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We prove that the resultant of two “sufficiently generic” bivariate polynomials over
a finite field can be computed in quasi-linear expected time, using a randomized algo-
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1. INTRODUCTION

The efficient computation of resultants is a fundamental problem in elimination theory
and for the algebraic resolution of systems of polynomial equations. Given an effective
field 𝕂, it is well known [10, chapter 11] that the resultant of two univariate polynomials
P,Q∈𝕂[x] of respective degrees d⩾e can be computed using Õ(d) field operations in 𝕂.
Here the soft-Oh notation Õ(E) is an abbreviation for E(log E)O(1), for any expression E.

Given two bivariate polynomials P,Q∈𝕂[x,y] of respective total degrees d⩾e, their
resultant Resy(P,Q) in y can be computed in time Õ(d2 e); e.g. see [20, Theorem 25] and
references in that paper. If d=e, then this corresponds to a complexity exponent of 3/2 in
terms of input/output size. An important open question in algebraic complexity theory
is whether this exponent can be lowered.

In the present paper, we consider the case when P and Q are “sufficiently generic”. If
the coefficients of P and Q are chosen at random in a finite field 𝕂=𝔽q with sufficiently
many elements, then this will be the case with high probability. Under a suitable hypoth-
esis of “grevlex-lex-generic position” (defined below) and assuming the random access
memory (RAM) bit complexity model, our main result is the following theorem:

THEOREM 1. Let 𝜖 > 0 be a fixed rational number. Let P, Q ∈ 𝕂[x, y] be two polynomials of
respective total degrees d ⩾ e over a finite field 𝕂 = 𝔽q. If P and Q are in grevlex-lex-generic
position, then Resy(P,Q) can be computed in expected time

O((de log q)1+𝜖)+ Õ(d2 log q),

using a randomized algorithm of Las Vegas type.

∗. This paper is part of a project that has received funding from the French “Agence de l'Innovation de Défense”.
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Figure 1. Illustration of the Gröbner stairs for P and Q in generic position with respect to <grevlex (left)
and <lex (right) in the case when d=5 and e=3.

A major result in a similar direction has recently been obtained by Villard [25]. For
a general effective field 𝕂, and under different genericity assumptions, he proposed an
algorithm that computes the resultant in y of two polynomials P,Q∈𝕂[x,y] of degree dx
in x and degree dy in y using (dx dy

2−1/𝜔)1+o(1) operations in 𝕂. Here 𝜔 is the usual expo-
nent for matrix multiplication (such that two n × n matrices over 𝕂 can be multiplied
using O(n𝜔) operations in 𝕂). Le Gall has shown in [19] that one may take 𝜔<2.373.

Relationship to Gröbner bases Resultants are related to elimination theory. Throughout
the paper, we assume that the reader is familiar with the basic theory of Gröbner bases,
as found in standard text books [4, 10], so we only briefly recall basic terminology.

Let 𝕂 still be a general effective field. Two common monomial orderings on the
polynomial ring 𝕂[x, y] are the lexicographical ordering <lex and the reverse graded
lexicographical ordering <grevlex defined by

xi y j <lex xk yl ⟺ j< l∨(j= l∧ i<k)
xi y j <grevlex xk yl ⟺ (i+ j<k+ l∨(i+ j=k+ l∧ j< l)).

We say that P and Q are in lex-generic (resp. grevlex-generic) position if the leading mono-
mials of the reduced Gröbner basis of I with respect to <lex (resp. <grevlex) coincide with
the ones that we would obtain when taking symbolic parameters for the coefficients of P
and Q; see Figure 1. We say that P and Q are in grevlex-lex-generic position when they are
both in lex-generic and grevlex-generic position. Notice that we do not require the ideal
I ≔(P,Q) to be radical over the algebraic closure of 𝕂.

The relationship between resultants and Gröbner bases is the following: if P and Q
are in lex-generic position, then the reduced Gröbner basis of I with respect to <lex con-
sists of the minimal polynomial of x, which is a constant multiple of Resy(P,Q), and the
polynomial y−U(x) for some U ∈𝕂[x] with deg U <de; see section 4.1.

Assuming that P and Q are in grevlex-generic position, the recent result from [12] is
an algorithm to compute a concise representation [12, Definition 14] of the Gröbner basis
of I with respect to <grevlex using Õ(d2) operations in 𝕂, while conserving its main prop-
erties; see section 3. Note that the Gröbner basis in its usual representation generically
requires Θ(d2 e) storage, so its computation is too expensive for our purposes.

