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There were several problems with the proofs of [2, Proposition 4.7(c) and (d)]. In this
note, we present corrected proofs (in the case of [2, Proposition 4.7(c)], we slightly mod-
ified the statement), as well as a theorem that the class 𝕂rhol regular singular holonomic
constants is essentially the same as the class of 𝕂hol of ordinary holonomic constants.
Until the very last subsection, we will assume that 𝕂=ℚalg is the field of algebraic num-
bers. In the last subsection, we also discuss a few related questions and results from [1];
we are grateful to Marc Mezzarobba for this reference. Throughout our note, we will
freely use notations and references from [2].

Other Errata for [2]

• Remark 7.4 is wrong. In fact, thanks to optimizations by Marc Mezzarobba [4],
the top two entries of the rightmost column of Table 7.1 can now be replaced
by O(M(n) log2 n).

• The last sentence of the first paragraph of Appendix A is slightly misleading; it
should be “Indeed, for any N∈ℕ, we may compute (sumN f̃ )(z) using ...”; the N
that we take is generally smaller than the maximal N allowed by summation up
to the least term. In fact, if |log z|≽ log n and size(z)=O(log z), then (sumN f̃ )(z)
can be computed in time O(M(n) log n) through a refined analysis of the binary
splitting algorithm in this context.

• In Theorem A.1, we need to require that size(z)=O(n). The proof in the case when
size(z)≻logn is not completely trivial. It is given in [3, Proposition 7] for expedito-
summation. If size(z)=O(log n), then the bound actually becomes O(M(n)logn),
as noted above.

Notations
Let ℒ hol and ℒ shol denote for the sets of monic L∈𝕂(z)[∂] whose coefficients are respec-
tively defined on �̄�0,1 and 𝒟0,1. Let ℒ rhol be the set of L∈ℒ shol such that L is at worst
regular singular at z=1. We define ℱ hol, ℱ rhol, and ℱ shol to be the sets of solutions f ∈
𝕂{{z}} to an equation Lf =0, where L∈ℒ hol, L∈ℒ rhol, or L∈ℒ shol, respectively, and
such that limz→1 f (z) exists. We recall that 𝕂hol={ f (1) : f ∈ℱ hol}, 𝕂rhol={limz→1 f (z) :
f ∈ℱ rhol}, and 𝕂shol={limz→1 f (z) : f ∈ℱ shol}.

It will be convenient to also introduce the variants ℒ hola, ℒ rhola, and ℒ shola of ℒ hol,
ℒ rhol, and ℒ shol for which we allow L to be at most regular singular at z=0. For instance,
ℒ hola consists of monic operators L∈𝕂(z)[∂] whose coefficients are defined on �̄�0,1∖{0}
and such that L is at worst regular singular at z=0. The counterparts ℱ hola, ℱ rhola, and
ℱ shola are defined in a similar way as before; we still require analytic solutions f ∈𝕂{{z}}
of Lf =0 at z=0. We again set 𝕂hola={ f (1) : f ∈ℱ hola}, 𝕂rhol={limz→1 f (z) : f ∈ℱ rhola},
and 𝕂shola={limz→1 f (z) : f ∈ℱ shola}.
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Ring structure

PROPOSITION 1. 𝕂hol, 𝕂rhol, 𝕂shol, 𝕂hola, 𝕂rhola, and 𝕂shola are all subrings of ℂ.

Proof. This is proved in a similar way as Proposition 4.6(a). For instance, in order
to see that 𝕂rhol is closed under multiplication, consider solutions f and g of Kf = 0
and Lg=0 with initial conditions in 𝕂m resp. 𝕂n, where the coefficients of K and L are
defined on 𝒟0,1, where K and L are regular singular at z=1, and such that the limits of f
and g at z=1 exist. Then Corollary 4.4 implies that K⊠L is defined on 𝒟0,1 and Corol-
lary 4.5 implies that K ⊠ L is regular singular at z=1. Consequently, limz→1 ( f g)(z)=
(limz→1 f (z)) (limz→1 g(z)) belongs to 𝕂rhol. □

This proposition also allows us to consider initial conditions in 𝕂hol instead of 𝕂
in many circumstances. For instance, by definition, the value of a function f ∈ℱ hol at
a point in �̄�0,1∩𝕂 lies in 𝕂hol. Thanks to the proposition, this even holds for solutions
f ∈𝕂hol{{z}} to an equation Lf =0 with f ∈ℒ hol. Indeed, given z∈𝕂, we have F(z)=
Δ0→z F(0); since Δ0→z and F(0) both have coefficients in 𝕂hol, the same holds for F(z).

