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The technique of relaxed power series expansion provides an efficient way to solve so
called recursive equations of the form F =Φ(F ), where the unknown F is a vector of
power series, and where the solution can be obtained as the limit of the sequence 0,
Φ(0), Φ(Φ(0)), 	 . With respect to other techniques, such as Newton’s method, two
major advantages are its generality and the fact that it takes advantage of possible
sparseness of Φ. In this paper, we consider more general implicit equations of the form
Φ(F )=0. Under mild assumptions on such an equation, we will show that it can be
rewritten as a recursive equation. If we are actually computing with analytic func-
tions, then recursive equations also provide a systematic device for the computation
of verified error bounds. We will show how to apply our results in this context.
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1. Introduction

Let K be an effective field of constants of characteristic zero. This means that elements
in K can be encoded by data structures on a computer and that we have algorithms for
performing the field operations of K.

Let F =(F [1],	 , F [r]) be a column vector of r indeterminate series in K[[z]]. We may

also consider F as a power series F0+F1z+
 ∈Kr[[z]]. Let Φ(F )=(Φ(F )[1],	 ,Φ(F )[r]) be
a column vector of expressions built up from F , z and constants in K using ring operations,
differentiation and integration (with constant term zero). Finally, let C0,	 , Cl−1∈Kr be
a finite number of initial conditions. Assume that the system















Φ(f) = 0
f0 = C0�

fl−1 = Cl−1

(1)

admits a unique solution f ∈ K[[z]]r. In this paper, we are interested in the efficient
computation of this solution up to a given order n.

In the most favourable case, the equation Φ(f)= 0 is of the form

f −Ψ(f) = 0, (2)
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where the coefficient Ψ(f)n of zn in Ψ(f) only depends on earlier coefficients f0,	 , fn−1

of f , for each n∈N. In that case,

fn = Ψ(f)n

actually provides us with a recurrence relation for the computation of the solution. Using
the technique of relaxed power series expansions [vdH02, vdH07a], which will briefly be
recalled in section 2.4, it is then possible to compute the expansion f;n= f0+
 + fn−1z

n−1

up till order n in time

T(n) = sR(n)+O(t n), (3)

where s is the number of multiplications occurring in Ψ, t is the total size of Ψ as an
expression, and R(n) denotes the complexity of relaxed multiplication of two power series
up till order n. Here we assume that Ψ is represented by a directed acyclic graph, with
possible common subexpressions. For large n, we have R(n) = O(M(n) log n), where
M(n) = O(n log n log log n) denotes the complexity [CT65, SS71, CK91] of multiplying
two polynomials of degrees < n. If K admits sufficiently many 2p-th roots of unity, then

we even have R(n) = O(M(n) e2 log2log logn
√

) and M(n) = O(n log n). For moderate n,
when polynomial multiplication is done naively or using Karatsuba’s method, relaxed
multiplication is as efficient as the truncated multiplication of polynomials at order n.

One particularly important example of an equation of the above type is the integration
of a dynamical system

f = f0+
∫

Ψ(f), (4)

where Ψ is algebraic (i.e. does not involve differentiation or integration). In that case, given
the solution f up till order n, we may consider the linearized system

E ′ = Ψ(f)+ JΨ(f)E+O(z2n)

up till order 2n, where JΨ(f) stands for the Jacobian matrix associated to Ψ at f . If we
have a fundamental system of solutions of E ′= JΨ(f)E up till order n, then one step of
Newton’s method allows us to find the solution of (4) and a new fundamental system of
solutions of the linearized equation up till order 2n [BK78, BCO+06]. A careful analysis
shows that this leads to an algorithm of time complexity

T(n) = M(n) (2 s r+2 s+ 13/6 r2+4/3 r+ o(1))+O(t r n). (5)

In [vdH10], this bound has been further improved to

T(n) = M(n) (2 s+4/3 r+ o(1))+O(t n), (6)

under the assumptions that K admits sufficiently many 2p-th roots of unity and that
r=O(logn).

Although the complexity (5) is asymptotically better than (3) for very large n, the
relaxed approach often turns out to be more efficient in practice. Indeed, Newton’s method
both suffers from a larger constant factor and the fact that we profit less from the potential
sparsity of the system. In particular, if r > log n, then the relaxed approach is generally
faster. Moreover, as long as multiplications are done in the naive or Karatsuba model,
the relaxed approach is optimal in the sense that the computation of the solution takes
roughly the same time as its verification. Another advantage of the relaxed approach is
that it generalizes to more general functional equations and partial differential equations.
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Let us now return to our original implicit system (1). If Φ is a system of differentially
algebraic equations, then we may also seek to apply Newton’s method. For non degenerate
systems and assuming that we have computed the solution f and a fundamental system
of solutions for the linearized equation up till order n, one step of Newton’s method yields
an extension of the solutions up till order 2 n − i, for a fixed constant i ∈ N. From an
asymptotic point of view, this means that the complexities (5) and (6) remain valid, modulo
multiplication of r by the differential order of the system in these bounds.

Another approach for the resolution of (1) is to keep differentiating the system with
respect to f until it becomes equivalent to a system of the form (2). For instance, if Φ is
algebraic, then differentiation of (1) yields

JΦ(f) f
′+

∂Φ
∂z

(f) = 0.

Consequently, if JΦ(f)0 is invertible, then

f = f0−
∫

JΦ(f)
−1 ∂Φ

∂z
(f)

provides us with an equivalent system which can be solved by one of the previous methods.
Unfortunately, this method requires the computation of the Jacobian, so we do not longer
exploit the potential sparsity of the original system.

Yet another recent approach [vdH09b] is to consider not yet computed coefficients of f
as formal unknowns, and solve the system of equations Φ(f)0=
 =Φ(f)n=0 for increasing
values of n. For large n, the system Φ(f)0 = 
 = Φ(f)n = 0 usually reduces to a linear
system of equations. In particular, the coefficients of series with unknown coefficients are
not polynomials but merely linear combinations. Using the so called “substitution product”,
the multiplication of series with unknown coefficients can be done while taking advantage
of this linearity.

In this paper, we will present a variant of the approach of [vdH09b]. Roughly speaking,
we reconsider the series with unknown coefficients as vectors of partially unknown series.
Technically speaking, this is done via the concept of anticipators, which will be introduced
in section 3. Using this technique, and under mild assumptions, we show in section 4.1 how
to rewrite the original system of equations into a new system which is both recursive and
not much larger in size. We may then apply a standard relaxed algorithm for its resolution.
This leads to slightly sharper complexity bounds than those from [vdH09b], which will be
presented in section 4.2.

