
Introduction†

Dans cette thèse, nous présenterons la construction de corps munis des fonctions plus rapides
que toute itération d’une fonction exponentielle. Le but de cette introduction est de décrire la
signification des mots “construction”, “plus vite” et “fonction exponentielle”. Nous le faisons
espérant de donner aux lecteurs une bonne idée de ce à quoi ils peuvent attendre de cette thèse ;
nous espérons également fournir une motivation de l’étude présentée, et finalement nous pensons
qu’elle sert comme guide pour aider les lecteurs à traverser les différentes parties de la thèse.

Nous commençons en expliquant quelques concepts de base et en présentant les principaux
résultats. Ensuite, nous résumerons ce que l’on savait déjà sur les fonctions super-exponentielles.
Dans la troisième partie de l’introduction, nous donnerons les motivations pour la construction
présentée. Il suit une section qui constitue la “carte routière” de la thèse : nous résumerons
chaque chapitre en quelques mots pour munir les possibles lecteurs d’un guide d’orientation. Il
y a un intérêt particulier à faire cela, car quelques chapitres sont assez techniques, et il existe
un danger réel de se perdre dans les détails qui sont néanmoins nécessaires. Finalement, nous
donnerons une liste des notations les plus fréquemment utilisées.

Les résultats principaux

Le but principal de la thèse présentée est l’étude de la possibilité d’existence des fonctions avec
croissance rapide sur des corps de séries généralisées.

Pour tout corps C et tout groupe multiplicatif M, totalement ordonnés, une fonction

f : M −→ C

est une série généralisée, si l’ensemble des m ∈ M tels que f(m) 6= 0 (désormais appellé le support
de f) est bien-ordonné dans M. Pour C,M fixés, l’ensemble S = C[[M]] des séries généralisées
f : M → C admet une multiplication et une addition telles que S est un corps. Donc, chaque
polynôme P ∈ S[X] avec des coefficients dans S peut être associé d’une façon canonique à une
fonction fP : S→ S.

De plus, puisque C et M sont totalement ordonnés, il est possible d’introduire un ordre total
sur S. Il existe donc une interpretation naturelle de “croissance” dans S. En effet, pour deux
polynômes P,Q ∈ S[X], on dit que P est plus rapide que Q, s’il y a une série s ∈ S avec

|fQ(t)| < |fP (t)|
†A translation of this introduction can be found at the end of the thesis.
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pour t > s. Des résultats classiques concernant les séries généralisées impliquent que deux
polynômes distincts peuvent être comparés dans ce sens. D’une manière analogue aux fonctions
réelles, on peut se demander s’il y a des fonctions sur S ou au moins sur un interval (f,+∞)
qui est plus rapide que tout polynôme dans S[X]. En continuant l’analogie on pourrait même
s’interesser à l’existence d’une fonction exponentielle sur S.1

Il n’y a a priori aucune raison pour le corps S = C[[M]] d’avoir plus de structure que
celle mentionée au-dessus. Donc, pour admettre des fonctions exponentielles et logarithmiques,
les objets de base C et M doivent satisfaire des conditions supplémentaires. Sans les préciser
ici, nous remarquons que les corps de transséries constituent le bon cadre pour introduire des
fonctions exponentielles et logarithmiques.2 Dans ce qui suit, les corps de transséries seront
notés T plutôt que S.

Il y a une propriété importante particulière aux corps de transséries T, notammnet que la
fonction logarithmique est totalement définie sur l’ensemble de séries positives, mais que par
contre la fonction exponentielle n’est pas totale. Pour surmonter ce problème, on utilise un
processus introduit par Dahn qui étend le corps T à un corps de transséries Texp, et on construit
donc une tour des corps de transsŕies

...

∪
Texp,exp

∪
Texp

∪
T

tel que le logarithme et la fonction exponentielle peuvent être totalement définis sur la partie
positive de la réunion. Nous montrerons comment on peut continuer cette construction au-delà
pour construire un corps Tα pour chaque ordinal α. De plus, l’ordre sur la réunion des corps
sera de la façon que pour chaque série f suffisamment large, l’exponentiel de f est plus large
que chaque f i (i ∈ N).

De nouveau, vu le corps des réels, il est raisonable de se demander si les corps des séries
généralisées possèdent plus de structure que just les propriétés des corps ou – comme dans le cas
des corps des transséries – une fonction logarithmique. En particulier, est-il possible d’introduire
des sommes infinies, des dérivations ou compositions dans de tels corps ?

Comme c’était le cas pour la fonction exponentielle, il est d’avantage nécessaire de donner
1Evidemment faut il spécifier la signification de c’est-ce que c’est une fonction exponentielle. Dans l’intérêt de

cette section – notamment de présenter les principaux résultats – il suffit de penser à une fonction exponentielle
comme une fonction non-constante F telle que F (x + y) = F (x) · F (y) si les deux termes sont définis.

2Il mérite d’être mentioné qu’il y a des approches différents de l’approche présentée dans la thèse. Elles se
ressemblent pourtant dans le sens qu’elles ont le même obstacle à surmonter. Les fonctions exponentielles et
logarithmiques ne sont pas simultanement totalement définies sur l’ensemble des séries positives. Ce fait a été
établi indépendamment par S. and F.-V. Kuhlmann et S. Shelah dans [KKS97] et J. van der Hoeven dans [vdH97].
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une signification aux telles notions. Soient S = C[[M]] et F = (fi)i∈I ∈ SI . Tout notion d’une
somme infinie devrait coincider avec les opérateurs du corps, si I est un ensemble fini. Cette
condition est satisfaite, si F est une famille noethérienne, i.e. si la réunion des supports de
toutes les séries fi est bien-ordonnée dans M et si pour chaque m ∈ M l’ensemble des indices
i ∈ I tel que fi(m) 6= 0 est fini. Si c’est le cas, nous noterons par

∑F la série dans S avec∑F(m) =
∑

I fi(m).

De même, la notion canonique d’une dérivation ∂ sur S devrait satisfaire les propriétés
suivantes :

• ∂ est constamment 0 sur C
• pour toute f, g ∈ S on a ∂(fg) = ∂(f) · g + f · ∂(g)
• si F = (fi)i∈I est une famille noethérienne, alors la famille ∂(F) = (∂(fi))i∈I l’est aussi et
∂(
∑F) =

∑
∂(F).

De plus, si S est un corps de transséries, la condition

• si 0 < f , alors ∂(f) = f · ∂(log f)

doit être vraie. Nous annonçons notre premier résultat.

RÉSULTAT 1 Si ∂ est une dérivation sur T, alors pour chaque ordinal α il y a une unique
dérivation ∂α sur Tα qui étend ∂.

D’une manière identique on définit une notion de composition. Soient T1 et T2 des corps
de transséries, alors une fonction ∆ : T1 → T2 est une composition à droite si les conditions
suivantes sont satisfaites :

• ∆ est injective et ∀c ∈ C : ∆(c) = c
• ∆ est multiplicative
• si F = (fi)i∈I est une famille noethérienne (dans T1), alors ∆(F) = (∆(fi))i∈I l’est aussi

(dans T2) et ∆(
∑F) =

∑
∆(F)

• pour toute f ∈ dom exp dans T1 : ∆(exp f) = exp ∆(f).

RÉSULTAT 2 Si ∆ : T1 → T2 est une composition à droite, alors pour chaque ordinal α il y a
une unique composition à droite ∆α : T1,α → T2,α qui étend ∆.

A la lumière des résultats ci-dessus, une question s’impose immédiatement, notamment
s’il y a une connection entre les dérivations et les compositions à droite. En particulier, les
développements de Taylor, peuvent-t-ils être généralisés aux corps de transséries ? Cette ques-
tion n’est pas purement académique ; en effet, il faut une réponse affirmative à cette question
pour pouvoir continuer avec des investigations structurelles dans les corps des transséries.

La première étape est une généralisation de la notion d’une composition à droite à une
composition en général. Soient Ti (i = 1, 2, 3) des corps de transséries fixes avec des dérivations
∂1, ∂2 sur T1 et T2.

3 Une fonction partielle ◦ : T1 ×T3 → T2 est une composition compatible, si

• T3 ⊆ T2, et la restriction de ∂2 à T3 est une dérivation

3Afin de facilier la lecture, nous écrivons désormais f ′ au lieu de ∂1(f) et ∂2(f). La n-ième dérivation de f
sera notée f (n) dans les deux cas.
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• pour chaque série g ∈ T3 avec C < g, la fonction ∆g : T1 → T2 définie par ∆g(f) = f ◦ g
est une composition à droite

• pour chaque m ∈ M1 plus grande que 1, la fonction m ◦ · : {f ∈ T3 |C < f} → T2 est
strictement croissante

• la règle de châıne est satisfaite par ◦, i.e. pour toute série f ∈ T1 et toute g ∈ T3 avec
g ∈ dom (f ◦ ·), on a g ∈ dom (f ′ ◦ ·) et (f ◦ g)′ = (f ′ ◦ g) · g′

• soient f ∈ T1, g ∈ T3 et (εi)i∈I une famille noethérienne dans T2 tel que

∀i ∈ I : ∀m ∈ supp f : C <

∣∣∣∣
m ◦ g

m′ ◦ g · εi

∣∣∣∣ ,

alors g +
∑

I εi ∈ dom f ◦ ·, (f (n) ◦ g · εi)06n,i∈In est une famille noethérienne et

f ◦ (g +
∑

I εi) =
∑

06n

1

n!
f (n) ◦ g ·

∑

i∈In
εi,

où εi = εi1 · · · εin pour i = (i1, . . . , in) ∈ In.

RÉSULTAT 3 Si ◦ : T1 × T3 → T2 est une composition compatible et α un ordinal, alors il y a
une unique composition compatible ◦α : T1,α × T3 → T2,α qui étend ◦.

Une question qui découle naturellement de ces résultats concerne l’existence des corps de
séries généralisées admettant non seulement des fonctions exponentielles, mais aussi d’autres
fonctions à croissance supérieure à la croissance de chaque itération d’une fonction exponentielle.
Par exemple, une fonction E satisfaisant l’équation fonctionnelle E(x + 1) = exp ◦E(x) a cette
propriété. On remarquera que – une fois construite une telle fonction E – une fonction E avec
E(x+ 1) = E ◦ E(x) est aussi plus rapide que chaque expi. Nous disons que eωi est une fonction
exponentielle de force i > 0, si eω0 = exp et

eω1(x+ 1) = eω0 ◦ eω1(x)

eω2(x+ 1) = eω1 ◦ eω2(x)

eω3(x+ 1) = eω2 ◦ eω3(x)

...

Nous appelons aussi les fonctions exponentielles de force 1 fonctions super-exponentielles.
Comme il n’y avait pas de raison pour un corps de séries généralisées d’avoir une fonction
exponentielle, un tel corps n’a pas non plus nécessairement des fonctions exponentielles de force
n > 0. Nous appelons de force n de tels corps.

RÉSULTAT 4 Pour chaque n ∈ N, il y a des corps de force n.

En généralisant le processus d’une extension exponentielle dû à Dahn, nous introduisons des
eωn-extensions pour étendre un corps T de force n à un corps Teωn qui est également de force
n. Nous utilisons ces extensions pour montrer :

RÉSULTAT 5 Soit n > 0. Il y a des corps Kn de séries généralisées admettant des fonctions
exponentielles de force n tel que eωn et sa fonction inverse lωn sont totalement définies sur
l’ensemble {f ∈ Kn |C < f}.



v

Fonctions super-exponentielles – une histoire brève

Les fonctions super-exponentielles et des problèmes associés ont été déjà étudiés à quelques
occasions. Dans cette section, nous citons quelques résultats ; pourtant, nous ne prétendons pas
donner un survol complet de l’histoire de ce sujet.

A la différence de notre construction, les fonctions super-exponentielles ont été utilisées soit
dans la construction d’autres classes de fonctions (en particulier, dans la construction des itérées
fractionnelles d’une fonction donnée) et elles ont donc servi plutôt comme outil, soit elles ont
été considerées comme fonctions réelles (ou au moins des germes de telles fonctions). Nous ne
connaissons pas d’article traitant des fonctions exponentielles de force supérieure à 1.

Les premiers pas vers la construction d’une fonction super-exponentielle remontent au 19-
ième siècle, où P. du Bois-Raymond démontre qu’il n’y a pas de borne supérieure à la croissance
pour le fonctions réelles. Plus précisement, soientf1 ≺ f2 ≺ · · · 4 des fonctions définies sur un
intervalle (a,∞) ⊆ R. Alors, il existe une fonction F : (a,∞) → R telle que fi ≺ F pour tout i.
Dans [Har10], G. H. Hardy montre ce fait de deux façons différentes ; et appliqué à l’ensemble
des fonctions expi = exp ◦ · · · ◦ exp (la i-ème itération de la fonction exponentielle) on en déduit
l’existence d’une fonction F de croissance supérieure à celle de chaque itération de la fonction
exp.

L’existence d’une telle fonction F ne nous donne aucune information sur le comportement de
cette fonction. Pour au moins restreindre la croissance de telles fonctions, nous avons introduit
la notion de fonctions super-exponentielles comme solutions de l’équation fonctionnelle

expE(x) = E(x+ 1). (1)

Nous remarquons que si E est une solution de l’équation (1) et si g est une fonction de période 1,
alors E∗(x) = E(x+g(x)) est aussi une solution. C’est-à-dire, les fonctions super-exponentielles
sont loin d’être uniquement déterminées par l’équation fonctionnelle qui restreint leur croissance.

C’est H. Kneser dans les années quarante qui a contribué au prochain progrès significatif de
l’étude des solutions E. Dans [Kne50], il construit une fonction super-exponentielle analytique
en utilisant un point fixe complexe de la fonction ex et des transformations conformes. En effet,
il utilise sa solution afin de définir une demi-itérée analytique de la fonction exponentielle, i.e.
une fonction ϕ avec

ϕ ◦ ϕ(x) = ex.

De plus, il définit un ensemble des fonctions analytiques expr (où r ∈ R), appelées les itérations
fractionnelles de exp, avec

exp1(x) = ex

expr+s(x) = expr ◦ exps(x)

4A l’instar de Hardy, nous noterons ≺ la relation de domination entre fonctions réelles, i.e. f ≺ g ssi
lim
x→∞

f(x)/g(x) = 0.
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pour r, s ∈ R. En construisant E et son unique inverse L, il obtient les fonctions recherchées
par expr(x) = E(L(x) + r).5

Après la parution de l’article de Kneser, l’étude des itérations fractionnelles s’intensifie, et
la fonction exponentielle est de temps en temps remplacée par d’autres fonctions. Plus éminent,
dans les travaux de G. Szekeres et K. W. Morris [Sze58], [Sze62],[SM62], les fonctions à croissance
exponentielle ont été considerées, i.e. des fonctions f telles que

expk−1(x) ≺ fk ≺ expk+1(x)

pour tout k ∈ N+. Les fonctions ex et ex−1 en sont des exemples. Les itérations fractionnelles6

de f peuvent être construites comme solutions de l’équation fonctionnelle

B(f(x)) = B(x) + 1,

aussi appelée équation d’Abel, et puis définissant les fonctions fr(x) = B−1(B(x) + r). Pour la
fonction f(x) = ex, une solution B est une fonction super-logarithmique. Parmi les travaux de
Szekeres, nous signalons un résultat intéressant concernant l’unicité de B pour une large classe
des fonctions f . Si B est loin d’être uniquement déterminé pour f(x) = ex, ce n’est pas le cas
pour les fonctions f réelles analytiques (pour x > 0) avec x < f(x) et 0 < f ′(x) (pour x > 0)
qui admettent un développement

f(x) = x+ ax2 + · · · où a > 0.

Ceci est le cas pour f(x) = ex − 1 et a = 1/2. Puis, il n’y a qu’une seule fonction b telle que

lim
x→0+

x2b(x) =
1

a

avec b = B′ pour une solution B de l’équation d’Abel. En d’autre termes, B est uniquement
déterminé à une constante près.

Finalement, les fonctions super-exponentielles se retrouvent aussi dans les travaux de M. Bo-
shernitzan sur les fonctions trans-exponentielles. Dans [Bos86], il considère des solutions E de
l’équation fonctionnelle

h(E(x)) = E(x+ 1),

où h(x) est une des fonctions ex où ex − 1. Compte tenu de leurs propriétés de croissance, il
baptise les solutions E trans-exponentielles, et il montre qu’il y a des germes de solutions qui
appartiennent aux champs de Hardy. Comme résultat intermédaire, il montre que si E est une
C1-solution, alors E′ ≺ E3. On reviendra à cette observation plus tard.

5Bien que l’article remonte à 1950, Kneser remarque que l’existence des fonctions analytiques exp 1
2

avait été

discutée pendant la conférence annuelle de la Société Mathématique Allemande en 1941. Les discussions étaient
motivées par le besoin d’une solution “raisonnable” dans l’industrie. En considerant le temps et le lieu et aussi
la situation politique en Allemagne, on pourrait rétrospectivement se demander quel était l’intérêt de l’industrie
allemande dans les demi-itérées analytiques de ex ou pour quelle raison Kneser le fait-il remarquer au juste.

6i.e. un ensemble de fonctions fr tel que f1 = f et fr+s = fr ◦ fs pour tout r, s ∈ R
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Motivations

Après notre brève revue de l’histoire des développements autour des fonctions super-exponen-
tielles, nous allons dédier quelques remarques à nos motivations pour la construction présentée.
Comme on a déjà vu, les fonctions super-exponentielles ont jusqu’à maintenant essentiellement
servi comme outil pour obtenir des ensembles d’itérations fractionnelles. Néanmoins, il existe
encore d’autres raisons pour poursuivre la construction ; on en mentionnera deux ici.

La première motivation est l’étude modèle-théorique du corps réel. Soit R̄ le corps totalement
ordonné des réels et L le langage des anneaux ordonnés. Une observation bien connue et due
à A. Tarski [Tar51] dit que chaque sous-ensemble définissable de R̄ est la réunion finie des
intervalles dans R ∪ {±∞}. Autrement dit, les ensembles définissables peuvent être décrits
en n’utilisant que la rélation d’ordre 6 et des paramètres dans R ∪ {±∞}. Une question qui
découle du résultat de Tarski concerne la possibilité d’ajouter des fonctions à R̄ (et de même des
symboles de fonction à L) sans perdre cette propriété pour les sous-ensembles définissables (voir
par exemple [vdD84]). Plus précisement, si F est un ensemble de fonctions réelles et LF est le
langage des anneaux ordonnés augmenté par un symbole de fonction pour chaque fonction dans
F , alors, chaque sous-ensemble définissable dans 〈R̄,F〉 est-t-il réunion finie des intervalles ?

Pour des F avec cette propriété on dit que 〈R̄,F〉 est o-minimale. Pendant les années quatre-
vingt et quatre-vingt-dix, les structures o-minimales ont été étudiées intensivement.7 De plus,
les structures o-minimales possèdent beaucoup de propriétés intéressantes d’un point de vue
topologique (décomposition cellulaire, stratification, triangularisation etc.) qui ont été étudiées
en détail par L. van den Dries [vdD98].

Nous, par contre, sommes plus intéressés par des ensembles F qu’on peut ajouter à R̄ tels que
la structure résultante est o-minimale. Plus précisement, nous nous occuppons de la croissance
d’une fonction définissable dans cette structure. Comme premier résultat important, on a con-
staté qu’il est possible d’augmenter R̄ par l’ensemble de fonctions analytiques restreintes (voir
[vdD86]). Dans cette structure, la croissance d’une fonction définissable est polynômialement
bornée à l’infinie. Ensuite, A. Wilkie [Wil96] montre qu’il est possible d’ajouter la fonction
exponentielle et d’obtenir une structure o-minimale. Ce résultat était généralisé à plusieurs
occasions [vdDMM94], [Res93], mais les structures o-minimales sont toujours de sorte que les
fonctions définissables peuvent être bornées par des itérations de la fonction exponentielle. D’où
la question s’il y a des structures o-minimales 〈R̄,F〉 telles qu’il existe des fonctions définissables
là-dedans avec une croissance qui n’est pas bornée par une fonction expk. Certes, la structure
〈R̄, E〉 est un candidat.

En vue de la démonstration de J.P. Ressayre du théorème de Wilkie, il est d’intérêt d’avoir
des modèles non-standards de Th(R̄, exp, E). Nous ignorons pour l’instant si notre construction
est une vraie contribution à la solution de cette question, mais des résultats récents dûs à
Ressayre [Res99] suggèrent qu’au moins notre modèle est un outil pour mieux comprendre le
comportement d’une fonction super-exponentielle dans un modèle non-standard. De plus, une
fois la o-minimalité du corps réel avec une fonction super-exponentielle est démontrée, on posera
la question des bornes pour les fonctions définissables à nouveau. Il est donc raisonnable de

7Pour une introduction aux structures o-minimales, voir [PS86], [KPS86].
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poursuivre la construction à une force arbitraire plutôt que de se restreindre à la force 1.8

Notre deuxième motivation est un programme de travail de J. van der Hoeven dans lequel
il cherche à construire un corps de transséries tel que chaque équation algébrique, fonctionnelle
ou différentielle avec des paramètres dans le corps admet une solution dans ce même corps, s’il
y a des solutions. Dans ce cadre, ajouter une fonction super-exponentielle peut être vu comme
la clôture du corps sous l’action des solutions de l’équation fonctionnelle E(x+ 1) = expE(x).

Nous nous permettons en connection avec cette motivation le remarque que la Section 2.5
concernant les monômes et séries imbriqués font aussi partie de ce programme. Effectivement,
on a pas besoin des ces objets pour la construction des fonction E ou L (ni, d’ailleurs, dans
la construction des fonctions à force superieure), mais ces objets représentent des solutions des
équations fonctionnelles. Les travaux de van der Hoeven se poursuivent en ce moment, et nous
espérons que notre travail est une contribution valable pour une conclusion de son programme.

La structure de la thèse

Dans cette section, nous donnons une description de la structure de la thèse en résumant chaque
chapitre.

Chapitre 1 : Le premier chapitre introduit les fondements. Bien qu’il n’est pas notre but
de présenter cette thèse comme étude independante, nous commençons avec quelques rappelles
concernant des idées et résultats bien connus.

Notre point de départ est la définition d’un ordre comme une rélation binaire anti-symétrique,
réflexive et transitive sur un ensemble P . En connection avec des ordres, nous introduisons les
notions de comparabilité, des ordres totals, des anti-châınes, des châınes décroissantes et des
ordres bien-fondés. Nous rappelons que tous ces objets sont des notions généralement connues
dans les mathématiques, et nous ne prétrendrons pas d’originalité particulière en les introduisant.
De même pour la généralisation du concept des ensembles bien-ordonnés dans des ordres totaux
au cadre d’ordres en général : un ordre est appelé noethérien s’il admet ni des châınes strictement
décroissantes ni des anti-châınes infinies.

La théorie des ordres noethériens est amplement étudiée, et nous donnons des formulations
équivalentes que nous utilisons fréquemment dans le reste de la thèse. Ensuite, nous introduisons
des mots sur un ensemble donné P , où nous établisons une distinction entre des mots commutatifs
et non-commutatifs P♦ et P ⋆. De plus, s’il existe un ordre 6 sur P , alors nous introduisons
respectivement des ordres 6P♦ et 6P ⋆ sur les ensembles P♦ et P ⋆. Nous rappelons le résultat
de Higman que (P♦,6P♦ ) et (P ⋆,6P ⋆) sont noethériens, si l’ordre (P,6) l’est aussi.

Après remettre en mémoire la notion d’un corps archimédien et de comment généraliser
cette notion aux modules, nous introduisons enfin les principaux objets de notre étude, les séries
généralisées. En effet, à ce point là, nous définissons l’ensemble S = C[[M]] de séries généralisées
sur M avec des coefficients dans C d’une façon plutôt générale, car nous permettons M d’être

8A ce propos, nous remarquons qu’une réponse affirmative à la question de o-minimalité de la structure 〈R̄, E〉
a aussi des implications concernant des structures o-minimales nivelées étudiées par D. Marker et Ch. Miller
[MM97].
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un semi-groupe ordonné et C d’être un anneau. Puis f ∈ C[[M]], si f : M → C est une fonction
avec un support noethérien dans M. En général, cependant, nous allons prendre des groupes
abeliens multiplicatifs et ordonnés pour M. C’est le bon endroit d’introduire une collection de
notation utiles. Nous commençons avec quelques sous-ensembles de M. Soit < l’ordre sur M,
alors

M↑ = {m ∈ M | m ≻ 1},
M 7→ = {m ∈ M | m < 1},
M↓ = {m ∈ M | 1 ≻ m},
M

7→

= {m ∈ M | 1 < m}.

De plus, nous mettons S↑ = C[[M↑]], et nous définissons les ensembles S 7→,S↓,S

7→

d’une manière
semblante. Nous utlitisons les flèches aussi comme opérateurs qui agissent sur l’ensemble de
séries en définissant f↑ ∈ S par

f↑(m) =

{
f(m) si m ∈ M↑,
0 sinon.

D’une façon pareille, nous définissons les séries f 7→, f↓, f

7→

qui sont respectivement éléments de
S 7→,S↓,S

7→

. Nous écrivons fm au lieu de f(m) pour exprimer l’idée que f devrait être vu plutôt
comme série (d’où le nom) que comme une fonction, alors qu’il s’agit de fm du coefficient lié au
monôme m. En utilisant cette convention, nous écrivons f =

∑
m∈M

fmm.
Nous introduisons une addition et une multiplication sur S par

f + g =
∑

m∈M

(fm + gm)m,

f · g =
∑

m∈M

(
∑

ab=m

fagb)m.

Avec ces opérations, l’ensemble S est un anneau. Il y a aussi des plongements canoniques de C
et M dans S. De plus, l’anneau S est un corps si et seulement si C est un corps.

Afin de montrer la dernière propriété, il est nécessaire d’introduire la notion d’une somme
infinie qui étend l’addition d’un nombre fini de séries. Bien sûr, on ne trouve pas nécessairement
une expression raisonnable f1 + f2 + · · · pour chaque séquence (f1, f2, . . . ) de séries dans S.
Pourtant, si la séquence F = (fi)i∈I ∈ SI est telle que

⋃
i∈I supp fi est noethérien dans M et

telle que pour chaque m ∈ M il n’y a qu’un nombre fini d’indices i ∈ I avec m ∈ supp fi, alors
nous pouvons définir

∑
F =

∑
I fi =

∑

m∈M

∑

i∈I
fi,mm.

Des séquences F avec les propriétés au-dessus sont appelées familles noethériennes, et nous
montrons que les familles noethériennes admettent des propriétés algébriques agréables.

La sommation des familles noethériennes peut être vue dans le carde plus général des algèbres
fortes. Sans donner les détails ici, nous remarquons que des corps de séries généralisées C[[M]]



x

sont des C-algèbres fortes par rapport à la sommation
∑

I au-dessus. Une propriété clef, que
sera utilisée dans les constructions effectuées dans la thèse, est la suivante. Soient C[[M]], C[[N]]
des anneaux de séries généralisées. Soit ϕ : M −→ C[[N]] une application telle que l’image d’un
ensemble noethérien dans M est une famille noethérienne dans le corps C[[N]]. Alors, il y a une
unique application ϕ̂ : C[[M]] −→ C[[N]] qui étend ϕ telle que pour chaque famille noethérienne
(fi)i∈I dans C[[M]] nous avons

∑
I ϕ̂(fi) = ϕ̂(

∑
I fi).

De plus, si ϕ est multiplicatif, l’opération ϕ̂ l’est aussi. De même, si pour tout m, n ∈ M

l’équation ϕ(mn) = m · ϕ(n) + ϕ(m) · n est satisfaite, alors l’application ϕ̂ hérite cette propriété
aussi, i.e. ϕ̂(fg) = f · ϕ̂(g) + ϕ̂(f) · g pour toutes les séries f, g ∈ C[[M]].

Le reste de ce chapitre ne cosidere que des corps de séries généralisées C[[M]] où C et M sont
totalement ordonnés. Comme conséquence nous obtenons plusieurs représentations canoniques
d’une série f ∈ S. D’abord, nous remarquons que dans ce cas nous avons M = M↑ ∪ {1} ∪ M↓,
donc qu’il y a une unique constante f= = f1M

∈ C telle que

f = f↑ + f= + f↓

= f↑ + f

7→

= f 7→ + f↓.

Au-delà, le support de f est bien-ordonné dans (M,<) et il admet donc un élément minimal
que nous appelons le monôme minimal, symbolisé par df . Le valeur de f dans df est cf , le
coefficient dominant. Soit τf = cfdf le terme dominant de f , alors il y a des séries Rf , δf avec

f = τf +Rf

= τf (1 + δf ).

De plus, les ordres de C et M induissent un ordre total sur l’ensemble S qui est défini par

0 < f ⇔ 0 < cf

g < f ⇔ 0 < f − g.

Nous finissons le premier chapitre avec quelques considerations générales sur des troncatures et
le comportement de supprtts pour des séquences de séries. Pour une série donnée f ∈ S, la série
g est une troncature de f si le support de g est un ségment initial du support de f et si les deux
séries coincident sur le support de g. En autre mots, il existe un monôme mg tel que

g =
∑

m ≻ mg

fmm.

Nous utilisons des troncatures et leur propriétés dans des nombreuses démonstrations. D’une
manière pareille, nous introduissons les cardinalités cofinales comme un outil. Pour un ordre
total P = (P,6) et un cardinal κ nous disons que P admet une cardinalité cofinale < κ si la
cardinalité de chaque sous-ensemble bien-ordonné dans P admet une cardinalité inferieur à κ.
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Par exemple, les nombres réels avec leur ordre naturel ont une cardinalité cofinale < ℵ1. Nous
montrons que si C et M ont respectivement les cofinalités cardinales < κ1 et < κ2, alors pour
toute séquence (fα)α<τ , strictement décroissante dans S, nous avons |τ | < max(κ1, κ2).