Regular singular transition matrices

LEMMA 2. Let L∈ℒ hola, 𝛼∈𝕂, and consider a solution f ∈ z𝛼i 𝕂{{z}}[log z] of the equation
Lf =0. Then f ∈z𝛼iℱ hola[log z].

Proof. Without loss of generality, we may assume that 𝛼 = 0. Now write f =
fd (log z)d+ ⋅ ⋅ ⋅ + f0 with f0, . . . , fd∈𝕂{{z}}. Then f (z e2πi)= fd (log z+2πi)d+ ⋅ ⋅ ⋅ + f0∈
𝕂{{z}}[log z][2πi] is also annihilated by L. Since 2πi is transcendental, each of the coef-
ficients of f (ze2πi) as a polynomial in 2πi is again annihilated by L; these coefficients are

fd, d fd log z+ fd−1, . . . , fd (log z)d+ ⋅ ⋅ ⋅ + f0.

It follows that

fd∈ℱ hola, fd−1∈ℱ hola+ℱ hola log z, . . . , f0∈ℱ hola+ ⋅ ⋅ ⋅ +ℱ hola(log z)d,

whence f ∈ℱ hola[log z]. □

PROPOSITION 3. Let L be a linear differential operator of order n in 𝕂(z)[∂]. Then Δ𝛾 ∈
Matn(𝕂hola) for any regular singular broken-line path 𝛾 as in section 4.3.2.

Proof. In view of (4.6), it suffices to prove the result for paths of the form 𝜎𝜃→𝜎+ z and
for paths of the form 𝜎 + z→𝜎𝜃. Without loss of generality we may assume that 𝜎 =0.
By what precedes, the entries of Δ0𝜃→z as functions in z are all in ℱ hola[z𝕂][log z]. Now
values of functions z𝛼 (log z)k with 𝛼∈𝕂 and k∈ℕ at points z∈𝕂≠ are in 𝕂hol. Conse-
quently, values of entries of Δ0𝜃→z at z∈𝕂≠ are in 𝕂hola. Let h1, . . . , hr be the canonical
basis of solutions of Lf =0 at the origin. Then we recall that

Δ0𝜃→z = ((((((((((((((((((
(((((((((
(
( h1(z) ⋅ ⋅ ⋅ hr(z)

⋅⋅⋅ ⋅⋅⋅
h1
(r−1)(z) ⋅ ⋅ ⋅ hr

(r−1)(z) )))))))))))))))))
))))))))))
)
)
.
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The determinant W=Wh1, . . . ,hr of this matrix satisfies the equation W ′+Lr−1W=0 and its
inverse W−1 satisfies (W−1)′− Lr−1W−1=0. Since L is at worst regular singular at z=0,
we have Lr−1=

𝛼
z +Q, where 𝛼∈𝕂 and Q∈𝕂(z) is analytic at z=0. It follows that W=

c−1z−𝛼e−∫Q and W−1=cz𝛼e∫Q for some c∈𝕂, where (∫Q)(0)=0 (here c∈𝕂 follows from
the fact that the coefficients of all hi

(j) are in 𝕂 as oscillatory transseries). Given z∈𝕂≠

where W−1 is defined, it follows that W−1(z)∈𝕂hol. Since 𝕂hola is a ring, it follows that
the coefficients of

Δz→0𝜃=Δ0𝜃→z
−1 =W−1(z)adj(Δ0𝜃→z)

are in 𝕂hola. □

COROLLARY 4. We have 𝕂shol⊆𝕂hola.

