and B be plane transbases in the extended sense of
exercise 4.15. Given L € CIBCT[9], let L3 denote the distinguished right
inverse of L as an operator on C [zNB°].

a) Show that L;TBI is the restriction of L,_gl to C LN BCT, if B is a supertrans-
basis of 8.

b) If CIBCT =C BN, then show that Ly = L g if and only if B =BC.

) If B = (e*, by, ..., b, 1), then show that L1 g (gT) = Lz (g)T for all g €
ClIzNBC].

Exercise 7.16. Let T° = C[%"] >z be a flat subspace of T and T* the steep
complement of T°, so that T =T*[%*]. Consider L € T[J] as a strong operator
on T°[Z*D (notice that L is not T’ linear). Let %uL be the set of monomials
m# €% such that 9(L (A m!)) does not depend on A € T*7# and such that the
mapping A — ct(L (M m#)); T»# — T"# is invertible.

a) Exhibit an operator in T°[d] which maps A to cf(L (A m?)) and relate :}%
and Ry.
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b) Generalize theorem 7.17 to the setting of strongly additive operators and
relate the distinguished right inverses of L as an operator on T and as an
operator on T°[T*].

c) Given a plane transbasis B, L € C[B°1[9] and g € CIB 1 [x], give a con-

crete algorithm to compute the recursive expansion of L;TBl g.

Exercise 7.17. Let L € T[0]* and let m be a transmonomial. Prove that

(Lxp) ' = xpt L1
(xm L)™' = L7 tx;?!

Exercise 7.18. Let L € T[9]* and g € T>". When do we have
(L09)71: (Lil)OQ?

Here (L™1),, is the unique operator such that

(L™ Nog(fog)=(L"" f)og
for all f.

Exercise 7.19.

a) Show that (KL) '=L 'Kl for K=0?+¢*" and L=0?+20+¢"
b) Show that (KL)"'# L' K~1 for K=02—¢° and L=0%+2e*0+ 1.
c) Do we always have (L L)™'=L~1L71?

Exercise 7.20.

a) Prove that each non-zero L € P . admits a distinguished right-inverse
on T 4eo.

b) Can $, be infinite?

c) Same questions for L € I ..

Exercise 7.21. Consider an operator L as in exercise 7.6.

a) For any g € Tie,L27 show that ¢! L, is an operator of the same kind.

b) Show that L admits a distinguished right-inverse on T_, .z

c) Assuming that A; ; €T «e-, show that L admits a distinguished right-inverse
on T .2

d) Given_g €T .ow, show that L f= g admits a distinguished solution, which
is not necess_arily grid-based, but whose support is always well-based and
contained in a finitely generated group.

e) Show that (d) still holds if A; ;€T o).

f) Given a general g € T, show that L]T: g admits a well-based distinguished
solution.

g) Give a bound for the cardinality of $.

Exercise 7.22. Let & be the space of partial grid-based operators L: T — T,
such that dom L is a space of finite codimension over C in T. Two such operators
are understood to be equal if they coincide on a space of finite codimension in T.

a) Show that & is a T-algebra under composition.
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b) Show that each L € T[d]# induces a unique operator in & with LL~! =
L1L=1.

¢) Show that the skew fraction field T'(9) of T[0] in & consists of operators
K~'L with K, LeT[d] and K #0. Hint: show that for any K, L € T[9] with
K #0, there exist K,L € T[9] with K#0and KL=LK.

Exercise 7.23. Let L € E[9]7, where E=C [ &I denotes the field of exponential
transseries.

a) If L < Lo, then show that there exists a decomposition
L=cm(1+K;) 1+ K,),

with eme C €, Ky, ..., K, € T(9)< and supp K; < --- <K supp K,,.

b) If ¢>0 and K} is sufficiently small, then show how to define log L.

c) Given A € C, extend the definition of &* from exercise 7.7(¢) to a definition
of L* on a suitable strong subvector space of T.

7.5 The deformed Newton polygon method

Let L € T[9]7 be a linear differential operator and consider the problem of
finding the solutions to the homogeneous equation Lh = 0. Modulo upward
shiftings it suffices to consider the case when the coefficients of L can all be
expanded w.r.t. a plane transbasis ‘B. Furthermore, theorem 7.17 and its
corollaries imply that it actually suffices to find the elements of $y.

Now solving the equation Lh = 0 is equivalent to solving the equation
Rr(f) =0 for f=h' As we will see in the next section, finding the domi-
nant monomials of solutions is equivalent to solving the “Riccati equation
modulo o(1)”

Rp. . 5.(0)=0 (7.17)

for f€ CIBD . It turns out that this equation is really a “deformation” of
the algebraic equation
R aig(f)=0. (7.18)

In this section, we will therefore show how to solve (7.17) using a deformed
version of the Newton polygon method from chapter 3.

7.5.1 Asymptotic Riccati equations modulo o(1)

Let B is a plane transbasis and L € C'[B°1[0)7. We regard L as a linear
differential operator on C[zN BCT. Given v € B U {T}, consider the
asymptotic versions

Rppa(0)=0  (f=v) (7.19)
and

Rpag(f)=0  (f=<v) (7.20)
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of (7.17) resp. (7.18). We call (7.19) an asymptotic Riccati equation modulo
o(1). A solution f € CIB Ty of (7.19) is said to have multiplicity p, if
RL,+f,alg,z‘ < RL,_;,_f for all 7 < M and RL,+f,alg“uX RL,+f.
Given feCIBCT », we notice that for all &,
Uk(f)=fF+0(f57). (7.21)

We say that m € (BY)y. is a starting monomial of f relative to (7.19), if m
is a starting monomial of f relative to (7.20). Starting terms of solutions
and their multiplicities are defined similarly. The Newton degree of (7.19)
is defined to be the Newton degree of (7.20). The formula (7.21) yields the
following analogue of proposition 3.4:

Proposition 7.23. If f € CIM ], is a solution to (7.19), then Ty is
a starting term of f relative to (7.19).

Proof. Assume the contrary, so that there exists an index i € {0, ..., r} with
L;fi<L; f"for all j=i. But then

LiUj(f)~ L f? < Li f'~ LiUi(f)
for all j. Hence

Ryt fa1g0=Ro(f) ~Li f*
and similarly

Rp o+ g8, =Ry (f) < Li f'7
for all j. In other words,
Rp 1y =X Rp 4 ¢ alg0

and RL7+f’*(0)=(L¢fi)*7é0. O

7.5.2 Quasi-linear Riccati equations

We say that (7.19) is quasi-linear if its Newton degree is one (i.e. if (7.20) is
quasi-linear). We have the following analogue of lemma 3.5:

Proposition 7.24. If (7.19) is quasi-linear, then it admits a unique solution
fedl [B°1 -

Proof. Let W={m B 1xm~<v} and consider the well-based operator

¢:.CMYl1 — CIYl
J _(L0+L2U2(f)+---—i—LrUr(f)) .
?

L,
Since (7.19) is quasi-linear, we have

L; nisLln (7.22)
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for all 4 and Ly < L; v. Moreover, on ¥ C {m € B m =< v} we have
(suppd) < vt < v. Since U;(f) — f% is a differential polynomial of degree < i,
we thus have

supp U; < v?, (7.23)

when considering U; as an operator on C' [2U1. Combining (7.22) and (7.23),
we conclude that

supp @1 U (supp @) m U+ U (supp ®,)m" "1 <1
for all m € BC with 1 < m < v. By theorem 6.14, it follows that the equation
o(f)=f (7.24)

admits a unique fixed point f in C'[VT. We claim that this is also the unique
solution to (7.19).
Let us first show that f is indeed a solution. From (7.24), we get

RL 4 f.a1g0=Ro(f)=o0(L1). (7.25)
On the other hand, we have for i > 1:

Ri tfas1 = Ro(f)

= Li+O(La f) 4+ O(Lo fr= Y~ Ly (7.26)
R 450 = Rpo(f)
O(L;) +-+O(L, fr=8) g Lot %, (7.27)

In other words, Ry +y =< L1 and Ry 45 «(0) = 0. Assume finally that
f € CIYVT is such that 1 g 6 = f — f < v. Then (7.25), (7.26) and (7.27)
also imply that

Ry 4 7ago=Brar0)~Lid=Li~Ry 7,0
In other words, R}, | 7 ,(0)+#0. O

7.5.3 Refinements

Given a refinement

f=¢+F (F=9), (7.28)
where 15 ¢ <v and b =0, the equation (7.19) becomes
Rp 7. (0)=0  (f<9), (7.29)

where L ze_“’LXeW satisfles R = Ry +,. We recall that the coefficients of
the corresponding algebraic equation

Ri 4 (f)=0  (f=®) (7.30)
are given by

Ri,alg,i = RL('i)(QO)'
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Let us show that the analogues of lemmas 3.6 and 3.7 hold.
Proposition 7.25. Let o€ C[B°T .. Then the Newton degree of
Ry, 7.00=0 (f<¢) (7.31)
equals the multiplicity of T, as a starting term of f relative to (7.19).

Proof. For a certain transmonomial n, the Newton polynomial relative to
m=10, is given by
NRL,m(C) = NRL,a]g,m(C) = Ld,n/md g4 Lo n.

Then, similarly as in the proof of lemma 3.6, we have

1
Li = —RL<’>(<P)

=,.z(

) L (27 4 0,47 7Y)
- ZIZ( ) (Ly am-++o0(1)) nm=F (c+o(1))F~ I mk—
)

= —N(l m(c)nm?+o(nm?)
for all ¢, and we conclude in the same way. O
Proposition 7.26. Let d be the Newton degree of (7.19). If f admits a unique
starting term T of multiplicity d, then
a) The equation
RL(d—1)7+w7*(0):0 (p<v) (7.32)

is quasi-linear and has a unique solution with p =7+ o(T).
b) Any refinement

F=¢+F (f=D) (7.33)

transforms (7.32) into an equation of Newton degree < d.

Proof. Part (a) follows immediately from lemma 3.7(a) and the fact that
Rpw-1 4, = R(Ldalé Now consider a refinement (7.33). As to (b), let n be

such that the the Newton polynomial associated to m =9 is given by
Nr; () =Ng; . w(c) = Ed,ﬁ/:’nd ¢4+ Lo s

By the choice of ¢, we have

Lici=Rp@-n(p)=Rpa-n 4y aig0 =< Bran 4,1 = Rrwlp) = La

It follows that the term of degree d — 1 in NRE’ﬁI(C) vanishes, so NRL~ .m cannot
admit a root of multiplicity d. We conclude by proposition 7.25. O
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7.5.4 An algorithm for finding all solutions

Putting together the results from the previous sections, we obtain the fol-
lowing analogue of polynomial_solve:

Algorithm riccati_solve
Input: An asymptotic Riccati equation (7.19) modulo o(1).
Output: The set of solutions to (7.19) in C [BCT ...

1. Compute the starting terms c¢3 mq,...,c, m, of f relative to (7.20).

2. If v=1 and ¢; is a root of multiplicity d of Np n,, then let ¢ be the unique
solution to (7.32). Refine (7.28) and apply riccati_solve to (7.29).
Return the so obtained solutions to (7.19).

3. For each 1 <i<v, refine f=¢; mH—f (f <m;) and apply riccati_solve
to the new equation in f . Collect and return the so obtained solutions
to (7.19), together with 0, if Ly=0.

Proposition 7.27. The algorithm riccati_solve terminates and returns
all solutions to (7.19) in C[BCT .. O

Since C is only real closed, the equation (7.19) does not necessarily admit d
starting terms when counting with multiplicities. Consequently, the equation
may admit less than d solutions. Nevertheless, we do have:

Proposition 7.28. If the Newton degree d of (7.19) is odd, then (7.19) admits
at least one solution in C BT ..

Proof. If d=1, then we apply the proposition 7.24. Otherwise, there always
exists a starting monomial m, such that deg Ng, m — val Ng, m is odd as
well. Since C' is real closed, it follows that their exists at least one starting
term of the form 7 = ¢ m of odd multiplicity d. Modulo one application
of proposition 7.26, we may assume that d < d, and the result follows by
proposition 7.25 and induction over d. O

Ezxample 7.29. Consider the linear differential operator
L=e"2"93—2e7°" 9240 — 2e",
with
Rp alg= e 2" 3 _2e " F2 L F —2¢”.
The starting terms for Ry (f) =0 are 7=2e" and 7 =¢*" (of multiplicity 2).
The refinement f=2¢%+ f (f < e%) leads to
RL,+2e’”,alg =F+ O(e2m7e“‘)7

so f=2e" is a solution to (7.17). The other starting term 7 =e°" leads to

Ry feor aig=€ ¢ F3+F2 43" F —e® T7 e e,
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and RL7+eez7alg(f) =0 (f <¢) admits two starting terms 7 = 4 e(®"T2)/2,

After one further refinement, we obtain the following two additional solutions
to (7.17):

)

[ = eem—i—e(em”)/Q—%ez— ;

1
1

— o _lettw)/2 9w 1
f=ce e 7€~ 7

7.6 Solving the homogeneous equation

Let L € CIBC1[0]7 be a linear differential operator on C'LzN BT, where
9B is a plane transbasis. Let fi,..., fs be the solutions to (7.17), as computed
by riccati_solve, and py, ..., its their multiplicities. We will denote

Niw= {eJ 11 am=tel Py el s gme—tel S}

The following proposition shows how to find the elements of $r.9 when we
consider L as an operator on C' [B1:

Proposition 7.30. We have

s =970NaNBC

Proof. Let z'm € 2NB¢ and consider the operator K =m~! L. Then

r'mefH, & c(K)(zH)=0
< i<min{d: K4=< K}
& i<min{d: Rk alg,d < Rx}
& di<min{d: Ry, 4t alga =B tmi)

But min {d: Ry |t aga < Rp ymt} is precisely the multiplicity of mt €
CIB T as a solution of (7.17). O

In order to find the elements of $);, when we consider L as an operator
on T, we have to study the dependence of $)7 .4 under extensions of B and
upward shifting. Now riccati_solve clearly returns the same solutions if
we enlarge 8. The proposition below ensures that we do not find essentially
new solutions when shifting upwards. In the more general context of oscil-
lating transseries, which will be developed in the next section, this proposition
becomes superfluous (see remark 7.38).

Proposition 7.31. Assume that
B = (by,...,b,)

B = {e,017,..., 6,1}
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Then

Proof. Assume that g € C[B°] » is a solution to
RL1,14,4(0)=0 (7.34)

of multiplicity . Let f=g.|/x, a = g= and let k be the multiplicity of f as
a solution of (7.17). We have to prove that

[>0ac{0,...k—1}=1=1.

Let m be <-maximal in supp f \ B¢ and set 1 = Donem
does not exist, then set ¥ = f. Then, modulo replacing L by el? L v, we
may assume without generality that either 9 ¢ B¢ or f=0.

Let us first consider the case when m = 0y ¢ BC. Since all starting

fan. If such an m

monomials for Ry aiz(f) = 0 are necessarily in BC, there exists an 7 with
LjmJ < L;m for all j+i. It follows from (7.4) that

(L1i(mTe®)’ = (Lil +O(Lial) + -+ + O(Ly 1)) mT!
LT m1*
(O(L;1) 4+ O(L,1)) m17
< LiTm7"<(L71); (m]e*)’ (44#1).

In other words, 9, =mT e is not a starting monomial for Ryt ..(g) =0, so
neither (7.17) nor (7.34) holds.

Let us now consider the case when f =0 and observe that k£ is minimal
with L, ,#0. If k=0, then Rr¢ .= Lo+, so we neither have (7.17) nor (7.34).
If a¢{0,....,k—1}, then

Rpt,4a(0) = e @ (LT)(e™")
= (z7*L(zY)7
= LkTe_’”
= L1,

X

(L1); (m1e?)?

so g does not satisfy (7.34). Similarly, if a€{0,...,k — 1}, then Rp1 14(0) <
LyTe % =< L7, which implies (7.34). Moreover, setting K =e~ % L1 caz, we
have

Ri1,41(0) = Ripptaer+1(0)
(x=%log~'z L(x%logx))1T
Lylleket—e

KTe(l71)$

- KT

X

)

In other words, Rx1,4+1,+(0) # 0, whence [ =1. O
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Theorem 7.32. Let L € T[0] be a linear differential operator on T of order
r, whose coefficients can be erpanded w.r.t. a plane transbasis B. Assume
that f1,..., fs are the solutions to (7.17), with multiplicities ua, ..., us. Then

9L = {effl,...,x“l_leffl,...,effs,...,x”S‘leffS}; (7.35)
Hy C COBOD[a], {e/ ... el ). (7.36)

Proof. Let & denote the set of exponential transmonomials and let us first
assume that 97 C =N &. Then there exists a supertransbasis B of B, with
9 CaN BC CaN¢ and e-ffl, cees ol fo c B, Now riccati_solve returns the
same solutions with respect to B and B. Therefore, proposition 7.30 yields

Hr=9NnaN %CZﬁL;@ =97.8=9L;s

In general, we have $1,T;=$r1, for some [ > 0. So applying the above argument
to L7, combined with proposition 7.31, we again have (7.35). As to (7.36),

assume that h=xz7efi €, and let K = e /7 L, neC [BC1[0]. Then
W=h— L Lh=(a) — K1 Kad) el T c CIBOD 2], ! .
The result now follows from the fact that the hY form a basis of Hy. ]

Since the equation (7.17) may admit less than r solutions (see remark
7.27), we may have dim ), < r. Nevertheless, proposition 7.28 implies:

Corollary 7.33. If L € T[9] is a linear differential operator of odd order,
then the equation Lh=0 admits at least one non-trivial solution in T. O

7.7 Oscillating transseries

Let L € T[0]7 be a linear differential operator of order r. Since C is only real
closed, the dimension of the solution space Hy of Lh =0 can be strictly less
than r. In order to obtain a full solution space of dimension r, we have both to
consider transseries with complex coefficients and the adjunction of oscillating
transmonomials. In this section we will sketch how to do this.

7.7.1 Complex and oscillating transseries

Let ¥ be the set of transmonomials and consider the field
T=TaiTx(C+iC)[¥] =CIZ]

of transseries with complex coefficients. Then most results from the previous
sections can be generalized in a straightforward way to linear differential
operators L € TF[@] We leave it as an exercise for the reader to prove the
following particular statements:
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Proposition 7.34. Let L € TF[B]7é be a linear differential operator on T.
Then L admits o distinguished right inverse L~' and Hy, admits a finite dis-
tinguished basis.

Proposition 7.35. Let L € C B [6]7é be a linear differential operator,
where B is a plane transbasis, and v € BY U {T}. If the Newton degree
of (7.19) is d, then (7.19) admits d solutions, when counted with multiplicities.

An oscillating transseries is an expression of the form
f:f;wleiwl_f_..._f_f;wkeiwk’ (7.37)

where fiy,, ...y fiy, € T and 91, ..., ¥, € Ts. Such transseries can be differen-
tiated in a natural way

Fr=(fly, Hig0) @V (fly, +19g) e

We denote by
O= @ T el
PpeTy

the differential ring of all oscillating transseries. Given an oscillating
transseries f € O, we call (7.37) the spectral decomposition of f. Notice that

O~C LT,

where ef < e9 if and only if Rf < Rg and I f =Jg.

7.7.2 Oscillating solutions to linear differential equations

Consider a linear differential operator L € T[d]#. We have
Lf= Z (Lsy fr0) €,

PeT
where

L.y:=e VL iveT[d,

since (e'¥)Te T for all ¢y € Ts. In other words, L “acts by spectral components”
and its trace 17, is determined by

ERL = U %L;wew
. PET- .
Tr(cmeV) = Ty, ,(cm)e?.

Now let g € © and consider the differential equation
Lf=yg. (7.38)
This equation is equivalent to the system of all equations of the form

L;w f;qz,:g;w. (739)
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By proposition 7.34, the operators L., all admit distinguished right inverses.
We call
fe1tg= Y 1 gue
PeT
the distinguished solution of (7.38). The operator L™ g+ L~ g, which is

strongly linear, is called the distinguished right inverse of L. The solutions to
the homogeneous equation may be found as follows:

Theorem 7.36. Let L€ T[] be a linear differential operator on T of orderr,
whose coefficients can be expanded w.r.t. a plane transbasis B. Assume that
f1,..., [s are the solutions to (7.17), with multiplicities p1, ..., ps. Then

9L = {effl,...,x“l’leffl, ...,e-ffs,...,x“sfleffs} : (7.40)

Hy C COBOD[a], {e/ ... el ). (7.41)
Proof. Let b = 27 m, where m = el /i 1 <i<sand 0 < j < p Then
K =m"! Ly, considered as an operator on T, satisfies

Ry alg,j = Rr 4 51,015, < Rp, 4+ 1, = Ric.
Hence K; < K, 27 € Hx and h € $Hr. Furthermore,
W=h—L'Lh= (2] — K~ KaJ) elfic o IBCY [x]reffi

is an element of Hj; with dominant monomial h. By proposition 7.35, there
are r such solutions A" and they are linearly independent, since they have
distinct dominant monomials. Consequently, they form a basis of Hp, since
dim Hy, <r. This proves (7.41). Since each element h) € 1, induces an element
hY=h— L~! L with dominant monomial h in Hy, we also have (7.40). [

Corollary 7.37. Let L€ 'I~F[8] be a linear differential operator on T of order
r. Then dim Hy =r. U

Remark 7.38. Due to the fact that the dimension r of Hj is maximal in
theorem 7.36, its proof is significantly shorter than the proof of theorem 7.32.
In particular, we do not need the equivalent of proposition 7.31, which was
essentially used to check that upward shifting does not introduce essentially
new solutions.

