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Abstract. We define the field L of logarithmic hyperseries, construct on L
natural operations of differentiation, integration, and composition, establish

the basic properties of these operations, and characterize these operations
uniquely by such properties.

1. Introduction

The field of transseries T was introduced independently by Dahn and Göring [8]

in model theory and by Écalle [9] in his proof of the Dulac conjecture. Roughly
speaking, transseries are constructed from the real numbers and a variable x > R
using the field operations, exponentiation, and taking logarithms and infinite sums.
Here is an example of a transseries:
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The sign of a transseries is defined to be the sign of its leading coefficient: sign 7 > 0
in our example; T is real closed for the corresponding ordering. See [2, Appendix A]
for a detailed construction. The field T can also be equipped with natural ‘calculus’
operations: differentiation, integration, composition, and functional inversion. The
theory of T as a valued differential field was determined in [2]. In particular, it was
shown there that this theory is model complete. Remarkably, T also satisfies the
intermediate value property for differential polynomials: this was first proven in [12]
for the ordered differential subfield of T consisting of the grid-based transseries, and
extends to T itself by model completeness.

Transseries describe ‘regular’ orders of growth of real functions. Despite its
remarkable closure properties, however, T cannot account for all regular orders
of growth. For instance, Kneser [13] constructs a real analytic function eω that
satisfies the functional equation eω(x + 1) = exp eω(x) and that grows regularly—
its germ at +∞ lies in a Hardy field—but faster than any iterated exponential. Its
functional inverse is infinitely large, but grows slower than any iterated logarithm.

Accordingly, we wish to enlarge the field T of transseries to a field H of hyperseries
with transfinite iterates eα and `α of ex and log x for all ordinals α, and with natural
operations of exponentiation, differentiation, integration, and composition. These
operations should extend the corresponding operations on T. In this paper we
achieve this for the purely logarithmic part L of the intended H by direct recursive
constructions, and with exponentiation replaced by taking logarithms. We also
indicate how the natural embedding of Tlog into the field No of surreal numbers
extends naturally to an embedding of L into No. As indicated in [4], this is part of a
plan to eventually construct a canonical exponential field isomorphism H ∼= No via
which No can be equipped with the ‘correct’ derivation and composition. Realizing
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this plan would vindicate the idea that H covers all regular orders of growth at
infinity, as No does in a different way.

A first step in the above direction is due to Schmeling [14] and his thesis advisor
van der Hoeven. They constructed a field of hyperseries that contains eα and `α for
α < ωω, but they did not construct a derivation or composition on it. The purely
logarithmic part of it will be recovered here as the subfield L<ωω of our L.

On a related topic, van der Hoeven’s thesis [10] (with more details in [14]) shows
how to extend the derivation and composition on T to larger fields of transseries

that contain elements such as e
√
x+
√

log x+
√

log log x+···. The recent paper [6] by
Berarducci and Mantova shows how such generalized transseries naturally act on
positive infinitely large surreal numbers so as to be compatible with composition
and with the derivation on No constructed in [5]. While this line of work has some
connection to the present paper, it goes into another direction.

In the rest of this introduction we give canonical and precise descriptions of L
with its ‘calculus’ operations and state its main properties. To prove existence and
uniqueness of the operations having these properties is not easy, and makes up the
bulk of this paper. First we define L as an increasing union of Hahn fields over R.
Throughout we let α, β, γ range over ordinals, an ordinal is identified with the set of
smaller ordinals, and α+β denotes the ordinal sum, to be thought of as α followed
by β. Moreover, m,n, sometimes subscripted, range over N = {0, 1, 2, . . . } = ω.
By convention, a differential field has characteristic 0; given its derivation ∂ and an
element y in the field we also denote ∂(y) by y′, and y′/y by y†.

The monomial group L. We fix once and for all symbols `α, one for each α,
with `α 6= `β whenever α 6= β. The intended meaning of `α is as the αth iterated
logarithm of x := `0 in L, and accordingly we refer to these `α as hyperlogarithms.
(The totality of hyperlogarithms is too large to be a set; it is a proper class. We
shall freely use classes rather than sets when necessary: our set theory here is
von Neumann-Gödel-Bernays set theory with Global Choice (NBG), a conservative
extension of ZFC in which all proper classes are in bijective correspondence with
the class of all ordinals. Those who find these matters unpalatable may read ordinal
as meaning countable ordinal. Everything goes through with that restriction.)

An exponent sequence is a family (rβ) of real numbers rβ , with β ranging over
all ordinals, such that for some α we have rβ = 0 for all β > α. To each exponent
sequence r = (rβ) we associate the formal monomial

`r :=
∏
β

`
rβ
β ,

a logarithmic hypermonomial. We make the class of logarithmic hypermonomials
into an abelian (multiplicatively written) group L with the obvious group operation:
for exponent sequences r = (rβ) and s = (sβ) with corresponding logarithmic
hypermonomials `r :=

∏
β `

rβ
β and `s :=

∏
β `

sβ
β we set r + s := (rβ + sβ) and

`r · `s := `r+s =
∏
β

`
rβ+sβ
β .

The identity of L is 1 := `0 with 0 denoting the exponent sequence (rβ) with
rβ = 0 for all β. We make L into a totally ordered abelian group by `r ≺ `s iff
r is lexicographically less than s, that is, r 6= s and rβ < sβ for the least β with
rβ 6= sβ . We identify `α with `r where rα = 1 and rβ = 0 for all β 6= α; so `α � 1.
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In this introduction we let m, n range over logarithmic hypermonomials. We make
R act on L: for m =

∏
β `

rβ
β and t ∈ R we set

mt :=
∏
β

`
trβ
β ∈ L.

Thus we have the subgroup mR := {mt : t ∈ R} of L. For m = `r we define

σ(m) := {β : rβ 6= 0},

a set of ordinals (not just a class); we think of it as the support of m. The set

L<α := {m : σ(m) ⊆ α}

underlies an ordered subgroup of L. Note that

L<0 = {1}, L<1 = `R0 , . . . , L<n+1 = `R0 · · · `Rn.

Given reals r(β) for β < α we let
∏
β<α `

r(β)
β denote the logarithmic hypermonomial

`r where rβ = r(β) for β < α and rβ = 0 for β > α.

The Hahn fields L<α. The monomial group L<α yields the ordered Hahn field

L<α := R[[L<α]]

consisting of the well-based series over R with monomials in L<α. In particular,
L<0 = R and L<1 = R[[`R0 ]]. For β 6 α, we have L<β ⊆ L<α, as ordered groups,
and so L<β ⊆ L<α, as ordered and valued fields. We also set

L6α := L<α+1, L6α := L<α+1 = R[[L6α]].

Now L :=
⋃
α L<α is an ordered and valued field extension of each L<α. It does

not have an underlying set, but it has an underlying proper class. We shall use the
notations and conventions introduced in [2, Section 3.1 and Appendix A] to discuss
these Hahn fields and their union L. (Section 2 below includes a summary of that
material.) Thus for f ∈ L× we have its dominant monomial d(f) ∈ L ⊆ L, with
f = cd(f)(1 + ε) for unique c ∈ R× and ε ≺ 1 (and d(0) := 0 ∈ L by convention),
and R is viewed as an ordered subfield of L and L as an ordered subgroup of L>.

The logarithmic field L. We define the logarithm logm of m = `r by

logm :=
∑
β

rβ`β+1 ∈ L.

Thus log `α = `α+1, logmn = logm + log n, and logmt = t logm for real t. For
f ∈ L> we have f = cd(f)(1 + ε) with c ∈ R> and ε ≺ 1, and we set

log f := log d(f) + log c+

∞∑
n=1

(−1)n−1

n
εn,

where log c is the usual real logarithm of c. The map f 7→ log f : L> → L is a
strictly increasing morphism of the multiplicative ordered group L> into the ordered
additive group of L. Note that if α is an infinite limit ordinal, then logL><α ⊆ L<α.
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The derivation on L. The intended derivation is ‘derivative with respect to x’
where x := `0. This derivation should respect logarithms and commute with infinite
sums. To respect logarithms will be interpreted to mean that the derivative of
`α is

∏
β<α `

−1
β . (Recall in this connection that the usual derivative of the n-

times iterated real logarithm function logn is
∏
m<n(logm)−1.) These requirements

determine the derivation uniquely:

Proposition 1.1. There is a unique R-linear derivation ∂ on L such that:

(i) ∂`α =
∏
β<α `

−1
β for all α;

(ii) for every set I and summable family (fi)i∈I in L the family (∂fi) is sum-
mable as well and ∂

∑
i fi =

∑
i ∂fi.

The summability of a family (fi) in L indexed by a set I as in (ii) means: for some
α all fi are in L<α = R[[L<α]] and

∑
i fi exists in this Hahn field. For α = 0,

condition (i) says ∂x = 1. It is easy to see that the derivation of Proposition 1.1
must also respect logarithms in the sense that ∂ log f = ∂f/f for all f ∈ L>. We
establish Proposition 1.1 in Section 3, where we show in addition that the derivation
∂ of that proposition has the following properties:

Theorem 1.2. {f ∈ L : ∂f = 0} = R, (L, ∂) is an H-field, and ∂L = L.

Here (L, ∂) denotes the ordered field L equipped with the derivation ∂. Recall from
[2, Chapter 10] that an H-field is an ordered differential field K such that for the
constant field C of K and all f ∈ K we have: if f > C, then f ′ > 0, and, with O
the convex hull of C in K, if f ∈ O, then f = c+ ε for some c ∈ C and ε ∈ K with
|ε| < C>. Such an H-field K is viewed as a valued field with valuation ring O.

In the rest of this introduction L is equipped with the above derivation ∂. We also
set f ′ := ∂f , f (n) = ∂

nf for f ∈ L and introduce the distinguished integration
operator f 7→

∫
f : L→ L that assigns to f ∈ L the unique g ∈ L with g′ = f and

1 /∈ supp g; so the constant term of
∫
f is 0. For example, `α =

∫ ∏
β<α `

−1
β .

Composition. A good composition should reflect the composition of functions.
To construct the ‘correct’ composition on L and show it has the desired properties
takes considerable effort. Let us define a composition on L to be an operation

(f, g) 7→ f ◦ g : L× L>R → L

that has the following properties:

(CL1) for any g ∈ L>R the map f 7→ f ◦g : L→ L is an R-algebra endomorphism;
(CL2) f ◦ x = f for all f ∈ L and x ◦ g = g for all g ∈ L>R;
(CL3) log(f ◦ g) = (log f) ◦ g for all f ∈ L> and g ∈ L>R;
(CL4) for any summable family (fi) in L and g ∈ L>R the family (fi ◦ g) is

summable and (
∑
i fi) ◦ g =

∑
i fi ◦ g;

(CL5) for all f ∈ L and g, h ∈ L>R we have (f ◦ g) ◦ h = f ◦ (g ◦ h).

Note that (CL1) alone (and the fact that L is real closed) gives that for fixed
g ∈ L>R the map f 7→ f ◦ g : L→ L is an embedding of ordered fields sending L>R

into itself. Thus (CL3) and (CL5) make sense, assuming (CL1).

Thinking of `α as the αth iterated logarithm of log x suggests `α ◦ `β = `β+α, but
in view of 1 + ω = ω this would give `ω ◦ `1 = `ω as a special case. Since (CL2)
gives `ω ◦ `0 = `ω, this would be unreasonable, and in fact the composition we
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shall construct satisfies `ω ◦ `1 = `ω − 1 instead. Our main result is the following
characterization of this composition:

Theorem 1.3. There is a unique composition ◦ on L such that for all f, g, h ∈ L
with g > R and g � h the sum

∑∞
n=0

f(n)◦g
n! hn exists and

f ◦ (g + h) =

∞∑
n=0

f (n) ◦ g
n!

hn (Taylor expansion),

and such that for all β, γ:

• `γ ◦ `ωβ = `ωβ+γ if γ < ωβ+1;
• `ωβ+1 ◦ `ωβ = `ωβ+1 − 1;
• the constant term of `ωγ ◦ `ωβ is 0 if γ > β is a limit ordinal.

We construct this composition in Sections 5 and 6, and use Sections 7 and 8 to prove
the more subtle results about it: (CL5) (that is, associativity) and Taylor expansion.
In obtaining associativity we also establish the Chain Rule (Proposition 7.8):

(f ◦ g)′ = (f ′ ◦ g) · g′ for all f ∈ L and g ∈ L>R.

All this concerns only the existence part of Theorem 1.3. The at most one part is
taken care of in the final Section 9. In the remainder of this introduction we let ◦
denote the composition on L defined by Theorem 1.3.

The g ∈ L>R form a monoid under composition with x as identity, and the
invertible elements of this monoid are the g with minσ(d(g)) = 0: Proposition 8.5.

To construct our composition we work inside Hahn fields L<α where α = ωλ

and λ is an infinite limit ordinal, and in fact, for such α we have f ◦ g ∈ L<α for
f, g ∈ L<α with g > R; so the least α in this setting is ωω.

Finally, we indicate in Section 9 the natural ordered and valued field embedding of
L into No that is the identity on R, sends x := `0 to ω, and respects logarithms and
infinite sums: Proposition 9.5. This is also a differential field embedding where No
is equipped with the derivation ∂BM constructed by Berarducci and Mantova [5].

2. Preliminaries

We summarize here some conventions, notations, and results concerning monomial
groups and Hahn fields and refer to [11] and [2, Section 3.1 and Appendix A] for
proofs omitted here. We also consider some notions that are particularly useful
in the present paper and a planned sequel: multipliability, the support of linear
operators on Hahn fields, Taylor deformations, and monomial groups with real
powers. In addition we include some miscellaneous facts needed later.

Monomial sets. A monomial set is a totally ordered set; we think of its elements
as monomials. Let M be a monomial set and let m, n range over elements of M.
Then m ≺ n indicates that m is less than n in the ordering of M, and we use the
notations m 4 n, m � n, m < n likewise; for example, m 4 n⇔ m ≺ n or m = n. A
set S ⊆M is said to be well-based if it is well-ordered in the reverse ordering, that
is, there is no infinite strictly increasing sequence m0 ≺ m1 ≺ m2 ≺ · · · in S.

Let k be a field. Then k[[M]] consists of the formal series f =
∑

m fmm with
coefficients fm ∈ k whose support

supp f := {m : fm 6= 0}
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is well-based. We construe k[[M]] as a vector space over k as suggested by the
series notation and identify M with a subset of k[[M]] via m 7→ 1m.

Let (fi)i∈I be a family in k[[M]]. We say that (fi) is summable if
⋃
i supp fi

is well-based and for each m ∈ M there are only finitely many i ∈ I such that
m ∈ supp fi; in that case we define its sum

∑
i fi to be the series f ∈ k[[M]]

such that fm =
∑
i fi,m for each m ∈ M. (This agrees with the usual notation

for elements of k[[M]]: for a series f =
∑

m fmm ∈ k[[M]] as above the family
(fmm) is indeed summable with sum f ; conversely, every summable family (fmm)
with coefficients fm ∈ k yields a series f =

∑
m fmm ∈ k[[M]].) Instead of “(fi)

is summable” we also say that
∑
i fi exists. Sometimes the following equivalence

is useful: (fi) is not summable if and only if there is a sequence (in) of distinct
indices and an increasing sequence (mn) in M with mn ∈ supp(fin) for all n.

The dominant monomial d(f) ∈M of a nonzero f ∈ k[[M]] is defined by

d(f) := max supp f.

We also set d(0) := 0 ∈ k[[M]] and extend the ordering of M to a total ordering on
the disjoint union M ∪ {0} by 0 ≺ m for all m ∈M. The binary relations ≺ and 4
on M ∪ {0} are extended to binary relations ≺ and 4 on k[[M]] as follows:

f ≺ g :⇔ d(f) ≺ d(g), f 4 g :⇔ d(f) 4 d(g).

Let N also be a monomial set and Φ : k[[M]]→ k[[N]] a map. We call Φ strongly
additive if it is additive and for every summable family (fi) in k[[M]] the family
(Φ(fi)) is summable in k[[N]] and Φ(

∑
i fi) =

∑
i Φ(fi). If Φ is strongly additive

and Θ : k[[M]]→ k[[N]] is strongly additive, then so is

Φ + Θ : k[[M]]→ k[[N]], f 7→ Φ(f) + Θ(f).

If Φ is strongly additive, G is a monomial set, and Θ : k[[G]]→ k[[M]] is strongly
additive, then so is Φ ◦ Θ : k[[G]] → k[[N]]. We call Φ strongly k-linear if it is
k-linear and strongly additive; note that then for any f =

∑
m fmm ∈ k[[M]] the

sum
∑

m fmΦ(m) exists in k[[N]] and equals Φ(f). Thus a strongly k-linear map
k[[M]] → k[[N]] is determined by its restriction to M. The following converse is
the “totally ordered” case of [11, Proposition 3.5]:

Lemma 2.1. Let Φ : M → k[[N]] be such that for every well-based S ⊆ M the
family (Φ(m))m∈S is summable. Then Φ extends (uniquely) to a strongly k-linear
map k[[M]]→ k[[N]].

