
Meta-expansion of transseries
∗

Joris van der Hoeven

CNRS, Dépt. de Mathématiques (Bât. 425)
Université Paris-Sud
91405 Orsay Cedex

France
Email: joris@texmacs.org

December 9, 2008

The asymptotic behaviour of many univariate functions can only be expressed in gen-
eralized asymptotic scales, which are not merely formed of powers of a single variable.
The computation of asymptotic expansions of functions in such generalized scales
may lead to infinite cancellations, which complicate the design and implementation of
practical algorithms. In this paper, we introduce a new heuristic technique of “meta-
expansions”, which is both simple and efficient in practice, even though the answers
are not guaranteed to be correct in general.

Keywords: transseries, asymptotic expansion, algorithm, zero-test

A.M.S. subject classification: 40-04, 41A60, 68W30, 03C64, 03D60, 65B99

1. Introduction

The asymptotic behaviour of many univariate functions can only be expressed in general-
ized asymptotic scales, which are not merely formed of powers of a single variable.

It was already noticed by Hardy [Har10, Har11] that many interesting functions arising
in combinatorics, number theory or physics can be expanded w.r.t. scales formed by so
called exp-log functions or L-functions. An exp-log function is constructed from an indeter-
minate x and the real numbers using the field operations, exponentiation and logarithm. An
L-function is defined similarly, by adding algebraic functions to our set of building blocks.

However, the class of functions which can be expanded with respect to a scale formed
by exp-log functions (or L-functions) is not stable under several simple operations such
as integration or functional inversion [Sha93, vdH97, MMvdD97]. More recently, exp-log
functions have been generalized so as to allow for expressions with infinite sums, giving rise
to the notion of transseries [DG86, É92]. In section 2, we briefly recall some of the most
important definitions and properties. For more details, we refer to [vdH06c].

Given an explicit expression (such as an exp-log function), or the solution to an implicit
equation, an interesting question is how to find its asymptotic expansion automatically.
When working with respect to a generalized asymptotic scale, such as {xα eβx: α, β ∈R}
at infinity (x→∞), even simple expressions can lead to infinite cancellations:

1

1−
1

x
−

1

ex

−
1

1−
1

x

=

(

1 +
1
x

+
1

x2
+� +

1
ex

+
1
x ex

+���)−(1 +
1
x

+
1

x2
+�)

≈
1
ex

+
1
x ex

+
1

x2 ex
+� .

In many cases, the detection of infinite cancellations can be reduced to the zero-test
problem in a suitable class of functions [Sha90, GG92, RSSvdH96, Sal91, vdH97].

∗. This work has partially been supported by the ANR Gecko project.

1

However, zero-test problems are often very hard. In the case of exp-log functions, a
complete zero-test is only known if Schanuel’s conjecture holds [Ric97, vdH98, vdHS06,
Ric07]. If we want to expand more general expressions or more general solutions to differen-
tial or functional equations, the corresponding zero-test problem tends to get even harder.
Consequently, the zero-testing tends to complicate the design of mathematically correct
algorithms for more general asymptotic expansions. From the practical point of view, the
implementation of robust zero-tests also requires a lot of work. Moreover, mathematically
correct zero-tests tend to monopolize the execution time.

In this paper, we will investigate an alternative, more heuristic approach for the com-
putation of asymptotic expansions. We will adopt a similar point of view as a numerical
analyst who conceives a real number as the limit of a sequence of better and better approx-
imations. In our case, the asymptotic expansion will be the limit of more and more precise
polynomial approximations, where the monomials are taken in the asymptotic scale. As
is often the case in numerical analysis, our approach will only be justified by informal
arguments and the fact that it seems to work very well in practice.

Besides the analogy with numerical analysis there are a few additional interesting points
which deserve to be mentioned. First of all, a finite sequence f̌;0, f̌;1,� of better and better

approximations gives rise to a second sequence f̌0 = f̌;0, f̌1 = f̌;1 − f̌;0, f̌2 = f̌;2 − f̌;1, � ,
which can itself be encoded by a generating series

f̌ (z) =
∑

n∈N

f̌n z
n.

The computation of the expansion of f = limn→∞ f̌;n can thus be re-interpreted as the
computation of the expansion of f̌ , which we therefore regard as the “meta-expansion” of f .
This technique will be detailed in section 3. Additional complications arise in the context
of transseries, because the elements of the asymptotic scale are themselves exponentials of
other transseries. The computation of meta-expansions for transseries will be detailed in
sections 4 and 5.

A second interesting aspect of meta-expansions is that we may operate on the meta-
expansion without changing the underlying expansion. In a complex computation involving
lots of auxiliary series, this provides some meta-control to the user. For instance, some
subexpressions can be computed with more accuracy (or less accuracy) and one can focus
on a specific range of terms. Techniques for the acceleration of convergence play a similar
role in numerical analysis [PTVF07, Section 5.3]. Another operation, called “stabilization”,
removes those terms in the expansions f̌n which change at every few steps. After stabiliza-
tion, we tend to compute only terms which occur in the final expansion of f , even though
they usually appear in a different order. In particular, stabilization gives rise to a heuristic
zero-test. Meta-operations on meta-expansions will be discussed in section 6.

One motivation behind the present paper was its application to the asymptotic extrap-
olation of sequences by transseries [vdH06a]. This application requires the computation of
discrete sums and products of transseries. In section 7, we have included a small demon-
stration of our current implementation in the Mathemagix system [vdH02b].

For the purpose of this application, we have mainly considered univariate transseries
expansions so far. Of course, the approach of our paper generalizes to expansions in several
variables. A natural next step for future developments would be to implement the Newton
polygon method for rather general functional equations. Another interesting question is
how to re-incorporate theoretically correct zero-tests in our mechanism and how much we
really sacrifice when using our heuristic substitute. A few ideas in these directions will be
given in section 8, some of which actually go back to [vdH94].

2 Meta-expansion of transseries

2. Transseries

In this section, we briefly survey some basic properties of transseries. For more details, we
refer to [vdH06c, vdH97, É92, MMvdD97, MMvdD99].

Let R be a ring and M a commutative monomial monoid which is partially ordered by
an asymptotic dominance relation 4. A subset S ⊆ M is said to be well-based if it well-
quasi-ordered [Pou85, Mil85] for the opposite ordering of 4 and grid-based if it satisfies a
bound of the form

G⊆m1
N� mk

N{n1,� , nl} (m1,� ,mk≺ 1). (1)

A well-based power series is a formal sum f=
∑

m∈M
fmm, whose support supp f={m∈M:

fm� 0} is well-based. It is classical [Hah07, Hig52] that the set R[[M]] of well-based power
series forms a ring. The subset R[[M]] of grid-based power series (i.e. with grid-based
support) forms a subring of R[[M]].