The main interest of the new technique though is the fact that it allows for the
direct resolution of implicit equations by existing software for recursive equations. More-
over, recursive equations naturally occur in the area of reliable computing [Moo66, AH83,
Neu90, MKC09, Rum10]. In this setting, our power series are replaced by so called Taylor
models [MB96, MB04], which systematically require certified bounds for the remainders
on polydisks. In section 5, we will show how our results apply in this case. In partic-
ular, the new algorithms are an asymptotically efficient device for the certified resolution
of implicit equations and integration of dynamical systems on implicitly defined varieties.

Remark 1. Just before prepublication of this paper, it turned out that Berthomieu and
Lebreton independently discovered the technique of section 3 in the index one case and
in the setting of p-adic numbers instead of power series [BL11]. They also implemented
their ideas in the Mathemagix system and their first timings are very encouraging.
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2. Preliminaries

2.1. Dags

Assume that we have fixed a set Ω of function symbols, together with an arity nω for
each ω ∈ Ω. Then a dag over Ω is a rooted finite directed acyclic Ω-labeled graph, such
that each ω-labeled node has nω successors, together with an ordering on the successors.
For instance,

×

+

x y

is a typical dag for the expression (x + y)2, with Ω = {x, y, +, ×}, nx = ny = 0 and
n+=n×=2. We will denote by tΦ the number of nodes of a dag Φ (also called its size) and
by sΦ its number of multiplications (also called its multiplicative size). For our example
dag Φ, we thus have tΦ=4 and sΦ=1. We will denote by DΩ the set of dags over Ω.

More generally, we may consider multivariate dags with an arbitrary number of roots,
which again come with ordering. For instance,

+ +

x y 2

× +

× ×

is a bivariate dag which represents a vector of two expressions (x+ y)2 ((x+ y)+ (y+2))
and ((x+ y)+(y+2))2. We will denote by dΦ the number of roots of a multivariate dag Φ,
which we will also call its dimension. We will write Φ=(Φ[1],	 ,Φ[dΦ]), where Φ[i] stands for
the subdag whose root is the i-th root of Φ. We will denote by DΩ

d the set of multivariate
dags over Ω of dimension d and DΩ

∗ =DΩ
1 ∪DΩ

2 ∪
 .

2.2. Dags as operators on power series

Consider a linear operator ω:K[[z]]→K[[z]]. We say that ω is a coefficientwise operator,
if there exist fixed constants ω0, ω1, ω2,	 ∈K such that

ω(f0+ f1 z+ f2 z
2+
 ) = ω0 f0+ω1 f1 z+ω2 f2 z

2+
 ,

for all f =
∑

i
fi z

i∈K[[z]]. For every c∈K, the operator ×c defined by

×c(f) = c f

is an example of a coefficientwise operator. The truncation operators ⊤i: f � f ⌊i⌋, which
are defined by

f⌊i⌋ = fi z
i+ fi+1 z

i+1+

constitute another family of examples. We will denote by ×K and ⊤N the sets of all
operators of the form×c with c∈K resp.⊤i with i∈N. Finally, we define the coefficientwise
operators δ= z /∂ ∂z and δ−1 by

δ(f0+ f1 z+ f2 z
2+
 ) = f1 z+2 f2 z

2+

δ−1(f0+ f1 z+ f2 z

2+
 ) = f1 z+
1

2
f2 z

2+
 ,
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and we notice that δ−1 is the inverse of δ on zK[[z]].
Let F = (F [1], 	 , F [r]) be r “indeterminate series” in K[[z]]. We will sometimes con-

sider F as a series with formal coefficients

F = F0+F1 z
1+
 ,

Fn = (Fn
[1]
,	 , Fn

[r]
).

Let Λ be a set of coefficientwise linear operators. In what follows, we will take

ΩF ,Λ = K[z]∪
{

F [1],	 , F [r],+,−,×
}

∪×K∪⊤N∪Λ

and denote by DF ,Λ the set of dags over ΩF ,Λ. Similarly, we set DF ,Λ
d = DΩF ,Λ

d and
DF ,Λ

∗ = DΩF ,Λ

∗ . Dags in DF ,∅
∗ , DF ,{δ}

∗ and DF ,{δ−1}
∗ will respectively be called algebraic,

differential and integral . Notice that polynomials in K[z] are regarded as dags of size 1,
independently of their degree; this is motivated by the fact that coefficient extraction is
trivial for explicit polynomials.

Clearly, any dag Φ∈DF ,Λ
d can be considered as a function K[[z]]r→K[[z]]d; f� Φ(f).

Given a small symbolic perturbation E =
(

E[1], 	 , E[r]
)

∈ zn K[[z]]r, we may expand
Φ(F +E) as a Taylor series in E

Φ(F +E) = Φ(F )+ (DΦ)(F )(E)+
1

2
(D2Φ)(F )(E)+


and truncation at order 2n yields

Φ(F +E) = Φ(F )+ (DΦ)(F )(E)+O(z2n).

We claim that (DΦ)(F )(E) can be regarded as a dag in D(F ,E),Λ. For instance, if

Φ(F ) = F δF + z δ−1 (F δ−1F ),

then

(DΦ)(F )(E) = EδF +F δE+ z δ−1(Eδ−1F +F δ−1E).

In general, the claim is easily shown by induction over tΦ.

2.3. Dags as series

We claim that any dag Φ∈DF ,Λ
d can be regarded as a series in z

Φ = Φ0+Φ1 z+
 ,

such that each coefficient Φn is a dag over

ΩF ,Λ;n = K∪{F0
[1]
,	 , F0

[r]
,	 	 , Fn

[1]
,	 , Fn

[r]
,+,−,×}∪×K∪Λ.

Indeed, by induction over the size of Φ, we first define the valuation vΦ of Φ by

vP = valP (P ∈K[z])

v
F [i] = 0

vΨ±Ξ = min (vΨ, vΞ)

vΨΞ = vΨ+ vΞ

vω(Ψ) = max (vΨ,max {n:ωn� 0}) (ω ∈×K∪⊤N∪Λ)

v(Φ[1],	 ,Φ[d]) = min (vΦ[1],	 , vΦ[d]) (d> 2)
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We next define the coefficients Φn by another induction over the size of Φ. If n<vΦ, then
we take Φn=0. Otherwise, we take

Pn = Pn (P ∈K[z])

⊤i(Ψ)n = Ψn (i∈N, n> i)

(Ψ±Ξ)n = Ψn±Ξn

(ΨΞ)n = ΨvΨΞn−vΨ+ΨvΨ+1Ξn−vΨ−1+
 +Ψn−vΞΞvΞ

ω(Ψ)n = ωnΨn (ω ∈×K∪Λ)

(Φ[1],	 ,Φ[d])n = (Φn
[1]
,	 ,Φn

[d]
) (d> 2)

As a result of the claim, we emphasize that Φn only depends on the coefficients F0,	 , Fn

up till order zn of F .