If we were able to rapidly convert a Gröbner basis for <grevlex into a new one for <lex,
then this would allow us to compute resultants in softly linear time. Unfortunately, tradi-
tional “change-of-ordering” algorithms such as the FGLM algorithm [6, 7] rely on linear
algebra, and do not run in softly linear time. For our proof of Theorem 1 in section 6,
we will instead rely on a bivariate counterpart of Kedlaya–Umans' algorithm for mod-
ular composition [16]. This technique does not work for general effective fields 𝕂, which
explains the restriction to the case when 𝕂=𝔽q is a finite field in Theorem 1.
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Specific fields For 𝕂 = ℚ, Mehrabi and Schost [21] showed how to compute a basis of
I ≔(P,Q) with respect to <lex by means of a probabilistic algorithm of Monte Carlo type
with a nearly optimal bit complexity bound. Their bound is optimal when the coeffi-
cients grow as expected in the worst case and their method depends on Kedlaya–Umans
as well. This approach has been generalized to higher dimensions in [14]. The proba-
bilistic aspect comes from the need of a sufficiently generic linear change of the variables.
The best known deterministic complexity bound can be found in [2].

Over finite fields, Poteaux and Schost [22, Theorem 1.2] achieved the computation of
bivariate lexicographical bases with bit complexity (d e)1+𝜖 Õ(log q) in the special case
when P or Q belongs to 𝔽q[y], provided that the underlying characteristic is greater
than d e, and that I is radical, yet without genericity assumption. Their method extends
to an arbitrary number of variables.

Outline of our contribution The proof of Theorem 1 relies on a sequence of reductions,
using a novel combination of classical and more recent techniques. In sections 2 and 3,
we first recall basic notations and the required results from [12] about concise Gröbner
bases.

Assuming from there on that P and Q are in grevlex-lex-generic position, we recall in
section 4 how to reduce the computation of the resultant to the computation of the min-
imal polynomial of the multiplication endomorphism by x+I in 𝔸≔𝕂[x,y]/I. This min-
imal polynomial can be computed with high probability using Wiedemann's algorithm,
provided that we have an algorithm for the transposed map of evaluating a univariate
polynomial at x + I in 𝔸. This kind of strategy has been used several times before in
computer algebra [15, 22, 23, 24]; see also [10, chapter 12, section 4].

The evaluation of a univariate polynomial at x+ I in 𝔸 can be regarded as a bivariate
modular composition problem. Exploiting the fact that multiplication in 𝔸 is fast (thanks
to the concise Gröbner basis representation), we show in section 5 how to reduce this
problem to multivariate multipoint evaluation. For this reduction, we mostly follow
Kedlaya and Umans, along the same lines as in the proof of [16, Theorem 3.1] for uni-
variate modular composition; refinements can be found in [13].

At that point, we restrict ourselves to the case when 𝕂 is a finite field, so as to benefit
from Kedlaya and Umans' fast algorithm for multipoint evaluation and its transpose [16].
In section 6, this allows us to conclude the proof of Theorem 1.

The final section 7 contains a few further notes and directions for future research.
In particular, we show that the full lexicographical Gröbner basis can be computed in
a similar time as the resultant, with ideas similar to [22] and [8, Algorithm 2]. Finally we
quantify the genericity hypotheses in a more precise manner.

2. PRELIMINARIES

Computational model Throughout this paper, 𝕂 is an effective field. Most of our algo-
rithms work in the algebraic complexity models of straight-line programs (SLPs) or com-
putation trees [3], in which execution times correspond to the required number of field
operations in 𝕂. The genericity assumptions imply that non-trivial zero tests always
fail, so the straight-line program framework actually suffices.

In section 6, where we prove Theorem 1, we specialize 𝕂 to become a finite field 𝔽q.
From that point on, we assume a RAM bit complexity model and recall that field opera-
tions in 𝔽q can be performed in softly linear time Õ(log q).
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Transposition principle Given a finite dimensional 𝕂-vector space V of 𝕂[z1, . . . , z𝜈]
that admits V ∩ z1

ℕ ⋅ ⋅ ⋅ z𝜈
ℕ as a basis, it is convenient to mentally represent elements of V

as column vectors with respect to this basis and linear forms 𝜆: V → 𝕂 as row vectors.
Linear maps between two vector spaces V,W of this type correspond to matrices.

Writing V∗ for the set of linear forms 𝜆:V →𝕂, the transpose of a linear map L:V →W
is the linear map L∗:W∗→V∗ such that L∗(𝜆)( f )=𝜆(L( f )) for all f ∈V. If L can be com-
puted by a linear SLP over 𝕂 of length ℓ, then it is well-known [3, Theorem 13.20] that L∗

can be computed by an SLP of length ℓ + O(dim𝕂 V + dim𝕂 W). This “transposition
principle” is in general easy to be put into practice on concrete programs, as exemplified
in [1]. Roughly speaking, the program is regarded as a composition of individual steps
that are easy to transpose. For the transposition of a composition L∘K, where K:U →V
is another 𝕂-linear map, we next apply the usual formula (L∘K)∗ =K∗ ∘L∗.