The next result on inverting strongly linear maps is almost the “totally ordered”
case of [1, Corollary 1.4], which in turn follows from [11, Theorems 6.1, 6.3].

Lemma 2.2. Let Φ : k[[M]]→ k[[M]] be a strongly k-linear map with Φ(m) ≺ m for
all m. Let I be the identity map on k[[M]]. Then I+Φ : k[[M]]→ k[[M]] is bijective
with strongly k-linear inverse (I+Φ)−1 given by (I+Φ)−1(f) =

∑∞
n=0(−1)nΦn(f),

where the last sum always exists.

Proof. For infinite k this is clear from [1, Corollary 1.4]. For finite k we reduce to
the previous case by extending k to an infinite field K and using Lemma 2.1 to
extend Φ to a strongly K-linear map K[[M]]→ K[[M]]. �

We only include the case of finite k for the sake of completeness, since the results
above only get applied in later sections of this paper for k of characteristic 0.
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Monomial groups and Hahn fields. A monomial group is a monomial set M
equipped with a (multiplicatively written) group operation M×M→M that makes
M into an ordered commutative group. Let M be a monomial group. We indicate
its identity by 1 (or 1M if we wish to specify M). For sets S1,S2 ⊆M we set

S1S2 := {mn : m ∈ S1, n ∈ S2},

and recall that if S1,S2 are well-based, then so is S1S2, and for every g ∈ S1S2

there are only finitely many pairs (m, n) ∈ S1 ×S2 with g = mn. For S ⊆ M we
define Sn ⊆ M by recursion on n by S0 = {1}, Sn+1 = SnS, and we also set
S∞ :=

⋃
nS

n, the submonoid of M generated by S. Recall Neumann’s Lemma:
if S ⊆M41 is well-based, then so is S∞; if S ⊆M≺1 and g ∈ S∞, then there are
only finitely many tuples (n,m1, . . . ,mn) with m1, . . . ,mn ∈ S and g = m1 · · ·mn.

Let k be a field. Recall from [2, Section 3.1] how k[[M]] is then construed as a
field extension of k with M a subgroup of its multiplicative group.

Corollary 2.3. Suppose (εi)i∈I is a summable family in k[[M]]≺1 = k[[M≺1]].
Then the family (εni )i∈I,n>1 is summable, and so is the family (

∑∞
n=1 cinε

n)i∈I for
any family (cin)i∈I,n>1 of coefficients in k.

Proof. The first part is an easy consequence of Neumann’s Lemma, and the second
part follows from the first part. �

We shall often use the following result whose proof is routine:

Lemma 2.4. Suppose (fi) and (gj) are summable families in k[[M]]. Then (figj)
is summable and

∑
i,j figj = (

∑
i fi)(

∑
j gj).

Thus for f ∈ k[[M]] the map g 7→ fg : k[[M]]→ k[[M]] is strongly k-linear. Given
also a monomial group N we have:

Corollary 2.5. Let Φ : k[[M]] → k[[N]] be strongly additive, (fn) a summable
family in k[[M] and ε ∈ k[[N]]≺1. Then

∑
n Φ(fn)εn exists.

Proof. Use Lemma 2.4 and the summability of
(
Φ(fn)

)
and (εn). �

We call k[[M]] a Hahn field over k; it is a valued field with valuation ring

O = {f ∈ k[[M]] : f 4 1}

and maximal ideal O = {f ∈ k[[M]] : f ≺ 1} of O. For the corresponding valuation
v on k[[M]] and f, g ∈ k[[M]] we have

f 4 g ⇔ v(f) > v(g), f ≺ g ⇔ v(f) > v(g).

For f ∈ k[[M]] we have the decomposition f = f�+f1+f≺ where f� :=
∑

m�1 fmm
is the purely infinite part of f and f≺ :=

∑
m≺1 fmm is the infinitesimal part of f .

We also set f41 := f1 + f≺1.
If k is given as an ordered field (for example when k = R), then we equip k[[M]]

with the field ordering such that f > 0⇔ fd(f) > 0 (for f ∈ k[[M]]6=) and refer to
the resulting ordered field extension k[[M]] of k as an ordered Hahn field.
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Substitution in ordinary power series. Let k be a field and M a monomial
group. Let t = (t1, . . . , tn) be a tuple of distinct variables and let

F = F (t) =
∑
ν

cνt
ν ∈ k[[t]] := k[[t1, . . . , tn]]

be a formal power series over k, the sum ranging over all ν = (ν1, . . . , νn) ∈ Nn, and
cν ∈ k, tν := tν11 · · · tνnn . For any tuple ε = (ε1, . . . , εn) of elements of O = k[[M]]≺1

the family (cνε
ν) is summable, where εν := εν11 · · · ενnn (Neumann’s Lemma). Put

F (ε) :=
∑
ν

cνε
ν ∈ O = k[[M]]41 = k[[M41]].

Fixing ε and varying F we obtain a k-algebra morphism

F 7→ F (ε) : k[[t]]→ k[[M]].

In the rest of this subsection we assume that k characteristic 0 and identify Q with
a subfield of k in the usual way. Then we have the formal power series

exp(t) :=

∞∑
i=0

ti/i! ∈ Q[[t]], log(1 + t) :=

∞∑
j=1

(−1)j−1tj/j ∈ Q[[t]]

in a single variable t. In Q[[t1, t2]] ⊆ k[[t1, t2]] we have the identities

exp(t1 + t2) = exp(t1) exp(t2), log(1 + t1 + t2 + t1t2) = log(1 + t1) + log(1 + t2).

Also log
(

exp(t)
)

= t and exp
(

log(1 + t)) = 1 + t in Q[[t]] ⊆ k[[t]]. Substituting

elements of k[[M]]≺1 in these identities yields that

h 7→ exp(h) =

∞∑
i=0

hi/i! : k[[M]]≺1 → 1 + k[[M]]≺1,

is an isomorphism of the additive subgroup k[[M]]≺1 of k[[M]] onto the multiplica-
tive subgroup 1 + k[[M]]≺1 of k[[M]]×, with inverse

1 + ε 7→ log(1 + ε) =

∞∑
j=1

(−1)j−1εj/j : 1 + k[[M]]≺1 → k[[M]]≺1.

Corollary 2.6. Let (εi)i∈I be a family in k[[M]]≺1. Then

(εi) is summable ⇐⇒
(

log(1 + εi)
)

is summable.

Proof. The direction ⇒ is a special case of Corollary 2.3. For ⇐, apply that
corollary to the case cin := 1/n! using −1 + exp(log(1 + εi)) = εi. �

Multipliability. Let k be a field of characteristic 0 and M a monomial group.
Let (εi)i∈I be a family of elements in k[[M]]≺1. We declare E to range over the
finite subsets of I and would like to define

∏
i(1 + εi) as the sum over all E of

the products
∏
i∈E εi. This would require the family

(∏
i∈E εi)E to be summable,

and thus in particular its subfamily (εi)i∈I to be summable. By Corollary 2.6 the
summability of (εi)i is equivalent to that of

(
log(1 + εi)

)
i
. Moreover:

Lemma 2.7. Suppose (εi)i∈I is summable. Then the family
(∏

i∈E εi)E is also

summable and exp
(∑

i log(1 + εi)
)

=
∑
E

∏
i∈E εi.
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Proof. The summability of
(∏

i∈E εi)E follows from Neumann’s Lemma: use that
for |E| = n we have supp

∏
i∈E εi ⊆ (

⋃
i∈I supp εi)

n. Next, the desired identity
holds for finite I, and then follows easily for arbitrary I using similar reasoning as
needed for summability of

(∏
i∈E εi)E . �

Accordingly we say that the family (1 + εi) is multipliable if (εi) is summable
(equivalently,

(
log(1 + εi)

)
i

is summable), and in that case we set∏
i

(1 + εi) :=
∑
E

∏
i∈E

εi = 1 +
∑
E 6=∅

∏
i∈E

εi ∈ 1 + k[[M]]≺1,

with log
∏
i(1 + εi) =

∑
i log(1 + εi). Instead of calling (1 + εi) multipliable we

also say that
∏
i(1 + εi) exists. The basic facts about these infinite products follow

easily from corresponding facts about infinite sums by taking logarithms.

A useful identity. It is routine to check that for any elements g1, g2, g3, . . . in
a field K of characteristic 0 we have an identity

log
(
1 +

∞∑
n=1

gn
n!
tn
)

=

∞∑
n=1

Ln(g1, . . . , gn)

n!
tn

in the ring K[[t]] of formal power series over K, where the Ln ∈ Q[X1, . . . , Xn] are
polynomials independent of the sequence g1, g2, g3, . . . . The Ln are the logarithmic
polynomials from [7, p. 140], but we don’t need further details given there about
them. In the later subsection on Taylor deformations we shall use the following:

Lemma 2.8. Let K be a differential field, y ∈ K×, and n > 1. Then

(y†)(n−1) = Ln

(
y′

y
, . . . ,

y(n)

y

)
.

Proof. If these identities hold for some y that is differentially transcendental (over
Q), then they hold for all y as in the lemma. Take a real analytic function f : I → R
on a nonempty open interval I ⊆ R such that f is differentially transcendental and
everywhere positive. (Thus f lies in the differential fraction field of the differential
domain of real analytic functions on I.) For a ∈ I the Taylor series of f at a is the
formal series

∑
n

1
n!f

(n)(a)tn ∈ R[[t]]. Likewise, the Taylor series of log f at a is

∞∑
n=0

1

n!
(log f)(n)(a)tn = log f(a) +

∞∑
n=1

1

n!
(f†)(n−1)(a)tn.

Now f = f(a) ·
(
1+ f−f(a)

f(a)

)
, so log f = log f(a)+ log

(
1+ f−f(a)

f(a)

)
, the Taylor series

of f−f(a)
f(a) at a is

∑∞
n=1

1
n!
f(n)(a)
f(a) tn, so the Taylor series of log f at a also equals

log f(a) +

∞∑
n=1

1

n!
Ln
(f ′(a)

f(a)
, . . . ,

f (n)(a)

f(a)

)
tn.

This yields (f†)(n−1)(a) = Ln
( f ′(a)
f(a) , . . . ,

f(n)(a)
f(a)

)
for all a ∈ I, that is, (f†)(n−1) =

Ln
(
f ′

f , . . . ,
f(n)

f

)
, which gives the desired result. �

This lemma can also be proved more formally by expressing the Ln in terms of the
Bell polynomials as in [7, p.140], but the details would take up considerable space.
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The support of a linear operator. This notion will play a role similar to that
of the norm of a linear operator on a Banach space. Let k be a field, M a monomial
group, G a subset of M, and let a map S : G → k[[M]] be given. Then we define
the (operator) support of S, denoted by suppS, to be the smallest set S ⊆M such
that suppS(g) ⊆ Sg for all g ∈ G. The proof of the next lemma is routine.

Lemma 2.9. Suppose suppS is well-based. Then S extends uniquely to a strongly
k-linear operator k[[G]] → k[[M]]. Denoting this extension also by S, we have
suppS(f) ⊆ (suppS)(supp f) for all f ∈ k[[G]].

For a strongly k-linear map T : k[[G]] → k[[M]] we define suppT as the support
of its restriction to G. If G = M and suppS is well-based, then we have for each
n the strongly k-linear operator Sn : k[[M]] → k[[M]] with suppSn ⊆ (suppS)n.
Simple applications of Neumann’s Lemma give:

Lemma 2.10. Suppose G = M and suppS is well-based. Let h ∈ k[[M]] be such
that (suppS)(supph) ≺ 1, and let (sn) be any sequence in k. Then

∑∞
n=0 snS

n(m)hn

exists for all m, and the map P : M→ k[[M]] given by P (m) :=
∑∞
n=0 snS

n(m)hn

has well-based support suppP ⊆
(
(suppS)(supph)

)∞
.

Lemma 2.11. If T : k[[G]] → k[[M]] is k-linear, S ⊆ M is well-based, and
suppT (f) ⊆ S · supp f for all f ∈ k[[G]], then T is strongly k-linear.

Thus with the hypothesis and notation of Lemma 2.10 the sum
∑∞
n=0 snS

n(f)hn

exists for all f ∈ k[[M]] and the map T : k[[M]]→ k[[M]] given by

T (f) :=

∞∑
n=0

snS
n(f)hn

is the unique strongly k-linear operator k[[M]]→ k[[M]] that extends P . Moreover,

suppT (f) ⊆
(
(suppS)(supph)

)∞ · supp f for f ∈ k[[M]]. In the next lemma, an
easy variant of Lemma 2.2, we let I be the identity map on k[[M]].

Lemma 2.12. Suppose D : k[[M]] → k[[M]] is strongly k-linear and suppD is
well-based and suppD ≺ 1. Then I +D : k[[M]]→ k[[M]] is bijective with strongly
k-linear inverse (I+D)−1 = I+E, where E : k[[M]]→ k[[M]] is strongly k-linear,
suppE ⊆

⋃∞
n=1(suppD)n ≺ 1, and E(f) =

∑∞
n=1(−1)nDn(f) for f ∈ k[[M]].

Taylor Deformations. Let k be a field of characteristic 0 and M a subgroup of
the monomial group N, so k[[M]] is a subfield of k[[N]]. Let there be given a k-linear
derivation ∂ on k[[M]] with well-based support supp ∂ ≺ 1 and a strongly k-linear
field embedding Φ : k[[M]] → k[[N]]. Let ε ∈ k[[N]]≺1. Then for f ∈ k[[M]] the

sum
∑
n

∂
nf
n! exists in k[[M]] by the remark following Lemma 2.11, hence

∞∑
n=0

Φ(∂
nf)

n!
εn = Φ(f) + Φ(∂f)ε+

Φ(∂
2f)

2
ε2 + · · ·

exists in k[[N]] by Corollary 2.5. This yields a k-linear (Taylor) map

T : k[[M]]→ k[[N]], T (f) :=

∞∑
n=0

Φ(∂
nf)

n!
εn.

For ε = 0 we have T = Φ; in general we view T as a deformation of Φ.

Lemma 2.13. T : k[[M]]→ k[[N]] is a strongly k-linear field embedding.
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Proof. It is routine to check that T (1) = 1 and T (fg) = T (f)T (g) for f, g ∈ k[[M]].
Let the family (fi) in k[[M]] be summable. Then so is the family (∂

nfi)i,n as is

easily verified. Hence
∑
i,n

Φ(∂
nfi)
n! exists. To derive that

∑
i T (fi) exists and equals

T (
∑
i fi), use Lemma 2.4 and regroup terms. �

To show that suitable logarithm maps on k[[N]] that commute with Φ also commute
with its deformation T we assume for the next lemma that k is an ordered field (so
k[[M]] and k[[N]] are ordered Hahn fields over k), and that Φ is an embedding of
ordered and valued fields. In addition we assume that k[[N]] is equipped with a map

log : k[[N]]> → k[[N]] such that log(1 + h) =
∑∞
n=1

(−1)n−1

n hn for h ∈ k[[N]]≺1,
log(fg) = log(f) + log(g) for f, g ∈ k[[N]]>, and logk[[M]]> ⊆ k[[M]].

Lemma 2.14. Suppose f ∈ R[[M]]>, (log f)′ = f†, and log Φ(f) = Φ(log f). Then

log T (f) = T (log f).

Proof. From T (f) = Φ(f) ·
(

1 +
∑∞
n=1

1
n!Φ

(
f(n)

f

)
εn
)

we obtain

log T (f) = log Φ(f) + log

(
1 +

∞∑
n=1

1

n!
Φ

(
f (n)

f

)
εn

)
.

Using log Φ(f) = Φ(log f) and f (n) 4 f for all n, this yields

log T (f) = Φ(log f) +

∞∑
n=1

1

n!
Ln

(
Φ

(
f ′

f

)
, . . . ,Φ

(
f (n)

f

))
εn

= Φ(log f) +

∞∑
n=1

1

n!
Φ

(
Ln

(
f ′

f
, . . . ,

f (n)

f

))
εn.

Lemma 2.8 gives Ln

(
f ′

f , . . . ,
f(n)

f

)
= (log f)(n) for n > 1, so

log T (f) = Φ(log f) +

∞∑
n=1

Φ
(
log(f)(n)

)
n!

εn = T (log f). �

Suppose next that ∂ comes with a strongly k-linear extension to a derivation on
k[[N]], also denoted by ∂, and that the embedding Φ obeys a ‘chain rule’ in the
sense that we are given an element φ ∈ k[[N]] such that ∂Φ(f) = Φ(∂f) · φ for all
f ∈ k[[M]]. Then a routine computation yields also a chain rule for T :

Lemma 2.15. ∂(Tf) = T (∂f) · (φ+ ∂ε) for all f ∈ k[[M]].

Monomial groups with real powers. Let the monomial group M have real
powers, that is, it is equipped with an operation (s,m) 7→ ms : R×M→M such
that for all s, t ∈ R and all m, n we have

m1 = m, ms+t = msmt, (ms)t = mst, (mn)s = msns (so m0 = 1).