Remark 2. The formula for (Ψ Ξ)n can be replaced by any algebraically equivalent
formula, as long as (ΨΞ)n only depends on Ψ0,	 ,Ψn−vΞ and Ξ0,	 ,Ξn−vΨ. Assuming the
concept of relaxed power series, to be introduced below, this means that we compute ΨΞ
using the formula

ΨΞ= [(Ψdiv zvΨ) (Ξdiv zvΞ)] zvΨ+vΞ,

where (Ψdiv zvΨ) (Ξdiv zvΞ) is computed using a relaxed multiplication algorithm.

2.4. Relaxed power series

Let us briefly recall the technique of relaxed power series computations, which is explained
in more detail in [vdH02]. In this computational model, a power series f ∈K[[z]] is regarded
as a stream of coefficients f0, f1, 	 . When performing an operation g=Φ(f1,	 , fk) on
power series it is required that the coefficient gn of the result is output as soon as sufficiently
many coefficients of the inputs are known, so that the computation of gn does not depend
on the further coefficients. For instance, in the case of a multiplication h= f g, we require
that hn is output as soon as f0,	 , fn and g0,	 , gn are known. In particular, we may use
the naive formula hn=

∑

i=0
n

fi gn−i for the computation of hn.
The additional constraint on the time when coefficients should be output admits the

important advantage that the inputs may depend on the output, provided that we add
a small delay. For instance, the exponential g = exp f of a power series f ∈ z K[[z]] may
be computed in a relaxed way using the formula

g =

∫

f ′ g.

Indeed, when using the naive formula for products, the coefficient gn is given by

gn =
1

n
(f1 gn−1+2 f2 gn−2+
 +n fn g0),

and the right-hand side only depends on the previously computed coefficients g0,	 , gn−1.
The main drawback of the relaxed approach is that we cannot directly use fast algo-

rithms on polynomials for computations with power series. For instance, assuming that K
has sufficiently many 2p-th roots of unity and that field operations in K can be done in
time O(1), two polynomials of degrees < n can be multiplied in time M(n) = O(n log n),
using FFT multiplication [CT65]. Given the truncations f;n = f0 + 
 + fn−1 z

n−1 and
g;n= g0+
 + gn−1 z

n−1 at order n of power series f , g∈K[[z]], we may thus compute the
truncated product (f g);n in time M(n) as well. This is much faster than the naive O(n2)
relaxed multiplication algorithm for the computation of (f g);n. However, the formula for
(f g)0 when using FFT multiplication depends on all input coefficients f0, 	 , fn−1 and
g0,	 , gn−1, so the fast algorithm is not relaxed. Fortunately, efficient relaxed multiplication
algorithms do exist:
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Theorem 3. [vdH97, vdH02] Let M(n) be the time complexity for the multiplication of
polynomials of degrees < n in K[z]. Then there exists a relaxed multiplication algorithm
for series in K[[z]] of time complexity R(n)=O(M(n) logn).

Theorem 4. [vdH07a] If K admits a primitive 2p-th root of unity for all p, then there

exists a relaxed multiplication algorithm of time complexity R(n)=O(n logne2 log2log logn
√

).
In practice, the existence of a 2p+1-th root of unity with 2p> n suffices for multiplication
up to order n.

In what follows, we will denote by R(n) the complexity of relaxed multiplication up till
order n. Let us now consider a general equation of the form

f = Φ(f), (7)

where Φ ∈ DF ,Λ
r an r-dimensional dag. We say that (7) is a recursive equation, if each

coefficient Φ(F )n only depends on earlier coefficients F0,	 , Fn−1 of F . That is, Φ(F )n∈
D(F0,	 ,Fn−1),Λ

r for all n. In order to solve (7) up till order n, we then need to perform sΦ

relaxed multiplications at order n and tΦ coefficientwise operations +,− or ω ∈×K∪C at
order n. This yields the following complexity bound:

Proposition 5. Any recursive equation (7) can be solved up till order n in time

T (n) = sΦR(n)+O(tΦn).

3. Anticipators

When solving an implicit equation in f using a relaxed algorithm, the coefficients fn are
computed only gradually. During the resolution process, it might happen that we wish
to evaluate dags at higher orders than the number of known coefficients of f . That is,
given Φ∈DF ,Λ

∗ and i> 1, we might need Φ(f)n+i, even though only f0,	 , fn are known.
In that case, we have a problem, but we may still do the best we can, and compute
Φ(f0+
 + fn z

n)n+i instead of Φ(f)n+i.
This motivates the introduction of the i-th order anticipator Φ〈i〉 of Φ by

Φ〈i〉(F )0;i−1 = 0

Φ〈i〉(F )n+i = Φ(F0;n)n+i,

where

Fi;j = Fi z
i+
 +Fj z

j.

On the one hand, we will show in this section that Φ, 	 , Φ〈i〉 can be computed simul-
taneously by a dag Ψ of multiplicative size sΨ = sΦ and total size tΨ = O(i sΦ). On the
other hand, we will show that Φ〈i〉 is essentially a linear perturbation of Φ, which can be
computed explicitly.

3.1. Computation of Φ〈i〉 as a dag

Let us show how to compute a dag for Φ〈i〉. The following rules are straightforward:

P 〈i〉 = P (P ∈K[z])
(

F [k]
)〈i〉 = 0

(Φ±Ψ)〈i〉 = Φ〈i〉±Ψ〈i〉

ω(Φ)〈i〉 = ω
(

Φ〈i〉) (ω ∈×K∪⊤N∪Λ).
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As to multiplication, for n> i− 1, we have