Gröbner bases Given indeterminates z1, . . . ,z𝜈 and positive integers n1, . . . ,n𝜈, we define

𝕂[z1, . . . ,z𝜈]n1, . . . ,n𝜈 ≔ {A∈𝕂[z1, . . . ,z𝜈] :degz1 A<n1, . . . ,degz𝜈 A<n𝜈}.

Consider a Gröbner basis G of an ideal I ⊆𝕂[z1, . . . ,z𝜈] for some term ordering on the set
of monomials z1

ℕ ⋅ ⋅ ⋅ z𝜈
ℕ≔{z1

i1 ⋅ ⋅ ⋅ z𝜈
i𝜈 : i1, . . . , i𝜈 ∈ℕ}. We write 𝕂[z1, . . . ,z𝜈]G for the 𝕂-vector

space of polynomials f ∈ 𝕂[z1, . . . , z𝜈] that are reduced with respect to G. The reduced
monomials in BG≔𝕂[z1,...,z𝜈]G∩z1

ℕ ⋅⋅⋅z𝜈
ℕ form a basis for 𝕂[z1,...,z𝜈]G and correspond to

the monomials “under the Gröbner stairs”. In other words, BG consists of the monomials
that are not divisible by the leading monomial of an element in G. We also write

𝜌G:𝕂[z1, . . . ,z𝜈]→𝕂[z1, . . . ,z𝜈]G

for the map that computes the normal form of a polynomial f ∈𝕂[z1, . . . ,z𝜈] with respect
to G, i.e. the unique polynomial 𝜌G( f ) in 𝕂[z1, . . . ,z𝜈]G such that f −𝜌G( f )∈ I.

3. CONCISE REPRESENTATION OF THE QUOTIENT ALGEBRA

In the remainder of this paper, let P,Q∈𝕂[x,y] be two polynomials of total degrees d⩾e,
in grevlex-lex-generic position. We write I ≔ (P, Q) for the ideal generated by P and Q,
and 𝔸≔𝕂[x,y]/I for the corresponding quotient algebra. Let us start by recalling sev-
eral facts from [12].

Gröbner basis The reduced Gröbner basis G∗ of I with respect to <grevlex consists of
polynomials G0

∗,G1
∗, . . . ,Ge

∗∈𝕂[x,y] with leading monomials ye,xd−e+1ye−1,xd−e+3ye−2, . . . ,
xd+e−1; see [9], [12, section 2], and Figure 1.

Concise Gröbner bases [12, section 4 and Theorem 28] Using Õ(d2) operations in 𝕂,
one may compute the concise representation of the Gröbner basis G={G0,G1, . . . ,Ge} of I
with respect to <grevlex. The leading monomials of Gi and Gi

∗ coincide for i=0, . . . , e, but
G0,...,Ge are not necessarily reduced. Furthermore, G0,...,Ge are not explicitly written out
(since this typically requires Θ(d2e) coefficients in 𝕂); this is why we need to represent G
in a concise way, while ensuring that no essential information is lost.

Normal form [12, section 5 and Proposition 31] Given a polynomial 𝜑 ∈ 𝕂[x, y] with
degx 𝜑 ⩽ s and degy 𝜑 ⩽ t ⩽ s, we may compute its normal form 𝜌G(𝜑) ∈ 𝕂[x, y]G with
respect to G using Õ((s+d) (t + e)) operations in 𝕂. Recall that 𝜌G(𝜑) is the unique ele-
ment in K[x,y]G =K[x,y]G∗ with 𝜑−𝜌x(𝜑)∈ I; in particular, 𝜌G and 𝜌G∗ coincide.
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Checking the genericity assumption By means of [12, Remark 4, Theorem 28, and
Proposition 31], the condition that P and Q are indeed in grevlex-generic position can
be checked using Õ(d2) operations in 𝕂 by running the basis computation and aborting
when an irregularity occurs.

Multiplication in the quotient algebra [12, section 6.2 and Theorem 33] Assume that
the concise Gröbner basis of I has been computed. We represent elements in the quotient
algebra 𝔸= 𝕂[x,y]/I by normal forms in 𝕂[x,y]G. Given 𝜑,𝜓 ∈𝕂[x,y]G, we may now
compute 𝜑 𝜓 ∈ 𝕂[x, y] using Õ(d e) operations in 𝕂, since degx(𝜑 𝜓) ⩽ 2 (d + e − 2) and
degy(𝜑𝜓)⩽2(e−1). By what precedes, we may therefore compute 𝜌G(𝜑𝜓)∈𝕂[x,y]G in
time Õ(de). In other words, products in 𝔸 can be computed in softly linear time.