Exercise 7.24. Assume that C is a subfield of K and consider a strongly linear
operator L: C[9MI — CINIT. Show that L extends by strong linearity into
a strongly linear operator L: K [T — K INT. If L admits a strongly linear
right inverse L™, then show that the same holds for L and (L™ ")|cgny =L~

Exercise 7.25. Let L€ C [B°1[9]".

a) Let 7 = 1 be a starting term for (7.19) and assume that ¢ is a solution
of (7.20) with 7, = 7. Consider the refinement f = ¢ + f (f < 7) and let
P= P, . Prove that Py, 71 P,
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b) Prove that any sequence of refinements like in (a) is necessarily finite.

¢) Design an alternative algorithm for solving (7.19).

d) Given a solution f €T to (7.19), prove that there exists a f in the algebraic
closure of C'{Ly,..., L}, such that f—F=<1

Exercise 7.26. Let M € .#,.(T) be an r x r matrix with coefficients in T and
consider the equation

V=MV (7.42)
for Ve O".

a) Show that the equation Lh = 0 can be reduced to an equation of the
form (7.42) and vice versa.
b) If [ M <1, then show that

V=I+[M+[M[M+-

is a solution to (7.42).
c) Assume that M is a block matrix of the form

_( My M,
= )

where My, Ms, My < M; and M is invertible with o(M; ) = o(M;)~ %
Consider the change of variables

- I E\ ~
V—PV—(O I )V,

which transforms M into

M= P 'MP-P P
_ M,—M;E My+M,E—EM;—EM;E—FE’
o M3 MsE + M, ’

Show that
My+ME—-EMy,—EMsE—E' =0

admits a unique infinitesimal solution E. Also show that the coefficient M3
can be cleared in a similar way.

d) Show that the equation (7.42) can be put in the form from (¢) modulo
a constant change of variables V = PV with P €.#,(C).

e) Give an algorithm for solving (7.42) when there exist r different dominant
monomials of eigenvalues of M. What about the general case?

f) Check the analogue of exercise 7.25(d) in the present setting.

Exercise~7.27. Take C =1R and let L be as in exercise 7.6, but with coefficients
in Li’]' (S T_«em.

a) Determine the maximal flat subspace of © on which L is defined.

b) Show that L admits a distinguished right-inverse on O ... Can $ be
infinite?

c) Same question for O e+ instead of O e-.
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7.8 Factorization of differential operators

7.8.1 Existence of factorizations

One important consequence of corollary 7.37, i.e. the existence a full basis of
solutions of dimension r of Hpg, is the possibility to factor the L as a product
of linear operators:

Theorem 7.39. Any linear differential operator L € T[0]7 of order r admits
a factorization

L=L,(0—a)-(0—ay)
with ay, ..., a, € T[)].

Proof. We prove the theorem by induction over the order r. For » =0 we have
nothing to prove. If r > 1, then there exists a non-trivial solution h € T# to
the equation Lh =0, by corollary 7.37. Now the division of L by @ — h' in
the ring T[d] yields a relation

L=L(—-hh+p,

for some pe T, and Lh= ph=0 implies p=0. The theorem therefore follows
by induction over 7. O

Theorem 7.40. Any linear differential operator L € T[d]7 admits a factor-
1zation as a product of a transseries in T and operators

0—a
with a €T, or
?—(2a+b") 0+ (a>+b*>—a'+ab) =
(0—(a—bi+b"))(0—(a+bi))
with a,beT.

Proof. We prove the theorem by induction over the order r of L. If » =0 then
we have nothing to do. If there exists a solution h € T to Lh = 0, then we
conclude in a similar way as in theorem 7.39. Otherwise, there exists a solution
h'eT to the Riccati equation Ry (h'), such that hf=a+bi with a,b€ T and
b+ 0. Now division of L by (8 — (a —bi+bT)) (9 — (a+1bi)) in the ring T[J]
yields

L = I:(a—(a—bi—i-bT)) (0—(a+bi))+R
= L(0—(a+bi+b"))(0—(a—bi)+R
for some differential operator R of order < 2. Moreover, R is both a multiple

of  — (a+bi) and & — (a — bi), when considered as an operator in T[d]. But
this is only possible if R=0. We conclude by induction. O



7.8 Factorization of differential operators 173
7.8.2 Distinguished factorizations

We have seen in section 7.4 that the total ordering on the transmonomials
allows us to isolate a distinguished basis of solutions to the equation L h=0.
A natural question is whether such special bases of solutions induce special
factorizations of L and vice versa.

We will call a series f monic, if f is regular and cy=1. Similarly, a differ-
ential operator L of order r is said to be monic if L,=1. A tuple of elements
is said to be monic if each element is monic. Given a regular series f, the
series mon f:= f/cy is monic. In what follows we will consider bases of Hy, as
tuples (hq,..., h,). We will also represent factorizations L= (9 — f1)--- (0 — f)
of monic differential operators by tuples ( f1,..., fr).

Proposition 7.41. Let L€ T[9]* be a monic linear differential operator on ©
of order r. Then
a) To any monic basis (hi,...,h,) of H, we may associate a factorization
L = (0= f)(0—f),
fi = [(8_f1+1)(8_fT)hZ]T (i:T,...,l),

and we write (f1,..., fr) =fact (hq,..., hy).
b) To any factorization

L=(0—f1)-- (0~ fr),

we may associate a monic basis (hi,...,h,)=sol(f1,..., fr) of H by

hi=mon [(d — fis1)- (0 — f)] tel Tt (i=r, .. 1).

We have h; o) =0 for all i < j.
¢) For any factorization represented by (fi,..., fr) we have

fact sol (f1,..., fr) = (f1, -0y [r)-
d) If (hy,...,hs) is a monic basis of Hy, such that h; y(n,)=0 for all i < j, then

solfact (hi, ..., hy) = (h1, ..., hy).

Proof. Assume that (hq, ..., h,) is a monic basis of H, and let us prove by
induction that (0 — fiy1)---(0 — fr) is a right factor of L for all i=r, ..., 0.
This is clear for i =r. Assume that

L=K(0— fi+1)(0— f)
for some i€ {1,...,7}. Then

K (0= fix1) (0= fr)hi=0

implies that 0 — f; is a right factor of K, in a similar way as in the proof of
theorem 7.39. Hence (a) follows by induction.
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Asto (b), the h; are clearly monic solutions of Lh =0, and, more generally,
(0= fix1)- (0= fr)h;=0

for j > 4. The distinguished property of [(0 — fiy1)---(0 — f.)] ! therefore
implies that h; (5, =0 for all j >i. This also guarantees the linear indepen-
dence of the h;. Indeed, assume that we have a relation

A hi+--+ X h;=0.
Then
0=(Arhi+-+Xihi)o(n) = Ai,

and, repeating the argument, A\;_;=---=X; =0. This proves (b).
Now consider a factorization L= (9 — f1)---(0 — f,) and let

(fl,..., fr):factsol(fl,..., fr)-
Given i € {1,...,7} with fH_l: Fidtsewns [r= fr, we get
fi = (0= fisr) (0= f)mon[(D— fi1) (0 — fr)) " Lel Mt
= [N @— fir1) (0= fIO = fisr) (2= f)] P/ I
= (cted M=,
where ¢ € C7 is the dominant coefficient of

(0= firr)-(@ = fr)]tel 2
Applying the above argument for i =r,..., 1, we obtain (c).
Let us finally consider a monic basis (h1, ..., h,) of Hy, such that h; 55, =0
for all 1 < j. Let
(fl, ceey fr) = fact (hl, cery hr)
(h1y.eey hy) = sol(f1,..ey fr)

Assume that f;i+1 =hit1,..n h, = h, for some i € {1,...,r} and let
K=(0— fi) (0= fr)-
Then botli (hiy ..., hy) and (f;i, hit1y ey hy) form~ monic bases for Hx and
hia(h,) = hioen,) =0 for all j>i. It follows that (h; —h;)p =0 for all h € H,
whence h; =h;. Applying the argument for i =r,...,1, we obtain (d). a
The distinguished basis of Hy is the unique monic basis (hy, ..., h;) such

that h; o(n,)=0 for all ¢ < j and hy > -+ = h,. The corresponding factorization
of L is called the distinguished factorization.

Exercise 7.28. Assume that L € T[0] admits a factorization

L=(0— f1)+(0—f)
with fi,..., fr € T. Then

a) Prove that there exists a unique such factorization with fi > > f,.
b) Prove that this unique factorization is the distinguished factorization.
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Algebraic differential equations

Let T =C[IzIl be the field of grid-based transseries in x over a real closed
field C and let P € T{F} be a differential polynomial of order r. In this
chapter, we show how to determine the transseries solutions of the equation

P(f)=0.
More generally, given an initial segment U C ¥ of transmonomials, so that
veEVNANWKD = weY,
we will study the asymptotic algebraic differential equation
P(f)=0 (feClTD). (E)

Usually, we have =% or U={w e Z:w <v} for some v.

In order to solve (E), we will generalize the Newton polygon method from
chapter 3 to the differential setting. This program gives rise to several diffi-
culties. First of all, the starting monomials for differential equations cannot
be read off directly from the Newton polygon. For instance, the equation
f'=e°" admits a starting monomial e*” ~% whereas the Newton polygon would
suggest e°” instead. Also, it is no longer true that cancellations are necessarily
due to terms of different degrees, as is seen for the equation f’= f, which
admits e* as a starting monomial.

In order to overcome this first difficulty, the idea is to find a criterion
which tells us when a monomial m is a starting monomial for the equation
(E). The criterion we will use is the requirement that the differential Newton
polynomial associated to m admits a non-zero solution in the algebraic closure
of C. Differential Newton polynomials are defined in section 8.3.1; modulo
multiplicative conjugations, it will actually suffice to define them in the case
when m=1. In section 8.3.3, we will show how to compute starting monomials
and terms. Actually, the starting monomials which correspond to cancel-
lations between terms of different degrees can almost be read off from the
Newton polygon. The other ones are computed using Riccati equations.



176 8 Algebraic differential equations

A second important difficulty with the differential Newton polygon method
is that almost multiple solutions are harder to “unravel” using the differen-
tiation technique from section 3.1.3. One obvious reason is that the quasi-
linear equation obtained after differentiation is a differential equation with
potentially multiple solutions. Another more pathological reason is illustrated
by the example

1 1 1
2 2 / . = U. 1
FFr2f +x2+m210g2x+ +x210g2x---10gl2m 0 (8.1)

Although the coefficient of f in this equation vanishes, the equation admits
% as a starting term of multiplicity 2. Indeed, setting f = % f, we get

1
.._|_
log2 z --- log?

1
—+- =0.

o
2f —-2f+1
A e S T

Differentiation yield the quasi-linear equation

2f—-2=0,

but after the refinement f =1+ f (f <1) and upward shifting, we obtain an
equation

zr 1 1 1

- —
z?log? r2log2z---log?_, x

which has the same form as (8.1). This makes it hard to unravel almost
multiple solutions in a constructive way. Nevertheless, as we will see in section
8.6, the strong finiteness properties of the supports of grid-based transseries
will ensure the existence of a brute-force unravelling algorithm.

In section 8.7 we put all techniques of the chapter together in order to
state an explicit (although theoretical) algorithm for the resolution of (E). In
this algorithm, we will consider the computation of the distinguished solution
to a quasi-linear equation as a basic operation. Quasi-linear equations are
studied in detail in section 8.5.

In the last section, we prove a few structural results about the solutions
of (E). We start by generalizing the notion of distinguished solutions to equa-
tions of Newton degree d > 1. We next prove that (E) admits at least one
solution if d is odd. We will also prove a bound for the number of “new
exponentials” which may occur in solutions to (E).

8.1 Decomposing differential polynomials

8.1.1 Serial decomposition

Let P € T{F'} be a differential polynomial over T of order r. In the previous
chapter, we have already observed that we may interpret P as a series

P:}jfgm, (8.2)

me¥
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where the coefficients are differential polynomials in C'{F'}. We call (8.2) the
serial decomposition of P. As before, the embedding T{F} — C{F}[%]
induces definitions for the asymptotic relations =<, <, etc. and dominant
monomials and coefficients of differential polynomials. We will denote by Dp
the dominant coefficient of P.

8.1.2 Decomposition by degrees

The most natural decomposition of P is given by

P(f)=Y_ Pift. (8.3)
Here we use vector notation for tuples
i = (igy.-yip)
J = (Jo, s Jir)
of integers:
el = do+- +in

|
Fi= T ()

1<J & W< Jo N ANip < s
(D= @)@
% 1o ir)
We call (8.3) the decomposition of P by degrees. The i-th homogeneous part

of P is defined by
P= > PBift,

lléll=i

so that

P=)"P. (8.4)

We call (8.4) the decomposition of P into homogeneous parts. If P+ 0, then
the largest d = deg P with P;+ 0 is called the degree of P and the smallest
v=val P with P, 0 the differential valuation of P.

8.1.3 Decomposition by orders

Another useful decomposition of P is its decomposition by orders:

P(f)=Y_ Pu (8.5)
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In this notation, w runs through tuples w = (wy,...,w;) of integers in {0,...,r}
of length [ <deg P, and Pl = Py, ,)....,w.() for all permutations of integers.
We again use vector notation for such tuples

lw| = [
[wl| = wit 4w

f[w] — f(m)...f(wz);

WET & WiSTIA AW KT

(&) = (&)~ ()

For the last two definitions, we assume that |w|=|7| =1. We call ||w|| the
weight of w. The w-th isobaric part of P is defined by
Pu= > P,
llewll=e
so that

P=)" Py (8.6)

We call (8.6) the decomposition of P into isobaric parts. If P = 0, then the
largest w = wt P with P, # 0 is called the weight of P and the smallest
w=wv P with P # 0 the weighted differential valuation of P.

8.1.4 Logarithmic decomposition

It is convenient to denote the successive logarithmic derivatives of f by

r= 1
fO = fi-t (i times).

Then each f*) can be rewritten as a polynomial in f, f1, ..., (.

f=1r
= I
o= (24 1Y) S
S = (P23 T2+ (F10)2 f1 4 fIT 1T FY)

We define the logarithmic decomposition of P by
P(f)= Z Py £, (8.7)

1= (10;00,%r)
where

FE = fro (- (£
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Now consider the total lexicographical ordering <!** on N”*!, defined by
i< = (ig<jo)V
(0= jo Ni1 < jo) V

(io = jo N Nlyp_1= jr—l N < ]r)
Assuming that P =0, let 4 be maximal for <lex with Py #0. Then
P(f)~ Py f1® (8.8)

for f— oot or f— —oor.

8.2 Operations on differential polynomials

8.2.1 Additive conjugation

Given a differential polynomial P € T{F'} and a transseries h € T, the additive
conjugation of P with h is the unique differential polynomial P, p € T{F},
such that

Pop(f)=P(h+ f)
for all f€T. The coefficients of P, are explicitly given by

Pini=Y (z) hi=ip;. (8.9)

jzi

Notice that for all i € N, we have
( oP ) op,,
OF® to JF® "

Proposition 8.1. If h=c+¢ with c€ C and € <1, then

P+h = P
DP+h = ‘DP;JFC
Proof. The relation (8.9) both yields Pyj < P and
P=Pyp _n=<Ppy,

so Py =< P. Furthermore,

Pini=Pi+ > (3= +0(1) Pj= Pici+o(P)

jzi

for all 4, whence the second relation. O
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8.2.2 Multiplicative conjugation

The multiplicative conjugation of a differential polynomial P € T{F} with
a transseries h € T is the unique differential polynomial Py, € T{F'}, such that

Pun(f)=P(h [)

for all f€T. The coefficients of Py}, are given by
Paniw= Y (o) P Py (8.10)
T>w
Proposition 8.2.
a) If h» x, then for all i,
P, xn=ph'P,
b) If h»»x, then
th X;; P.
¢) If P and h>0 are exponential, then
Py Xiogn hP.

Proof. If h » z, then the equation (8.10) implies P; xp <n h' P; and
P; <p h™" P; «p, whence (a). Part (b) follows directly from (a), and (c)
is proved in a similar way. O

8.2.3 Upward and downward shifting

The upward and downward shiftings of a differential polynomial P are the
unique differential polynomials P7 resp. P| in T{F'} such that

PI(f1) = P

PL(fL) = P(f)l

for all f € T. The non-linear generalizations of the formulas (7.4) and (7.5)
for the coefficients of P and P| are

> srwe ITle (P (8.11)

TZ>w

= Y Sewall(ppl), (8.12)

TZ>w

where the s, ., are generalized Stirling numbers of the first kind
St,w = 37'1 w1 STyL,w

(Flloga)® = 3" s fO(log )

=0
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and the S , are generalized Stirling numbers of the second kind

ST,W = S‘Fl,wl'”s‘mwz

J
> Sjae fO(en).
=0

—~
~
—~
@
8
~—
~—
<
I

Proposition 8.3. We have
Pl =<t 0p].

Proof. We get P1<5.0p7 from (8.11) and P=PT| %;0p1| from (8.12). O

Proposition 8.4. If P T{F} is exponential, then

Dpy=Dpp1.

Proof. Since P = (Dp+ 0ex(1)) 0p, the equation (8.11) yields

P1=(Dp1+o0e=(1)) (0pT)

and supp DpT C {e " N*} < c= 1. This clearly implies the relation. d

Exercise 8.1. Let g€ T>>~ and P T{F}.
a) Show that there exists a unique Py, € T{F} with

Pog(fog)=P(f)eg
for all feT.
b) Give an explicit formula for Py, (o) for all w.
c) Show that -, is a differential ring homomorphism:

(T{F},0) — (T{F},(¢")"'0)
P+— P,y

Exercise 8.2. Let P € T{Fy,..., Fi} and Q4,..., Qx € T{F1,..., F1}.

a) Let Po(Q1,..., Q) € T{F1,..., F;} be the result of the substitution of Q; for
each F; in P. Show that P+ Po (Qy, ..., @) is a morphism of differential
rings.

b) Reinterpret additive and multiplicative conjugation using composition like
above.

¢) Show that T[] is isomorphic to (T{F }yn,+,0), where

T{F}in=TFOTF &--.

Exercise 8.3. Let P=)", P, Fie T 4..[[F,F’,..]].

a) If (P;) forms a grid-based family, then show that P(f) is well-defined for all
feETY e
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b) For two operators P and @ like in (a), with @ <1, show that Po Q is well-
defined.

¢) Generalize (b) to operators in several variables and to more general subspaces
of the form C'TUT of T ye-.

8.3 The differential Newton polygon method

8.3.1 Differential Newton polynomials

Recall from the introduction that, in order to generalize the Newton polygon
method to the differential setting, it is convenient to first define the differential
Newton polynomial associated to a monomial m. We will start with the case
when m=1 and rely on the following key observations:

Lemma 8.5. Let P C{F'} be isobaric, of weight v and assume that Dp;=P.
Then P € C[F](F')".

Proof. For all isobaric H € C{F'} of weight v, let us denote

H*=Y"Hj 0.0 F (F)".
J

Then QQ = P — P* satisfies Dgy =@ and Q*=0. Furthermore, (8.11) yields
Q1=cQ.
Consequently, if Q(f)=0 for some f €T, then
QUT) =e"(QN)(fT)=e""(Q(f)T)=0.

Since @Q* = 0 implies Q(z) = 0, it follows by induction that Q(exp; ) =0
for any iterated exponential of x. From (8.8), we conclude that @ =0 and
PeC[F](F'). O

Theorem 8.6. Let P be a differential polynomial with exponential coefficients.
Then there exists a polynomial Q € C[F] and an integer v, such that for all
1> wt P, we have Dpy,=Q (F').

Proof. By formula (8.11), we have Dp1=<e~ WV PP)Z and
Dp(F)= Y < S e Dp,m> Flel (8.13)
|w||=wvDp \ 72w
Consequently,

wt Dp>wv Dp=wt DPT ZWVDPTZW'E DPTT =
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Hence, for some | < wt P, we have wt Dpy, , = wv Dpq,,, = wt Dpy,.
Now (8.13) applied on P7; instead of P yields Dpy,,, =Dpy,. Proposition 8.4
therefore gives

.DPTl = ‘DPTl+1 = DDPT[T = DDPTL+1T = ‘DPTl+2 — e
We conclude by applying lemma 8.5 with Dpy, for P. O

Given an arbitrary differential polynomial P, the above theorem implies
that there exists a polynomial () € C[F] and an integer v, such that Dpy, =
Q (F")" for all sufficiently large I. We call

NP:Q(F/)V

the differential Newton polynomial for P. More generally, if m is an arbitrary
monomial, then we call Np, the differential Newton polynomial for P associ-
ated to m. If P is exponential and Np= Dp, then we say that P is transparent.
Notice that a transseries is transparent if and only if it is exponential.

8.3.2 Properties of differential Newton polynomials

Proposition 8.7.

a) Npy= Np for all P.
b) If ceC and e <1, then Np, _, = Np 4.
¢) If m=<n, then valNp, _<deg Np, , <valNp  <degNp,,.

Proof. Assertion (a) is trivial, by construction.

In (b), modulo a sufficient number of upward shiftings, we may assume
without loss of generality that P, Py.y. and € are transparent. Dividing P
by 0p, we may also assume that P=<1. Then (8.9) implies

Pyicre=Dp teret 0e(1) = Dp, tc+0es(1),

so that NP+¢+5 = Dp+c+5 = Dp’Jrc: NP’JFC.

As to (c), it clearly suffices to consider the case when m < 1 and n=1.
After a finite number of upward shiftings, we may also assume that P and
Py are transparent and m 3 x. Let d = val P. Then for all i > d we have
P; < Py, whence

me,d:Pd7><mxmmde>miPiXmPLxm:mem
by proposition 8.2(a). This implies deg Dy < d, as desired. O

Proposition 8.8. Let PE€ T{F}7 , m» e” and T =Y.
have Np, = Nr,, for all n<«<m.