(ΦΨ)〈i〉(F )n+i =
∑

k=0

n+i

Φ(F0;n)kΨ(F0;n)n+i−k

=
∑

k=i

n

Φ(F0;n)kΨ(F0;n)n+i−k+

∑

k=0

i−1

Φ(F0;n)kΨ(F0;n)n+i−k+Φ(F0;n)n+i−kΨ(F0;n)k

=
∑

k=i

n

Φ(F )kΨ(F )n+i−k+

∑

k=0

i−1

Φ(F )kΨ
〈i−k〉(F )n+i−k+Φ〈i−k〉(F )n+i−kΨ(F )k

=

[

(

Φ⌊i⌋Ψ⌊i⌋)(F )+
∑

k=0

i−1

(Φ(F )kΨ
〈i−k〉(F )+Ψ(F )kΦ

〈i−k〉(F )) zk

]

n+i

Consequently,

(ΦΨ)〈i〉 = PΦ,Ψ
〈i〉

+Φ⌊i⌋Ψ⌊i⌋+
∑

k=0

i−1

(Φ(F )kΨ
〈i−k〉+Ψ(F )kΦ

〈i−k〉) zk, (8)

for some polynomial PΦ,Ψ
〈i〉 ∈K[z] with val PΦ,Ψ

〈i〉
> i and deg PΦ,Ψ

〈i〉
6 2 i − 2 (in particular,

PΦ,Ψ
〈1〉

=0). Notice also that

Φ⌊i−1⌋Ψ⌊i−1⌋ = Φ⌊i⌋Ψ⌊i⌋+ (Φ(F )i−1Ψ
⌊i⌋+Ψ(F )i−1Φ

⌊i⌋) zi−1+

Φ(F )i−1Ψ(F )i−1 z
2i−2. (9)

Now assume that Φ〈0〉,	 ,Φ〈i〉 and Ψ〈0〉,	 ,Ψ〈i〉 are known. Then we may simultaneously
compute (ΦΨ)〈0〉,	 , (ΦΨ)〈i〉 in the following way:

Φ⌊1⌋ = Φ−Φ0�
Φ⌊i⌋ = Φ⌊i−1⌋−Φi−1 z

i−1

Ψ⌊1⌋,	 ,Ψ⌊i⌋ similarly

Φ⌊i⌋Ψ⌊i⌋

Φ⌊i−1⌋Ψ⌊i−1⌋,	 ,Φ⌊0⌋Ψ⌊0⌋ using formula (9)

(ΦΨ)〈1〉,	 , (ΦΨ)〈i〉 using formula (8)

This computation involves one series product and O(i2) additions and scalar multiplica-
tions. For large i, we may further reduce the cost to O(M(i)) since the computation of
(ΦΨ)〈1〉,	 , (ΦΨ)〈i〉 really comes down to the computation of two truncated power series

products Φ(F ) (Ψ〈0〉+Ψ〈1〉 z +
 ) and Ψ(F ) (Φ〈0〉+Φ〈1〉 z +
 ) at order i. In summary,
we obtain

Lemma 6. Given Φ ∈ DF ,Λ
∗ , there exists a simultaneous dag Ψ for Φ〈0〉, 	 , Φ〈i〉 of

multiplicative size sΨ= sΦ and total size tΨ=O(i tΦ+M(i) sΦ).

8 From implicit to recursive equations



3.2. Computation of Φ〈i〉 as a perturbation of Φ

Since Φ(F )n only depends on F0,	 , Fn, we notice that

Φ〈0〉 = Φ.

In general, for n> i and E=Fn+1;n+i, we may expand

Φ(F0;n+E) = Φ(F0;n)+ (DΦ)(F0;n)(E)+O(z2n+2)

= Φ(F0;n)+ (DΦ)(F0;i−1)(E)+O(zn+i+1).

Let e[k] denote the k-th basis element of Kr, so that Fj =Fj
[1]
e[1]+
 +Fj

[r]
e[r] for all j.

When considering F as a column vector, it follows by linearity that

Φ(F )n+i = Φ〈i〉(F )n+i+Φ{i,1}(n)Fn+1+
 +Φ{i,i}(n)Fn+i, (10)

where Φ{i,j} is a row matrix with entries

Φ[k]
{i,j}

(n) = [D(Φ)(F0;i−1)(z
n+j e[k])]n+i.

Notice that Φ{i,j}(n) depends on n, but D(Φ)(F0;i−1) does not.

Let us investigate the functions Φ{i,j}(n) more closely. If Φ is algebraic, then we have

D(Φ)(F0;i−1)(z
n+j e[k]) =

∂Φ

∂F [k]
(F0;i−1) z

n+j ,

whence

Φ[k]
{i,j}

(n) =
∂Φ

∂F [k]
(F0;i−1)i−j. (11)

In particular, Φ{i,j}(n) is actually constant. If Φ is differential, of differential order d (this
means that d is the maximal number of δ-nodes on a path from the root of Φ to a leaf),
then, considering Φ as a differential polynomial in F , δF ,	 , δd)F , we have

D(Φ)(F0;i−1)(z
n+j e[k]) =

∂Φ

∂F [k]
(F0;i−1) z

n+j+
 +
∂Φ

∂ (δdF [k])
(F0;i−1) (δ

d zn+j),

whence

Φ[k]
{i,j}

(n) =
[

∂Φ

∂F [k]
(F0;i−1)

]

i−j
+
 +

[

∂Φ

∂ (δdF [k])
(F0;i−1)

]

i−j

(n+ j)d (12)

is a polynomial of degree at most d. Similarly, if Φ is algebraic in F ,
∫

F ,	 ,
∫

dF, where
∫

= δ−1 z, then

D(Φ)(F0;i−1)(z
n+j e[k]) =

∂Φ

∂F [k]
(F0;i−1) z

n+j+
 +
∂Φ

∂ (
∫

dF [k])
(F0;i−1) (

∫

d zn+j),

whence

Φ[k]
{i,j}

(n) =
[

∂Φ

∂F [k]
(F0;i−1)

]

i−j
+
 +

[

∂Φ

∂ (
∫

dF [k])
(F0;i−1)

]

i−j−d

1

(n+ j)
 (n+ j + d− 1)
. (13)

Consequently, there exists a polynomial Ai,j,k of degree 6d with

Φ[k]
{i,j}

(n) =
Ai,j ,k(n)

(n+ j) (n+ j+1)
 (n+ j+ d− 1)
,

for all n> i.
For more general integral dags Φ, it can be checked by induction over the size of Φ that

Φ[k]
{i,j}

(n) is still a rational function in n, which remains bounded for n→∞, and whose
denominator has integer coefficients. Similarly, if Λ⊆{δ, δ−1}, then Φ[k]

{i,j}
(n) is a rational

function in n, whose denominator has integer coefficients.
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4. Relaxed resolution of implicit equations

Assume now that we want to solve a system of power series equations














Φ(f) = 0
f0 = C0�
fl−1 = Cl−1

(14)

where Φ=(Φ[1],	 ,Φ[r])∈DF ,Λ
r is a vector of dags and C0,	 , Cl−1∈Kr a finite number of

initial conditions. For definiteness, it is also important that (14) admits a unique solution f .
This will be guaranteed by an even stronger technical assumption to be detailed below.

Roughly speaking, for a given index i6
1

2
(l+ 1), we will assume that each coefficient Φn

with n> l can be determined as a function of the previous coefficients Φ0,	 ,Φn−1 using
only the equations Φ(f)0=
 =Φ(f)n+i−1=0.