Proof. Given c∈𝕂shol, let L∈ℒ shol and f ∈ℱ shol such that Lf =0 and c=limz→1 f (z). Let
𝜆1, . . . , 𝜆r∈𝕂hola be the entries of Δ0→1F(0). Then f =𝜆1h1+ ⋅ ⋅ ⋅ +𝜆r hr, where h1, . . . , hr
is the canonical fundamental system of solutions of Lf =0. Since limz→1 f (z) exists, we
must have hi=O(1) whenever 𝜆i≠0 and f (1)=∑i,𝜆i≠0 𝜆i hi(0)∈𝕂hola. □

Alien operators
Given an analytic function f defined on a neighbourhood of the origin on the Riemann
surface of the logarithm, we define (∇ f )(z)= f (z)− f (ze−2πi). SettingΛ=(2πi)−1 log z, the
operator f (z)↦ f (ze−2πi) acts on ℂ{{z}}[Λ] by sending Λ to Λ−1, whence ∇=1−e−∂Λ=
∂Λ− /1 2∂Λ+ ⋅ ⋅ ⋅. Given d∈ℕ, let ℂ{{z}}[Λ]<d be the set of f ∈ℂ{{z}}[Λ] of degree <d
in Λ. For 0⩽ i⩽ j, we note that the operator

Ζi; j≔(i−Λ∇) ⋅ ⋅ ⋅ (j−1−Λ∇)

sends ℂ{{z}}[Λ]<j into ℂ{{z}}[Λ]<i. We also note that Ζi; j(Λi−1)∼(i− j)!Λi−1.
For each 𝛼∈𝕂, let ∇𝛼≔ z𝛼∇ z−𝛼 and 𝕃𝛼≔ z𝛼ℂ{{z}}[log z]. Then ∇𝛼 𝕃𝛽⊆𝕃𝛽 for all 𝛽

and ∇𝛼 acts like multiplication by 1− e−2πi(𝛽−𝛼) on z𝛽ℂ{{z}}. Moreover, given 𝜑∈𝕃𝛼 of
degree <d in log z, we have ∇𝛼d 𝜑=0. We define 𝒳 to be the monoid of power products
(1− e−2πi𝛼1)k1 ⋅ ⋅ ⋅ (e1−2πi𝛼ℓ)kℓ with 𝛼1, . . . , 𝛼ℓ ∈(𝕂∩ℝ)∖ℚ and k1, . . . , kℓ ∈ℕ. For 0⩽ i⩽ j,
we also define

Ζ𝛼
i; j=z𝛼Ζ i; j z−𝛼=(i−Λ∇𝛼) ⋅ ⋅ ⋅ (j−1−Λ∇𝛼).

We note that Ζ𝛼
i; j sends z𝛼ℂ{{z}}[Λ]<j into z𝛼ℂ{{z}}[Λ]<i.

Let ℋ be the space of holonomic functions f on �̄�0,1∖{0} that are regular singular at
the origin and such that F(1)=( f (1), . . . , f (r−1)(1))∈(𝕂hol)r. Such a function f satisfies
an equation Lf =0 with L∈ℒ hola. We regard F(1) as a column vector, as usual, and recall
that f (ze−2πi) is another solution of Lf =0 with F(e−2πi)=Δ1↻1F(1)∈(𝕂hol)r. Indeed, the
monodromy matrixΔ1↻1 of L around z=0 with end-points at z=1 has coefficients in𝕂hol.
It follows that ∇ f ∈ℋ . Moreover, ℋ is a ring with z𝕂⊆ℋ and log z∈ℋ . It follows that
∇𝛼 f ∈ℋ and Ζ𝛼

i; j f ∈ℋ for all 𝛼∈𝕂 and 0⩽ i⩽ j. Note that ∇𝛼 f always satisfies the same
equation as f , contrary to Ζ𝛼

i; j f .

Eschewing regular singularities

THEOREM 5. We have
𝕂hol⊆𝕂shol⊆𝕂hola⊆𝒳−1𝕂hol.
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Proof. The inclusion 𝕂hol⊆𝕂shol is trivial and we already proved that 𝕂shol⊆𝕂hola, so
we focus on the remaining inclusion 𝕂hola⊆𝒳−1𝕂hol.

Consider a monic L ∈ℒ hola of order r. Then Lh = 0 has a canonical fundamental
system of solutions

hi, j∈z𝛼i𝕂{{z}}[log z]⩽j, hi, j∼z𝛼i (log z)j, i=1, . . . , ℓ, j=0, . . . , 𝜈i −1.