P,u. Then we

uxnP

Proof. Since m »e*, we first notice that

T1= Y Phu

umeP
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Hence, modulo division by 0p and a sufficient number of upward shiftings,
we may assume without loss of generality that P =< 1, that P and n are
exponential, that Np, =Dp, , and Ny, =Dr, . Then

(P—T)xn=n(P=T)n<pyn

and Py <y n, whence Py =Ty n~+ 0m(Pxn). We conclude that Np, =Dp, =
DTXn = NTX n* D

8.3.3 Starting terms

We call m € U a starting monomial, if Np_ _ admits a non-zero root c in
the algebraic closure C?!8 of C. This is the case if and only if Np, ¢ CFX.
We say that m is algebraic if Np,  is non-homogeneous, and differential if
Np, .. ¢ C[F]. A starting monomial, which is both algebraic and differential,
is said to be mized.

Ezample 8.9. Let m be a starting monomials for P(f) =0, where P = LF
and L € T[0]. Then Ny, .1, = Dr, .1, € CF’ for all sufficiently large . By
proposition 7.6, it follows that mT; € $4, for all sufficiently large I, whence
me Hr. Similarly, if m is not a starting monomial, then Ny, 1,=Dr, .1, €CF
for all sufficiently large [, and m¢ 9.

Assuming that we have determined a starting monomial m for (E), let
¢ € C?8 he a non-zero root of Np, .. If ceC, then we call cm a starting term
for (E). If Np, ., =Q (F’)” with Q € C[F] and Q(c) =0, then cm is said to be an
algebraic starting term. If v=£0, then we say that cm is a differential starting
term. The multiplicity of ¢ (and of c¢m) is the differential valuation of Np, 4.
Notice that the definition of the multiplicity extends to the case when ¢=0.

Proposition 8.10. Assume that f is a non-zero transseries solution to (E).
Then Ty is a starting term.

Proof. Assume that 7y =cm is not a starting term. Modulo normalization, we
may assume without loss of generality that P is transparent and m=0p=1.
Then

P(f)=Np(f)+0ex(1) = Np(c) + 0e=(1) #0,
since Np(c) 0. O
The Newton degree of (E) is defined to be the maximum d = degy P of
val P and the largest possible degree of Np  _ for monomials m € %U. The

above proposition shows that equations of Newton degree zero do not admit
solutions.

Proposition 8.11. If o € CTV1, then
degg; Py, =degy P.
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Proof. Consider a monomial m € U with m = ¢. Modulo a multiplicative
conjugation with m we may assume without loss of generality that m=1, so
that ¢ = ¢+ ¢ with ¢ € C and € < 1. Modulo upward shifting, we may also
assume that P, P, and ¢ are transparent. Then deg Np,_, =deg Np .=
deg Np, by proposition 8.7(b). O

Geometrically speaking, we may consider the Newton degree as “the mul-
tiplicity of zero as a root of P modulo 0”. More generally, given an initial
segment 20 C W, we say that o € C[Y] is a solution to (E) modulo 27, if the
Newton degree of

P ,(f)=0 (feCrwl) (8.14)

is strictly positive. The multiplicity of such a solution is defined to be the
Newton degree of (8.14). If ¢ € ¢+ C'[20]1, then the multiplicities of ¢ and
1 as solutions of (E) modulo 20 coincide, by proposition 8.11. In particular, if
¢ is a solution of (E) modulo 20U, then so is 1) = @\ 9y = Zme‘l]\ﬂl] pmm. We
call ¥ a normalized solution, because it is the unique solution in ¢ + C' [20]
such that i, =0 for all m € 20.

8.3.4 Refinements

Given a starting term 7 = ¢ m for (E), we will generalize the technique of
refinements in order to compute the remaining terms. In its most general
form, a refinement for (E) is a change of variables together with an asymptotic
constraint

f=¢+f (feCivD), R)

where ¢ € C[U] and 0 C ¥ is an initial segment of transmonomials. Such
a refinement transforms (E) into

P(f)=Py([)=0 (feCID). (RE)
Usually, we take U ={ € T:1 < ¢}, in which case (RE) becomes

P())=0 (J=9p). (8.15)

In particular, we may take ¢ =cm, but, as in section 3.3.2, it is useful to allow
for more general ¢ in presence of almost multiple solutions.
Consider a refinement (R) and a second refinement

183

F=¢+f (FecroD) (RR)

with ¢ € C[DT and 4 C . Then we may compose (R) and (RR) so as to
yield another refinement

f=p+¢+f (feClvD). (8.16)
Refinements of the form (8.16) are said to be finer as (R).
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Proposition 8.12. Consider a refinement (R) with ¢ € CI[B1. Then the
Newton degree of (RE) is bounded by the Newton degree of (E).

Proof. By the definition of Newton degree, the result is clear if ¢ = 0. In
general, we may decompose the refinement in a refinement with =0 and a
refinement with ¢ =0. We conclude by proposition 8.11. g

Proposition 8.13. Let o € C[*V] and m = ¢. Then the Newton degree of

P(f)=Pio(f)=0  (f=<m)
is equal to the multiplicity d of ¢ = ¢@m as a root of Np,, .

Proof. Let us first show that deg Np < d for any monomial n <m. Modulo
multiplicative conjugation and upward shifting, we may assume without loss
of generality that m = 1 and that P, Pyy,, n and ¢ are transparent. The
differential valuation of Np .= Dp being d, we have in particular }55 = P.
Hence,

5 < Pl D nd —
Pxn,i =, Pin® <, Pjn =n P><n,d~

for all i >d. We infer that deg Np < d.

At a second stage, we have to show that deg Np > d. Without loss of
generality, we may again assume that m=1, and that P and ¢ are transparent.
The differential valuation of Np .= D being cz, we have P, < P for all i < d.
Taking n=x"!, we thus get

Pxn,ixempi<esz dxe’”P i

xn,d

for all i < d. We conclude that deg N}sX L2 d. O

Exercise 8.4. If Np=Dp € C[F] (F')*, then show that

a) DPT:DP‘
b) PTXDPTe’kI.

Exercise 8.5. If P=LF + g, with L€ T[0] and g € T#, then show that T} *(7,)
is the unique algebraic starting term for P(f)=0.

Exercise 8.6.
a) Give a definition for the composition
f=¢+f (feCcmoD)
of an infinite sequence of refinements

f=fo = o+f (LeCIVD)
fi = wa+ fo (f2€CIVD)

b) What can be said about the Newton degree of (RE)?
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Exercise 8.7. Let P,Q € T{F} and let ¥ C ¥ be an initial segment.

a) Show that degy PQ =degy P+ degy Q.
b) What can be said about degy (P + Q)?
c) If degyy P >0 and Ay, ..., A, € T, then show that

degy (Ao P+ -+ A, P™) > 0.

Hint: first reduce to the case when U = {v € T: v < 1}. Next, considering
P=0,..., P =0 as algebraic equations in F, ..., F"t™) show that there
exists a common solution F = ¢y, ..., F" %) = @rin With ¢; <1 for all 7 (i.e.
we do not require that ¢; 11 =0 for i <r+mn—1).

Exercise 8.8. Improve the bound 7> wt P in theorem 8.6 for P of degree < 3.

Exercise 8.9. Show that r upward shiftings may indeed be needed in the-
orem 8.6.

Exercise 8.10. Let P € C{F’} and let A be such that
, 1

- rlogzlogo -
a) Show that

0 =0py =2~ " (logz) ™" (loga )" -+,

b) Let C{F’}4,. be the subset of C{F'} of homogeneous and isobaric polyno-
mials of degree d and weight w. For P € C{F'}4, ., show that

W =z""(logz) " (logax) "™+

and limyg_, o ix=d.
c) If 1 is such that Np= Dpy,, then show that

0py, = (expyx) " (expx) -1

d) Show that Np=Dpy, if and only if 4, =411 ="--.

Exercise 8.11. [AvdDvdH] Let H be a Hardy field such that for every feH,
there exist g, h € H with ¢’ = f and hf = f. Given P € K{F}#, the aim of this
exercise is to define the differential Newton polynomial Np of P.

a) A derivation 0’= ¢ 0 on K is said to be infinitesimal if f <1=09f <1 for
all f € K. Show that this is the case if and only if [¢~! > 1. We denote
by K¢ the differential field (K, ¢ ) and recall that P=P(F,..., F(")) can be
reinterpreted as a differential polynomial

PP=P(F,... (¢~1 )" F) e K*{F}.

In the remainder of this exercise, ¢ and ¢ will always assumed (or required)
to be such that ¢ d and v 0 are infinitesimal.

b) Show that there exists a group 9t C H# with R-powers, such that 9 contains
exactly one element m in each equivalence class of H*/x. Show also that
there exists a unique 9p» € M with P¥ <0 p+ and a unique Dp. € R{F'} with
P¥ — Dpv Ope <0po.
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¢) Show that 1 = ¢ implies wt Dpv < wt Dpe and wv Dps < wv Dpe. Given ¢,
show also that there exists a 1 = ¢ such that Dp« is isobaric.

d) We say that P¥ is clean if (P¥ — Dpe dpe)jw] <o 0p+, where ®f =1 and
all w > wt Dpe. Show that there exists a v 3= ¢ for which P¥ is clean.

e) Given a homogeneous and isobaric differential polynomial P € R{F'} of
degree d and weight w, show by explicit computation that there exists homo-
geneous and isobaric differential polynomial P* € R{F’} of degree d and
weight w — 1, such that

1 -
P¢=—P+ =P+
¥ ®
for all ¢, where the remainder has weight < w — 2.

f) Assume that P € K{F'} is clean and P<1. If both Dp and Dpey =P, -1

are isobaric, of weight w, then show that

P= DP[w] + D;g[w] (pT + ey

where the remaining terms have smaller weight or smaller asymptotic mag-
nitude.

g) With the assumptions of (f), denote Q@ = D%, let w be such that Q. # 0 and
consider ¢ =exp ([ P,/Q.). Show that ¢ J is infinitesimal, either for p=1)
or =9 ([x7*)?% Show also that wv Dpey <wt Dp.

h) Assume that P € C{F'} is homogeneous of degree d. Show that there exists
a ¢ for which P¥ is clean and Dpe € R7 (F’)%.

i) For general P € K{F'}, show that there exists a ¢ for which Dp. € R[F] (F")N
and P% — Dpedps < 0pe, where ®T = ~1. Under the condition that ¢ €90,
show that Np= Dp+ does not depend on the choice of . Show also that, for
a different choice of M, the resulting Np is the same up to a multiplicative
constant.

8.4 Finding the starting monomials

8.4.1 Algebraic starting monomials

The algebraic starting monomials correspond to the slopes of the Newton
polygon in the non-differential setting. However, they can not be determined
directly from the dominant monomials of the P;, because of the introductory
example f’=e°" and because there may be some cancellation of terms in the
different homogeneous parts during multiplicative conjugations. Instead, the
algebraic starting monomials are determined by successive approximation:

Proposition 8.14. Let i < j be such that P;#+0 and P;#0.

a) If P is exponential, then there exists a unique exponential monomial m,
such that P; xm =< Pj xm.

b) Denoting by mp the monomial m in (a), there exists an integer k < wt P,
such that for all 1 >k we have mp,=mp1, Ti—k.
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c¢) There exists a unique monomial m, such that N(p, 4 p,
neous.

)xm 8 mon-homoge-

Proof. In (a), let B = (by, ..., b,) be a plane transbasis for the coefficients
of P. We prove the existence of m by induction over the least k, such that
o(P;)/o(P;) = b -+ by* for some ay, ..., . If k=0, then we have m = 1.
Otherwise, let Q = Py, with n= bgk/(j_i). Then

Qixkainixkaj Ilj kaQj,

so that 9(Q;)/0(Q;) = by ... b for some I <k and i, ..., B;. By the induction
hypothesis, there exists a exponential monomial to, such that Q; xw < Q) w-
Hence we may take m = n to. As to the uniqueness of m, assume that n =
mb{* -+ by* with ay #0. Then

- i Otk
Pi,ankai,mek k?ébkpjﬂ“ bgz Abk‘Pjuxn'

This proves (a).
The above argument also shows that mpy=mpTe** for some a € Q, since

Pi,me e(Wv Pi,xm)fx j,><mT e(vaj,Xm)r.

Now, with the notations from theorem 8.6, we have shown that wt Dp,; <
wt Dp, and that equality occurs if and only if Dp, = F'~"'Pri (p1ywtPr;
Because of (8.10), we also notice that wt Dp, xeor =wt Dp, for all a € Q. It
follows that

Wt Dp, xmp Z Wt Dp,1 xmp; 2

and similarly for P; instead of FP;. We finally observe that wt Dp, xmp =
Wt Dp,t xmp; and wt Dp, xmp=wt Dp;1 xmp, imply that mpy =mpT, since

wt D(FQ(F/),H)XS,W = 031é ﬁ:Wt DFQ(F/)[-B

whenever 3+ 0 and v #0. Consequently, Wt Dp, 1, xmp;, and Wt Dp,1, xmpy,
stabilize for { > k with k£ < wt P. For this k, we have (b).

With the notations from (), mpy, |5 is actually the unique monomial m
such that

D(Pr‘rpj)xrnTl :DPi,XmTk+DPj,XmTk

is non-homogeneous for all sufficiently large [. Now N(p, 1 p,), . =D(P, 4 P})uli
for sufficiently large I. This proves (¢) for exponential differential polynomials
P, and also for general differential polynomials, after sufficiently many upward
shiftings. g

The unique monomial m=ep ; ; from part (c) of the above proposition is
called the (7, j)-equalizer for P. An algebraic starting monomial is necessarily
an equalizer. Consequently, there are only a finite number of algebraic starting
monomials and they can be found as described in the proof of proposition 8.14.
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Remark 8.15. From the proof of proposition 8.14, it follows that if P can be
expanded w.r.t. a plane transbasis B = (b, ..., b,,), then all equalizers for P
belong to (logS; pb1) -~ (log® by) BC.

8.4.2 Differential starting monomials

In order to find the differential starting monomials, it suffices to consider the
homogeneous parts P; of P, since Np, . i=Np, ., if F/|Np, and Np, . ;#0.
Now, using (7.6), we may rewrite

Pi(f)=Rp(f7) 7,

where Rp, is a differential polynomial of order <7 —1in f . We call R p; the
differential Riccati polynomial associated to P;.

For a linear differential operator L with exponential coefficients, we have
seen in the previous chapter that finding the starting terms for the equation
Lh =0 is equivalent to solving Rz(fT) =0 modulo o(1). Let us now show
that finding the starting monomials for the equation P;(f) =0 is equivalent

to solving Rp,(f1) =0 modulo of :

W). In the exponential case, this

is equivalent to solving the equation Rp,(fT)=0 modulo o(1).
Proposition 8.16. The monomial m < v is a starting monomial of f w.r.t.
Pi(f)=0 (8.17)
if and only if the equation
Rp, 4mi(f1)=0 (fT <W) (8.18)
has strictly positive Newton degree.

Proof. We first notice that R(p1), = (Rp,T)«e—= for all P and i. We claim that
the equivalence of the proposition holds for P and m if and only if it holds for
P71 and m7. Indeed, m is starting monomial w.r.t. (8.17), if and only if m is
a starting monomial w.r.t.

Pi1(f1)=0 (8.19)
and (8.18) has strictly positive Newton degree if and only if
e w1 (51 =0 (F11 <o) (8:20)

has strictly positive Newton degree. Now the latter is the case if and only if
1
(RPquerT)Xeim(fTT):O (fTT—<wlogwloglogw“')
has strictly positive Newton degree. But

(RPi,—i-mTT) Xe T = (RPiT)+mTT, Xe T — (RP«LT) xe~ % 4+m(t = R(PT)i,—i-mTT'

This proves our claim.
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Now assume that m is a starting monomial w.r.t. (8.17). In view of our
claim, we may assume without loss of generality that P; x and m are trans-
parent. Since P; is homogeneous, we have Dp, . = a F'~7 (F')7 for some
aeC# and j >0, and

DRP¢,+mT =aFJ.
Since Rp, |t is exponential, it follows that NRPi,+mf,xf2 has degree j, so
that the Newton degree of (8.18) is at least j > 0. Similarly, if m is not
a starting monomial w.r.t. (8.17), then Dp, . =a F'and
DRPi,+mT:a

for some o € C#. Consequently, N R, =« for any infinitesimal mono-

+m*,><n

mial n, and the Newton degree of (8.18) vanishes. O

8.4.3 On the shape of the differential Newton polygon

Proposition 8.17. Let d be the Newton degree of (E). Then the algebraic
starting monomials are equalizers of the form

CP ig,iy = P iy, iz = S CP Gy ,ip

where tgp=val P <i1 <--- <4j_1<i;=d.

Proof. Let us prove the proposition by induction over d — val P. If d=val P,
then there is nothing to prove, so assume that d > val P. Let i < d be such
that m =ep ; 4 is maximal for <. Modulo a multiplicative conjugation with
m and upward shifting, we may assume without loss of generality that m=1
and that P is transparent.

We claim that 1 is a starting monomial for (E). Indeed, let n €0 be such
that d = deg Np, .. By proposition 8.7(c), we already have 1 < n € U, since
otherwise

d=val Np, , =val Np,4p,,,<val Np,yp,=1i.
Now assume for contradiction that 1 is not a starting monomial for (E), so

that P = P; < Py, and let j be such that P =< P;. We must have j < d, since
proposition 8.7(¢) implies

deg Np<deg Np, ., =d.

Now consider the equalizer v = ep ; 4 < 1. After sufficiently many upward
shiftings, we may assume without loss of generality that Py, and v are trans-
parent. But then

Py, j <o 0/ Pj =y vl Py =y Pxv,ds

which contradicts the fact that Py j < Py, 4.
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Having proved our claim, let k = val Np and Np = Q (F’)”. Since P is
exponential, we have P = Np+ 002(1), whence

wa*ITT = ((_1)VQk—l/ + Oez(l)) Fk ei(kJrV)ez'
In other words, Npm_1 = (—=1)"Qx_, F*. Tt follows that the equation

P(f)=0  (f=1)

has Newton degree k. We conclude by applying the induction hypothesis to
this equation. O

Proposition 8.18. Assume that m is a non-algebraic starting monomial
for (E). Then, with the notations from proposition 8.17, there exists a unique
p€{0,...,1} such that

val Np, . =deg Np,  =1ip.

Moreover, p>0=¢ep;, ,i,<mandp<l=m=<ep;,

ip+1°
Proof. By proposition 8.7(¢),

p=min{gm=<ep; i, Vg=1}=max{qgep;, ,i,<mVqg=0}

q+1

fulfills the requirements. O

Exercise 8.12. Compute the starting terms for

e—e” f3+ f//f_ (f/)2+x4e—31 fm_|_efe” =0.

Exercise 8.13. Let P € IE){F}9é be a differential polynomial with exponential
coefficients and assume that z®---log{* & with a;#0 is a starting monomial for
P(f)=0. Then prove that [ < wt P. Hint: if P is homogeneous, then show that

wt Dp > wt DPXJQOT > >wt DpX

chxn___loglal JETI'

Exercise 8.14. Let K be a differential field and fe K, Pe K{F}. If P(f)=0,
then show that there exists a homogeneous H € K{F'} of degree < wt P +deg P,
such that H(e/7)=0.

Exercise 8.15. Prove that there are exactly d — val P algebraic starting terms
in C*8 % for an equation (E) of Newton degree d.

Exercise 8.16. Let T{F}, denote the space of homogeneous P € T{F} of
degree d. Given P € T{F}s, let ¢(P) € T[F, F1] be the result of substituting
Fit=Ftf=... =0 in the logarithmic decomposition of Rp.

a) Show that ¢(P) € T[F, F'], when rewriting F''=F'/F.
b) Show that ¢: T{F}, — T[F, F'] is an isomorphism.
¢) What about higher degrees?
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8.5 Quasi-linear equations

8.5.1 Distinguished solutions

The equation (E) is said to be quasi-linear if its Newton degree is one.
A solution f to a quasi-linear equation is said to be distinguished if we have
fog—p) = 0 for 2}11 other solutions f to (E). Distinguished solutions are
unique: if f and f are distinct distinguished solutions, then we would have
fog—p= fb(fff) =0, whence (f — f)a(f—f) =0, which is absurd.