Then we extend this operation to a power operation

(s, f) 7→ fs : R× R[[M]]> → R[[M]]>

as follows: first, if f = 1 + ε with ε ≺ 1, then we set

fs := exp(s log f) =

∞∑
n=0

(
s

n

)
εn ∈ 1 + R[[M]]≺1,
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and for f = cd(f)(1 + ε) (c ∈ R>, ε ≺ 1), we set

fs := csd(f)s(1 + ε)s ∈ R[[M]]>

where cs has the usual value in R>. It is easy to verify that then for all s, t ∈ R
and f, g ∈ R[[M]]> we have

f0 = 1, f1 = f, fs+t = fsf t, (fs)t = fst, (fg)s = fsgs.

In the introduction we introduced the L<α as monomial groups with real powers,
and also defined a logarithm map on L>. Note that the definitions given there lead
to log f t = t log f for f ∈ L> and t ∈ R.

A useful well-ordering. Let NN be lexicographically ordered and consider the set
D of all sequences (d0, d1, d2, . . . ) ∈ NN such that d0 > d1 > d2 > · · · and dn = 0
for all sufficiently large n.

Lemma 2.16. D is a well-ordered subset of NN.

Proof. Consider the map that assigns to any sequence (d0, d1, d2, . . . ) ∈ D the
ordinal ωd0 + ωd1 + · · · + ωdm if m is such that dm 6= 0 and dn = 0 for all n > m,
and assigns to the sequence (0, 0, 0, . . . ) the ordinal 0. Observe that this map is
injective and order preserving. �

Next, let D∞ be the larger set of all sequences (d0, d1, d2, . . . ) ∈ NN such that

d0 > d1 > d2 > · · · .

Corollary 2.17. D∞ is a well-ordered subset of NN.

Proof. Any strictly decreasing infinite sequence in D∞ would be a sequence in
Dm := {(d0, d1, d2, . . . ) ∈ D∞ : d0 6 m} for some m, so it is enough to show that
Dm is well-ordered. Now Dm is the disjoint union of its subsets Dm,i, i = 0, . . . ,m,
where Dm,i consists of the (d0, d1, . . . ) ∈ Dm with dn = i for all sufficiently large n,
and it follows easily from Lemma 2.16 that each of the sets Dm,i is well-ordered. �

Some more notation. For ordinals α < γ we let L[α,γ) be the convex subgroup

of L<γ whose elements are the hypermonomials
∏
α6β<γ `

rβ
β . This gives the Hahn

subfield L[α,γ) := R[[L[α,γ)]] of L<γ . Note that

L<γ = L[α,γ) · L<α with L[α,γ) ∩ L<α = {1}.

As in [2, p. 713] this yields an identification of ordered fields

L<γ = L[α,γ)[[L<α]],

that we shall use for certain α < γ.

3. Differentiating and Integrating in L

In the Introduction we defined the Hahn fields L<α = R[[L<α]] over R and their
union L. Using the preliminary section it is easy to verify the results stated in
the Introduction up to (but not including) the subsection on the derivation of L.
Towards Proposition 1.1 we shall construct for every α a strongly R-linear derivation
∂α on L<α; the derivation ∂ on L will be the common extension of these ∂α. The
main work in this section is then to show that ∂L = L.
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The derivation. We set

`′α :=
∏
β<α

`−1
β ∈ L<α, `†α :=

∏
β6α

`−1
β = `′α+1 ∈ L6α.

Note that `′α 4 1 and `†α 4 x
−1 ≺ 1, and that for α > β we have

`′α ≺ `′β in L<α, `†α ≺ `†β in L6α.

Next, we extend the above to any logarithmic hypermonomial m = `r by

m† :=
∑
β

rβ`
†
β , m′ := mm† =

∑
β

rβm`
†
β .

Thus if m ∈ L<α, then m†,m′ ∈ L<α. As in the Introduction we let m, n range over
L =

⋃
α L<α.

Lemma 3.1. The following hold for all m, n:

(i) (mn)† = m† + n†, and (mt)† = tm† for t ∈ R;
(ii) (mn)′ = m′n + mn′;
(iii) m 6= 1 ⇒ m′,m† 6= 0;
(iv) m ≺ 1, n 6= 1 ⇒ m′ ≺ n†;
(v) m ≺ n 6= 1 ⇒ m′ ≺ n′;

(vi) m ∈ L<α ⇒ suppm′ ⊆ {`†β : β < α}m.

Proof. This is mostly routine, and we only prove here (iv) and (v). So assume
m ≺ 1 and n 6= 1. For β = minσ(m) we have m = `

rβ
β

∏
β<ρ<α `

rρ
ρ , rβ < 0, so

d(m′) = m`†β =
( ∏
ρ<β

`−1
ρ

)
· `rβ−1
β ·

∏
β<ρ<α

`rρρ .

Also, for γ = minσ(n) we have d(n†) =
∏
ρ6γ `

−1
ρ . By distinguishing the cases

γ < β and γ > β and recalling that rβ < 0 we get d(m′) ≺ d(n†), so m′ ≺ n†.
As to (v), assume m ≺ n 6= 1. Then m = nv with v ≺ 1, so m′ = n′(v + v′/n†).

It remains to note that v′ ≺ n† by (iv). �

Item (vi) and Lemma 2.9 yield a unique strongly R-linear derivation ∂α on L<α
such that ∂α(m) = m′ for all m ∈ L<α. Note that (vi) and that lemma also gives

supp ∂α(f) ⊆ {`†β : β < α} · supp f for f ∈ L<α

and that {`†β : β < α} is a well-based subset of L<α with largest element `†0 = x−1.

In particular, supp ∂α = {`†β : β < α} 4 x−1, so supp ∂α is well-based.
It is clear that for α > β the derivation ∂α extends ∂β . Thus we have a common

extension of the ∂α to a derivation ∂ on L. This is the derivation of Proposition 1.1,
which is thereby established. We set f ′ := ∂f and f (n) := ∂

nf for f ∈ L and
g† := g′/g for g ∈ L×; this creates no notational conflict, since for f = m or g = m
this agrees with the previously defined m′ and m†. It is also easy to check that
m† = (logm)′ and (1 + ε)† = [log(1 + ε)]′ for ε ∈ L≺1, from which it follows that
g† = (log |g|)′ for g ∈ L6= and (f t)† = tf† for f ∈ L>.

Below we consider L<α as a differential field with derivation ∂α, and also as an
ordered and valued field. For the rest of this section we assume familiarity with the
basic facts on H-fields and their asymptotic couples from [2].

Lemma 3.2. L<α is an H-field with constant field R.
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Proof. Note that if m � 1, then m′ > 0. Let f ∈ L<α.
Suppose f > 0 and f � 1. Then d(f) � 1, so d(f)′ > 0. Also d(f)′ � m′ for all

m ∈ supp(f) \ {d(f)} by Lemma 3.1(v), and thus f ′ > 0.
Next, assume f /∈ R; we claim that f ′ 6= 0. By subtracting a real number from

f we arrange 1 /∈ supp(f). Then the same item (v) yields f ′ 6= 0. �

We make the additive group Γ of exponent sequences into an ordered abelian group
by r < s :⇔ `r ≺ `s. We define the valuation v : L× → Γ by v(f) = −r if d(f) = `r;
thus v(f) > v(g)⇔ f ≺ g for all f, g ∈ L. We have

Γ<α := v(L×<α) = {r ∈ Γ : rβ = 0 for all β > α}.

Note that if β < α, then L<β is an H-subfield of L<α. Next we consider the
asymptotic couple (Γ<α, ψ<α) of L<α. We have an order-preserving bijection

β 7→ v(`†β) : α→ Ψ<α

from α onto the Ψ-set Ψ<α of L<α. In particular, if α 6= 0, then Ψ<α has least
element v(`−1

0 ), and this element is positive and is the unique fixed point of ψ.

Lemma 3.3. If α = β+ 1, then v(`′α) = v(`†β) = max Ψ<α > 0. If α 6= 0 is a limit

ordinal, then v(`′α) > 0 is a gap in L<α.

Proof. The first claim follows from the above order-preserving bijection α→ Ψ<α.
Suppose α 6= 0 is a limit. Then in Γ<α,

Ψ<α < v(`′α) < (Γ><α)′,

so v(`′α) > 0 is indeed a gap in L<α. �

Integration. In this subsection m and n range over L<α. We use the modified
derivation δ := 1

`′α
∂α on L<α, which is strongly R-linear. It follows from Lemma 3.3

that for the Ψ-set Ψδ of the asymptotic couple of the H-field (L<α, δ) we have
max Ψδ = 0 if α is a successor ordinal, and sup Ψδ = 0 /∈ Ψ, otherwise. Thus δ is
small, but δ(m) < m for m 6= 1. Moreover:

Lemma 3.4. If m � 1, then supp δ(m) � 1. If m ≺ 1, then supp δ(m) ≺ 1.

Proof. Let m = `r. Then

δ(m) =
( ∏
β<α

`β
)
·
( ∑
γ∈σ(m)

rγm`
†
γ

)
=

∑
γ∈σ(m)

rγ
(
m

∏
γ<β<α

`β).

It remains to note that for γ ∈ σ(m) and n := m
∏

γ<β<α

`β we have minσ(n) =

minσ(m) and rminσ(n) = rminσ(m). �

Thus δ maps R[[L6=1
<α]] into itself. For ξ 6= 0 in the asymptotic couple of (L<α, δ)

we set ξ† := ψδ(ξ) 6 0 and ξ′ := ξ + ξ†, so ξ† = o(ξ) by [2, Lemma 9.2.10(iv)],
hence (ξ − ξ†)† = ξ†, and thus (ξ − ξ†)′ = ξ. It follows that for any m 6= 1 there is
a unique n 6= 1 with δ(n) � m, namely n = d( m

δ(m)/m ), and the map that assigns to

any m 6= 1 the unique n 6= 1 with δ(n) � m is an automorphism of the ordered set

L 6=1
<α. We define T : L 6=1

<α → R× ·
(
L 6=1
<α

)
by

T (m) := c n, with c ∈ R× and n ∈ L6=1
<α such that c δ(n) ∼ m.
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Using Lemma 2.1 we note that T extends uniquely to a strongly R-linear bijection

R[[L6=1
<α]]→ R[[L6=1

<α]], also denoted by T , with a strongly R-linear inverse T−1. By

virtue of the definition of T we have for nonzero g ∈ R[[L 6=<α]]:

δ(Tg) = g + E(g) with E(g) ≺ g.

This determines the strongly R-linear selfmap E := δ◦T −I on R[[L6=1
<α]], where I is

the identity on R[[L6=<α]]. Since E(g) ≺ g for all nonzero g ∈ R[[L6=1
<α]], it follows from

Lemma 2.2 that the strongly R-linear selfmap I + E on R[[L6=1
<α]] is bijective with

strongly R-linear inverse (I+E)−1. From δ◦T = I+E we get δ◦T ◦(I+E)−1 = I,

that is, δ
−1 := T ◦ (I + E)−1 is a strongly R-linear right inverse to δ on R[[L6=1

<α]].
In terms of the original derivation ∂, this yields a distinguished strongly R-linear
bijective integration operator∫

: R[[L<α \ {`′α}]] → R[[L6=1
<α]],

∫
f := δ

−1
(
f/`′α

)
.

We call it an integration operator because ∂
( ∫

f
)

= f for f ∈ R[[L<α \ {`′α}]].

Integration, continued. The domain of the above integration operator depends
on α, but it assigns to each f in its domain the unique g ∈ L with g′ = f and
1 /∈ supp g. It follows that these operators for the various α have a common
extension to an operator

∫
: L → L that assigns to each f ∈ L the unique g ∈ L

with g′ = f and 1 /∈ supp g. Thus we have now fully established Theorem 1.2 and
the rest of the subsection “The derivation on L” in the Introduction. Note also
that

∫
maps L<α into L<α + R`α, more precisely, bijectively onto R[[L 6=1

<α]] + R`α.
The remainder of this section will not be used, but relates the above to material

in [2]. We assume now that α is an infinite limit ordinal, and set

L∪<α :=
⋃
β<α

L<β .

We saw that L<α is not closed under
∫

, but we now observe that its H-subfield L∪<α
is closed under

∫
and is the union of its chain of spherically complete H-subfields

L<β with β < α, and if such β is a successor ordinal, then L<β is grounded. Thus
by [2, Corollary 11.7.15, Theorem 15.0.1]:

Corollary 3.5. The H-field L∪<α is ω-free and newtonian.

Of course the H-field L is likewise ω-free and newtonian. As to the case α = ω, we
recall from [2, Appendix A] that T has distinguished elements `n. We have a unique
field embedding L∪<ω → T that is the identity on R, sends `rn ∈ L∪<ω to `rn ∈ T for
all n and all r ∈ R, and respects infinite sums. This embedding also respects the
natural logarithm maps on the multiplicative groups of positive elements of L∪<ω
and T, and the natural derivations on these fields. The image of this embedding is
the H-subfield Tlog of T; we identify L∪<ω with Tlog via this embedding.

4. Preliminaries on Composition

In this section N is a monomial group with real powers. We fix R[[N]] as an ambient
Hahn field equipped with its natural ordering and valuation. Let M be a power
closed monomial subgroup of N with a distinguished element x ∈ M�1. Then we
have the (ordered valued) Hahn subfield K := R[[M]] of R[[N]]. We let h range
over the elements of R[[N]]>R.
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Composition on Hahn Fields. A K-composition with h is a map

f 7→ f ◦ h : K → R[[N]]

such that the following conditions are satisfied:

(1) 1 ◦ h = 1 and x ◦ h = h;
(2) for all m1,m2 ∈M, (m1m2) ◦ h = (m1 ◦ h) · (m2 ◦ h);
(3) for all f ∈ K, (m ◦ h)m∈supp(f) is summable and

∑
m fm(m ◦ h) = f ◦ h.

Lemma 4.1. Any K-composition with h is an ordered field embedding K → R[[N]]
and is strongly R-linear.

Proof. Let a K-composition with h be given. Since K and R[[N]] are real closed
fields, the map f 7→ f ◦ h : K → R[[N]] will be an ordered field embedding if it is a
ring morphism. Let f, g ∈ K. Then

(f + g) ◦ h =

(∑
m

(fm + gm)m

)
◦ h =

∑
m

(fm + gm)(m ◦ h)

=
∑
m

(fm(m ◦ h) + gm(m ◦ h)) =
∑
m

fm(m ◦ h) +
∑
m

gm(m ◦ h)

= (f ◦ h) + (g ◦ h).

Similarly, using Lemma 2.4,

(fg) ◦ h =
∑
m

( ∑
m1m2=m

fm1gm2

)
m ◦ h =

∑
m

( ∑
m1m2=m

fm1(m1 ◦ h)gm2(m2 ◦ h)

)

=

(∑
m1

fm1
(m1 ◦ h)

)(∑
m2

gm2
(m2 ◦ h)

)
= (f ◦ h)(g ◦ h).

Strong linearity follows from Lemma 2.1 and clause (3) above. �

Here are some consequences of Lemma 4.1 for a K-composition f 7→ f ◦ h with h:
m ◦ h > 0 for m ∈M, so (m ◦ h)t is defined for all real t, and for f, f1, f2 ∈ K,

f > R ⇔ f ◦ h > R, f1 4 f2 ⇔ f1 ◦ h 4 f2 ◦ h.

Thus for f ≺ 1 in K we have f ◦ h ≺ 1 in R[[N]], and

exp(f) ◦ h = exp(f ◦ h),
(

log(1 + f)
)
◦ h = log

(
(1 + f) ◦ h

)
.

Lemma 4.2. Let a K-composition with h be given such that mt ◦ h = (m ◦ h)t for
all m ∈M and t ∈ R. Then f t ◦ h = (f ◦ h)t for all f ∈ K> and t ∈ R.

Proof. Let f ∈ K>. Then f = cm(1 + ε) where c ∈ R>, m ∈M and ε ∈ K≺1, so

f t ◦ h = (cm(1 + ε))t ◦ h = ct(mt ◦ h)

((∑
n

(
t

n

)
εn

)
◦ h

)

= ct(m ◦ h)t
∑
n

(
t

n

)
(ε ◦ h)

n
= (f ◦ h)t (t ∈ R). �

A K-composition is a map ◦ : K×R[[N]]>R → R[[N]] such that for all h the map
f 7→ f ◦ h : K → R[[N]] is a K-composition with h.
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Lemma 4.3. Let ◦ be a K-composition, and let g ∈ K>R, h ∈ R[[N]]>R be such
that m ◦ g ∈ K and (m ◦ g) ◦ h = m ◦ (g ◦ h) for all m ∈ M. Then f ◦ g ∈ K and
(f ◦ g) ◦ h = f ◦ (g ◦ h) for all f ∈ K.

Proof. Let f ∈ K. It is clear that then f ◦ g =
∑

m fm(m ◦ g) ∈ K, and

(f ◦ g) ◦ h =
∑
m

fm(m ◦ g) ◦ h =
∑
m

fmm ◦ (g ◦ h) = f ◦ (g ◦ h). �

We now consider the case M = N, and define a composition on K for K = R[[N]]
to be a map ◦ : K ×K>R → K such that:

(1) ◦ is a K-composition;
(2) mt ◦ g = (m ◦ g)t for all m ∈ N, t ∈ R, and g ∈ K>R;
(3) (m ◦ g) ◦ h = m ◦ (g ◦ h) for all g, h ∈ K>R.