4. REDUCTION TO BIVARIATE MODULAR COMPOSITION

As above, P and Q are polynomials in 𝕂[x,y] in grevlex-lex-generic position, I ≔(P,Q),
and 𝔸≔𝕂[x,y]/I.

4.1. Resultants and minimal polynomials
Consider the 𝕂-linear multiplication map 𝜉: 𝔸 → 𝔸; a ↦ (x + I) a. It is known that the
characteristic polynomial 𝜒 ∈ 𝕂[t] of this map equals 𝛼 Resy(P(t, y), Q(t, y)) for some
𝛼∈𝕂; see for instance [5, Proposition 2.7] applied with n=1 and r=1. When all the zeros
of I are regular, 𝜒 is separable and the latter property follows more straightforwardly
by comparing the sets of roots of 𝜒(t) and of Resy(P(t, y), Q(t, y)) via the Stickelberger
eigenvalue theorem [18].

On the other hand, since P and Q are in lex-generic position, we have

deg 𝜒 =dim𝕂 𝔸=de.

We introduce the minimal polynomial 𝜇∈𝕂[t] of 𝜉 as the monic polynomial of minimal
degree such that 𝜇(𝜉)=0, or, equivalently, 𝜇(x)∈ I. In particular, 𝜇(x) coincides with the
unique element of the reduced Gröbner basis of I for <lex that belongs to 𝕂[x].

LEMMA 2. With P and Q in grevlex-lex-generic position, we have 𝜒 =𝜇. In addition, if |𝕂|>de,
then Resy(P,Q) can be recovered from 𝜇 using Õ(d2) operations in 𝕂.

Proof. We always have 𝜇|𝜒. The polynomials 𝜇 and 𝜒 coincide whenever deg 𝜇=deg 𝜒=
de; this is the case if and only if P and Q are in lex-generic position.

Once 𝜒 is known, since |𝕂|>de, we may find a 𝛽∈𝕂 such that 𝜒(𝛽)≠0 using Õ(de)
operations in 𝕂, by means of fast multipoint evaluation. Then the above value 𝛼 can be
computed using Õ(d2) further operations, as

𝛼= 𝜒(𝛽)
Resy(P(𝛽,y),Q(𝛽,y)) .

From 𝜒 and 𝛼, we deduce Resy(P(t,y),Q(t,y))=𝜒(t)/𝛼. □

The above discussion shows that the computation of Resy(P,Q) reduces to the deter-
mination of 𝜇.
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4.2. Wiedemann's algorithm
We use Wiedemann's algorithm and the transposition principle for the computation of 𝜇,
as follows:
• We first select a random linear form 𝜆: 𝕂[x, y]G →𝕂. More precisely, assuming that

|𝕂|⩾4de, we select a finite subset S⊆𝕂 of size |S|⩾4de and take 𝜆 to be a row vector
with random entries from S.

• Taking N ≔2de, we define the map

Ex,G:𝕂[t]N ⟶ 𝕂[x,y]G

𝜑 ⟼ 𝜌G(𝜑(x)).

We will explain how to evaluate Ex,G efficiently in section 5.
• Then we compute the sequence

(𝜆∘Ex,G)(1), (𝜆∘Ex,G)(t), . . . , (𝜆∘Ex,G)(tN−1). (1)

This task is an extension of the usual “power projection” problem to the bivariate
case, since it corresponds to one evaluation of the transposed map of Ex,G:

Ex,G
∗ :𝕂[x,y]G

∗ ⟶ 𝕂[t]N
∗

𝜆 ⟼ ((𝜆∘Ex,G)(1), (𝜆∘Ex,G)(t), . . . , (𝜆∘Ex,G)(tN−1)).

• Using the fast variant of the Berlekamp–Massey algorithm [10, chapter 12, Algo-
rithm 12.9 combined with the extended half-gcd algorithm], we determine the linear
recurrence relation of smallest order m⩽de satisfied by the sequence (1). Stated other-
wise, this means that we compute the monic polynomial 𝜇∗ of minimal degree m⩽de
such that

(𝜆∘Ex,G)(𝜇∗)=(𝜆∘Ex,G)(t𝜇∗)= ⋅ ⋅ ⋅ =(𝜆∘Ex,G)(tN−1−m 𝜇∗)=0.

• The set of polynomials 𝜑 for which (𝜆 ∘ Ex,G)(t i 𝜑) = 0 for i = 0, . . . , N − 1 − deg 𝜑 is
closed under gcds and clearly contains 𝜇. This implies that we always have 𝜇∗ | 𝜇. If
deg 𝜇∗=de, then we are sure that 𝜇∗=𝜇=𝜒 =𝛼Resy(P(t,y),Q(t,y)). The next subsec-
tion reminds why this happens with high probability.