In particular, we have r=𝜈1+ ⋅ ⋅ ⋅ +𝜈ℓ. For each i∈{1, . . . , ℓ}, let

Πi≔∇𝛼1
𝜈1 ⋅ ⋅ ⋅ ∇𝛼i−1

𝜈i−1∇𝛼i+1
𝜈i+1 ⋅ ⋅ ⋅ ∇𝛼ℓ

𝜈ℓ,

so that Πi f ∈𝕃𝛼i for any solution f of Lf =0. We also define

ui≔�
i′≠i

(1−e−2πi(𝛼i′−𝛼i))𝜈i′,

so that Πi f =ui f whenever f ∈z𝛼iℂ{{z}}.
Let f be a solution of Lf =0 with F(1)=( f (1),..., f (r−1)(1))∈𝕂hol and let 𝜆i, j∈ℂ be such

that f =∑i, j 𝜆i, jhi, j. We need to show that 𝜆i, j∈𝒳−1𝕂hol for all i and j. Given i∈{1,. . ., ℓ},
let us show by induction on j that 𝜆i, j ∈ui

−1𝕂hol. To this effect, given j∈{0, . . . , 𝜈i − 1},
assume that 𝜆i, j+1, . . . ,𝜆i,𝜈i−1∈ui

−1𝕂hol, and let us show that 𝜆i, j∈ui
−1𝕂hol.

Let g≔Ζ𝛼
j+1;𝜈i f and let f𝛼=𝜆i,0hi,0+ ⋅ ⋅ ⋅+𝜆i,𝜈i−1hi,𝜈i−1 and g𝛼=Ζ𝛼

j+1;𝜈i f𝛼 be the compo-
nents of f and g in z𝛼ℂ{{z}}[log z]. By construction, g𝛼 has degree at most j in log z and
the coefficient (g𝛼)j of degree j is of the form

(g𝛼)j=(𝜈i − j−1)!𝜆i, j+ cj+1𝜆i, j+1+ ⋅ ⋅ ⋅ + c𝜈i−1𝜆i,𝜈i−1+o(1)

for constants cj+1, . . . ,c𝜈i−1∈𝕂[(2πi)−1] that can be computed explicitly.
We next consider the function 𝜑= z−𝛼iΠi ∇𝛼

j g. By construction, 𝜑∈ℂ{{z}} and

𝜑= j!ui ((𝜈i − j−1)!𝜆i, j+ cj+1𝜆i, j+1+ ⋅ ⋅ ⋅ + c𝜈i−1𝜆i,𝜈i−1+ o(1)).

Moreover, both g and 𝜑 belong to ℋ , so the value of the contour integral

𝜑(0) = 1
2πi �|z|=1

𝜑(z)
z dz

actually lies in 𝕂hol. By our assumption that 𝜆i, j+1, . . . ,𝜆i,𝜈i−1∈ui
−1𝕂hol, it follows that

𝜑(0)− j!ui (cj+1𝜆i, j+1+ ⋅ ⋅ ⋅ + c𝜈i−1𝜆i,𝜈i−1)∈𝕂hol,

whence ui𝜆i, j∈𝕂hol. By induction on j, this shows that 𝜆i, j∈ui
−1𝕂hol, for all j. □

Remark 6. In the special case when ℓ =1 or when 𝛼i −𝛼j∈ℚ for all i, j, we note that the
numbers ui are all in 𝕂. It follows that Δ0𝜃→z and Δz→0𝜃 have coefficients in 𝕂hol.

Irregular singularities

PROPOSITION 7. Let L be a linear differential operator of order n in 𝕂(z)[∂]. Then Δ𝛾 ∈
Matn(𝕂shola) for any singular broken-line path 𝛾 as in section 4.3.2.