Lemma 8.19. Assume that the equation (E) is quasi-linear and that the
coefficients of P can be expanded w.r.t. a plane transbasis B = (b, ..., by,).
Assume also that P <1, Py<y, 1, and let

J= {m S (log bl)N’Bci m <y, ].}
Then, considering L=—P; =, 1 and R=P — Py+ L as operators on C'[J1,

the equation (E) admits a distinguished solution f given by

f=L"1(Id—RLY)~1 P, (8.21)

Proof. Since C[x][by;...; b, 11 bY is stable under L and L~! for each a € C,
the operator R L~ is strictly extensive on C[JT and supp RL™! is grid-
based. By theorem 6.15, the operator Id — R L~! therefore admits an inverse

(Id—RL™ ) '=Id+RL+(RL )+

This shows that f is well-defined. In order to show that f is the distinguished
solution, assume that f is another solution and let 0 =0;_ 4 If 0<g, 1, then
we clearly have f, =0, since f <, 1. If 0 <, 1, then let

o= Z (f—f)mm.

mx=y,, 0

Since P(f) — P(f) = 0, we have L§ = 0, so that ® = 0 is the dominant
monomial of a solution to the equation Lh = 0. Hence f; = 0, since f €
im L~ g

Lemma 8.20. Consider a quasi-linear equation (E) whose coefficients can be
expanded w.r.t. a plane transbasis B = (by,...,b,). Assume that P =< Py=< P,
and Np=Dp. Then (E) admits a distinguished solution

feCMog,_1x;...;2z;b1;5...; 0,1
Proof. Modulo division of the equation by 0p, we may assume without loss of
generality that P =<1. We prove the result by induction over n. If n =0, then
P=Dp=Np=a+(F
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for some o € C and 8 € C#. Hence f = —g is the distinguished solution to
P(f)=0. Assume now that n > 0. By the induction hypothesis, there exists
a distinguished solution to the quasi-linear equation

P, 1(p)=0 (¢=<CIYD) (8.22)
with ¢ € C'[log,_2x;...;2;b1;...;b, 11 . By lemma 8.19, the equation

Piolaa($)=0 (¢ <CTIBTT,-1)
admits a distinguished solution
Y eClz]lexpx,...,expn—22;01Tn—1;...; bpTrn—11
with ¢ <p, 1. Then the distinguished properties of ¢ and v imply that
f=¢+v¥],_1 is the distinguished solution to (E). a

Theorem 8.21. Assume that the equation (E) is quasi-linear. Then it admits
a distinguished transseries solution f. Moreover, if the coefficients of P can
be expanded w.r.t. a plane transbasis B = (by,...,b,), then

feCMlog, x;...;z;b1;...; 0,1

Proof. If Py =0, then 0 is the trivial distinguished solution of (E). Assume
therefore that Py# 0. Modulo some upward shiftings we may assume without
loss of generality that the coefficients of P and the transbasis B are exponen-
tial. Modulo a multiplicative conjugation and using proposition 8.14(a), we
may also assume that Py< P;. Now consider the (0, 1)-equalizer e=ep o 1 for
P, which is also the only algebraic starting monomial. If

DP0+P1:Q_|_5VF(V)+... + 5 FW
with £, #0, then e=2z" and
DPTxeT:a+ﬁuVVF~

In other words, after one more upward shifting and a multiplicative con-
jugation with e, we may also assume that Np = Dp. We conclude by
lemma 8.20. ]

8.5.2 General solutions

Lemma 8.22. Consider a quasi-linear equation (E) with exponential coeffi-
cients and a solution f which is not exponential. Let | be the largest monomaial
in supp f which is not exponential. Then [ = z* [* for some k € N and an
exponential monomial [¥ ENP ;-

Proof. Consider the exponential transseries ¢ =3 . fmm. Then

Pio(f)=0 (feCIDI)



8.5 Quasi-linear equations 195

admits f = f — ¢ as a solution, so it is quasi-linear and [ is a starting
monomial. Consequently, [ is also a starting monomial for the equation L f =
—Pi 0, where L = Py, 1. It follows that [ = 2* [ for some exponential
monomial [f € §.

Let us show that [f € 7, where L= P, 1. Modulo an additive conjugation
with ¢, a multiplicative conjugation with [¥, and division of the equation
by 0p, we may assume without loss of generality that =0, [f=1 and Px<1.
Since the equation PTXekz(f) (f < 1) is quasi-linear, we have

Plyera= Pyl + LT 0% xore + 0es(1).
It follows that

Py T weke=PTyere 4 prohe = LT OFT y oka + 0ea(1),
whence
Py 1 =01 + 0ea(e4).
In other words, 1 is a starting monomial for the equation
(L1)(h) =0.
We conclude that 1 Ef_)m and 1€ ;. OJ
Theorem 8.23. Let f be a solution to a quasi-linear equation (E). If the

depths of the coefficients of P are bounded by d, then the depth of f is bounded
by d+r.

Proof. For each i, such that the depth of f is > d + i, let [; be the minimal
element in the support of f of depth > d + . By the previous lemma, we
have LiTa+i €NPL s 1 1ass whence LEHP ;.- Therefore, [;T44; € 2N &, where &
denotes the set of exponential transmonomials. The result now follows from
the fact that card9p, , , =dim Hp,_, <. O

Corollary 8.24. If the coefficients of P can be expanded w.r.t. a plane
transbasis (b1, ..., by), then the distinguished solution to (E) belongs to
Cllog,_1x;...;x; b1;...; 6,1

Theorem 8.25. Let f be a solution to a quasi-linear equation (E). Then f
may be written in a unique way as

f=f"+hi+-+hs,
where f* is the distinguished solution to (E), s<r, and
hy>...=hs€T?
are such that each h; —1(h;) is the distinguished solution to the equation

Py peihytthi e () =0 (¢ <CIVD).
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Proof. Consider the sequence hi, ha, ... with h; =7; + §; for all 4, where
i =7(f —h1—-—hi_1)
and §; is the distinguished solution to
Pipeiniethioitr(0) =0 (< CIVD).
Since the equation
Pipeinirothitr(0) =0 (¢ =<Ti)

is quasi-linear (it admits f — hy —--- — h;—1 — 7; as a solution), §; is also the
distinguished solution to this latter equation, whence §; < 7;. By induction, it
follows that Ay = hg = ---.

Let us now prove that the sequence hq, ho,... has length at most r. Assume
the contrary and consider

P=Pypeinitotn g
Then
P(—hi—-+—hp41)=0

for all i€ {1,...,r +1}, s0 dp,,...,p,,, are starting monomials for

P(f)=0 (f=<CIVT).

Since this equation is quasi-linear and Py=0, it follows that Opyyenny Op, ., are
also starting monomials for the linear differential equation

Lf=Py(f)=0.
In other words, {94,,...,0n,,,} € $H. But then

r+1<card 9y =dim H; <r. O

Exercise 8.17. If [ is the distinguished solution to a quasi-linear equation
(E) and ¢ < f a truncation of f, then show that f = f — ¢ is the distinguished
solution to

P.,(f)=0 (feCrVD).

Exercise 8.18. Assume that (E) is quasi-linear, with distinguished solution
f. Show that the equation Pyxn(g) =0 (¢ € m~! ) is also quasi-linear, with
distinguished solution g=m~! f. And if m is replaced by a transseries?

Exercise 8.19. Show that f € C'Mlogexpo(s,)—1 %; .. @; by; ...; b1 in the-
orem 8.21.

Exercise 8.20. Show that the dependence of f on logi4,_12 is polynomial in
theorem 8.23.
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Exercise 8.21. Give an example of a quasi-linear equation (E) such that the set
{0 P(f)=P(9)=0Af,gcCIVI N g+ f}
is infinite.
Exercise 8.22. Can you give an example for which
feCllog,—1x;...;x;b1;...; 0,1 \ CLlog, —ox;...; z; b1;...; 6,1

in corollary 8.247

8.6 Unravelling almost multiple solutions

As pointed out in the introduction, “unravelling” almost multiple solutions is a
more difficult task than in the algebraic setting. As our ultimate goal, a total
unravelling is a refinement

f=e+f (f=v), (8.23)

such that degys P =d and deg; P <d. Unfortunately, total unravellings can
not be read off immediately from the equation or its derivatives. Nevertheless,
we will show how to “approximate” total unravellings by so called partial
unravellings which are constructed by repeatedly solving suitable quasi-linear
equations.

8.6.1 Partial unravellings

In order to effectively construct a total unravelling, consider a starting mono-
mial m such that Np  _ admits a root of multiplicity d. Assume that [ € Z is
sufficiently large so that Py, is exponential and

NPXmTl:DmeTl:a‘(F_C)d_k(F/)k
for some a,ce C* and k. Let

ad_lpmel .
((aFW*l*k(aF')k)xmflL if k<d

Q= 9d-1p
mel : _
(st ) i iFH=d
and consider a refinement (R) such that

AU1. The Newton degree of (RE) equals d.
AU2. Q(p)=0and d,=m.
AU3. We have Y={meT:m=<h} for some starting monomial for

(8.24)

G(h)=Qip(h)=0  (heCTV).

Then we call (R) an atomic unravelling.



198 8 Algebraic differential equations

Proposition 8.26. Let .7 be a set of atomic unravellings for (E). Then .
admits a finest element.

Proof. Assume for contradiction that there exists an infinite sequence

[ = vt fi (f1<01)
f = wot+p1t fa (f2=v2)

of finer and finer atomic unravellings in ./, so that
Y <0< Pi—1
for all i > 0. Setting
Y=o+ + @y,
it follows for all ¢ > 0 that
Qi y(—pi = — r41) =0.
Consequently, ?,, is a starting monomial for Q4 1(h)=0and i€ {1,...,r+1}.

But this is impossible, since card ¢, ,, , <7. O

Given an atomic unravelling (R) followed by a second refinement (RR)
such that the Newton degree of

P(f)=Pis(f)=0 (feCTT)

equals d, we say that (RR) is compatible with (R) if ¢ #0, T < ¢ and 0 is
not a starting monomial for

Q(h)=0  (heCIVD). (8.25)

If the second refinement (RR) is not compatible with (R), then we may con-
struct a finer atomic unravelling

f=etv+f  (F=w)
such that 7(¢¥) =7(). Indeed, it suffices to take ¥ =7(p) + h, where h is the
distinguished solution to the equation

Quir(p)(h)=0  (h=<).

In other words, during the construction of solutions of (E) we “follow” the solu-
tions to Q(h) =0 as long as possible whenever the Newton degree remains d.

A partial unravelling is the composition of a finite number [ of compatible
atomic unravellings. We call [ the length of the partial unravelling. By con-
vention, the identity refinement

f=7F (feCrvl)

is a partial unravelling of length 0. We have shown the following:
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Proposition 8.27. Assume that (E) has Newton degree d. Given a partial
unravelling (R) and a starting term 7 for (RE) of multiplicity d, there exists
a finer partial unravelling

f=p+é+f (f=7)
with @ ~T. g

8.6.2 Logarithmic slow-down of the unravelling process

The introductory example (8.1) shows that an atomic unravelling does not
necessarily yield a total unravelling. Nevertheless, when applying a succession
of compatible atomic unravellings, the following proposition shows that the
corresponding monomials m change by factors which decrease logarithmically.

Theorem 8.28. Consider an atomic unravelling (R), followed by a compat-

ible refinement (RR). Then, denoting m =10y, there exists an m ey with

|2

=< log —.

311| =3
3

Proof. Modulo some upward or downward shiftings, we may assume without
loss of generality that [ = 0 in (8.24), so that Py, is exponential. Modulo
a multiplicative conjugation with m and division of P by dp, we may also

assume that m=1 and that P<1. By proposition 8.1 it follows that P=Px=
R=Q=<1.

Let us first show that m » e”. Assuming the contrary, we have either
¢ —c<Ke’or ¢ —c» e”, where c = c,. In the first case, b =0,_. < e" is
a starting monomial for

Q-‘rc(.f):() (f:<1)a

and Dq, € C FN (F)N. Since Q. is exponential, it follows that Ng, =
Dq,., as well as Ng, ., = NDQH,XU, by proposition 8.8. So v is also a
starting monomial for the equation Ng, (h) =0 (h <1). But this is impos-
sible, since Ng,, € C FN (F’)N. In the second case, v = < e” is a starting
monomial for

Pi(f)=0  (f<1),

Again Py is exponential and Dp, € CFN(F')N, so we obtain a contradiction
in a similar way as above.
Since m is not a starting monomial for (8.25), we have

Q(@)Tp = Qual@/m)T, < 0(Qxaly)
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for a sufficiently large p € N such that mT,, Q Tpand ¢ T, are exponential and

DmeTp = NmeTp' Using proposition 8.3 and the fact that m» e®, it follows
that

Q(@) Xikognﬁ D(Qxfn)'
On the other hand,

AQxw) ¢ i logi,
(Q)m

whence
Q(@) >;ikogﬁl D(Q)ﬁl:ﬁl

We conclude that

= N _
Pdfl %logﬁl m,

since Q () is the coefficient of F4=1=%(F’)* in P for some k.
_ Now let n be a monomial with n <j,,5 m, so that n <j,,, m and
P;_ =iogn n. Then, proposition 8.2 implies

_x P d—1 d ¥
P><n7d_1 —~logn Pd_ln >‘logﬂ n" Xlogn P><n,d7

From propositions 8.3 and 8.8, it therefore follows that the degree of N 5

cannot exceed d — 1. We conclude that there exists an m =n € 0 with
m >Fikogn"1 ﬁla
d.

since (8.26) has Newton degree

8.6.3 On the stagnation of the depth

This section deals with two important consequences of proposition 8.28.
Roughly speaking, after one atomic unravelling, the terms of degree > d
do no longer play a role in the unravelling process. If P is exponential, and
modulo the hypothesis that P;(h) =0 only admits exponential starting mono-
mials, it will follow that the process only involves monomials in 2N &, where &
denotes the set of exponential transmonomials.

Lemma 8.29. Consider an equation (E) of Newton degree d and assume that
Py, ..., Py—1 € Clz][€T and P;€ CLEN. Then any non-differential starting
term of multiplicity d is in CF 2N €.

Proof. Let ¢ m be a non-differential starting term of multiplicity d, so that
Np,..=a (F — ¢)¢ for some a € C. Then m is the (i, j)-equalizer for all
0 < i < j <d. In particular, ¢ m is a starting term for the linear equation
Py + Pi(f) = 0. Hence, m € 2N &, by proposition 7.8 and the incomplete
transbasis theorem. g
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Theorem 8.30. Consider an atomic unravelling (R) for an equation (E) of
Newton degree d, followed by a compatible refinement (RR) such that @Q:]:O.
Assume that P and ¢ are exponential and that Pd(h) =0 admits only expo-
nential starting monomials. Then ¢ € C[z]L€T.

Proof. If ¢ =0, then we have nothing to prove, so assume that ¢ #* 0. By
Ul and lemma 8.29, it follows that 05 € 2N & Modulo a multiplicative

conjugation with an element in & and the division of P by 05, we may

therefore assume without loss of generality that € zN and P = Q < 1. Notice
that m/m » e® since m>m and m is exponential.
By theorem 8.28, our assumption quz 0 implies

m m
— X log =
v m

for all v € supp ¢. Since m =1 is exponential, this relation simplifies to

v <X logm.
Now assume that ¢ ¢ C[z] [€], let n € supp ¢ be maximal with ¢ ¢ 2N &, and
let =37 . . @uu. Since 7, <m is a starting term for (E) of multiplicity d,
we have Py ;i < Pxm,q for all i >d. It follows that me,i < me,d, p; <m]5d/m
and ]5+¢,,¢ <m 15+¢,,d/m for all ¢ > d. Now consider

=3 Py
u-<<m

By what precedes, we have deg T' = d. Furthermore, Ty, ..., Tqg—1 € C[z] [&]
and Ty € C[€]. By proposition 8.8, n is a starting monomial for

T(g)=0  (g=<supp).

Moreover, n is a differential starting monomial, by lemma 8.29. Since

Ty= Z Py,

u<<m

proposition 8.8 also implies that n is a starting monomial for f’d(h) =0. Our
assumptions thus result in the contradiction that m € €. O

8.6.4 Bounding the depths of solutions

If we can bound the number of upward shiftings which are necessary for satis-
fying the conditions of proposition 8.30, then the combination of propositions
8.28 and 8.30 implies that any sequence of compatible atomic unravellings
is necessarily finite. Now the problem of finding such a bound is a problem
of order r — 1, by proposition 8.16. Using induction, we obtain the following
theorem:
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Theorem 8.31. Consider an equation (E) of Newton degree d and weight w,
with exponential coefficients. If f € T is a normalized solution to (E) modulo
an initial segment W &V, then f has depth < B, g, where By 4., =0 and
Braw=2d(4w) "t ifr>0.

Proof. We prove the theorem by a double recursion over r and d. If =0, then
the theorem follows from corollary 3.9. In the case when d =0 we also have
nothing to prove, since there are no solutions. So assume that r >0, d >0 and
that we have proved the theorem for all strictly smaller r or for the same r
and all strictly smaller d. We may also assume that f 0, since the theorem
is clearly satisfied when f=0.

Let m € 20 \ U be the dominant monomial of f. If f is algebraic, then

proposition 8.14 implies that its depth is bounded by w. If m is differential,
1

wlogzlogloga
its depth is bounded by A,_1,4 = Br_1,w,w—1= w, because of the induction
hypothesis. Modulo A, _ ,, upward shiftings and a multiplicative conjugation
with m, we may thus reduce the general case to the case when m = 1 and
Np=Dp. It remains to be shown that f has depth < By 4.4 — Ar—1,u-

If c=cy is a root of multiplicity < d of Np, then the Newton degree of

Pro(f)=0(f <m)
is < d by proposition 8.13 and f — ¢ is a root of this equation modulo 20.
The induction hypothesis now implies that f — ¢ has depth < B, g—1,4 <
Br,d,w - A'rfLw-

Assume now that ¢ is a root of multiplicity d of Np. Consider a finest
atomic unraveling (R) for which f = f — ¢ e CI[DT. Then o7, and PTT are
exponential, by theorem 8.23. Let ¢ < f be the longest truncation of f, such
that the Newton degree of

then >0 and m' is a root of Rp, modulo of ) for some 4. Hence,

P(f) P+sa(f) P+sa+w(f):0 (f€CIVI A f <supp @)
is equal to d. By the induction hypothesis, Py, 1 4, 1.» Only admits exponen-
tial solutions. Now theorem 8.30 implies that ¢ has depth <r+ A1 w+1
If f=Ff—-¢=0, then we are done. Otherwise, ) TF is a starting term of
multiplicity < d for P, by the definition of . By what precedes, we conclude
that f has depth <r+ A4, 1w+ 1+ 41w+ Brd—1,w<Brdw—Ar—1,w O

Corollary 8.32. Consider an equation (E) of Newton degree d and a non-
empty set & of partial unravellings for (E). Then % admits a finest element.

Proof. Let us first assume for contradiction that there exists an infinite
sequence of compatible atomic unravellings

f=fo = pot fr (fi=<v1)
fi = g+ fo (f2=v2)
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Modulo a finite number of upward shiftings, it follows from theorem 8.31
that we may assume without loss of generality that the coefficients of P,
are exponential and that P, 4 only admits exponential solutions. Then
theorem 8.30 implies that ¢; € C[z][€] for all ¢ > 1. From theorem 8.28 it

also follows that zf—i; =< 10g%_’;i1 for all 4> 1. But this is impossible.

Now pick a partial unravelling (R) in . of maximal length. Then any finer
partial unravelling in . is obtained by replacing the last atomic unravelling
which composes (R) by a finer one. The result now follows from proposi-
tion 8.26. g

Exercise 8.23. In theorem 8.30, show that whenever m is a starting monomial
for Py(h) = 0 of the form (logg )* --- z°° m! with m# € € and a4 # 0, then
d<wtP —1.

Exercise 8.24. Improve the bound in theorem 8.31 in the case when r=1.

Exercise 8.25. Show how to obtain a total unravelling (8.23) a posteriori, by
computing @ w.r.t. the monomial o instead of m.

8.7 Algorithmic resolution

In this section, we will give explicit, but theoretical algorithms for solving (E).
In order to deal with integration constants, we will allow for computations
with infinite sets of transseries. In practice, one rather needs to compute with
finite sets of “parameterized transseries”. However, the development of such a
theory (see [vdH97, vdHO1al) falls outside the scope of the present book.

8.7.1 Computing starting terms

Theorem 8.6 implies that we may compute the Newton polynomial of a dif-
ferential polynomial P € T{F }7é using the algorithm below. Recall that a
monomial m is a starting monomial if and only if Np_ ¢ CFN.

Algorithm Np
Input: Pc T{F}7.
Output: The differential Newton polynomial Np of P.

1. If P is not exponential or Dp ¢ C[F] (F')N, then return Np.
2. Return Dp.

The algebraic starting monomials can be found by computing all equalizers
and keeping only those which are starting monomials. The equalizers are
computed using the method from the proof of proposition 8.14.
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Algorithm ep ; ;
Input: P € T{F}* and integers i, j with P;#0 and P;#0.
Output: The (4, j)-equalizer ep ; ; for P.
1. If P is not exponential or Dp, p, ¢ C[F] (F")N, then return ePt,i, -
2. If 0(P;) =9(P;) then return 1.

3. Let m:=" 7\i/0(P¢)/D(Pj) and return mep, _ ; ;.

Algorithm alg_st_mon(P,Y)
Input: Pe ’IF{F}7é and an initial segment U C ¥.
Output: The set of algebraic starting monomials for (E).

1. Compute M:={ep; ;i< j<degPAP;#0ANP;#0}NY.
2. Return {m e M: Np, ¢ CFN}.

In fact, using proposition 8.17, it is possible to optimize the algorithm so that
only a linear number of equalizers needs to be computed. This proposition
also provides us with an efficient way to compute the Newton degree.

Algorithm Newton_degree(P, )
Input: Pe ’IF{F]ﬁé and an initial segment U C ¥.
Output: The Newton degree of (E).

1. Compute M :=alg_st_mon(P, V).
2. Return max {deg Np, .:m €M} U {val P}.

The algorithm for finding the differential starting terms is based on propo-
sition 8.16 and a recursive application of the algorithm ade_solve (which
will be specified below) in order to solve the Riccati equations modulo

1
O(IIOgrloglogzm)'

Algorithm diff_st_mon(P,D)
Input: Pc T{F}# and an initial segment % C ¥.
Output: The set of differential starting monomials for (E).

1. If P is homogeneous, then

Let G:=ade_solve(Rp,T,{me%: [ m=<1})

Return {e/%: gc G} ND.
2. Let 9M;:=diff_st_mon(F;,*Y) for each i <deg P with P, #0.
3. Return {meimi:igdegP/\Pi%O/\prmgéCFlN}.