4.3. Probability analysis
The above polynomials 𝜇 and 𝜇∗ coincide if, and only if, 𝜆(Ex,G(𝜇/𝜓)) ≠ 0 for any irre-
ducible factor 𝜓 of 𝜇. Now given an irreducible factor 𝜓 of 𝜇, we have Ex,G(𝜇/𝜓) ≠ 0.
A random linear form 𝜆: 𝕂[x, y]G →𝕂 as above annihilates a fixed non-zero element of
𝕂[x, y]G with probability at most 1/|S|. The probability that 𝜆 annihilates Ex,G(𝜇/𝜓)
is therefore bounded by 1/|S|. We conclude that the probability 𝒫 success that none of
the ⩽de irreducible factors 𝜓 of 𝜇 annihilates Ex,G(𝜇/𝜓) is at least

𝒫 success ⩾ �1− 1
|S|�

de ⩾ �1− 1
4de�

de > 3
4.

The algorithm of the previous subsection and the present probability analysis are sum-
marized in the following lemma.

LEMMA 3. Assume that P and Q are in grevlex-lex-generic position and that |𝕂|⩾4de. Then the
computation of 𝜇 takes an expected number of Õ(de) operations in 𝕂 plus an expected number
of O(1) computations of sequences (1) for different values of 𝜆.
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5. REDUCTION TO MULTIPOINT EVALUATION

In this section, we show how to efficiently reduce the evaluation of Ex,G to multivariate
multipoint evaluation. We mostly follow the same Kronecker segmentation strategy as
in [13, 16, 22] for modular composition.

5.1. Kronecker segmentation
Given an integer 𝜈 that will be specified later, let 𝛿 ≔ ⌈(2 d e)1/𝜈⌉ be the smallest integer
such that 𝛿𝜈 ⩾2de. We define the Kronecker map

K:𝕂[z1, . . . ,z𝜈]𝛿, . . . ,𝛿 ⟶ 𝕂[t]𝛿𝜈

zi ⟼ t𝛿 i−1, i=1, . . . , 𝜈,

as the restriction to 𝕂[z1, . . . , z𝜈]𝛿, . . . ,𝛿 of the unique morphism Ǩ: 𝕂[z1, . . . , z𝜈] →𝕂[t] of
𝕂-algebras that sends zi to t𝛿 i−1

for i=1, . . . , 𝜈. Notice that K is bijective and that both K
and its inverse can be computed in linear time with respect to the monomial bases.

Let Dx≔d+e−2 and Dy ≔e−1 be upper bounds for the degrees in x and y of elements
in 𝕂[x,y]G. We may compute

gi ≔𝜌G�x𝛿 i−1�∈𝕂[x,y]Dx+1,Dy+1 for i=1, . . . , 𝜈

using binary powering. By what has been said in section 3, this requires Õ(d e 𝜈 log 𝛿)
operations in 𝕂. For any 𝜙∈𝕂[t]𝛿𝜈 and f =K−1(𝜙), we notice that

𝜌G(𝜙(x)) = 𝜌G( f (g1(x,y), . . . , g𝜈(x,y))).

Let Nx ≔𝜈 (𝛿−1)Dx +1, Ny ≔𝜈 (𝛿−1)Dy +1, and

Eg:𝕂[z1, . . . ,z𝜈]𝛿, . . . ,𝛿 ⟶ 𝕂[x,y]Nx,Ny

f ⟼ f (g1(x,y), . . . , g𝜈(x,y)).

Note that degx( f (g1(x,y),...,g𝜈(x,y)))<Nx and degy( f (g1(x,y),...,g𝜈(x,y)))<Ny indeed
hold for f ∈𝕂[z1, . . . ,z𝜈]𝛿, . . . ,𝛿. It follows that

Ex,G = 𝜌G ∘Eg ∘K−1. (2)

5.2. Evaluation-interpolation
We will compute the map Eg using evaluation-interpolation. Assume for the time being
that |𝕂|⩾Nx and let 𝛼1,...,𝛼Nx∈𝕂 be pairwise distinct points. Define 𝛽i≔𝛼i for i=1,...,Ny.
Setting Α≔{𝛼1, . . . , 𝛼Nx}, Β≔{𝛽1, . . . , 𝛽Ny}, consider the evaluation map

EΑ×Β:𝕂[x,y]Nx,Ny ⟶ 𝕂Α×Β

h ⟼ (h(𝛼i, 𝛽j))(𝛼i,𝛽j)∈Α×Β,

which is a 𝕂-linear bijection. Using traditional univariate evaluation-interpolation in
each coordinate [10, chapter 10], both EΑ×Β and its inverse EΑ×Β

−1 can be evaluated using
SLPs of length Õ(Nx Ny) over 𝕂. In particular, we can compute

Γi ≔EΑ×Β(gi)∈𝕂Α×Β for i=1, . . . , 𝜈 (3)

in time Õ(𝜈Nx Ny). We next define the map

EΓ:𝕂[z1, . . . ,z𝜈]𝛿, . . . ,𝛿 ⟶ 𝕂Α×Β

f ⟼ ( f ((Γ1)(𝛼i,𝛽j), . . . , (Γ𝜈)(𝛼i,𝛽j)))(𝛼i,𝛽j)∈Α×Β.
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Then we have

Eg = EΑ×Β
−1 ∘EΓ.