Proof. In view of (4.6), it suffices to prove the result for paths of the form 𝜎𝒌,𝜽→𝜎 + z
or 𝜎 + z →𝜎𝒌,𝜽. In fact, it suffices to consider paths of the form 𝜎𝒌,𝜽→𝜎 + z, by using
a similar argument as in the regular singular case, based on the Wronskian. Without loss
of generality we may assume that 𝜎 =0.
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Now, as shown in detail in section 7.3, the matrix Δ0𝒌,𝜽→z can be expressed as
a product of matrices whose entries are either evaluations of regular singular Borel trans-
forms f̌1

(m)(a1) at a point a1∈𝕂≠ near the origin, or of the form

�
bi

ei𝜃i∞
�̂�i(𝜁i) Ǩki,ki+1

(m) (𝜁i,ai+1)d𝜁i, (1)

or

�
bp

ei𝜃p∞
�̂�p(𝜁p)(e−𝜁p/zp)(m)d𝜁i, (2)

where ai+1,bi, zp∈𝕂, m∈ℕ and �̂�i is holonomic with initial conditions in 𝕂shola. More-
over, bi and bp may be chosen as large as desired.

Let us first consider the evaluations f̌1
(m)(a1) near the origin. The functions f̂1 and f̌1

satisfy holonomic equations L̂1 f̂1=0 and Ľ1 f̌1 that are regular singular at the origin.
In particular, the transition matrices between 0 and a1 for these equations have entries
in 𝕂hola. Thanks to the explicit formulas of (ℬ̃z1 z1𝜎 log r z1)(𝜁1) in section 2.1, we see that
f̂1 can be expressed as a 𝕂[𝛾 (ℕ)(𝕂)]-linear combination of the canonical solutions of L̂1
at the origin, where 𝕂[𝛾 (ℕ)(𝕂)] is the smallest 𝕂-algebra that contains all constants of
the form 𝛾 (m)(𝜎) with 𝛾(z)=1/Γ(z), m∈ℕ, and 𝜎∈𝕂. Now

𝛾 (m)(z) = i
2π �

ℋ
(−log (−t))m (−t)−ze−tdt,

for all m∈ℕ, where ℋ is a Hankel contour from ∞ around 0 and then back to ∞. Such
integrals can be evaluated using the technique from section 6, so 𝕂[𝛾 (ℕ)(𝕂)]⊆𝕂shol.
Using the explicit formula for majors of functions of the form 𝜑(𝜁)𝜁 𝜎 logk 𝜁 in section 2.2,
we next deduce that f̌1 is a 𝕂�𝛾 (ℕ)(𝕂),�1−e−2πi𝕂≠�−1�-linear combination of the canon-
ical solutions of Ľ1 at the origin. As we will see in the section below, we again have
�1− e−2πi𝕂≠�−1⊆𝕂shol. It follows that f̌1

(m)(a1)⊆𝕂shola for a1∈𝕂≠ near the origin and
all m∈ℕ.

By the results from section 4.2, the kernels Ǩki,ki+1
(m) (𝜁i, ai+1), (e−𝜁p/zp)(m) and the inte-

grands or (1) and (2) are all holonomic, with initial conditions in 𝕂shola at bi. Note that
the m-th derivatives are taken with respect to ai+1 and zp, so they amount to multiplying
the integrands with a polynomial in 𝜁i or 𝜁p of degree m. Let us focus on the integrals of
type (1); the integrals of type (2) are treated similarly. The function �̂�i satisfies a holo-
nomic equation (i.e. a monic linear differential equation with coefficients in 𝕂(𝜁i)) of
which all solutions have a growth bounded by BeC|𝜁i|ki/(ki−ki+1), for some fixed constant C>0
and a constant B that depends on the solution. Likewise, as shown in section 7.1, Ǩki,ki+1

(m) (𝜁i,
ai+1) satisfies a holonomic equation of which all solutions are bounded by Be−C|𝜁i|ki/(ki−ki+1)

for a fixed constant C>0 that can be made arbitrarily large (by taking bi large). By Lemma
4.3(b), it follows that the same holds for the integrand I(𝜁)≔�̂�i(𝜁i) Ǩki,ki+1

(m) (𝜁i,ai+1).
Given such a holonomic equation satisfied by I, consider the canonical fundamental

basis h1, . . . ,hs of solutions to this equation at 𝜁i=bi. For each j, the function hj has initial
conditions in 𝕂 at bi and the integral