Chapitre 2 : Jusqu’à ici, les corps de séries généralisées sont munis de très peu de struc-
ture. Pourtant, par demander quelques propriétés bies choisies, nous pouvons characteriser des
classes de corps de séries généralisées qui admettent au moins des fonctions exponentielles et
logarithmiques. Afin de le faire, nous commençons le deuxiem chapitre en fixant les conditions
pour qu’une fonction soit une fonction exponentielle.

En fait, une fonction exp qui est partiellement définie sur un corps totalement ordonné C
est une fonction exponentielle si elle est strictement croissante, si a+ 1 6 exp a pour tout a ∈ C
dans le domain de exp, et si

exp(a+ b) = (exp a)(exp b),

si les deux termes sont définis. Dans ce cas, les corps C est appelé un corps exponentiel.
Si C est un corps exponentiel tel que C = dom exp, alors nous pouvons définir une fonction

exp sur C[[M]]

7→

par

exp f = exp(f=) · e(f↓),

où e(x) =
∑

N

1
n!x

n. L’image de exp est l’ensemble S

7→

,+ de séries positives et non-infinies. Dans
ce sens, chaque S admet une structure de base comme corps exponentiel. La fonction inverse de
exp est notée par log, elle satisfait

log f = log cf + l(f↓)

pour tout 0 < f , où l(x) =
∑

16n
(−1)n+1

n xn. Des propriétés supplementaires du corps S sont
nécessaires, si on veut que log est défini sur l’ensemble de ses séries positives. Un corps C[[M]]
est corps de transséries, si C est un exp-log corps avec C = dom exp et si log étend partiellement
à T = C[[M]] tel que

T1. dom log = T+

T2. log M ⊆ T↑

T3. log(1 + f) = l(f), pour tout f ∈ T↓

T4. pour chaque séquence (mi)06i ⊆ M telle que mi+1 ∈ supp log mi pour tout 0 6 i, il
existe un entier n0 ∈ N tel que

∀n0 6 n : ∀n ∈ supp log mn : n < mn+1 ∧ (log mn)mn+1 = ±1.

Les conditions T1 – T3 nous permettent de poursuivre le processus d’extension dû à Dahn
[Dah84], et la condition T4 est essentielle pour le traitement des expressions imbriquées. Les
expressions exponentielles et imbriquées sont au centre de l’intérêt de ce chapitre.

Pour distinguer les corps de transséries des corps de séries généralisées au sense usuel, nous
utilisons le symbol T au lieu de S. Un exemple simple d’un corps de transséries est L =
R[[logZ⋆x]], où

logZ⋆x = {loga x = xa0 loga1 x · · · logann x | a ∈ Z⋆}.
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Du fait qu’il n’y a pas de corps de transséries T tel que les fonctions exp et log sont respectivement
totalement définies sur T et T+, il suit la nécessité d’élargier T. C’est le processus dû a Dahn
qui joue la rôle principale ici. Nous mettons Texp = C[[expT↑]], l’extension exponentielle de T.
Soit α un nombre ordinal, alors nous définissons le corps de transseries Tα = C[[Mα]] par

Tα =





T si α = 0
Tβ,exp si α = β + 1

C[[
⋃

β<α

Mβ]] si α est un ordinal limit.

Nous appelons des corps de la forme Tα aussi extensions exponentielles transfinies de T. Il
y a deux façons différentes d’obtenir des corps de séries généralisées tels que exp et log sont
totalement définis. Premiérement, l’ensemble

⋃
α<λ Tα admet cette propriété, si λ est un ordinal

limit ; mais ce corps ne plus de la forme C[[N]]. La deuxiéme possibilité consiste à ajouter une
condition concernant la cardinalité du support à la définition des séries généralisées, notamment
on exige pour que f soit une série généralisée que la cardinalité de supp f est inferieure ou égale
à un cardinal fixé. Dans ce dernier cas, le processus d’extension est stabilisant.

Une raison particulière pour regarder le processus d’extension exponentielle en détail est le
fait que beaucoup de principes qui font marcher ce processus vont réapparâıtre dans une forme
semblante pendant la construction des extensions exponentielles de force positive. Effectivement,
le programme à suivre est le suivant :

• étendre le groupe de monômes à un ensemble M̂ ⊇ M,
• définire une structure d’un groupe multiplicatif sur M̂,
• définir un ordre sur M̂ qui est compatible avec la multiplication,
• définir un logarithme sur M̂ et T̂ = C[[M̂]] tel que T̂ est un corps de transséries.

Il y a deux résultats généraux concernant les corps de transséries que nous voulons men-
tioner ici. Premièrement, ces corps admettent une composition avec les éléments du corps
L = C[[logZ⋆x]]. Plus précisement, nous montrons que pour chaque série f ∈ L et chaque
g ∈ T+

∞ (l’ensemble d’éléments positifs avec dg ∈ M↑), nous pouvons remplacer x par g. En
autre mots, nous montrons que l’application ϕ : logZ⋆x −→ T définie par

m = loga x 7−→ m ◦ g = ga0 loga1 g · · · logann g

est noethérienne et admet donc une extension unique ϕ̂ : L −→ T avec f ◦ g =
∑

m
fmm ◦ g.

Deuxièment, nous continuons l’étude du comportement de supports sous le processus d’exten-
sion. Comme avant, nous supposons que C et M ont respectivement les cardinalités cofinales
< κ1 et < κ2. Alors, nous montrons que

|supp f | < max(κ1, κ2)

pour toute série f ∈ Texp.
La deuxième partie du chapitre montre qu’il est possible d’introduire des expressions monô-

mielles imbriquées. Par cela nous voulons dire qu’il y a des transmonômes comme

ex
2+elog

2
2 x+e

log24 x+e

. .
.

. (2)
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L’expression (2) nous fournis d’une solution canonique à l’équation fonctionelle f(x) = exp(x2 +
f(log2 x)). Des expressions de cette forme apparaissent d’une façon naturelle dans la character-
isation des intervalles de transséries. Plus d’information sur ce sujet on trouve dans [vdH97].

Des expressions comme (2) n’ont a priori aucune raison d’appartenir à un corps de transséries
donné. On peut, par exemple, facilement vérifier qu’elle est ni un élément de L, ni dans une
extension exponentielle transfinie Lα. Nous mettons à la disposition un outil pour étendre un
corps de transséries T par des monômes imbriqués, qui nous fournis d’un moyen pour clore
le corps T sous l’action des équations fonctionnelles qui induissent de telles expressions. Plus
précisement, pour des séquences ϕ = (ϕ0, ϕ1, . . . ) et σ = (σ0, σ1, . . . ) ∈ {−1,+1}N avec

• ∀i > 0 : ϕi ∈ T↑ ∧ 0 < ϕi+1,
• ∀i > 0 : ∀m ∈ suppϕi : ∃j > i : ∀ψ ∈ T↑:

suppϕj ≻ ψ ⇒ m ≻ σi e
ϕi+1+σi+1 e

. .
. σj−1 e

ϕj+ψ

,

nous montrons comment construire un corps de transséries Tnest qui contient T et l’expression

eϕ0+σ0 eϕ1+σ1 e

. .
.

.

Remarques sur les notations
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Chapter 1

Generalized power series and
Noetherian families

1.1 Noetherian orders

Let (P,6) be a (partial) order, i.e. P is a set and 6⊆ P 2 is a relation such that for all
a, b, c ∈ P we have

PO1. a 6 b ∧ b 6 a⇒ a = b,
PO2. a 6 a and
PO3. a 6 b ∧ b 6 c⇒ a 6 c.

We will henceforth call 6 the ordering of the order (P,6), and we will speak of P as the order if
the ordering 6 is clear from the context. To every order (P,6), we can define the inverse order
(P,6∗) by letting a 6∗ b iff b 6 a for all a, b ∈ P . If we let >=6∗, then a 6∗ b if and only if
a > b. Hence (P,>) is the inverse order of (P,6). The distinction between an ordering 6 and its
inverse ordering > will have advantages for formulating properties of subsets of the underlying
set P , but one should always be aware of the ordering with which the property is defined, since
otherwise confusion may arise. It is common practice to distinguish between partial and total
orders: total orders are orders (P,6) such that

TO. ∀a, b ∈ P : a 6 b ∨ b 6 a.

In the sequel, orders will be partial. If an order is total, it will be explicitly mentioned. From the
ordering 6 we obtain a strict ordering < by letting a < b iff a 6 b ∧ a 6= b. For every subset
S ⊆ P , the ordering on P induces an ordering on S: if a, b ∈ S, then a 6S b iff a 6 b. In other
words, we have 6S=6 ∩S2. We call 6S the restriction of 6 to S. In general, the restriction
of 6 to a subset of P will also be denoted by 6 since for all S, T ⊆ P : 6S ∩ 6T=6S∩T .

A subset S ⊆ P is called a chain in P iff (S,6) is a total order. A chain S is said to be
strictly increasing iff for every s ∈ S there is a t ∈ S such that s < t. Similarly, we say that
the chain S is strictly decreasing iff for every s ∈ S there is a t ∈ S such that t < s. We say
that the order (P,6) has the decreasing chain property iff there are no strictly decreasing
chains S ⊆ P . The order (P,6) has the increasing chain property iff there are no strictly

1
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increasing chains in P . From the above it follows that an order has the increasing chain property
if and only if its inverse order has the decreasing chain property.

A total order with the decreasing chain property is called a well-order. A (partial) order
is well-founded iff it has the decreasing chain property. Equivalently, we say that P is anti-
well-founded iff it has the increasing chain property. Again it follows from these notations that
(P,6) is well-founded if and only if (P,>) is anti-well-founded. Hence, if we want to express
that (P,6) is anti-well-founded, we say that (P,>) is well-founded.

Let A,B ⊆ P and a ∈ P . We write a 6 B iff a 6 b for all b ∈ B. Similarly we define a < B,
B 6 a and B < a. We let A < B and A 6 B iff a < B and a 6 B, respectively, for all a ∈ A.
Two distinct elements a, b ∈ P are said to be incomparable in the order (P,6) (in symbols
a ⊥6 b or simply a ⊥ b, if the ordering 6 is clear from the context) iff neither a 6 b nor b 6 a.
We say that a, b are comparable iff they are not incomparable, i.e. if a 6⊥ b then either a 6 b
or b 6 a. Hence a 6⊥ a for all a ∈ P . Moreover, if a ⊥ b, then b ⊥ a and a ⊥6 b if and only
if a ⊥> b. We say that a ∈ P is incomparable to a subset S ⊆ P , in symbols a ⊥ S, if P is
incomparable to every element of S, i.e. ∀s ∈ S : P ⊥ s.

A set A ⊆ P is an anti-chain in the order P iff any two distinct elements a, b of A are
incomparable, i.e. ∀a, b ∈ A : a 6= b ⇒ a ⊥ b. An anti-chain in (P,6) is also an anti-chain
in (P,>). Note that anti-chains in total orders can only have one element. An order is called
Noetherian iff it has the decreasing chain property and if it has no infinite anti-chains. It
should be noticed that every subset of a Noetherian order is again Noetherian.

Every subset of a well-ordered set has a minimal element, i.e. an element such that no other
element of the subset is smaller than this element. To extend this notion to orders, we introduce
minimal sets. Let (P,6) be an order, then we call ∆ = ∆(P ) ⊆ P a minimal set of P iff

MS1. ∀p ∈ P : ∃q ∈ ∆ : q 6 p,
MS2. ∀q ∈ ∆ : ∀p ∈ P : ¬(p < q).

From MS2 it follows that every minimal set is an anti-chain in the order P . This anti-chain is
maximal: assume the contrary, then for some p ∈ P we have p⊥∆, and by MS1 we can find a
q ∈ ∆ with q 6 p, contradiction. Moreover, if (P,6) has a minimal set, then this set is uniquely
determined: Suppose that ∆1 6= ∆2 have both the properties MS1 and MS2. Then one of
∆1 \∆2 or ∆2 \∆1 is nonempty. Say, q1 ∈ ∆1 \∆2, but then there must be an element q2 ∈ ∆2

with q2 < q1. Contradiction.

Let (P,6) be an ordering (not necessarily Noetherian). Then a subset S ⊆ P is called a
final segment of P iff ∀p ∈ P : ∀s ∈ S : s 6 p⇒ p ∈ S. For G ⊆ P we let

(G) := {p ∈ P | ∃g ∈ G : g 6 p}.

The set (G) is then a final segment of P , and we say that (G) is the final segment generated
by G, or equivalently that G is a generator of that final segment.

PROPOSITION 1.1.1 Let (P,6) be an order. Then the following are equivalent:

(1) P is Noetherian.
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(2) Every subset has a finite minimal set.
(3) Every final segment is finitely generated.
(4) From every sequence in P one can extract an increasing sub-sequence.

Proof: (1)⇒(2): Let M = {∆ ⊆ P | ∀q ∈ ∆ : ∀p ∈ P : ¬(p < q)}. This set is nonempty, for if
it was not, then we could find a strictly decreasing sequence in P . The set M can be (partially)
ordered by set inclusion. Let (∆i)i∈I be a chain in M. We put ∆ =

⋃
i∈I ∆i. Let now δ ∈ ∆

and p ∈ P , then q ∈ ∆i for some i ∈ I, hence ¬(p < q). This shows ∆ ∈ M. By Zorn’s lemma,
the set M has a ⊆-maximal element ∆∗. Now suppose that there is a p ∈ P such that for no
q ∈ ∆∗ : q 6 p. Since ∆∗ has property MS2, the element p is incomparable to ∆∗. Since P is
Noetherian, there must be an element q∗ ∈ P such that q∗ 6 p and for no q ∈ P we have q < q∗.
But then ∆∗ ∪ {q∗} ∈ M, a contradiction. Since ∆∗ is an anti-chain, it is finite.

(2)⇒(1): A strictly decreasing sequence cannot have a minimal set. An infinite anti-chain
cannot have a finite minimal set.

(1)⇒(3): Let P be a Noetherian order and S ⊆ P a final segment of P . Then S has a
minimal set ∆(S). The finite segment generated by ∆(S) is S, and ∆(S) is thus a generator of
S.

(3)⇒(4): Suppose that a = (ai)16i is a sequence in P . We show that there is an increasing
sub-sequence (ain)16n of a. Let S1 be the final segment generated by the set A1 = {ai | 1 6 i}.
Then S1 is finitely generated, i.e. there is a finite subset B1 of A1 such that S1 = (B1). For
at least one element ai1 of B1 there are infinitely many elements ai ∈ A1 such that ai1 6 ai,
let A2 = {ai | i1 6 i ∧ ai1 6 ai}. Inductively, we may assume that for n > 1 we already have
constructed an increasing sequence (aij )j6n and an infinite set An+1 = {ai | in 6 i ∧ ain 6 ai}.
Then we take Sn+1 = (An+1) and a finite Bn+2 ⊂ An+1 with (Bn+1) = Sn+1. Now there has to
be at least one element b of Bn+1 such that for infinitely many elements a ∈ An+1 we have b 6 a.
Let aI be one such element, then we let in+1 = I and An+2 = {ai | in+1 6 i ∧ ain+1 6 ai}.
Then the sequence (ain)16n is increasing.

(4)⇒(1): Suppose that for an order (P,6) and every sequence a = (ai)16i in P it is possible
to extract an increasing sub-sequence from a. If (P,6) was not Noetherian, then we could find
a sequence (bi)16i which is either strictly decreasing or an anti-chain. But then we cannot find
an increasing sub-sequence. This shows that P is Noetherian. 2

More equivalent statements can be found in [Mil85] and [vdH97] which can also be taken as
references for the rest of this section.

Let (P,6) be an order. Then w is a word in P iff there is an integer n ∈ N such that
w ∈ Pn. We call n the length of w. The only word with length 0 is called the empty word.
By P ⋆ :=

⋃
n∈N

Pn we denote the set of all words, and P ♯ denotes the set of non-empty words
over P . Let w ∈ P ♯ be a word of length n > 1, then we write w = [w1, . . . , wn]. Note that for
every bijective π : {1, . . . , n} → {1, . . . , n} which is not the identity, π(w) = [wπ(1), . . . , wπ(n)]
is again a word of length n, but that w 6= π(w). For this reason, P ⋆ will also be called the set
of non-commutative words.

We will work with such orders P where the order of a word does not play a role, i.e. we will
in general not distinguish between w and π(w). To this end, we introduce a relation ∼n on Pn
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as follows. Let a, b ∈ Pn, then a ∼n b iff there is a bijective π : {1, . . . , n} → {1, . . . , n} with
a = π(b). Note that ∼n is an equivalence relation on Pn. We put

P♦ :=
⋃

n∈N

Pn/∼n

and call P♦ the set of commutative words over P . The set of non-empty commutative words
is denoted by P †. We introduce the relation ∼ on P ⋆ by a ∼ b iff there is an integer n ∈ N with
a, b ∈ Pn and a ∼n b. We remark that ∼ is an equivalence relation on P ⋆ and that we have
P ⋆/∼ = P♦. For a ∈ P ⋆ we let a/∼ = a/∼n , if a has length n.

EXAMPLE 1.1.2 Let Z = (Z,6), the integers with their usual ordering. Then [], [2,−56], [45]
and [4, 1, 1973] are words in Z⋆, but only the latter three are in Z♯. Although the words [2,−56]
and [−56, 2] are distinct elements, we have [2,−56] ∼2 [−56, 2]. Hence [2,−56]/∼2 = [−56, 2]/∼2

in Z†.

The ordering 6 on P induces orderings 6P ⋆ and 6P♦ on P ⋆ and P♦ respectively: let
a, b ∈ P ⋆, then a 6P ⋆ b iff a ∈ Pn, b ∈ Pm and there is a strictly increasing π : {1, . . . , n} →
{1, . . . ,m} such that for all 1 6 i 6 n : ai 6 bπ(i). It follows form this definition that whenever

a 6P ⋆ b, then the length of a is at most the length of b. Let a/∼, b/∼ ∈ P♦, then a/∼ 6P♦ b/∼
iff there is are elements c ∈ a/∼, d ∈ b/∼ with c 6P ⋆ d. From this definition we obtain for all
a, b ∈ P ⋆ : a 6P ⋆ b⇒ a/∼ 6P♦ b/∼.

EXAMPLE 1.1.3 We illustrate the above definitions with the following words from Z⋆ and Z♦.
We denote elements w/∼ by w.

[5, 4] 66Z⋆ [4, 1, 73]

[−11, 72] 6Z⋆ [4, 1, 73]

[9, 74] 66Z♦ [4, 1, 73]

[5, 4] 6Z♦ [4, 1, 73].

The following lemma is a classical result about Noetherian orders and due to Higman
(see [Hig52]).

LEMMA 1.1.4 (Higman) If (P,6) is an Noetherian order, then so are the orders (P ⋆,6P ⋆)
and (P♦,6P♦ ).

Proof: A concise proof which is based on a proof by Nash-Williams (see [NW63]) can be
found in [vdH97]. 2

Let P be an ordered multiplicative group with ordering 6 and neutral element 1. We suppose
that the multiplication is compatible with the ordering 6, i.e. that for all a, b, c ∈ P we have
a 6 b ⇒ ac 6 bc. Since the same holds for the inverse of c, c−1, we also have ac 6 bc ⇒ a 6 b.
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Also, if a, b, c, d ∈ P and a 6 b and c 6 d, we obtain ac 6 bc 6 bd, hence ac 6 bd. In what
follows, we will always assume that the multiplication is compatible with the ordering.

Let ∆ ⊆ P . If w = [w1, . . . , wn] ∈ ∆n is a nonempty word over ∆, then w1 · · ·wn is an
element in P . We write

∏
w = w1 · · ·wn in that case. If P is abelian, then

∏
w does not depend

on the order of the letters, i.e. for every v ∼ w, we have
∏
w =

∏
v. Hence we can define

∏
for

elements of ∆♦: if a/∼ ∈ ∆♦ and w ∈ a/∼, then
∏
a/∼ :=

∏
w. The definition is independent

from the choice of the representant w. If P is abelian and a ∈ P ⋆, then
∏
a =

∏
a/∼. We put∏

∆♦ := {∏w | w ∈ ∆⋆}. Then
∏

∆♦ ⊆ P , and we will write ∆♦ for
∏

∆♦. Note that with
this notation we have (∆♦)♦ = ∆♦.

If a, b ∈ P ⋆ and a 6P ⋆ b, then we have a strictly increasing π : {1, . . . , n} → {1, . . . ,m},
where n and m are the lengths of a and b respectively, and

∏
a 6 bπ(1) · · · bπ(n). Now consider

the case where for all i ∈ {1, . . . ,m} : 1 6 bi. Then
∏
a 6

∏
b. Lemma 1.1.4 applied to this

situation gives the following lemma.

LEMMA 1.1.5 Let P be an abelian group with ordering 6. Let S ⊆ P be such that 1 < S and
such that (S,6) is Noetherian. Then 1 6 S♦ is Noetherian.

We will need the following lemma in the next chapters.

LEMMA 1.1.6 Let (P,6) be a multiplicative order and A,B ⊆ P such that (A,6) and (B,6)
are Noetherian.

(1) Then AB = {ab | a ∈ A, b ∈ B} is Noetherian. Note that the same holds for every finite
set of Noetherian subsets of P .

(2) Let q ∈ P and P (q) = {(a, b) | a ∈ A, b ∈ B, ab = q}. Then P (q) is finite. The same holds
for every finite set of Noetherian subsets of P .

Proof: (1) Let (pi)i∈I ⊂ AB, and let for every i ∈ I elements ai ∈ A, bi ∈ B such that
pi = aibi. By Proposition 1.1.1 we find a sub-sequence (in)n∈N of I such that (ain)n∈N is
increasing. Again by Proposition 1.1.1, we find a sub-sequence (jn)n∈N of (in)n∈N such that
(bjn)n∈N is increasing. But then so is (pjn)n∈N. From Proposition 1.1.1 it follows that AB is
Noetherian.

(2) The set P (q) ⊆ AB is Noetherian. If it was infinite, then we could choose the sequences
from (1) such that at least one of (ajn)n∈N and (bjn)n∈N is strictly increasing. But then so is the
product, contradiction. 2

1.2 Ordered structures

Let K be a ring. We let K∗ := K \ {0} and K+ := {k ∈ K | 0 < k}. If K = (K,6) is an order
such that the multiplicative and additive groups on K are ordered groups, then we say that
(K,6) is an ordered ring. The absolute value |a| of an element a ∈ K is a, if 0 6 a, otherwise
−a. Note that |a| = 0 if and only if a = 0 and that for all a, b ∈ K

|a+ b| 6 |a| + |b|
|a · b| = |a| · |b|.
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We call a totally ordered ring K archimedean iff for all a, b ∈ K∗ there exist integers n,m such
that |a| < |nb| and |b| < |ma|.

Note that every ring R is a Z-module. We extend the notion of archimedean rings. Let R
and K be totally ordered rings such that K is an R-module. Then we define relations ≺R, 4R

and ≍R on K as follows. Let a, b ∈ K. Then a ≺R b iff ∀r, p ∈ R : |ra| < |pb| and a 4R b iff
∃r ∈ R : |a| < |rb|. We let a ≍R b iff ∃r, p ∈ R : |a| < |rb| ∧ |b| < |pa|. We say that K is
archimedean over R iff for all a ∈ K∗ : 1 ≍R a. Note that with this notation archimedean
means archimedean over Z.

LEMMA 1.2.1 Let K be an R-module. For all a, b, c ∈ K we have

(1) a 4R a, and if a ≺R b, then a 4R b,
(2) if a 4R b and b 4R c, then a 4R c,
(3) if a 4R b and b 4R a, then a ≍R b,

Moreover, if R is an A-module, then K is archimedean over A, if K is archimedean over R and
R is archimedean over A. In particular, if R is archimedean and K archimedean over R, then
K is archimedean.

Proof: Most of the lemma follows directly from the definitions. If for instance a ≺R b, then
take c = 1 and d arbitrary to show |a| < |db|, hence a 4R b. 2

Let G be a multiplicative group. For all g ∈ G and each integer n there is an element gn in
G. In other words, there is a function p : Z×G→ G with p(n+m, g) = p(n, g) · p(m, g) for all
integers n,m and all g ∈ G. We generalize this notion to rings R. We say that G is a group
with R-powers iff there is a function p : R×G→ G such that

RP1. ∀g ∈ G : ∀n ∈ Z : p(n, g) = gn,
RP2. ∀g ∈ G : ∀q, r ∈ R : p(q + r, g) = p(q, g) · p(r, g).

We write p(r, g) = gr in this case. Now suppose that both G and R are ordered. We say that G
is an ordered group with R-powers iff in addition to the above for all r ∈ R and all g ∈ G
we have

1 6 g ∧ 0 6 r ⇒ 1 6 gr.

Note that in ordered groups with R-powers the function gr is monotone in r for a fixed g, i.e.
for 1 6 g and 0 6 r 6 s we have g−r 6 1 6 gr 6 gs. For every totally ordered field K, the
set K+ of strictly positive elements forms a multiplicative group. We say that K is a totally
ordered field with R-powers iff K+ is an ordered group with R-powers.

Let K be a totally ordered field and R a ring such that K is an R-module over R. For
all k ∈ K∗ we let ‖k‖ = |k| iff 1 4R k, otherwise |k−1|. Note that for all k, l ∈ K∗ we have
‖k‖ · ‖l‖ 6 ‖kl‖. Let K have R-powers. We define the relation ≺≺R as follows. Let k, l ∈ K∗,
then we let k ≺≺R l iff there is a p ∈ R such that for all r ∈ R+ we have ‖kr‖ < ‖lp‖. If k are
such that for some r, p ∈ R+ we have ‖k‖ < ‖lp‖ and ‖l‖ < ‖kr‖, then we write k≍−l.
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1.3 Generalized power series

NOTATION 1.3.1 Let f : A → B be a function. We write fa = f(a) for a ∈ A. If the
function is indexed, say f = fi for some i in an index set I, then we write fi,a = (fi)a. The set
supp f = {a ∈ A | fa 6= 0} is the support of f . We let term f = {faa | a ∈ supp f} be the set of
terms of f .

Let in what follows C = (C,+,−, ·, 1, 0) be a ring. The orders that we will work with are in
general multiplicative orders.

NOTATION 1.3.2 Orders which are groups or semi-groups will henceforth be denoted by fraktur
type letters. The ordering will be written as <. Thus, from now on, if we work with M, then
M = (M,<) is both an order and a (semi-)group. In view of Warning 1.3.4, we point out that
a sequence (mi)06i is well-ordered in M, if for all 0 6 i < j we have mi < mj.

DEFINITION 1.3.3 Let C 6= ∅ be a ring and M an ordered semi-group. Then f ∈ C[[(M,<)]] =
C[[M]] is called a generalized power series over M with coefficients in C iff f : M → C is a
function such that the support of f is Noetherian in M, i.e.

C[[M]] = {f : M → C | supp f is Noetherian}.

WARNING 1.3.4 We will in general write C[[M]] instead of the longer C[[(M,<)]] to enhance
readability. One should nonetheless keep in mind the ordering of M. Although we try to make
it clear with which ordering we are working, the reader should always be aware of this warning.

REMARK 1.3.5 A set S of generalized power series with coefficients in C is complete iff

S = C[[
⋃

f∈S
supp f ]].

With this definition, every C[[M]] is complete. A set of generalized power series which is not
complete will be called incomplete. We will mainly work with complete sets of series and only
occasionally encounter examples incomplete sets. Therefore, we will in general not mention if a
set of series is complete. If a set is incomplete, we will say so.

We embed M into C[[M]] in a canonical way: let m ∈ M, then we denote the function
f ∈ C[[M]] by fm = 1 and ∀n 6= m : fn = 0 also by m. For c ∈ C we denote by cm the function
f with fm = c and ∀n 6= m : fn = 0. For f ∈ C[[M]] we write

f =
∑

m∈M

fmm.

Let M be an ordered, abelian and multiplicative group with neutral element 1M and let
C = (C, ·,+, 1C , 0) be a commutative ring. We call M the set of monomials of the set of
generalized power series C[[M]]. Let

M↑ := {m ∈ M |m ≻ 1}
M↓ := {m ∈ M | 1 ≻ m}.
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Elements from M↑ are called infinite monomials, and elements from M↓ are infinitesimal
monomials. Note that M↑ ∩M↓ = ∅ and M↑ ∪M↓ ⊆ M \ {1M} with equality if and only if M

is totally ordered. We let

M 7→ := M↑ ∪ {1M}
M

7→

:= M↓ ∪ {1M}.

Then M↑,M↓,M 7→, and M

7→

are closed under multiplication. Denote in the following C[[M]] by
S. Let

S↑ := C[[M↑]],

S 7→ := C[[M 7→]],

S↓ := C[[M↓]],

S

7→

:= C[[M

7→

]].

Then f ∈ S↑ if and only if f has purely infinite support, and f is called a purely infinite
generalized power series. The elements from S↓, i.e. the generalized power series with purely
infinitesimal support, are called purely infinitesimal generalized power series.

EXAMPLE 1.3.6 (1) Let M = (N,6N) = N, where < =6N denotes the natural ordering on
N. Notice that N is a totally ordered semi-group. Then f ∈ C[[N]] if and only if suppf is
6N-well-ordered. But this is always the case for functions f : N → C. On the other hand, if
we take N = (N, N >), then f ∈ C[[N]] if and only if suppf is N >-well-ordered, i.e. if suppf
is finite which is the case if and only if f is a polynomial in x over C. We will later work with
the set of elements f of Z[[N]] such that range f ⊆ N, and we will (abusively) denote this set by
N[[N]].