Combined with (2), this yields

Ex,G = 𝜌G ∘EΑ×Β
−1 ∘EΓ ∘K−1. (4)

6. FAST COMPUTATION OF RESULTANTS

In section 4, we have reduced the computation of bivariate resultants to the evaluation of
the transposed map Ex,G

∗ of Ex,G. In section 5 the evaluation of Ex,G has been reduced to
multivariate multipoint evaluation. We first recall how to perform the latter evaluation
using algorithms by Kedlaya and Umans. We next combine the above reductions with
the transposition principle and prove our main result.

6.1. Fast multipoint evaluation
Kedlaya and Umans designed various algorithms for modular composition and mul-
tipoint evaluation [16]. They also gave algorithms for the transposed operations. For
the computation of Ex,G and its transpose, we will rely on the following result, which is
a direct consequence of [16, Corollary 4.5 and Theorem 7.6]:

THEOREM 4. Let 𝜖>0 be a fixed rational number. Given f ∈𝔽q[z1, . . . ,z𝜈]𝛿, . . . ,𝛿 and evaluation
points 𝛾1,...,𝛾ℓ∈𝔽q

𝜈 such that 𝜈=𝛿o(1), there exists an algorithm that outputs f (𝛾i) for i=1,..., ℓ,
and that runs in time

O(((𝛿𝜈 +ℓ) log q)1+𝜖).

The transpose of the linear map f ↦( f (𝛾i))1⩽i⩽ℓ can be computed with the same complexity.

Note that [16, Corollary 4.5 and Theorem 7.6] are actually stated in an more precise
manner and that we voluntarily simplified the presentation. We also refer to [13] for
some recent refinements.

6.2. Evaluating Ex,G and Ex,G
∗

Assume from now on that 𝕂 = 𝔽q. Before we prove our main result, let us first study
the complexity of evaluating the transpose Ex,G

∗ of Ex,G. Recall that the computation of
a sequence as in (1) reduces to one such evaluation.

PROPOSITION 5. Let 𝜖 > 0 be a constant, thought to be small. Assume that q⩾ max (4 d e, Nx)
and that the concise representation of G and the sets Γ1,...,Γ𝜈 of (3) have been precomputed. Then
one evaluation of Ex,G or of its transpose Ex,G

∗ takes time O((de log q)1+𝜖).

Proof. We let
𝜈 ≔⌈log log (d+3)⌉

and verify the following bounds:

𝛿 = O�(de)1/loglogd�
𝛿𝜈 ⩽ (2(2de)1/𝜈)𝜈 = 2𝜈+1 de = (de)1+o(1)

ℓ= |Α| |Β| ⩽ 𝜈2 𝛿2 Dx Dy = O�(log log d)2 (de)1+2/loglogd� = (de)1+o(1).

Theorem 4 therefore implies that EΓ and EΓ
∗ can be computed in time O(de log q)1+𝜖.

8 FAST COMPUTATION OF GENERIC BIVARIATE RESULTANTS



In the previous sections, we have already shown that 𝜌G, EΑ×Β
−1 and K−1 can be com-

puted using O((de)1+𝜖) operations over 𝔽q. Combining this with (4), it follows that one
evaluation of Ex,G takes time O((de log q)1+𝜖).

Using our genericity assumptions, we also observed that these computations can be
carried out by linear SLPs over 𝔽q. In view of the transposition principle (see section 2),
it follows that 𝜌G

∗ , (EΑ×Β
−1 )∗ and (K−1)∗ can also be computed using O((de)1+𝜖) operations

over 𝔽q. Combining this with (4), we conclude that

Ex,G
∗ = (K−1)∗ ∘EΓ

∗ ∘(EΑ×Β
−1 )∗ ∘𝜌G

∗

can be computed in time O((de log q)1+𝜖) as well. □

6.3. Proof of Theorem 1
Let us first reduce to the case when q ⩾ 4 d e and q ⩾ Nx. Let q′ = O(q d2) be the smallest
power of q such that q′ ⩾4 d e and q′⩾Nx. Whenever q′ >q, we replace 𝔽q by the exten-
sion field 𝔽q′. Since log q′= O(log q+log d), the construction of 𝔽q′ takes bit complexity
(log d)O(1)Õ(log q), e.g. by using [10, Corollary 14.39], and the overhead involved by this
extension only concerns hidden logarithmic factors in the complexity bounds.