4.1. Construction of a recursive equation

Let i6 1

2
(l+1). For each n and j ∈{1,	 , i}, we introduce the r× r matrix

Mn
{j}

=









(Φ[1])[1]
{i,j}

(n) 
 (Φ[1])[r]
{i,j}

(n)� �
(Φ[r])[1]

{i,j}
(n) 
 (Φ[r])[r]

{i,j}
(n)









,

the i r× (2 i− 1) r block matrix

Mn =









Mn−i
{1} 
 Mn−i

{i}
 

Mn−1

{1} 
 Mn−1
{i}









, (15)

the (i− 1) r× 1, i r× 1 and (2 i− 1)× r block column vectors

f̌n =







fn−(i−1)�
fn−1





, fn =







fn−(i−1)�
fn





, f̂n =







fn−(i−1)�
fn+i−1





,

and the i r× 1 column vector

gn =







−Φ〈i〉(f)n�
−Φ〈i〉(f)n+i−1





.

In view of (10), the equations Φ(f)n=
 =Φ(f)n+i−1=0 then translate into

Mn f̂n = gn.

We will say that (14) is i-predictive or predictive of index i, if, for all n > l, there exist
r× i r and r× (i− 1) r matrices Pn and Qn, such that

PnMn = ( Qn Idr 0 ).

10 From implicit to recursive equations



In that case, we have

PnMn f̂n = Qn f̌n+ fn

= Pn gn,

whence

fn = Pn gn−Qn f̌n (16)

provides us with an explicit formula for fn. Now let P and Q be the operators on vectors
of power series V with the property that (PV )n = Pn Vn and (QV )n = Qn Vn. Then we
may rewrite (16) into

f = P







−ziΦ〈i〉(f)�
−zΦ〈i〉(f)





z−i−Q







zi f�
z f





 (17)

This is the desired recursive equation for f .

Remark 7. The main sources of unpredictivity are an insufficient number of initial con-
ditions and the existence of multiple solutions. In the latter case, we may usually restore
predictivity by differentiating the equation a finite number of times. It seems unlikely that
there exist equations with a unique solution and which are unpredictive for any number of
initial conditions. However, we do not have a formal proof for this intuition yet.

4.2. Complexity analysis

Let us first consider the case of an algebraic dag Φ. In that case, the matrix M =Mn does
not depend on n and its coefficients are explicitly given by (11). We may now determine
r× i r and r× (i− 1) r matrices P and Q with

PM = ( Q Idr 0 ), (18)

using Gaussian elimination in order, and whenever such matrices exist. The equation (14)
is i-predictive, if and only if this is indeed possible.

Theorem 8. Consider an i-predictive equation (14), such that Φ is algebraic. Then we
may compute n terms of its unique solution f in time

Talg(n) = sΦR(n)+O(M(i) sΦn+ i tΦn)+O(i r2n).

Proof. By what precedes, the operators P and Q in (17) are really the constant matrices
from (18). By lemma 6, the size of the righthand side of (17) as a dag is therefore bounded
by O(M(i) sΦ+ i tΦ+ i r2) and its multiplicative size is exactly sΦ. The result thus follows
from proposition 5. �

Assume now that Λ ⊆ {δ, δ−1}. Then we claim that there exists an algorithms for
checking i-predictivity and constructing a general formula for the corresponding matrices
Pn and Qn. Indeed, we recall from section 3.2 that Mn is the evaluation at N = n of a
matrix M ∗ with entries in K(N ) and denominators in Z[N ]. We may thus use Gaussian
elimination in order to compute r× i r and r× (i− 1) r matrices P ∗ and Q∗ with entries
in K(N ) and

P ∗M ∗ = ( Q∗ Idr 0 ),

Joris van der Hoeven 11



whenever such matrices exist. For those n> l which are not positive integer roots of one
of the denominators of the entries of P ∗, we now have Pn=P ∗(n) and Qn=Q∗(n). For
each of the finite number of integer roots n> l, we may directly compute the matrices Pn

and Qn by Gaussian elimination over K, whenever such matrices exist.

Theorem 9. Consider an i-predictive equation (14) and let d be the maximal degree of an
entry of M∗. Then we may compute n terms of the solution f to (14) in time

T (n) = sΦR(n)+O(M(i) sΦn+ i tΦn)+O((i2 r3+ i r2 d)n).

Proof. The computation of M ∗ (and the finite number of exceptional Mn for which n

is a root of one of the denominators) is a precomputation. The determination of every
next Mn can be done in time O(i2 r2 + i r2 d), via a diagonal translation of Mn−1 and
evaluation of the O(ir2) rational functions which are the entries of the bottom r× (2 i−1)r
submatrix. Now assume that we maintain upper and lower triangular matrices Un, Ln and
a permutation matrix Πn at each stage such that Ln=UnΠnMn. Then the determination
of Un, Ln and Πn as a function of Un−1, Ln−1 and Πn−1 can be done in time O(i2 r3)
using naive linear algebra. The determination of Pn and Qn from Un, Ln and Πn can
again be done in time O(i2 r3). Consequently, the cost of applying the operators P and Q

during the relaxed resolution of (17) at order n is bounded by O((i2 r3 + i r2 d) n). The
cost of the evaluation of the remaining dag is bounded by sΦR(n)+O(M(i) sΦn+ i tΦn),
as in the algebraic case. �

5. Reliable resolution of numeric implicit equations

If K⊆C, then power series solutions to recursive or implicit equations often converge in
a small disk around the origin. For instance, if Φ∈DF ,Λ

r is an algebraic dag and C ∈Kr,
then the recursive equation

f = C +
∫

Φ(f)

admits a convergent solution, by Cauchy-Kovalevskaya’s theorem. Given a point z ∈K in
a sufficiently small disk where f converges, we might like to compute an approximation
f̃ (z)∈Kr of f(z), together with a bound δ ∈ (K>)r for the error: |f̃ [k](z)− f [k](z)|<δ[k].
Interval arithmetic [Moo66, AH83, Neu90, MKC09, Rum10] provides a classical framework
for deriving such enclosures in a systematic way. We will rather rely on ball arith-
metic [vdH09a], which is more suitable for complex and multiple precision arithmetic.

5.1. Ball arithmetic

Let us briefly recall the principles behind ball arithmetic. Given a normed vector space K,
we will denote by K or B(K, R) the set of closed balls with centers in K and radii in
R>= {x ∈R: x> 0}. Given such a ball z ∈ B(K,R), we will denote its center by cen(z)
and its radius by rad(z). Conversely, given z ∈K and r ∈R, we will denote by z + B(r)
the closed ball with center z and radius r.