(2) Let xZ = {xn |n ∈ Z}. Let 1 = x0 and for integers n,m

xn · xm = xn+m and (xn)−1 = x−n.

Then (xZ, ·,−1, 1) is an abelian multiplicative group. Note that ϕ : Z→ xZ with ϕ(n) = xn is a
group isomorphism between (Z,+,−, 0) and (xZ, ·,−1, 1). We define the ordering < on xZ by

∀n,m ∈ Z : xn < xm ⇔ n 6 m.

The ordering < thus defined is total. Let xZ = (xZ,<) and C a ring. Note that C[[xZ]] is the
set of Laurent series. It follows that f ∈ C[[xZ]] if and only if there is a k ∈ Z and cn ∈ C for
n 6 k such that f =

∑
k>n cnx

n. Purely infinite series in C[[xZ]] are polynomials in x over C.

The purely infinitesimal series in C[[xZ]] are the formal power series in x−1 with constant term
0. Examples:

f1 = 3x−5 − x−2 + 1 + x+ 22x2 + 33x3 + · · · (Laurent series)
f2 = x−12 − 22x−3 + 4x−1 (polynomial)

f3 = x− x2

2 + x3

3 − · · · (formal power series in x)
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(3) Let xN = {xn |n ∈ N} ⊆ xZ. Then xN = (xN, ·, 1,<) is a totally ordered, multiplicative
semi-group. For a ring C the ring of generalized power series C[[xN]] is the set of formal power
series over C. If we consider the totally ordered semi-group M = (xN, ·, 1,4), then C[[M]] is the
set of polynomials in x over C. This illustrates the need to be aware of Warning 1.3.4.

(4) Let C a ring and n ∈ N. If k ∈ Zn, then we write k = (k1, . . . , kn). Let 0 = (0, . . . , 0)
and for k, l ∈ Zn

k + l := (k1 + l1, . . . , kn + ln) and − k := (−k1, . . . ,−kn).

Then Zn = (Zn,+,−, 0) is an abelian additive group. The set Nn = (Nn,+, 0) is an abelian
semi-group. Let k, l ∈ Zn, then we let k 6 l iff ∀i 6 n : ki 6 li. Both Zn and Nn are ordered by
6. Let X = (X1, . . . ,Xn) and k ∈ Zn, then Xk = Xk1

1 · · ·Xkn
n . Let XZ = {Xk | k ∈ Zn} and

XN = {Xk | k ∈ Nn}. Let for all k, l ∈ Zn

1 = X0

Xk ·X l = Xk+l

(Xk)−1 = X−k.

Again, XZ = (XZ, ·,−1, 1) and XN = (XN, ·,−1, 1) are multiplicative, abelian groups and semi-
groups respectively. The ordering < on XZ is defined by Xk < X l ⇔ k 6 l. The mapping
ϕ : Zn → XZ with ϕ(k) = Xk is a (semi-)group isomorphism between Zn and XZ and between
Nn and XN respectively. With XN = (XN,<), the ring C[[XN]] is called the ring of formal
power series in n indeterminates over the ring C. The series

3 +X + Y + 5XY − 2X2Y + 3XY 3 + · · ·

is therefore a formal power series in two indeterminates X and Y over Z.

1.4 Rings of generalized power series

Let us show how to define a ring structure on S. Let g, h ∈ S. Then g + h is the function
f : M → C such that for all m ∈ M : fm = gm + hm, i.e.

g + h =
∑

m∈M

(gm + hm)m.

Notice that supp f ⊆ supp g ∪ supph is indeed Noetherian. The unique element with empty
support is denoted 0; for all f ∈ S we obtain f +0 = 0+f = f . We define for f ∈ S the function
−f : M → C such that for all m ∈ M : (−f)m = −(fm), i.e.

−f =
∑

m∈M

(−fm)m.

Notice that supp f = supp (−f), −f ∈ S and −f + f = 0. Since (C,+) is abelian, so is (S,+).
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For our purposes it will be sufficient to consider commutative rings C. Recall that (v,w) ∈
P (m) iff vw = m for all v,w,m ∈ M. We define the function p = pf,g : M → C by

p =
∑

m∈M

(
∑

(v,w)∈P (m)

fvgw)m.

This function is well defined by (2) of Lemma 1.1.6. By (1) of the same lemma, supp p is
Noetherian. Hence pf,g ∈ S. Note that pf,g = pg,f . We write pf,g = f · g and call f · g the
product of f and g. The multiplication thus defined is commutative and associative. Let
1 : M → C be the function with supp1 = {1M} and 1(1M) = 1C , then 1 ∈ S and for all
f ∈ S : 1 · f = f · 1 = f .

LEMMA 1.4.1 (S, ·,+, 1, 0) is a ring.

Proof: It remains to show that for all f, g, h ∈ S we have f(g + h) = fg + fh. Let m ∈ M,
then

f(g + h)m =
∑

vw=m

fv(g + h)w =
∑

vw=m

fv(gw + hw) =
∑

vw=m

(fvgw + fvhw)

=
∑

vw=m

fvgw +
∑

vw=m

fvhw = (fg)m + (fh)m

= (fg + fh)m.

Hence the lemma. 2

Note that for S = C[[M]] the subsets S↑,S↓,S 7→,S

7→

are closed under addition and multiplica-
tion. If C is a ring, then S 7→ and S

7→

are subrings of S.

REMARK 1.4.2 Some of the structural properties can be introduced for more general C and
M. Let P 6= ∅ be an ordered set. We let C[[P ]] be set set of functions f : P → C with
Noetherian support. Then + can be defined as above, and (C[[P ]],+, 0) is an additive group if
and only if (C,+, 0) is an additive group. The equivalence remains true, if we consider abelian
groups. Suppose that M is multiplicative. In this case, if (C, ·, 1) is a commutative, associative
semi-group, then so is (C[[M]], ·, 1).

1.5 Noetherian families

From now on, we will work with generalized power series over rings C. For a finite number of
generalized power series f1, . . . , fn ∈ S = C[[M]] we have defined the sum f1 + · · ·+ fn ∈ S. We
will extend this notion of addition to larger subsets of S.

NOTATION 1.5.1 Let F ⊆ S, then we will write F = (fi)i∈I for an index set I. Let (Xi)i∈I be
a family of subsets of a set X. Then we write

∐
i∈I Xi for

⋃
i∈I Xi, if the sets Xi are pairwise

disjoint. If no confusion can arise, we simply write
∐
Xi.
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DEFINITION 1.5.2 F = (fi)i∈I ∈ SI is a Noetherian family iff

(a)
⋃
i∈I supp fi is Noetherian in M.

(b) ∀m ∈ M : |{i ∈ I |m ∈ supp fi}| <∞.

For a Noetherian family F = (fi)i∈I let
∑
F =

∑
i∈I fi =

∑
m∈M

(
∑

i∈I fi,m)m. Note that∑
F ∈ S.

Every generalized power series f ∈ S gives rise to a Noetherian family

Ff = (fmm)m∈M.

In this case, we have supp
∑
Ff = supp f . Note that in general supp

∑
F ⊆ ⋃i∈I supp fi for a

Noetherian family F = (fi)i∈I . For two families F = (fi)i∈I and G = (gj)j∈J , the product F ·G
is the set {fi · gj | i ∈ I, j ∈ J}. Letting D = I×J and hd = figj for d = (i, j) ∈ D, we can write
F ·G = (hd)d∈D.

PROPOSITION 1.5.3 Let F = (fi)i∈I be Noetherian family in S. Then

(1) If J ⊆ I, then (fi)i∈J is a Noetherian family.
(2) If I =

∐
j∈J Ij and gj =

∑
i∈Ij fi, then G = (gj)j∈J is a Noetherian family and

∑
F =∑

G.
(3) Let F and G be two Noetherian families, then F ·G is a Noetherian family and

∑
F ·∑G =∑

(F ·G).
(4) Multiplication and addition with Noetherian families are commutative, distributive and

associative, i.e. for Noetherian families F,G,H ∈ S we have

(a)
∑
F ·∑G =

∑
G ·∑F ,

(b)
∑
F (
∑
G+

∑
H) =

∑
(FG) +

∑
(FH),

(c)
∑
F ·∑(GH) =

∑
(FG) ·∑H =

∑
(FGH).

Proof: (1) follows from
⋃
i∈J supp fi ⊆

⋃
i∈I supp fi. We remark that

supp
∑

G ⊆
⋃

j∈J
supp gj =

⋃

j∈J

⋃

i∈Ij
supp fi =

⋃

i∈I
supp fi

shows that supp
∑
G is Noetherian. Let m ∈ M and j ∈ J with m ∈ supp gj , then there is an

ij ∈ I with m ∈ supp fij . Therefore there can only be finitely many j ∈ J with m ∈ supp gj .
Hence G is a Noetherian family. To show the equality, let m ∈ M. Let {j1, . . . , jn} = {j ∈
J |m ∈ supp gj} and for every 1 6 k 6 n, Bk = {i ∈ Ijk |m ∈ supp fi}. Then m ∈ supp

∑
F if

and only if m ∈ ⋃16k6nBj, thus

(∑
F
)

m

=

n∑

k=1

∑

i∈Bk
fi,m =

n∑

k=1

gjk,m =
(∑

G
)

m

.

Hence (2).
Let with the above notations F ·G = H = (hd)d∈D, then

suppH ⊆
⋃

supphd ⊆ (
⋃

supp fi)(
⋃

supp gj),
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hence by Lemma 1.1.6, the set suppH is Noetherian. Fix m ∈ M. By (2) of Lemma 1.1.6 applied
to S =

⋃
a supp fi and T =

⋃
b supp gj , there are only finitely many d ∈ D with m ∈ supphd.

Thus the first part of (3). Let F = (fi)i∈I be a Noetherian family and g a generalized power
series. Then for m ∈ M

(g
∑

F )m =
∑

vw=m

gv

∑
Fw.

For every w the sum
∑
Fw is finite and we have

∑

vw=m

gv

∑
Fw =

∑

i∈I

∑

vw=m

gvfi,w =
∑

i∈I
(gfi)m =

∑
(gF )m.

Now for G = (gj)j∈J we get
∑

G ·
∑

F =
∑

j∈J
gj
∑

F =
∑

j∈J

∑
gjF =

∑

i∈I

∑

j∈J
gjfi =

∑

d∈D
hd =

∑
(FG).

Hence (3). (4) follows from (3). 2

CITERION 1.5.4 Let F = (fi)i∈I be a family of series in S. We let

SF := {(i,m) | i ∈ I ∧ m ∈ supp fi}.

We define the strict ordering ≻ on Sf by (i,m) ≻ (j, n) iff m ≻ n. Then F is a Noetherian family
if and only if (Sf ,<) is Noetherian.

PROPOSITION 1.5.5 Let E = (εi)i∈I be a Noetherian family in S such that εi ≺ 1 for all i ∈ I.
Then the sequence

(εi1 · · · εin)(i1,... ,in)∈I⋆

is also a Noetherian family in S.

Proof: Let SE and < be defined as in Criterion 1.5.4. Then (SE ,<) is Noetherian. The
ordering < induces an ordering <S⋆E

on S⋆E , which is Noetherian as well by Higman’s Theorem.
Criterion 1.5.4 then shows the proposition. 2

COROLLARY 1.5.6 Let f1, . . . , fn ∈ S↓ and let fk = fk11 · · · fknn for k ∈ Nn. Then (fk)k∈Nn is
a Noetherian family.

PROPOSITION 1.5.7 Let F = (fn)06n be a Noetherian family in S. Then for all g ∈ S

7→

the
sequence (fn · gn)06n is again a Noetherian family.

Proof: By Criterion 1.5.4, the ordering (Sf ,<) is Noetherian. Since supp g 4 1, the set
(supp g)⋆ is Noetherian, too, by Higman’s Theorem. Consider the mapping

ϕ : S × (supp g)⋆ −→
⋃

06n

{(n, a) | a ∈ supp fn ·
∏

(supp g)⋆}

((n,m), (n1, . . . , nk)) 7−→ (n,mn1 · · · nk).
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Then ϕ is strictly increasing and surjective. Hence rangeϕ is a Noetherian set. But then again
by Criterion 1.5.4, the sequence (fn · gn)06n is a Noetherian family. 2

COROLLARY 1.5.8 Let (fn)06n be a sequence in S and ε ∈ S such that (fn · εn)06n is a Noethe-
rian family. Then for every δ 4 ε in S, the sequence (fn · δn)06n is a Noetherian family.

Proof: Since δ/ε 4 1 and

(
fn · εn ·

(
δ

ε

)n)

06n

= (fn · δn)06n ,

the corollary follows from Lemma 1.5.7. 2

1.6 Strongly linear algebra

Let F = (fi)i∈I be a Noetherian family in the ring of generalized power series S. Then we have
defined a series

∑
F =

∑
I fi in S. Hence for an index set I, we have a summation operator

∑
I

which assigns a series from S to every Noetherian family which is indexed with I. This section
will treat such summation operators in an abstract way.

Let G be an abelian, additive group. Assume that for every index set I we have a partially
defined summation operator

∑
I such that if (xi)i∈I ∈ GI ∩ dom

∑
I , then

∑
I(xi)i∈I is an

element from G. We say that G is a strong abelian group iff
∑

I is totally defined for all
finite I and if for all I and (xi)i∈I ∈ GI we have

SA1. if I = {i1, . . . , in} is finite, then
∑

I(xi)i∈I = xi1 + · · · + xin ;
SA2.

∑
I(0)i∈I = 0 for all I;

SA3. if (xi)i∈I ∈ dom
∑

I and ϕ is a permutation of I, then (xϕ(i))i∈I ∈ dom
∑

I and

∑
I(xi)i∈I =

∑
I(xϕ(i))i∈I ;

SA4. if (xi)i∈I ∈ dom
∑

I and I =
∐
j∈J Ij , then

• for all j ∈ J : (xi)i∈Ij ∈ dom
∑

Ij
,

• (
∑

Ij
(xi)i∈Ij )j∈J ∈ dom

∑
J

• ∑J(
∑

Ij
(xi)i∈Ij )j∈J =

∑
I(xi)i∈I .

REMARK 1.6.1 We will also write
∑

I xi, if no confusion can arise. Hence the last condition
in SA4 can be written as

∑
J

∑
Ij
xi =

∑
I xi. Also, if I is clear from the context, we will

use
∑

instead of
∑

I . Notice that we allow the implication in SA4 only in one direction.
One might think of series

∑
Ij
xi = 1 − 1. Then for J = N we have

∑
J

∑
Ij
xi = 0, but∑

I xi = (1 − 1) + (1 − 1) + · · · .

A strong ring is a ring R which is a strong additive group such that for all index sets I, J
and all (xi)i∈I ∈ RI , (yj)j∈J we have
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SR. if (xi)I ∈ dom
∑

I and (yj)J ∈ dom
∑

J , then (xi · yj)I×J ∈ dom
∑

I×J and

∑
I×J xi · yj = (

∑
I xi) · (

∑
J yj).

If R is a strong ring and (xi)i∈I ∈ RI ∩ dom
∑

I , then for all r ∈ R we have (r ·xi)i∈I ∈ dom
∑

I

and r ·∑I xi =
∑

i r · xi. Notice that this implies that the converse direction of condition SR
is true: let I, J be index sets such that (xi · yi)I×J ∈ dom

∑
I×J . By SA4, for all j ∈ J the set

(xi · yj)i∈I is in the domain of
∑

I . From SR follows
∑

I xi · yj = yj ·
∑

I xi. We have
∑
xi ∈ R,

thus by SR
Let R be a ring and M be an R-module. Summation operators in R and M are denoted by∑
I,R and

∑
I,M respectively. We say that M is a strong R-module iff R is a strong ring, if

the additive group of M is strong and if

SM1. for all (xi)i∈I ∈ dom
∑

I,M and all r ∈ R we have (r · xi)i∈I ∈ dom
∑

I,M and

∑
I,M r · xi = r ·∑I,M xi.

SM2. for all (ri)i∈I ∈ dom
∑

I,R and all x ∈M we have (ri · x)i∈I ∈ dom
∑

I,M and

(
∑

I,R ri) · x =
∑

I,M ri · x.

A strong algebra is an R-algebra A together with infinite summation symbols, such that A
is a strong ring and a strong R-module. Let us apply these definitions to rings of generalized
power series. Let C be a ring. We define

∑
I,C on C if and only if I is finite. We can do this

for each ring R, and call this the trivial strong ring structure of R. Note that S = C[[M]] is
a C-algebra. For families F = (fi)i∈I we define

∑
I,S if and only if F is Noetherian, and in this

case we let
∑

I,S F be defined as in Section 1.5. We now prove

PROPOSITION 1.6.2 With the above definitions of
∑

I in C and S the field C[[M]] is a strong
C-algebra.

Proof: Since
∑

I,C is only defined for finite I, the ring C is strong. We have to show that S
is both a strong ring and a strong C-module.

The conditions SA1, SA2 and SA3 need no comment. The condition SA4 follows from (2)
of Proposition 1.5.3. Thus C[[M]] is a strong abelian group. The condition SR follows from (3)
of the same proposition. Hence S is a strong ring.

Finally, we show that S is a strong C-module. The condition SM1 is a special case of SR.
So is condition SM2, since C has the trivial strong ring structure. 2.

Let M and N be two strong R-modules. A mapping ϕ : M → N is a strongly linear
mapping iff it preserves the infinite summation symbols, i.e. for all I and all (xi)i∈I ∈ dom

∑
I,M

we have

SL1. (ϕ(xi))i∈I ∈ dom
∑

I,N and
SL2. ϕ(

∑
I xi) =

∑
I ϕ(xi).

We remark that strongly linear mappings are linear and that ϕ(
∑

I ri · xi) =
∑

I riϕ(xi) for
all (rixi)i∈I in the domain of

∑
I,M . We will consider strong linear mappings between rings of

generalized power series.
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PROPOSITION 1.6.3 Let C[[M]] and C[[N]] be two rings of generalized power series. Let

ϕ : M −→ C[[N]]

be a Noetherian mapping, i.e. a mapping such that the image of a Noetherian set in M is a
Noetherian family in C[[N]]. Then ϕ extends uniquely to a strongly linear mapping ϕ̂ : C[[M]] →
C[[N]].

Proof: Let f ∈ C[[M]]. Then supp f is Noetherian, thus (ϕ(m))m∈supp f is a Noetherian
family. So is F = (fmϕ(m))m∈supp f . We will prove that the mapping

ϕ̂ : f 7−→
∑

m∈supp f

fmϕ(m)

is the only strong linear mapping which coincides with ϕ on M.
We first show that ϕ̂ is a strong linear mapping. Let F = (fi)i∈I be in dom

∑
I . In other

words, F is a Noetherian family. Note that supp
∑
F is contained in S =

⋃
i∈I supp fi which is

a Noetherian set. We claim that (fi,mϕ(m))(i,m)∈I×S is a Noetherian family in C[[N]]. Since F
is a Noetherian family, we have

⋃

(i,m)∈I×S
supp fi,mϕ(m) ⊆ ϕ(S),

which is Noetherian by our hypothesis about ϕ. Furthermore, given n ∈ N, the set {m ∈
S |ϕ(m)n 6= 0} is finite, since (ϕ(m))m∈S is a Noetherian family. Finally, for each m ∈ S with
ϕ(m)n 6= 0 the set {i ∈ I | fi,m 6= 0} is also finite, since F is a Noetherian family. Hence the set

{(i,m) ∈ I × S | fi,mϕ(m) 6= 0}

is finite. This shows our claim.
Now the claim together with SA4 proves that (ϕ̂(fi))i∈I = (

∑
m∈S fi,mϕ(m))i∈I is a Noethe-

rian family and that

∑
Iϕ̂(fi) =

∑
I

∑

m∈S
fi,mϕ(m) =

∑

(i,m)∈I×S
fi,mϕ(m) =

∑

m∈S

∑

i∈I
fi,mϕ(m) = ϕ̂ (

∑
Ifi) .

This shows the strong linearity of ϕ̂.
In order to show that ϕ̂ is unique, it suffices to remark that for each f ∈ C[[M]] we must

have ϕ̂(fmm) = fmϕ(m) by linearity and ϕ̂(f) =
∑

supp f fmϕ(m) by strong linearity. 2

COROLLARY 1.6.4 Let ϕ : M → C[[N]] and ψ : N → C[[V]] be two mappings as in Proposi-
tion 1.6.3 and ϕ̂ and ψ̂ their unique extensions to C[[M]] and C[[N]] as strong linear mappings.
Note that ψ̂ ◦ ϕ : M → C[[V]] is a mapping such that the image of Noetherian sets in M are
Noetherian families in C[[V]]. Then

̂̂ψ ◦ ϕ = ψ̂ ◦ ϕ̂.
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Proof: Note that ψ̂ ◦ ϕ̂ is a strong linear mapping extending ψ̂ ◦ϕ. Then the corollary follows
from the uniqueness. 2

Let us finally give an application of strong linearity as a tool. Let S = C[[M]] be a ring of
generalized power series and f1, . . . , fn ∈ S↓. For k ∈ Nn we let fk = fk11 · · · fknn . Corollary 1.5.6
implies that (fk)k∈Nn is a Noetherian family. Hence for every formal power series g ∈ C[[XN]]
in n indeterminates, the family (gkf

k)k∈Nn is Noetherian. We denote its sum by g ◦ f̄ . If g0 = 0,
then g ◦ f̄ ∈ S↓.

Now let g1, . . . , gm ∈ C[[XN]]↓ be formal power series without absolute term. Then gi◦f̄ ∈ S↓
for 1 6 i 6 m. On the other hand, for every formal power series h in m indeterminates over C
the above implies that h ◦ (g1, . . . gm) = h ◦ ḡ is a formal power series in n indeterminates with
coefficients in C.

This way we get two series h ◦ (g1 ◦ f̄ , . . . , gm ◦ f̄) = h ◦ (ḡ ◦ f̄) and (h ◦ ḡ) ◦ f̄ in S. We want
to show that they are identical. Instead of writing down each series gi and h and evaluating
every term in the development, we use the strong linearity.

LEMMA 1.6.5 Let C[[M]] and C[[N]] be two rings of generalized power series and

ϕ : M −→ C[[N]]

be a mapping such that the image of a Noetherian set in M is a Noetherian family in C[[N]].
(1) If ϕ preserves multiplication, then so does its unique strong linear extension ϕ̂.
(2) If ϕ(m n) = ϕ(m) · n + m · ϕ(n) for all m, n ∈ M, then ϕ̂(f g) = ϕ̂(f) · g + f · ϕ̂(g) for all
f, g ∈ C[[M]].

Proof: (1) We have for all m, n ∈ M that ϕ(mn) = ϕ(m) · ϕ(n). Let ϕ̂ be the unique strong
linear extension of ϕ to C[[M]]. Fix f, g ∈ C[[M]]. We have to show ϕ̂(fg) = ϕ̂(f) · ϕ̂(g).

For m ∈ M we have by strong linearity

ϕ̂(mg) = ϕ̂(m
∑

n∈M

gnn) =
∑

n∈M

gn · ϕ(mn) =
∑

n∈M

gn · ϕ(m) · ϕ(n).

From the multiplication in S follows
∑

M

gn · ϕ(m) · ϕ(n) = ϕ(m) ·
∑

m∈M

gn · ϕ(n) = ϕ(m) · ϕ̂(g).

Thus ϕ̂(mg) = ϕ(m) · ϕ̂(g). From the strong linearity we now obtain

ϕ̂(fg) = ϕ̂

(
∑

m∈M

fmm · g
)

=
∑

m∈M

fmϕ(m) · ϕ̂(g) = ϕ̂

(
∑

m∈M

fmm

)
· ϕ̂(g).

This shows ϕ̂(fg) = ϕ̂(f) · ϕ̂(g).
(2) For m ∈ M and g ∈ C[[M]] we have by strong linearity

ϕ̂(m g) = ϕ̂(m
∑

n

gn n) =
∑

n

gnϕ(m n) =
∑

n

gnϕ(m) · n +
∑

n

gn m · ϕ(n)

= ϕ(m) · g + m · ϕ̂(g).
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Then

ϕ̂(f g) = ϕ̂(
∑

m

fmm g) =
∑

m

fmϕ̂(m g) =
∑

m

fm(ϕ(m) · g + m · ϕ̂(g))

= (
∑

m

fmϕ(m)) · g + (
∑

m

fmm) · ϕ̂(g) = ϕ̂(f) · g + f · ϕ̂(g).

2

PROPOSITION 1.6.6 Let n,m ∈ N and S = C[[M]] be a ring of generalized power series.
Let f1, . . . , fn ∈ S↓ and g1, . . . , gm ∈ C[[XN

1 · · ·XN
n ]] be formal power series without absolute

term. Let h ∈ C[[XN
1 · · ·XN

m]] and gi ◦ f̄ := gi(f1, . . . , fn) and h ◦ ḡ := h(g1, . . . , gm). Then
(h ◦ ḡ) ◦ f̄ = h ◦ (ḡ ◦ f̄).

Proof: Fix f1, . . . , fn and g1, . . . , gm as above. We define mappings

ϕ : XN
1 · · ·XN

m −→ C[[XN
1 · · ·XN

n ]]

ψ : XN
1 · · ·XN

n −→ C[[M]]

ϑ : XN
1 · · ·XN

m −→ C[[M]]

by

ϕ(Xk) := gk11 · · · gkmm = Xk ◦ ḡ
ψ(X l) := f l11 · · · f lnn = X l ◦ f̄
ϑ(Xk) := ϕ(ḡ) ◦ f̄ .

We remark that ϕ, ψ and ϑ are multiplicative, and by Corollary 1.5.6 they extent uniquely to
strongly linear operators

ϕ̂ : C[[XN
1 · · ·XN

m]] −→ C[[XN
1 · · ·XN

n ]]

ψ̂ : C[[XN
1 · · ·XN

n ]] −→ C[[M]],

which are also multiplicative. Then ψ̂ ◦ ϕ̂ : C[[XN
1 · · ·XN

m]] → C[[M]] is strongly linear and
multiplicative. Thus ϑ̂ = ψ̂ ◦ ϕ̂. Now let h as above, then

h ◦ (ḡ ◦ f̄) = ϑ̂(h) =
∑

k∈Nm

hk · ψ̂ ◦ ϕ̂(Xk).

By strong linearity, this means

h ◦ (ḡ ◦ f̄) = ψ̂

(
∑

k∈Nm

hk · ϕ̂(Xk)

)
=

(
∑

k∈Nm

hk · ϕ̂(Xk)

)
◦ f̄ .

From
∑

k∈Nm
hk · ϕ̂(Xk) = ϕ̂(h) = h ◦ ḡ we then obtain

h ◦ (ḡ ◦ f̄) = (h ◦ ḡ) ◦ f̄ .

This shows the proposition. 2
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1.7 Totally ordered supports

In this section, we will work with sets of generalized power series S = C[[M]] such that both
C and M are totally ordered. In this case, we introduce some canonical representations of
generalized power series from S as well as two orderings on this set.

1.7.1 Representations of generalized power series

Since M is totally ordered, we obtain M = M↑ ∪ {1M} ∪ M↓. For every subset S ⊆ M there
are uniquely determined sets S↑ ⊆ M↑, S↓ ⊆ M↓, and SC ⊆ {1M} such that S = S↑ ∪ SC ∪ S↓.
Let f ∈ S, then supp f = (supp f)↑ ∪ (supp f)C ∪ (supp f)↓. We let f↑ be the generalized power

series with support (supp f)↑ and ∀m ∈ (supp f)↑ : fm = f↑m, i.e.

f↑ =
∑

m∈M↑

fmm.

Similarly, we define fC and f↓. We let f 7→ = f↑ + f= and f

7→

= f↓ + f=. Then

f = f↑ + f= + f↓

= f 7→ + f↓

= f↑ + f

7→

.

We remark that f↑, f 7→, f=, f↓ and f
7→

are uniquely determined. We call f↑, f= and f↓ the purely
infinite, constant and purely infinitesimal part of f . Note that f↑ ∈ S↑ and f↓ ∈ S↓.

EXAMPLE 1.7.1 We illustrate the above notations with an example from C[[xZ]]. Let f =
3x−5 − x−2 + 1 + x+ 22x2 + 33x3 + · · · . Then

f↑ = 3x−5 − x−2

f 7→ = 3x−5 − x−2 + 1

f= = 1

f

7→

= 1 + x+ 22x2 + 33x3 + · · ·
f↓ = x+ 22x2 + 33x3 + · · · .

There is a second canonical representation of a generalized power series f ∈ S. We call
min supp f the leading monomial of f and denote it by df . We let cf = fdf

and call cf
the leading coefficient of f . The series τf = cfdf is called the leading term of f . Let the
remainder be the series Rf with suppRf = supp f \ {df} and ∀m ∈ suppRf : Rf,m = fm, i.e.

Rf =
∑

m∈supp f\{df }
fmm.

Then f = τf +Rf and df ≻ suppRf . The function δf : M → C which is defined by

δf =
∑

m∈supp f\{df }
(fm/cf ) · m/df
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is in S, and we have f = cfdf (1 + δf ) and cfdf δf = Rf . Note that supp δf = {m/df |m ∈
suppRf} contains only infinitesimal elements. In later chapters, we will frequently use this
product representation for elements f ∈ S, and we will write f = cd(1 + δ) instead of f =
cfdf (1 + δf ), if no confusion can arise. We summarize:

f = cfdf (1 + δf )

= cfdf +Rf

= τf (1 + δf )

= τf +Rf .