Consequently from now q⩾4d e and q⩾Nx are satisfied. The concise representation
of the Gröbner basis of I for <grevlex takes Õ(d2) operations in 𝔽q, as recalled in section 3.
With 𝜈 as in the proof of Proposition 5, we compute g1,...,g𝜈 in time Õ(de log q), and then
Γ1, . . . , Γ𝜈 in time O((d e log q)1+𝜖), as seen in section 5.2. The minimal polynomial 𝜇 of x
can therefore be obtained in expected time O((d e log q)1+𝜖), thanks to the combination
of Lemma 3 and Proposition 5. We finally deduce Resy(P,Q) from 𝜇 using Lemma 2 and
Õ(d2) further operations in 𝔽q.

7. FURTHER NOTES

7.1. Parametrization
Recall from section 4.1 that 𝜇 coincides with the unique element in 𝕂[x] of the Gröbner
basis Glex of I with respect to <lex and up to a constant multiple with the resultant
Resy(P, Q). It is an interesting question whether the complete basis Glex can actually
be computed fast.

Now if P and Q are in lex-generic position, then Glex contains exactly one other ele-
ment besides 𝜇, which is of the form y−U(x) with U(x)=U0+U1x+ ⋅⋅⋅ +Ude−1xde−1. Let
us show how to recover this parametrization y=U(x) in expected time

O((de log q)1+𝜖)+ Õ(d2 log q).

One technique for doing this goes back to Kronecker [17]: it performs a first order defor-
mation in order to compute the minimal polynomial of x + t y + O(t2) modulo I; see for
instance in [11, section 2]. In the present paper, we appeal to an other known method
relying once more on power projections; as in [8, Algorithm 2], for instance.

For this purpose, let 𝜆 be the linear form that has successfully led to the computation
of 𝜇 and let 𝜇̃(z)≔zde𝜇(z−1) be the reciprocal of 𝜇. We compute the polynomial 𝜗 ∈𝕂[z]
of degree <de such that 𝜗 and 𝜇̃ are coprime and

�
i⩾0

(𝜆∘Ex,G)(t i)zi = 𝜗(z)
𝜇̃(z) .
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Now let 𝜆y:𝕂[x,y]G →𝕂 be the linear form that sends v to 𝜆(𝜌G(yv)). This form 𝜆y can
be computed in softly linear time by the transposition principle. Note that the sequence

(𝜆y ∘Ex,G)(1), (𝜆y ∘Ex,G)(t), . . . , (𝜆y ∘Ex,G)(tde−1) (5)

may be obtained in the same way as (1), in time O((de log q)1+𝜖), thanks to Proposition 5.
The sequences (1) and (5) are related by the identity

�
i⩾0

(𝜆y ∘Ex,G)(t i)zi = �
i⩾0

�
j=0

de−1

Uj (𝜆∘Ex,G)(t i+ j)zi

= U(z−1)�
i⩾0

(𝜆∘Ex,G)(t i)zi +z−1 V(z−1),

where V ∈𝕂[z]de−1. It follows that

W(z)≔zde−1((((((((((((((�
i⩾0

(𝜆y ∘Ex,G)(t i)zi)))))))))))))) 𝜇̃(z)=zde−1 U(z−1)𝜗(z)+zde−2 V(z−1) 𝜇̃(z)

is a polynomial of degree <2 d e − 1. Since 𝜗 and 𝜇̃ are coprime, we finally obtain the
reciprocal Ũ(z)≔zde−1 U(z−1) of U using

Ũ(z)=𝜗(z)−1 W(z) mod 𝜇̃(z).
This takes Õ(de) further operations in 𝕂.

7.2. On the genericity assumptions
We already noted in section 3 that the grevlex-generic position can be checked using Õ(d2)
operations in 𝕂. Let us now quantify the genericity of the grevlex-generic position. Write
P = ∑i+ j⩽d Pi, j xi y j and Q = ∑i+ j⩽e Qi, j xi y j. As in [12], we define Diag P ≔ ∑i=0

d Pd−i,i zi

and Diag Q≔∑i=0
e Qe−i,i zi, which both belong to 𝕂[z]. By [12, Remark 4] and thanks to

the relationship between the Euclidean remainder sequence and the subresultant poly-
nomials (see for instance [20, Corollary 3]), P and Q are in grevlex-generic position if
and only if the following conditions are satisfied:
1. P0,d ≠0 and Q0,e ≠0,
2. The subresultant coefficient Si in degree i of Diag P and Diag Q is non-zero for i=0,...,

e − 1. This subresultant is the determinant of a square matrix of size d+ e − 2 i whose
entries are coefficients of Diag P and Diag Q; see for instance [10, chapter 6].