Example 1. Consider the series

f =
1

1− x−1−x−e =1 + x−1 + x−2 +x−e +x−3 +x−e−1 + x−4 +x−e−2 + x−5 + x−2e +�
g = x−1 + g(xp) = x−1 + x−p + x−p

2
+ x−p

3
+� ,

with M=xR for x→∞ (i.e. xα4xβ⇔α6 β). Then the first series is grid-based and the
second one only well-based.

A family (fI)i∈I of series in R[[M]] is said to be well-based if
⋃

i∈I
supp fi is well-based

and {i∈ I: m∈ supp fi} is finite for every m∈M. In that case, the sum g=
∑

i∈I
fi with

gm=
∑

i∈I
fi,m is again in R[[M]]. A linear mapping ϕ:R[[M]]→R[[N]] is said to be strong

it preserves well-based summation. Grid-based families and the corresponding notion of
strong linearity are defined similarly.

In the case when R is a field and M is totally ordered, then R[[M]] and R[[M]] are also
fields. Furthermore, any non-zero f ∈R[[M]]� admits a unique dominant monomial df =
max4 supp f with corresponding dominant coefficient cf = fdf

and relative remainder δf
such that f = cf df (1 + δf). We call τf = cf df the dominant term of f and define τf = 0
in the case when f =0. The series f also admits a canonical decomposition

f = f≻ + f≍ + f≺� � �
∑

m≻1

fmm
∑

m≍1

fmm
∑

m≺1

fmm

Here m≍ 1 just means that m=1; more generally, ϕ≍ ψ⇔ ϕ4 ψ4 ϕ. If f is grid-based,
then so are δf , f≻ and f≺. If R is actually an ordered field, then so are R[[M]] and R[[M]],
by taking f > 0⇔ cf > 0 for all f .

The field T=R[[[x]]] of grid-based transseries is a field of the form T=R[[T]] with
additional operators exp and log. The set of transmonomials T coincides with the set
expT≻ of exponentials of transseries f with f≻= f . More generally, we have

log f = log df + log cf + log (1 + δf) (2)

log δf = δf −
1

2
δf
2 +

1

3
δf
3 +� , (3)

Joris van der Hoeven 3

for any f ∈T> (i.e. f > 0) and

exp f = exp f≻ exp f≍ exp f≺ (4)

exp f≺ = 1 + f≺+
1

2
f≺

2 +
1

6
f≺

3 +� . (5)

The construction of T is detailed in [vdH06c, Chapter 4]. The construction of fields of
well-based transseries is a bit more delicate [DG86, vdH97, Sch01], because one cannot
simultaneously ensure stability under exponentiation and infinite summation. However,
there is a smallest such field R[[[x]]], if we exclude transseries with arbitrarily nested
logarithms or exponentials, such as x+ log x+ log log x+� .

Let T be one of the fields R[[[x]]] or R[[[x]]]. Then T admits a lot of additional
structure:

1. There exists a unique strong derivation f� f ′ with R′=0, x′=1 and (ef)′= f ′ ef

for all f ∈T.

2. There exists a unique strong integration f� ∫ f with (
∫

f)′= f and (
∫

f)≍=0 for
all f ∈T.

3. For any positive, infinitely large transseries g∈T>,≻, there exists a unique strongly
linear right composition f � f ◦ g, with c ◦ g (c∈R), x ◦ g= g and ef ◦ g=ef◦g.

4. Each g ∈T>,≻ admits a unique functional inverse ginv.

5. T is real closed. Even better: given a differential polynomial P ∈T{F } and f < g

in T with P (f)P (g)< 0, there exists an h∈T with f <h< g and P (h) = 0.

Furthermore, there exist very general implicit function theorems [vdH01, vdH06c], which
can be used in order to solve functional equations, when put in a suitable normal form.

The field T is highly non-Archimedean. For what follows it will be introduce the
asymptotic flatness relation

f � g � log f ≺ log g

f D g � log f ≍ log g

For g≻ 1, one has f � g if and only if fλ≺ g for all λ∈R.

3. Meta-expansions

The intuitive idea behind meta-expansion is that, from the computational point of view,
series usually arise as a sequence of successive approximations of an interesting object. We
will make this simple idea operational by taking the approximations to be polynomials. In
order to avoid repetitions, we will systematically work in the well-based setting; it is easy
to adapt the definitions to the grid-based case.

Let R be an effective ring and M an effective monomial monoid. Recall that R[[M]]
stands for the ring of well-based generalized power series and letR[M] be the corresponding
set of polynomials (i.e. series with finite support). We define an expander to be a com-

putable well-based sequence f̌ =(f̌n)∈R[M]N of polynomials. Its sum f = f̌̂ =
∑

n∈N
f̌n

will be called the result of the expander and we say that f̌ is an expander for f . We
also define an approximator to be a computable sequence f̌; = (f̌;n) ∈ R[M]N, such that
⋃

n∈N
supp f;n is well-based and such that for each m ∈ M, there exists an n0 ∈ N for

which f;m4 f̌;n,m is constant for n>n0. In that case, the limit f;= lim f̌;n=
∑

m∈M
f;mm

is called the result of the approximator.

4 Meta-expansion of transseries

Clearly, the notions of expander and approximator are variants of another: if f̌ =(f̌n)

is an expander, then f̌; = Σ f̌ with f̌;n = f̌0 + � + f̌n defines an approximator with the

same result. Similarly, if f̌; = (f̌;n) is an approximator, then f̌ = ∆ f̌; with f̌0 = f̌;0,
f̌n = f̌;n − f̌;n−1 (n > 0) defines an expander with the same result. However, for certain
purposes, expanders are more suitable, because an expander f̌ can be manipulated via its
generating series

f̌ (z) =
∑

n∈N

f̌n z
n.

For other purposes though, approximators are the more natural choice. As far as notations
are concerned, it is convenient to pass from expanders f̌ to approximators f̌; (and vice

versa) by prefixing the index by a semicolon (resp. removing the semicolon).
We will denote by R[[M]]app the set of approximable series in R[[M]] which admit

an expander (or approximator). The corresponding set of expanders will be denoted by

R[[M]]app. Given f ∈ R[[M]]exp, we use the notation f̂ to indicate that f represents f̂ .

Given f ∈ R[[M]]app, we will also use the notation f̌ to indicate that f̌ ∈ R[[M]]app is
a representation for f . For more details on this convention, see [vdH07, Section 2.1].

In practice, expanders and approximators are usually implemented by pointers to an
abstract class with a method to compute its coefficients. For more details on how to do this,
we refer to [vdH02a]. Let us now show how to implement expanders and approximators
for basic operations in R[[M]]app.