Thus given a composition ◦ on K it follows from Lemmas 4.2 and 4.3 that clauses
(2) and (3) hold in a more general form: f t ◦ g = (f ◦ g)t for all f ∈ K>, t ∈ R,
and g ∈ K>R, and (f ◦ g) ◦ h = f ◦ (g ◦ h) for all f ∈ K and g, h ∈ K>R.

Taylor Expansion. Let there be given a K-composition f 7→ f ◦ h : K → R[[N]]
with h and an R-linear derivation ∂ on K with well-based support supp ∂ ≺ 1 and
∂x = 1, and an element ε ∈ R[[N]]≺1. Then we set g := h + ε and ‘deform’ the
above K-composition with h to a K-composition f 7→ f ◦ g : K → R[[N]] with g as
follows: with Φ the above K-composition with h we apply the subsection on Taylor
deformations in Section 2 to obtain a strongly R-linear operator

◦g : K → R[[N]], f 7→
∞∑
n=0

∂
n(f) ◦ h
n!

εn.

We think of ◦g as composition with g on the right, which explains the notation. In
this subsection we set f ◦ g := ◦g(f) for f ∈ K. Note that 1 ◦ g = 1 and x ◦ g = g.
Then by Lemma 2.13:

Lemma 4.4. The map f 7→ f ◦ g : K → R[[N]] is a K-composition with g.

Assume in addition that ∂ extends to a strongly k-linear derivation on k[[N]],
denoted also by ∂. Then by Lemma 2.15 the ‘chain rule’ is inherited:

Lemma 4.5. If ∂(f◦h) =
(
(∂f)◦h

)
·∂h for all f ∈ k[[M]], then ∂(f◦g) =

(
(∂f)◦g

)
·∂g

for all f ∈ k[[M]].

Revisiting multipliability. Let (fi)i∈I be a family in L>, where I is a set. We
call (fi) multipliable if the family (log(fi)) is summable. Note that if fi = 1+εi, with
all εi ∈ R[[L<α]]≺1 for a fixed α, then this agrees with (1 + εi) being multipliable
as defined in Section 2. In general we have α such that fi = cimi(1 + εi), ci ∈ R>,
mi ∈ L<α, εi ∈ R[[L<α]]≺1 for all i. Then (fi) is multipliable if and only if (1 + εi)
is multipliable, ci = 1 for all but finitely many i, and, with mi =

∏
β<α `

rβi
β , there

are for every β < α only finitely many i with rβi 6= 0.
If (fi) is multipliable, then so is (frii ) for any family (ri) of real numbers. Suppose

the family (fi) in L><α is multipliable. Then

(4.1)
∑
i

log(fi) =
∑
β<α

sβ`β+1 + c+ ε
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where the sβ and c are real numbers and ε ∈ L≺1
<α. Thus we may define

∏
i∈I

fi :=

∏
β<α

`
sβ
β

 ec
∞∑
n=0

1

n!
εn ∈ L><α.

Then log
∏
i fi =

∑
i log fi, so (

∏
i fi)

†
=
∑
i f
†
i and

∏
i f

t
i = (

∏
i fi)

t
for t ∈ R. If

also the family (gi) in L><α is multipliable, then (figi) is multipliable, and∏
i

fi ·
∏
i

gi =
∏
i

figi.

Any family (gj)j=1,...,n in L> is multipliable with
∏
j gj = g1 · · · gn. Also, for any

family (rβ)β<α of real numbers the family (`
rβ
β )β<α is multipliable, and

∏
β<α `

rβ
β

is the logarithmic hypermonomial that we expressed this way earlier. Retracing the
definitions gives:

Lemma 4.6. Suppose the family (fi) in L><α is multipliable. Then the family
(d(fi)) is multipliable as well and d(

∏
i fi) =

∏
i d(fi).

We define the function logn : L>R → L>R by recursion on n:

log0(g) := g, logn+1(g) := log(logn(g)).

Thus logn maps L>R
<α into itself if α is an infinite limit ordinal. For g ∈ L>R and

λ := minσ(dg) we have d(log g) = `λ+1, and an easy induction on n gives

logn(g)� = `λ+n for n > 2, logn(g)< = `λ+n for n > 3.

Here is a useful lemma regarding the functions logn:

Lemma 4.7. Let g ∈ L>R. Then the family (logn(g))n is multipliable.

Proof. By the above remarks, we have for n > 2 that logn(g) = `λ+n + εn where
λ = λg and εn 4 1. Thus, for

(
logn(g)

)
to be multipliable, it suffices that (εn)n>2

is summable. For n > 2, we have

logn+1(g) = log(`λ+n + εn) = log

(
`λ+n

(
1 +

εn
`λ+n

))
= `λ+n+1 +

∞∑
i=1

(−1)i−1

i

(
εn
`λ+n

)i
, so

εn+1 =

∞∑
i=1

(−1)i−1

i

(
εn
`λ+n

)i
.

Using this equality for εn+1, a straightforward induction on n shows that every
m ∈ supp εn with n > 2 is of the form

n1 · · · nd1`
−d2
λ+2 · · · `

−dn−1

λ+n−1 ∈ (supp ε2)∞ ·Sn,

where n1, . . . , nd1 ∈ supp ε2, d1, . . . , dn−1 ∈ N>1, d1 > d2 > · · · > dn−1, and

Sn :=

 ∏
26j<n

`
−dj
λ+j : d2, . . . , dn−1 ∈ N>1, d2 > d3 > · · · > dn−1


The set (supp ε2)∞ is well-based by Neumann’s Lemma. The (disjoint) union S :=⋃
n>2 Sn is well-based by Lemma 2.16. Thus the family (εn)n>2 is summable. �
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Lemma 4.8. Let ◦ be a composition on L as defined in the Introduction and let
f, g ∈ L, f > 0, g > R. Then f t ◦ g = (f ◦ g)t for t ∈ R. If in addition the family
(fi) in L> is multipliable, then the family (fi ◦ g) is multipliable, and

(
∏
i

fi) ◦ g =
∏
i

(fi ◦ g).

Proof. By (CL1) and (CL3) we have

log(f t ◦ g) = (log f t) ◦ g = (t log f) ◦ g = t log(f ◦ g) = log[(f ◦ g)t],

so f t ◦ g = (f ◦ g)t. The second part follows likewise by taking logarithms. �

5. Composing with Hyperlogarithms

Recall that our goal is to construct a ‘good’ composition operation on L. In this
section we only compose on the right with hyperlogarithms.

We fix an ordinal α = ωλ where λ is an infinite limit ordinal. Then ξ + η < α
for all ordinals ξ, η < α. We work in the Hahn field L<α = R[[L<α]] over R. Let
β < λ be given and set µ := ωβ+1 < α, so ωβ + γ < µ for γ < µ.

Composing with `ωβ . We shall use the modified derivation δ := 1
`′µ

∂α on L<α.

Note that 1
`′µ

=
∏
ρ<µ `ρ. Hence for m ∈ L[µ,α) we have

supp(δm) ⊆
{ ∏
µ6ρ6γ

`−1
ρ : µ 6 γ < α

}
·m.

Thus the strongly R-linear operator δ on L<α maps L[µ,α) into itself.
To explain and motivate the role of δ in defining f ◦ `ωβ for f ∈ L[µ,α) we include

the following remark; it is important for understanding what is going on, but is of
a purely heuristic nature and can be skipped.

Remark. The composition ◦ on L to be constructed will be such that the map
f 7→ f ◦ `µ : L[µ,α) → L[µ,α) is bijective, which gives an inverse map

f 7→ f↑µ : L[µ,α) → L[µ,α), f↑µ ◦ `µ = f for f ∈ L[µ,α).

We also want ◦ to obey the Chain Rule and admit Taylor expansion, and to satisfy
`µ ◦ `ωβ = `µ − 1. Then for f ∈ L[µ,α) we have (f↑µ ◦ `µ)′ =

(
(f↑µ)′ ◦ `µ

)
· `′µ = f ′,

so (f↑µ)′ ◦ `µ = f ′/`′µ = δ(f), and thus by induction on n,

(f↑µ)(n) ◦ `µ = δ
n(f).

Using Taylor expansion this leads for such f to

f ◦ `ωβ = (f↑µ ◦ `µ) ◦ `ωβ = f↑µ ◦ (`µ ◦ `ωβ ) = f↑µ ◦ (`µ − 1)

=

∞∑
n=0

(f↑µ)(n) ◦ `µ
n!

(−1)n =

∞∑
n=0

(−1)n

n!
δ
n(f).

After this remark we now resume the formal exposition. The restriction of δ to
an operator on L[µ,α) has support contained in the well-based set

S :=
{ ∏
µ6ρ6γ

`−1
ρ : µ 6 γ < α

}
≺ 1.
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Thus by Lemma 2.10 and the remark following Lemma 2.11 the sum
∑∞
n=0

(−1)n

n! δ
nf

exists in L[µ,α) for all f ∈ L[µ,α), and we have a strongly R-linear operator

(5.1) f 7→ f ◦ `ωβ : L[µ,α) → L[µ,α), f ◦ `ωβ :=

∞∑
n=0

(−1)n

n!
δ
nf,

with supp(f ◦ `ωβ ) ⊆ S∞ · supp f for f ∈ L[µ,α). A routine computation gives

(5.2) (fg) ◦ `ωβ = (f ◦ `ωβ ) · (g ◦ `ωβ ) (f, g ∈ L[µ,α)).

Lemma 5.1. We have f ∼ f ◦`ωβ for nonzero f ∈ L[µ,α), and the map f 7→ f ◦`ωβ
is an automorphism of the field L[µ,α).

Proof. Let f range over L[µ,α) and set Φ(f) =
∑∞
n=1

(−1)n

n! δ
nf . Then the map

Φ : L[µ,α) → L[µ,α) is R-linear with well-based support supp Φ ⊆
⋃∞
n=1 S

n ≺ 1, and
thus Φ(f) ≺ f if f 6= 0. Now f ◦ `ωβ = f + Φ(f), so f ∼ f ◦ `ωβ for f 6= 0, and
f 7→ f ◦ `ωβ : L[µ,α) → L[µ,α) is bijective by Lemma 2.2. �

Remark. It is natural to denote the operator

f 7→ f ◦ `ωβ =

[ ∞∑
n=0

(−1)n

n!
δ
n

]
(f)

on L[µ,α) by e−δ. More generally, any s ∈ R yields an operator

esδ : L[µ,α) → L[µ,α), f 7→
∞∑
n=0

sn

n!
δ
nf,

and esδ ◦ etδ = e(s+t)δ for s, t ∈ R, so we have a group eRδ of such operators.

Next we define for a monomial
∏
γ<µ `

rγ
γ ∈ L<µ,

(5.3)

(∏
γ<µ

`rγγ

)
◦ `ωβ :=

∏
γ<µ

`
rγ
ωβ+γ

∈ L<µ.

Note that m 7→ m ◦ `ωβ : L<µ → L<µ is an embedding of ordered groups, and that
this map is contractive: m ◦ `ωβ � m if m ∈ L≺1

<µ, and m ◦ `ωβ ≺ m if m ∈ L�1
<µ.

Finally, using L<α = L[µ,α)[[L<µ]] and representing f ∈ L<α as

f =
∑

m∈L<µ

f[m]m

where all f[m] ∈ L[µ,α) and {m ∈ L<µ : fm 6= 0} is well-based, we note that∑
m∈L<µ

(
f[m] ◦ `ωβ

)
(m ◦ `ωβ )

exists in the Hahn field L[µ,α)[[L<µ]] over L[µ,α), since all f[m] ◦ `ωβ ∈ L[µ,α) and
m ◦ `ωβ ≺ n ◦ `ωβ for all m ≺ n in L<µ. Thus we may define the operation

(5.4) f 7→ f ◦ `ωβ : L<α → L<α, f ◦ `ωβ :=
∑

m∈L<µ

(
f[m] ◦ `ωβ

)
(m ◦ `ωβ ) .

We do not create here a conflict of notation: if f ∈ L[µ,α) or f ∈ L<µ, then this
agrees with the previously defined f ◦ `ωβ . In particular, `0 ◦ `ωβ = `ωβ .



LOGARITHMIC HYPERSERIES 21

Lemma 5.2. The map f 7→ f ◦ `ωβ : L<α → L<α is an L<α-composition with `ωβ ,
where we take x := `0 as the distinguished element of L�1

<α.

Proof. To see that clause (2) in the definition of “K-composition with h” holds,
let m, n ∈ L<α. Then m = m<µm>µ, n = n<µn>µ, m<µ, n<µ ∈ L<µ, m>µ, n>µ ∈
L[µ,α). Using (5.3), (m<µn<µ) ◦ `ωβ = (m<µ ◦ `ωβ )(n<µ ◦ `ωβ ), and by (5.2),

(m>µn>µ) ◦ `ωβ = (m>µ ◦ `ωβ )(n>µ ◦ `ωβ ).

Now using also (5.4), we have

(mn) ◦ `ωβ =
(
(m<µn<µ) ◦ `ωβ

)
·
(
(m>µn>µ) ◦ `ωβ

)
= (m ◦ `ωβ )(n ◦ `ωβ ).

That clause (3) is satisfied follows easily from the strong linearity of the map in
(5.1) and the existence of the sums in (5.4). �

Corollary 5.3. Let 0 6= f ∈ L41
<α. Then f ◦ `ωβ ≺ `−nµ for all n, or f ◦ `ωβ ∼ f .

Proof. With f =
∑

m∈L<µ fmm as above, set d := max{m ∈ L<µ : fm 6= 0}. Then

either d ≺ 1 and f ◦`ωβ ≺ `−nµ for all n, or d = 1 and f ◦`ωβ ∼ f by Lemma 5.1. �

Lemma 5.4. Let ν 6 µ. Then L[ν,α) ◦ `ωβ = L[ωβ+ν,α).

Proof. For ν = µ this follows from Lemma 5.1 and ωβ + µ = µ. Let ν < µ. Then
L[ν,α) = L[µ,α)[[L[ν,µ)]]. Accordingly, for f ∈ L[ν,α) we have f =

∑
m f[m]m with m

ranging over L[ν,µ) and all f[m] ∈ L[µ,α). Then

f ◦ `ωβ =
∑
m

(f[m] ◦ `ωβ )(m ◦ `ωβ ).

Now L[µ,α) ◦ `ωβ = L[µ,α), and L[ν,µ) ◦ `ωβ = L[ωβ+ν,ωβ+µ) = L[ωβ+ν,µ) by (5.3). It
remains to note that L[ωβ+ν,α) = L[µ,α)[[L[ωβ+ν,µ)]]. �

For ν = 0 this gives L<α ◦ `ωβ = L[ωβ ,α).

Lemma 5.5. (f ◦ `ωβ )′ = (f ′ ◦ `ωβ ) · `′ωβ for f ∈ L<α.

Proof. For a monomial m =
∏
γ<µ `

rγ
γ ∈ L<µ, we have by (5.3):

(m ◦ `ωβ )′ =

(∏
γ<µ

`
rγ
ωβ+γ

)′
= (m ◦ `ωβ )

∑
γ<µ

rγ`
†
ωβ+γ

= (m ◦ `ωβ )
∑
γ<µ

rγ

 ∏
ρ6ωβ+γ

`−1
ρ


= (m ◦ `ωβ )

∑
γ<µ

rγ

 ∏
ρ<ωβ

`−1
ρ

∏
ρ6γ

`−1
ωβ+ρ


=

 ∏
ρ<ωβ

`−1
ρ

 (m ◦ `ωβ )
∑
γ<µ

rγ

∏
ρ6γ

`−1
ρ

 ◦ `ωβ
=

 ∏
ρ<ωβ

`−1
ρ

∑
γ<µ

rγ(m ◦ `ωβ )(`†γ ◦ `ωβ ) = `′ωβ (m′ ◦ `ωβ ) .
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For g ∈ L>µ,<α we have g ◦ `ωβ =
∑∞
n=0

(−1)n

n! (δ
ng) by (5.1), so

(g ◦ `ωβ )′ =

∞∑
n=0

(−1)n

n!
(δ
ng)′ = `′µ

∞∑
n=0

(−1)n

n!
(δ
n+1g)

= `′µ

∞∑
n=0

(−1)n

n!

(
δ
n

(
g′

`′µ

))
= `′µ

((
g′

`′µ

)
◦ `ωβ

)

=

(∏
ρ<µ

`−1
ρ

)(∏
ρ<µ

`ωβ+ρ

)
(g′ ◦ `ωβ ) =

 ∏
ρ<ωβ

`−1
ρ

 (g′ ◦ `ωβ )

= `′ωβ · (g
′ ◦ `ωβ ).