3. The system P = Q = 0 admits exactly d e solutions counting multiplicities, or equiv-
alently the coefficient Rde of xde in R(x) ≔ Resy(P(x, y), Q(x, y)) is non-zero; see for
instance [5, Proposition 2.7] applied with n=1 and r=1. This coefficient Rde has total
degree ⩽d+ e in the coefficients of P and Q.

Overall, there exists a polynomial 𝒢 in ℤ[(Xi, j)i+ j⩽d, (Yi, j)i+ j⩽e] of total degree at most

2+�
i=0

e−1

(d+ e−2 i)+d+ e=2+ e (d+ e)−2 e (e−1)
2 =de+ e+2,

such that 𝒢((Pi, j)i+ j⩽d, (Qi, j)i+ j⩽e)≠0 implies the grevlex-generic position of P and Q.
In order to show that 𝒢 is not the zero polynomial, we construct the auxiliary sequence

of polynomials recursively by Ai+1=zAi+Ai−1 and starting with with A−1≔0 and A0≔1,
so A1 = z, A2 = z2 + 1, A3 = z3 + 2 z, etc. We verify by induction that deg Ai = i for i⩾ − 1.
Taking

Q≔xe Ae(y/x) and P≔yd−e Q+xd Ae−1(y/x), (6)

10 FAST COMPUTATION OF GENERIC BIVARIATE RESULTANTS



P contains yd, Q contains ye, Diag P = zd−e Diag Q + Ae−1(z), and Diag Q = Ae(z). In this
way Ae−1,...,A0 is the Euclidean remainder sequence of Diag P and Diag Q. By [20, Corol-
lary 3] all the subresultant coefficients of Diag P and Diag Q are non-zero. In addition,
since P and Q are homogeneous, it is easy to verify that R is a non-zero multiple of xde.
Consequently 𝒢 is not identically zero.

A sufficient (but non necessary condition) to ensure that P and Q are in lex-generic
position is that R is separable. The coefficients of R have degree ⩽d+ e in the coefficients
of P and Q. Consequently the discriminant of R, written ℒ ∈ ℤ[(Xi, j)i+ j⩽d, (Yi, j)i+ j⩽e],
has total degree ⩽(d + e) (2 d e − 1). When ℒ((Pi, j)i+ j⩽d, (Qi, j)i+ j⩽e) ≠ 0 the lex-generic
position holds. To see that ℒ is not identically zero it suffices to take P≔(x−𝛽y)d−1 and
Q≔ye −1: then R is separable for sufficiently generic values of 𝛽.

7.3. Possible extensions
Our method can be extended in several directions, as we will briefly outline now.
• With more work, we expect that the lex-genericity assumption can be relaxed some-

what, e.g. to the case when the Gröbner basis for <lex consists of polynomials of
degree O(log d) in y. Indeed, using linear algebra techniques inspired by Wiede-
mann's algorithm, the idea would be to recover the characteristic polynomial from
the minimal polynomial by determining the multiplicities of the square-free factors.

• Similarly, and as already noticed in [12], it might be possible to relax the grevlex-
genericity assumption somewhat, e.g. to the case when the Gröbner basis for <grevlex

consists of Q and polynomials with leading monomials of the form xd−e+i+O(logd)ye−i.
• In [16, section 6], Kedlaya and Umans proposed an algebraic algorithm for mul-

tivariate multipoint evaluation (and its transpose, in virtue of the transposition prin-
ciple). These algorithms are mainly interesting in small characteristic, in which case
they can be used instead of the ones from Theorem 4. These algebraic algorithms
can also be generalized to more general finite fields, provided that one has an oper-
ation for the Frobenius map and its inverse.

• Unfortunately, we are not aware of any efficient implementations of Kedlaya–Umans'
algorithms; see [13] for a discussion about the (very large) input sizes for which
the complexity bounds would become competitive. For the time being, we there-
fore do not expect Theorem 1 to induce faster practical implementations of bivariate
resultants. Nevertheless, it should be noticed that the maps Ex,G and EΓ can both
be regarded as black boxes for our algorithm: whenever a faster algorithm for one of
these maps does become available, our method might be relevant for practical appli-
cations.

• Using Chinese remaindering and rational reconstruction, the approach of this paper
to compute lexicographical Gröbner bases should extend to the case when P and Q
have coefficients in ℚ. In the generic case, this would provide an interesting, more
direct alternative of Las Vegas type for [21] and [14].

Acknowledgments. We thank the anonymous referees for their useful comments.
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