�
bi

ei𝜃i∞
hj(𝜁i)d𝜁i,
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converges. Taking bi sufficiently large and applying a change of variables of the form
(𝜁i/bi)c = (1 − 𝜉)−1, we see that the value of the integral lies in 𝕂shol. Since I can be
rewritten as a 𝕂shola-linear combination of h1,...,hs, we conclude that (1) also takes a value
in 𝕂shola. □

Invertible elements
Given an integral domain R, let R× be its subgroup of invertible elements. An inter-
esting question is to determine the sets (𝕂hol)×, (𝕂rhol)×, etc. Obviously, 𝕂≠⊆(𝕂hol)×
and e𝕂⊆(𝕂hol)×. We also know that πℤ⊆(𝕂hol)×, since

π = 4�arctan 1
2+arctan 1

3� ∈ 𝕂hol

1
π =

2 2�
9801 �

k∈ℕ

(4k)! (1103+26390k)
(k!)43964k ∈ 𝕂hol,

and π /1 2ℤ⊆(𝕂shol)×, since

𝜋√ = Γ�1
2�.

It would be interesting to know whether π𝛼 ∈ (𝕂shol)× for other rational numbers
𝛼∈ℚ∖( /1 2ℤ). From

Γ(z) = �
0

∞
xz−1e−xdx

1
Γ(z) = i

2π �
ℋ
(−t)−ze−tdt,

we deduce that Γ(𝕂∖ℤ)⊆(𝕂shol)×, where ℋ is a Hankel contour from ∞ around 0 and
then back to ∞. From the above facts and Euler's reflection formula

Γ(1−z)Γ(z) = π
sin (πz) ,

we also deduce that sin (π (𝕂∖ℤ))⊆ (𝕂shol)×. This is noteworthy, since sin z is
a well known example of a holonomic function whose inverse 1

sin z is not holonomic.
Apart from the invertible elements that directly follow from the above list of exam-

ples, the author is not aware of any other invertible holonomic constants. In particular,
the precise status of 𝒳 is unclear. From sin (π(𝕂∖ℤ))⊆𝕂shol, it follows that 𝒳−1⊆𝕂shol,
whence

𝕂shol=𝕂shola.
In combination with Proposition 7, this actually provides a correct proof of [2, Proposi-
tion 4.7 (d)]. If 𝒳−1⊆𝕂hol, then this would also imply 𝕂hol=𝕂rhol=𝕂hola=𝕂rhola. It seems
plausible though that 𝒳∩𝕂hol={1} and 𝕂hol=𝕂rhol=𝕂hola=𝕂rhola both hold.

Further comments
For simplicity, we have assumed that 𝕂=ℚalg is the field of algebraic numbers,
throughout our exposition. Most results go through without much change for arbitrary
algebraically closed fields 𝕂. Only in the proof of Lemma 2, we used the assumption
that 2π i∉𝕂; if 2π i∈𝕂, then the same conclusion can be obtained by induction on d,
by applying the induction hypothesis on f (ze2πi)− f (z), when d>0.
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Another interesting direction of generalization would be to consider holonomic func-
tions that are completely defined over ℚalg, but to consider values at points in larger
fields 𝕂. Such classes of constants contain numbers like eeπ, sin Γ� 2� �, etc.

In [1], the authors consider values of so-called Siegel G-functions, which are a par-
ticular type of Fuchsian holonomic functions. They prove an analogue of Theorem 5 in
this setting. Their proof is significantly simpler, thanks to special properties of G-func-
tions [1, Theorem 3], and based on similar arguments as our proof of Proposition 3. The
paper [1] also contains several results about fraction fields of fields of values of G-func-
tions. It would be interesting to investigate analogues of these results in our setting.

Still in [1], the authors study the case when 𝕂⊆/ ℚalg is an algebraic number field that
is strictly contained in ℚalg. They showed that any real algebraic number can be obtained
as the value at z=1 of a G-function over ℚ that is defined on �̄�0,1. In our setting, this
immediately implies that ℚalg⊆ℚhol[i], whence �ℚalg�hol=ℚhol[i]. More generally, for
any algebraic number field 𝕂, we obtain �ℚalg�hol=𝕂hol[i] if 𝕂⊆ℝ and �ℚalg�hol=𝕂hol

if 𝕂⊆/ ℝ.
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