Finally, for f ∈ L<α we have f =
∑

m∈L<µ fmm where all fm ∈ L>µ,<α, so

(f ◦ `ωβ )′ =
∑

m∈L<µ

(
(fm ◦ `ωβ )(m ◦ `ωβ )

)′
=

∑
m∈L<µ

(fm ◦ `ωβ )′(m ◦ `ωβ ) + (fm ◦ `ωβ )(m ◦ `ωβ )′

= `′ωβ ·
∑

m∈L<µ

(f ′m ◦ `ωβ )(m ◦ `ωβ ) + (fm ◦ `ωβ )(m′ ◦ `ωβ )

= `′ωβ ·
∑

m∈L<µ

(
(fmm)′ ◦ `ωβ

)
= `′ωβ · (f

′ ◦ `ωβ ). �

Note that by (5.3) we have `γ ◦ `ωβ = `ωβ+γ for γ < µ. The next lemma gives more
information about `γ ◦ `ωβ for γ > µ.

Lemma 5.6. We have `µ ◦ `ωβ = `µ − 1. If µ < γ < α, then

`γ ◦ `ωβ = `γ − εγ , with 0 < εγ 4 `
−1
µ ≺ `−1

γ ≺ 1.

Proof. Let µ 6 γ < α. Then `γ ∈ L[µ,α) and δ`γ =
∏
µ6ρ<γ `

−1
ρ , so δ`µ = 1 and

δ`γ 4 `−1
µ ≺ 1 if γ > µ. The derivation δ on L[µ,α) has support 4 `−1

µ , so δ
n`γ 4 `−2

µ

if n > 2 and γ > µ. Therefore `γ ◦ `ωβ = `γ − δ`γ + 1
2 δ

2`γ − · · · is as described in
the lemma. �

Composing with arbitrary hyperlogarithms. In this subsection we assume
that γ < α. We have

(5.5) γ = ωβ1 + ωβ2 + · · ·+ ωβk (k ∈ N)

where λ > β1 > β2 > . . . > βk; this is essentially the Cantor normal form of γ,
but we allow the exponents to be repeated and require all coefficients to be 1. For
f ∈ L<α, we set

(5.6) f ◦ `γ :=
((
· · ·
(
(f ◦ `ωβk ) ◦ `ωβk−1

)
◦ · · ·

)
◦ `ωβ2

)
◦ `ωβ1 .

For γ = 0 (so k = 0), this means f ◦ `0 := f , by convention. Several of the results
below are proved by induction on the length k of the representation in (5.5), using
also `ν ◦ `ωβ = `ωβ+ν for ν < ωβ+1, which holds by definition according to (5.3).
For example, recalling that x := `0, such an induction easily gives x ◦ `γ = `γ . As
a consequence of Lemma 5.2 we obtain in this way:

Corollary 5.7. The map f 7→ f ◦ `γ : L<α → L<α is an L<α-composition with `γ .
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We use Lemma 5.5 likewise to obtain:

Corollary 5.8. (f ◦ `γ)′ = (f ′ ◦ `γ) · `′γ for f ∈ L<α.

Corollary 5.9. Suppose γ 6= 0 and ν < ωβk+1. Then

`ν ◦ `γ = `γ+ν , (f ◦ `ν) ◦ `γ = f ◦ `γ+ν for f ∈ L<α.

For later use we also record the following variants:

Lemma 5.10. Let γ 6= 0 and ν 6 ωβk+1. Then for m =
∏
ρ<ν `

rρ
ρ ∈ L<ν we have

m ◦ `γ =
∏
ρ<ν `

rρ
γ+ρ ∈ L[γ,γ+ν), and so the map

m 7→ m ◦ `γ : L<ν → L[γ,γ+ν)

is an isomorphism of ordered groups. In particular, we have an isomorphism

m 7→ m ◦ `γ : L<ω → L[γ,γ+ω)

of ordered groups.

Lemma 5.11. Let γ 6= 0, ν 6 ωβk+1. Then L[ν,α) ◦ `γ = L[γ+ν,α).

Proof. By induction on k > 1. The case k = 1 is Lemma 5.4. The inductive step
from k − 1 to k uses that for k > 1 we have ωβk + ν 6 ωβk−1+1. �

The proof of associativity in Section 7 will depend on the next two lemmas. In the
first one we assume β < λ and set µ := ωβ+1.

Lemma 5.12. Let n > 1. Then `γ ◦ `ωβn takes the following values:

`ωβn+γ for γ < µ, `µ − n for γ = µ, `γ − ε with 0 < ε 4 `−1
µ for γ > µ.

Proof. For n = 1 this is Lemma 5.6. Assuming inductively that the lemma holds
for a certain n we use

`γ ◦ `ωβ(n+1) = (`γ ◦ `ωβn) ◦ `ωβ

and Corollary 5.3 to show it holds for n+ 1 instead of n. �

Let g ∈ L>R. Set λg := minσ(dg) (an ordinal) and call it the logarithmicity of g.
Thus λ`ν = ν for any ordinal ν. Consider the Cantor normal form of λg:

λg = ωβ1n1 + · · ·+ ωβknk (k ∈ N, β1 > · · · > βk, n1, . . . , nk ∈ N>1).

For any ordinal ν we set

λg;ν := ni if ν = ωβi+1, λg;ν := 0 if ν /∈ {ωβ1+1, . . . , ωβk+1}.

Lemma 5.13. Let ν < α. Then `ν ◦ `γ = `γ+ν − λ`γ ;ν − ε with 0 6 ε ≺ 1.

Proof. This is clear for γ = 0. Assume γ > 0 has Cantor normal form

γ = ωβ1n1 + · · ·+ ωβknk (β1 > · · · > βk, k, n1, . . . , nk > 1).

We first show by induction on k:

(1) if ν = ωβ1+1, then `ν ◦ `γ = `ν − n1 − ε with 0 6 ε ≺ 1;
(2) if ν > ωβ1+1, then `ν ◦ `γ = `ν − ε with 0 6 ε ≺ 1.
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The previous lemma gives this for k = 1. Assume it holds for a certain γ as above.
Then with βk > βk+1 and nk+1 > 1 the definitions easily yield

`ν ◦ `γ+ωβk+1nk+1
= (`ν ◦ `ωβk+1nk+1

) ◦ `γ .

Let ν > ωβ1+1. Then `ν ◦`ωβk+1nk+1
= `ν−ε with 0 < ε ≺ 1 by the previous lemma.

If ν = ωβ1+1, we get `ν ◦ `γ+ωβk+1nk+1
= (`ν−ε)◦ `γ = `ν−n1−ε∗ with 0 < ε∗ ≺ 1

by (1). If ν > ωβ1+1, then we get `ν ◦ `γ+ωβk+1nk+1
= (`ν − ε) ◦ `γ = `ν − ε∗ with

0 < ε∗ ≺ 1 by (2). This concludes the proof of (1) and (2) and shows that the
lemma holds for ν > ωβ1+1.

Now assume that ν < ωβ1+1. We first consider the subcase that ν = ωβi+1

where 1 < i 6 k. Then γ = γ1 + γ2 with γ1 = ωβ1n1 + · · · + ωβi−1ni−1 and
γ2 = ωβini + · · ·+ ωβknk, hence `ν ◦ `γ = (`ν ◦ `γ2) ◦ `γ1 . By (1) above with γ2 in
the role of γ we have `ν ◦ `γ2 = `ν − ni − ε with 0 6 ε ≺ 1, so

`ν ◦ `γ = (`ν − ni − ε) ◦ `γ1 = `ν ◦ `γ1 − ni − ε∗, 0 6 ε∗ ≺ 1,

and `ν ◦ `γ1 = `γ1+ν by Corollary 5.9. Now γ2 + ν = ν, so γ + ν = γ1 + ν, and
thus `ν ◦ `γ = `γ+ν − ni − ε∗ = `γ+ν − λ`γ ;ν − ε∗, so the lemma holds in this case.

Next assume we are in the subcase ωβi−1+1 > ν > ωβi+1 where 1 < i 6 k. With
γ = γ1 + γ2 as before we argue as in the previous subcase, using (2) with γ2 in
the role of γ, and obtain that the lemma holds in this case as well. The remaining
subcase ν < ωβk+1 is taken care of by Corollary 5.9. �

6. Composition with Arbitrary Elements

As in the previous section, α = ωλ, where λ is an infinite limit ordinal. We now fix
g ∈ L>R

<α. We shall define m ◦ g for m ∈ L<ω and f ◦ g for f ∈ L[ω,α) and then use
this to define the map f 7→ f ◦ g : L<α → L<α.

Note that for m =
∏
n `

rn
n ∈ L<ω we have logn(g)rn ∈ L<α for all n and that the

family
(

logn(g)rn
)

is multipliable by Lemma 4.7. Therefore we may define

(6.1) m ◦ g :=
∏
n

logn(g)rn ∈ L<α.

Thus 1 ◦ g = 1 and `n ◦ g = logn(g). Also for m, n ∈ L<ω, t ∈ R,

(mn) ◦ g = (m ◦ g)(n ◦ g), mt ◦ g = (m ◦ g)t.

Lemma 6.1. There exists a well-based set S = S(g) ⊆ L<α such that for all
m =

∏
n `

rn
n ∈ L<ω we have

supp(m ◦ g) ⊆ d(g)r0

∏
n>1

`rnλg+n

 ·S.
Proof. Set S :=

(⋃
n>1(supp logn(g))≺1

)∞
. By Lemma 4.7,

⋃
n>1(supp logn(g))≺1

is well-based, and so is S by Neumann’s Lemma. By (4.1), we have

∞∑
n=0

rn logn+1(g) =
∑
β<α

sβ`β+1 + c+ ε
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where the sβ and c are reals and ε ≺ 1, so supp ε ⊆
⋃
n>1(supp logn(g))≺1. Now

m ◦ g = d(m ◦ g) · ec ·
∞∑
m=0

1

m!
εm,

and so supp(m ◦ g) ⊆ d(m ◦ g) ·S. It remains to note that by Lemma 4.6,

d (m ◦ g) = d(g)r0

∏
n>1

`rnλg+n

 . �

Let f ∈ L[ω,α); we shall define f ◦ g by introducing f↑3 ∈ L[ω,α), to be thought

of as f ◦ (exp ◦ exp ◦ exp), and then setting f ◦ g := f↑3 ◦ log3(g), exploiting that
log3(g)< is a hyperlogarithm. Lemma 5.1 for β = 0 gives f ◦ `1 ∼ f if f 6= 0, so

f ◦ `3 = ((f ◦ `1) ◦ `1) ◦ `1 = f +R(f),

where R(f) ≺ f for f 6= 0 and R(0) = 0. The map f 7→ f ◦ `1 is a strongly R-linear
field automorphism of L[ω,α) by Lemma 5.1, and so is f 7→ f ◦ `3, and the latter

has inverse f 7→ f↑3 :=
∑∞
n=0(−1)nRn(f) by Lemma 2.2. Thus

(6.2) f↑3 ◦ `3 = (f ◦ `3)↑3 = f.

Now log3(g) = `λg+3 + ε where ε 4 `−1
λg+2 ≺ 1. By Corollary 5.7 we have the

L<α-composition φ 7→ φ ◦ `λg+3 : L<α → L<α with `λg+3. Then Lemma 4.4 yields
a deformation of it to an L<α-composition Tg : L<α → L<α with log3(g) by

(6.3) Tg(φ) :=

∞∑
n=0

φ(n) ◦ `λg+3

n!
εn.

Thus Tg(`0) = log3(g), and Lemma 4.5 gives for φ ∈ L<α,

(6.4) Tg(φ) = Tg(φ
′) log3(g)′.

Composing Tg with f 7→ f↑3 yields the strongly R-linear embedding

(6.5) f 7→ f ◦ g :=

∞∑
n=0

(f↑3)(n) ◦ `λg+3

n!
εn : L[ω,α) → L<α

of ordered and valued fields. Towards extending this to L<α, let f ∈ L<α. Using
L<α = L[ω,α)[[L<ω]] we have f =

∑
m∈L<ω f[m]m where all f[m] ∈ L[ω,α) and the set

{m ∈ L<ω : f[m] 6= 0} is well-based. To justify defining

f ◦ g :=
∑

m∈L<ω

(
f[m] ◦ g

)
(m ◦ g)

we need the following:

Proposition 6.2. The sum
∑

m∈L<ω

(
f[m] ◦ g

)
(m ◦ g) exists.

Towards establishing this proposition we define “β-summability” and prove some
lemmas about it. Let β < α. Then for h ∈ L<α we have h =

∑
n∈L<β h[n]n with all

h[n] ∈ L[β,α), and well-based suppβ(h) := {n ∈ L<β : h[n] 6= 0}.
Let (hi)i∈I be a family of elements in L<α. We say that (hi) is β-summable

if
⋃
i∈I suppβ(hi) is well-based and {i ∈ I : n ∈ suppβ(hi)} is finite for every

n ∈ L<β . If (hi) is a β-summable, then
∑
i∈I hi exists as an element of the Hahn

field L[β,α)[[L<β ]] over L[β,α), and therefore also as an element of the Hahn field L<α
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over R with the same value under the usual identification of L[β,α)[[L<β ]] with L<α.
If (hi) is summable, then

⋃
i∈I suppβ(hi) is well-based, but (hi) is not necessarily β-

summable. If (hi) is β-summable, then (cihi) is also β-summable for any family (ci)
from L[β,α). For m ∈ L<α we have m = m<βm>β with m<β ∈ L<β , m>β ∈ L[β,α),
and then suppβ(m) = {m<β}. Here is a consequence of Lemma 6.1:

Corollary 6.3. Suppose the family (mi)i∈I in L<ω is summable. Then the family
(mi ◦ g) is (λg + ω)-summable.

Proof. Set β := λg + ω. Lemma 6.1 gives a well-based set S ⊆ L<α such that for
every monomial m =

∏
n `

rn
n ∈ L<ω, we have

supp(m ◦ g) ⊆ d(g)r0

∏
n>1

`rnλg+n

 ·S.
Set S<β := {n<β : n ∈ S}. This set is still well-based and we have for m ∈ L<ω:

suppβ(m ◦ g) ⊆ gr0

∏
n>1

`rnλg+n

 ·S<β , g := d(g)<β .

Now g =
∏
n `

sn
λg+n with reals sn and s0 > 0, so we have an embedding

Φ : L<ω → L[λg,β), m =
∏
n

`rnn 7→ gr0
∏
n>1

`rnλg+n,

of ordered groups. Suppose towards a contradiction that (mi◦g) is not β-summable.
Then we have a sequence (in) of distinct indices and an increasing sequence (nn) in
L<β with nn ∈ suppβ(min◦g) for all n. By passing to a subsequence we arrange that
(min) is strictly decreasing. Now nn = Φ(min)vn with vn ∈ S<β , and Φ is order-
preserving, so (vn) is strictly increasing, contradicting that S<β is well-based. �

Lemma 6.4. Let 0 < γ < α and f ∈ L<α. Then

suppγ+ω(f ◦ `γ) = {m ◦ `γ : m ∈ suppω(f)}.

Proof. We have f =
∑

m∈suppω(f) f[m]m where all f[m] ∈ L[ω,α). Then

f ◦ `γ =
∑

m∈suppω(f)

(f[m] ◦ `γ)(m ◦ `γ).

It remains to note that by Lemmas 5.11 and 5.10 we have f[m] ◦ `γ ∈ L[γ+ω,α) and
m ◦ `γ ∈ L<γ+ω, for all m ∈ suppω(f). �

Next a result about the map Tg introduced in (6.3). It involves the set

D :=

{∏
m

`−dmm : d0, d1, d2, · · · ∈ N, d0 > d1 > d2 > · · ·

}
⊆ L<ω.

Note that D is well-based by Corollary 2.17.

Lemma 6.5. Let φ ∈ L[ω,α) and set β := λg + ω. Then

suppβ Tg(φ) ⊆ (D ◦ `λg+3) · (suppβ ε)
∞,

and the right hand side is a well-based subset of L<β independent of φ.
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Proof. The operator support of the derivation ∂α on L<α and suppω(φ) ⊆ {1} give

suppω(φ(n)) ⊆

{∏
m

`−dmm : d0, d1, d2, · · · ∈ N, n = d0 > d1 > d2 > · · ·

}
.

Thus by Lemmas 5.10 and 6.4, and λg + 3 + ω = λg + ω = β,⋃
n

suppβ

(
φ(n) ◦ `λg+3

)
⊆ D ◦ `λg+3 ⊆ L<β .

Now D ◦ `λg+3 is well-based by Lemma 5.10, and ε 4 `−1
λg+2 gives suppβ ε ≺ 1. �

Proof of Proposition 6.2. We shall prove the stronger result that the family(
(f[m] ◦ g)(m ◦ g)

)
m∈suppω(f)

is β-summable for β := λg + ω. Suppose towards a contradiction that (mi)i<ω is
a sequence of distinct elements of suppω(f) and (ni)i<ω is an increasing sequence
in L<β such that ni ∈ suppβ

(
(f[mi] ◦ g)(mi ◦ g)

)
for all i. We have ni = piqi where

pi ∈ suppβ(f[mi] ◦ g) and qi ∈ suppβ(mi ◦ g). By Corollary 6.3, the family (mi ◦ g)
is β-summable and so (qi) has a strictly decreasing subsequence. Thus (pi) has a
strictly increasing subsequence. This contradicts the fact that Lemma 6.5 gives a
well-based set Sg ⊆ L<β such that suppβ φ ◦ g ⊆ Sg for all φ ∈ L[ω,α). �

We can now define

(6.6) f ◦ g :=
∑

m∈L<ω

(
f[m] ◦ g

)
(m ◦ g) .