A continuous operation f :Kd→K is said to lift into an operation f :Kd→K on balls,
which is usually also denoted by f , if the inclusion property

f(x[1],	 , x[d]) ∈ f(x1,	 ,xd) (19)

12 From implicit to recursive equations



is satisfied for any x[1],	 ,x[d]∈K and x[1]∈x[1],	 , x[d]∈x[d]. For instance, ifK is a Banach
algebra, then we may take

x+ y = cen(x)+ cen(y)+B(rad(x)+ rad(y))

x− y = cen(x)− cen(y)+B(rad(x)+ rad(y))

xy = cen(x) cen(y)+B(rad(x) (|cen(y)|+ rad(y))+ |cen(y)| rad(x)).

Similar formulas can be given for division and elementary functions.
It is convenient to extend the notion of a ball to more general radius types, which only

carry a partial ordering. This allows us for instance to regard a vector x=(x[1],	 ,x[d])∈

B(K,R)d of balls as a “vectorial ball” with center cen(x)= (cen(x1),	 , cen(xd))∈Kd and

radius rad(x)=(rad(x[1]),	 , rad(x[d]))∈Rd. If x=(x[1],	 , x[d])∈Kd, then we write x∈x

if and only if x[i]∈x[i] for all i∈{1,	 , d}. A similar remark holds for matrices and power
series with ball coefficients.

In concrete machine computations, numbers are usually approximated by floating point
numbers with a finite precision. Let R̃ be the set of floating point numbers at a given
working precision, which we will assume fixed. It is customary to include the infinities ±∞
in R̃ as well. The IEEE754 standard [ANS08] specifies how to perform basic arithmetic with
floating point numbers in a predictable way, by specifying a rounding mode R∈{↓, ↑, l}
(down, up and nearest). A multiple precision implementation of this standard is available in
the Mpfr library [HLRZ00]. Given an operation f :Rd→R, we will denote by fR: R̃d→ R̃

its approximation using floating pointing arithmetic with rounding mode R. This notation
extends to the case when R and R̃ are replaced by their complexifications C and C̃= R̃[i].

Let K = R and K̃ = R̃ or K = C and K̃ = C̃. We will denote by K̃ or B(K̃, R̃) the
set of closed balls in K with centers in K̃ and radii in R̃>. In this case, we will also
allow for balls with an infinite radius. A continuous operation f :Kd→K is again said
to lift to an operation f : K̃d → K̃ on balls if (19) holds for any x[1],	 ,x[d]∈ K̃ and
x[1]∈x[1],	 , x[d]∈x[d]. The formulas for the ring operations may now be adapted to

x+ y = cen(x)+l cen(y)+B(rad(x)+↑ rad(y)+↑ ǫ+,x,y)

x− y = cen(x)−l cen(y)+B(rad(x)+↑ rad(y)+↑ ǫ−,x,y)

xy = cen(x)×l cen(y)+

B(rad(x)×↑ (|cen(y)|+↑ rad(y))+↑ |cen(y)| ×↑ rad(x)+↑ ǫ×,x,y),

where ǫ+,x,y, ǫ−,x,y and ǫ×,x,y are reliable bounds for the rounding errors induced by the
corresponding floating point operations on the centers; see [vdH09a] for more details.

In order to ease the remainder of our exposition, we will avoid technicalities related to
rounding problems, and compute with “idealized” balls with centers inK∈{R,C} and radii
in R>. For those who are familiar with rounding errors, it should not be difficult though
to adapt our results to more realistic machine computations.

5.2. Taylor models

If we are computing with analytic functions on a disk, or multivariate analytic functions on
a polydisk, then Taylor models [MB96, MB04] provide a suitable functional analogue for
ball arithmetic. We will use a multivariate setup with z=(z1,	 , zd) as our coordinates and
a polydisk D=B(ρ)= {z, |z |6 |ρ|} for a fixed ρ=(ρ1,	 , ρd)∈ (R>)d, where we use vector
notation. Taylor models come in different blends, depending on whether we use a global
error bound onD or individual bounds for the coefficients of the polynomial approximation.
Individual bounds are sharper (especially if we truncate up to an small order such that
the remainder is not that small), but more expensive to compute. Our general setup will
cover all possible blends of Taylor models.
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We first need some more definitions and notations. Assume that Nd is given the natural
partial ordering. Let ek denote the k-th canonical basis vector of Nd, so that (ek)k=1 and
(ek)l = 0 for l � k. For every i ∈Nd, we will write ‖i‖= |i1|+ 
 + |id|. A subset I ⊆Nd

is called an initial segment , if for any i∈ I and j ∈Nd with j 6 i, we have j ∈ I. In that
case, we write I̊ = {i∈I: i+ {e1,	 ,ed}⊆I} and ∂I = I \ I̊ . In what follows, we assume

that I and J are fixed initial segments of Nd with J̊ ⊆ I. For instance, we may take
I = Tn= {i∈Nd: ‖i‖6n} and J = Tn+1 or J = Tn or J = {0}.

Recall that K = R or K = C. Given a series f =
∑

i∈Nd fi z
i ∈ K[[z]], we will write

supp f ={i∈Nd: fi� 0} for its support . Given a subset S⊆K[[z]] and a subset S ⊆Nd, we
write fS=

∑

i∈S fi z
i and SS= {g ∈S: supp g⊆S}. If f is analytic on D, then we denote

its sup norm by

‖f ‖D = sup
z∈D

|f(z)|.

A Taylor model is a tuple P = (ρ,I ,J , cen(P ), rad(P )), where ρ, I and J are as above,
cen(P ) ∈ K[z]I and rad(P ) ∈ R[z]J . We will write T = TD,I ,J = BD(K[z]I ,R[z]J )
for the set of such Taylor models. Given P ∈ T and i ∈ Nd, we will also denote
P = cen(P )+BD(rad(P )) and Pi = cen(P )i + B(rad(P )i). Given an analytic function f

on D, we write f ∈P , if there exists a decomposition

f = cen(P )+
∑

i∈J
εi z

i

with εi∈C[[z]] and ‖εi‖D6 rad(P )i for all i. Optionally, we may also require that fi∈Pi

for all i∈I. Given two Taylor models P ,Q∈T, we will say that P is included in Q, and
we write P ⊆Q if f ∈Q for any f ∈P . This holds in particular if Pi⊆Qi, in which case
we say that P is strongly included in Q and write P ⊑Q.