Constructor. Given a polynomial f ∈ R[M], an expander and approximator for f are
given by

f̌ (z) = f

f̌;n = f

It will be convenient to simply regard R[M] as a subset of R[[M]]app.

Addition. Given g, h ∈ R[[M]]app, we may compute an expander and an approximator
for g+ h by

f̌ (z) = ǧ(z) + ȟ(z)

f̌;n = ǧ;n+ ȟ;n

Subtraction is treated in a similar way.

Multiplication. We may define expanders and approximators for products in the same
way as for addition:

f̌ (z) = ǧ(z) ȟ(z) (6)

f̌;n = ǧ;n ȟ;n (7)

However, a subtlety occurs here. Consider for instance the case when R[[M]] =R[[u]] and
ǧ = ȟ=1/(1−uz), so that g=h=1/(1−u) and ǧ;n= ȟ;n=1+� +un. Contrary to what
happened in the case of addition, the definitions (6) and (7) do not coincide in the sense
that f̌ � Σ f̌;. Indeed, we respectively find

f̌;n = 1 + 2u+� +nun

f̌;n = 1 + 2u+� +nun+� + 2u2n−2 +u2n−1

As a general rule, the manipulation of expanders tends to be a bit more economic from
the computational point of view, its coefficients being smaller in size.

Joris van der Hoeven 5

Left composition with power series. Let g ∈ R[[t]] be a computable formal power
series and let h∈R[[M]]

≺

app be infinitesimal. Then we may compute an expander for g ◦h
using

f̌ (z) = g(z ȟ(z)). (8)

Notice that the individual coefficients of ȟ need not be infinitesimal. Besides, the composi-
tion g ◦ f0 is usually not a polynomial. Therefore, we have forced ȟ to become infinitesimal
using a multiplication by z. This is justified by the fact that

h= z ȟ ,

Multiplication of ȟ by z corresponds to delaying the approximation process of h.

Inversion. Assume now that R is a field and M a totally ordered group. The inverse of
a series g ∈R[[M]] may be computed using left composition with power series:

g=
1
τg

(1− δg+ δg
2− δg

3 +�)=
1
τg

(1 + t)−1 ◦ δg (9)

Unfortunately, there exists no general algorithm for the computation of the dominant
term τg. We will therefore assume the existence of an oracle for this purpose. In section 6,
we will present a heuristic algorithm which can be used in practice.

Fixed points. A general technique for the resolution of functional equations is to rewrite
then into the form

f = Φ(f)

and apply a fixed-point theorem. In our case, this requires a well-based operator Φ:
R[[M]] → R[[M]] for which we can prove that Φ(0), Φ(Φ(0)), Φ(Φ(Φ(0))), � admits
a well-based limit in R[[M]]. The obvious expander for f is given by

f̌n=Φn(0).

For some general fixed-point theorems for sequences f̌n of this kind, we refer to [vdH01]
and [vdH06c, Chapter 6].

4. Meta-expansion of transseries

In order to compute with well-based transseries in R[[[x]]]⊆R[[T]], we take our coefficients
in an effective subfield R of R and our monomials in an effective subgroup M of T. More-
over, the monomials in M which are not iterated logarithms are themselves exponentials
of approximable transseries.

More precisely, elements in M are represented by monomials m̌∈M which are of one
of the following forms:

1. either m̌ =m= loglx for some l∈N ;

2. or m̌= exp f̌ , with f̌ ∈R[[M]]≻.

In the first case, the exponential height hm̌ of m̌∈M is defined to be zero and in the second
case, we set hm̌=1 +maxň∈supp log m̌ hň.

Elements m, n ∈ M are multiplied using m̌ ň = exp (log m̌ + log ň) and inverted using

m̌−1 = exp (−log m̌). Here log m̌∈R[[M]]≻: if m̌= loglx, then log m̌= logl+1x; if m̌= exp f̌ ,
then log m̌= f̌ . The asymptotic ordering 4 on M is implemented using

v 4w� log v 6 logw� τlog (v/w) 6 0,

6 Meta-expansion of transseries

and therefore relies on an oracle for the computation of τlog (v/w). Setting m = v/w, we
notice that heuristic algorithms for the computation of this dominant term recursively need
to compare elements n in supp logm with respect to 4. The termination of the recursion
is based on the fact that hň<hm̌.

The main additional operations for the manipulation of transseries are exponentiation
and logarithm. Since exponentiation relies on canonical decompositions, we start with the
general operation of restriction of support.

Restriction of support. Given S⊆M, we define the restriction of f ∈R[[M]] to S by

fS=
∑

m∈S

fmm

If the subset S is a computable, i.e. S admits a computable membership test, then the
mapping R[M]→R[M]; f� fS is computable. In particular, given f ∈R[[M]]app, we may
compute fS using

(fS)n=(f̌n)S.

Now making continued use of our oracle for the computation of dominant terms, the sets
M≻={m∈M:m≻1}, M≍={1} and M≺={m∈M:m≺1} are computable. Consequently,
we have algorithms to compute f≻= fM≻

, f≍= fM≍
and f≺ = fM≺

.

Logarithm and exponentiation. Assume that R is closed under logarithm (for positive
elements) and exponentiation. Then the formulas (2–5) and our algorithms for canonical
decomposition and left composition with power series yield a way to compute logarithms
and exponentials of elements in R[[M]]app. The smallest subfield R of R which is stable
under exponentiation and logarithm is called the field of exp-log constants . There exists a
zero-test for this field which relies on Schanuel’s conjecture for its termination [Ric97].

Example 2. Consider the following example from [RSSvdH96]:

f = log log (x exex
+1)− exp exp (log log x+

1

x
).