This agrees for f = m ∈ L<ω and f ∈ L[ω,α) with f ◦ g as defined in (6.1) and
(6.5). It also agrees for g = `γ (γ < α) with f ◦ `γ as defined at the end of the
previous section, but this requires an argument: For such g we have λg = γ and
log3(g) = `γ+3, ε = 0, and so for f ∈ L[ω,α) and with f ◦ g as defined by (6.5),

f ◦ g = f↑3 ◦ `γ+3 = (f↑3 ◦ `3) ◦ `γ = f ◦ `γ
where the second equality uses Lemma 5.9. For f = m =

∏
n `

rn
n ∈ L<ω, we have

f ◦ g =
∏
n

logn(g)rn =
∏
n

`rnγ+n = m ◦ `γ

where for the last equality we use the first part of Lemma 5.10. For arbitrary
f ∈ L<α we have f =

∑
m∈suppω(f) f[m]m with all f[m] ∈ L[ω,α), and then

f ◦ g =
∑
m

(f[m] ◦ g)(m ◦ g) =
∑
m

(f[m] ◦ `γ)(m ◦ `γ) = f ◦ `γ

where the last equality uses Corollary 5.7 and f ◦ `γ is defined as in (5.6).

Lemma 6.6. The map f 7→ f ◦ g : L<α → L<α is an L<α-composition with g.

Proof. Let m, n ∈ L<α; to get (mn) ◦ g = (m ◦ g) · (n ◦ g), we use the decomposition
m = m<ωm>ω where m<ω ∈ L<ω and m>ω ∈ L[ω,α), and likewise for n. The desired
equality then follows from the relevant definitions and properties we already stated.

To verify that clause (3) in the definition of “K-composition with h” is satisfied,
with M = N = L<α and g in the role of h, let f ∈ L<α and let P be the set of pairs
(m, n) with m ∈ L<ω, n ∈ L[ω,α), and mn ∈ supp(f). Then f =

∑
(m,n)∈P fmnmn,
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with all fmn ∈ R×; our job is to show that then
(
(mn) ◦ g

)
(m,n)∈P is summable and∑

(m,n)∈P fmn

(
(mn) ◦ g

)
= f ◦ g. Note that

suppω f = {m ∈ L<ω : (m, n) ∈ P for some n ∈ L[ω,α)}.

For m ∈ suppω f we set P (m) := {n ∈ L[ω,α) : (m, n) ∈ P} and

f[m] :=
∑

n∈P (m)

fmnn ∈ L[ω,α).

Then f =
∑

m∈suppω f
f[m]m, so f ◦ g =

∑
m∈suppω f

(f[m] ◦ g)(m ◦ g); we shall need

this equality at the end of the proof and first address the summability issue.
Suppose towards a contradiction that

(
(mn) ◦ g

)
(m,n)∈P is not summable. Then

we have a sequence (mi, ni)i<ω of distinct elements in P and an increasing sequence
(gi) in L<α with gi ∈ supp

(
(mini) ◦ g

)
for all i. Now mi ∈ suppω f for all i; by

passing to a subsequence we arrange that either (mi) is constant, or (mi) is strictly
decreasing, and so we now consider these two cases.

Case 1: (mi) is constant, say mi = m for all i. Then ni ∈ P (m) for all i, and

f[m] ◦ g =
∑

n∈P (m)

fmn(n ◦ g), (m ◦ g)(f[m] ◦ g) =
∑

n∈P (m)

fmn

(
(mn) ◦ g

)
,

using the first part of the proof. In particular, the sum
∑

n∈P (m) fmn((mn) ◦ g)

exists, contradicting that (gi) is increasing. So we must be in the next case:

Case 2: (mi) is strictly decreasing. Now

gi ∈ supp
(
(mini) ◦ g

)
⊆ supp

(
(mi ◦ g)(ni ◦ g)

)
,

so gi = piqi with pi ∈ supp(mi◦g) and qi ∈ supp(ni◦g). Set β := λg+ω. Since (mi)
is strictly decreasing, we can arrange by passing to a subsequence that ((pi)<β) is
strictly decreasing, in view of Lemma 6.1 and the proof of Corollary 6.3. Since (gi)
is increasing, ((qi)<β) must be strictly increasing, contradicting Lemma 6.5. We
have now shown that

(
(mn) ◦ g

)
(m,n)∈P is summable. Its sum is f ◦ g:∑

(m,n)∈P

fmn

(
(mn) ◦ g

)
=

∑
m∈suppω f

( ∑
n∈P (m)

fmn(mn) ◦ g
)

=
∑

m∈suppω f

( ∑
n∈P (m)

fmn(n ◦ g)(m ◦ g)
)

=
∑

m∈suppω f

( ∑
n∈P (m)

fmn(n ◦ g)
)
·m ◦ g

=
∑

m∈suppω f

(f[m] ◦ g)(m ◦ g) = f ◦ g. �

Extending to L. For f, g ∈ L with g > R there are of course many α for which
f, g ∈ L<α, and for each of those we have a value f ◦ g ∈ L<α; it is easy to check
that this value f ◦ g is independent of α. Thus we have constructed a map

(f, g) 7→ f ◦ g : L× L>R → L.

In the next section we show that this map is a composition on L as defined in the
introduction. Given f, g ∈ L with g > R we let from now on f ◦ g denote
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the value of the above map at (f, g). We continue nevertheless our work in the
setting of a Hahn field L<α = R[[L<α]] with α as before.

7. Properties of Composition

As before, α = ωλ, where λ is an infinite limit ordinal. Our job is to show that
the map (f, g) 7→ f ◦ g : L<α × L>R

<α → L<α defined in the previous section is
a composition on L<α in the sense of Section 4. We first prove the chain rule,
and then use this to derive associativity. But our proof of the chain rule requires
a special case of associativity, namely log(f ◦ g) = (log f) ◦ g for f ∈ L><α and

g ∈ L>R
<α. This is our starting point:

Compatibility of taking logarithms and composition. The first lemma treats
the case that g in f ◦ g is a hyperlogarithm.

Lemma 7.1. Let f ∈ L><α and γ < α. Then log(f ◦ `γ) = (log f) ◦ `γ .

Proof. Suppose γ = ωβ , and set µ := ωβ+1. By Lemma 5.5,(
log(f ◦ `γ)

)′
=

(f ◦ `γ)′

f ◦ `γ
=

f ′ ◦ `γ
f ◦ `γ

`′γ =
(
(log f)′ ◦ `γ

)
`′γ =

(
(log f) ◦ `γ

)′
,

So it remains to show that log(f ◦ `γ) and (log f) ◦ `γ have the same constant term.
We have f = cm(1 + ε), where c ∈ R>, m =

∏
ρ<α `

rρ
γ , and ε ≺ 1. Then

log f = log c+
∑
ρ<α

rρ`ρ+1 + log(1 + ε)

As log(1 + ε) is infinitesimal and `ρ+1 ◦ `γ has constant term 0 by Corollary 5.6
and its proof, the constant term of (log f) ◦ `γ is log c. Note that m ◦ `γ has leading
coefficient 1: if m ∈ L<µ, then this follows from (5.3); if m ∈ L[µ,α), then it follows
from m ◦ `γ ∼ m, which holds by Lemma 5.1. Since

f ◦ `γ = c(m ◦ `γ)
(
1 + (ε ◦ `γ)

)
and ε◦`γ ≺ 1, the leading coefficient of f ◦`γ is c, so the constant term of log(f ◦`γ)
is log c as well. The general case now follows by induction on k in (5.6). �

We now turn our attention to L[ω,α) and the map f 7→ f↑3 . Note that if f ∈ L>[ω,α),

then also log f ∈ L[ω,α). Thus the statement of the following lemma makes sense:

Lemma 7.2. Let f ∈ L>[ω,α). Then log(f↑3) = (log f)↑3 .

Proof. Using Lemma 7.1 we have

log(f↑3) ◦ `3 = log(f↑3 ◦ `3) = log f = (log f)↑3 ◦ `3
and so log(f↑3) = (log f)↑3 . �

Lemma 7.3. Let f ∈ L>[ω,α) and g ∈ L>R
<α. Then log(f ◦ g) = (log f) ◦ g.

Proof. Let Tg be the Taylor deformation in (6.3), so f ◦ g = Tg(f
↑3). By Lemma

7.1 we have log(f↑3 ◦ `λg+3) = log(f↑3) ◦ `λg+3. Then Lemmas 2.14 and 7.2 give

log(f ◦ g) = log Tg(f
↑3) = Tg

(
log(f↑3)

)
= Tg

(
(log f)↑3

)
= (log f) ◦ g. �

We can now prove the main result of this subsection:

Proposition 7.4. Let f ∈ L><α and g ∈ L>R
<α. Then log(f ◦ g) = (log f) ◦ g.
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Proof. We have f = cd(f)(1 + ε) where c ∈ R> and ε ≺ 1. Then

(log f) ◦ g = log c+
(

log d(f)
)
◦ g +

(
log(1 + ε)

)
◦ g.

The strong linearity of composition with g gives
(

log(1 + ε)
)
◦ g = log

(
(1 + ε) ◦ g

)
.

Thus, it remains to show that
(

log d(f)
)
◦ g = log

(
d(f) ◦ g

)
. Now d(f) = mn

where m ∈ L<ω and n ∈ L[ω,α), so log d(f) = logm + log n. By Lemma 7.3,
(log n) ◦ g = log(n ◦ g). We have m =

∏
n `

rn
n , so

(logm) ◦ g =

(∑
n

rn`n+1

)
◦ g =

∑
n

rn logn+1(g) = log(m ◦ g),

where the last equality uses Lemma 4.7. Thus
(

log d(f)
)
◦ g = log

(
d(f) ◦ g

)
. �

Corollary 7.5. Let f ∈ L><α, g ∈ L>R
<α, and t ∈ R. Then (f ◦ g)t = f t ◦ g.

Proof. Take logarithms and use Proposition 7.4. �

Corollary 7.6. Suppose the family (fi) in L><α is multipliable and g ∈ L>R
<α. Then

the family (fi ◦ g) is multipliable and (
∏
i fi) ◦ g =

∏
i fi ◦ g.

Proof. Take logarithms and use Proposition 7.4. �

The chain rule. Let g ∈ L>R
<α. Recall that Tg is a strongly R-linear endomorphism

of the ordered field L<α. We show that Tg coincides with φ 7→ (φ ◦ `3) ◦ g:

Lemma 7.7. For all φ ∈ L<α we have Tg(φ) = (φ ◦ `3) ◦ g.

Proof. The map φ 7→ (φ ◦ `3) ◦ g : L<α → L<α is also a strongly R-linear
endomorphism of the ordered field L<α; it agrees with Tg on L[ω,α), since for

φ ∈ L[ω,α) we have φ ◦ `3 ∈ L[ω,α) and φ = (φ ◦ `3)↑3. By the strong linearity
of both maps it is enough to prove the lemma for φ ∈ L<α, and for such φ we
have φ = mn with m ∈ L<ω and n ∈ L[ω,α). Thus it is enough to show that
Tg(m) = (m ◦ `3) ◦ g for m ∈ L<ω. Taking logarithms this reduces to showing for
such m that log Tg(m) = log

(
(m ◦ `3) ◦ g

)
; by Lemma 2.14 and Proposition 7.4,

this is equivalent to Tg(logm) =
(

log(m ◦ `3)
)
◦ g, and thus by Proposition 7.4 to

Tg(logm) =
(
(logm) ◦ `3

)
◦ g. Since for m ∈ L<ω we have logm =

∑
n rn`n+1 this

reduces further to showing that Tg(`n) = (`n ◦ `3) ◦ g for all n. This holds for n = 0
by earlier remarks, and for arbitrary n it follows by induction on n, using again at
each step Lemma 2.14 and Proposition 7.4. �

Proposition 7.8. Let f ∈ L<α. Then (f ◦ g)′ = (f ′ ◦ g)g′.

Proof. Note that for f 6= 0 we have: (f ◦ g)′ = (f ′ ◦ g)g′ ⇔ (f ◦ g)† = (f† ◦ g)g′.
An easy induction gives logn(g)† = (`†n ◦ g)g′. Thus for m =

∏
n `

rn
n ∈ L<ω,

(m ◦ g)† =
(∏
n

logn(g)rn
)†

=
∑
n

rn logn(g)† =
∑
n

rn(`†n ◦ g)g′

=
(∑

n

rn(`†n ◦ g)
)
g′ =

(
(
∑
n

rn`
†
n) ◦ g

)
g′ = (m† ◦ g)g′,

so (m ◦ g)′ = (m′ ◦ g)g′. Let f ∈ L[ω,α). Then f ◦ g = Tg(f
↑3), so by (6.4),

(7.1) (f ◦ g)′ =
(
Tg(f

↑3)
)′

= Tg
(
(f↑3)′

)
· log3(g)′ = Tg

(
(f↑3)′

)
· (`′3 ◦ g) · g′.
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We have f ′ = (f↑3 ◦ `3)′ =
(
(f↑3)′ ◦ `3

)
`′3 by (6.2) and Corollary 5.8, so (f↑3)′ ◦ `3 =

(f ′/`′3). Applying Lemma 7.7 to φ := (f↑3)′, this gives

(7.2) Tg
(
(f↑3)′

)
= (f ′/`′3) ◦ g = (f ′ ◦ g)/(`′3 ◦ g).

Combining (7.1) and (7.2) gives (f ◦ g)′ = (f ′ ◦ g)g′. Finally, for arbitrary f ∈ L<α
we have f =

∑
m∈L<ω f[m]m where all f[m] ∈ L[ω,α). Then

(f ◦ g)′ =
∑
m

(
(f[m] ◦ g)(m ◦ g)

)′
=
∑
m

(
(f[m] ◦ g)′(m ◦ g) + (f[m] ◦ g)(m ◦ g)′

)
= g′

∑
m

(
(f ′[m] ◦ g)(m ◦ g) + (f[m] ◦ g)(m′ ◦ g)

)
= g′

∑
m

(
(f[m]m)′ ◦ g

)
= g′(f ′ ◦ g). �

Associativity. Towards proving associativity we use the next lemma to get a
handle on the infinite part and constant term of f ◦ g for various f, g. Throughout
this subsection we fix g, h ∈ L>R

<α.

Lemma 7.9. Assume ω 6 γ < α. Then `γ ◦ g − `γ ◦ `λg ≺ 1.

Proof. For n > 1 we have `↑3γ ◦ `3 = `γ ≺ `n+3 = `n ◦ `3, hence `↑3γ ≺ `n, and thus

(`↑3γ )′ ≺ `′n ≺ 1. Thus by (6.5),

`γ ◦ g −
(
`↑3γ ◦ `λg+3

)
=

∞∑
n=1

(`↑3γ )(n) ◦ `λg+3

n!

(
log3(g)− `λg+3

)n ≺ 1.

Now `λg+3 = log3(`λg ), so by (6.5) with `λg in the role of g and ε = 0,

`γ ◦ `λg = `↑3γ ◦ `λg+3. �

Combining Lemmas 5.13 and 7.9 gives:

Corollary 7.10. Assume ω 6 γ < α. Then

`γ ◦ g = `λg+γ − λg;γ + ε, ε ≺ 1.

Lemma 7.11. We have λ(g◦h) = λh + λg (ordinal sum).

Proof. Recall that d(log f) = `λf+1 for f ∈ L>R, so it suffices to show:

log(g ◦ h) � `λh+λg+1.

By Proposition 7.4, we have

log(g ◦ h) = (log g) ◦ h � `λg+1 ◦ h.
We end by noting that `λg+1 ◦ h � `λh+λg+1; this is a consequence of the remarks
after Lemma 4.6 if λg is finite, and follows by Corollary 7.10 if λg > ω. �

To use this lemma we recall that for ordinals µ and ν with Cantor normal forms

µ = ωβ1m1 + · · ·+ ωβkmk, ν = ωγ1n1 + · · ·+ ωγlnl, (k, l > 1),

the Cantor normal form of ν + µ is as follows:

• if γ1 < β1, then ν + µ = µ;
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• if 1 6 j 6 l and γj = β1, then

ν + µ = ωγ1n1 + · · ·+ ωγj (nj +m1) + ωβ2m2 + · · ·+ ωβknk;

• if 1 6 j 6 l and γj > β1, γj′ < β1 for all j′ with j < j′ 6 l, then

ν + µ = ωγ1n1 + · · ·+ ωγjnj + ωβ1m1 + · · ·+ ωβknk.

Here µ, ν > 1. Below we also need the trivial case where µ = 0 or ν = 0.

Lemma 7.12. Let γ > ω. Then

λ(g◦h);γ = λg;γ + λh;λg+γ .