Having computed the sets of algebraic and differential starting monomials,
it suffices to compute the roots of the corresponding Newton polynomials in
order to find the starting terms.
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Algorithm st_term(P,Y)
Input: Pc T{F}” and an initial segment U C ¥.
Output: The set of starting terms for (E).

1. Let ®:=alg_st_mon(P,Y)Udiff_st_mon(P,D).
2. Return {cm € C#D: Np__(c)=0}.

8.7.2 Solving the differential equation

Let us now show how to find all solutions to (E) and, more generally, all
normalized solutions of (E) modulo an initial segment 20 C 0. First of all, 0 is
a solution if and only if the Newton degree of P(f)=0 (fe€C[I201) is > 0.
In order to find the other solutions, we first compute all starting terms 7 in
U\ 20. For each such 7, we next apply the subalgorithm ade_solve_sub in
order to find the set of solutions which starting term 7.

Algorithm ade_solve(P,%,20)
Input: Pc T{F}# and initial segments 20 C U C ¥.
Output: The set of normalized solutions to (E) modulo 20.

1. Compute T:=st_term(P, L)\ C 20.

2. Let S:=J, o ade_solve_sub(P, 7,7, ).

3. If Newton_degree(P,20) >0 then S:=SU{0}.
4. Return S.

Let d be the Newton degree of (E). In order to find the normalized solutions
with starting terms 7 of multiplicity < d, we may simply use the refinement

f=r+f (f=7)

and recursively solve

P+T(f):0 (f"<7—)'
The other starting terms require the unravelling theory from section 8.6: we
start by computing the quasi-linear differentiated equation

Q(f)=0 (feClvD), (8.26)

with @ as in (8.24) and we will “follow” solutions to this equation as long as
possible using the subalgorithm unravel.

Algorithm ade_solve_sub(P, 7,0, 2))

Input: P c T{F}7, initial segments 20 C U C ¥ and a starting term 7=cm &
C7# (V\ ) for (E).

Output: The set of normalized solutions to (E) modulo 20 with dominant
term 7.

1. Let p:=valNp,__ y.and d:=Newton_degree(P,).
2. If p<d, then return 7+ ade_solve(Py,,{ne€T:n<m},20).
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3. Compute @ using (8.24), with minimal [, and let ¢ =7+ h, where h is the
distinguished solution to

Q+-(h)=0 (h<T). (8.27)
4. Return g\ gy +unravel (P, Q4. {n€T:n<m},20).

The algorithm unravel is analogous to ade_solve, except that we now
compute the solutions with a given starting term using the subalgorithm
unravel_sub instead of ade_solve_sub.

Algorithm unravel(P, Q,%,20)

Input: P, Q€ ’][‘{F}7é and initial segments W CY C T.

Output: The set of normalized solutions to (E) modulo 20 with dominant
term 7.

1. Compute T:=st_term(P,)\ C 2.

2. Let S:=J, cq unravel_sub(P, Q,7,U, ).

3. If Newton_degree(P,20) > 0, then S:=SU{0}.
4. Return S.

In unravel_sub, we follow the solutions to (8.26) as far as possible. More
precisely, let @ be as in (8.24). Then the successive values of @ for calls
to unravel and unravel_sub are of the form Qipn,, ...Q+4h +.+h, Where
hi> - = hy satisfy Q(hy+---+ h;) =0 for each i € {1,...,1}. At the end, the

refinement
f=hitth+f  (f=<h) (8.28)

is an atomic unravelling for the original equation. Moreover, at the recursive
call of ade_solve_sub, the next refinement will be compatible with (8.28).

Algorithm unravel_sub(P,Q,7,%0,20)

Input: P, Q € ’IF{F}#, initial segments 2 C U C T and a starting term
T=cme C7 (U\ W) for (E).

Output: The set of normalized solutions to (E) modulo 20 with dominant
term 7.

1. If Ng, . (c)#0, then return ade_solve_sub(P, 7,2, 20).
2. Let ¢ =7+ h, where h is the distinguished solution to (8.27).
3. Return ¢\ gy +unravel(Py o, Q1. {n€T:n<m},20).

The termination of our algorithms are verified by considering the three pos-
sible loops. In successive calls of solve and solve_sub we are clearly done,
since the Newton degree strictly decreases. As to successive calls of unravel
and unravel_sub, we have [ <7 in (8.28), by theorem 8.25. Finally, any global
loop via solve_sub and unravel, during which the Newton degree d remains
constant, corresponds to a sequence of compatible atomic unravellings. But
such sequences are necessarily finite, by theorems 8.25, 8.30 and 8.31.
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Exercise 8.26. Assume that P € C[[zIl {F } and that we search for zeros of (E)
in the set of well-based transseries of finite exponential and logarithmic depths

Clll=11)-

a) Given Q € C[[[z]]]{F'}, show there exists an | with Dg1, € C[F] (F)N. Give
a definition for the differential Newton polynomial Ng of Q. Generalize
proposition 8.10.

b) Given i < j with P;# 0 and P;+0, prove that there is at most one well-based
transmonomial m such that N(p, 1 p,), , is non-homogeneous.

¢) Show that proposition 8.16 still holds for well-based transmonomials.

d) Show that the set of solutions to (E) in C'[[zIl as computed by ade_solve
coincides with the set of solutions to (E) in C[[[z]]].

e) Show that ((z),

1 1 1
(@) ==ty 4o

r T T

and

(@)= o+

2 1
elog T elog T

do not satisfy an algebraic differential equation with coefficients in T.

f) Does @(z) satisfy an algebraic differential equation with coefficients in
T{{(z)}? And does ¥ (z) satisfy an algebraic differential equation with coef-
ficients in T{((x), p(z)}?

8.8 Structure theorems

8.8.1 Distinguished unravellers

Theorem 8.33. Let (E) be an equation of Newton degree d >1. Then there
ezists a unique @ € C' VT which is longest for < with the properties that

a) degg Py, =d, for V={meV:m~<supp ¢}

b) For any m € supp ¢, the term pmm is an algebraic starting term for
Pip o (F)=0  (fxm). (8.29)
Proof. Consider the set .7 of all partial unravellings

f=¢+f (feCcrzn), (8.30)

such that ¢ = {y g satisfies (a) and (b). Since . contains the identity
refinement, we may choose (8.30) to be finest in .%, by corollary 8.32. We
claim that ¢ is maximal for <, such that (a) and (b) are satisfied.

Indeed, assume for contradiction that some 1) > ¢ also satisfies (a) and (b).
Then cm = 7(¢ — @) is the unique algebraic starting term for (8.29) and it
has multiplicity d. By proposition 8.27, there exists a partial unravelling

F=¢+E+F  (F=0),
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which is finer than (8.30), and such that éw c m. By what precedes, ¢ =
&+ f)kéz @+ ¢ satisfies (a). Moreover, ¢ satisfies (b), since 1 > ¢ does.
This contradicts the maximality of (8.30).

Let us now prove the uniqueness of ¢. Assume for contradiction that

Y #+ ¢ with ¢ € ¢ and ¢ € ¢ also satisfies (a) and (b). Let 6 = ¢ — ¢ and
§=> mes Pmm. Then
Pie(f)=0  (f <supp¢)

admits both 7(¢ — £) and 7(¢ — &) as algebraic starting terms of multiplicity
d. But this is impossible. O

The transseries ¢ from the theorem is called the distinguished unraveller
for (E). It has the property that for any algebraic starting term 7 for

Pio(f)=0  (f=<suppy), (8.31)

the refinement

is a total unravelling.

Remark 8.34. It is easily checked that theorem 8.33 also holds for d=1, and
that ¢ coincides with the distinguished solution of (E) in this case.

Recall that £ stands for the group of logarithmic monomials.

Proposition 8.35. Let ¢ be as in theorem 8.33 and assume that P €
CIBCN{F}# for a plane transbasis B = (by,...,b,). Then o€ CLLBCT.

Proof. Assume the contrary, let m € supp ¢ be maximal, such that m ¢
CILLBD, and let ) = > nem Pan. Modulo a finite number of upward shift-
ings, we may assume without loss of generality that P and 1 are exponential.
But then m=0,_, is an algebraic starting monomial for

Piy(f)  (f<supp).

By remark 8.15, we conclude that me C [£B°T. O

8.8.2 Distinguished solutions and their existence

A solution ¢ € T to (E) is said to be distinguished, if for all m € supp ¢, the
term g, m is an algebraic starting term for the equation

Po(F)=0  (F<m).

If d is odd, then there exists at least one distinguished solution.
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Theorem 8.36. Any equation (E) of odd Newton degree admits at least
one distinguished solution in T. Moreover, if the coefficients of P can be
expanded w.r.t. a plane transbasis B = (b1,...,b,), then any such solution is
in CLEBCT.

Proof. We prove the theorem by induction over d. For d=1, the result follows
from corollary 8.24. So let d > 1 and assume that the theorem holds for all
smaller d.

Now proposition 8.17 implies that there exists at least one starting mono-
mial and equalizer ¢ € £ B such that deg Np, —val Np__ is odd. It follows
that P= A (F")" for some A € C[F] of odd degree. Since C is real closed, it

follows that A admits a root ¢ of odd multiplicity d.
If d < d, then proposition 8.13 and the induction hypothesis imply that

P(f)=Pie(f)=0  (F=0) (8.32)
admits a distinguished solution f =CLLEBCT, whence
f=ce+ feCILBCT

is a distinguished solution to (E). Inversely, if f+#0 is a distinguished solution
to (E) whose dominant term ¢ e has multiplicity d < d, then e is necessarily
an equalizer, and

f=f—ceecClLBCN

a distinguished solution to (8.32), whence f € CL£°T.
If d =d, then let ¢ be the distinguished unraveller for (E), so that the
equation
P([)=Pio([)=0  (F <supp ) (8.33)

does not admit an algebraic starting term of multiplicity d. Modulo some
upward shiftings and by what precedes, it follows that (8.33) admits a distin-
guished solution f € CLLBT. We conclude that

f=p+ feCLeBCT

is a distinguished solution to (E). Inversely, we have ¢ < f for any distin-
guished solution f of (E), and f = f — ¢ is a distinguished solution to (8.33),
whence f€CLLBT. a

8.8.3 On the intrusion of new exponentials

In this chapter, we have shown how to solve (E) directly as an equation
in F, ..., F"). A more advanced method for solving (E) is to use integral
refinements

f=elet!  (fecmv)
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in addition to usual refinements. This gives a better control over the number
of exponentials and integration constants introduced in the resolution process,

because e/ #*7 is often “strongly transcendental” over the field generated by
the coefficients of P, so that the equation rewritten in f has lower order. A full
exposition of these techniques is outside the scope of this book, but the proof
of the following theorem will illustrate some of the involved ideas to the reader.

Theorem 8.37. Consider P € CIBCT{F}* of order r for some plane
transbasis B. Then for each exponential solution f € T to (E), there exists

a transbasis B for f with card%\% <.
Proof. Let us construct sequences fo, ..., 1€ T, ¢o,..., o1 €T and g1,..., 51 €F
such that

1. X, =B U{r1,...,5; } is totally ordered for <.
2. ;€ CLXET for each i={0,...,1} (where we understand that Xo=B).

We take fo= f. Given ¢ >0, let ; be the longest truncation of f;, such that
0 € CIXST. If ;= f;, then the sequence is complete. Otherwise, we let
Tit1 = 0(fi— i)
firr = (fi— ).
If B is an arbitrary transbasis for f, then

Crx§1 ¢ ¢ Crxf1 CCrBel,

so that the construction finishes for [ < card B \ B. Setting B = X;, we also
observe that logr; < [ fi € CIBT for all i € {1,...,1}. Tt follows that B is
a transbasis for f.

Let us now consider another sequence 91, ..., ; with

o Ji—ei ,
Vit1= C(f1 — 4101) Lit1,
so that
firr=nvl,.
Denoting 9); =B U {y1,...,n;} for all i € {1,...,1}, we notice that C [T is
isomorphic to C[X{'T. Now for all i € {1,...,1 =1}, we have
0i=0i0f =0 fi=1: (pi+c(fi — i) 9iy1) € CIYFT.

By strong linearity, it follows that for all g€ CI9{T and i €{0,...,I — 1}, we
have g’ € CIYS 11 . Moreover, if

geCIPF I CIYPS 017 v,

then the above formula also yields

g eCIVST @ COVST7 visq.
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In particular,
fDeCtVET @ CIVFD7 v,

for all i €{0,...,1 — 1}.

Now assume for contradiction that [ > and let f(") =g+ hp,; with g,
h e CIYST. Then substitution of f e CIYST for F@ in P for all i < r
and g + h F for F(") yields a non-zero polynomial S € CIYST[F], which
admits 9,41 ¢ CIYET as a root. But this contradicts the fact that C [T
is real closed. We conclude that [ < r, whence B is a transbasis for f with
Card%\%zlgr. O

Corollary 8.38. Consider P€ C[B“1{F} of orderr for some transbasis B.
Then for each solution f € T to (E), there exists a transbasis B for f with
card B\ (BUexpzz) <.

Exercise 8.27. Give an alternative algorithm for the resolution of (E), where,
after the computation of a starting term 7, we perform the refinement

f=rt+e+f (F=m),
where ¢ is the distinguished unraveller for Py .(f)=0 (f <7).

Exercise 8.28. If, in the algorithms of section 8.7, we let st_term only return
the algebraic starting terms, then show that the algorithm ade_solve will return
the set of all distinguished solutions.

Exercise 8.29. Show that there exist at most d=deggy P distinguished solutions
to (E).

Exercise 8.30. If f is a distinguished solution to (E) and ¢ < f, then show
that f — ¢ is a distinguished solution to P+w(f) =0 (f < supp ¢).

Exercise 8.31. Improve theorem 8.31 and show that we can take B, 4,., =
2 r dw. Hint: use exercise 8.23 in combination with the proof technique from
theorem 8.37.
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The intermediate value theorem

The main aim of this chapter is to prove the intermediate value theorem: given
a differential polynomial P € T{F} over the transseries and f < g € T with
P(f)P(g)<0, there exists an h € T with f <h< g and P(h)=0. In particular,
any differential polynomial P € T{F} of odd degree admits a zero in T.

The intermediate value theorem is interesting from several points of view.
First of all, it gives a simple sufficient condition for the existence of zeros
of differential polynomials. This is complementary to the theory from the
previous section, in which we gave a theoretical algorithm to compute all
solutions, but no simple criterion for the existence of a solution (except for
theorem 8.33).

Secondly, the intermediate value theorem has a strong geometric appeal.
When considering differential polynomials as functions on T, a natural ques-
tion is to determine their geometric behaviour and in particular to localize
their zeros. Another question would be to find the extremal and inflexion
points. It is already known that extremal values are not necessarily attained.
For instance, the differential polynomial

P(f)y=f*+2f
admits its minimal ‘“value”

1 1 1

22 22logZr  2?logzloglx -

1 1 1
f==

z xlogxr xlogxlogsx

In the future, we plan to classify all such non-standard “cuts” which occur as
local extrema of differential polynomials. In particular, we expect that a cut
occurs as a local minimum if and only of it occurs as a local maximum for
another differential polynomial.
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Finally, the intermediate value theorem is a starting point for the further
development of the model theory for ordered differential algebra. Indeed,
the field of transseries is a good candidate for an existentially closed model
of this theory, i.e. a “real differentially algebraically closed field”. Such fields
are necessarily closed under the resolution of first order linear differential
equations and they satisfy the intermediate value theorem. It remains to be
investigated which additional properties should be satisfied and the geometric
aspects of real differential polynomials may serve as a source of inspiration.

In order to prove the intermediate value theorem, the bulk of this chapter
is devoted to a detailed geometric study of the “transline” T and differen-
tially polynomial functions on it. Since the field of transseries is highly non-
archimedean, it contains lots of cuts. Such cuts may have several origins:
incompleteness of the constant field (if C'# R), the grid-based serial nature
of T, and exponentiation. In sections 9.1, 9.2, 9.3 and 9.4 we study these
different types of cuts and prove a classification theorem.

Although the classification of cuts gives us a better insight in the geom-
etry of the transline, the representation we use is not very convenient with
respect to differentiation. In section 9.5, we therefore introduce another way
to represent cuts using integral nested sequences of the form

en—1ten—1el TR

F=¢o+eo of ertee”

This representation makes it possible to characterize the behaviour of differen-
tial polynomials in so called “integral neighbourhoods” of cuts, as we will see in
section 9.6. In the last section, we combine the local properties of differential
polynomials near cuts with the Newton polygon method from chapter 8, and
prove the intermediate value theorem. We essentially use a generalization of
the well-known dichotomic method for finding roots.

9.1 Compactification of total orderings

9.1.1 The interval topology on total orderings

Any totally ordered set E has a natural topology, called the interval topology,
whose open sets are arbitrary unions of open intervals. We recall that an
interval is a subset I of F, such that for each x < y < z with z,z € I, we have
y € I. An interval I C F is said to be open, if for each z € I we have: x is
minimal resp. maximal in 7, if and only if z is minimal resp. maximal in F.

A set U C E is open if every point in U is contained in an open interval
I CU. Arbitrary unions of open sets are clearly open. The intersection of two
open intervals I and J is again open: if x is minimal or maximal in 7 N.J, then
it is in particular minimal resp. maximal in I or J, whence x is minimal resp.
maximal in E. It follows that the intersection of two open sets is also open,
so the open sets of E form a topology.
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We observe that an increasing union of open intervals is again an open
interval. Hence, given an open set U and x € U, there exists a maximal open
interval M, CU with x € U. It follows that each open set U admits a unique
decomposition

U=]] {Ms:zecU} (9.1)

as the disjoint union of its maximal open subintervals.

Proposition 9.1. A totally ordered set E with the interval topology is Haus-
dorff if and only if for each x <y € E there exists a z € E, with v <z <y.

Proof. Assume that F is Hausdorff and let © < y € E. There exist open subsets
Uz and V 5y with UNV =g. Without loss of generality, we may assume
that we have replaced U and V by subintervals which contain x resp. y. Since x
is not maximal in F and U is open, there exists an 2’ € U with 2’ > x. We must
also have x’ < y: otherwise y € U whence y € UNV =&, since U is an interval.

Conversely, assume that for all x < y € E there exists a z € E, with
x < z<y. Then given x#+ y € F, and assuming by symmetry that = <y, there
existsaz€ E, withz<z<y. Then («—,z)={ue E:u<z}and (z,—)={u€eE:
u >z} are disjoint intervals with z € («—, z) and y € (z, —). Moreover, for any
u € (+—, z) there exists a v € E with u <v <z, and v is minimal in («+, z) if and
only if it is minimal in E. Hence (+, z) is open, and similarly for (z, —). O

Ezample 9.2. Any totally ordered field E is Hausdorff.

9.1.2 Dedekind cuts

Given a totally ordered set E, let E denote the set of its open initial segments
without maximal elements, ordered by inclusion. We have a natural increasing

mapping

vEB — FE

x +—— interior («,x).

Elements in ' \ (E) are called cuts. If E is Hausdorff, then we have already
seen that («, x) is open for all x € E, so ¢ yields a natural inclusion of F
into E.

The elements 1 =@ and Tz =|J E are minimal and maximal in E . If
FE admits no maximal element, then Tz = FE. More generally, any non-empty
subset of £ admits an infimum and a supremum:

Proposition 9.3. Any non-empty subset of E admits a supremum and an
infimum in E.
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Proof. Let S # @ be a subset of E and consider the open initial segment
without a maximal element
w=[]J5%.

We claim that @ =sup S . By construction, 7 <@ for all ¥ € 5. Conversely,
if 7 € £ satisfies 7 <@, then we may pick z €@ \ 7. Now let @ € § be such
that x€w. Then ¥ Cw, whence 7 <@ € 8 . In a similar way, it can be shown
that the interior of (| S equals the infimum of S . O

Proposition 9.4. Let I be an interval of a Hausdorff total ordering E. Then
there exists unique f < g € E such that I has one and only one of the following
forms:

a) I=(f,9)NE.

b) I=[f,9)NE and feFE
¢)I=(f,g]NE and g€ E.
d)yI=[f,g]NE and f,g€E.

Proof. Let f=infI and g=sup . Then clearly
(—, )NE=(g,~)NE=2

and (f,g)NE CI. Consequently,
IC[f,gJnECIU{f, g}.

Depending on whether f and g are in I or not, we are therefore in one of the
four cases (a), (b), (¢) or (d). O

9.1.3 The compactness theorem

Theorem 9.5. Let E be a Hausdorff totally ordered set. Then

a) F?is Hausdorﬁ.
b) E

c) Eis connected
d) E is compact.

Proof. In order to show that E is Hausdorff, let Z < 7 be in E. Choose
uw€ g \T. Since ¥ has no maximal element, there exist v,w € g with u<v <w.
It follows that T <u <wv <w < g, which proves (a).

From (a) it follows that the natural mapping 7: & — E is injective. In
order to see that 7 is also surjective, consider an open initial segment I C E
without a maximal element, and consider @ =sup I . We claim that 7 (7) =1 .
Indeed, if T €7 (@), so that T <@, then there exists a 7 € I with T <7, by
the definition of @. Hence Z € I, since I is an initial segment. Conversely, if
T €1, then there exists a 77 € I with Z <7, since I has no maximal element.
We have T <7 <@, so T €7 (w). This proves our claim and (b).
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Let us now show that F is connected. Assume the contrary. Then E is
the disjoint union of two open sets. By (9.1), it follows that
E = H T,
Ies
where .# is a set of at least two open intervals. Let K € .# be non-maximal.