When computing an expander f̌ with the routines presented so far, we obtain

f̌;0 = log x

f̌;1 = log x+
log x
x ex

+
1
x ex

f̌;2 =
log x
x ex

+
1
x ex

−
log2 x

2x2 e2x −
logx
x2 e2x −

1

2x2 e2x

f̌;3 = −
log x
2x

+
log x
x ex

+
1
x ex

−
log2x

2x2 e2x −
logx
x2 e2x −

1

2x2 e2x +
log3 x

3x3 e3x +
log2 x

x3 e3x +
log x
x3 e3x +

1

3x3 e3x

f̌;4 = −
log2x

2x
−

log x
2x

−
log x
6x2

+
logx
x ex

+
1
x ex

−
log2 x

2x2 e2x
−

logx
x2 e2x

−
1

2x2 e2x
+

log3x

3x3 e3x
+

log2x

x3 e3x
+

log x
x3 e3x

+
1

3x3 e3x
−

log4 x

4x4 e4x
−

log3 x

x4 e4x
−

3 log2x

2x4 e4x
−

logx
x4 e4x

−
1

4x4 e4x

f̌;5 = −
log2x

2x
−

log x
2x

−
log2 x

2x2
−

logx
6x2

−
logx
24x3

+
logx
x ex

+
1
x ex

−
log2x

2x2 e2x
−

log x
x2 e2x

−

1

2x2 e2x +
log3x

3x3 e3x +
log2x

x3 e3x +
log x
x3 e3x +

1

3x3 e3x −
log4x

4x4 e4x −
log3x

x4 e4x −
3 log2 x

2x4 e4x −

logx
x4 e4x

−
1

4x4 e4x
+

log5 x

5x5 e5x
+

log4 x

x5 e5x
+

2 log3 x

x5 e5x
+

2 log2 x

x5 e5x
+

log x
x5 e5x

+
1

5x5 e5x

Joris van der Hoeven 7

Remark 3. In practice, it is useful to have efficient algorithms for the manipulation of
transmonomials. In a similar way as in [RSSvdH96, vdH97, vdH06c], we therefore write

transmonomials as power products m = b1
λ1� bn

λn with respect to a transbasis (b1, � , bn)
which is constructed incrementally during the computations. In our well-based setting, we
merely require that the bi satisfy the hypotheses

TB1. b1 = loglx for some l ∈N.

TB2. b2,� , bn∈ expR[[M]]≻.

TB3. log b1≺� ≺ log bn.

In the grid-based setting TB2 may be replaced by the stronger requirement that log bi+1

can be expanded w.r.t. b1,� , bi for all i∈{1,� , n− 1}.

5. Other operations on transseries

Let us now come to the more interesting operations on transseries. Differentiation and
composition rely on the general principle of extension by strong linearity.

Extension by strong linearity. Let ϕ:M→R[[M]] be a map such that each well-based
subset S of M is mapped into a well-based family (ϕ(m))m∈S. Then there exists a unique
strongly linear extension Φ: R[[M]] → R[[M]] of ϕ. If ϕ: M → R[[M]]com is computable,
then we may compute the restriction of Φ to R[[M]]app by

Φ(f̌)n=
∑

p+q=n

∑

m∈supp f̌p

f̌p,mϕ(m)q.

Differentiation. The derivative of an approximable transseries in R[[M]]app is computed
using extension by strong linearity. The derivative of a transmonomial is computed recur-
sively: (loglx)′= 1/(x� logl−1 x) and (exp f)′= f ′ (exp f).

Composition. Right composition with a fixed g ∈ R[[M]]app,≻,> is done similarly. For
arbitrary transseries in R[[M]]app, we use extension by strong linearity. Transmonomials
are handled recursively: (loglx) ◦ g= logl g and (exp f) ◦ g= exp (f ◦ g).

It can be shown [vdH06c, vdH97] that the derivation w.r.t. x admits a unique strongly
linear right inverse

∫

with the “distinguished property” that (
∫

f)≍ = 0 for all f . One
way to construct

∫

is to first compute its “trace” T = T∫ : R[[M]] → R[[M]] which is the
unique strongly linear operator with Tf = τ∫ f on RM. We then compute

∫

f by solving
the implicit equation

∫

f =Tf +
∫

(f − (Tf)′). (10)

One may either apply (10) for monomials and extend by strong linearity, or apply it directly
for arbitrary transseries f .

Trace of the distinguished integration. The trace Tm=T∫ m of a transmonomial is
computed using the formula

Tm =







m2

τm ′

if logm< x

[T ((xm) ◦ exp)] ◦ log otherwise

We next extend by strong linearity.

Distinguished integration. We may rewrite (10) in operator form
∫

=T (1 + (1− ∂ T)+ (1− ∂ T)2 +�)

8 Meta-expansion of transseries

and define an expander for this operator:

∫

(̌z)=
∑

n=0

∞

T (1− ∂ T)n zn.

Then distinguished integration can be regarded as the application of this operator expander
to another expander f̌ :

(
∫

f)(z) =
∫

(̌z) f̌ (z) =
∑

n=0

∞
∑

k=0

∞
∫ˇ
n
f̌k z

n+k.

We also notice that
∫

is a fixed-point of the operator
∫ 	 T +

∫

(1− ∂T).

Adapting our general mechanism for the computation of fixed points for operators instead
of series, we find z

∫

(̌z) as the natural expander of
∫

.

Functional inversion of transseries can be done using formulas in [vdH06c, Section 5.4]
and we will not detail this operation here. Two other interesting operations are finite

differences and discrete summation:

∆f = f ◦ (x+1)− f

Σf = ∆−1 f.

We implemented these operations because they are critically needed in an algorithm for
the asymptotic extrapolation of sequences [vdH06a]. Modulo compositions with exp and
log, they are related to finite quotients and discrete products:

Q f =
f ◦ (x+1)

f
= exp∆ log f

Πf = expΣ log f.

Our algorithm for right-composition clearly yields a way to compute ∆f for f ∈R[[M]]app.
The distinguished summation Σ is the unique distinguished strongly linear right-inverse
of ∆, i.e. ∆Σf= f and (Σf)≍=0 for all f . It therefore suffices to show how to compute Σm

for monomials m∈M. Three different cases need to be distinguished :

Flat discrete summation. Assuming m� ex (i.e. logm≺x), we compute Σm by solving
the equation

∆f =(e∂− 1)f =

(

∂+
1
2
∂2 +

1
6
∂3 +�)f =m,

which yields a solution

f =
∫

m+
1 + ∂ − e∂

∂ (e∂− 1)
m=

∫

m +

(

−
1
2

+
1
12
∂ −

1
720

∂3 +
1

30240
∂5 +�)m.

The application of the operator

Φ(∂)=
1 + ∂ − e∂

∂ (e∂− 1)

to m is computed in a similar way as in the case of distinguished integration. In fact,
the expander Φ̌(z) = Φ(z ∂) can directly be applied to expanders f̌ with m � ex for all
m∈ supp f . Moreover, this application preserves grid-basedness.

Moderate discrete summation. In the case when m ≍ ex (i.e. log m ≍ x), let c ∈ R

be such that m = n ecx with n� ex. We now search for a solution to ∆f = m of the form
f = g ecx, which leads to the equation

ec g ◦ (x+ 1)− g= n, (11)

Joris van der Hoeven 9

We rewrite this equation in operator form

(ec e∂− 1)(g) =

(

ec− 1 + ec ∂+
ec

2
∂2 +�)= n

and we invert the operator ec e∂ − 1 as in the flat case. No integration is needed this
time, since ec − 1 � 0. Again, the grid-based property is preserved by moderate discrete
summation.