Proof. We express λg and λh in Cantor normal form (allowing k = 0 or l = 0):

λg = ωβ1m1 + · · ·+ ωβkmk, λh = ωγ1n1 + · · ·+ ωγlnl.

Using Lemma 7.11 and the above remarks about Cantor normal forms, we have

λ(g◦h);γ =



0 if γ 6∈ {ωβ1+1, . . . , ωβk+1, ωγ1+1, . . . , ωγl+1}
m1 if k > 1, γ = ωβ1+1, and β1 6∈ {γ1, . . . , γl}
mi if k > 1, γ = ωβi+1, 1 < i 6 k
nj +m1 if k > 1, γ = ωγj+1, 1 6 j 6 l, and γj = β1

nj if k > 1, γ = ωγj+1, 1 6 j 6 l, and γj > β1

0 if k > 1, γ /∈ {ωβ1+1, . . . , ωβk+1}, γ = ωγj+1, 1 6 j 6 l, γj < β1

nj if k = 0, γ = ωγj+1, 1 6 j 6 l.

It remains to calculate the values of λg;γ and λh;λg+γ :

• If γ 6∈ {ωβ1+1, . . . , ωβk+1, ωγ1+1, . . . , ωγl+1}, then λg;γ = 0 and moreover
λg + γ /∈ {ωγ1+1, . . . , ωγl+1}, so λh;λg+γ = 0.

• If k > 1, γ = ωβ1+1 and β1 6∈ {γ1, . . . , γl}, then λg;γ = m1 and λg + γ = γ,
so λh;λg+γ = 0.

• If k > 1, γ = ωβi+1, 1 < i 6 k, then λg;γ = mi, λg+γ /∈ {ωγ1+1, . . . , ωγl+1},
so λh;λg+γ = 0.

• If k > 1, γ = ωγj+1, 1 6 j 6 l, and γj = β1, then λg;γ = m1 and λg+γ = γ,
so λh;λg+γ = nj .

• If k > 1, γ = ωγj+1, 1 6 j 6 l, and γj > β1, then λg;γ = 0 and λg + γ = γ,
so λh;λg+γ = nj .

• If k > 1, γ /∈ {ωβ1+1, . . . , ωβk+1}, γ = ωγj+1, γj < β1, then λg;γ = 0 and
λg + γ /∈ {ωγ1+1, . . . , ωγl+1}, so λh;λg+γ = 0.

• If k = 0, γ = ωγj+1, 1 6 j 6 l, then λg;γ = 0, λg +γ = γ, so λh;λg+γ = nj .

Thus λ(g◦h);γ = λg;γ + λh;λg+γ in all cases. �

Lemma 7.13. Let ω 6 γ < α. Then
(
`γ ◦ (g ◦ h)

)
−
(
(`γ ◦ g) ◦ h

)
≺ 1.

Proof. Corollary 7.10 gives ε, ε∗ ≺ 1 in L<α such that

(`γ ◦ g) ◦ h = (`λg+γ − λg;γ + ε) ◦ h = (`λg+γ ◦ h)− λg;γ + (ε ◦ h)

=
(
`λh+λg+γ − λh;λg+γ + ε∗

)
− λg;γ + (ε ◦ h).

Corollary 7.10 and Lemmas 7.11 and 7.12 give ε∗∗ ≺ 1 in L<α such that

`γ ◦ (g ◦ h) = `λ(g◦h)+γ − λ(g◦h);γ + ε∗∗ = `λh+λg+γ − λh;λg+γ − λg;γ + ε∗∗. �

Proposition 7.14. For all f ∈ L<α we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.
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Proof. By strong linearity this reduces to m◦(g◦h) = (m◦g)◦h for m ∈ L<α. Taking
logarithms and using Proposition 7.4 this reduces further to showing `γ ◦ (g ◦ h) =
(`γ ◦ g) ◦ h for γ < α. This goes by induction on γ. The case γ = 0 is obvious, and
for the step from γ to γ + 1 we take logarithms and use Proposition 7.4. Let now
γ < α be an infinite limit ordinal. Proposition 7.8 (and an inductive assumption
for the second equality below) give(

`γ ◦ (g ◦ h)
)′

=
(
`′γ ◦ (g ◦ h)

)
(g′ ◦ h)h′ =

(
(`′γ ◦ g) ◦ h)

)
(g′ ◦ h)h′

=
((

(`′γ ◦ g)g′
)
◦ h
)
h′ =

(
(`γ ◦ g)′ ◦ h

)
h′ =

(
(`γ ◦ g) ◦ h

)′
so it remains to check that `γ ◦ (g ◦h) and (`γ ◦g)◦h have the same constant terms.
This follows from Corollary 7.13. �

Characterizing composition recursively. The above shows that

(f, g) 7→ f ◦ g : L<α × L>R
<α → L<α

is a composition on L<α as defined in Section 4. We have also shown that

(f, g) 7→ f ◦ g : L× L>R → L
is a composition on L as defined in the Introduction: it satisfies (CL1)–(CL5). This
composition satisfies the following recursion:

Corollary 7.15. Let γ > ω and g ∈ L>R. Then

`γ ◦ g =

∫ [ (
`′γ ◦ g

)
g′
]
− λg;γ .

Proof. By Corollary 7.10 the constant term of `γ ◦ g equals −λg;γ . It remains to
use the Chain Rule, Proposition 7.8. �

Note that `′γ ◦g =
(∏

β<γ `β ◦g
)−1

for g ∈ L>R. In combination with the identities

`n+1 ◦ g = log(`n ◦ g) for such g, this gives us the right to speak of a recursion.

Corollary 7.16. There is a unique composition ∗ on L, namely ◦, that satisfies
the above recursion: `γ ∗ g =

∫ [ (
`′γ ◦ g

)
g′
]
− λg;γ for all γ > ω and g ∈ L>R.

Proof. Let ∗ be a composition on L that satisfies the above recursion. By (CL4)
(strong linearity) it suffices that m∗g = m◦g for m ∈ L and g ∈ L>R. By Lemma 4.8
this reduces to `γ ∗ g = `γ ◦ g for such g. This is taken care of by the recursion and
transfinite induction. �

8. Taylor Expansion and Compositional Inversion

As before, α = ωλ, where λ is an infinite limit ordinal. In some proofs below we
use the notation suppS :=

⋃
f∈S supp f for S ⊆ L<α.

Taylor expansion. In this subsection we fix g, h ∈ L<α with g > R and h ≺ g.
Our goal here is the following Taylor identity:

Proposition 8.1. If f ∈ L<α, then the sum
∑∞
n=0

f(n)◦g
n! hn exists and

f ◦ (g + h) =

∞∑
n=0

f (n) ◦ g
n!

hn.

Note that the assumption on h is weaker than h ≺ 1; this weaker assumption works
here because supp ∂α 4 x−1. We need three lemmas:
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Lemma 8.2. If f ∈ L<α, then
∑
n
f(n)◦g
n! hn exists. The map T : L<α → L<α

given by T (f) :=
∑
n
f(n)◦g
n! hn is an L<α-composition with g + h.

Proof. First note that S := supp
(
(supp ∂α) ◦ g

)
is well-based: this is because

supp ∂α = {`†β : β < α} is well-based, and the map f 7→ f ◦ g : L<α → L<α is
strongly additive. Thus S · supph is well-based, and we claim that S · supph ≺ 1:
this is because for m ∈ supp(∂α) we have m 4 x−1, so m ◦ g 4 x−1 ◦ g = g−1, so for
n ∈ S we have n 4 g−1, and thus nh 4 g−1h ≺ 1.

Next, let f ∈ L<α and m ∈ supp(f (n) ◦ g). Then m ∈ supp(n ◦ g) with n ∈
supp f (n), so n = n1 · · · nnv with n1, . . . , nn ∈ supp(∂α) and v ∈ supp f , hence

n ◦ g = (n1 ◦ g) · · · (nn ◦ g) · (v ◦ g),

which gives m ∈ Sn ·Sf , where Sf := supp
(
(supp f) ◦ g

)
. Thus we have shown:

supp
(
(f (n) ◦ g)hn

)
⊆
(
S · supph

)n ·Sf .

Now Sf is well-based, so by Neumann’s Lemma and what we proved about S·supph

we may conclude that
∑
n
f(n)◦g
n! hn does exist. The map T is clearly R-linear with

T (1) = 1 and T (x) = g+h. Let (fi)i∈I in L<α be a summable family. Then
⋃
iSfi

is well-based and the set {i ∈ I : m ∈ Sfi} is finite for every m ∈ L<α. It follows

that
∑
n,i

f
(n)
i ◦g
n! hn exists, and so

∑
i T (fi) exists as well, and both sums equal

T (
∑
i fi). Thus T is strongly R-linear. A routine computation using Lemma 2.4

also gives T (f1f2) = T (f1)T (f2) for f1, f2 ∈ L<α. �

Lemma 8.3. For f ∈ L><α we have T (f) ∼ f ◦ g and log T (f) = T (log f).

Proof. For nonzero f ∈ L<α and n > 1 we have

supp(f (n) ◦ g)hn ≺ maxSf = max supp(f ◦ g)

with notations from the proof of Lemma 8.2, and thus T (f) ∼ f ◦ g. In view of
Proposition 7.4, the rest now follows as in the proof of Lemma 2.14, with f 7→ f ◦ g
in the role of Φ and h instead of ε. �

Lemma 8.4. Let γ > ω and γ < α. Then T (`γ)−
(
`γ ◦ (g + h)

)
≺ 1.

Proof. We have λg+h = λg, so by Lemma 7.9,

`γ ◦ g − `γ ◦ `λg ≺ 1, `γ ◦ (g + h)− `γ ◦ `λg ≺ 1,

and hence `γ ◦ g − `γ ◦ (g + h) ≺ 1. Since T (`γ) = `γ ◦ g +
∑∞
n=1

1
n! (`

(n)
γ ◦ g)hn, it

therefore suffices to show that (`
(n)
γ ◦ g)hn ≺ 1 for all n > 1. Let n > 1 and let S

be as in the proof of Lemma 8.2. That proof for f = `′γ gives

supp
(
(`(n)
γ ◦ g)hn

)
⊆
(
S · supph

)n−1 · supp
(
(supp `′γ) ◦ g

)
· (supph).

Now supp `′γ = {`′γ} ≺ x−1, so (supp `′γ) ◦ g ≺ g−1. In view of h ≺ g, this yields

supp
(
(supp `′γ)◦g

)
·(supph) ≺ 1. Also S·supph ≺ 1, and thus (`

(n)
γ ◦g)hn ≺ 1. �

Proof of Proposition 8.1. Our job is to show that the above maps f 7→ f ◦ (g + h)
and T agree. By the strong linearity of these maps this reduces to m◦(g+h) = T (m)
for m ∈ L<α. Taking logarithms and using that these maps commute with taking
logarithms (Lemma 8.3 and Proposition 7.4) this reduces further to `γ ◦ (g + h) =
T (`γ) for γ < α. We prove this by induction on γ. The case γ = 0 is obvious, and
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for the step from γ to γ + 1 we use again that the two maps commute with taking
logarithms. Let now γ < α be an infinite limit ordinal. A routine computation
using Proposition 7.8 gives T (`γ)′ = T (`′γ)(g + h)′. Moreover, by Lemma 8.3,

log T (`′γ) = T (log `′γ) = T (−
∑
β<γ

`β+1) = −
∑
β<γ

T (`β+1),

and likewise log
(
`′γ ◦(g+h)

)
= −

∑
β<γ `β+1◦(g+h), so log T (`′γ) = log(`′γ ◦(g+h))

by the natural inductive assumption, hence T (`′γ) = `′γ ◦ (g + h), and thus

T (`γ)′ = T (`′γ)(g + h)′ =
(
`′γ ◦ (g + h)

)
(g + h)′ =

(
`γ ◦ (g + h)

)′
by the chain rule. It remains to check that T (`γ) and `γ ◦ (g + h) have the same
constant term. This follows from Lemma 8.4. �

This gives the existence part of Theorem 1.3: we just showed that our composition
◦ admits Taylor expansion as stated in that theorem, and the other three items are
respectively contained in Corollary 5.9, Lemma 5.6, and Lemma 5.13.

Compositional Inversion. For f, g ∈ L>R
<α we have f ◦ g ∈ L>R

<α. Thus L>R
<α is a

monoid with respect to composition and with x as its identity element. Let us say
that g ∈ L>R

<α is (compositionally) invertible if f ◦g = x for some f ∈ L<α; note that

such f is unique and satisfies f ∈ L>R
<α and g◦f = x, since (g◦f)◦g = g◦(f ◦g) = g;

we denote this unique f by ginv. Note that if f, g ∈ L>R
<α are invertible, then so are

f inv and f ◦ g, with (f ◦ g)inv = ginv ◦ f inv. Thus the invertible elements of L>R
<α are

exactly the elements of a group Gα with the group operation given by composition.
Our goal here is to identify Gα as a subset of L>R

<α. By λx = 0 and Lemma 7.11,

λf = 0 is necessary for f ∈ L>R
<α to belong to Gα. It is also sufficient:

Proposition 8.5. For f ∈ L>R
<α we have: f ∈ Gα ⇔ λf = 0.

We begin by considering the series tangent to the identity. These are the x+h with
h ∈ L≺x<α. Fix such h and note that then

f ◦ (x+ h) =

∞∑
n=0

1

n!
f (n)hn (f ∈ L<α)

and that the map f 7→ f ◦ (x + h) : L<α → L<α equals I + D where I is the
identity map on L<α and the strongly R-linear map D : L<α → L<α is given by

D(f) =
∑∞
n=1

1
n!f

(n)hn. Now supp ∂α = {`†β : β < α} 4 x−1, so supp ∂α is
well-based. Moreover, supph ≺ x, so D has well-based support

suppD ⊆
∞⋃
n=1

(supp ∂α)n · (supph)n ≺ 1.

Thus by Lemma 2.12 the map I +D on L<α is bijective with inverse I +E where
the strongly R-linear map E : L<α → L<α is given by E(f) =

∑∞
n=1(−1)nDn(f)

and has well-based support suppE ⊆
⋃∞
n=1(suppD)n ≺ 1.

Lemma 8.6. Let h ∈ L≺x<α. Then the operator f 7→ f ◦ (x+ h) : L<α → L<α maps
x+ L≺x<α bijectively onto itself. In particular, x+ h is invertible.

Proof. For f = x+ g with g ∈ L≺x<α we have

f ◦ (x+ h) = (x+ g) ◦ (x+ h) = x+ h+ g∗
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with g∗ = g ◦ (x + h) ≺ x ◦ (x + h) = x + h � x, so the above operator does map
x+ L≺x<α injectively into itself. Conversely, with g ∈ L≺x<α we use the above inverse
I + E of I +D to get f := (I + E)(x+ g) with f ◦ (x+ h) = x+ g. It remains to
note that f = x+ g + E(x+ g) and suppE(x+ g) ⊆ (suppE) supp(x+ g) ≺ x, so
E(x+ g) ≺ x. �

Thus if f, g ∈ L>R
<α are tangent to the identity, then so are f ◦ g and ginv:

Gα,1 := {f ∈ L>R
<α : f is tangent to the identity} is a subgroup of Gα.

Below we improve this by showing that Gα,1 is a normal subgroup of Gα.

Lemma 8.7. Let f ∈ Gα and r ∈ R>. Then rf, fr ∈ Gα.

Proof. From f ◦ f inv = x we get rf ◦ f inv = rx. In view of rx ◦ r−1x = x, this gives
rf ◦ (f inv ◦ r−1x) = x. Likewise fr ◦ (f inv ◦ x1/r) = x, using xr ◦ x1/r = x. �

For f, g, h ∈ L we use the notation f = g + o(h) to mean f − g ≺ h. So far we
defined λg only for g ∈ L>R. We now extend this to all g ∈ L× in the obvious way:

λg := minσ(dg) if dg 6= 1, λg := ∞ if dg = 1, with ∞ > α for all α.

Lemma 8.8. Let m = `r11 `
r2
2 · · · =

∏
16β<α `

rβ
β ∈ L<α, and let g ∈ L><α, λg > 0.

Then m ◦ (xg) = m + o(m), and thus xm ◦ (xg) = xmg + o(xmg).

Proof. We have m ◦ (xg) =
∏

16β<α

(
`β ◦ (xg)

)rβ , so it suffices to show:

`β ◦ (xg) = `β + o(`β) for 1 6 β < α.

For ω 6 β < α this holds by Corollary 7.10. It holds for β = 1 by observing
`1 ◦ (xg) = log(xg) = `1 + log g and log g 4 `2 ≺ `1. An easy induction then gives
`n ◦ (xg) = `n + o(`n) for all n > 1. �

Corollary 8.9. Let G1
α := {xm(1 + ε) : m ∈ L<α, λm > 0, ε ∈ L≺1

<α}. Then G1
α

is a subgroup of Gα.

Proof. Note that G1
α ⊇ Gα,1. Let f, g ∈ G1

α, so we have m, n ∈ L<α with λm, λn > 0
and ε1, ε2 ∈ L≺1

<α, such that

f = xm(1 + ε1), g = xn(1 + ε2).