EXAMPLE 1.7.2 We use the series f from Example 1.7.1. Then

df = x−5

cf = 3

Rf = −x−2 + 1 + x+ 22x2 + 33x3 + · · ·

δf = −1

3
x3 +

1

3
x5 − 1

3
x6 +

22

3
x7 +

33

3
x8 + · · ·

EXAMPLE 1.7.3 We will use Proposition 1.6.6 mainly to show equalities between formal power
series that will be defined in different ways. Let us give an example of what we mean by this.
Assume that C is a field and that S = C[[M]]. Let f ∈ S and f = cd(1 + δ) as above. Then
(δi)i>0 is a Noetherian family, and for F (x) =

∑
06iX

i we know that 1 = (1+X)F (−X). From

Lemma 1.6.6 we now get 1 = (1 + δ)F (−δ) and F (−δ) ∈ S

7→

. Since c−1 ∈ C and d−1 ∈ M,
we obtain (cd)−1F (−δ) · f = 1. Therefore, there exists a multiplicative inverse in S. We have
proved:

COROLLARY 1.7.4 (C[[M]],+, ·, 1, 0) is a field if and only if C is a field.

Let S+ := {f ∈ S | 0 < f} and S∞ := {f ∈ S | df ∈ M↑}. Elements from S∞ are called
infinite series. We let S+

∞ := S∞ ∩ S+. Note that S↑ ⊆ S∞. The series f from Example 1.7.1
is positive, infinite, i.e. f ∈ C[[xZ]]+∞. The remainder Rf is still infinite, but not positive. The
series δf is neither positive nor infinite.

1.7.2 Lexicographic orderings

The total orders C and M give rise to a total ordering on the set of generalized power series S.

Let < and 6 be the total orderings on the sets M and C respectively. For each series
0 6= f ∈ S = C[[M]] we let

0 < f iff 0 < cf .

If f, g ∈ S, then we let g < f iff 0 < f − g. Note that S is totally ordered by 6. We call this
ordering the lexicographic ordering of S, and we will also use the symbol 6lex to denote this
ordering. For f, g ∈ S with f <lex g we also say that f is lexicographically smaller than g.
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EXAMPLE 1.7.5 Take the ring of generalized power series C[[xZ]], where C is a totally ordered
ring and xZ totally ordered by < as in Example 1.3.6. For the series

f1 = 2x−1 + 5 + x+ x2 + · · ·
f2 = 2x−1 + 4 + x+ x2 + · · ·
f3 = x−1 + 4 + x+ x2 + · · ·
f4 = −x−2

f5 = x−2

we obtain f4 <lex f3 <lex f2 <lex f1 <lex f5.

REMARK 1.7.6 The ring (S,6lex) is a C-module and we have relations ≺C , 4C and ≍C on S
as above. For two m, n ∈ M with m ≻ n we obtain |cn| <lex |dm| for all 0 6= c, d ∈ C. It follows
that n ≺C m. Hence, we remark that ≻C |M = ≻, <C |M = < and ≍C |M = idM. Since ≻C ,<C

are extensions of ≻,< on M, we denote them by ≻ and < as well. Note, however, that 4 is not
a total ordering on S. Take for instance f = x+x2 and g = x in C[[xZ]], then f 4 g and g 4 f ,
but f 6= g. In fact, we have

f ≻ g ⇔ df ≻ dg and f ≍ g ⇔ df = dg.

To show this, we may assume that f, g are positive. Let f ≺ g. Then let c, d ∈ C such that
d > 0 and c · cg − d · cf > 0. If df 4 dg, then this implies 0 < df < cg. We remark that the
second equivalence can be shown similarly.

An element f ∈ S = C[[M]] is said to be weakly decreasing iff ∀m, n ∈ supp f : m < n ⇔
fm > fn > 0 (in C). The set of weakly decreasing generalized power series will be denoted by
Swd. For sets S ⊆ S we let Swd := S ∩ Swd . For instance, from the series in Example 1.7.5
only the series f5 = x−2 is a weakly decreasing series. Other examples in the ring C[[xZ]] are
x+ x2 + x3 + · · · or 5x−4 + 4x−3 + 3x−2 + 2x−1 + 1.

LEMMA 1.7.7 Let C and M be well-ordered. Then (C[[M]]wd,6lex) is well-ordered.

Proof: Suppose that (fi)06i is a strictly decreasing sequence in (C[[M]]wd,6lex). The set⋃
supp fi ⊆ M is well-ordered. Then the set of leading monomials {dfi | i > 0} cannot be

infinitely decreasing; but on the other hand, it cannot be infinitely increasing either, since if
it was, we could extract an strictly increasing sub-sequence from (fi)06i. We therefore find an
element m0 ∈ M such that m0 = dfi for infinitely many i > 0. We can hence without loss of
generality assume that (fi)06i has this property. For the same reason, the set {cfi | 0 6 i} ∈ C of
leading coefficients cannot have either infinitely increasing or decreasing sequences. We therefore
may assume that we have m0 ∈ M and c0 ∈ C such that for all i > 0 : c0m0 = cfidfi .

Assume now that for an ordinal α, we have constructed a subset {mβ |β < α} ⊆ ⋃ supp fi
such that

(1)α ∀k < l < α : mk ≻ ml,
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(2)α ∀i > 0 : {mβ |β < α} ⊆ supp fi and min(supp fi \ {mβ |β < α}) ≺ mβ for all β < α, and
(3)α ∀β < α : ∃cβ ∈ C : ∀i > 0 : fi,mβ = cβ.

Then let

fαi := fi −
∑

β<α

cβmβ,

i.e. fαi ∈ C[[M]]wd with suppfαi = supp fi \ {mβ |β < α} and ∀m ∈ supp fαi : fαi,m = fi,m.
Repeating the above argument, we can find cα ∈ C,mα ∈ M such that for an infinite sub-
sequence of (fαi )06i we have mα = dfαi and cα = cfαi . Hence, for successor ordinals, we can
always maintain the hypotheses.

Let λ be a limit ordinal such that for all α < λ we have (1)α, (2)α, (3)α. Since fi is weakly
decreasing and {fi,mβ |β < λ} ⊆ C, this set cannot be either strictly increasing nor decreasing.
Hence there must be a ci ∈ C and a βi < λ such that for all β with βi 6 β < λ we have
ci = fi,mβ . But this is true for all i. From (1)βi , (2)βi , (3)βi it follows now that for β > βi all
functions in the sequence take the same value, cβ. Hence, the result of the extraction process is
always the same sequence from βi on. We can therefore define fλi as the element from C[[M]]wd

with suppfλi = supp fi \ {mβ |β < λ} and ∀m ∈ supp fλi : fλi,m = fi,m. We continue this process
until suppfi is empty. But then we have a constant sub-sequence, contradiction. 2

Lemma 1.7.7 is not true if we replace C[[M]]wd by C[[M]]+. Let for instance C = N,M = N
and fi = (1, . . . , 1, 2, 0, . . . ), i.e. the function fi : N→ N with fi(j) = 1 for 1, . . . , i−1, fi(i) = 2
and fi(j) = 0 else. Then f0 lex> f1 lex> f2 · · · . In fact, after ω extractions in the proof of the
lemma, there are no series fi left. The set N[[N]]wd, which is by Lemma 1.7.7 well-ordered, will
be useful in later chapters.

1.8 On truncations and supports

Let f, g ∈ S = C[[M]], then g is a truncation of f , in symbols g � f , iff there is a monomial
mg ∈ M such that for all m ≻ mg : fm = gm and for all mg < m : gm = 0, i.e.

g =
∑

m ≻ mg

fmm.

The truncation g of f is proper iff g 6= f , and we write g � f in this case. Suppose 0 6= f . For
every proper truncation 0 6= g of f we have supp g ≻ supp (f−g) and in particular supp g ≻ f−g.

Let f, g ∈ S, then h = f △ g ∈ S is called the maximal common truncation of g and f
iff h� g, h� f and if for all h∗ � f with h� h∗ we have ¬(h∗ � g).

REMARK 1.8.1 To all given f, g ∈ S a maximal common truncation exists and it is unique. To
see this suppose that h1 and h2 are distinct maximal truncations of g and f , but then either
h1 � h2 or h2 � h1, which contradicts the definition.

Let f1 > f2 > f3 be generalized power series, then we have

f1 △ f3 � f2 △ f3,

f1 △ f3 � f1 △ f2.
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To see this, we remark that we have 0 < f2 − f3 < f1 − f3 and thus f2 − f3 4 f1 − f3. Then for
every t ∈ term f3 with t ≻ f1 − f3 we have t ≻ f2 − f3. Hence

f1 △ f3 =
∑

t∈term f3:
t≻f1−f3

t �
∑

t∈term f3:
t≻f2−f3

t = f2 △ f3.

Similarly, from 0 < f1 − f2 < f1 − f3 we obtain f1 − f2 4 f1 − f3 and with the same argument
as above

f1 △ f3 =
∑

t∈term f1:
t≻f1−f3

t �
∑

t∈term f1:
t≻f1−f2

t = f1 △ f2.

It is in general not true that g � f implies g + h � f + h. A simple example in C[[xZ]] is
x� x+ x2 and h = x2. In the following lemma, we give a condition on the support of the series
h under which g+h remains a truncation of f +h. (Note that the truncations here are proper.)

LEMMA 1.8.2 Let f, g, h ∈ S with g�f . Then g+h�f+h if and only if supph ≻ supp (f−g).

Proof: Note that g � f implies that ∅ 6= supp (f − g) = supp f \ supp g. First, suppose that
g+h�f+h. If there was some m ∈ supph with m 6≻ supp (f−g), then we would find a monomial
n ∈ supp (f − g) with n < m. From fn 6= 0 we obtain (h+ g)n = hn 6= fn + hn = (f + h)n. Since
n < m ∈ supp (g + h) this contradicts g + h� f + h.

Now suppose that supph ≻ supp (f−g). For all n with n 6≻ supp (f−g) we obtain (g+h)n =
0. Let n ≻ supp (f − g), then gn = fn implies (g + h)n = (f + h)n. 2.

Recall that elements from S have well-ordered support in M. The support is then isomorphic
to an ordinal. In this section, we will will consider cardinalities of supports. The lemmas shown
here will have applications to the fields which we will construct in the next chapters. In the
proofs, we will use two general facts about ordinals.

PROPOSITION 1.8.3 Let (R, <) be the set of real numbers with its natural order. Then:

(1) If X ⊂ R is such that (X,<) is well-ordered, then X is countable. The same holds for
anti-well-ordered sets X.

(2) Let (X,<) be a countable and well-ordered set. Then there is a monomorphism from (X,<)
to (R, <).

Proof: Let β be an ordinal number such that X = (xα)α<β and such that for all α < τ < β
we have xα < xτ in R. Let α < β. Then let yα ∈ Q with xα < yα < xα+1. Hence for α < τ < β
we have yα < yτ and (yα)α<β ⊆ Q. This proves (1).

For (2), we can assume that X is an ordinal. Let δ the smallest ordinal that cannot be
embedded into R. Then δ must be a limit ordinal. If δ was countable, then there would be a
strictly increasing sequence of countable ordinals (δα)α<ω with δ = supα<ω(δα). Let δ−1 = ∅.
For every n ∈ N there is an embedding fn of δn \ δn−1 into [1 − 1

n+1 , 1 − 1
n+2). Let x ∈ δ and
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n = nx ∈ N minimal with x ∈ δn, then we let f(x) := fnx(x). We have therefore constructed an
embedding of δ into [0, 1). Contradiction. 2

REMARK 1.8.4 (1) Note that the proposition remains true if we replace R by any archimedean
field C. This field must contain Q, and if there were elements c < d such that there are no
rational numbers between c and d, then 1 6≍ d− c.

(2) An alternative proof for part (2) of Lemma 1.8.3 is the following: X is countable, hence
we can write X = (xn)n<ω such that the xn are pairwise distinct. We define the embedding
φ : X → R with xi < xj ⇒ φ(xi) < φ(xj) inductively as follows. Take φ(x0) ∈ R arbitrary.
Suppose that we have defined the embedding φ for x0, . . . , xn. The element xn+1 divides the set
Xn = {x0, . . . , xn}. The set φ(Xn) = {φ(xi) | i 6 n} is finite. Since R is dense, there is a y ∈ R
which realizes the same cut over φ(Xn) as xn+1 over Xn. We let φ(xn+1) = y. Notice that we
could have taken Q instead of R.

(3) We can modify the morphism f such that the following holds. Let λ < δ a limit ordinal
and λ = supi<ω(λi) with λi < λ, then supi<ω f(λi) < f(λ). To see this this let λ < δ with
supi<ω f(λi) = f(λ), then we replace f(λ) by 1

2(f(λ) + f(λ+ 1)).

Let P = (P,6) be a total order and κ a cardinal number. We say that P has cofinal
cardinality <κ iff every well-ordered D ⊆ P has cardinality less than κ. From Proposition 1.8.3
it follows that (R,6) has cofinal cardinality < ℵ1. If an order has cofinal cardinality < κ, then
so has the inverse order.

LEMMA 1.8.5 Let κ1 and κ2 be cardinal numbers such that C and M have cofinal cardinality
< κ1 and < κ2, respectively. Let (fα)α<τ be a strictly increasing sequence of series in S = C[[M]].
Then |τ | < max(κ1, κ2).

Proof: Let κ = max(κ1, κ2). The set CM is totally ordered, and we first show that it is of
cofinal cardinality < κ.

Let (τβ)β<α be a strictly increasing sequence in CM. For every β we have τβ = cβ mβ.
Suppose that 0 < τβ for all β < α. Then we have mβ 4 mγ for all β < γ < α. Hence the set
Nτ = {mβ | β < α} has cardinality < κ2. For every m ∈ Nτ , the sequence

(cα) α<τ :
m=mα

is strictly increasing in C and has thus cardinality < κ1. This shows our claim if all terms are
positive. The general case follows immediately.

Let f ∈ C[[M]] and γ be an ordinal number. Recall that every sequence of C[[M]] has an
order type, i.e. there is a unique ordinal number such that the support of f is isomorphic to
this ordinal. Then for γ the series f either admits a unique truncation of order type γ or there
is no such truncation at all. The latter is the case is γ is larger than the order type of f . We
denote this truncation by trγ(f). Note that tr0(f) = 0 and tr1(f) = τf .

We construct a sequence A0, A1, . . . of sets of series from the given sequence with |Aγ | = |τ |
for all γ < κ. Let let A0 := {fi | i < τ}. Moreover, once we have defined the set Aγ , we define
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sets

Bγ := {trγ(f) | f ∈ Aγ},
Cγ := {f ∈ Aγ | |{i < τ | trγ(f) = trγ(fi)}| < |τ | }.

Note that C0 = ∅. Furthermore, we suppose that

Aγ = A0 \
∐

β<γ

Cβ .

We show that for all γ < κ we have

• |Aγ | = |τ |,
• |Cγ | < κ,
• ∀ν < γ : Cν ∩ Cγ = ∅.

First we consider the case where γ = δ + 1 is a successor ordinal. We claim that |Cγ | < |τ |. By
definition, for every series f ∈ Aγ the set

Df = {i < τ | trδ(f) = trδ(fi)}

has cardinality |τ |. Moreover, the set admits a minimal element j. Hence {fi − fj | i ∈ Df} is
a strictly increasing sequence of series. Moreover, we have

∀i ∈ Df : trδ+1(fi) = trδ(fi) + tr1(fi − fj).

Now |Cγ | > κ would imply that for at least one f the set Df gives rise to an increasing sequence
of length κ of terms, which on the other hand contradicts the cofinal cardinality < κ of CM.

Now that |Cγ | < κ, there is at least one f ∈ Aδ such that the set

{fi ∈ Aδ | trδ(f) = trδ(fi)}

has cardinality |τ |. Since this set is contained in Aγ , our claim holds. Clearly, the set Cγ has
no common element with any of the sets Bα for α < γ. We notice that |B1| < κ. Furthermore
|Bδ| < κ implies |Bδ+1| < κ. This finishes the case of successor ordinals.

Let γ be a limit ordinal. From the inductive assumptions it follows that |∐δ<γ Cδ| < κ·γ = κ.
Hence the set Aγ has cardinality |τ |. On the other hand, we have

|Bγ | 6 |
⋃

δ<γ

Bδ| = κ.

But then |Cγ | < |Bγ | · |τ | = |τ |.
We can thus continue the construction of Aγ for all γ < κ and therefore construct a decreasing

sequence of monomials of length κ. This contradiction shows the lemma. 2

LEMMA 1.8.6 Let C be archimedean and M = (M,<) be such that (fα)α<β is a strictly de-
creasing sequence in S = C[[M]], i.e. for all α < τ < β: fα > fτ . Suppose that the support of
fα is countable for all α < β, and that all well-ordered subsets S ⊆ M are countable. Then β is
countable. (The same holds for strictly increasing sequences.)
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Proof: Apply Lemma 1.8.5 with κ1 = κ2 = ℵ1. 2

Some monomial sets are countable. Take for instance xZ. Then we obtain from the above
that every decreasing sequence in R[[xZ]] is countable. If C has cofinal cardinality < κ, then
there are no decreasing sequences of cardinality κ in C[[xZ]]. The Lemmas 1.8.5 and 1.8.6 will
be applied to larger monomial groups in the next chapters. We finish with a simple consequence
of the above.

LEMMA 1.8.7 Let κ be a cardinal, α be an ordinal and (Mi)i<α be such that every Mi has
cofinal cardinality < κ and |α| < κ. Let Mα =

⋃
i<α Mi. Then for every f ∈ C[[Mα]] we have

|supp f | < κ.

Proof: Let M−1 = ∅ and for i < α

fi =
∑

m∈Mi\Mi−1

fmm.

Then f =
∑

i<α fi and supp f =
∐
i<α supp fi. Then |supp f | < |α| · κ = κ. 2





Chapter 2

Fields of transseries

In this section, we will introduce the notion of a field of transseries. Such a field will be a field
T = C[[M]] of generalized power series, on which we have an additional partial exponentiation
function. This exponential function both satisfies a certain number of algebraic requirements (see
Section 2.1) and several compatibility conditions with the serial structure of T (see Section 2.2).

The introduction of the notion of transseries fields provides a great flexibility in the study
of transseries. First, it forces one to clearly state the essential properties of such fields. Next,
it provides a framework for the construction of complicated fields of transseries, such as fields
which contain iterators of the exponential function. But most importantly, it enables us to think
of constructions of specific fields of transseries as repeated extensions of algebraic structures.

For example, in Section 2.3.1, we show how to construct the “simplest”, non trivial transseries
field. In Sections 2.3.2 and 2.3.3, we respectively show how to adjoin exponentials to transseries
fields, and how to take inductive limits. Finally, we show in Section 2.5 how to extend transseries
fields by nested expressions.

2.1 exp-log fields

DEFINITION 2.1.1 An ordered field C with ordering 6 is called an exp-log field (or simply
an exponential field) iff there is a partial function exp : B ⊆ C → C such that

e1. If two among f , g, f + g ∈ C are in dom exp, then so is the third and

exp(f + g) = (exp f)(exp g),

e2. For all f, g ∈ dom exp:

f < g ⇔ exp f < exp g,

e3. For all f ∈ dom exp : f + 1 6 exp f .

REMARK 2.1.2 If C is an exp-log field, then the function exp is called exponential function.
If g ∈ C is such that there is an f ∈ C with g = exp f , then it follows from e2 that f is unique and
we write f = log g. We call f the logarithm of g. It follows from e1 that log gh = log g+log h,
whenever two among log g, log h and log gh are defined.

27
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In what follows, we will denote e = exp 1, if 1 ∈ dom exp. We also denote ax = exp(a log x),
for x ∈ dom log and a log x ∈ dom exp.

EXAMPLE 2.1.3 Let C be a totally ordered exp-log field with dom exp = C and dom log = C+

such as C = R. Let M be a monomial group. In view of Lemma 1.5.6 we may extend the
exponentiation on C to a partial exponentiation on S = C[[M]] with domain C[[M]]

7→
. Let e(X)

and l(X) be the formal power series

e(X) =
∑

06i

1

i!
Xi and l(X) =

∑

16i

(−1)i+1

i
Xi.

For f ∈ C[[M]]

7→

we let

exp f := (exp f=) · e(f↓).

We claim that C[[M]] with this function is an exp-log field.
We have to show e1, i.e. for f, g ∈ C[[M]] we have to show exp(fg) = (exp f)(exp g). Since

C is an exp-log field, we have to show that the equation yields for purely infinitesimal series f, g.
By Property 1.6.6 it suffices to show that e(X)e(Y ) = e(X + Y ) for formal power series. But

e(X)e(Y ) =
∑

i>0

1

i!
Xi
∑

j>0

1

j!
Y j =

∑

i>0

∑

j>0

1

i!j!
XiY j =

∑

k>0

1

k!

∑

i+j=k

k!

i!j!
XiY j

=
∑

k>0

1

k!
(X + Y )k = e(X + Y )

This shows e1. Now let f < g, both in S

7→

. Then 0 < g − f ∈ S

7→

, and from the definition of exp
we obtain 1 < exp(g − f). Multiplying both sides with exp f yields e2. As to the last property,
note that in the case f= = 0 we have

1 + f↓ < 1 + f↓ + (f↓)2(1/2 + f↓/3! + · · · ) = e(f↓).

In the case f= 6= 0 we have 1 + f= < exp f= in C. Hence for all infinitesimal series g, h we have
1 + f= + g < exp f= + h. Taking g = f↓ and h = (exp f=) · (e(f↓) − 1) shows e3. This proves
our claim.

In a similar way, given f ∈ C[[M]]

7→

with f= > 0, we may define

log f := log f= + l(δf ).

We claim that log is the inverse function of exp. Since log f= ∈ C and l(δ) ∈ C[[M]]↓, we only
have to show that l(e(δf ) − 1) = δf and e(l(δf )) − 1 = δf .

LEMMA 2.1.4 In C[[XN]] the equations l(e(X) − 1) = X and e(l(X)) − 1 = X hold.

Proof: The series e and l are the Taylor-series developments of analtyic functions, which are
inverse one to another. The lemma then follows from the fact that 1 is the development of the
identity. 2
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REMARK 2.1.5 Let us give an alternative proof of Lemma 2.1.4 which relies entierly on prop-
erties of formal power series. To this end, we start by recalling that for two integers j 6 n
we have

∑n
i=j

(i−1
j−1

)
=
(n
j

)
. Furthermore, we use the following notations. For k ∈ Ni with

k = (k1, . . . , ki) we let |k| = k1 + · · · + ki and k! = k1! · · · ki!. Let T (i, n) = {k ∈ Ni | |k| = n}
and T ∗(i, n) = {k ∈ T (i, n) | k ∈ (N+)i}.

Then l(e(X) − 1) = l(
∑

16n
1
n!X

n) =
∑

16k ckX
k where

ck =

∞∑

i=1

(−1)i+1

i

∑

n∈T ∗(i,k)

1

n!
=

k∑

i=1

(−1)i+1

i

∑

n∈T ∗(i,k)

1

n!
.

From

∑

n∈T ∗(i,k)

1

n!
=

1

k!

i−1∑

j=0

(−1)j
(
i

j

) ∑

n∈T (i−j,k)

k!

n!
=

1

k!

i−1∑

j=0

(−1)j
(
i

j

)
(i− j)k

we obtain

k!ck =
k∑

i=1

(−1)i+1

i

i∑

j=1

(−1)i−j
(
i

j

)
jk =

k∑

i=1

i∑

j=1

(−1)j−1

(
i− 1

j − 1

)
jk−1

=
k∑

j=1

(−1)j−1jk−1
k∑

i=j

(
i− 1

j − 1

)
=

k∑

j=1

(−1)j−1

(
k

j

)
jk−1.

Note that for bk = k!ck we have b1 = 1 and b2 = 0. We want to show that bk = 0 holds for every
k > 2.

Let for 1 6 i 6 k − 3, dki =
∑k−1

j=1(−1)j
(k−1
j

)
ji. Note that for all m > 2 we have dm0 = −1.

One also can verify that dki+1 = (1 − k)(1 + dk−1
0 +

∑i
l=0

(
i
l

)
dk−1
l ) = (1 − k)

∑i
l=0

(
i
l

)
dk−1
l . We

also remark that for k = 4, i = 1 we have dki = 0. Now suppose that we have already shown
that if dk−1

l = 0 for all l 6 k − 4, then dki+1 = 0 for all i 6 k − 2. From the definition of bk we

obtain bk/k =
∑k−3

i=1

(k−2
i

)
dki − bk−1 for all k > 2. Hence bk = 0 for all k > 2 and thus ck = 0

for k > 2. We finally obtain l(e(X) − 1) = X. The second equation follows similarly. From
Proposition 1.6.6 the claim now follows.

This proof of Lemma 2.1.4 has its advantages and disadvantages. Due to its technical
character, one would certainly prefer the first proof, which also has links to other fields of
mathematics. On the other hand, the second proof does not need any extra knowledge.

Note that we have

log(fg) = log f + log g

for all f, g ∈ C[[M]] with 0 < f=, g=. The field C[[M]] together with the partial exponential
function exp on C[[M]]

7→

will be called the basic exp-log field.
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REMARK 2.1.6 Let L be a first-order language. Recall that for two L-structures M and N
we say that M is a L-substructure of N iff |M| ⊆ |N | and if for every function symbol and
every relation symbol of the language L the restriction of the interpretation of the symbol in
the structure N to elements from M coincides with the interpretation of the symbol in M. Let
Lexp be the language of ordered rings with a unitary function symbol exp. Let M and N be
exp-log fields, hence Lexp-structures. If M is a Lexp-substructure of N , then we also say that
M is an exp-log-subfield of N .

2.2 Transseries fields

Let C be a totally ordered exp-log field such that dom exp = C and dom log = C+. Let M be
a totally ordered monomial group such that S = C[[M]] is an exp-log field. Suppose that the
exponentiation restricted to S

7→

is the exponentiation of the basic exp-log field structure from
Example 2.1.3. Let f ∈ S+

∞ be such that f ∈ dom logn for all n ∈ N. Then we say that f
is log-confluent at order k iff for all n > k we have τlogn+1 f = log τlogn f . The series f is
log-confluent iff it is log-confluent at some order k. Similarly, we say that a set S ⊆ S+

∞ is log-
confluent (at order k) iff every element of S is log-confluent (at order k). Instead of log-confluent
at order 0, we use the expression log-atomic.

Note that if f is log-confluent at order k, then for all i > 0 we have

logi dlogk f = dlogk+i f

1 = clogk+i f .

To see this, we remark that the logarithm of infinite elements of S are infinite, since log is
monotone and range log = C. Then the claim follows from the functional equation.

DEFINITION 2.2.1 Let C be a totally ordered exp-log field with dom exp = C and dom log =
C+. Let T = C[[M]] be a complete exponential field of generalized power series, where M is a
totally ordered monomial group. We say that T is a transseries field iff

T1. dom log = T+,
T2. log M ⊆ T↑,
T3. log(1 + f) = l(f), for all f ∈ T↓,
T4. for every sequence (mi)06i ⊆ M such that mi+1 ∈ supp log mi for all 0 6 i, there is an

integer n0 ∈ N such that

∀n0 6 n : ∀n ∈ supp log mn : n < mn+1 ∧ (log mn)mn+1 = ±1.

REMARK 2.2.2 Note that transseries fields are always complete fields. We will see that there
are fields whose elements are transseries which are incomplete. If they are, we will say so.
Otherwise, let us remark that we also use the expression fields of transseries for such complete
or incomplete fields.

REMARK 2.2.3 The condition T2 gives a characterization of the monomials in M, in terms
of the exponential structure. The condition T3 states that the exp-log structure on T extends
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the basic exp-log structure from Example 2.1.3. Notice that T3 is equivalent to the condition
that exp f = e(f) for all f ∈ T↓. Condition T4 is the most intricate one. Roughly speaking, it
ensures that we are able to compose transseries in T on the left by purely logarithmic transseries.
Condition T4 means that we do not allow monomials of the form

ex
2+elog

2
2 x+e

log24 x+e

. .
. . .

.
+log5 x+log3 x+log x.

We remark that condition T4 implies that every ∈ T+
∞ is log-confluent. To see this, let m be a

monomial and let (mi)06i = (dlogi m)06i. Then by T4 for a certain i0 we have

∀i0 6 i : supp log mi < mi+1,

which means that for all i > i0 we have supp log mi = {mi+1}. Then m is log-confluent at order
i0.

Let T be a transseries field. Given f, g ∈ T \ C, the following notations will sometimes be
convenient in what follows:

f ≺≺ g ⇔ log |f | ≺ log |g|;
f �� g ⇔ log |f | 4 log |g|;
f≍−g ⇔ log |f | ≍ log |g|.

Notice that f ≺≺ g if and only if |f |a ≺ |g| for all a > 0 in C, in the case when |f |a is defined
for all such a. For instance, x ≺≺ ex, but x ≺6≺ x1000.

PROPOSITION 2.2.4 Let T = C[[M]] be a transseries field. Then

1. For all f ∈ T+
∞, we have log f ≺ f and even log f ≺≺ f .

2. Given f ∈ T+, the canonical decomposition of log f is given by

log f = (log f)↑ + (log f)= + (log f)↓

= = =

log df log cf log(1 + δf ).

3. For all f, g ∈ T+, we have

f ≺ g ⇔ (log f)↑ < (log g)↑;

f 4 g ⇔ (log f)↑ 6 (log g)↑;

f ≍ g ⇔ (log f)↑ = (log g)↑;

f ∼ g ⇔ (log f) 7→ = (log g) 7→.
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Proof: (1) We first claim that for all n ∈ N we have n log f < f . Let g = log f , thus
g ∈ dom exp. Then from e3 we obtain g + 1 6 exp g, hence log f < f . We have 1 ≺ log f for
all series f ∈ T+

∞, since dom expC = C. Condition T1 implies f/2n ∈ dom log for all n. Hence,

log
f

2n
<

f

2n
⇒ 2n log

f

2n
< f ⇒ 2n(log f − log 2n) < x.