Steep discrete summation. In the case when m" ex (i.e. logm≻x), we have to solve
the equation

f ◦ (x+ 1)− f =m.

If m≺ 1, then this is done by computing a fixed point for the operator

f	 −m+ f ◦ (x+1).

If m≻ 1, then we compute a fixed point for the operator

f	 m ◦ (x− 1)+ f ◦ (x− 1).

It can be shown that Σf is grid-based if f is grid-based and there exists a k such that
m� ex

k

for all m∈ supp f .

6. Meta-operations on expanders

So far, we have not really exploited the extra level of abstraction provided by expanders.
In this section, we will describe several “meta-operations” on expanders. These operations
do not affect the series being represented, but rather concern qualitative aspects of the
approximation process: they guide the rate of convergence, the terms which appear first,
etc. Based on the process of “stabilization”, we will also describe a heuristic zero-test and
a heuristic method for the computation of dominant terms.

Shortening. In the algorithm for left composition with formal power series, we have
already observed that the expanders f̌ (z) and z f̌ (z) represent the same series. More
generally, given a computable function φ: N → N with n − φ(n) → ∞, we define the
shortening operator shφ by

(shφ f̌);n=

{

0 if n< φ(n)

f̌;n−φ(n) otherwise

In the case when φ(n) = k ∈N is a constant function, we have

(shk f̌)(z) = zk f̌ (z).

The shortening operator is typically used for the expansion of expressions which involve
an expander f̌ , such that the expression size of f̌;n tends to grow very rapidly with n.
For instance, we may prefer to compute a sum f + g using the expander shφ f̌ + ǧ instead
of f̌ + ǧ .

Lengthening. Given a computable function φ: N→ N, the lengthening operator leφ is
defined by

(leφ f̌);n= f̌;n+φ(n).

In the case when φ(n) = k ∈N is a constant function, we have

(lek f̌)(z)=
f̌ (z)− f̌k−1 z

k−1−� − f̌0

zk
.

10 Meta-expansion of transseries

During the expansion of an expression, the lengthening operator may for instance be used
in order to boost the precision of a subexpression. We may also use it as a substitute for
the order parameter of a typical expansion command. E.g., we would simply display le100 f
in order to show an additional 100 terms of f .

Stabilization. An even more interesting meta-operation is stabilization. Given a com-
putable function φ:N→N, we define it by

(stabφ f);n = f̌Sf̌ ,φ,n
=

∑

m∈Sf̌ ,φ,n

f̌;n,mm

Sf̌ ,φ,n = {m∈ supp f̌;n: f̌;n,m= f̌;n+1,m=� = f̌;n+φ(n),m}.

The stabilization operator removes all terms from the expansion f̌;n which are still subject
to changes during the next φ(n) approximations. Even for small values of k ∈ N, such
as k= 3, we usually have

(stabk f̌);0⊑ (stabk f̌);1⊑ (stabk f̌);2⊑� , (12)

where

ϕ⊑ ψ � (ψ− ϕ)suppϕ= 0.

In particular, the successive approximations (stabk f̌);n usually only contain terms which
occur in the final result f .

Example 4. Let us reconsider the function f from example 2. When approximating f

using ǧ = stab3 f̌ instead of f̌ , we get:

ǧ0 = 0

ǧ1 =
log(x)
x ex

+
1
x ex

ǧk = f̌k (k= 2, 3, 4, 5)

Example 5. An example for which (12) is not satisfied for any finite k∈N is the expander

f̌ (z) =
1

1−
z

x2

−
1

1−
z2

x2

,

which arises during the computation of

f =
1

1−
1

x x

−
1

1+
1

x

1

1−
1

x

.

Indeed, the first terms of f̌ are given by

f̌0 = 0

f̌1 = x−2

f̌2 = x−4

f̌3 = x−4 +x−6

f̌4 = x−6 +x−8

f̌5 = x−6 +x−8 +x−10

In this kind of situations, it may be necessary to consider more powerful stabilizations of
the form stabn�αn+β.

Joris van der Hoeven 11

Dominant terms. In the case when (12) holds, we have

τf = τ(stabk f̌);n
(13)

for a sufficiently large value of n. When taking k and n fixed, the formula (13) also
provides us with a reasonable heuristic for the computation of τf (which implies a zero-
test for f). Of course, the values k and n should not be taken too small, so as to provide
sufficient robustness. On the other hand, large values of k and n may lead to unacceptable
computation times. Our current compromise k=n=3 has worked for all practical examples
we have tried so far.

Remark 6. Our claim that relatively small values of k and n provide sufficient robustness
may seem very surprising at first sight and is indeed the remarkable feature which make
meta-expansions so useful in our opinion. The intuitive justification lies in the fact that
we expand in a really massive way all our operations and all our parameters. On the
one hand, canceling terms usually change after every step before they vanish, and are
thereby “stabilized out”. On the other hand, deeper combinations of parameters which
lead to a genuine non-canceling contribution can usually be detected after a few steps. In
particular, small power series expressions with large valuations [vdH06b] tend to be less
harmful in our context.

Remark 7. Let E be the class of expanders which are obtained by applying our expansion
algorithms to exp-log expressions. From a theoretical point of view, it might be interesting
to investigate the existence of a simple computable function φ:N→N such that, for any
f̌ ∈E , there exists a k with

(stabφ f̌);k⊑ (stabφ f̌);k+1⊑ (stabφ f̌);k+2⊑� .
Generalizing example 5, we see that we must take φ(n)≻n. Would φ(n)=n2 be sufficient?

Printing. Another application of the stabilization operator is printing. The default
printing method of an expander f̌ might for instance be to print (stabk f̌)n for suitable
values of n and k (e.g. n=5 and k=3). This method can be further improved as follows:
first compute ϕ=(stabk+1 f̌)n and ψ=(stabk f̌)n+1 with ϕ⊑ψ. When considering the suc-
cessive terms of ψ in decreasing order for <, we may decompose the expansion ψ in blocks

ψ= ψ1 + ψ1 + ψ2 + ψ2 +� + ψp+ ψp, (14)

with ψi⊑ ϕ, ψi⊑ ψ−ϕ, ψ2� 0,� , ψp� 0 and ψ1� 0,� , ψp−1� 0. In (14), we now replace
each non-zero ψi by the expression O(dψi), and print the result. For instance, if

ϕ = 1 +
1
x

+
1
x2 +

1
ex

+
1
x ex

+
1

e2x

ψ = 1 +
1
x

+
1

x2
+

1

x3
+

1

x4
+

1
ex

+
1
x ex

+
1

x2 e2x
+

1

e2x
+

1

x e2x
+

1

e3x
,

then we print

1 +
1
x

+
1
x2 +O

(

1
x3

)

+
1
ex

+
1
x ex

+O

(

1
x2 e2x

)

+
1

e2x +O

(

1
x e2x

)

.