Then we also have a decomposition of E as the disjoint union of two non-
empty open intervals

E:Iﬂ[[};:( 11 7)1_{( 11 7).

Tes ,T<K Tes ,T>K

Now consider @ = sup I;. We have either @ € I; or @ € I,. In the first case,
@ #+ T would be a maximal element of I7. In the second case, u# Lz would
be a minimal element of I. This gives us the desired contradiction which
proves (c¢).

Let us finally show that E is compact. In view of (9.1), it suffices to show
that from any covering (I,)aca of E with open intervals we can extract a
finite subcovering. Consider the sequence Ty < 7 <--- € F which is inductively
defined by Ty =@ and

Tk+1=sup U I,
acA,Tel,
for all k> 0. If « is such that 7}, € I, then we notice that either T € I, < Ty 41
or Tp41= | g, since I, is an open interval.

We claim that Ty =T g for all sufficiently large k. Assuming the contrary,
consider @ = sup {To, 71, ...}. There exists an a with @ € I,. Since I, is
open, there exists an ¥ < @ in I,. Now take k € N with 7 < Zj. Then Ty
and Ty, 1< T g are both in I, which contradicts the fact that T, 1= T g or
I, < Ty41. This proves the claim.

Denoting by ! the minimal number with ;=T g, let us now show how to
choose ay, ..., a0 € A with 7 € I,, (0< k<), and I,, ﬂfak“ +o (0<k<l).
This is clear for k=1{. Having constructed ay,...,ax+1, pick an element 7 € (T,
Th+1) ﬂl_akﬂ. Then there exists an ay € A with 7 € I, and § <z for some
z €1,,. Since I, is an interval, it follows that 7 € I,,,, whence I, N1y, , , # 2.
This completes our construction.

We contend that E =I,,U---UI,,. Indeed, given § € E, we either have
7 € {To, ..., Ti} C In, U+~ U I,,, or there exists there exists a unique k& with
T € (Tk, Tk+1)- In the second case, let z € I_ak N I_ak+1. Then we have either
g<zand F€l,,or >z and 7 €1, ]

k+1°
Exercise 9.1. Let E be a totally ordered set. Given T < 7 € E, show that
¥ \ T contains infinitely many elements.

Exercise 9.2.

a) Determine & for all ordinals «.
b) Determine a°P for all ordinals .
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9.2 Compactification of totally ordered fields

Let C be a totally ordered field. A natural question is to see whether the
algebraic structure on C can be extended to its compactification C' and which
algebraic properties are preserved under this extension. In section 9.2.1, we
first show that increasing and decreasing mappings naturally extend when
compactifying. After that, we will show how this applies to the field operations
on C. We will denote m=sup C.

9.2.1 Functorial properties of compactification

Proposition 9.6. Let E and F be Hausdorff total orderings and ¢: E— F.

a) Any increasing mapping p: E — F exlends to an increasing mapping
7:E — F, given by
QE:E — F
T — sup{p(z):z € EAx<T}.

b) Any decreasing mapping ¢: E — F extends to a decreasing mapping
7:E — F, given by

7:FE — F
T — inf{o(z):zecEAnz<T}.

Moreover, in both cases, the mapping @ is injective resp. surjective if and only
if v is. Also, if ¢ is surjective, then @ is its unique extension to a monotonic
mapping from E into F.

Proof. Assume that ¢ is increasing (the decreasing case is proved similarly).
The mapping @ defined in (a) is clearly increasing. Assume that ¢ is injective
and let T < 7 € E. Choosing u,v € E with T <u <v < 7, we have

PE)<@(u)=pl)<p)=p @) <e(7),
so @ is injective.

Assume from now on that ¢ is surjective and let ¥ € F'. Then T ={u € E:
o(u) < g} is an open initial segment without a maximal element. Indeed,
if u € T were maximal, then we may choose v € F with ¢(u) < v < § and
there would exist a v’ € E with ¢(u’) =v < § and necessarily v < «/. This
shows that # € E. By construction, we have 7 (7) < 7. Given v € 7, so
that v < 7, there exists an u € E with ¢(u) = v. Consequently, u € T and
v=p(u)=g (u) <P (T). This proves that 7 < & (7).

Now let ¢ : E — F be another increasing mapping which extends ¢ on E.
Assume for contradiction that @ (F) < ¢ () for some T € E \ E (the case
7 (T) > ¥ (T) is treated similarly) and let v € (g (T), ¥ (T)). Since ¢ is
surjective, there exists a u € E with ¢(u) =v. But if u <Z, then ¢(u) <7 (T)
and if u> 7, then p(u) > @ (). This contradiction shows that @ is the unique
increasing extension of ¢ to a mapping from E into F. O
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Corollary 9.7. Let E be a Hausdorff ordering and E* the set E ordered by
the opposite ordering of <. Then there exists a natural bijection

*FE — EF
T +—— inf gz O
The following proposition is proved in a similar way as proposition 9.6: see
exercise 9.3.

Proposition 9.8. Let E be a Hausdorff ordering and I C E an interval. Then
there exists a natural inclusion

vl — FE
T — sup{7eF:g<T}.

This inclusion is unique with the property that o(I) is an interval. O

9.2.2 Compactification of totally ordered fields
6 Opposites and inverses
By proposition 9.6(b), the mapping
—C - C
[ —f

extends to unique decreasing bijection C — C, which we also denote by —
and the inversion

o> - C”
[
extends to a unique decreasing bijection C~ — C=. Notice that C~ = {oyuCc~
and 0~! =@. For f < 0, we may also set (—f)~! = —f "1 so that - ! is
bijective on C" \ {-#,0,m}.
7 Addition
The addition on C? may be extended to an increasing mapping +:C 2 — C
by applying proposition 9.6(a) twice: first to mappings of the form f + - :
C—C;g— f+ g with f €C and next to mappings of the form -+ g5:C —C’;
f— f+g with § € C'. This is equivalent to setting
+:CxC — C
(Z,7) — sup{z+y:z,yeCAz<T ANy<7}.
Notice that the mapping f +-:C — C; g~ f + g is an isomorphism for
each f € C. Subtraction on C'? is defined as usual by # — 7 =7 + (—7).
Since the definition of the addition is symmetric in Z and 7, the addition is
commutative. Clearly, we also have T +0=27 for all T € C', and

TH(g+z)=sup{z+y+zz,y,2ECAe<TAYySgA2<z}=(T+7)+z
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for all T, 7, z € C. However, C cannot be an additive group, because
m—m=—m=+0. Nevertheless,

—(T+y)=(=T)+(-y)
for all 7 € C and y € C. Indeed, given z € C, we have z < —(T + y) &
—Z2>T Yy —2—y>TSz+y<—-Tez<(—T)+(-y).

8 Multiplication

The multiplication extends first to (C>)? by

O xC> — C>

(ZT,y) — sup{zy:z,yeCANx<T ANYy<TJ}

and next to C' 2 by

(-7)7 = —(T7)
T (-y) = —(=7)
(-z)(-7) = 77
for all T, 7 € C>. This definition is coherent if & = 0 or § = 0, since

T 0=07 =0 for all 7. We define division on C'? as usual by & /7 =77 ~!. The
multiplication is clearly commutative, associative and with neutral element 1.
We also have distributivity Z (7 + Z) =Ty + Tz whenever T > 0. However,
(-)(@m—m)=(-1)(—m)=m#—m=(—m) +m.

Exercise 9.3. Prove proposition 9.8.

Exercise 9.4. Show that —(—Z )=z for allz € T.

9.3 Compactification of grid-based algebras

Let C be a totally ordered field and 90t a totally ordered monomial group and
consider the algebra $=C [9] of grid-based series. In this section we study
the different types of cuts which may occur in $. We will denote 5 =inf C~,
m=supC, O =sup 3. We will also denote C# =C \ (CU{-&,7}).

9.3.1 Monomial cuts

Let C be a totally ordered field and 9 a totally ordered monomial group. An
element M€ $\ $ is said to be a monomial if mM>0 and cm=m for all c€ C~.
We denote by 9 the union of the set of such monomials and the set 9t of
usual monomials. The ordering < on 9 naturally extends to 9, by letting
it coincide with the usual ordering <.
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Given f € 8, we define the dominant monomial 07 of f as follows. If
|fl<c|f|fornoceC,sothat |f|e€ 9\ M, then we take 37 = |f|. If
|f| <c|f]| for some c € C, then there exists a g € T with [f|<g<c|f].
Moreover, 9, does not depend on the choice of g and we set 97 =0,. Thanks
to the notion of dominant monomials, we may extend the asymptotic relations
<, =<, <and ~toSby f 790505, f <705 <0, fxg&e05=0;
and f~g&07_; <0;=05.

Proposition 9.9. For any f, f1, [o€S, we have
0_7 = 07; (9.2)
07,17, < max{0f,07,}. (9.3)
Proof. The first relation is clear from the definition of dominant monomials.

As to the second one, we first observe that |f;] < c; 07, and | fo] < e 0y, for
sufficiently large c¢1,c2 € C. Hence,

|Ji+ fol <IAT+1Fal < (e1+ c2) max {07, 07, }.
Since we also have | f + fo| > ¢07, 7, for a sufficiently small c€ C~, it follows

that 5f1+f2<max {ﬁfl,bﬁ}. O

9.3.2 Width of a cut

Let f €8. We define the width of f by
Wy =inf{07_,geS}eM.
Notice that f €3 & toy=0.
Proposition 9.10. For any [, f1, €3, we have
w_y = y; (9.4)
Wy 7, = max{wyz, vy} (9.5)
Proof. We have
w_y = inf{o_5_,:g€8}
= inf{d_75,,9€9%}

= inf{d_(57_g:9€S8}
= inf{dy_,geS} =17
which proves (9.4). Similarly, we have
Wy 7 = inf{d7,75_,9€8}
inf{07 4 7,—g— g0 91, 92€ B}
< inf{max {07, _,,07,_4,}: 91, 92 €S}
max {7, 07,}.
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Conversely, given g € $ with g < f; + fo, let g1, g2 € $ be such that g1 < f,
g2 < foand g= g1+ go. Then f; — g1 =1y and fy — g2 =10, whence
h+tf—g9=h—-a+f—g2=max {0y, Wy}

The case g > f; + f5 is treated in a similar way. g

9.3.3 Initializers

Let f €3%. Given m € 9 with m > W7, there exists a g € $ with f — g <m.
Moreover, g, does not depend on the choice of g, and we set f, = gm. We
define the initializer p5 of f by

gof:f_>ﬁf: Z f_mm
m>wy

We claim that o7 € C[[9]], where we recall that C[[M]] stands for the set
of well-based series in 9 over C'. Indeed, consider m € supp 7. Then there
exists a g €% with f —g<m and we have (¢7)-m = g»m €3. In particular,
there exists no infinite sequence n; <ns <--- in supp ©oF with m=n;.

Proposition 9.11. For any f, fi, €3, we have

v-r = %1 (96)
Cr+f = (PR 0FR)-m7 .7, (9.7)
Proof. In order to prove (9.6), let m € 9 be such that m - Ty = —t7, and
let g € $ be such that f —g=<m Then (—f) — (—g) <m, fi, = gm and
(=f)m=—Ym-
Similarly, given m € M with m =Tz 4 7, =max {07, W7,}, let g1,92€S be
such that f; — g1 <m and f, — go <m. Then we have
(it o) = (g1+92)=(fi—g1) +(fa—g2) <m
and

(fit P)m=(91+g2)m=g1m+ g2.m=frm+ fom-
This proves (9.7). O

9.3.4 Serial cuts

Let f€§\$ be a cut with gpfg_fS. Then for any Y <1p; and mzb(@f — 1),

there exists a g €8 with f — g < m and we have (¢5)rm=9%=g-m€3. In
other words, we always have ¢ s $\ %, where

$={feC[Mm:VgeC(M],g< f=geS}.
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A cut f €$\ S is said to be serial, if there exists a ¢ € C[[9]] with

f=r(¥)=sup{geS: g<y}. (9.8)

From the proposition below it follows that we may always replace ¢ by ¢w, €
$\ $ and obtain the same serial cut. For this reason, we will identify the set
of serial cuts with $\ $.

Proposition 9.12. Given a serial cut f =7 (1), we have
a) Pi= ([ T
b) T(es)=1(¥).

Proof. The equation (9.8) implies g< feg<ifor ge$. Now, glven m>-To,
let n < m and g € $ be such that f —g=<n Theng—n<f < g+mnand
g—n<t <g+n,sothat ¢ m—fm gm = ¥m. This proves (a).

Given g €%, we have g — ¢>mf, since otherwise g —n < < g +n for some
n—<mf, whence g — f n—<mf We even have g — w>mf, since g — wﬁmf
would imply 7/)>mf P < w; and 7/)>Ef € grw; + Cﬁf C $. Consequently,
g<V& g<i.w,=¢;j sothat 7(p;)=1(¢). O

9.3.5 Decomposition of non-serial cuts

Proposition 9.13. For any f €3\ 8§, we have either

1.y €M and for some € € C# we have
f=y7+ciy.

2. 707 €M\ M and

f Zﬁpfiﬁf.

Proof. Modulo substitution of f — @7 7 for f, we may assume without loss of
generality that ¢ 7 =0, since oy _ oy =107

Suppose that Wy =m e M and consider
c=sup{ceC:em< f}eC.

We must have ¢ € C' \ C, since otherwise f —cm~<m=%7. We also cannot
have ¢ =+, since otherwise oy =mm. Hence ¢ € C#. If zm< f, then there
exists a Y €S with cm <y < f. If ¢y <m, then ¢’'m < f for some ¢’ € C with
¢ <c' <ty If Y=m, then f_ =10, which is again impossible. This
proves that @ m > f. Applying the same argument for —f, we also obtain
cm< f, whence f = m.

Assume now that ™y €M\ M and let us show that f = +Ty. Replacing
f by —f in the case when f <0, we may assume without loss of generality
that f >0. For g€ $ we now have

0<g<f ©0<gw5-<fom S 0<g<n O

iy
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The above proposition allows us to extend the notions of dominant coefficients
and terms to 3. Indeed, given f Egi, we have either 7 # 0, in which case
we set CF = Cppand Tp = CF 07 =Ty, OF 07 =0, in which case f =cor=c05
for some ¢ € C#U{—1,1}, and we set ¢y =¢ and 77 = f. By convention, we
also set cog=79=0.

Exercise 9.5. Show that for all m,n € 9 we have
meEMATEIM = muneM
meMvnedl = mned\M.

Exercise 9.6. Show that @is stable under -~! and show that one may extend
the flatness relation < to 9.

Exercise 9.7. Given f,g €%, what can be said about 37; and W57
Exercise 9.8. If C' =R, then show that ™7 € T\ M.

Exercise 9.9. Given f €3, compute (—f)+ f.

Exercise 9.10. Given f, g €8, show that

f<g < 3ceC,|fl<cg
f<g < VeeC,cf <|7].

Exercise 9.11. Generalize the theory of section 9.3.4 to other types of supports,
like those from exercise 2.1. Show that there exist no serial cuts in the well-based
setting.

Exercise 9.12. Characterize the embeddings of C'T9T into C[[9]].

Exercise 9.13. Given f € $ and m € 9, we may define the coefficient fq of
min f as follows. If @ < W7, then fiy = 0. If M > ®7, then we have already
defined fr if M€ M and we set fr=0imM¢M. Ifm=®7and f =prs+cm
with ¢ € C#U{-1,0,1}, then fz==¢. Show that we may see § as a subset of
C'[[91]]. Also give a characterization of the elements in $.

Exercise 9.14. If C = R, then define a “symmetric addition” on CI[N1 by
f+T=95+vg o, £07if 07>y, likewise if 07 <Wg, f +7 =97+ ¢z if
W=y but (f —¢7) (7 —pg) <0, and f + g =7+ ¢y £7 for equal signs.
Show that this addition is commutative and that f + (—f) =0 for all f € 3.
Show also that the symmetric addition is not necessarily associative.

9.4 Compactification of the transline

Let us now consider the field T = C'[Z] of grid-based transseries. Given a
transseries cut f, the aim of this section is to find an explicit expression for
f in terms of cuts in C, the field operations, seriation and exponentiation.
We will denote 57, =sup { f € T:expo(f) =k} for all k € Z.
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9.4.1 Exponentiation in T

By proposition 9.6(a), the functions exp: T — T~ and log: T~ — T uniquely
extend to increasing bijections exp: T — T~ and log: T> — T, which are
necessarily each others inverses.

Proposition 9.14.
a) For alle € C \ {—®}, we have
expT C =expg C.
b) For all f,5 €T, we have
exp (f +g)=exp (f)exp (7).
¢) For any me T~ , we have

MeT\T & Wiggm - 1.

Proof. Let € € C \ {—®}. If ¢ € C, then expt ¢ =expgz ¢ € C~. Assume that
¢ ¢ C. Then it follows from logT expt ¢ =€ that expg ¢ ¢ C and similarly
expz € ¢ C. For any A € C with \ < &, we have e* < expr . It follows that
expg € < expf €. Conversely, for any g € T with —@ < g < €, there exists a
¢ € C with g= < ¢’ <, so that e9 =e9= < e < expz &. This shows that we
also have expt ¢ <expz €.

Now consider f,7 € T. We have

f 19 = sup{e¥tV e TAp< FAYETAY<T}
sup{e?: o€ TAp< f}sup{e¥: e TAY<7}
= ef e7.

This proves (b).

Let me T. If Mjogm >~ 1, then assume for contradiction that there exists
a ¢ € C~ with ¢ M # W, and take ¢ > 1. Then there exists a g € T with
m < g < cm. But then logm < log g < log ™ + log ¢ and logm — log g < 1,
which contradicts our assumption. We conclude that m € T\ €. Similarly, if
Wiogm =< 1, then let g €T and ¢, c2 € C be such that ¢; <logm — g <cz. Then
m<edtez<e2=m, so that m¢ T\ T. This completes the proof of (¢). O

9.4.2 Classification of transseries cuts

Let f € T. The nested sequence for f is the possibly finite sequence f;,
fi,... € T defined as follows. We take fy= f. Given f;, we distinguish two
cases for the construction of f;:

NS1. If f;e TU+{G}U+3;UC, then the construction has been completed.
NS2. Otherwise, we let ¢; = ¢7, ¢;=sign (f; — ¢;) and f;1=loge; (f; — ¢i),
so that

fi=piteel (9.9)
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We will denote by [ € N the number such that f; is the last term of the nested
sequence; if no such term exists, then we let [ = + oco.
For any 0< i< j <!, repeated application of (9.9) entails

7.
pj—1tej_1e”

fi= i +eefiriteirie . (9.10)
In particular, if [ < 400, then we call

er—1ter el

T = o+ egerrtac (9.11)

the nested expansion of f. If | = + oo, then the nested expansion of f is
defined to be

f_ — QOO + €0 e@1+61e¢2+62e” . (912)
In this latter case, the nested expansion of each f; is given by

fi=pite ePit1teiqref ittt
i :

The following proposition is a direct consequence of our construction:

Proposition 9.15. Each f € T admits a unique nested expansion of one and
only one of the following forms:

feT; (9.13)
f = +0; (9.14)
_ Lplo1te 1Tk

[ = poteerrtae (keZ); (9.15)
_ Lel_1terqe” _

F = goteenrtac (ceC\C); (9.16)
_ A,<Pz—1+€z—1cg N

f = ¢ot+eerrtae (geT\T); (9.17)
f_ = ¢0+€Oe¢1+€19¢2+62€" (918)

In order to completely classify the elements in T, we still need to determine
under which conditions on the ;, €;, s, € and §, the expressions (9.15),
(9.16), (9.17) and (9.18) are the nested expansion of a cut f € T \ T. This
problem will be addressed in the next sections.

9.4.3 Finite nested expansions

Proposition 9.16. Assume that f € T admits a finite nested expansion.
Then

a)l22=p1€Ty and 1<i<l:>g0i€TZ
b) 1<i<INg;i=0=¢=1 and
I>0Np_1=0= fie T \TV(I=1Af €—3).
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.<Pz—1+€z—1cfl

c) e¥ititeivie’ =< supp @; for all 0<i<1.
d)1>21= fi¢ TUL{T}.
e)Il=2= fi>0V feC \{-m}.

Proof. Given 0 < <, proposition 9.13 implies that either efi =Wy, €T\
or efi=z m for some ¢ € C# and m € <. In the first case, proposition 9.14(¢)
implies fo7, > 1 whence ¢; € T and fit1>0. In the second case, we obtain
fi =logm + log ¢ with log ¢ € C'#. We cannot have m = 1, since otherwise
l=1. Therefore, p;=logme Tf, € =sign (loge), f;=log|loge | and [ =i+ 1.
This proves (a). Similarly, if 1 <=1, then either f,€ C# or efi e T\T. In
the second case, Wy, -1 and W7, | > 1 yield either f; € (T \T)>, f, €5y or
fi=a. This proves (e). B

Now let 1 <4 < l. By what precedes, we necessarily have efi-1 = oy _,
and f; >0. If p; =0, then it follows that ¢; = 1, since q:efi“/fi > 0. This
proves the first part of (b). Assume that [ >1. We cannot have f, €T, since
otherwise f; ;= ¢;_1 4 €_1elt€T. Similarly, f; =0 would imply f;,_, =0
and f; = —0O would imply f,_; = ¢;_1 € T. If ¢;_1 =0 and f; = %, then
fl_l =€;_1 k41 ¢ 7z, whence [=1 and ¢,_; =—1. We cannot have ¢;_1=0
and f,€C, since this would imply f;_;=¢,_1ef1€ T . Finally, if f, €T, then
we have shown above that To7, = 1, so that fi € 'ﬁ) \ T. This completes the
proof of (b) and also proves (d).

f
SPl—1terqe
In order to prove (c), let 0 <i <l and m=ePi+1Tei+1¢ , 8o that
fi=pi+e;m. We conclude that M =Wm =17, <supp p;. O

Proposition 9.17. Let f € T be as in (9.11), where o, ..., ¢1_1 € T,
€0y €1-1€{—1,1} and f; e TU+{B}U=+35UC are such that the conditions
(a—e) of proposition 9.16 are satisfied. Then, f admits (9.11) as its nested
exTpansion.