On the other hand, (2n)2 < f implies 2n log 2n < n log f . Our claim follows by multiplication.

In particular, for g = log f we obtain 2 log g < g. From 1 ≺ g it follows that C + log g <
2 log g < g. Since exp is total on C, we obtain log(C+g) < g, whence C+ log f < f by e2. This
shows log f ≺ f . Finally, log f ≺≺ f ⇔ log2 f ≺ log f , by definition.

(2) follows from e1, T2 and T3.

(3) We have f ≺ g ⇔ df ≺ dg ⇔ df < dg ⇔ (log f)↑ = log df < log dg = (log g)↑. The other
relations are proved in a similar fashion. 2

REMARK 2.2.5 We remark that the above properties of log have their exponential counterparts.
For instance, for all f ∈ dom exp, we have f ≺ exp f , f ≺≺ exp f and

exp f = (exp f↑) · (exp f=) · (exp f↓)

= = =

dexp f cexp f (1 + δexp f ).

In particular, if f ∈ T↑ is in dom log, then exp f ∈ M. Moreover, if g ∈ T is such that log g ∈ M,
then g ∈ M.

We finish this section with some properties concerning the log-confluence.

LEMMA 2.2.6 Let f, g ∈ T+
∞. Then

(1) If f is log-confluent at order k and g ≍ f , then g is log-confluent at order k.
(2) The set T+

∞ is log-confluent if and only if M↑ is log-confluent.
(3) If f is log-confluent at order k then Rlogk f ∈ T

7→

and Rlogk+1 f ∈ T↓.

Proof: (1) follows then from dlogi f = dlogi df
for all i > 0. Then (2) follows from (3) and

f ≍ df ∈ M↑. As for (3), conditions T2 and T3 imply dn = (logn f)↑ and l(ε) ∈ T↓ for ε ∈ T↓.
This shows the lemma. 2

REMARK 2.2.7 Define dnf = dlogn f . If we consider dn as an operator on the set of positive
infinite series in T, then dn ◦ dm = dn+m for all n,m ∈ N. In other terms, for all n,m ∈ N and
all f ∈ T+

∞ we have

dn ◦ dmf = dlogn dlogm f
= dlogn+m f = dn+mf.

The same does in general not remain true if we replace d by c, δ or R.
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REMARK 2.2.8 Let us show that the condition T4 is independent from the conditions T1, T2,
T3 by constructing a field of generalized power series satisfying these conditions but admitting
elements which are not log-confluent.

Let Cy = C[[logZ⋆ y]] and x such that Cy < x. We will define a function log on Cy[[log
Z⋆x]].

On the set Cy we let log = log. We have to define log on the set of monomials logZ⋆x. For i ∈ N,
a ∈ logZ⋆x and f ∈ Cy[[logZ⋆x]]+, we let

log(logi x) := logi+1 x+ y

log(loga x) :=

|a|∑

0=i

ailog(logi x)

log(f) := logdf + log(cf ) + l(δf ).

By definition, the conditions T1 and T3 hold. We cannot take Cy as field of constants, since
otherwise the definition of log on logZ⋆x would not satisfy condition T2. Instead, we take C as
field of constants. We let

y0 := y x0 := x

y1 := log y x1 := log x

y2 := log2 y x2 := log2 x

...
...

Then we can rewrite the field Cy[[log
Z⋆x]] as

C[[· · · ; y1; y0; · · · ;x1;x0]],

where the element xi, yj are ordered lexicographically. The set of monomials of this field is

{xa yb | a, b ∈ Z⋆},

and for monomials m = xa yb in this group we have

log(m) = log(xa) + log(yb) =

|a|∑

0=i

ailog(logi x) +

|b|∑

0=j

bj log(logj y)

This shows T3. Now we remark that x is not log-confluent, hence that T4 does not hold in this
field. An immediate consequence is that we cannot have a composition with fields T where we
replace x by a positive infinite series. Take for instance the series f = x + logx + log2x + · · · .
Then

(logix ◦ x0)16i =

(
xi + y0 + l(

y0

xi−1
)

)

16i

is not a Noetherian family. In this example, we have an element, which is in infinitely many
members of the family. By modifying the construction of the field, we might even have con-
structed a family (logix0)i such that the supports contain a strictly decreasing subset in < by
taking log(xi) = xi + (y0/yi+1).
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2.3 Construction of transseries fields

2.3.1 Fields of purely logarithmic transseries

Let C be a totally ordered exp-log field with dom exp = C and dom log = C+. Recall that Z⋆

is the set of non-commutative words over Z. Now Z⋆ has the structure of an abelian group by
taking a + b = [a0 + b0, . . . , al + bl] for words a = [a0, . . . , al] and b = [b0, . . . , bl] of the same
length; for words of different lengths, we complete the shortest word on the right with zeros.
We also define an ordering on Z⋆ by setting a > 0, if a 6= [] and ai > 0 for the smallest i with
ai 6= 0.

For each a ∈ Z⋆, we now define

loga x = xa0 loga1 x · · · logann x

and logZ⋆x = {loga x | a ∈ Z⋆}. We give logZ⋆x the structure of a totally ordered monomial group,
isomorphic to Z⋆ by 1 = log0 x, (loga x)(logb x) = loga+b x for a, b ∈ Z⋆, and loga x < logb x if
a > b. Notice that

x ≻≻ log x ≻≻ log2 x ≻≻ · · · .

Now let L = C[[logZ⋆x]]. For monomials loga x, with a = [a0, . . . , al], we define

log loga x = a0 log x+ · · · + al logl+1 x.

Notice that log loga x ∈ L↑ and loga x ≺ logb x ⇔ a < b ⇔ log loga x < log logb x. We extend
the logarithm to L+ via

log f = log df + log cf + l(δf ),

where l(z) = log(1 + z) ∈ C[[z]].

REMARK 2.3.1 The construction of the group logZ⋆x can be extended to a group logC
⋆

x by
systematically replacing Z by C. One then obtains a group with C-powers. This extension is
necessary, if one works with asymptotic scales. For our purposes it suffices to take Z. Note that
the following proposition only generalizes to the extended construction if M has C-powers.

PROPOSITION 2.3.2 L is a transseries field.

Proof: First, e1 is equivalent to the condition that log fg = log f + log g for all f, g ∈ L+.
This follows from the fact that log dfg = log(dfdg) = log df + log dg and Property 1.6.6.

As to e2, let f, g ∈ L+ be such that f < g. If df < dg, then (log f)↑ < (log g)↑, whence
log f < log g. If df = dg, but cf < cg, then (log g − log f) 7→ = log cg − log cf > 0 and again
log f < log g. If τf = τg, then

log g − log f = l(δg) − l(δf ) = l

(
δg − δf
1 + δf

)
=
δg − δf
1 + δf

+O

((
δg − δf
1 + δf

)2
)
> 0.
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If f 4 1, then e3 follows from Example 2.1.3. Now suppose that 1 ≺ f and f ∈ dom exp.
If f < 0, then 1 ≺ f implies f + 1 < 0 6 ef . Otherwise e3 is equivalent to log(f + 1) 6 f . Let
df = logaii x · · · logann x with ai > 0. Then (log(f + 1))↑ = log df+1 = log df ≍ logi+1 x. Hence
log(f + 1) ≍ logi+1 x ≺ df ≍ f . In particular, we have e3.

By construction, T1, T2 and T3 are satisfied. As to T4, let m0 ∈ logZ⋆x, then for every
m1 ∈ supp log m0 we have m1 = logN x for some N ∈ N+. Consequently, for every sequence
(mi)06i such that mi+1 ∈ supp log mi, we have mi+1 = logN+i x for all i > 0. But then n0 = 1,
and condition T4 holds. 2

PROPOSITION 2.3.3 Every non-trivial transseries field T = C[[M]] 6= C contains an isomor-
phic copy of L.

Proof: We claim that there exists a monomial x ∈ M↑ whose iterated logarithms are all
monomials. Indeed, choosing f ∈ T+

∞ arbitrarily, the series f is log-confluent at some order n0,
and we may take x = dlogn0

f . Our claim implies that x, log x, log2 x, . . . are all monomials in

M. Hence, logZ⋆x ⊆ M, since M is a group. We conclude that L ⊆ T. 2

REMARK 2.3.4 The above construction can be slightly generalized by considering the set Z⋆⋆

of infinite words a = [a0, a1, . . . ] over Z instead of Z⋆. The analogous construction then yields
another transseries field L̂ = C[[logZ⋆⋆x]] which strictly contains L.

2.3.2 Exponential closure

Let T = C[[M]] be a transseries field. In this section, we show how to construct an extension
Texp = C[[Mexp]] of T, which itself is a transseries field such that the exponential function in
Texp is totally defined on T.

We take Mexp = expT↑, i.e. Mexp is the set of formal expressions exp f with f ∈ T↑. We
give Mexp the structure of a totally ordered monomial group, isomorphic to the additive group
of T↑ by setting (exp f)(exp g) = exp(f + g) and exp f < exp g ⇔ f > g for f, g ∈ T↑. Let
f ∈ (Texp)+∞ with df = exp g for some g ∈ T↑. Then we define

log f = g + log cf + l(δf ),

where l(z) = log(1+ z) ∈ C[[z]], as above. The field Texp together with the function log is called
the exponential extension or exp-extension of T.

PROPOSITION 2.3.5 Texp is a transseries field.

Proof: We prove e1, e2 and e3 in the case when f 6∈ (Texp)+∞ in a similar way as in
Proposition 2.3.2. So assume that f ∈ (Texp)+∞ ∩ dom exp. Since T is a transseries field and
dlog df

∈ M, we have log dlog df
≺ dlog df

≍ log df . In particular, (log dlog df
)↑ < (log df )

↑, so
that log df ≺ df , by construction. We conclude that log(f + 1) ≍ log df ≺ df ≍ f , which
implies e3.

By construction, we again have T1, T2 and T3. We observe that these conditions imply
that τlog f = τlog τf for all f ∈ T+

∞. By induction, this yields τlogn f = τlogn τf for all n > 0. Now
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let f ∈ T+
∞. Since T is a transseries field, the series log τf ∈ T is log-confluent at some order

n0 ∈ N, i.e. τlogn+1 log τf = log τlogn log τf for all n > n0. Then the above observation implies that
τlogn+2 log f = log τlogn+1 f for all n > n0. In other words, f is log-confluent at order n0 + 1.

We finally remark that for every sequence (mi)06i with mi+1 ∈ supp log mi, the sequence
(mi)16i is in M. Hence since T is a transseries field, there is an integer n0 > 1 such that T4
holds for (mi)16i. But then T4 holds for (mi)06i. 2

EXAMPLE 2.3.6 The series

f =
1

x
+

1

elog
2 x

+
1

elog
3 x

+ · · · ;

g = ee
x

+ ee
x/x + ee

x/x2
+ · · ·

respectively belong to Lexp and Lexp,exp.

REMARK 2.3.7 First we remark that the exponential function of Texp is totally defined on T
for all transseries fields. Secondly, note that C[[logZ⋆⋆x]] is a subset of Lexp, since log(loga x) is
an element of L↑. Recall that L+

∞ is log-confluent at order 2. That is not true for Lexp anymore.
Take for instance exp 5x2 log3 x, which is log-confluent at order 3, but not at order 2. In general,
in the n-th exp-extension of L the monomial expn 5x2 log3 x is not log-confluent at order n+ 1.

REMARK 2.3.8 Using exp-extensions, we can introduce an exponentiation with elements from
C on T+ as follows. Let f ∈ T+ and d ∈ C. The series d · log f is in T, thus

fd := ed·log f ∈ Texp.

We remark that f c+d = f c · fd and that fn defined as above coincides with the n-fold multipli-
cation of f with itself.

Moreover, if M is a group with C powers, then the above definition is coherent with the
following alternative definition of exponentiation. Let f = cd · (1 + δ). Then cd = ed·log c ∈ C,
since c > 0. We define a formal power series (1 +X)d ∈ C[[XN]] as follows.

(
d

i

)
:=

i∏

j=1

d− (j − 1)

j

(1 +X)d :=
∑

06i

(
d

i

)
Xi.

One checks that (1+X)d1 · (1+X)d2 = (1+X)d1+d2 for d1, d2 ∈ C. Applying Proposition 1.6.6
yields (1 + δ)d ∈ T and (1 + δ)d1 · (1 + δ)d2 = (1 + δ)d1+d2 . One verifies

fd = cd · dd · (1 + δ)d.

In particular, if M has C-powers, then fd ∈ T for all f ∈ T+ and d ∈ C.
Note that the definition of fd makes it possible to define a relation ≺≺C as in Section 1.2,

i.e. f ≺≺C g iff ‖f c‖ < ‖gd‖ in Texp. We remark that ≺≺C coincides with the definition of ≺≺ in
this chapter.
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2.3.3 Inductive limits

Let I be a totally ordered index set and (Ti)i∈I a family of transseries fields Ti = C[[Mi]] such
that Ti is an exp-log subfield of Tj whenever i 6 j. In particular, we have Mi ⊆ Mj and logTi

is the restriction of logTj
to T+

i . Consider the fields

Ť =
⋃

i∈I
Ti;

T = C[[M]], with M =
⋃

i∈I
Mi.

Then Ť naturally has the structure of an exp-log field, such that each Ti is an exp-log subfield
of Ť. Given f ∈ T+ with df ∈ Mi, we define its logarithm by log f = logTi

df + log cf + log δf .
Clearly, Ť ⊆ T, but this inclusion is usually strict: consider (Ti)i∈N with T0 = L,T1 =

Lexp,T2 = Lexp,exp, . . . . Then

1

x
+

1

expx
+

1

exp expx
+ · · ·

is in T, but not in Ť. In fact, the field Ť will in general be incomplete.

PROPOSITION 2.3.9 C[[
⋃
i∈I Mi]] is a transseries field.

Proof: We prove e1, e2 and e3 in the case when f 6∈ T+
∞ in a similar way as in Propo-

sition 2.3.2. So assume that f ∈ T+
∞ ∩ dom exp. Then there exists an i ∈ I with df ∈ Mi.

Consequently, we have log(f + 1) ≍ log df ≺ df ≍ f , since log df and df are both in Ti. In
particular, log(f + 1) < f , which implies e3.

The properties T1, T2 and T3 are satisfied by construction. As to T4, let m ∈ ⋃I Mi, then
m ∈ Mi for some i ∈ I. Condition T4 for m follows now from the same condition in Ti. 2

PROPOSITION 2.3.10 Let α be an ordinal, and let Mβ be monomial groups for β < α such
that all Tβ = C[[Mβ ]] are transseries fields and such that Tβ is an exp-log sub-field of Tγ for
all β 6 γ. Suppose that J ⊆ α is cofinal in α and such that Mj+1 = Mj,exp for all j ∈ J . Then
exp is total on Ť.

Proof: Let f ∈ Ť. Then f ∈ Tβ for some β < α. Let β < j ∈ J . Then f↑ ∈ T↑
j and thus

exp f↑ ∈ Mj+1. But then exp f = exp f↑ · exp f= · e(f↓) ∈ Tj+1. 2

2.3.4 Inductive exponential closure

Let T be a transseries field. As an application of Propositions 2.3.5 and 2.3.9, we construct for
each ordinal α a transseries field Tα = C[[Mα]] as follows:

T0 = T;

Tα+1 = Tα,exp, for successor ordinals α+ 1;

Tλ = C[[
⋃

α<λ

Mα]], for limit ordinals λ.
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For limit ordinals λ, we also define

T<λ =
⋃

α<λ

Tα.

Note that exp is total on T<ω. We call T<ω the exponential closure of T and denote it
also by C<ω[[M]]. We remark that the exponential closures of C[[logZ⋆x]] and C[[logZ⋆⋆x]] are
the same fields, i.e.

C<ω[[logZ⋆x]] = C<ω[[logZ⋆⋆x]].

REMARK 2.3.11 We will later show that if one puts a restriction on the cardinality of the
support, then the transfinite sequence Tα stabilizes from a certain limit ordinal λ on. For
instance, if one adds to the definition of a transseries that the support should not have a
cardinality larger then some fixed cardinal κ, then we will find such a λ which depends on κ.
At this stage, we have Tλ = T<λ.

This property does no longer hold if one does not put a restriction on the cardinality of the
support, which means that Tλ is incomplete and thus no transseries field.

EXAMPLE 2.3.12 Let T = L = C[[logZ⋆x]]. Then we also denote Tα by Cα[[[x]]]. Accordingly,
we write T<λ = C<λ[[[x]]]. Note that

e−x + e−e
x

+ e−e
ex

+ · · · ∈ Cω[[[x]]] \ C<ω[[[x]]].

2.4 More on the supports

In this section we apply the results from Section 1.8 to transseries fields. Throughout this
section we assume that C has cofinal cardinality < κ1. We start with a direct consequence of
Lemma 1.8.6.

LEMMA 2.4.1 Let T = C[[M]] and T̃ = C[[N]] such that N has cofinal cardinality < κ2. Let
f ∈ T such that for every m ∈ M we have log m ∈ T̃. Then the support of f has cardinality
< max(κ1, κ2).

Proof: The sequence (log m)m∈supp f is a strictly decreasing sequence in T̃. Now the lemma
follows from Lemma 1.8.5. 2

EXAMPLE 2.4.2 Let M = logZ⋆x and C = R. For every m = logk x ∈ M↑ with k ∈ Zn

the support of log m =
∑
ki logi+1 x is finite, hence countable. Moreover, in order to apply

Lemma 2.4.1 we can take T̃ = T. Hence every element in L = R[[logZ⋆x]] has countable support.
In general, the lemma shows that no element of C1[[[x]]] has support κ1.

LEMMA 2.4.3 Let f ∈ Texp. Let κ2 be a cardinal such that M has cofinal cardinality < κ2.
Then f has support of cardinality < max(κ1, κ2).
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Proof: Apply Lemma 2.4.1 with T̃ = T. . 2

REMARK 2.4.4 It should be noticed that the assumption on C is essential here, if κ2 < κ1.
Choose an ordinal α with |α| = κ1. Suppose that B = (bi)i<α is a well-ordered subset of C. Let
m ∈ M↑ and ϕi = e−bim for all i < α. Then

ϕ0 ≻ ϕ1 ≻ ϕ2 ≻ · · ·

and
∑

i<α ϕi is a series in C[[Mexp]] which has a support of cardinality α.

Let again M have cofinal cardinality < κ2. From Lemma 2.4.3 it follows that series from
Texp cannot have a support of cardinality max(κ1, κ2). Replacing T and Texp by Texp and its
exp-extension, we find that the same holds for Texp,exp. We can continue this process and ask
how long we can keep control over the support. To this end let M0 = M, Tα = C[[Mα]] and

Mα+1 = expT↑
α. For limit ordinals λ we let Mλ =

⋃
α<λMα. Moreover, we let M−1 = ∅.

COROLLARY 2.4.5 Let α be an ordinal with |α| < max(κ1, κ2). Then the support of f ∈ Tα
has cardinality < max(κ1, κ2). In particular, if α is a countable ordinal, then for f ∈ Rα[[[x]]]
the support supp f is countable.

Proof: Let α be the smallest ordinal such that the corollary is wrong. From Example 2.4.2
it follows that 0 < α. If α was a successor ordinal, then this would contradict Lemma 2.4.3. Let
α be a limit ordinal and (mi)i∈I a well-ordered set in Mα. Let for all successor ordinals β < α

Iβ = {i ∈ I |mi ∈ Mβ \ Mβ−1}.

Every (mi)i∈Iβ has cardinality < max(κ1, κ2). The first part of the lemma follows from |I| 6 |α|.
For the second part, apply Lemma 1.8.6. 2

REMARK 2.4.6 Even if we replace logZ⋆x by the larger group logZ⋆⋆x, the support of every
element of the resulting field C[[logZ⋆⋆x]] is countable. To see this, we apply Lemma 2.4.1 with
T̃ = C[[logZ⋆x]]. It should be noticed that we do not demand C to be archimedean. This
hypothesis is, however, essential in the study of supports of series in the field of logarithmic-
exponential series in [vdDMM97]. From the construction of the field R((t))LE and Lemma 2.4.1
it follows that every element of this field has countable support if and only if every element of
R((tR)) has countable support. But this is ensured by Proposition 1.8.3.

2.5 Nested transmonomials and transseries

Given a transseries field T, we have seen how to construct an extension Texp such that the
domain of exp contains T. Taking inductive limits, we have shown how to extend T into fields of
generalized power series which are closed under exponentiation. However, a nested transseries
like

ex
2+elog

2
2 x+e

log24 x+e

. .
.

(2.1)
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has no reason to belong to T. This transseries occurs for instance as natural solution to the
functional equation

f(x) = ex
2+f(log2 x).

In this section, we show how to construct extensions of T which contain expressions like (2.1).

More precisely, we want to add expressions of the form

eϕ0± eϕ1± e

. .
.

,

where ϕ0, ϕ1, . . . ∈ T. The series ϕi will have to satisfy a certain condition imposed by condition
T4 in order to avoid expressions like

ex
2+elog

2
2 x+e

log24 x+e

. .
. . .

.
+log5 x+log3 x+log x. (2.2)

Next we introduce an ordering on the multiplicative group generated by the new expressions.
We define a logarithm and show that the field over the new ordered multiplicative group is a
transseries field.

REMARK 2.5.1 Nested expressions like (2.1) also occur naturally in the characterization of
intervals of transseries. For more on this see [vdH97].

2.5.1 Determining sequences

Let ϕ = (ϕ0, ϕ1, . . . ) and σ = (σ0, σ1, . . . ) ∈ {−1,+1}N be sequences such that

NM1. ∀i > 0 : ϕi ∈ T↑ ∧ 0 < ϕi+1,
NM2. ∀i > 0 : ∀m ∈ suppϕi : ∃j > i : ∀ψ ∈ T↑:

suppϕj ≻ ψ ⇒ m ≻ σi e
ϕi+1+σi+1 e

. .
. σj−1 e

ϕj+ψ

.

We say that the pair (σ, ϕ) determines the nested transmonomial

nσ,ϕ = eϕ0+σ0 eϕ1+σ1 e

. .
.

.

REMARK 2.5.2 Condition NM1 makes sure that nested transmonomials cannot be developed
as series, which corresponds to condition T2. Moreover, it will ensure that the logarithm of a
nested transmonomial will be a series with purely infinite support.

Similarly, condition NM2 corresponds to condition T4. Actually, if one thinks of the nested
transmonomial determined by a pair (σ, ϕ), then we should have

suppϕi ≻ eϕi+1+σi+1 e

. .
.
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for each i. This, however, presumes an ordering on the set of nested transmonomials, which is
yet to be defined. We have thus to find a condition in T expressing this property. Actually, if
we weaken condition MN2 to

∀i > 0 : ∃j > i : ∀ψ ∈ T↑ : suppϕj ≻ ψ ⇒ suppϕi ≻ σi e
ϕi+1+σi+1 e

. .
. σj−1 e

ϕj+ψ

, (2.3)

then we lose transmonomials. Let for instance

a0 = ex
2
, a1 = ex

2−elog22 x , a2 = ex
2−elog22 x+e

log24 x

, . . . , ai = ex
2−elog22 x+e

. .
. e

log22i x

, . . . .

Then a0 ≻ a1 ≻ · · · . The series ϕ0 =
∑

i ai exists in every transseries field containing the
exponential closure of L. We let σ = (1,−1, 1, 1, . . . ) and ϕi = log2

2i−2 x for i > 1. The couple
(σ, ϕ) satisfies the conditions NM1 and NM2. Hence it determines a nested transmonomial.
Condition (2.3) fails. For j we may choose ψ = log2j+1 x to obtain a counter-example.

REMARK 2.5.3 Instead of restricting the values of σi to ±1, one might want to let these
coefficients range over all non-zero elements from C. In fact, it would be possible to modify
our definition of nested monomials by allowing sequences σ = (σ0, σ1, . . . ) with σi ∈ C∗ such
that σi = ±1 for all i greater than some I ∈ N. We remark, though, that these monomials
can be obtained by using the more restrictive definition and exponential extensions. Since we
eventually construct exponential closures, we will obtain all monomials with σ above even with
our definition.

It should be noticed, however, that one cannot let σ be an arbitrary sequence in C∗. Allowing
σ that general can lead to incoherences, for instance concerning the definition of a total ordering
on the extended set of monomials. To illustrate the last point, let

f(x) = 2e
√
x+e

√
log x+2e

√
log2 x+e

. .
.

and f(x) = e
√
x+2e

√
log x+e

√
log2 x+2e

. .
.

.

Then f(x) and g(x) are formal solutions of the system of equations

f(x) = 2e
√
x+g(log x)

g(x) = e
√
x+f(log x).

Assume that f(x) ≺ g(x). Replacing x by log x should preserve the ordering, hence

f(log x) ≺ g(log x).

This implies
√
x+ f(log x) <

√
x+ g(log x). Whence

g(x) = e
√
x+f(log x) ≺ e

√
x+g(log x) =

1

2
f(x).

Thus f(x)≺ g(x) implies g(x)≺ f(x). A similar contradiction can be obtained from the assump-
tion g(x)≺ f(x).
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REMARK 2.5.4 The monomial group M can already contain nested transmonomials n. By this
we mean monomials also in the broader sense where σi can take any value from C∗ for a finite
number of integers i. The sequences σ and ϕ corresponding to n are uniquely determined as
follows. By condotion T2, the series log n is purely infinite. Since n is nested, the support of
log n has a least element in the ordering <. More generally, if we let m−1 = n, then for all i > 0
we have

∃mi ∈ supp log mi−1 : ∀m ∈ supp log mi−1 : m < mi.

Then we let

ϕi := log mi−1 − mi

σi := (log mi−1)mi .

One shows inductively that σi and ϕi exist for all i. By T4, there is some i0 such that σi ∈
{−1,+1} for all i > i0. If n was not a nested monomial, then the above process terminates since
for some i the support of log mi−1 has not a least element.

Inversely, let σ ∈ CN such that eventually σi ∈ {−1, 0,+1}, and ϕ ∈ TN be arbitrary
sequences with properties NM1 and NM2. Then we remark that there are three different cases
to distinguish. First consider sequences with ∃n : σn = 0. The monomials nσ,ϕ are said to be
non-nested. Note that since ϕn ∈ T↑, the monomial nσ,ϕ is the element of some transfinite
exponential extension Tα (where 0 6 α).

The remaining two cases suppose ∀n : σn 6= 0. For every i > 0 we let ni be the nested
transmonomial determined by the sequences (σi, σi+1, . . . ) and (ϕi, ϕi+1, . . . ). If for some i ∈ N,
the monomial ni is in some transfinite exponential extension of T, then so is nσ,ϕ. In other
words, we will capture nσ,ϕ using the exponential extension process.

The last case concerns sequences σ, ϕ such that no ni is in some transfinite exponential
extension, which is to say that nσ,ϕ does not result from the exponential extension process. It
is this kind of monomials we want to add in this section.

The set of all sequences (σ, ϕ) with σ ∈ {−1,+1}N and properties NM1, NM2 such that
nσ,ϕ is not in some transfinite exponential extension of T will be denoted by NT. We let

NT := {nσ,ϕ | (σ, ϕ) ∈ NT}.

2.5.2 Nested extensions: One-by-one vs. All-at-once

Before describing the extension by nested transmonomials, let us discuss two options. Either
we extend M by all of NT, or we take one couple (σ, ϕ) ∈ NT and extend M by nσ,ϕ. Let us
informally consider the pros and cons of both possibilities.

The first option appeals for its strength; one adds all possible monomials. In opposition to
the second approach, one will never have to be concerned about sequences from NT anymore,
once that extension step is done. There are, however, disadvantages when using this extension
process. Formulating the conditions about the monomials becomes rather cumbersome, as many
indices are involved. Especially, defining the ordering on the new set of monomials is very tedious.
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One has to distinguish a number of cases, which does not really contribute to the understanding
of the nature of nested transmonomials. We remark that this is nonetheless possible.

Generally speaking, the disadvantages of one method are the advantages of the other. In
this sense the description of the extended monomial group and its ordering become easier and
more transparent for the second option. This also enhances working with the extended set. On
the other hand, we lose the advantage of having added all possible nested monomials. Also, one
might ask whether inductively applying this extension process actually depends on the order in
which couples from NT are chosen.

Keeping in mind that one will in general not be interested to extend just one transseries
field by nested monomials, but that one will rather aim at constructing fields which are closed
under nested monomials, we state that this virtual disadvantage is actually none. Using the first
option, i.e. adding all possible nested transmonomials determined by a field T, we obtain a field
Tnest which in general will not be closed under nested monomials. Hence in this case, we would
have to continue the extension process in a similar way as we had to do for the exponential
closure. We will thus not escape from taking inductive limits in pursuing this aim.

Another similarity to the exponential case is that taking inductive limits only stabilizes the
field when we work under the assumption of a support-constraint. But then both methods will
lead to the same stable field.

For these reasons we have opted to continue with the extension process in the case where we
only add one single new nested transmonomial.

2.5.3 Extending by nested monomials

Throughout this section we fix a couple (σ, ϕ) ∈ NT. Recall that for every i > 0 we let ni
be the nested transmonomial determined by the sequences (σi, σi+1, . . . ) and (ϕi, ϕi+1, . . . ). In
particular, ni 6∈ M.

If T̂ is a transseries field extension of T with monomial group M̂ and ni ∈ M̂, then ni+1 ∈ M̂

since log ni ∈ T̂↑ by T2 and thus, since ni+1 is a monomial,

ni+1 =
1

σi
(log ni − ϕi) ∈ M̂↑.