An interesting feature of this way of printing is that it allows us to see some of the remaining
terms after the first ω leading terms. In certain cases, such as

1−x−100

1− x−1
= 1+

1
x

+
1

x2
+O

(

1

x3

)

+
1

x100
+

1

x101
+O

(

1

x102

)

,

12 Meta-expansion of transseries

one might prefer to suppress some of these extra terms. One criterion for suppression
could be the following: given the last term τ1 of some ψi and any term τ2 of ψi, suppress
all terms τ3≺ τ2 with τ3≻ τ1 (τ2/τ1)

k for some k ∈R.

Dominant bias. If you are mainly interested in the first ω terms of an expansion, then
you may want to give early terms a higher priority during the computations. Given an
expander f̌ , let f̌n,k denote the k-th term in the polynomial f̌n (in decreasing order for <).
If k is larger than the number of terms of f̌n, then we set f̌n,k=0. Now for each computable
increasing function φ:N2→N, we define

(biasφ f̌)l=
∑

φ(n,k)=l

f̌n,k.

In the case when φ(n, k), then we have

(biasφ f̌)(z) = f̃ (z, z)

f̃ (u, z) =
∑

k,n

f̌n,ku
k zn.

We call biasφ a dominant bias operator. We may typically apply it on auxiliary series f̌ with
a sharp increase of the number of terms of f̌n with n. More generally, it is possible to define
operators which favour terms at the tail, in the middle, or close to a specified monomial.
However, these generalization do not seem to have any practical applications, at first sight.

7. Expansion gallery

Most of the algorithms described in this paper have been implemented inside the Math-

emagix system [vdH02b]. Below, we illustrate the implementation with a sample session.

7.1. Exp-log functions

Mmx] use "numerix"; use "algebramix"; use "multimix"; use "symbolix";

Mmx] x == infinity (’x);

Mmx] 1 / (x + 1)

1
x
−

1

x2
+

1

x3
−

1

x4
+O

(

1

x5

)

Mmx] 1 / (x + log x + log log x)

1
x
−

log(x)
x2

−
log(log(x))

x2
+

log(x)2

x3
+

2 log(x) log(log(x))
x3

+
log(log(x))

2

x3
−

log(x)3

x4
−

3 log(x)
2 log(log(x))
x4

−
3 log(x) log(log(x))

2

x4
−

log(log(x))
3

x4
+O

(

log(x)4

x5

)

Mmx] 1 / (1 + 1/x + 1/exp x)

1−
1
x

+
1

x2
−

1

x3
+O

(

1

x4

)

−
1
ex

+
2
x ex

−
3

x2 ex
+O

(

1

x3 ex

)

+
1

e2x
−

3

x e2x
+O

(

1

x2 e2x

)

−

1

e3x
+O

(

1

x e3x

)

Mmx] 1 / (1 + 1/x + 1/exp x) - 1 / (1 + 1/x)

Joris van der Hoeven 13

− 1
ex

+
2
x ex

−
3

x2 ex
+O

(

1

x3 ex

)

+
1

e2x
−

3

x e2x
+O

(

1

x2 e2x

)

−
1

e3x
+O

(

1

x e3x

)

Mmx] exp (x + exp (-exp x)) - exp (x)

1

eex
−x

+
1

2 e2ex
−x

+
1

6 e3ex
−x

+O

(

1

e4ex
−x

)

Mmx] exp (exp (x) / (x + 1))

e
ex

x
−

ex

x2
+

ex

x3
−

ex

x4
+O

(

ex

x5

)

7.2. Calculus

Mmx] derive (exp (exp (x) / (x + 1)), x)

e
ex

x
−

ex

x2
+

ex

x3
−

ex

x4
+O

(

ex

x5

)

+x

x
−

2 e
ex

x
−

ex

x2
+

ex

x3
−

ex

x4
+O

(

ex

x5

)

+x

x2 +
3 e

ex

x
−

ex

x2
+

ex

x3
−

ex

x4
+O

(

ex

x5

)

+x

x3 −

4 e
ex

x
−

ex

x2
+

ex

x3
−

ex

x4
+O

(

ex

x5

)

+x

x4
+O




e

ex

x
−

ex

x2
+

ex

x3
−

ex

x4
+O

(

ex

x5

)

+x

x5





Mmx] integrate (exp (x^2), x)

ex
2

2x
+

ex
2

4x3 +
3 ex

2

8x5 +
15 ex

2

16x7 +O

(

ex
2

x9

)

Mmx] integrate (x^x, x)

exlog(x)

log(x)
−

exlog(x)

log(x)2
+

exlog(x)

log(x)3
−

exlog(x)

log(x)4
+O

(

exlog(x)

log(x)5

)

+
exlog(x)

x log(x)3
−

3 exlog(x)

x log(x)4
+

6 exlog(x)

x log(x)5
+O

(

exlog(x)

x log(x)6

)

+
exlog(x)

x2 log(x)4
−

exlog(x)

x2 log(x)5
+O

(

exlog(x)

x2 log(x)6

)

+
2 exlog(x)

x3 log(x)5
+

O

(

exlog(x)

x4 log(x)6

)

Mmx] sum (x^4, x)

x5

5
−
x4

2
+
x3

3
−
x

30

Mmx] product (x, x)

e
xlog(x)−x−

log(x)

2 +
e
xlog(x)−x−

log(x)

2

12x
+O

(

e
xlog(x)−x−

log(x)

2

x2

)

Mmx] lengthen (product (x, x), 8)

e
xlog(x)−x−

log(x)

2 +
e
xlog(x)−x−

log(x)

2

12x
+

e
xlog(x)−x−

log(x)

2

288x2 −
139 e

xlog(x)−x−
log(x)

2

51840x3 −

571 e
xlog(x)−x−

log(x)

2

2488320x4 +
163879 e

xlog(x)−x−
log(x)

2

209018880x5 +O

(

e
xlog(x)−x−

log(x)

2

x6

)

Mmx] product (log x, x)

14 Meta-expansion of transseries

e
xlog(log(x))−

x

log(x)
−

x

log(x)2
−

2x

log(x)3
+O

(

x

log(x)4

)

−
log(log(x))

2
+

e
xlog(log(x))−

x

log(x)
−

x

log(x)2
−

2x

log(x)3
+O

(

x

log(x)4

)

−
log(log(x))

2

12x log(x)
+

O







e
xlog(log(x))−

x

log(x)
−

x

log(x)2
−

2x

log(x)3
+O

(

x

log(x)4

)