Proof. Let us prove by induction over i =1,l —1,...,0 that

_ ..<Pz_1+el_1cfl
fi= @i +eefitrteinie (9.19)
satisfies
A)iz1= f;¢ TUL{T}.
B)i>2=f,>0V(I=iA[;€C \{-m}).
C)1<i<i=fi-1.
D) 0<i<l=Toy=el.
E) f; admits (9.19) as its nested expansion.

These properties are is trivially satisfied for ¢ =[. So assume that they hold
for i+ 1 and let us show that they again hold for 1.
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From (A) at order i+ 1, we get f; ;¢ TU+{0}. Since f;,=log (& (f;—
©i)), we have f; e TU+{0}= f;,,, € TU=£{O}. This proves (A) at order i.
For i > 2, we have either ¢;#0, in which case ¢; € T< implies f; >0, or ¢;=0,
in which case ¢;=1 and f; ;>0 imply f;=eli+1>0. This proves (B).

As to (C), if 1 <i <!l and ¢; # 0, then ; € Ty implies f; ~ @; = 1. If
1<i<l—1and ¢;=0, then fi;;>1and f; ;>0 imply fi=elitie-1.1If
1<i=l—1and ¢;=0, then ;€T \T and f,_; =ef1>1. B

Now let 0 <i <. In order to prove (D), it suffices to show that e/i+1 €
(T\ ) UCC# . Assume first that i < [ — 1, so that Wy, < efitz If
Fir2€C \{@}, then ;140 and /i1 € C#Z. If f;, ¢ C or f;, o=, then
fizo>=1 and Wy, =< efi+2 - 1. Hence e/i+1 € T\ %, by proposition 9.14(c).
Assume now that i =1 — 1. Then either f, € C# and efi e C#, or f, = 7,
for some ke Z and efi=3,,, €T\ T, or f;e T, \ T and el €%\ %, since
Wy > 1. This proves (D). The last property (E) follows from (D) and (E)
at stage ¢+ 1. O

9.4.4 Infinite nested expansions

To any f €T, we may associate a natural interval
Ty={geT:fLg}=[f-T f+1],

where f 47§ < f<dygz and ty=inf{m € T:supp f >=m}. Given a sequence (o,
€0), (¢1,€1),... with o, ©1,... € T and €y, €, ... € {—1,1}, we denote

Ty,
N j=pi+eefititetie’
,

for all i < j and A;=1A,; for all i. We also denote
Li=2iNAip1NA; 10N
for all i >0 and I=1y. Given f €T, we finally define n(f) €N by
0 if f=0
n(f)=4q 1 if feexpza

MaXmesupp f N(logm)+1 otherwise.

Proposition 9.18. Assume that f € T admits an infinite nested expansion.
Then

a) g1 €Ty and po, tpg,...ETi.
b) We have ¢;#+0 for infinitely many i, and ¢;=0=¢;=1 for all i>1.
¢) For every i >0, we have AgN--NA;# 2.

Proof. Property (a) is proved in a similar way as in proposition 9.16, as well
as the fact that ¢p; =0=-¢; =1 for all 4 > 1. Property (c) is obvious, since
feApn---NA,; for all i >0.
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Let us prove that ¢; # 0 for infinitely many 4. It suffices to prove that
;70 for one i, modulo repetition of the same argument for f;; instead of f.
Considering f; instead of f, we may also assume without loss of generality
that f >0 and f > 1. Since f ¢ £{0} U+, U £ {@}, there exist g,h € T
with ¢ < f < h and expo(g) = expo(h) = k. For a sufficiently large r, we
now have log, g = expix_,  + o(1) and log, h = expi_,  + o(1). But then

expr—r ¢ < log, f so that ¢; # 0 for some ¢ < r. This completes the proof
of (b). O

Proposition 9.19. Consider g, ¢1, ... € T and €, €1, ... € {—1, 1}, which
satisfy conditions (a—c) of proposition 9.18. Then TNT=1;NT +T*.

Proof. Let fie;N'T and define fo=log (€1 (f1— ¢1)), fs=log (e2 (f2— ¥2))
and so on. We claim that f; — ¢; > 1 for all i > 1. Indeed, let k be such that
Qit1 == piyk—1=0but p; 41 # 0. Then logk (¢; (fi — ¢i)) &= @irr € T,
whence f; — ;= €;expy (Qitr+--) = 1.

Given §; € TS, we have to prove that f; + d; € I;. Let us construct a
sequence do, J3, ... of elements in T as follows. Assuming that we have
constructed §;, we deduce from f; — p; =1 that f; +9; — p; > 1, so, taking

5.
dir1=log| 1+ ‘ ,
! g( fz‘—%>

we indeed have 0;11 <1<1 as well as
fixr+dir1=1log (& (fi+ ;i — ¢i)). (9.20)

Now f; €A, ;and § <1 <supp ¢; imply f;+d; €A, ;. By induction over j —1,
the formula (9.20) therefore yields f;+9; EZM for all 1 <i<j. In other words,
fi+6;€1; for all > 1 and in particular for = 1. O

Proposition 9.20. Consider g, ¢1, ... € T and €, €1, ... € {—1, 1}, which
satisfy conditions (a—c) of proposition 9.18. Then I={f} for some f € T\T
with nested expansion (9.18).

Proof. Since T = Ag N (Ag N Ay N (Ag N A; N Ay) N - is a decreasing
intersection of compact non-empty intervals, I contains at least one element.
If T contains more than one element, then it contains in particular an element
f€T. Assume for contradiction that INT# @. Then we may choose (o, €9),
(¢1,€1),... and f €T such that n(f) is minimal.

Let m=0(f — o) and g=logm. From ¢o < f, it follows that m € supp f
and n(g) < max {1, n(f) — 1}. Since log (o (f — ¢o)) — log m < 1, we
also have g € Ij, by proposition 9.19. Hence n(g) > n(f) and n(f) < 1, by
the minimality of the counterexample f. Now f = ¢ is impossible, since
otherwise ¢g — f =0 € ¢y exp I;. It follows that f #+0, since f & o, whence
n(f) =n(g) = 1. We cannot have f € C, since otherwise m =1, g =0 and
7(g) = 0. Therefore, there exists an | € Z with f = exp; , vo = 0 and
g=exp;—1x. Repeating the same argument, we conclude that ¢g=¢;=---=0,
which is impossible.
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Now that we have proved that T={f} for some f € T \ T, let us show
that f admits (9.18) as its nested expansion. Indeed, we also have I; = {7 }
for g =log (€0 (f — o)) and proposition 9.19 implies e € T \ T. Consequently,
W7 =M e7 =M.s =e7, since e <supp @o. This shows that g = fi1. Using the
same argument, it follows by induction that I = { f;,} for all k. O

Proposition 9.21. Assume that f € T admits an infinite nested expansion.
Then for every i >0 and m € supp ¢;, there exists a j >1i with A; j — @; <m.

Proof. Let G5 be the set of monomials m € supp o, such that for all i >0
there exists a g € A; with § — o= m. Let & be the union of all &7, for nested
expansions f of the form (9.12). If & =@, then we are clearly done, since we
would in particular have &7, = @ for each Ji= @i+ e efitriteiric’ Qo Jet us
assume for contradiction that & is non-empty and choose f and me G5 C &
such that n(m) is minimal. Let 4 > 0 be minimal such that ¢;#0. If §=1 or
m>1, then let 6 =1. Otherwise, let § =—1. Setting 1) =log; m? and N=0gy,_y
(whenever ¢; # 1)), we distinguish the following four cases:

Case ¢; = 1. We first observe that €;1.1 = —4. Now let j > i be minimal
such that ¢;# 0. Then exp;_;h =1 and m > exp? (@i — Sexp;_; h) for
all A > ;. This contradicts the fact that m e S5.

Case n ¢ supp . For all § & ¢;, we have § — ¢ ~ ¢; — ¥ ~ ¢; w1, so the
sign of g — 1 does not depend on the choice of g. Since me€ &7, we may
choose g such that m < exp; 7. But then sign (g — 1) # sign (f; — ).

Case n €supp ¢ \ &5,. Let j >i be such that n>g — ¢; for all g e ;.
Given g €A, it follows that § — 1)~ p; — ), so the sign on g — ¢ does not
depend on the choice of g. We obtain a contraction as in the previous case.

Case n € supp ¥ N S5,. The minimality hypothesis entails 7(n) > n(m). By
the construction of n, we thus must have n(m) < 1. Since m=1 implies ©)=0
and n ¢ supp v, it follows that m =expyx for some k € Z and ¢ =expp_; .
Since supp ? is a singleton, we also must have n = = expy_; . Now if
Ty, > 1, then we would have exp; fi = m, which is impossible. If T, < M,
then exp; § <m for all g & ¢;, which contradicts the fact that me &5.

In all cases, we thus obtain a contradiction, so we conclude that G =g. O
Exercise 9.15. Prove that e =3 and ¢” =m. In the case when C' =R, show

that (modulo suitable adjustments of the theory) the “halting condition” NS1
may be replaced by the alternative condition that

LeTU+{C}U+sU+{5,m} 3.
Exercise 9.16. Show that the condition (d) is needed in proposition 9.20.
Exercise 9.17. Show that the conclusion of proposition 9.21 may be replaced

by the stronger statement that for all ¢ > 0, there exists a j >4 with A; CA,.
Does this still hold in the case of well-based transseries?
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9.5 Integral neighbourhoods of cuts

9.5.1 Differentiation and integration of cuts

Let J be an interval of . Any cut f =supggsy [ € CLIT \ CIIT (where I
is an open initial segment without maximal element) naturally induces an
element «(f) =supy I in T. Identifying f with +(f), this yields a natural
inclusion of C[J1 into T, which extends the inclusion of C'[J1 into T.
For any g € I with g < f, there exists a h € I with ¢ < h < f so that
f—g>h—gcCIIT>. In other words, f is a cut in T \ T whowdth
lies in J. From proposition 9.13 it now follows that either f = wy € CLIT or
f=¢7+ecwy forsome p7€CMIN and e € C==C \ {—m,m}. In other words,
CIoT = éx[[j]] NT.
In particular, each element f € T admits a canonical decomposition
F=F+F+7 (9-21)

with f, € T =CIZ.1, fo€Cx and fLe T =CIZ1.

Denote ¥ = (x log x logz  ---) ~! and consider the differential operator 9
on T. The restrictions of 0 to Ty and T respectively yield increasing and
decreasing bijections

0Ty — CIT.-T
8<:T< — C[[§<7I|

By proposition 9.6, we may extend 0. and 0« to the compactifications of T’y
and T~. This allows us to extend 0 to T by setting 0 f =ds f. + 0~ f< for
all f € T. Notice that #'=(—5)'=7% and (—®)'=35'=—%. The logarithmic
derivative of f € T# is defined by f = (log|f|)’.

Similarly, the inverses of J. and 0, which coincide with restrictions of
the distinguished integration, extend to the compactifications of C'[T, 51
and C[%~1. By additivity, the distinguished integration therefore extends
to T\ (T 5=%%). The distinguished integrals of 4 and —¥ are undetermined,
since [ +74 can be chosen among + and F5.

9.5.2 Integral nested expansions

Let f € T\T be a cut. We say that f has integral height [, if either

e [=0and fe’ff

e [=0and f =¢7+cmforsomece(CU{-7,5}) and me%.

° fgé'fl‘andﬁf¢ {3, 1,m} %, so that F=¢+eell for ¢ =5 €T,
e=sign(f —¢) and f =(F — ¢)f, and f has integral height [ — 1.
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The integral height of f is defined to be [ = 0o, if none of the above conditions
holds for a finite [ € N.
We say that f is right-oriented (resp. left-oriented) if

I=0and f =p7+mm (resp. f =7 —mm) for some meT.

=0 and f:gof—im (resp. fchf—i—?m) for some me ¥.
e [>0and f = o7 +elf (resp. f = OF — eff), where f is a right-oriented
cut of height { —1. _ _ a
e [>0and f =¢p5— el! (resp. f =¢7+ e”)7 where f is a left-oriented
cut of height [ —1.
e [=occand f=—0 (resp. f=0).
An oriented cut is a cut which is either left- or right-oriented. A cut f is said
to be pathological if fzgz)f—i—(?m for some ¢ € C'# and me€ T, or fzgp;:l:e”,
where f is a pathological cut. If C'=1R, then there are no pathological cuts.
If f is neither an oriented nor a pathological cut, then f is said to be regular.
For each k <[, we recursively define o, €T, ex € {—1,1} and f,; € T\T
by taking ¢r = @7, (starting with fo=7F), ex =sign (fp — ¢x) and fr 1 =
(fe — ¢r)t. The sequence fy, f1, ... is called the integral nested sequence of f
and the sequence g, ¢1,... its integral guiding sequence. For each k € N with
k<, we call

.wk—l‘*—%—lcffk

F=¢o+eo efwﬂme[ g

the integral nested expansion of f at height k. If f is an irregular cut of
height [ < oo, so that f;= @7+ ¢ m for certain ¢ € C U{-5,5}\C and me T,
then we also define ¢; = ¢y and ;1 =1logm. In that case, we call [ +2 the
extended integral height of f and o, ..., @141 the extended integral guiding
sequence. If f is a regular cut, then the extended integral height and guiding
sequence are defined to be same as the usual ones.

9.5.3 Integral neighbourhoods

Let f € T\ T be a cut of integral height [ and with extended integral guiding
sequence o, ¢1,.... Let g <h be transseries in TU {«, —}, where « and —
are formal symbols with «+ <T < —. Then the set

.wk—1+ck—1c‘{fk

L9901~--a@k—1’gah:{¢O+Coej¢1+619 :607"'7ck—160¢7g< fk<h}

is called a basic integral neighbourhood of extended height k, if either one of
the following conditions holds:

k=0 and g < f <h. This must be the case if f eT.

k=1,1=0, f is irregular and g < 1 — 5 < @1+ 7 <h.

k=2,1=0, f is irregular and g <7 <h.

k>0,1>0and Ly, . 9. i a basic integral neighbourhood of f;.
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The height of Lo, . 4 1,g,n is the minimum of £ and I. An integral neigh-
bourhood of f is a superset V of a finite intersection of basic integral
neighbourhoods. The (extended) height of such a neighbourhood is the max-
imal (extended) height of the components in the intersection.

Let V be an integral neighbourhood of f of height £ and consider
a transseries f €V close to f. We define the integral coordinates of f by

fo=1Ff
fi = (fo—ﬁﬁo)Jf

fe = (fim1—r—1)T

If W is an integral neighbourhood of fj, then we notice that V= ¢o+ C# e/
is an integral neighbourhood of f, and it is convenient to denote the integral
coordinates of f1 €W by fi,..., fr.

Example 9.22. Let ¢ € C U {—3, 5} \ C and consider a basic integral
neighbourhood V of ¢ of height k£ > 0.

If k=1, then V =Ly 4,0, with g <=7 <7 <h. In particular, there exists
an ! € N with g < —(log; z)" and h > (log;z)’. For any f €T with f% 1 and
f = log;_1z, it follows that fT=(log|f|)’ < (log;z)’, whence f € V. For any
f €T with f=1, we also have | fT|<|f’| < ¥, whence f € V. By distinguishing
the cases ¢ =43, ¢ =+m and ¢ € C #, it follows that V D (g, h) for certain
G,heT with <& <h.

If k=2, then V=_L 0,41, where VI=Lg ; p, is an integral neighbourhood
of both ¥ and —7%. Hence,

1 1

1
log 7)/ = —— — — —<h
g<(log7) r =xlogxr xlogzlogyx <
so there exists an [ € N with
1 1 2
T f— - . _
g < (logi) (log; z) T x--logi_1x x---logix
and
1 1
T ... -
h> (log; x) . .

It follows that for any f1 with f<log;z, we have

fT=(log f)' < (log412)" = (logyz)"
and

f1T=(log 1)’ < (log (logy ) )’ = (logy )1,
so that f € V. Similarly, if f=c+e with ce C* and (logyx)~1 <e <1, then

fi=xe' = ((logz)™Y) < (log x) T /log; x,
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whence
it =(log 1) > (log ((log; )T /log; x))" = (log; x) Tt — (log; )t
and feV.

9.5.4 On the orientation of integral neighbourhoods

Let f € T\T be a cut. A one-sided neighbourhood U of f is either a superset
of an interval (f, g) with g € T and g > f (and we say that U is a right
neighbourhood of f) or a superset of an interval (g, f) with g€ T and g < f
(and we say that U is a left neighbourhood of f). A neighbourhood of f is
a set U which is both a left neighbourhood of f (unless f =—0) and a right
neighbourhood of f (unless f =0).

Proposition 9.23. Let f € T\ T be a non-pathological cut and let V be an
integral neighbourhood of f.

a) If f is regular, then there exists a neighbourhood U of f with U C V.
b) If f is right-oriented, then f admits a right neighbourhood U with U C V.
c) If f is left-oriented, then f admits a left neighbourhood U with U C V.

Proof. We prove the proposition by induction over the height k& of V. If
f==20,or k=0 and f is regular, then we may take &/ = V. If k =0 and
f # £ U is oriented, then the result follows from what has been said in
example 9.22. Assume therefore that k > 0 and let f = ¢y + € e/t be the
integral expansion of f at height 1.

We have V D VyN--- N Vg, where each V; is a basic integral neighbourhood
of f of height k. Modulo a final adjustment of U, we may assume without

loss of generality that Vy="T. We have V; = ¢o+ C7 e/ for all i > 0, where
each W is a basic integral neighbourhood of f;. Let W=WN--NW,.

a) If f is regular, then so is f;, hence the induction hypothesis implies that
there exist g,h € T with g < f; <h and (g, h) CW. We conclude that either
co=1and (p+el% p+e/"CVoreg=—1and (¢ —e/" p—el9)CV.

b) If f is right-oriented, then either ¢ = 1 and f; is right-oriented, or
eg = —1 and f; is left-oriented. In the first case, the induction hypoth-
esis implies that there exists a g € T with f; < g and (f1, g) C W,
so that (f, ¢ + efg) C V. In the second case, there exists a g € T
with g < f; and (g, f;) CW, so that (¢ —el9, fHcy.

¢) The case when f is left-oriented is treated in a similar way as (b). O

Proposition 9.24. Let f € T \ T be a cut and V an integral neighbour-
hood of f, of height k. Then there exists an integral neighbourhood W of f
of height k, such that W CV and fo— o, ..., fk—1 — @r—1 have constant sign
for few.
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Proof. We prove the proposition by induction over k. If £k = 0, then we

may take YW =YV. So assume that k>0 and write f = g+ €o e/ /1. We have
VY D VNV, where Vy is a basic integral neighbourhood of height 0 of f and
V. an intersection of basic integral neighbourhoods of heights > 0. By the
induction hypothesis, there exists an integral neighbourhood X of f;, such
that X € (V. — o) and f1 — @1, ..., fu—1 — ©k_1 have constant sign for all
f1€ X. Now take

W = VOQ(QOO?_))Q(SDO‘FC%GJ:X) if eg=1 0
Vo («—, ¢0) N (o +CF el ¥) if eg=—1

Exercise 9.18. Show that ¥y =inf{f": fe T>"}.
Exercise 9.19. Show that 0 maps T into T.

Exercise 9.20. If f €T, then show that either f,_ ¢ T and f5=0, or f,_ €T,
f=¢Cand f,=0,0r f.€T.

Exercise 9.21. Show that the extension of 0 to T is not additive.

Exercise 9.22.

a) Show that the operators o: T x T>> — T and -°~%T”> — T > naturally
extend to T x T™> resp. T">>.

b) Give an explicit formula for f om, where f € T.

¢) Does the post-composition operator o,: T — T with g € T preserve addition
and/or multiplication?

Exercise 9.23.

a) Compute the nested integral sequences for U, @ and 3.
b) Prove analogues of the results from section 9.4 for nested integral sequences.

9.6 Differential polynomials near cuts

Let P € T{F}# and f € T \ T. In this section, we study the asymptotic
behaviour of P(f) for f close to f. In particular, we study the sign of P(f)
for f close to f.

9.6.1 Differential polynomials near serial cuts

Lemma 9.25. Let f € ’JT\’JT Then there exist g, h € T with g < f <h and
7€ C* X, such that P(f)~T for all f € (g,h). Moreover, if Wy =7, then g
and h may be chosen such that deg<~Py =0 for all f €(g,h).
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Proof. Tf there exists a ¢ <1 f with deg-supp o Pisuppe =0, then the lemma

follows for 7= P, , 0 and any g, h € T with g < f < h and h — g < supp ¢.
Assume for contradiction that d=min _ ; deg<supp o Pt >0.