Hence, if we want to add n0, we have to add n1, n2, . . . as well. The smallest group containing
M and n0 is thus the multiplicative group generated by

M ∪ {n0, n1, . . . }.
Recall that na = na00 · · · nann for a ∈ Z⋆ with n = |a| and that n0 = 1. Let

Mσ,ϕ := {a · na | a ∈ M ∧ a ∈ Z⋆}.
We define a multiplication on Mσ,ϕ by

(a · na) · (b · nb) := ab · na+b.
Then Mσ,ϕ is a multiplicative group extending M. In order to extend < to Mσ,ϕ, we will first
characterize when na ≻ a for a ∈ M and a ∈ Z⋆. We distinguish three cases:
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Case 1: na = n0

Case 2: na = ni with i > 0
Case 3: na for general a ∈ Z⋆

REMARK 2.5.5 The cases are ordered by their generality, i.e. case 1 is a sub-case of case 2,
which in turn is a sub-case of case 3. We point out that a definition for case 3 alone is possible,
but we have decided to differentiate for better readability.

Case 1: Let ϑ0 be the maximal truncation of log a such that

∀v ∈ suppϑ0 : ∃j > 0 : ∀ψ ∈ T↑ : suppϕj ≻ ψ ⇒ v ≻ eϕ1+σ1e

. .
.ϕj+ψ

.

Note that ϑ0 is uniquely defined. Let m1 and d0 be the leading monomial and coefficient of
log a − ϑ0, i.e.

d0m1 = τ(log a − ϑ0).

Moreover, let ρ0 ∈ T↑ such that log a = ϑ0 + d0m1 + ρ0. Either of d0 and ρ0 can be 0. We
recursively define

n0 ≻ a :⇔





ϕ0 > ϑ0 or
ϕ0 = ϑ0 ∧ m1 ≺ n1 ∧ 0 < σ0 or
ϕ0 = ϑ0 ∧ m1 ≻ n1 ∧ 0 > d0 or
ϕ0 = ϑ0 ∧ d0 = 0 ∧ 0 < σ0.

Indeed, in order to decide whether n1 ≻ m1, we use the same procedure with m1 and n1 in place
of a and n0 respectively. We have to show, though, that this procedure terminates. To do this,
we construct sequences

(m0,m1, . . . )

(ϑ0, ϑ1, . . . )

(d0, d1, . . . )

(ρ0, ρ1, . . . )

as follows. Let m0 := a and m1, ϑ0, d0 and ρ0 as above. For i > 0, we suppose that mi, ϑi−1, di−1

and ρi−1 are already defined. Then let ϑi be the maximal truncation of log mi such that

∀v ∈ suppϑi : ∃j > i : ∀ψ ∈ T↑ : suppϕj ≻ ψ ⇒ v ≻ eϕi+1+σi+1e

. .
.ϕj+ψ

.

Again, ϑi is (uniquely) defined, if di−1 6= 0. We denote the leading monomial and coefficient of
log mi − ϑi by mi+1 and di respectively, i.e.

dimi+1 = τ(log mi − ϑi).
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The process terminates if di = 0 for some i. If this is the case, then ni ≻ mi can be decided. We
may thus assume that di 6= 0 for all i. Note that by condition T4 for the field T, there is some
i0 ∈ n such that for all i > i0:

ρi = 0

di ∈ {−1,+1}.

Let p be minimal such that ϑp 6= ϕp. If p exists, then mp ≻ np is decidable, and we have thus
recursively defined n0 ≻ a. It remains the situation where p does not exist, i.e. where ϑi = ϕi
for all i. Let i0 be large enough such that σi, di ∈ {−1,+1} for all i > i0. Since n0 ∈ NT, there
must be some minimal q > i0 with σi 6= di. We let

mq ≻ nq :⇔ σq = −1 < 1 = dq.

Again, we can now recursively decide nq−1 ≻ mq−1, . . . , n0 ≻ m0. This finishes the first case.
Case 2: Replace in case 1 systematically nj by ni+j for all j > 0.
Case 3: Let a ∈ Z⋆ and i be minimal with ai 6= 0. Note that

t = log a − (aiϕi + · · · + anϕn) ∈ T↑.

Since ni 6∈ M, we have ni 6= dt, and we let

na ≻ a :⇔ σiai ni+1 > τt ⇔





dt ≺ ni+1 ∧ 0 < σiai

dt ≻ ni+1 ∧ 0 < σict.

This finishes the third case of the definition of the ordering on Mσ,ϕ.

REMARK 2.5.6 In order to show that the definition is correct, we claim that one of p and q in
the first case exists. Suppose that p and q do not exist. Then we have in particular di 6= 0 for
all i. Condition T4 implies then that there is an integer i such that mj = nj+i for all j > i. But
this contradicts (σ, ϕ) ∈ NT.

REMARK 2.5.7 Let us motivate the definition of the ordering in case 3. In order to extend
T into a transseries field, we will define a logarithm. This function log has to extend the
logarithm of T, it has to satisfy the functional equation log xy = log x + log y and it has to
satisfy 1 < x⇒ 0 < log x. In particular,

a ≺ na ⇔ log a < aini + · · · + annn

⇔ log a < (aiϕi + · · · + anϕn) + (σiai ni+1 + · · · + σnan nn+1).

Also, we will show that ni ≻ ni+1, ni+2, . . . . Since t ∈ T, we only need to compare the leading
terms τt and σiaini+1.

Let us show some consequences of the definition of na ≻ a. In particular, we prepare the
ground for the definition of a compatible total ordering on Mσ,ϕ.
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LEMMA 2.5.8 Let (σ, ϕ) ∈ NT. Then ∀i > 0 : suppϕi ≻≻ suppϕi+1, i.e. we have

suppϕ0 ≻≻ suppϕ1 ≻≻ suppϕ2 ≻≻ · · · .

Proof: Let m ∈ suppϕi. By NM2, there is some j > i such that for all ψ ∈ T↑ with
suppϕj ≻ ψ we have

m ≻ eϕi+1+σi+1 e

. .
. σj−1 e

ϕj+ψ

= eϕi+1+σi+1·a(ψ).

Hence m ≻≻ log m > ϕi+1 + σi+1 · a(ψ). But this holds for all ψ ∈ T↑ with ψ≺ suppϕj , thus
there are ψ with ϕi+1 6≍ a(ψ). Then for such series ψ we have

ϕi+1 4 ϕi+1 + σi+1 · a(ψ) < log m,

which implies m ≻≻ ϕi+1. 2

REMARK 2.5.9 Similarly, one shows suppϕi ≻ nj and ∀k ∈ Z : 1≺ nin
k
j for all 0 < i < j. The

former property corresponds to the condition that ni+1 is the smallest element in the support
of the series ϕi + σini+1, whereas the latter one will imply n1 ≻ n2 ≻ · · · .

LEMMA 2.5.10 Let a ∈ M and i ∈ N be such that ni ≻ a. Then

∀b ∈ M : a ≻ b ⇒ ni ≻ b.

Proof: Since ≻ is recursively defined, we will show the lemma recursively as well. We describe
a procedure that eventually terminates and thus proves the lemma. Also, it suffices to show the
lemma for ni = n0. The general statement follows from re-indexing.

Recall from the definition of n0 ≻ a that we have constructed sequences (ϑi)06i, (di)06i and
(mi)06i, where m0 = a. We let (ϑ̂i)06i, (d̂i)06i and (m̂i)06i be the corresponding sequences for
b (in particular, we have m̂0 = b).

From n0 ≻ m0 we obtain ϑ0 6 ϕ0, and equality implies d0m0 < σ0n1. Similarly, m0 ≻ m̂0

leads to ϑ̂0 6 ϑ0, and ϑ̂0 = ϑ0 implies d̂0m̂1 < d0m0. If one of the inequalities is strict, then
ϑ̂0 < ϕ0, which immediately yields n0 ≻ m̂0 = b.

It remains to consider the case ϕ0 = ϑ0 = ϑ̂0 and d̂0m̂1 < d0m0 < σ0n1. We are done if
d̂0 6 0 < σ0, for then d̂0m̂1 < σ0n1 and thus n0 ≻ m̂1. Hence we have to consider the case where
0 < σ0 · d̂0. In particular, we remark that σ0 and d0 have the same sign. In other words, if σ0

and d0 have different signs, then we are in one of the preceding cases, the procedure stops, and
the lemma is proven. If both σ0 and d̂0 are positive, then we have to show

m1 < m̂1 ∧ n1 ≻ m1 ⇒ n1 ≻ m̂1.

Otherwise, if both are negative, then it remains to prove

m̂1 < m1 ∧ m1 ≻ n1 ⇒ m̂1 ≻ n1.

Taking this process further, we see that the lemma holds if there is an i ∈ N such that at least
one of ϑi 6= ϑ̂ and ϕi 6= ϑi holds. Otherwise, if ϕi = ϑi = ϑ̂i for all i, then the process terminates
if σi and di have different signs for some i. But this will be the case by condition T4 and
(σ, ϕ) ∈ NT. 2



2.5. NESTED TRANSMONOMIALS AND TRANSSERIES 47

LEMMA 2.5.11 Let a ∈ M and i ∈ N+ such that a ≻ ni. Then a ≻ nj for all j > i. Moreover,
if a, b ∈ M and i < j are such that ni ≻ a and nj ≻ b, then for all c, d ∈ C : ni ≻ ca + db.

Proof: We only need to show the first part for j = i + 1. The full statement follows by
induction. Let ϑ0 be the maximal truncation of log a with

∀a ∈ suppϑ0 : ∃j > i : ∀ψ ∈ T↑ : suppϕj ≻ ψ ⇒ a ≻ eϕi+1+σi+1e

.
. . ϕj+ψ

.

Then from the definition of a ≻ ni it follows that ϑ0 > ϕi.We have ϕi > ϕi+1, since ϕi, ϕi+1 > 0
and suppϕi ≻ suppϕi+1 (by Lemma 2.5.8). Thus ϑ0 > ϕi+1, and therefore a ≻ ni+1.

To show the second assertion, we remark that b≺ nj and i < j imply b≺ ni. Thus
τca+db 4 a, b≺ ni. This finishes the proof. 2

PROPOSITION 2.5.12 Let a, b ∈ M and a, b ∈ Z⋆ be such that na ≻ a and nb ≻ b. Then
na+b ≻ ab.

Proof: We define I, J,M, and N by

I := min{ i | ai 6= 0} M := max{ i | ai 6= 0}
J := min{ i | bi 6= 0} N := max{ i | bi 6= 0}.

If I does not exist, then neither does M , and in this case we have a = 0. The same holds for
J . Hence, if neither of I and J exists, then a = b = 0, and the proposition follows from the
compatibility of the ordering with the group structure of M. Therefore we will in the following
assume that at least one of I and J exists.

We let

t := log a − (aIϕI + · · · + aMϕM ) if I exists,

s := log b − (bJϕJ + · · · + bNϕN ) if J exists.

We first treat the case I where exactly one of I and J exists, say I ∈ N. Then we have b≺ 1
and thus log b < 0. We distinguish two subcases.

Sub-case I.1: dt ≻ ni+1. Then from a≺ na we obtain ct < 0. If log b≺ t, then t+ log b ≍ t
and ct+log b = ct < 0. Hence the inequality

log(ab) − (aIϕI + · · · + aMϕM ) < σIaInI+1 (2.4)

holds. On the other hand, if log b ≻ t, then t + log b ≍ log b and ct+log b = clog b < 0, which
implies inequality (2.4) again. Finally, if t ≍ log b, then t+ log b ≍ t ≍ log b and ct+log b =
ct + clog b < 0. Hence in all cases we obtain ab≺ na.

Sub-case I.2: dt≺ni+1. Then σIaI > 0. Again, we distinguish three cases. First, if log b≺ t,
then t ≍ t+log b≺ nI+1 and thus t+log b < σiai nI+1. Next, if t≺ log b, then log b ≍ t+log b

which implies ct+log b = clog b < 0. Thus again t + log b < σiai nI+1. And finally, if t ≍ log b,
then t+ log b 4 t≺ nI+1. Again, σIaI > 0 implies t+ log b < σiai nI+1. This finishes the case I.
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Next, we treat the case II where both I and J exist. Let L := min{ i | ai + bi 6= 0}. Then
L > min(I, J). We consider four sub-cases.

Sub-case II.1: dt ≻ nI+1 and ds ≻ nJ+1. Then ct, cs < 0. Hence

dt+s = max(dt, ds) ≻ nI+1, nJ+1

and ct+s < 0. Since L > min(I, J), we obtain by Lemma 2.5.11 that dt+s ≻ nL+1. Thus
t+ s < σL(aL + bL) nL+1.

Sub-case II.2: dt≺ nI+1 and ds≺ nJ+1. Then σIaI , σJbJ > 0. Hence σL(aL + bL) > 0.
Moreover, by Lemma 2.5.11 we have

dt+s 4 max(dt, ds) ≺ nL+1.

Hence t+ s < σL(aL + bL) nL+1.

Sub-case II.3: dt≺nI+1 and ds ≻ nJ+1. Then σIaI > 0 and cs < 0. If J 6 I, then by
Lemma 2.5.10 we have dt≺ ds. Thus t + s ≍ s ≻ nJ+1 and ct+s = cs < 0. From L > J ,
s ≻ nJ+1 and Lemma 2.5.11 it then follows that

dt+s ≻ nL+1.

Hence t + s < σL(aL + bL) nL+1. If J > I, then L = I and σL(aL + bL) nL+1 = σIaI nI+1.
Furthermore, t + s4 max(dt, ds). If dt ≻ ds, then t + s ≍ t≺ nL+1 and ct+s = ct. From
σIaI > 0 it now follows that

t+ s < σL(aL + bL) nL+1. (2.5)

On the other hand, if dt≺ ds, then t + s ≍ s and ct+s = cs < 0. This also shows the
inequality (2.5). Finally, if t ≍ s, then t+s4 t≺ nL+1. Again, σIaI > 0 shows inequality (2.5).

Sub-case II.4: dt ≻ nI+1 and ds≺ nJ+1. This case is similar to the case II.3.

Thus, we have shown t + s < σL(aL + bL) nL+1 in the case II, from which the proposition
follows. 2

Remark that for all a ∈ M and all a ∈ Z⋆ with 0 6= a we have either a ≻ na or na ≻ a. We
extend the relation ≻ to < by

na < a :⇔ na ≻ a ∨ (a = 1 ∧ a = 0).

We define the binary relation < on Mσ,ϕ as follows. Let a, b ∈ M and a, b ∈ Z⋆. Then we let

a na < b nb :⇔ ab−1 < nb−a.

PROPOSITION 2.5.13 The relation < is a total ordering on Mσ,ϕ. It extends the ordering of
M and is compatible with the group structure of Mσ,ϕ.
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Proof: Throughout this proof, let a, b, c ∈ M and a, b, c ∈ Z⋆. If one of a 6= b and a 6= b
holds, then either a na ≻ b nb or b nb ≻ a na. Hence the relation < is total. Next we show PO1
– PO3. Suppose

a na < b nb and b nb < a na.

Applying the definition, this is equivalent to

a b−1 < nb−a and nb−a < a b−1.

If one of the inequalities were proper, then the other inequality would have to be proper as well.
But then we have an immediate contradiction, which shows PO1. As for PO2, we remark that

a na < a na ⇔ a a−1 < na−a ⇔ 1 < n0,

which holds by the definition of <. Finally, we show PO3. Assume that a na < b nb and
b nb < c nc. If at least one of these inequalities is an equality, we are done. Let as thus assume
that a na ≻ b nb and b nb ≻ c nc. Then by Proposition 2.5.12 we have

ac−1 = a b−1 b c−1 ≻ nb−a+c−b = nc−a,

which is equivalent to a na ≻ c nc. This shows PO3 and the compatibility with the group
structure. 2

Let

Tσ,ϕ := C[[Mσ,ϕ]].

We define log on Mσ,ϕ and T+
σ,ϕ as follows. Let a ∈ M and a ∈ Z⋆ with n = |a|. Then with

i ∈ N:

log ni := ϕi + σi ni+1

log(a na) := log a + a0 log n0 + · · · + an log nn

log f := log df + log cf + l(δf ).

PROPOSITION 2.5.14 The field Tσ,ϕ is a transseries field.

Proof: We prove e1, e2 and e3 (the latter for f 6∈ (Tσ,ϕ)+∞) in a similar way as in
Proposition 2.3.2. It remains thus to show e3 for series f ∈ (Tσ,ϕ)+∞. First remark that
log(f + 1) ≍ log df and that df = a na for some a ∈ M and a ∈ Z⋆. If log df ≍ log a, then
e3 follows from the same property of T. If log df ≍ log na, then let i be minimal with ai 6= 0.
From 1 ≺ f it then follows that ai > 0, hence that ni+1 ≺ a na. Therefore

log na ≍ ni+1 ≺ a na.

In particular, log(f + 1) < f , which implies e3. Hence, Tσ,ϕ is an exp-log field.
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Property T1 follows from the above definition of log. In order to show T2 we have to show
that all ni are infinite monomials. But this follows from the definition of the ordering and from
0 < ϕi for i > 0. By construction, T3 is true. We show T4. Let m0,m1, . . . a sequence of
monomials in Mσ,ϕ such that

∀0 6 i : mi+1 ∈ supp log mi.

Let n ∈ N be minimal such that mn ∈ M. If n exists, then the property follows from condition
T4 for M. Otherwise there are a ∈ Z⋆ and 0 < i such that m0 = na and mj = nj+i for all j ∈ N.
But then T4 holds since suppϕi ≻ ni+1 for all i. 2

REMARK 2.5.15 Nested extensions will not play any role in the rest of this thesis. One reason
to introduce them was to give another example of a possible extension of a transseries field, thus
illustrating the general method – extending the group M to a set M̂, introducing compatible
multiplication and ordering on M̂, defining a function log on M such that C[[M̂]] is a transseries
field – once more.

Another reason was to extend transseries fields by canonical solutions of certain functional
equations. In fact, constructing a super-exponential function can be motivated in that way, too.
Therefore, introducing nested extensions does not provide a tool for every functional equation.
On the other hand, the functional equation

f(x) = ex
2+f(log2 x)+log x (2.6)

has natural solutions like (2.2), which causes problems, since this expression does not belong to
any transseries field. It should be noticed that there is a solution of (2.6) which can be expressed
in terms of nested expressions. (See [vdH97], p. 86 for more on this.)



Chapter 3

Trees

So far, we have defined sets of generalized power series, given them a field structure and addi-
tional functions exp and log. This chapter will study the combinatorial aspects of the theory of
transseries.

Transseries admit several properties which cause such properties to emerge naturally. Let
us mention three of them.

• Transseries can be represented as trees.
• Paths and sub-trees of such tree-representations can be used to define derivations and

compositions on transseries fields.
• Noetherian operators and a generalized form of Kruskal’s theorem are the combinatorial

analog to the concept of strongly linear algebras.

In this chapter, we cover the first and the last point. As for the second point, we use the proper-
ties shown in this chapter in Chapters 4 and 5 in order to define derivations and compositions.

3.1 Basic notions

An order T = (T,6·T ) is a tree iff

Tr1. ∃r ∈ T : ∀n ∈ T : r 6·T n,
Tr2. for all n ∈ T , the set in = {s ∈ T | s <·T n} is finite.

Note that the element r in condition Tr1 is unique. We call r the root of the tree T , in symbols
r = r(T ). The order-type of in is called the height of n, symbolized by h(n). The root is the only
element of a tree with height 0. If there is an integer N such that the height of each element of
the tree T is less than N , then we call T a uniformly finite tree.

Elements of a tree will also be called nodes. If the height of a node n ∈ T is a successor
ordinal, then there is a unique node p ∈ T with p <·T n such that for no other s ∈ T we have
p <·T s <·T n. In this case, we call p the predecessor of n, and we write p = pred(n). Then
the set succ(n) = {s ∈ T | n = pred(s)} is the set of successors of n. A leaf is a node without
successors. (See Figure 3.1.)

REMARK 3.1.1 We remark that trees are often defined more generally. Condition Tr2 can
be modified by replacing “finite” by “well-ordered”. This allows trees to have nodes n with
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r

l1 l2

l3 l4 l5 l6

l7

l8

l9

Figure 3.1: A tree of finite height (but not uniformly finite) with root r and leaves l1, l2, . . . .

h(n) > ω. In this setting, a tree is said to be of finite height iff every element has finite height.
We will later associate trees to transseries. Those trees will be of finite height. Since this is the
only type of trees we will encounter, we have decided to define trees more restrictively.

Moreover, in parts of the literature [Jec78],[Kun80], the definition of a tree does not demand
the existence of a root, i.e. one does not have condition Tr1. With this definition, every subset
of a tree is again a tree. This is in general not the case with the present definition of a tree. If,
for instance, the root of a given tree T has more than one successor, then the set T \ {r(T )} is
not a tree anymore. On the other hand, every subset containing the root will be a tree.

A well-ordered subset P of T is a path iff in ⊂ P for all n ∈ P and P 6⊆ in for all nodes
n ∈ T . For a fixed tree, every path has r(T ) as a minimal element. For a path P and an ordinal
α, we denote by nP,α the element of the path with height α, if there is such an element. If a
path is finite, then we write P = [nP,0, . . . , nP,|P |] for the path. Note that trees can have infinite
paths.

REMARK 3.1.2 For every path of a tree T , the least element of P is nP,0 = r(T ). The first
characteristic element of P is therefore a successor of r(T ). For this reason, we will sometimes
not mention nP,0 and start instead with the successor of the root, i.e. the element of the path
with height 1. When we do so, we will mention it, in order to avoid confusion.

For each node n, the set Kn = {s ∈ T | n 6·T s} is a tree. For all n ∈ succ(p), we call the trees
Kn the children of the node p, and we call p the parent of n ∈ succ(p). (See Figure 3.2.) Note
that for all s, t ∈ T the set {p ∈ T | p 6· s, t} is non-empty and well-ordered. Moreover, this set
has a maximal element. (We remark that this is in general not true, if we allow trees to have
nodes n with height h(n) > ω as in Remark 3.1.1.) We denote this element by s ∨ t.
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p

n1 n2

Kn1 Kn2

Figure 3.2: Children Kn1 ,Kn2 of the parent-node p.

Let leaf(T ) be the set of leaves of a tree T and (Sl)l∈leaf(T ) be a family of trees. There is
a canonical way to substitute the trees Sl into T by replacing l ∈ leaf(T ) by the root of Sl.
Formally, this is done as follows.

Let Ŝl = Sl × {l} for all l ∈ leaf(T ) and T̂ = T \ leaf(T ). We put U := T̂ ∪∐
l∈leaf(T ) Ŝl, and

we define 6·U on U by

n 6·U m iff





n,m ∈ T̂ and n 6·T m or

n,m ∈ Ŝl with n = (nS , l),m = (mS , l) and nS 6·Sl
mS or

n ∈ il and m ∈ Ŝl for l ∈ leaf(T ).

One verifies that every node of U has finite height, hence that U = (U,6·U ) is a tree. We also
write U = T [Sl]l∈leaf(T ).

Let T = (T,6·T ) be a tree, M a set and l : T → M a function. We call the tuple (T, l)
an M -labeled tree. We can substitute M -labeled trees into M -labeled trees – given that the
labelings of the leaves and the roots are the same – by substituting the underlying trees and
adjusting the mapping in the natural way.

REMARK 3.1.3 The reason to introduce labeled trees is that trees only provide information
about structure. For our purposes, this will not be enough.

One disadvantage of trees is that their nodes are pairwise distinct. For representations of
transseries, this limits the use of trees as a tool considerably, as we will see later. Adding a
labeling to a tree provides thus an easy way to extend the range of applications of trees.

EXAMPLE 3.1.4 Let T be an M -labeled tree, where M has a total ordering 6M . For a node
n ∈ T , the set {l(s) | s ∈ succ(n)} is therefore totally ordered. We can thus totally order the
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children of a node. Moreover, suppose that if s 6= p ∈ succ(n), then l(s) 6= l(p). This will always
be the case in our applications.

We define a total order on the set of paths in T . Let P,Q ∈ path(T ), and let i be minimal
with l(nP,i) 6= l(nQ,i). Remark that if P 6= Q, then i exists and 0 < i. Then we let

P < Q :⇔ l(nP,i) < l(nQ,i).

One checks that this defines indeed a total ordering. This ordering is in general not Noetherian.
However, if T is a uniformly finite tree and if for every node n ∈ T the set

{l(s) | s ∈ succ(n)}

is well-ordered in (M,6M ), then the set of paths is also well-ordered. For if this was not
the case, then there would be a strictly decreasing sequence of paths (P0, P1, . . . ). Thus the
sequence (l(nPi,1))06i is decreasing. Hence for some v ∈M , the set {Pi | l(nPi,1) = v} contains a
strictly decreasing sub-sequence. Repeating this argument inductively, we can construct paths
of arbitrary lengths, which contradicts the assumption about T .

3.2 Tree-representations of transseries

Throughout this section, let T = C[[M]] be a transseries field. We will associate series f ∈ T
with labeled trees.

3.2.1 Definition of tree-representations

DEFINITION 3.2.1 A labeled tree T = (T, l) of finite height is a tree-representation of f ∈ T
iff the labeling l : T \ r(T ) → CM is such that

TR1. l(r(T )) = f ,
TR2. l : T \ r(T ) → CM,
TR3. for each n ∈ T \ (leaf(T ) ∪ r(T )) there exists a bijection ϕ : supp log dl(n) → succ(n)

with

(i) ∀m, n ∈ supp log dl(n) : m ≻ n ⇔ l(ϕ(m)) ≻ l(ϕ(n)) and

(ii) ∀m ∈ supp log dl(n) : l(ϕ(m)) = (log dl(n))mm.

We say that T = (T, l) represents the term l(r(T )) = f .

EXAMPLE 3.2.2 Every f ∈ T has a trivial tree-representation Tf,triv, namely the one-point
tree which is labeled with f . Clearly, it satisfies TR1. Since leaf(Tf,triv) = ∅, there is nothing
to show for the remaining conditions. Denote the labeling of the trivial tree-representation by
lf,triv.

Let t ∈ CM. We let St be the tree of height 1 such that there is a bijection

l : succ r(St) → term log dt.

We extend l to r(St) by l(r(St)) := t. We say that (St, l) is the log-tree of t (for an example,
see Figure 3.3).
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log x 2 log2 x 3 log3 x 4 log4 x

5elog x+2 log2 +···

Figure 3.3: The log-tree of t = 5elog x+2 log2 x+3 log3 x+···.

3.2.2 Maximal tree-representations

Let T = (T, f) be a tree-representation of some series f ∈ T. We define a labeled tree T+ =
(T+, l+) by replacing all leaves n ∈ leaf(T ) by their respective log-trees Sl(n):

T+ := T [Sl(n)]n∈leaf(T ).

Note that substituting the log-trees into the series is possible, since the labelings of the leaves
and the roots match. One checks that T+ is a tree-representation of f . The restriction of l+ to
T is l. Note that T = T+ if and only if leaf(T ) = ∅.

A CM-labeled tree T = (T, l) is a maximal tree-representation of f iff there exists a sequence
(Ti)06i of tree-representations Ti = (Ti, li) of f such that

Tmax1. T0 = Tf,triv,
Tmax2. ∀i > 0 : Ti+1 = T+

i ,
Tmax3. T :=

⋃
i<ω Ti, the inductive limit of (Ti)06i, and l :=

⋃
i li the induced labeling.

REMARK 3.2.3 Note that we have to show that
⋃
i<ω Ti is a tree-representation. Moreover, we

have to make sure that
⋃
i<ω Ti is well defined.

By condition Tmax2, the ordering on Tf,i+1 extends the ordering on Tf,i. Thus the inductive
limit in Tmax3 exists. For n,m ∈ ⋃i<ω Ti we let n <· m iff there is an i ∈ N with n <·Tim,
where 6·Ti is the ordering of Ti. Hence

⋃
i<ω Ti exists and is a labeled tree of finite height. The

conditions TR1 – TR3 can be easily verified.

PROPOSITION 3.2.4 There is exactly one maximal tree-representation Tf,max of f .

Proof: We define a sequence (Ti)06i as in conditions Tmax1 and Tmax2. The inductive limit
exists. Hence, it remains to show the uniqueness. Let T and T ′ be two different maximal tree-
representations. Then there are sequences (Ti)i and (T ′

i )i such that T and T ′ are the inductive
limits of these sequences.
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Figure 3.4: The maximal tree-representation of f = 5ee
x
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If there was a P ∈ path(T ) \ path(T ′) (in the labeled tree), then there is a minimal i ∈ N
such that

[tP,0, . . . , tP,i] ∈ path(T ′
i )

[tP,0, . . . , tP,i+1] 6∈ path(T ′
i+1).

But tP,i+1 is a label of a leaf in the log-tree of tP,i. Since tP,i is also the label of a leaf of T ′
i

it follows from Tmax2 that tP,i+1 is a label of a leaf of T ′
f,i+1. This contradiction shows that

path(T ) ⊆ path(T ′). Similarly, on obtains equality. This shows the proposition. 2

REMARK 3.2.5 The tree-representation Tf,max is maximal in the sense that every tree-repre-
sentation T = (T, l) of f is a sub-tree of Tf,max. By that we mean that paths of T are truncations
of paths in Tf,max and that the restriction of the labeling lf,max to T is l.

NOTATION 3.2.6 Let P be a path in a tree-representation. By tP,i we will denote the term
which labels the node nP,i. Since for i > 0 we have tP,i ∈ CM, for every i there are cP,i ∈ C and
mP,i ∈ M with

tP,i = cP,imP,i.