−
log(log(x))

2

x2 log(x)2







7.3. Functional equations

Mmx] fixed_point (f :-> log x + f @ (log x))

log(x)+ log(log(x)) + log(log(log(x)))+ log(log(log(log(x)))) +
O(log(log(log(log(log(x))))))

Mmx] la == derive (fixed_point (f :-> log x + f @ (log x)), x)

1
x

+
1

x log(x)
+

1
x log(x) log(log(x))

+
1

x log(x) log(log(x)) log(log(log(x)))
+

O

(

1
x log(x) log(log(x)) log(log(log(x))) log(log(log(log(x))))

)

Mmx] mu == la * la + 2 * derive (la, x)

− 1

x2
−

1

x2 log(x)2
+O

(

1

x2 log(x)2 log(log(x))2

)

Mmx] fixed_point (f :-> 1/x + f @ (x^2) + f @ (x^x))

1
x

+
1
x2

+
1
x4

+
1
x8

+O

(

1
x16

)

+
1

exlog(x)
+

1

e2xlog(x)
+

1

e4xlog(x)
+O

(

1

e8xlog(x)

)

+

1

e2x2log(x)
+

1

e4x2log(x)
+O

(

1

e8x2log(x)

)

+
1

e4x4log(x)
+O

(

1

e8x4log(x)

)

+
1

exlog(x)e
xlog(x)

+

1

e2xlog(x)exlog(x)
+O

(

1

e4xlog(x)exlog(x)

)

+
1

e2xlog(x)e2xlog(x)
+O

(

1

e4xlog(x)e2xlog(x)

)

+

1

e2x2log(x)e2x2log(x)
+O

(

1

e4x2log(x)e2x2log(x)

)

+
1

exlog(x)e
xlog(x)e

xlog(x)+xlog(x)
+

O

(

1

e2xlog(x)exlog(x)e
xlog(x)+xlog(x)

)

8. Towards more robustness

Even though the expansion algorithms developed so far are usually sufficient for applica-
tions, they lack robustness in several ways. First of all, we have used heuristic algorithms
for zero-testing and the computation of dominant terms. Some of our algorithms crucially
depend on the correctness of these heuristic algorithms. For instance, our algorithm for the
computation of an inverse f = g−1 yields an erroneous result if τg is computed incorrectly.
Finally, expanders (f̌n) only asymptotically tend to f . Even if we know that a given
monomial m ∈ M is in the support of f , we do not know how large n should be in order
to guarantee that fm= f̌;n,m. In this section, we describe a few ideas which may be used
to increase the robustness of our algorithms.

Joris van der Hoeven 15

Auto-correction. The strategy of auto-correction can be used to reduce the impact
of incorrect answers of heuristic algorithms. For instance, in order to invert a series g,
we started with the computation of τg. Instead, we might imagine that the expander of
f = g−1 is allowed to adjust its initial value of τg at later stages of the approximation.
More precisely, for n∈N and a suitable φ, let τn be the dominant term of (stabφ g);n and
consider the expander

ϕ̌n=







τn
−1 1

1+ z (τn
−1 g− 1)

if τn� 0

0 otherwise

Then we may define a new expander f̌ by taking the diagonal

f̌;n= ϕ̌n;n.

In order to have f = g−1, it now suffices to have τn = τf (n> n0), instead of τ0 = τf. Of
course, in nasty cases, it might still happen that τn � τf for all n. In other words, the
strategy of auto-correction produces no miracles and does not substitute for a genuine
zero-test. Even in the case when the stabilization operator stabφ is sufficiently powerful
to guarantee f = g−1 for a certain class of expanders, one should keep in mind that the
result only becomes correct at the limit; we still don’t know how many terms need to be
computed.

From a practical point, the strategy of auto-correction is easy to implement on the
series level from section 3: in our example of inversion, the expander f̌ may simply keep ϕ̌n
in memory for the largest n considered so far and only update its value when τn changes.
Implementations become more involved when considering recursive transseries expansions,
as in section 4. Indeed, in this more general setting, we also need to correct erroneous
outcomes for the asymptotic ordering 4, which recursively relies on the orderings 6 and 4

for expanders of lower exponential height. In order to generalize the idea, one thus has to
define sequences of approximations 4n and 6n for 4 and 6, and systematically work with
the relations 4n and 6n when making decisions for expansions at stage n.

Reduction to zero-testing. In the case when we are interested in expansions of func-
tions inside a given class F , it sometimes happens that F admits a zero-test. For instance,
if F is the class of exp-log functions, then a zero-test can be given whose correctness relies
on Schanuel’s conjecture [vdH98, Ric97].

An interesting question is whether we can use a zero-test in F in order to design a non-
heuristic algorithm for the computation of dominant terms. In order to make this work,
we have to be able to detect infinite cancellations of terms which occur in expressions such
as log(1 + x−1 + e−x)− log(1 + x−1). A general mechanism for doing this is to refine the
mechanism of expanders by indexing over a suitable well-based set.

More precisely, given an abstract well-based set A (i.e. a set A which is well-quasi-
ordered for the opposite ordering of 4), we define a sequence A0, A1, � of finite subsets
of A by Ai=max4A \ (A0∪� ∪Ai−1). In general, the sequence (Aα) is transfinite, but if
we have A =

⋃

n∈N
An, then we say that A is accessible. We say that A is computable, if

for any finite subset F⊆A, we can compute max4{a∈A:∀f∈F, a≺ f}. In particular, this
implies the sequence n� An to be computable.

A well-based expander is a computable well-based family f̌ =(f̌a)a∈A∈C[M]A, indexed
by a computable accessible well-based set A. A well-based expander is the natural refine-
ment of an expander (gn) in the usual sense, by regrouping terms ǧn = f̌An

=
∑

a∈An
f̌a.

We say that f̌ is a termwise well-based expander if each f̌a is of the form f̌a= cama∈RM

and the mapping a� ma is increasing. Notice that f̌ is automatically well-based if a� ma

is increasing.

16 Meta-expansion of transseries

Recall that the initial segment generated by a finite subset F ⊆ A is defined by (F) =
{a ∈ A: ∃f ∈ F, a 4 f}. Now consider a termwise well-based expander (f̌a)a∈A such that
f̌(F) ∈ F for any finite subset F ⊆ A. If the mapping F� f̌(F) is effective, then we call f̌
an expander over F . For the operations we have considered in this paper, it should be
possible to replace the usual notion of expander by expanders of F (assuming that F is
stable under the operation). This was already shown in [vdH94] for the basic operations
from section 3 and still waits to be worked out for the other ones.