If d =1, then each ¢ < f with deg<supp o P+ = 1 induces a solution
fo =@+ h to P(f) =0, by letting h be the distinguished solution to the

equation Py ,(h) =0 (h <supp ¢). Now pick ¢1 Qe << f such that
(fsoj - fsai)|{m:3n€supp @j,mx=n} 7é 0

for all j > ¢. This is possible, since supp f would be a subset of the grid-
based set supp fo,, if (fy — fo.)|{m:Inesupp ¢,mz=n} = 0 for some i and all

0i < < f. Now 0(fo,i = for)s oo 0(forin — fonyn) are pairwise distinct
starting monomials for the linear differential equation Py, ., 1(h)=0, which
is impossible. K

Assume now that d > 1 and choose x < 9 with d = degsuppx Pix-
Consider the set .7 of all partial unravellings

f=¢+f  (feCrTD) (9.22)

relative to the equation P+X(f) =0 (f ~<supp x), such that ¢ = {o\p < f and
degg; P, =d. Since . contains the identity refinement, we may choose (9.22)

to be finest in ., by corollary 8.32. We claim that ¢ < f is maximal for <,
such that deg_supp o P+ =d.
Indeed, assume for contradiction that some 1 > ¢ also satisfies

deg<supp [ P+111 =d,
and let 7=7(1¢ — ¢). By proposition 8.27, there exists a partial unravelling

F=¢+E+F  (F=8),

which is finer than (9.22), and such that £ ~7. But then p+7=(£+ f)?é af
and deg_ s P} o4~ =d, which contradicts the maximality of (9.22).

Our claim implies that degsupp v P+ < d for any 1 < f with ¢ <1¢. This
contradicts the definition of d. d

9.6.2 Differential polynomials near constants

Lemma 9.26. Let f € C U{—5,5}\ C and m € <. Then there exist an
integral neighbourhood V of f and n €T, such that

P(f)~Np(f)n
and deg<m Py =0 for all feV.

Proof. Let | >0 be such that PT; is exponential, Np = Dpy, and log; z << m.
Let Q € C[F] and v € N be such that Np=Q (F')".
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Take V = L 0 (1og, 2) 11— (log, )T, (log, o) 11 2nd let f € V. If fi = 7, then
11 < (log; )™, so fT < (log; #)T and f << log; . If fiT < 7, then fiT >
(log; )™ — (log; )T, whence fT 3= (log; 2)t/log; =, log (f/ f<) = 1/log; = and
f — f<=1/log;x. This proves that either f1;>1and f1; =<, or f1;<1 and
(fT)g X

If f1;>1,then Np(f1)~cf18(f1])", where c# 0 is the leading coefficient
of @ and d=deg Q. Since (f1])” Xz, it follows that Np(f7;) =e= 1, whence
P(f) ~ Np(f) n for n = dn,y, 0p1,l1. Moreover, 9(f1;) is not a starting
monomial for P1;(f) = Np(f)0pt, 4 - =0, since 2(f1;) # 1. Consequently
degm Pry<degosPyr=0.

Similarly, if f1;<1, then Np(f1;) ~c f1/ (f1])", where c# 0 and u are
such that Q(fx+e)=ce”+---. Again, we have (f1])" =<z, Np(f11) =e=1 and
P(f)~ Np(f)n. Furthermore, 0((f711)%) # 1, so d((f1:)%) is not a starting
monomial for Py ;_1,(f) = NPJer(.]F) 0pq, + --- =0. Therefore, degm Py § <
deg<f$P+f:O. U

Corollary 9.27. Let f = @+ e/ #1 be an irregular cut of height 0. Then
there exist an integral neighbourhood V of f, Q € C[F]# (F')N, and n€ <, such
that for oll f €V, we have

P(f)~ QL)

NSt

Moreover, if el o 7, then we may take V such that deg<~ Py =0 for
all feV.

9.6.3 Differential polynomials near nested cuts

Lemma 9.28. Let f = o+ € JheT \ T be a cut of integral height >1.
Then there exist g,h € TU{«,—} with g< f <h and i €N, such that for all

fe(g,h), sothat 05_,, is not a starting monomial for Py ,(f)=0, we have

P(f)NRP+<P0,i((f_ ‘PO)T) (f— %Do)i-

Moreover, if Wz = 7, then g and h may be chosen such that deg<~ Py =0
for all f as above.

Proof. Let P= Py, By proposition 8.17, there exists a unique integer 7 such
that for each equalizer e  for P(f) =0, we have either ¢; 1, <77 and k <i
or ¢j =Ty and j <. 1\[ovxi let f=¢o+ f ENT be such tha‘E ﬁ'L:DJz is not
a starting monomial for P(f)=0, and ¢; < fif k<<iand f <e¢;pif i<
for all equalizers e¢; j, for P(f)=0. Then Np .=c F' for some ¢ € C7 and
Peali=cnFit 0e=(n) for some sufficiently large [ and n € T. Consequently,

P(N)=P(f) = (Peal)(F/@)T)Li~ (el
Rp(FN f'=P(f) = (Pumil)((f/@)T) i~ (en)ly,



238 9 The intermediate value theorem

which proves the first statement of the lemma. Moreover, since m is not a
starting monomial for Py ,,(f) =0, we have deg<m Py =0. If oy = 7, it
follows that deg<~ P4y =0 whenever f is chosen such that f > 7. O

9.6.4 Differential polynomials near arbitrary cuts

Theorem 9.29. Let P T{F}* and let f € T\'T be a cut of height | with
integral guiding sequence @q, Y1,.... Then there exists an integral neighbour-
hood V of f of height k <min {l,r}, such that one of the following holds:

o There exist ig, ...,ir—1 €N and 7€ C* X, such that for all f €V, we have

P(f)~(fo—@o) (fr—1—or—1)* . (9.23)

o The cut f is irreqular, k = I, and there exist ig, ..., ix_1 € N, Q €
C[F) (F")N\ C and n€ T, such that for all f €V, we have

P(f)~ (fo—@0) - (fr-1— o)™ QU2 n. (9.24)

Moreover, if ToF = 7, then V may be chosen such that deg<5 Pyy =0 for
all feV.

Proof. We prove the theorem by induction over r. So assume that we proved
the theorem for all smaller r (for » < 0, there is nothing to prove). If f € T,
then the result follows from lemma 9.25. If f =+ m with m <supp ¢ and
¢e€C U{-3,5}\C, then we are done by corollary 9.27.

In the last case, we have f = Yo+ € e/ T for some eo==1. By lemma 9.28,
there exists an g and an integral neighbourhood Vy of f of height 0, such that
for all f €V sothat 05_,, is not a starting monomial for Py ,,(f)=0, we have

P(f)~Rp, ., (fo= o) (fo— o)™ (9.25)

By the induction hypothesis, there exists an integral neighbourhood W of f;
of height k', such that k:=%k’+1<min{l,r} and one of the following holds:

e There exist i1,...,7,_1 €N, and 7 € c? %, such that for all f; € W, we have
(f1)~(fi— 1) (fr—1— Qr—1)* 7. (9.26)

+¢0 i0
e The cut f; is irregular, k& = [, and there exist i1, ..., ix—1 € N, Q €
C[F] (F")N\ C and n €T, such that for all f; €W, such that

Rp, . (f)~(fi=e) e (frm1—pr-1)™" LQE= )y, (9.27)

of Pr+1

Moreover, for f; € W, the induction hypothesis and proposition 8.16 also
imply that e/ /1 is not a starting monomial for P, W(f) =0, since Ty, = 7.
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Now take V = Vo N (¢ + C7 e-fw). Then the relations (9.25) and (9.26)
resp. (9.27) entail (9.23) resp. (9.24) for all f €V. Moreover, if oy =7, then
Vo may be chosen such that deg<~P; =0 for all f€V CV, by lemma 9.28. [

9.6.5 On the sign of a differential polynomial

Let P € T{F} be a differential polynomial. We denote by op: T — {—1,0,1}
the sign function associated to P:

-1, if P(f)<0
op(f)=sign P(f)=4 0, if P(f)=0.
1, if P(f)>0

We say that o p is constant at the right of f €T, if there exist e € {—1,0,1} and
g> f such that op(f)=eforall f€(f,g). Inthat case, we denote o (f)=e.
We say that op is constant at the left of f €T, if there exist e € {—1,0,1} and
g < f such that op(f)=c¢ for all f€(f,g), and we denote op(f)=c. If op
is constant at the left and at the right of f, then we say that op is constant
at both sides of f.

Proposition 9.30. Let Q€ Q= (QaF +---+ Q, F?) (F")* € C[F] (F")N with
Qa#0 and Q,+#0. Then

U&S(ﬁ) = sign Qg (9.28)
oo(—m) = (—1)sign Qq (9.29)
og(3) = (=1)"signQ, (9.30)
cb(=3) = (—1)"sign Q, (9.31)
Proof. For f€T>", we have
QUf)~Qaf(f)”
and f’ > 0. That proves (9.28). The other properties follow by considering
Q(—f) and Q(£1/f) fde& @ instead of Q(f). O

Theorem 9.31. Let PET{F} and f € T. Then

a) If f is regular, then op is constant on both sides of f, and o5(f)=0p([f).
b) If f is left-oriented, then op is constant at the left of f.

c) If f is right-oriented, then op is constant at the right of f.

d) If f €T, then P is constant at both sides of f.

Proof. Propositions 9.24, 9.30 and theorem 9.29 imply (a), (b) and (c). Prop-
erty (d) follows by considering P(1/f) f3¢& ¥ instead of P(f). O
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Proposition 9.32. Let P € T{F}?, m €T and denote i =val Np_ < j=
deg Np, ... Then

ohEm) = of@m) = of, (m+7)
op(3m) = op(Gm) = o, (mf—7)

Proof. From (9.28), it follows that UJJ\?PM(E) = o, Xm(ﬁ). Consequently,
Pyw(f) ~ Pj xu(f) for all sufficiently small f € T">, so that of(m m) =

U}SJ_ (mm). Similarly, we obtain op(3 m)=o0p (5 m). Since

O'Pj,xm(f) = URPj(mT+fT)

UPi,xm(f) = URPi(mT_F fT)
for all f €T, we also have
ob@m) = of, (m+7)
op(3m) = agpi(mT—'V). O

Let 20 be an initial segment of T. The sign op gy of P modulo 20 at a point
f €T is defined as follows. If deggy Py ¢ >0, then we set op o( f) =0. Recall
that degoy P4 ¢ is the multiplicity of f as a zero of P modulo 20 in this case.
If degay Py y =0, then for all § € C[21, we have op, ,(§) = sign Py, and we
set op an(f)=sign Py€ {—1,1}. Given f €T and f €T, we write f <oy f if
f<f+éforal 6cCIWI. Given f,7 €T, we denote

(f,g_)m]:{hETZf<m]h<m]g}.

We say that op gy is constant at the right of f €T, if there exist e € {—1,0,1}
and g >gp f such that op ap(f)=e€for all f€(f,g)aw. In that case, we denote
o au(f) =e. Constance at the left is defined similarly. If 20 is of the form
2 ={m € T:m < 1w}, then we also write 0p < =0p au, 0P < =0p gy and
Tp,<w=0P 2y

Exercise 9.24. Let H D T{F} be a Hardy field. Consider a cut f € T and

an element h € H, such that g< f < g<h for g€ T. If o} (f) is defined, then
show that there exists a g € H with g >h and op(p) =0cp(f) for all ¢ € (h, g).

Exercise 9.25. Show that ((x),

1 1 1
@) ==t

r Tt  x"

and

(@) =+ e

T elog2 T

4
elog T

do not satisfy an algebraic differential equation with coefficients in T. Compare
with the technique from exercise 8.26.
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Exercise 9.26. Let L be a real analytic solution to L(log z) = L(z) — 1 (for a
construction of such a solution, see [Kne50]). Show that T<V{L} is a Hardy field.

9.7 The intermediate value theorem

In this section, we assume that C' is a real closed field. Our main aim is to
prove the following intermediate value theorem:

Theorem 9.33. Let P € T{F} and f, g € T be such that f < g and
P(f)P(g)<0. Then there exists a h € (f,g) with P(h)=0.

In fact, we will prove the following stronger version of the theorem:

Theorem 9.34. Let P T{F} and let 20 be an initial segment of T. Assume
that f,g €T are such that f <qy g and op 9 (f)op.am(g) <0. Then there exists
ahe(f,qg)w such that degoy Prp, is odd.

In both theorems, the interval (f, g) may actually be replaced by a more
general interval (f, g) with f, g € T. More precisely, we say that P
changes sign on (f, §) modulo 20, if o} gy(f) and op g5(7) exist and
o a(f) op au(7) < 0. Notice that P changes sign on (f, 7) modulo 20
if and only if P changes sign on (f, 7). We say that P changes sign
at h € T modulo 20 if deggy Py, is odd. Now if P changes sign on (f, 7),
then it also changes sign on (f, g) for some f, g€ T with f < f<g< 7,
opa(f)=0p.au(f) and op a(g) =0p au(7). Consequently, if theorem 9.34
holds for all intervals (f, g) with f, g € T, then it also holds for all inter-
vals (f,7) with f,g €T.

Remark 9.35. The fact that P changes sign at A € T modulo 2J does not nec-
essarily imply 0% gy(h) 0p an(h) <0. Indeed, P=F’ changes sign modulo o(1)
at h=0, but o, _1(0) and o/ -;(0) are not defined.

9.7.1 The quasi-linear case

Lemma 9.36. Let P € C{F} be of order r and let 20 be an initial segment
of X. Assume that the theorem 9.34 holds for all differential polynomials of
order <r. Let v €% be such that the equation

P(f)=0  (f=v) (9.32)

is quasi-linear and assume that P changes sign on (0,3 v)gy. Then there exists
a he (0,7 0)gy with degoy Pyp=1.



242 9 The intermediate value theorem

Proof. Modulo an additive conjugation by a sufficiently small § € (0, 3 1)y,
we may assume without loss of generality that deggy P = 0. Since (9.32) is
quasi-linear, it admits only a finite number of starting monomials. Let m be
the largest such monomial. Modulo a multiplicative conjugation with m, we
may assume without loss of generality that m=1. We must have 2J < 1, since
otherwise 1=deg<; P <deggy P =0. Furthermore, since Np € C[F] (F")N, we
either have Np=a F + 8 with o, 3€ C7, or Np=a F’ with a € C7.

If Np = a F + (3, then the distinguished solution h to (9.32) satisfies
h~—p/a=0. Moreover, from proposition 9.32, it follows that

opw(0) = op(3) ORrp(—7) = signf3;
pa@) = ob@) = o, (7) = signa;
opa(30) = op(50) = og, (v1—7) = —signp.

We claim that og, (7) = O’RPI(UT — #). Otherwise, theorem 9.34 applied
to Rp, implies the existence of a ¢ € (0,07) <5 with

deg5Rp, +4 €2N+1.

Taking ¢ such that ¢~y =0 (whence [ €T, ), it follows that e/~ 1 would
be a starting monomial for (9.32). Our claim implies that sign § = —sign «,
so that h € (0,35 v)gy. Furthermore, P1p 0=0, so

1< degoy Prp<deg<o Pyrp=1.

If Np=a F’, then deg<1 Pyy=1 for any A € C. Let h =1+ ¢, where ¢
is the distinguished solution to Py1(e) =0 (¢ < 1). Then h € (0, 3 v)gy and
Pi},0=0 again implies degoy Pyp, = 1. O

9.7.2 Preserving sign changes during refinements

Lemma 9.37. Let P C{F} and let I be of one of the following forms:

a) I=(c1,c2)<1=(c1+3,c2—3) with c1,c2€C.

b) I=(c1,m)<1=(c1+3,m) with ¢; €C.

C) I= (_ﬁa E)<1 = (—5, ﬁ)

If P changes sign on I, then there exists a ¢ € I N C with

ob(c—3)op(c+73)<0.

Proof. In cases (b) and (c¢), we may replace m (and —m) by a sufficiently
large ¢z € C (resp. small ¢; € C). Therefore, it suffices to deal with intervals I
of the form (a). From lemma 9.26, it follows that of(c — 3) = o .(c — 3),
op(c+3)=opn,(c+ 3) for all ¢ € C. Without loss of generality, we may
therefore assume that P=Np=A (F’)” with A€ C[F] and v € N.
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If v is odd, then we choose c € INC with A(c)# 0, and obtain

oh(c—3)op(c+3)= U(JFF,)V(C —3)opy(ct+3)=(-1)"<0.

If v is even, then A changes sign on I. Since C' is real closed, it follows that
there exists a ¢ € I N C where A admits a root of odd multiplicity p, and

oh(c—3)op(c+3)=0k(c—3)o4(c+3)=(-1)*<0. O

Lemma 9.38. Let P € C{F'} be of order r and let 20 be an initial segment
of X. Assume that the theorem 9.34 holds for all differential polynomials of
order <r. Let m€T be such that o} g(0) 0p gu(3 m) <0. Then there exists

c€C” and v €T with W=<v<m and op,  (—30)op,  (30)<0.

Proof. Modulo an additive conjugation with a sufficiently small 6 € (0,7 m)qy,
we may assume without loss of generality that

U;,m(o) =op,(0) =sign Py#0.

We prove the lemma by induction over d = deg<n, P. If d = 0, then the

assumptions cannot be met, so we have nothing to prove. So assume that d > 0.

Since Py # 0, there exists an equalizer of the form e = ¢, 4 for the equation

P(f)=0 (f <m). We distinguish the following cases:

a'j;’;m(O) o p,9u(7 ¢) <0. Since deg<. P=v <d, we are done by the induction
hypothesis.

e>20 and op(3¢)opb(@e) <0. The result follows immediately when
applying lemma 9.37 to Py, and the interval (7,®).

ecWor op(@e)op(3m)<0. If ¢ € 2, then let g >qy 0 be such that
op(f)=0p g(0) for all f€ (0, g)an. Then for any n€ T with W<n=< g,
we have o 5(@n) op (3 m) <0. So both if e € W and if o/ (@Fe¢) op(3 m) <0,
there exists an n €T with W<n<m, ni=¢ and o5(@n) op(53m) <0.

Since m > n = ¢, we must have deg Np, , =d. From proposition 9.32, it
follows that
oy (01 +7) 07, (1l = 7) = (@0) o7 (5 m) = o (@71) o7 (5 m) <.

Applying theorem 9.34 to Rp,, we infer that there exists a g € (nf, mT)~

with deg <5 Rp, € 2N + 1. Taking g such that g5 =0 (whence [ g€ T, ),

it follows that v =e/Y is a starting monomial for P (f)=0. Moreover, N =

Np, , is of the form N =a F¢= (F’)” with a € C7, since deg N =val N =d.

Furthermore, since o, (9 —7) U}Jgpd(g + %) <0, we have

(~1)" = ox(3) %) = 07,3 v) o7, (#30) = 7y, (9 — T) o (9 7) <0,
whence v is odd. For any ¢ >0, we conclude that

aacu(—? v)op, .  (50)= of(c—3)on(c+35)=(-1)"<0. O
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9.7.3 Proof of the intermediate value theorem
We will prove the following variant of theorem 9.34:

Theorem 9.39. Let P T{F'} and let 20 be an initial segment of ¥. Given
v €T, consider an interval I of one of the following forms:

a) I=(&, x)w with &, x €T and x — E~ v with A\e C~.
=(&, £+ 3 0)gy with £€T.

(§—30,8)9y with E€T.

(E—30,£+30)9y with €T

If P changes sign on I, then there exists a point h € I such that deggy Pyp
is odd.

b) I
c) I
d) I

Proof. We prove the theorem by a double induction over the order of P and
the Newton degree d of

P(f)=0  (f=v).

The case when d = 0 is contrary to our assumptions. So assume that d > 0
and that the hypothesis holds for all smaller orders, as well as for the same
order and smaller d. Notice that we must have 20 < v, since P changes sign
modulo 20 on I.

Let us first show that cases (a), (¢) and (d) can all be reduced to case (b).
This is clear for (¢) by considering P(—f) instead of P(f). In case (d),
there exists a x € (€6 — 3 v, £+ 5 v)gy such that /(& — 5 v) = op(n) for all
n €T with n € (£ — 3 v, x)oy. For any such 7, it follows that P changes sign
on (n,n+30)gm=(n,n+ 3 0)gg. As to (a), we observe that P changes sign
either on (£,£4 3 0)gg, on (x —3 0, X)gg, oron (§+30, x —30)gyy=(£+ 7 v,
X — 3 0). The first to cases have already been dealt with. The last case reduces
to (d) when applying lemma 9.37 to the polynomial Py ¢ x, and the interval
(3. (x = E)o— 7).

Let us now show how to prove (b). Modulo an additive conjugation, we
may assume without loss of generality that £ =0. If d=1, then we are done
by lemma 9.36. So assume that d > 1. Consider the set .% of all partial
unravellings

f=¢+f (=9 (9.33)

with either ¢ =0 and 6 =1v, or ¢ € (0,3 v)gy and

0'$+w7m(_§ 6) O—;-%—cp’m(? 6) <0.

By corollary 8.32, we may choose a finest partial unravelling (9.33) in ..

Take n=0if =0 and 7 < v such that Uﬁw(—? 0) :aawm(n) otherwise.
By lemma 9.38, applied to Py, there exists a term cm € (1, 3 v)gy with
20 < m, and such that

0by (=7 ™) (5m)<0.

OPyiem
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We claim that we cannot have deg_m Py o+ cm=d. Indeed, by proposition 8.27,
this would imply the existence of a partial unravelling

f=p+¢+f (f<m)

with @~ cm, which is finer than (9.33). But then

U}L_ﬂoﬂb(_j m) O.I;+so+¢(§ m) = U;ﬂwcm(_5 m) O.I;+so+cm(§ m) <0

contradicts the maximality of (9.33). Consequently, we have
deg<m P+<p+cm <d

and the theorem follows by applying the induction hypothesis for P, ,4cm on
the interval (—3 m, 3 m). O

Exercise 9.27.

a) Prove that |op o (f)| < |op,a(f)| if TD2W.
b) Prove that op gp(3m)=0p(3m) if W< m.
¢) Other similar properties.
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