Addition, subtraction and scalar multiplication are defined in a natural way on Taylor
models. For multiplication, we need a projection π = πJ :Nd → J with π(i) 6 i for all i
and π(i) = i if i ∈ J . One way to construct such a mapping is as follows. For i ∈ J , we
must take π(i)= i. For i � J , let k be largest such that ik� 0. Then we recursively define
π(i)=π(i− ek). Given P ,Q∈T, we now define their product by

PQ =
∑

i,j∈I
PiQjBD(ρ)

i+j−π(i+j) zπ(i+j).

Using the observation that zi+j ∈BD(ρ)
i+j−π(i+j) zπ(i+j), this product satisfies the inclu-

sion property that f g ∈PQ for any analytic functions f ∈P and Q ∈ Q on D. Finally,
let ω be a coefficientwise operator on K[[z]] such that there exist constants ωi

∗ with

‖ωf ‖D 6 ωi
∗ ‖f ‖D, (20)

for any f ∈ zi K[[z]] which converges on D. Then we say that ω is bounded and we may
lift ω into an operator on Taylor models by taking

ωP =
∑

i

ωi
∗Pi z

i.

Indeed, the formula (20) implies the inclusion property ωf ∈ωP for any f ∈P .

Remark 10. If I = J , then there exists a more algebraic alternative for the definition
of the product P Q. Let F be the finite set of minimal elements of Nd \ I and consider
the ideal I in K[z] generated by the relations zi−B(ρ)i−π(i) zπ(i), for i∈F . Then TD,I ,I
is naturally isomorphic to K[z]/I as a vector space and we may transport the product
of K[z]/I to TD,I ,I. However, this more algebraic definition does not seem to be more
convenient from the computational point of view.
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Remark 11. The strong inclusion relation ⊑ has the advantage that it is easy to check,
contrary to general inclusion of Taylor models. An intermediate relation P which can still
be checked can be defined by recursion over I and J : if I=J = {0}, then we take P PQ

if and only if P0 ⊆ Q0. Otherwise, let i ∈ I ∪ J be largest for a total ordering on the
monoid Nd (e.g. the lexicographical ordering). Let I ′= I \ {i}, J ′=J \ {i}, P ′=PI ′∪J ′

and Q′=QI ′∪J ′. If Pi ⊆Qi, then we take P P Q if and only if P ′ P Q′. Otherwise, we

first compute the smallest c∈R with Pi⊆Qi+B(c). Setting P ′′=P ′+B(ρ)i−πJ ′(i)zπJ (i),
we now take P P Q if and only if P ′′PQ′.

5.3. The fixed point theorem

Most of the definitions and results of sections 2.1 and 2.4 generalize in a straightfor-
ward way to the multivariate case. Only the complexity results need additional attention,
since M(n) needs to be replaced by a suitable multivariate analogue; see [vdH02, LS03,
vdH05, vdHL10, vdHS10] for various results in this direction. Let us take

Ω = K[z1,	 , zd]∪{F [1],	 , F [r],+,−,×}∪×K∪⊤1,N∪
 ∪Tr,N∪Λ,

with ⊤k,j(f) =
∑

ik>j
fi z

i for all k and j, and where Λ is set of bounded coefficientwise

operators on K[[z]]. Given Φ∈DF
r , consider the equation

f = Φ(f). (21)

This equation is said to be recursive if Φ(F )i only depends on Fj with j < i, for every i.
In that case, the equation admits a unique solution, whose coefficients may be computed
using a relaxed algorithm.

Let K ∈ {R,C}, K= B(K,R), ρ ∈ (R>)d, D = B(ρ), I and J be as in the previous
section. Consider a polydisk D ′=B(ρ′) with D ′⊆D. Then any Taylor model P ∈TD,I ,J
can naturally be reinterpreted as a Taylor model in TD ′,I ,J , which we will denote by PD ′.

Theorem 12. Assume that (21) is a recursive equation. Let 0<τ < 1 and let P ∈T
r be

a vector of Taylor models with the property that Φ(P ) ⊆ P. Then the unique solution f

to (21) is analytic on τD and f ∈PτD.

Proof. Given power series f ∈ K[[z]] and g ∈ R>[[z]], we will say that g is a majorant

for f , and write f P g, if |fi|6 gi for all i∈Nd. Let f 〈0〉 be an arbitrary element of P and

consider the sequence f 〈n〉=Φn(f 〈0〉). By induction, we have f 〈n〉⊆P . In particular, there

exists a bound M with ‖f 〈n〉‖D6M/2 for all n. For any n6m, it follows that

f 〈m〉− f 〈n〉
P

M

(1− z1/ρ1)
 (1− zd/ρd)
.

Since (21) is recursive, the sequence f 〈n〉 tends coefficientwise to the unique power series

solution f of (21). More precisely, for any n and i∈Nd such that ‖i‖<n, we have fi
〈n〉

= fi.
Therefore, given m>n, the valuation of f 〈m〉− f 〈n〉 is at least n. Consequently,

f 〈m〉− f 〈n〉
P M

(z1/ρ1)
⌊n/d⌋
 (zd/ρd)

⌊n/d⌋

(1− z1/ρ1)
 (1− zd/ρd)
.

In particular,

‖f 〈m〉− f 〈n〉‖τD 6 M
τ d⌊n/d⌋

(1− τ)d
.

We conclude that ‖f 〈m〉 − f 〈n〉‖τD → 0 for n → ∞, whence f 〈n〉 converges to f on the

polydisk τD. Since f 〈n〉∈PτD for all n, we also get f ∈PτD, by continuity. �
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Remark 13. It is somewhat unsatisfactory that the final bound f ∈ PτD only holds on
slightly smaller disks. In would be interesting to investigate under which conditions we have
f ∈PD. This is in particular the case if Φ(P )⊑P and Φ(P )i⊆Pi̊ for all i∈ ∂J . Indeed,
by continuity with respect to ε, this stronger condition implies that Φ(P(1+ε)D)⊆P(1+ε)D

for some small ε>0. We also notice that ball arithmetic can be slightly “inflated” by adding
a tiny constant to the radius at every operation. Now assume that Φ(P )i ⊆ Pi for this
kind of inflated ball arithmetic. For the usual arithmetic and each j, we then either have
Φ(P )i

[j]⊆Pi̊
[j], or the expression which computes Φ[j](P )i is identically equal to Pi

[j].

5.4. Contraction of Φ on sufficiently small disks

With the notations from the previous section, assume in addition that J ⊆I. Let 0<ε< 1
and let f ∈K[[z]] be a power series with ball coefficients. Then the restriction fI ∈K[z]I
can naturally be reinterpreted as a Taylor model in TD,I ,J , which we will denote by
fD,I ,J . For what follows, we recall that Φ(f) is computed in K[[z]], whereas Φ(fD,I ,J )
is computed in TD,I ,J .