Now xm◦g = xm◦xn(1+ε2) = xmn(1+ε2)+o(xmn) = xmn+o(xmn) by Lemma 8.8,
so f ◦ g = xmn + o(xmn) ∈ G1

α. Given f ∈ G1
α as before, and taking n := m−1, the

above shows that f ◦ xn = x+ o(x) ∈ Gα,1, so f ◦ xn ◦ h = x where h ∈ Gα,1. Thus
f ∈ Gα and f inv = xn ◦ h = xn + o(xn) ∈ G1

α. �

Here is a useful way to summarize the proof of Corollary 8.9: let f, g ∈ L<α and
f = xm + o(xm), g = xn + o(xn) with m, n ∈ L<α, λm, λn > 0. Then

f ◦ g = xmn + o(xmn), f inv = x/m + o(x/m).

Proof of Proposition 8.5. Let f ∈ L>R
<α. The direction f ∈ Gα ⇒ λf = 0 was

already explained. For the converse, assume λf = 0; our job is to derive f ∈ Gα.
By Lemma 8.7 we can arrange that f has leading coefficient 1 with df = xm and
m =

∏
16β<α `

rβ
β , so f = xm + o(xm) ∈ G1

α ⊆ Gα. �
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The proof shows that Gα = {axb ◦ g : a, b ∈ R>, g ∈ G1
α}. Note in this connection

that GR,x := {axb : a, b ∈ R>} is a subgroup of Gα:

axb ◦ sxt = asbxbt (a, b, s, t ∈ R>).

It is easy to see that G1
α is not a normal subgroup of Gα. On the other hand:

Corollary 8.10. Gα,1 is a normal subgroup of Gα.

Proof. Let f ∈ Gα,1. By the above description of Gα it suffices to show that
g ◦ f ◦ ginv ∈ Gα,1, for all g = sxt with s, t ∈ R>, and for all g ∈ G1

α. For s, t ∈ R>
and g = sxt we have ginv = axb with a = s−1/t and b = 1/t, so with f = x+ o(x)
we get f ◦ ginv = ginv + o(ginv) = axb(1 + ε) with ε ≺ 1, and thus

g ◦ f ◦ ginv = s(axb)t(1 + ε)t = x(1 + ε)t = x+ o(x) ∈ Gα,1.
Next, let g ∈ G1

α, so g = xm + o(xm) with m ∈ L<α, λm > 0. Then ginv =
x/m+ o(x/m), so f ◦ ginv = (x+ o(x)) ◦ (x/m+ o(x/m)) = x/m+ o(x/m), and thus
g ◦ f ◦ ginv = (xm + o(xm)) ◦ (x/m + o(x/m)) = x+ o(x) ∈ Gα,1. �

9. Uniqueness, Embedding L into No, and Final Remarks

We continue to let ◦ denote the composition on L constructed in Sections 5 and 6.
Corollary 7.16 characterizes this composition uniquely, but in the first subsection
below we establish the more elegant characterization given by Theorem 1.3 from the
introduction. Note that in Section 8 (end of first subsection) we already observed
that ◦ witnesses the existence part of Theorem 1.3.

In the second subsection we indicate the natural embedding of L into No, and
in the last subsection we finish with some remarks.

Uniqueness. Let ∗ denote any composition on L and let f, g, h range over L.

Lemma 9.1. Let f ∈ L<ω and g > R. Then f ∗ g = f ◦ g.

Proof. By induction on n and using (CL2), (CL3) we obtain

`n ∗ g = logn(g) = `n ◦ g.
Hence for m =

∏
n `

rn
n ∈ L<ω we have m ∗ g =

∏
n logn(g)rn = m ◦ g by Lemma 4.8.

The rest is an application of (CL4) (strong linearity). �

We say that ∗ obeys the Chain Rule if (f ∗ g)′ = (f ′ ∗ g) · g′ for all f, g with g > R.
We say that ∗ admits Taylor expansion if for all f, g, h with g > R and h ≺ g

the sum
∑
n
f(n)◦g
n! hn exists and equals f ∗ (g + h). Note that if ∗ admits Taylor

expansion, then, with ε ranging over (sufficiently small) nonzero elements of L,

f ′ = lim
ε→0

f ∗ (x+ ε)− f
ε

.

Lemma 9.2. If ∗ admits Taylor expansion, then it obeys the chain rule.

Proof. Assume ∗ admits Taylor expansion, and let g > R. Then

f ′ ∗ g = lim
ε→0

f ∗ (g + ε)− f ∗ g
ε

as is easily verified. The usual argument shows that then ∗ obeys the chain rule:
for all sufficiently small ε 6= 0 we have g ∗ (x+ ε) 6= g and

(f ∗ g) ∗ (x+ ε)− f ∗ g
ε

=
f ∗ (g ∗ (x+ ε))− f ∗ g

g ∗ (x+ ε)− g
· g ∗ (x+ ε)− g

ε
.
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Now g ∗ (x+ ε) = g + εg with εg → 0 as ε→ 0; thus letting ε go to 0 in the above
displayed equality yields (f ∗ g)′ = (f ′ ∗ g) · g′. �

In the rest of this subsection we assume that ∗ admits Taylor expansion and has the
following property: for all β, γ,

• `γ ∗ `ωβ = `ωβ+γ if γ < ωβ+1;
• `ωβ+1 ∗ `ωβ = `ωβ+1 − 1;
• `ωγ ∗ `ωβ has constant term 0 if γ > β is a limit ordinal.

We have to derive that then f ∗ g = f ◦ g, where g > R. Here is the main lemma:

Lemma 9.3. If ρ > ωβ+1, then `ρ ∗ `ωβ = `ρ + ερ with ερ ≺ 1.

Proof. Set µ = ωβ+1. For ρ = µ+ 1 we have

`ρ ∗ `ωβ = log(`µ ∗ `ωβ ) = log(`µ − 1)

= log
(
`µ(1− `−1

µ )
)

= log(`µ) + log(1− `−1
µ )

= `ρ + ερ, ερ � `−1
µ ≺ 1.

Next, let ρ > µ+1, and assume inductively that for every ordinal ν with µ < ν < ρ
we have `ν ∗ `ωβ = `ν + εν with εν ≺ 1, so `ν ∗ `ωβ = `ν(1 + hν) with hν ≺ `−1

ν .
Take γ > β + 1 such that ωγ 6 ρ < ωγ+1. We distinguish three cases; only in the
second case do we use the full inductive assumption.

Case ρ = ωγ and γ is a successor ordinal. Then γ = ξ+ 1, ξ > β+ 1 and from
`ρ = (`ρ ∗ `ωξ) + 1 and `ωξ ∗ `ωβ = `ωξ + ε with ε 4 1, we obtain

`ρ ∗ `ωβ =
(
(`ρ ∗ `ωξ) + 1

)
∗ `ωβ =

(
`ρ ∗ (`ωξ ∗ `ωβ )

)
+ 1

=
(
(`ρ ∗ (`ωξ + ε)

)
+ 1 =

( ∞∑
n=0

`
(n)
ρ ∗ `ωξ
n!

εn

)
+ 1

= `ρ + ερ, ερ ≺ 1,

since `
(n)
ρ ≺ 1 for n > 1.

Case ρ = ωγ and γ is a limit ordinal. By Lemma 9.2 the composition ∗ obeys
the Chain Rule, so by our assumption that the constant term of `ρ ∗ `ωβ is 0:

`ρ ∗ `ωβ =

∫
[(`′ρ ∗ `ωβ ) · `′ωβ ].

Now `′ρ =
∏
ν<ρ `

−1
ν and likewise for `′ωβ , so

(`′ρ ∗ `ωβ ) · `′ωβ =
(
(
∏
ν<ρ

`−1
ν ) ∗ `ωβ

)
·
∏
ν<ωβ

`−1
ν

=
∏
ν<µ

(`−1
ν ∗ `ωβ ) ·

∏
µ6ν<ρ

(`−1
ν ∗ `ωβ ) ·

∏
ν<ωβ

`−1
ν

=
∏
ν<µ

`−1
ωβ+ν

·
∏

µ6ν<ρ

(`−1
ν ∗ `ωβ ) ·

∏
ν<ωβ

`−1
ν

=
∏
ν<µ

`−1
ν ·

∏
µ6ν<ρ

(`−1
ν ∗ `ωβ )

=
( ∏
ν<µ

`−1
ν

)
· (`−1

µ ∗ `ωβ ) ·
∏

µ<ν<ρ

(`−1
ν ∗ `ωβ ).
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Now `µ ∗`ωβ = `µ−1 gives `−1
µ ∗`ωβ = `−1

µ (1−`−1
µ )−1. Together with the equality

derived above and the inductive assumption this yields

(`′ρ ∗ `ωβ ) · `′ωβ = `′ρ(1− `−1
µ )−1

∏
µ<ν<ρ

(1 + hν)−1 = `′ρ(1 + h)

with h ≺ `−2
ρ . Hence `ρ ∗ `ωβ = `ρ +

∫
`′ρh. Now

∫
`′ρ`
−2
ρ = −`−1

ρ , so
∫
`′ρh = ερ

with ερ ≺ `−1
ρ ≺ 1.

Case ρ > ωγ. Then ρ = ωγ + ν where 0 < ν < ωγ+1, so `ρ = `ν ∗ `ωγ . Now
`ωγ ∗ `ωβ = `ωγ + ε with ε = −1 if γ = β + 1 and ε ≺ 1 if γ > β + 1. Thus

`ρ ∗ `ωβ = `ν ∗ (`ωγ ∗ `ωβ ) = `ν ∗ (`ωγ + ε) =

∞∑
n=0

`
(n)
ν ∗ `ωγ
n!

εn

= (`ν ∗ `ωγ ) + ερ = `ρ + ερ where ερ ≺ 1. �

Lemma 9.4. f ∗ `ωβ = f ◦ `ωβ .

Proof. By the usual reductions it suffices to verify the identity for hyperlogarithms
f = `ρ. For ρ 6 ωβ+1 our assumptions on ∗ take care of this. Let ρ > ωβ+1 and
assume inductively that `ν ∗ `ωβ = `ν ◦ `ωβ for all ν < ρ. Then by the chain rule,
(`ρ ∗ `ωβ )′ = (`ρ ◦ `ωβ )′. By Lemma 9.3, `ρ ∗ `ωβ and `ρ ◦ `ωβ both have the constant
term 0, so they are equal. �

We now finish the proof that f ∗ g = f ◦ g for all f, g with g > R. First, for nonzero
γ we have γ = ωβ1 + · · · + ωβk with β1 > β2 > . . . > βk, k > 1. For k = 1 we
have f ∗ `γ = f ◦ `γ by the last lemma. For k > 1 we have γ = ωβ1 + ν with
ν = ωβ2 + · · ·+ ωβk < ωβ1+1, and thus

f ∗ `γ = f ∗ (`ν ∗ `ωβ1 ) = (f ∗ `ν) ∗ `ωβ1 = (f ◦ `ν) ◦ `ωβ1 = f ◦ `γ ,

where for the third equality we use an obvious induction assumption on k. We have
now shown that f ∗ `γ = f ◦ `γ for all f and γ.

Next, let f ∈ L>ω and g > R. In Section 6 we defined f↑3 ∈ L>ω and observed
that log3(g) = `γ + ε with γ = λg + 3 and ε ≺ 1. Then f = f↑3 ◦ `3 = f↑3 ∗ `3.
Using also `3 ◦ g = log3(g) = `3 ∗ g we obtain

f ◦ g = (f↑3 ◦ `3) ◦ g = f↑3 ◦ (`3 ◦ g) = f↑3 ◦ (`γ + ε),

f ∗ g = (f↑3 ∗ `3) ∗ g = f↑3 ∗ (`3 ∗ g) = f↑3 ∗ (`γ + ε),

which by Taylor expansion yields f ◦ g = f ∗ g.
Finally, for arbitrary f, g with g > R we have f =

∑
m∈L<ω f[m]m where all f[m]

lie in L>ω. In view of Lemma 9.1 this gives

f ◦ g =
∑

m∈L<ω

(f[m] ◦ g)(m ◦ g) =
∑

m∈L<ω

(f[m] ∗ g)(m ∗ g) = f ∗ g.

This concludes the proof of Theorem 1.3. Note that for the above proof of ∗ = ◦
we only needed the Taylor identity for f ∗ (g + h) with g > R and h 4 1.
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Embedding L into No. We use here [3] and its notations, viewing No as a
logarithmic-exponential field extension of R in the usual way. In that paper we

defined logα ω := ωω
−α ∈ No, thinking of it as the “α times iterated function log

evaluated at ω” in view of log(logα ω) = logα+1 ω. Berarducci and Mantova [5]
constructed a derivation on No which in [3] and here we denote by ∂BM.

Proposition 9.5. There is a unique ordered field embedding ι : L→ No such that:

(i) ι is the identity on R and ι(`α) = logα ω for all α;
(ii) for every summable family (fi)i∈I in L the family ι(fi) is summable in No

and ι(
∑
i fi) =

∑
i ι(fi);

(iii) ι(log f) = log ι(f) for all f ∈ L>.

This embedding also preserves the derivation: ι(f ′) = ∂BM(ι(f)) for all f ∈ L.

Proof. In [3, Section 2] we defined for any summable family (ai) in No the product∏
i ω

ai := ω
∑
i ai . In [3, remarks preceding lemma 3.3] we defined ar := exp(r log a)

for a ∈ No> and r ∈ R, and recorded the fact that (logα ω)r = ωrω
−α

for r ∈ R.
Thus for any logarithmic hypermonomial

∏
β<α `

rβ
β of L we have a product∏

β<α

(logβ ω)rβ =
∏
β<α

ωrβω
−β

= ω
∑
β<α rβω

−β
.

It is routine to check that this yields a unique R-linear map ι : L→ No such that
for every logarithmic hypermonomial

∏
β<α `

rβ
β we have

ι(
∏
β<α

`
rβ
β ) =

∏
β<α

(logβ ω)rβ

and for every summable family (fi)i∈I in L the family ι(fi) is summable in No
and ι(

∑
i fi) =

∑
i ι(fi). It is easy to verify that this map ι is an ordered field

embedding satisfying (i) and (ii). It also satisfies (iii) in view of [5, Lemma 2.3]. As
to uniqueness, let i also be an ordered field embedding satisfying (i), (ii), (iii) with
i instead of ι. Then for m =

∏
β<α `

rβ
β we have logm =

∑
β<α rβ`β+1. Therefore,

using again [5, Lemma 2.3],

log i(m) = i(logm) =
∑
β<α

rβ logβ+1 ω = log
∏
β<α

(logβ ω)rβ ,

so i(m) =
∏
β<α(logβ ω)rβ = ι(m). Thus i = ι. That ι is also an embedding of

differential fields with the derivation ∂BM on No uses the fact that

∂BM(logα ω) = 1/
∏
β<α

logβ ω,

for which we refer to [3, two lines before Lemma 2.10]. �

In [3] we also defined a canonical embedding of the differential field T into No, and
we observe here that on Tlog = L∪<ω this embedding agrees with the embedding of
Proposition 9.5.

Final Remarks. One issue we didn’t touch is the monotonicity of composition on
the right: for f, g, h ∈ L>R with g < h, do we have f ◦ g < f ◦ h? We believe this
to be true, and it would reflect how composition behaves for germs of functions in
Hardy fields. But we only have proofs for special cases. It might be better to deal
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with this in the wider setting of the (conjectural) field H of all hyperseries where
every positive infinite element should have a compositional inverse.

It would be interesting to represent right composition with various g ∈ L>R on
certain subfields of L in the form eφ∂ for suitable φ ∈ L, as we did for g = `ωβ in
the remark following the proof of Lemma 5.1.

The identity `ωβ+1 ◦ `ωβ = `ωβ+1 − 1 reflects a choice of integration constant −1. It
is surely the most natural choice, but for any family (cβ) of real numbers there is
a composition ∗ on L such that instead for all β,

`ωβ+1 ∗ `ωβ = `ωβ+1 + cβ .

Such a composition ∗ is obtained by replacing (5.1) with

f ∗ `ωβ :=
∞∑
n=0

cnβ
n!

δ
nf (f ∈ L[µ,α))

and following otherwise the definitions in Sections 5 and 6. Theorem 1.3 goes
through for ∗ in the role of ◦, except that the above identity involving the constants
cβ replaces “`ωβ+1 ◦ `ωβ = `ωβ+1 − 1”. The proofs for ◦ are easily adapted to ∗.
Note that any cβ > 0 would give a failure of monotonicity of ∗ on the right.

Another topic is the connection to Hardy fields. Kneser [13] yields a real analytic
function `K : R → R> with `K(log t) = `K(t) − 1 for t > 0; its germ at +∞, also
denoted by `K below, generates a Hardy field extension of R(x, log x, log2 x, . . . )
such that R < `K < logn(x) for all n, with x here the germ of the identity function
on R. Clearly, `K has `ω as a kind of formal counter part. In the appendix to [14],
Schmeling constructs likewise for all n > 1 a real analytic function with `ωn as
a formal counter part. Much remains to be done to strengthen this connection.
There is ongoing work along these lines with partial results announced in [4] .
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