Given an expander (f̌a)a∈A over F , the zero-test in F may now be used in order to
compute the set Df=max4 supp f of dominant monomials of f . The algorithm again goes
back to [vdH94]:

1. Let S4 max4 A.

2. Replace S by a minimal subset T with f̌(S) = f̌(T).

3. Let N4 max4{df̌s
: s∈S} and Sn4 {s∈S: df̌s

= n} for each n∈N.

4. If there exists an n∈N with f̌Sn
= 0, then set

S4 max
4

[

(S \Sn)∪max
4

{a∈A: ∃s∈Sn, a≺ s}

]

,

and go to step 2.

5. Return S.

Computable well-based series. Our notion of approximable well-based series is the
natural counterpart of the concept of approximable real numbers: a real number x is said
to be approximable if there exists a computable sequence x̌: N→ Q, which converges to
x. A stronger and more robust notion is the one of computable real numbers: we say that
x∈R is computable, if there exists a computable function x̌:Q>→Q which takes ε∈Q>

on input and produces an approximation x̃ = x̌(ε) ∈Q with |x̃ − x| < ε. It is natural to
search for an analogue notion of computable well-based series.

There are really two aspects to a computable well-based series f . On the one hand,
we should be able to compute its coefficient fm for any monomial m. On the other hand,
its support should be sufficiently effective. In the case of ordinary power series f ∈R[[z]],
the second issue does not really arise, because the support is necessarily included in the
well-based set zN. In general, one might require that f is given by a termwise well-based
expander, which yields quite a lot of information about supp f .

As to the computation of coefficients fm, consider the case of a product f = g h, where
M is totally ordered and g and h are given by g=1+v1 +v2 +� and h=1+w1 +w2 +�
with 1+v1≻v2≻� and 1+w1≻w2≻� . Given m∈M, we hit the problem that we don’t
have any a priori information on the asymptotic behaviour of the vi and the wi. In order to
design an algorithm for the computation of fm, we need more control over this asymptotic
behaviour.

In the grid-based setting, we are really computing with multivariate power series, and
no real difficulties arise. In the well-based setting, things get more involved. When we
restrict our attention to transseries, there are ways to represent and compute with mono-

mial cuts [vdH06c, Chapter 9]. A monomial cut is the analogue of a Dedekind cut for the
set of transmonomials instead of Q. Given a termwise well-based expander (f̌a)a∈A, any
initial segment (F) naturally induces a transseries f̌(F) and a monomial cut, called the width
of f̌(F). For a fully satisfactory definition of computable well-based series, one should be
able to compute these widths. However, we have not investigated this matter in detail yet.

Joris van der Hoeven 17

Bibliography

[DG86] B. I. Dahn and P. Göring. Notes on exponential-logarithmic terms. Fundamenta Mathemat-

icae , 127:45–50, 1986.

[É92] J. Écalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de

Dulac. Hermann, collection: Actualités mathématiques, 1992.

[GG92] G.H. Gonnet and D. Gruntz. Limit computation in computer algebra. Technical Report 187,
ETH, Zürich, 1992.

[Hah07] H. Hahn. Über die nichtarchimedischen Größensysteme. Sitz. Akad. Wiss. Wien , 116:601–
655, 1907.

[Har10] G.H. Hardy. Orders of infinity . Cambridge Univ. Press, 1910.

[Har11] G.H. Hardy. Properties of logarithmico-exponential functions. Proceedings of the London

Mathematical Society , 10(2):54–90, 1911.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc., 2:326–
336, 1952.

[Mil85] E. C. Milner. Basic wqo- and bqo- theory. In Rival, editor, Graphs and orders , pages 487–
502. D. Reidel Publ. Comp., 1985.

[MMvdD97] A. Macintyre, D. Marker, and L. van den Dries. Logarithmic-exponential power series.
Journal of the London Math. Soc., 56(2):417–434, 1997.

[MMvdD99] A. Macintyre, D. Marker, and L. van den Dries. Logarithmic exponential series. Annals
of Pure and Applied Logic, 1999. To appear.

[Pou85] M. Pouzet. Applications of well quasi-ordering and better quasi-ordering. In Rival, editor,
Graphs and orders , pages 503–519. D. Reidel Publ. Comp., 1985.

[PTVF07] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes, the

art of scientific computing . Cambridge University Press, 3rd edition, 2007.

[Ric97] D. Richardson. How to recognise zero. JSC , 24:627–645, 1997.

[Ric07] D. Richardson. Zero tests for constants in simple scientific computation. MCS , 1(1):21–37,
2007.

[RSSvdH96] D. Richardson, B. Salvy, J. Shackell, and J. van der Hoeven. Expansions of exp-log
functions. In Y.N. Lakhsman, editor, Proc. ISSAC ’96 , pages 309–313, Zürich, Switzerland, July
1996.

[Sal91] B. Salvy. Asymptotique automatique et fonctions génératrices . PhD thesis, École Polytech-
nique, France, 1991.

[Sch01] M.C. Schmeling. Corps de transséries . PhD thesis, Université Paris-VII, 2001.

[Sha90] J. Shackell. Growth estimates for exp-log functions. Journal of Symbolic Computation ,
10:611–632, 1990.

[Sha93] J. Shackell. Inverses of Hardy L-functions. Bull. of the London Math. Soc., 25:150–156, 1993.

[vdH94] J. van der Hoeven. Outils effectifs en asymptotique et applications. Technical Report
LIX/RR/94/09, LIX, École polytechnique, France, 1994.

[vdH97] J. van der Hoeven. Automatic asymptotics . PhD thesis, École polytechnique, Palaiseau,
France, 1997.

[vdH98] J. van der Hoeven. Generic asymptotic expansions. AAECC , 9(1):25–44, 1998.

[vdH01] J. van der Hoeven. Operators on generalized power series. Journal of the Univ. of Illinois ,
45(4):1161–1190, 2001.

[vdH02a] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[vdH02b] J. van der Hoeven et al. Mathemagix, 2002. http://www.mathemagix.org.

[vdH06a] J. van der Hoeven. Algorithms for asymptotic interpolation. Technical Report 2006-12,
Univ. Paris-Sud, 2006. Submitted to JSC.

[vdH06b] J. van der Hoeven. Counterexamples to witness conjectures. JSC , 41:959–963, 2006.

18 Meta-expansion of transseries

[vdH06c] J. van der Hoeven. Transseries and real differential algebra , volume 1888 of Lecture Notes

in Mathematics . Springer-Verlag, 2006.

[vdH07] J. van der Hoeven. On effective analytic continuation. MCS , 1(1):111–175, 2007.

[vdHS06] J. van der Hoeven and J.R. Shackell. Complexity bounds for zero-test algorithms. JSC ,
41:1004–1020, 2006.

Joris van der Hoeven 19