We will henceforth write mP,i instead of dtP,i.

A path P in the maximal tree-representation of f is convergent iff there is some i such
that tP,i is log-atomic. We say that P is a right-most path iff tP,i+1 is the least element in
term log mP,i for all i > 0. By condition T4 of the definition of transseries, for all paths P in
Tf,max there is some i0 such that

[tP,i0, tP,i0+1, . . . ]
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is a right-most path. A path P has cofinal bifurcations iff

∀i : ∃j > i : ∃s ∈ term log mP,j : s ≻ tj+1.

If P has no cofinal bifurcations, then we say that P is eventually bifurcation-free.

REMARK 3.2.7 Not every path is necessarily convergent. Take for instance the nested mono-
mial

n = ex
2+elog

2
2 x+e

log24 x+e

.
. .

.

Then Tn,max contains the path P = [n, n1, n2, . . . ] where

ni = elog
2
i x+e

log2i+1 x+e
log2i+2 x+e

. .
.

.

Note also that P is a right-most path which has cofinal bifurcations. On the other hand, all
other paths in Tn,max are convergent.

PROPOSITION 3.2.8 Paths are either log-convergent or have cofinal bifurcations.

Proof: Let P be convergent, then let i be such that tP,i is log-atomic. Thus

term log mP,i = {log tP,i} ⊆ M.

This shows that P is eventually bifurcation-free.

Now let P be a path which is not convergent. Then no tP,i is log-atomic. By condition
T4, we may assume that for sufficiently large i, the leading coefficient of tP,i is ±1. Then for
every i there is an integer j > i such that either term log mP,j has more than one element, and
tP,j+1 cannot be eventually the leading term of log mP,j. But then we have a cofinal sequence of
bifurcations, and P is therefore not bifurcation-free. 2

3.2.3 Minimal tree-representations

A tree-representation T = (T, l) of f is minimal iff

Tmin1. T ⊆ Tf,max and l ⊆ lf,max,
Tmin2. t ∈ leaf(T ) if and only if l(t) is log-atomic.

PROPOSITION 3.2.9 There is a unique minimal tree-representation Tf,min of f .

Proof: We start with the existence of minimal tree-representations. We define a labeled tree
T by defining its set of paths. Note that this completely determines T . Let P ∈ path(T ) iff

• either P is not a convergent path in Tf,max,
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• or there is a convergent path Q ∈ path(Tf,max) such that

P = [tQ,0, . . . , tQ,i]

and i is minimal such that tQ,i is log-atomic.

Note that all nodes of T have finite height. We let l be the restriction of lf,max to T . The
conditions Tr1 – Tr3 hold by construction. Thus T = (T, l) is a tree-representation. Condition
Tmin1 also holds by construction. A node n of T is a leaf if and only if it is the minimal node
on an convergent path such that its label l(n) is log-atomic. This immediately implies Tmin2.
The tree (T, l) is thus minimal.

As for the uniqueness, we assume that T, T ′ are two different minimal trees. Then we let
Tω, T

′
ω be the trees that result from substituting the maximal trees Sl(t) into all leaves t of T

and T ′ respectively. Then Tω = T ′
ω, since both are maximal tree-representations. But then the

set of paths in T and T ′ are identical. Thus T = T ′. Contradiction. 2

REMARK 3.2.10 In other words, the minimal tree-representation results from cutting off the
branches of the maximal tree-representation where they start to become non-branching trees.

Moreover, by Proposition 3.2.8, the only non-finite paths in Tf,min are the paths in the
maximal tree-representation Tf,max which are not convergent. The minimal and maximal tree-
representation provide thus the same information about f .

We will show next, that the paths which are not convergent do not play an important role
in neither the minimal nor maximal tree-representation of f .

PROPOSITION 3.2.11 The minimal tree-representation Tf,min is completely determined by its
set of finite paths. In other words, the maximal tree-representation is completely described by its
set of log-convergent paths.
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Proof: Let P be a path which is not convergent. We have to show that for every i there is a
convergent path Q in Tf,max such that

∀j 6 i : tP,j = tQ,j. (3.1)

Suppose not. Then for some i = i0, all paths Q in Tf,max with condition (3.1) are not convergent.
There cannot be a finite number of such paths, for P has cofinal bifurcations. Hence, we construct
a contradiction as follows. Let i1 > i0 be such that P bifurcates in tP,i1. Let Q0 := P , and let
Q1 be a path such that

∀j 6 i1 : tP,j = tQ1,j ∧ tQ1,i1+1 ≻ tP,i1+1.

Now suppose that we have already constructed a sequence in > · · · > i0 such that for all
n > m > 1 we have

∀j 6 im : tQm−1,j = tQm,j ∧ tQm−1,im+1 ≺ tQm,im+1.

Then Qn bifurcates in some tQn,in+1 with in+1 > in such that for some non-convergent path
Qn+1, which coincides with Qn up to tQn,in+1 we have

tQn+1,in+1+1 ≻ tQn,in+1+1.

This finishes the construction. Let mn = mQn,in be the monomial of the term tQn,in . Then
(mn)06n violates condition T4. This shows the proposition. 2

3.2.4 Relative tree-representations with respect to transseries fields

Minimal and maximal tree-representations exist uniquely for all transseries. We change now the
setting. Recall that Texp is the exp-extension of T and that we have defined transseries fields
Tα = C[[Mα]] for all ordinals α by letting T0 = T, Tα+1 = Tα,exp and Tλ = C[[

⋃
α<λMα]] for

limit ordinals λ. The fields Tα are called transfinite exponential extensions of T.

Let in the following f ∈ Tα. A tree-representation T = (T, l) of f is relative with respect
to T iff for all nodes n ∈ T we have l(n) ∈ CM ⇒ n ∈ leaf(T ). We denote the relative tree-
representation of f w.r.t. T by Tf,T, and we will not mention T, if it is clear from the context.
(Note that in the definition of this tree-representation, the group Mα replaces M.)

EXAMPLE 3.2.12 Let f ∈ Tα. We define a labeled tree Tf = (Tf , lf ) as follows.
First assume that α = 0. If f ∈ CM, then we let Tf = {•} and lf (•) = f . Hence, Tf is the

unique tree of height 0 which is labeled with f . Clearly, this is a relative tree-representation of
f w.r.t. T.

Otherwise let Tf be the tree of height 1 such that lf (r(Tf )) = f and lf (leaf(Tf )) = term f .
This determines the labeled tree Tf uniquely. Again, the tree Tf is relative w.r.t. T.

Now assume that α > 0 and that for all β < α and all g ∈ Tβ a relative tree-representation
Tg w.r.t. T has already been defined. If there is an ordinal β < α such that f ∈ Tβ, then let Tf
be the labeled tree defined in Tβ. If not, then let pre(Tf ) be the labeled tree of height 1 with
r(pre(Tf )) = f and leaf(pre(Tf )) = term f . (See for example Figure 3.6.)
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For every m ∈ supp f , there is an ordinal βm < α such that log m ∈ Tβm
. Hence log m admits

already a relative tree-representation Tlog m in Tβm
w.r.t. T. Let T̂m be the labeled tree which is

identical to Tlog m except that

r(T̂m) = fmm.

Then we substitute the family (T̂m)m∈supp f into the labeled tree pre(Tf ) by replacing fmm by

T̂m:

Tf := pre(Tf )[T̂m]m∈supp f .

Now, Tf is a tree-representation of f , and form the relativity of all Tlog m, it follows that Tf is
relative.

PROPOSITION 3.2.13 Each series f ∈ Tα admits a unique relative tree-representation Tf,T.

Proof: The existence follows from the construction of Tf in Example 3.2.12. We have to
show the uniqueness. Let α be minimal such that there is a series f with two distinct relative
tree-representations T and T ′. The uniqueness in the case α = 0 follows directly from the fact
that the root is labeled with f and that the successors of the root are labeled with elements
from CM.

Hence α > 0. Note that r(T ) = r(T ′). Let t ∈ term f and T̃ ′
t the child of the root in T ′

which is labeled with t. Replace the root of T̃ ′
t by log dt, then the resulting tree T ′

t is a tree-
representation of log dt. Since leaf(T ′

t ) ⊆ leaf(T ), these tree-representations are relative with
respect to the field T, hence T ′

t = Tt for all t ∈ term f . This shows T ′ = T . 2

Let 6· be the ordering in the underlying tree of the relative tree-representation Tf,T of f ∈ Tα.
Then the next proposition shows that Tf,T has no infinite paths.

PROPOSITION 3.2.14 The relative tree-representation w.r.t. T does not contain infinite chains
for 6·.
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Proof: Suppose not, and let n0 <· n1 <· · · · be an infinite chain of nodes in Tf,T with

n0 = r(Tf,T)

n1 ∈ succ(n0)

n2 ∈ succ(n1)

...

For i > 0, let βi be the minimal ordinal such that l(ni) ∈ CMβi , where l is the labeling of Tf,T.

Fix i > 0, then βi > 0, for otherwise l(ni) ∈ CM and the relativity imply that ni is a leaf
of Tf , hence succ(ni) = ∅. Furthermore, βi is a successor ordinal: if it was a limit ordinal, then
l(ni) ∈

⋃
β<βi

Mβ implies l(ni) ∈ CMβ for some β < βi, which contradicts the minimality of βi.

Hence for all i > 0 there is an ordinal αi with βi = αi + 1. By TR3 we have l(ni+1) ∈
term log dl(ni). Since log dl(ni) ∈ T

↑
αi , this means l(ni+1) ∈ CMαi which proves βi+1 < βi for all

i > 0.
Therefore, (βi)060 is a strictly decreasing sequence of ordinals. This contradiction shows the

proposition. 2

The next proposition shows that one can represent series with less information. Indeed, the
inner nodes (that is, nodes which are neither leaves nor the root) only need to be labeled by
elements from the field of constants C.

PROPOSITION 3.2.15 The labeling l : Tf,T \ {r(Tf,T)} → CMα of a relative tree-representation
Tf,T is uniquely determined by its restriction to leaf(Tf,T) and by the mapping Tf,T \{r(Tf,T)} →
C which is defined by c(t) = cl(t).

Proof: We prove the proposition by transfinite induction over the depth α of the tree Tf,T.
If α = 0, then Tf,T is reduced to the root and the leaves, and there is nothing to prove.
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Hence assume that α > 0 and that we have proved the proposition for all β < α. Let S be
a child of the root of Tf,T. We have to show the proposition for S. Each of the children of r(S)
is a tree-representation of depth < α. Hence l is uniquely determined on S \ {r(S)}.

Now assume that l, l′ : S → CMα are two labelings with

cl(r(S)) = cl′(r(S))

l|S\{r(S)} = l′|S\{r(S)},

such that (S, l) and (S, l′) are both relative tree-representations w.r.t. T. Let s = r(S). By TR3
we have bijections

ϕ : supp log dl(s) → succ(s)

ϕ′ : supp log dl′(s) → succ(s)

which satisfy the conditions from Definition 3.2.1. For each m ∈ supp log dl(s) we then have

(log dl(s))mm = l(ϕ(m)) = (log dl′(s))(ϕ′)−1(ϕ(m))(ϕ
′)−1(ϕ(m)).

Hence ϕ = ϕ′ and (log dl(s))m = (log dl′(s))m for all m. Hence dl(s) = dl′(s). By assumption, we
have cl(s) = cl′(s). Thus l(s) = l′(s). 2

REMARK 3.2.16 It should be noticed that the relative tree-representation of some series f
with respect to a field T can always be extended to a tree-representation such that all leaves
are log-atomic. This can be done by replacing every leaf of Tf,T by its unique minimal tree-
representation. The result is the unique tree-representation of f such that

• all leaves are monomials from M which are log-atomic,
• if a node is in M and log-atomic, then it is a leaf.

We call this tree the relative-minimal tree-representation of f with respect to T. We denote
it by Tf,rm,T (See Figure 3.8.)

NOTATION 3.2.17 Let t be a term, then we let

path(t) := path(Tt,max),

path(T) :=
⋃

m∈M

path(m).

Similarly, we define in transfinite exponential extensions

pathT(t) := path(Tt,T),

pathT(Tα) :=
⋃

m∈Mα

pathT(m).

REMARK 3.2.18 Let us finish this section with a short remark about the connection between
the different types of trees we have defined. Let f ∈ Tα. Then Tf,min, Tf,T and Tf,rm,T are
sub-trees of Tf,max. Moreover, we have that Tf,T and Tf,min are sub-trees of Tf,rm,T.
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Something similar does not hold for the relative tree-representation w.r.t. T and the minimal
tree-representation. Let for instance T = L = C[[logZ⋆x]] and f ∈ Lexp with

f = ex
2 log x + ex + ex−logx + ex−log x−log2 x + · · · .

Then the first term ex
2 log x provides an example where the path in Tf,T is shorter than the paths

in Tf,min. In fact, x2 log x is a monomial in logZ⋆x, but not log-atomic. The second term ex is
log-atomic, but not in logZ⋆x. Thus the path in Tf,T is in this case longer.

For every series f , any of the above tree-representations is uniquely determined by the respec-
tive tree-representations of the terms of f . The only difference is that paths in a representation
of f always start with the label f . Already the successor of the root determines in which term
the paths is continued, and there can be only one such term. We can therefore see any of
the above tree-representations as the distinct union of the tree-representations for elements of
term f . For instance

Tf,T =
∐

t∈term f

Tt,T.

We call the right-hand side union the forest of the series f .

3.3 Closure properties for series with support-constraints

Let us give an application of the properties shown in the last section. We will consider a
special type of generalized power series. Indeed, we will assume that for an infinite cardinal
κ > ℵ0 generalized power series have a support of cardinality < κ. Our aim is to show that
adding this condition to the definition of generalized power series stabilizes the extension process
T→ Texp → Texp,exp → · · · .
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For the rest of this section, let us fix a cardinal κ > ℵ0. We say that a series f ∈ C[[M]] has
κ-support iff |supp f | < κ. We only consider series with κ-support. If C and M have cofinal
cardinality < κ1 and < κ2 respectively, then κ2 6 κ. If max(κ1, κ2) 6 κ, then Lemma 2.4.3
implies that all series in Texp = C[[M]]exp have κ-support, and even more, by Corollary 2.4.5,
for every ordinal α < max(κ1, κ2) the set Tα contains only series with κ-support.

On the other hand, we have seen that if κ2 < κ1, then the series from Texp can have supports
with cardinality > κ2. Thus, if we have κ = κ2, then for m ∈ M↑ and a well-ordered sequence
(bα)α<κ1 ⊆ C, the series

∑
α<κ1

exp(−bαm) would not be in the exp-extension of T anymore,
since this series violates the κ-support condition.

Let us show that the extension process is stabilizing under the additional assumption that
all series have κ-support.

PROPOSITION 3.3.1 There exists a unique ordinal λ such that

1. ∀α < λ : Tα  Tλ,

2. ∀α > λ : Tα = Tλ.

Moreover, this ordinal is either 0 or a limit ordinal.

Proof: Consider the class T of labeled trees T such that

T 1. each node in T has less than κ successors,
T 2. T is of finite height,
T 3. the inner nodes are labeled by constants from C,
T 4. the leaves of T are labeled by terms in CM.

We claim that T is a set. To see this we remark that every path in every T ∈ T is represented
by a tuple in C⋆ × CM. There are at most 2|C| × 2|CM| such tuples. Trees are then subsets of
this set, hence

|T | 6 22|C|×2|CM|
.

This shows the claim.
The propositions of the previous section imply that we have an injection of Tα into T for

each α, hence that |Tα| 6 |T |. Now assume for a contradiction that Tα  Tβ for all α < β.
Then let (fγ)γ<|T | with fγ ∈ Tγ+1 \ Tγ . Hence |Tα| > |α|, contradiction. Consequently, there
are ordinals α < β with Tα = Tβ.

Let λ be minimal such that for some α > λ we have Tλ = Tα. Then Tα  Tλ for all α < λ.
On the other hand,

∀λ < β < α : Tλ ⊆ Tβ ⊆ Tα

implies Tλ = Tβ for all λ 6 β 6 α. Next, we show that Tλ = Tβ for all α 6 β. Assume that
β > α and that we have shown the assertion for all smaller ordinals. If β = γ + 1, then

Tβ = Tγ,exp = Tλ,exp = Tα,
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since λ < λ+ 1 6 α. If β is a limit ordinal, then we have

Mβ =
⋃

γ<β

Mγ =
⋃

γ<λ

Mγ ∪
⋃

λ6γ<β

Mγ = Mλ.

This shows the existence and the uniqueness.
Let us finally show that λ is either zero or a limit ordinal. If not, then λ = α + 1, and

Mα  Mλ. Choose m ∈ M
↑
λ \ Mα. Then we claim that m 6∈ exp M

↑
α. Otherwise exp m ∈ Mλ,

since m = m↑. Hence m ∈ T↑
α, since Mλ = exp M

↑
α. But then m ∈ M

↑
α, since it is a monomial.

This contradiction finishes the proof. 2

REMARK 3.3.2 We will later show that without the constraint on the support, the exp-
extension process is not stabilizing.

3.4 Embeddings in maximal tree-representations

Every subset T ′ of a tree T is an ordered set with the induced ordering. If for one element of T ′

condition Tr1 holds, then T ′ is again a tree. In particular, this is true, if it contains the root of
T . In this sense, a sub-tree can be seen as an injective embedding of a tree into its host-tree.

We will need tree-embeddings in a broader sense. For instance, we will not demand injec-
tivity, but we will always demand that the roots of the sub- and host-tree coincide. What is
more, in our applications we will encounter situations where paths in the sub-trees are merely
truncations of paths in the host-tree. The purpose of this section is to introduce the right setting
for this kind of tree-embeddings.

Let T and U be trees and ψ : T → U be a mapping. In particular, if P is a path in T , then
to every node nP,i of height i in the path we find an image ψ(nP,i) in U . The pair (U,ψ) is a
tree-embedding iff for every P ∈ path(T ) there is a path Q ∈ path(U) such that

∀n ∈ P : h(n) = i =⇒ ψ(n) = nQ,i.

We denote the sequence [ψ(nP,0), ψ(nP,1), . . . ] by ψ(P ). A tree-embedding is said to be faithful
iff all P ∈ path(T ) of length at least 2 are mapped onto paths.

REMARK 3.4.1 Note that the definition of tree-embeddings does not suppose that either of the
trees is finite. On the other hand, we even allow embeddings where T has only one element, the
root. In such cases, of course, the root is mapped to the root of U .

In fact, the condition on ψ makes sure that paths are mapped on truncations of paths in the
sense that there are no gaps in ψ(P ). Faithfully embedded trees (with the exception of the case
where T is a one-point tree and U is not) have the property that ψ(P ) streches over all of U .
That is, not only do we map the root of T to the root of U , we also map the leaf of P – if there
is one – onto a leaf of U .

We include the particular case of trees with only one element, since they will appear naturally
in our applications. Hence even though the extra condition for faithfully embedded trees may
look unmotivated at this point, it will serve us well in future and render the treatment of
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sequences of trees easier. Figure 3.9 shows an example of a tree-embedding, where all paths are
mapped onto paths and which is therefore faithful.

We extend the notion of faithful tree-embeddings to labeled trees. To start with, we gener-
alize the labeling notion for path to trees. Let T be a labeled tree and n ∈ T . Then lT,n denotes
the label of n in T . In particular, if the range of the labeling is a set CM of terms, then we
write

tT,n = cT,n mT,n

instead of lT,n. If T and U are both M -labeled trees, then T is a faithfully M-embedded
sub-tree of U iff there is an embedding ψ : T → U of the underlying trees such that (T,ψ) is a
faithful tree-embedding into U and lT,n = lU,ψ(n) for all nodes n ∈ T .

We are particularly interested in faithfully embedded trees of tree-representations of terms
and monomials. Indeed, for such settings there is an alternative way to express that a labeled
tree is a faithfully embedded labeled tree. Recall that for any term t ∈ CM, the maximal
tree-representation Tt,max is the inductive limit of the sequence (Ti, l)06i.

PROPOSITION 3.4.2 U is a faithfully CM-embedded tree of Tt,max if and only if U is either the
one-point tree with label t or if it is the inductive limit of a sequence (Ui)06i with

ss1. ∀i > 0 : Ui is a faithfully CM-embedded tree of Ti,
ss2. ∀i > 0 : ∀l ∈ leaf(Ui) : there is a faithful tree-embedding 0S′

l
of the log-tree Sl such that

Ui+1 = Ui[S
′
l ]l∈leaf(Ui),

(Note that condition ss2 implies that Ui is a sub-tree of Ui+1, hence that the inductive limit
exists.)
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Proof: Suppose that U is not the one-point tree labeled by t. Let U = (U, v) be a faithfully
CM-embedded tree of Tt,max with embedding ψ : U → Tt,max. We define inductively CM-labeled
trees Ui = (Ui, vi) and embeddings ψi : Ui → Tt,i such that ss1 and ss2 hold and such that U
is the inductive limit of this sequence. Let in the following l be the labeling of Tt,max.

We let U0 := Tt,triv as labeled trees and ψ0 := ψ|U0 . Then U0 is a faithfully CM-embedded
tree of Tt,triv via ψ0. This shows ss1. For the other ss2 there is nothing to show.

Now suppose that we have constructed Ui, vi and ψi with properties ss1 and ss2. Let

Ui+1 := Ui
∐ {n ∈ U | ∃p ∈ leaf(Ui) : p = pred(n)},

vi+1 := v|Ui+1 ,

ψi+1 := ψ|Ui+1 .

Then Ui ⊆ Ui+1, vi ⊆ vi+1 and ψi ⊆ ψi+1. Furthermore, leaf(Ui+1) = Ui+1 \ Ui. We claim that
Ui+1 is a faithfully CM-embedded tree of Ti+1. First we remark that r(U) = r(U0) implies

r(Ti+1) = r(Tt,max) = ψ(r(U)) = ψ0(r(U0)) = ψi+1(r(Ui+1)).

Fix n ∈ leaf(Ui+1). Then there is some l ∈ leaf(Ui) with l = pred(n). But then, since U is a
sub-tree of Tt,max, we have

tU,n ∈ term log mU,ψ(l).

In other words, the term tU,n is the label of a leaf of the log-tree of mU,ψ(l). Hence leaf(Ui) ⊆
leaf(Ti) implies leaf(Ui+1) ⊆ leaf(Ti+1). This finishes the inductive step and thus our construc-
tion. Conditions ss1 and ss2 hold by construction.

Inversely, let (Ui)06i be a sequence of faithfully CM-embedded trees of Ti with properties
ss1 and ss2. For every i, there is a mapping ψi : Ui → Ti with properties which realizes the fact
that Ui is a faithfully CM-embedded sub-tree of Ti. Condition ss2 implies ψi ⊆ ψi+1. Thus
ψ :=

⋃
i ψi defines a mapping

ψ : U :=
⋃

06i

Ui → Tt,max.

Let vi be the labeling of Ui. Again by ss2 we have vi ⊆ vi+1. We let v :=
⋃
i vi, which then

defines a labeling of U . The labelings of the labeled trees Ti are denoted by li, and l =
⋃
i li is

the labeling of Tt,max.

First, we have to show that ψ : U → Tt,max is a faithful tree-embedding. We start by noticing
that r(U) = r(U0) and that for (S0, ψ0) we have

ψ(r(U)) = ψ0(r(U0)) = r(Tt,triv) = r(Tt,max).

TThis shows the first part of the definition of faithful embeddings. Fix P ∈ path(U) and let 6·
be the ordering of the underlying tree Tt,max. Since nP,0 = r(U0), we have

ψ(P ) = [ψ0(nP,0), ψ1(nP,1), ψ2(nP,2), . . . ].
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Let Pi = [nP,0, . . . , nP,i] ∈ path(Ui). Then conditions Tmax2 and ss2 inductively imply for
all i > 0 that ψi(Pi) = [ψ0(nP,0), . . . , ψi(nP,i)] is a path in Ti. If ψ(P ) was bounded by an
element from Tf,max, then it would be bounded by an element from some Tj . Contradiction.
Furthermore, if there was some t ∈ Tf,max with

ψi(nP,|P |+i) <· s <· ψi+1(nP,|P |+i+1)

for some i, then the same would be true in Ti, which contradicts the fact that ψi+1(Pi+1) is a path
in Ti+1. Hence ψ(P ) is a path in Tf,max. The mapping ψ realizes thus a faithful tree-embedding.
Let n ∈ U , then n ∈ Ui for some i ∈ N and

l(n) = li(n) = vi(ψi(n)) = v(ψ(n)).

This finishes the proof. 2

3.5 Noetherian choice operators

3.5.1 Kruskal’s theorem

A tree (T,6·T ) is finite iff the set T is finite. The root r of a finite tree T has only finitely many
successors s1, . . . , sk, hence finitely many children Ksi

= {n ∈ T | si 6·T n} (with i = 1, . . . , k).
The trees Ksi

are pairwise distinct. The tree T is thus completely described by r and the trees
Ks1 , . . . ,Ksk

. We write

T = r[Ks1 , . . . ,Ksk
]

in this case.
For a set M we let MT be the set of M -labeled, finite trees. Hence for every T ∈MT there

is a labeling lT : T → M . We write T = (T,6·T , lT ). If M is an ordered set, then we define
an ordering 6MT on the set MT as follows. Let T, T ′ ∈ MT, then T 6MT T ′ iff there exists a
mapping ϕ : T → T ′ such that

flt1. ∀n,m ∈ T : n <·T m ⇒ ϕ(n) <·T ′ ϕ(m),
flt2. ∀n,m ∈ T : ϕ(n ∨ m) = ϕ(n) ∨ ϕ(m),
flt3. ∀n ∈ T : lT (n) 6M lT ′(ϕ(n)).

The following theorem is due to Kruskal [Kru60]. We give a proof which is due to Nash-Williams
[NW63].

THEOREM 3.5.1 (Kruskal) If (M,6M ) is Noetherian, then so is (MT,6MT).

Proof: Assume that there are sequences (Ti)16i of trees in MT which are not Noetherian.
We call such series bad. We may assume that we have a bad sequence which is minimal in the
following sense. For fixed trees T1, . . . , Ti−1 the cardinality of Ti is minimal. (We use Zorn’s
lemma to show the existence of minimal bad sequences: let T1 have minimal cardinality, and let
for all i > 2 and fixed T1, . . . , Ti−1, the set Mi be the set of trees Ti which are not comparable to
T1, . . . , Ti−1. By hypothesis, the Mi are non-empty, and we have Mi ⊃ Mi+1 for all i. Hence
Ni = Mi \Mi+1 is a family of non-empty sets. Thus the existence of T1, T2, . . . .)
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Figure 3.10: Example for 6NT .

For each i > 1 we write Ti = ri[Ti,1, . . . , Ti,ni ]. For all i and all j 6 ni the trees Ti,j are again
in MT. We claim that the set S = {Ti,j | 1 6 i, 1 6 j 6 ni} is Noetherian in MT.

Suppose not, then there is a bad sequence

(Ti1,j1, Ti2,j2, . . . ) ⊆ S.

Let k ∈ N be such that ik is minimal. Then the sequence

(T1, . . . , Tik−1
, Tik,jk , Tik+1,jk+1

, . . . ) ⊆MT

is also bad. But the cardinality of Tik ,jk is smaller than the cardinality of Tik , which contradicts
the minimality of (Ti)16i. This shows the claim.

Now, M × S⋆ is Noetherian by Higman’s theorem. Each tree Ti can be interpreted as an
element of this set. This gives the desired contradiction. 2

3.5.2 Labeled structures and choice operators

We extend the concept of labeled trees. Recall that to a labeled tree we could associate an
underlying tree T and a labeling l which assigns a value from a given set to every node. Our
present objects will be similar, only we do not demand that the underlying set is a tree, anymore.

DEFINITION 3.5.2 Let X = (X,6X) be an ordered set. An X-labeled structure is a couple
σ = (Iσ, lσ) such that Iσ is a set (called the underlying structure of σ) and lσ : Iσ → X is a
mapping (called the labeling of σ).

Let Σ be a set of X-labeled structures. We define an ordering on Σ ×X by

(σ, x) < (σ′, x′) :⇔ x < x′.
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For a subset Y ⊆ X we let

ΣY := {σ ∈ Σ | im lσ ⊆ Y },

that is, ΣY is the subset of all X-labeled structures in Σ such that all labels of σ are in Y .
A mapping ϑ : Σ → P(X) is called a choice operator. We say that ϑ : Σ → P(X) is

Noetherian iff for all Noetherian sets Y ⊆ X the set

{(σ, x) |σ ∈ ΣY ∧ x ∈ ϑ(σ)} ⊆ Σ ×X

is Noetherian. A choice operator is extensive iff for each σ ∈ Σ:

∀a ∈ im lσ : ∀b ∈ ϑ(σ) : a 6X b,

and ϑ is strictly extensive iff for all σ ∈ Σ:

∀a ∈ im lσ : ∀b ∈ ϑ(σ) : a <X b.

EXAMPLE 3.5.3 Every M -labeled tree (T, l) is an M -labeled structure, where T is the under-
lying structure and l the labeling. The mapping ϑ(T, l) = {l(n) | n ∈ leaf(T )} is an example for a
choice operator on the set of labeled trees. Then ϑ is Noetherian, but not necessarily extensive.

In order to give an example of a Noetherian and extensive choice operator, let X be an
ordered set, n ∈ N and Σ = Xn. More precisely, the underling set of every X-labeled structure
is the set {1, . . . , n} and the labeling of x = (x1, . . . , xn) ∈ Σ is

lx : {1, . . . , n} ∋ i 7→ xi ∈ X.