Lemma 14. Let Φ be a dag, f ∈K[[z]] and P = fεD,I ,J ∈TεD,I ,J. For ε→ 0, we have

Φ(P ) = Φ(f)εD,I ,J +O(ε).

Proof. The lemma follows by an easy induction over the size of Φ. Let us for instance
treat the case when Φ=ΨΞ. Then

(ΨΞ)(P )i =
∑

j+k=i

Ψ(P )j Ξ(P )k+
∑

j+k>i

πJ (j+k)=i

Ψ(P )j Ξ(P )kB(ε ρ)
πJ (j+k)−j−k

=
∑

j+k=i

(Ψ(f)j+O(ε)) (Ξ(f)k+O(ε))+O(ε)

=
∑

j+k=i

Ψ(f )j Ξ(f)k+O(ε)

= (ΨΞ)(f)i+O(ε),

for all i∈I. �

Theorem 15. Assume that (21) is a recursive equation. Then there exists an ε > 0 and
a Taylor model P ∈TεD,I ,J, such that Φ(P )⊑P.

Proof. Let f ∈C[[z]]r be the exact solution to (21). Let ν=maxi∈J ‖i‖, δ= ε1/(ν+1) and

E =
∑

i∈J
δν−‖i‖ zi.

Consider the Taylor model

P = fεD,I ,J +BεD(E).

By lemma 14, we have

Φ(P )i = Φ(fI+BεD(E))i+O(δν+1)

= Φ(fI)i+O(δν−‖i‖−1)

= fi+O(δν−‖i‖+1)

⊑ fi+BεD

(

δν−‖i‖),

for sufficiently small ε. �
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Remark 16. In practice, in order to find a suitable P with Φ(P ) ⊑ P , we first com-
pute an enclosure fI for fI by solving (21) in K[[z]] using a relaxed algorithm. Then
the problem reduces to the computation of a bound R ∈ R>[z]∂J with Φ(P ) ⊑ P for
P = fI +B(R). This really comes down to determining a fixed point for the mapping
R� rad(Φ(fI +BD(R))∂J ). We refer to [vdH07b, vdH09a] for details on how to do this.

We also notice that the coefficients of Φ(fI + BD(R)) which are not in ∂J do not
depend on R. For large expansion orders, it may be wise to implement Taylor models in
such a way that these coefficients need not to be recomputed for different values of R.
In [vdH07b, vdH09a], we describe how to do this in the univariate case.

5.5. Implicit equations

Let us now return to the system (14) of implicit equations and assume that Φ is algebraic
in F ,

∫

F ,
∫ ∫

F ,	 . We will use a domain TD,I ,J of Taylor models with D=B(ρ), ρ∈R>

and J ⊆I={0,	 , ν}. Using the theory of sections 3 and 4.1, we may construct a recursive
equation for the solution f of (14). By (17), this equation has the form

f = Ψ(f) = Π







−ziΦ〈i〉(f)�
−zΦ〈i〉(f)





z−i−X







zi f�
z f





,

for certain matrices Π and X whose entries are coefficientwise operators. In order to apply
theorems 12 and 15 we need to show that these operators and δ−1 are bounded.

Let us first show that δ−1 is bounded. Let h ∈C[[z]] be a convergent series on B(ρ).
For any n> 0 and z ∈B(ρ), we have

|(δ−1 (znh))(z)| 6

∫

0

ρ ∣
∣

∣tn−1h
(

z

|z | t
)∣

∣

∣ dt

6 ‖h‖ρ

∫

0

ρ

tn−1dt

=
1

n
‖h‖ρ ρn

=
1

n
‖znh‖ρ.

We may therefore take (δ−1)n
∗ = 1

n
for n> 0 and (δ−1)0

∗=2.
Now consider one of the entries ω of Π or X. By choosing ν sufficiently large, we may

assume without loss of generality that ωn is given by the evaluation of a rational function
in K[N ] at N = n for all n > ν. Moreover, the coefficients of the matrix (15) are given
by (13), whence they are bounded for n→∞. Consequently, ωn also remains bounded for
n→∞, and there exists an absolutely convergent expansion

ωn = c0+
c1
n
+

c2
n2

+
 . (22)

Hence, we may regard ω as an infinite sum

ω = c0+ c1 δ
−1+ c2 δ

−2+
 .

Taking ν sufficiently large, we may also ensure that (22) converges for n>ν. Consequently,
it suffices to take

ωn
∗ > |c0|+

|c1|
n

+
|c2|
n2 +


for all n > ν. We may use crude bounds for the remaining ωn
∗ with n < ν. Combining

theorems 9, 12 and 15, we now obtain the following theorem.
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Theorem 17. Consider an i-predictive system of equations (14). Then we may compute
ε>0 and a Taylor model P ∈TB(ε),I ,J, such that its unique solution f is convergent on B(ε)
and f ∈P.

In the Taylor model setting, it is interesting to study the solution f under small pertur-
bations of the initial conditions. This can be done by switching to a multivariate context
as in the previous subsections. In the system (14), we now replace the time z by zd. We
also replace the initial conditions C0, 	 , Cl by Taylor models C̃0, 	 , C̃l in TD,I ,J which
only depend on z1,	 , zd−1, and such that (C̃k)0=Ck for all k. Although the above theory
mostly generalizes in a straightforward way, there is a small quirk: when a matrix of the
type (15) does not have full rank, then the rank of a small perturbation of it is generally
strictly higher. Consequently, i-predictivity is not preserved under small perturbations.

Nevertheless, if we restrict our attention to 1-predictive systems, for which the
matrix (15) does have full rank, then small perturbations of the system remain 1-pre-
dictive and the generalization of theorem 17 provides us with the complete flow of the
implicit equation at any order. Such 1-predictive systems are very common in practice
and a well known example is the pendulum, whose equations are given by

ẍ = −λx

ÿ = g−λ y

x2+ y2 = µ.

More generally, dynamical systems on implicitly defined varieties are 1-predictive systems.
Notice that the classical implicit function theorem also falls into this category.

Of course, if the solution f is known in a certain disk D (as well as some of its deriva-
tives, if necessary), then we may use the value of f at a given point z ∈D as a new initial
condition at z and compute an analytic continuation of the solution around z with the same
method. In general 1-predictivity is preserved throughout this process, whence our method
yields an efficient method for high precision integration of dynamical systems on implicitly
defined varieties. Predictive systems of a higher index usually degrade into 1-predictive
systems after one analytic continuation. If not, then there is usually an algebraic reason for
that, in which case the system can be rewritten into a “simpler system” using differential
algebra [Rit50, Kol73, Bou94]. Unfortunately, although the order (or ranking) of the new
system is lower, its size as a dag usually explodes.
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