Let f : Xn → X be extensive, i.e. xi 6 f(x) for all 1 6 i 6 n and x ∈ Xn. Then

ϑ : Σ ∋ x 7→ {f(x)} ∈ P(X)

is a Noetherian and extensive choice operator.

3.5.3 Kruskal’s theorem generalized

Given a set Σ of X-labeled structures and a choice operator ϑ : Σ → P(X) we can generate
new sets of X-labeled structures and choice operators on these sets. In fact, we construct sets
Σ∗ and Σ+ together with choice operators ϑ∗ and ϑ+, respectively. To this end, we inductively
define pairwise disjoint sets T0, T1, . . . of X-labeled sets.

The initial step: Let {•} be the one-point tree. For x ∈ X, we denote by lσ∗x : {•} → X the
labeling of {•} with lσ∗x(•) = x. In other words, σ∗x = ({•}, lσ∗x ) is the X-labeled structure where
the only element of the underlying structure is labeled by x by • 7→ x. We let

T0 := {σ∗x = ({•}, • 7→ x) | x ∈ X} ,

and we remark that there is a bijection between T0 and X. For σ∗ ∈ T0, we let

ϑ∗(σ∗) := {x} ⇔ σ∗ = σ∗x.
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Then ϑ∗ : T0 → P(X) is a choice operator. This finishes the initial step.

The inductive step: Suppose that we have defined pairwise disjoint sets T0, . . . , Tk (where
0 6 k) and for each σ∗ ∈ Ti (i 6 k) an underlying structure Iσ∗ and a labeling lσ∗ . Moreover,
suppose that we have defined ϑ∗ for σ∗, i.e. that we have ϑ∗(σ∗) ∈ P(X). Hence our next step
is to define the set Tk+1 of X-labeled structures σ∗, and we have to define ϑ∗(σ∗). Moreover,
we remark that in the construction of T0, the set Σ has not played a role yet. It will come into
play now.

Let σ ∈ Σ with underlying set Iσ and labeling lσ. To every point i ∈ Iσ we let τi be an
element from T0

‘ · · · ‘

Tk, i.e.

∀i ∈ Iσ : ∃li 6 k : τi ∈ Tli .
Note that li 6 k is uniquely determined, and we call it the depth of τi. We add an additional
constraint on the choice of τi, namely that for each i ∈ Iσ the labeling lσ(i) of the point i in the
underlying structure is contained in ϑ∗(τi), i.e.

∀i ∈ Iσ : lσ(i) ∈ ϑ∗(τi).
We replace each lσ(i) by the entire structure τi for each point i ∈ Iσ, and we write for the
resulting structure

σ∗ = σ[τi]i∈Iσ .

The underlying structure of σ∗ is Iσ∗ =
∐
i∈Iσ Iτi . The labeling lσ∗ is defined by

∀j ∈ Iσ∗ : lσ∗(j) = lτi(j) ⇔ j ∈ Iτi .

The structure σ∗ = σ[τi]i∈Iσ is X-labeled. The set of these new structures is Tk+1. It remains
to define ϑ∗ for σ∗ ∈ Tk+1. For σ∗ = σ[τi]i∈Iσ we let

ϑ∗(σ∗) := ϑ(σ) ∈ P(X).

Hence ϑ∗ is a choice operator on Tk+1. This finishes the inductive step of the definition of the
sets T0, T1, . . . .

We let

Σ∗ :=
∐

06k

Tk

Σ+ :=
∐

16k

Tk.

The function ϑ+ : Σ+ → P(X) is the restriction of ϑ∗ to Σ+, hence a choice operator on Σ+.

EXAMPLE 3.5.4 To illustrate the above construction with an easy example, let

X = {xi, yi, zi | 1 6 i}.
Elements from T0 are one-point labelings like • 7→ xi (for i > 1). Let τ1, τ2, τ3 ∈ T1 and σ the
X-labeled structures in Figure 3.11. Then we have an X-labeled structure σ∗ = σ[τ1, τ2, τ3] ∈ T2

as shown in the same figure.
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σ∗ :

σ :
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z2

y4

x1

y4
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z2

x2

x3
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x2 y4

y1

τ2 :

y2 y3

τ3 :

x3

z1
y1

y2 y3

Figure 3.11: The Structures τ1, τ2, τ3, σ and σ∗

We finish this section with a theorem by van der Hoeven, which generalizes Kruskal’s theo-
rem.

THEOREM 3.5.5 (van der Hoeven) Let Σ be a set of X-labeled structures and ϑ : Σ → P(X)
a strictly extensive, Noetherian choice operator. Then ϑ+ : Σ+ → P(X) is a strictly extensive,
Noetherian choice operator.

Proof: We first show that ϑ+ is strictly extensive. This will be done inductively. First let
σ+ ∈ T1. Then there are σ ∈ Σ and

(τi)i∈Iσ ⊆ X

such that σ+ = σ[τi]i∈Iσ . From the definition of ϑ+ we obtain ϑ+(σ+) = ϑ(σ). Let a ∈ im lσ+ ,
then a ∈ im lτi for some i ∈ Iσ. Since τi ∈ T0, the only label is τi, hence a = τi. The
conditions lσ(i) ∈ ϑ+(τi) and ϑ+(τi) = {τi} imply lσ(i) = τi. Since ϑ is strictly extensive, we
have τi < ϑ(σ) = ϑ+(σ+). Hence im lσ+ < ϑ+(σ+).

Now assume that for all σ̂+ ∈ T1
‘ · · · ‘

Tk we have shown im lσ̂+ < ϑ+(σ̂+). Let σ+ ∈ Tk+1.
Then there are σ ∈ Σ and

(τi)i∈Iσ ⊆ T0
∐ · · ·∐ Tk

with σ+ = σ[τi]i∈Iσ . For each a ∈ im lσ+ there is a point i ∈ Iσ such that a ∈ im lτi . The
inductive hypothesis implies

im lτi < ϑ+(τi),

hence a < ϑ+(τi). Also, we have lσ(i) ∈ ϑ+(τi), therefore a < lσ(i). In other words, if a is
associated to τi, then the label in the structure σ for the same i is bigger than a. Since σ is
strictly extensive, we have lσ(i) < ϑ(σ) = ϑ+(σ+). Hence a < ϑ+(σ+), thus im lσ+ < ϑ+(σ+).

Let us now show that ϑ+ is Noetherian. Assume the contrary, and let Y be a Noetherian
subset of X such that

{(σ+, x) |σ+ ∈ Σ+
Y ∧ x ∈ ϑ+(σ+)} ⊆ Σ+ ×X
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is not Noetherian. Then there is a bad sequence ((σ+
i , xi))16i with

im lσ+
i

⊆ Y

xi ∈ ϑ+(σ+
i ).

We assume that the series is minimal in the following sense. For each i > 1 and fixed x1, . . . , xi−1

the depth of σ+
i is minimal. We write each σ+

i as

σ+
i = σi[τi,j]j∈Iσi ,

where σi ∈ Σ for all i > 1. Note that for all j ∈ Iσi the depth of each τi,j is smaller than the
depth of σ+

i .
We claim that the induced ordering on the set S = {(τi,j, lσi(j)) | 1 6 i ∧ j ∈ Iσi} is Noethe-

rian. Suppose not and let

((τi1,j1, lσi1 (j1)), (τi2,j2, lσi2 (j2)), . . . )

be a bad sequence. Let k ∈ N be such that ik is minimal. Then the sequence

((σ+
1 , x1), . . . , (σ

+
k−1, xk−1), (τik ,jk , lσik (jk)), (τik+1,jk+1

, lσik+1
(jk+1)), . . . )

is also bad. But this contradicts the minimality of the sequence ((σ+
i , xi))16i. This shows the

claim.
To finish the proof we distinguish two cases. First we assume that all σ+

i are elements from
T1. Then lσi(j) = τi,j implies that σi is Y -labeled. Moreover, we have xi ∈ ϑ+(σ+

i ) = ϑ(σi).
Hence

((σ1, x1), (σ2, x2), . . . )

is a sequence in ΣY ×X, and the theorem follows, since ϑ is Noetherian.
Secondly, assume that there is an integer k > 1 such that σ+

k 6∈ T1. Then the sequence

((σ+
1 , x1), . . . , (σ

+
k−1, xk−1), (τk,j, lσk(j)), (σ

+
k+1, xk+1), . . . )

is in Σ+
Y ×X and cannot be bad. Then there is a strictly increasing sub-sequence in (xi)i>k+1.

This contradiction finishes this case and the proof of the theorem. 2





Chapter 4

Derivations

In this chapter, we study derivations on fields of transseries. In the first part of the chapter, we
axiomatize such derivations and we give an example of a transseries field admitting a derivation.
We go on to discuss one possible way of extending a derivation on some transseries field to every
transfinite exponential extension, and we show that the correctness of our definition depends
essentially on some Noetherianity-property.

In order to prove this Noetherianity-property, we look at the problem from a different angle.
Namely we show how to establish a link between derivations and tree-representations. This
provides a second, more combinatorical way to define derivations. The advantage of considering
tree-representations is to obtain a combinatorical proof of the Noetherianity-property.

4.1 Derivations on transseries fields

4.1.1 The notion of a derivation

Let throughout this chapter T = C[[M]] be a fixed transseries field. A function which acts as
derivation on T should satisfy a number of conditions which express the compatibility between
the properties of derivations and the properties of transseries fields. By that we mean for instance
that C is contained in the set of constants with respect to the derivation, that the Leibniz rule
holds and that the operator is strongly linear. If functions are defined, a chain rule should also
be a property of the derivation.

We summarize these points in the following definition.

DEFINITION 4.1.1 A function ∂ : T→ T is called a derivation on T iff

D1. ∀c ∈ C : ∂c = 0,
D2. ∀f, g ∈ T : ∂(f · g) = ∂f · g + f · ∂g,
D3. if F is a Noetherian family, then so is ∂F = (∂f)f∈F and

∑
∂F = ∂

∑
F ,

D4. ∀f ∈ T+ : ∂f = f · ∂(log f).

We will also use f ′ to denote ∂f , and we will write f (n) for ∂nf . In particular, if ∂ is a

75
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derivation, then for all f ∈ T the family (fmm′)m∈supp f is Noetherian and

f ′ =
∑

m∈supp f

fmm′.

REMARK 4.1.2 It would be possible to define the notion of a derivation over fields S of gener-
alized power series by just using conditions D1 and D2. One might thus distinguish between
those “purely algebraic” derivations and our derivations which take both the strong linearity
and the exponential structure in account.

Since derivations without condition D3 are of no further interest for our purposes and since
all our fields will be transseries fields, it seems reasonable to consider only operators admitting
D1 – D4 and to call them derivations.

REMARK 4.1.3 Let us remark that we can naturally extend the derivation to functions on T
as follows. Let φ : T→ T be a function. Let

φ(0) := φ.

Assume that i > 0 and that φ(0), . . . , φ(i) : T → T are already defined. For all f ∈ T we have
f ′, (φ(i)f)′ ∈ T. If f ′ 6= 0, then we let

φ(i+1)f :=
(φ(i)f)′

f ′
.

We will come back to this observation in the chapter about compositions.

REMARK 4.1.4 Our aim is to define derivations on fields T. Condition D3 suggests to define
a derivation on the set of monomials. We will have to show that this function is a Noetherian
mapping. Then its unique strongly linear extension to T will be well-defined, and D2 for
monomials implies D2 for series by Lemma 1.6.5. The following proposition shows that condition
D4 is similarly inherited by T from the same property on M.

PROPOSITION 4.1.5 Let ϕ : M → C[[N]] be a Noetherian mapping such that ϕ|C ≡ 0, such
that ϕ(mn) = ϕ(m) · n + m · ϕ(n) and such that ϕ(m) = m · ϕ̂(log m), where ϕ̂ is the unique
strongly linear extension of ϕ to C[[M]]. Then

ϕ̂(f) = f · ϕ̂(log f)

for all f ∈ C[[M]]+.

Proof: Let f > 0 and f = cd · (1 + δ). Then the Leibniz rule for monomials inductively
implies

ϕ̂(δi) = i · δi−1 · ϕ̂(δ).

From the linearity of ϕ̂ and the assumption that ϕ̂ is 0 for elements from C we then obtain

ϕ̂(log f) = ϕ̂(log c+ log d + l(δ)) = ϕ̂(log d) + ϕ̂(l(δ)).
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From the definition of l(δ) it now follows that

ϕ̂(l(δ)) =
∑

16i

(−1)i−1δi−1 · ϕ̂(δ) = ϕ̂(δ) ·
∑

06i

(−δi) =
ϕ̂(δ)

1 + δ
.

Hence

f · ϕ̂(log f) = cd · ϕ̂(log d) · (1 + δ) + cd · ϕ̂(δ) = cϕ(d) · (1 + δ) + cd · ϕ̂(δ).

The strong linearity of ϕ̂ yields then

f · ϕ̂(log f) =
∑

m

fm · ϕ(d) · m

d
+
∑

m

fm · d · ϕ(
m

d
) =

∑

m

fm

(
ϕ(d) · m

d
+ d · ϕ(

m

d
)
)
,

hence by the Leibniz rule for monomials we obtain f · ϕ̂(log f) =
∑

m
fmϕ(m) = ϕ̂(f). This

shows the proposition. 2

4.1.2 Example of a derivation

Take L = C[[logZ⋆x]]. We define a function ϕ on the set logZ⋆x as follows. Fix loga x where
a ∈ Z⋆. Recall that log for loga x is defined by

log(loga x) =

|a|∑

i=0

ai logi+1 x.

Then we define the function ϕ by

ϕ(x) := 1

ϕ(logi x) :=
1

x · · · logi−1 x
for i ∈ N+

ϕ(loga x) := loga x ·
|a|∑

i=0

ai · ϕ(logi+1 x).

We let ϕ|C ≡ 0, thus D1 holds by definition. The function ϕ verifies D2 and D4. It remains
to show that ϕ is Noetherian. To see this let (logai x)i∈I be well-ordered in logZ⋆x. First, we
observe that

suppϕ(loga x) ⊆ loga x ·
{

1,
1

x
,

1

x log x
, · · ·

}
,

hence that
⋃

i∈I
suppϕ(logai x) ⊆ {logai x | i ∈ I} ·

{
1,

1

x
,

1

x log x
, · · ·

}
.

The set on the right-hand side is well-ordered. Hence, by Lemma 1.1.6, the family

(ϕ(logai x))i∈I

is Noetherian. Lemma 1.6.5 and Proposition 4.1.5 now imply that the unique strongly linear
extension ϕ̂ : L→ L is a derivation.
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REMARK 4.1.6 This example illustrates already that the derivation conditions are in general
harder to prove for transseries fields than for usual power series fields. The derivation of a
monomial xn (where n ∈ Z) is nxn−1, thus again only one term. This is not the case in
logZ⋆x anymore, since ϕ(loga x) can be a finite sum. In fact, if we consider the monomial
m = exp(x+ log x+ log2 x+ · · · ) in (logZ⋆x)exp, then D3 and D4 imply that the derivation of
this monomial has infinite support:

ϕ(ex+log x+log2 x+···) = ex+log x+log2 x+···(1 +
1

x
+

1

x log x
+ · · · ).

On the other hand, we remark that the monomials logi x have derivations which are again mono-
mials. Moreover, elements from suppm′ correspond to products mn where n ∈ supp (log m)′.

4.1.3 Derivations and finite paths

There is a close connection between derivations and tree-representations. The aim of this sec-
tion is to explain this link, which we will later use for two purposes. Firstly, it will allow us to
define extensions of a given derivation to every transfinite extension of T. In fact, this forth-
coming definition will be one of two possible ways to extend derivations. Secondly, we use this
correspondence in order to show that both definitions are correct.

EXAMPLE 4.1.7 Let

t = 7e2e
3x+5 log2 x+4x3

be a term in the field Lexp,exp. This term has a unique relative tree-representation Tt,L with
respect to L as shown in Figure 4.1.

4x3

3x 5 log2 x

7e2e3x+5 log2 x+4x3

Figure 4.1: The relative tree-representation Tt,L of t over L

Assume that we have already extended the derivation on L to this field, then we obtain by
applying the derivation properties that

t′ = u1 + u2 + u3,

where u1, u2, u3 are series in Lexp,exp with

u1 = t · 2e3x+5 log2 x · (3x)′
u2 = t · 2e3x+5 log2 x · (5 log2 x)

′

u3 = t · 4e3 log x · (4x3)′.
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Every term ui corresponds to exactly one path Pi in the minimal tree-representation of the term
t. For an illustration, see Figure 4.2.

P1 P2

P3

t · 2e3x+5 log2 x · 5 log′
2 x t · 4(x3)′t · 2e3x+5 log2 x · 3x′

Figure 4.2: The paths P1, P2 and P3 in Tt,L corresponding respectively to u1, u2 and u3

Hence, in our example, we observe that to every monomial n in the support of t′ we find a
path P = [tP,0, . . . , tP,|P |] in the relative tree-representation of t such that

n = mP,0 · · ·mP,|P |−1 · a

for some a ∈ suppm′
P,|P |. This fact holds in general. What is more, we can write t′ as

t′ =
∑

P∈pathT(t)

∑

u∈term t′
P,|P |

tP,0 · · · tP,|P |−1 · u.

This observation, too, will in the following be generalized, and it will serve as main tool for the
second way of defining derivations.

4.1.4 Extending derivations to transfinite extensions

Throughout this section, we fix a derivation ∂ : T → T. Our aim is to extend ∂ to every
transfinite exponential extension Tα of T. Recall that the relative tree-representation of a series
in Tα is completely determined by its set of paths. We have introduced the forest of a series
f ∈ Tα as the union of all relative-minimal tree-representations Tt,T, where t ∈ term f . For
every path P ∈ Tt,T we let

Θ∂(P ) := tP,0 · · · tP,|P |−1 · t′P,|P |.

We then define a function ∂ : Tα → Tα by

∂(f) := f ′ :=
∑

t∈term f :
P∈pathT(t)

Θ∂(P ). (4.1)

In section 4.4, we will show that the right-hand side of (4.1) is indeed the sum of a Noetherian
family, which justifies this definition. We will also show there that this function, which clearly
extends ∂ on T, satisfies D1, D2, D3 and D4.
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4.2 Derivations and transfinite recursions

We will show that there is at most one extension of a given derivation on T to every transfi-
nite exponential extension. One way is to use a transfinite induction, which will also yield an
alternative way of defining such an extension.

4.2.1 Uniqueness of the extension

We start by showing that there can only be at most one such extension.

LEMMA 4.2.1 Let T ⊆ Tβ ⊆ Tα and ∂, ∂α be derivations on T and Tα, respectively, such that
∂α extends ∂. Let ∂β be the restriction of ∂α to Tβ. Then ∂β is a derivation on Tβ.

Proof: For every β 6 α, the conditions D1 – D4 for Tβ follow from the same conditions for
Tα. It remains thus to show that range∂β ⊆ Tβ.

Let β be minimal such that this is not the case. Then 0 < β < α. We show that ∂β(m) ∈ Tβ
for all m ∈ Mβ . From this and D3 the necessary contradiction follows.

Let m ∈ Mβ. Then log m ∈ Tγ for some 0 6 γ < β; and

∂β(log m) = ∂α(log m) = ∂γ(log m) ∈ Tγ ⊆ Tβ

implies m · ∂β(log m) ∈ Tβ. But then by D4 we have ∂β(m) ∈ Tβ. This finishes the proof. 2

PROPOSITION 4.2.2 For every α there is at most one derivation extending ∂ : T→ T.

Proof: Let α be minimal such that the proposition fails. Then there are two extensions ∂′, ∂′′

of ∂. We show that they are identical on Mα.

Let m ∈ Mα. Then log m ∈ Tβ for some β < α. By Lemma 4.2.1, the restrictions of ∂′ and
∂′′ to Tβ are derivations. Thus they are by minimality identical. But then

∂′(m) = m · ∂′Tβ (log m) = m · ∂′′Tβ (log m) = ∂′′(m)

by D4 for ∂′ and ∂′′ on Tβ. From the strong linearity condition D3 on Tα it now follows that
∂′ = ∂′′. This contradiction shows the proposition. 2

4.2.2 Transfinite extensions

Now that we know that there is at most one derivation ∂α, we set out to define it. One way to
do this is to use a transfinite induction. Let α > 0 be an ordinal number, and assume that for
all β < α, a unique derivation ∂β : Tβ → Tβ has already been defined such that

∂0 = ∂

∂γ ⊆ ∂β ∀γ 6 β.

Before defining a mapping ϕ : Mα → Tα which will be used to define ∂α, we remark that
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• if m ∈ Mβ for some β < α, then log m ∈ Tβ, and log m ∈ dom ∂β; therefore we have
∂β(m) = m · ∂β(log m) ∈ Tα;

• this is always the case, if α is a limit ordinal;
• if α = β+ 1 is a successor ordinal, then log m ∈ Tβ, and again log m ∈ dom∂β ; in this case
∂β(log m) ∈ Tβ and m · ∂β(log m) ∈ Tα;

• if log m ∈ Tγ ∩ Tβ for γ, β < α, then m · ∂γ(log m) = m · ∂β(log m).

Hence, for every m ∈ Mα, the mapping ϕ defined by

ϕ(m) := m · ∂β(log m) if log m ∈ Tβ

is a well-defined function ϕ : Mα → Tα, i.e. the definition does not depend on the choice of
β and there is always at least one ordinal β < α with log m ∈ Tβ. In order to extend ϕ to a
strongly linear function ϕ̂ : Tα → Tα, we have to show that ϕ is a Noetherian mapping. In fact,
as the following proposition shows, this is the key to showing that ϕ̂ is the unique extension of
∂ to Tα as derivation.

PROPOSITION 4.2.3 If the above defined function ϕ : Mα → Tα is a Noetherian mapping, then
its unique linear extension

ϕ̂ : Tα → Tα

is the unique derivation on Tα extending ∂.

Proof: We have to show the conditions D1 – D4 for ϕ̂. Note that D3 is the hypothesis, and
that from rangeϕ ⊆ Tα and strong linearity it follows that range ϕ̂ ⊆ Tα.

Condition D1 follows from D1 on T and linearity. Next, we show that for m, n ∈ Mα we
have

ϕ(mn) = ϕ(m) · n + m · ϕ(n).

For some β < α, we have log(mn) ∈ Tβ. By linearity of ∂β we have

ϕ(mn) = mn · ∂β(log m + log n)

= n · m · ∂β(log m) + m · n · ∂β(log n)

= n · ϕ(m) + m · ϕ(n).

Then D2 follows from Lemma 1.6.5. Condition D4 follows from Proposition 4.1.5 and the
definition of ϕ. The uniqueness follows from Proposition 4.2.2. 2

REMARK 4.2.4 In order to show that the function ϕ thus defined is Noetherian, we will have
to show that for every sequence of terms

t0 ≻ t1 ≻ t2 ≻

in CMα, the family (ϕ(ti))06i is Noetherian. In other words, for every sequence (ni)06i with
ni ∈ suppϕ(ti), there must be a ≺-decreasing sub-sequence.
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Since the mapping ϕ admits on the set of term condition D4, we can in a similar way as in
Example 4.1.7 show that to every t ∈ CMα and n ∈ suppϕ(t) there is a path P in the relative
tree-representation of t over T such that for some a ∈ supp (log mP,|P |)

′ we have

n = mP,0 · · ·mP,|P | · a.

Again, this reduces the problem of showing that ϕ is Noetherian to a problem about paths.

4.3 Path orderings

We have seen how to extend ∂ to a function Tα → Tα in two different manners. Either way we
will have to show the correctness of the definitions, and we have seen that this means that we
have to show certain Noetherianity conditions.

The correspondence between derivations and paths expresses the underlying combinatorial
properties of the derivation, and this close connection will thus play an important role in the proof
of the Noetherianity of the defined operators. To prepare the ground, we will next introduce an
ordering between paths.

4.3.1 Ordering infinite paths

REMARK 4.3.1 The relation which will be defined in the following does not depend on the
existence of a derivation on some transseries field, nor do we need to consider transfinite exten-
sions. Throughout this section, we fix T = C[[M]], a field of transseries. We recall that for a
path P , the label of the node of height i is a term denoted by tP,i ∈ CM and that we write

tP,i = cP,imP,i.

REMARK 4.3.2 Recall that for series f and g we symbolize the maximal common truncation
by f △ g. Let m ≻ n be transmonomials and t ∈ term log n. Then we have

t ∈ term (log m △ log n) ⇔ t ≻ log m − log n ⇔ t ≻ log
m

n
.

From Remark 1.8.1 it follows that for transmonomials m1 < m2 < m3, we have

log m1 △ log m3 � log m1 △ log m2,

log m1 △ log m3 � log m2 △ log m3.

Let s, t ∈ M be terms, and let P ∈ paths and Q ∈ patht be paths. Then we let P <−
I
Q iff

tP,0 < tQ,0 and

tP,1 < tQ,1 ∧ mQ,1 ∈ term (log mP,0 △ log mQ,0),

tP,2 < tQ,2 ∧ mQ,2 ∈ term (log mP,1 △ log mQ,1),

...
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and we let P ≻−I Q iff P <−
I
Q and P 6= Q. Furthermore, we let P ≻−II Q iff tP,0 < tQ,0 and if there

is an integer i > 0 such that




and tP,1 < tQ,1 ∧ tQ,1 ∈ term (log mP,0 △ log mQ,0)
...

and tP,i−1 < tQ,i−1 ∧ tQ,i−1 ∈ term (log mP,i−2 △ log mQ,i−2)
∧ tQ,i 6∈ term (log mP,i−1 △ log mQ,i−1).

Moreover, we let P <−
II
Q iff P ≻−

II
Q or P = Q. Finally, we define the relation ≻− on the set of

paths by P <− Q iff P <−
I
Q or P <−

II
Q.

REMARK 4.3.3 We illustrate P ≻− Q with Figure 4.3. The shaded area indicates the set of
terms of log mP,j, and the bar on top of each such triangle symbolizes the maximal common
truncation of log mP,j and log mQ,j. We use the solid line for the path P and the dotted line for
the path Q.

The two figures on the left-hand side show possible situations where P ≻−
I
Q. The path Q

will either coincide with P or be on the right of P . It is also possible for distict paths that they
coincide up to a certain height, then split and then coincide again, as shown in (i). However,
we remark that there can be only finitely many such splitting points, for otherwise the sequence
(mP,i)06i contradicts condition T4 of the definition of transfinite fields. Hence, the paths P and
Q will coincide from some height on, which can be seen in (ii).

If P ≻−
II
Q, then one encounters four different situations on the level i, where i is as in the

definition. The first two – which correspond to (iii) and (iv) – concern the case where tP,i is
an element of the maximal common truncation log mP,i−1 △ log mQ,i−1. Then the term tQ,i
cannot be an element of this truncation, and we have either that tQ,i is a term of log mP,i−1 or
not.

Otherwise, the term tP,i is itself not in log mP,i−1 △ log mQ,i−1, which implies that tQ,i
is neither. Again, we can distinguish between tQ,i ∈ term log mP,i−1 or not. These cases are
illustrated by (v) and (vi).

PROPOSITION 4.3.4 The relation <− is an ordering.

Proof: Reflexivity and anti-symmetry follow directly from the definition. We thus have to
show transitivity, i.e. condition PO3 of the definition of an ordering. Whenever in the following
we have P ≻−

II
Q, then we let i be the positive integer from the definition of the relation ≻−

II
.

Accordingly, if Q ≻−
II
R, then we let j be the positive integer which replaces i. We have to

distinguish four cases.

Case 1: P ≻−
I
Q ≻−

I
R. The relation tP,k < tR,k holds for all k > 0. Let m be minimal such that

tQ,m+1 ∈ term (log mP,m △ log mR,m).

If m does not exists, then P <−
I
R. If it does, then P ≻−

II
Q. Either way we have P <− R.

Case 2: P ≻−I Q ≻−II R. First we note that we have tP,k < tR,k for all k < j. If there is some
k < j with

tR,k 6∈ term (log mP,k−1 △ log mR,k−1),
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PQ

1

2

i− 2

i− 1

0

iQPQP QPPQP Q

(i) (ii) (iii) (iv) (v) (vi)

Figure 4.3: Paths with P ≻− Q.

then we have P ≻−
II
R. If not, then we have on the one hand

tR,j 6∈ term (log mQ,j−1 △ log mR,j−1).

On the other hand, Remark 4.3.2 implies

log mP,j−1 △ log mR,j−1 � log mQ,j−1 △ log mR,j−1.

Hence

tR,j 6∈ term (log mP,j−1 △ log mR,j−1),

which shows P ≻−
II
R.

Case 3: P ≻−
II
Q ≻−

I
R. this case is symmetric to case 2. We have tP,k < tR,k for all k < i. If

there exists a 0 < k < i with

tR,k 6∈ term (log mP,k−1 △ log mR,k−1),

then we are done. Otherwise, from tQ,i < tR,i we obtain

tR,i 6∈ term (log mP,i−1 △ log mQ,i−1).

From Remark 4.3.2 it now follows that

log mP,i−1 △ log mR,i−1 � log mP,i−1 △ log mQ,i−1.

This implies

tR,i 6∈ term (log mP,i−1 △ log mR,i−1),

which shows P ≻−
II
R.

Case 4: P ≻−
II
Q ≻−

II
R. The case j < i can be shown as case 2, and the case i 6 j can be shown

using the proof of case 3. 2
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4.3.2 Ordering finite paths

Let T = C[[M]] and α > 0. In this section, we consider a transfinite exponential extension Tα
of T.

NOTATION 4.3.5 For P ∈ pathT(Tα) and P̂ ∈ path(Tα) we write

P̂ � P ⇔ ∀i 6 |P | : tP,i = tP̂ ,i,

i.e. if P is a truncation of the path P̂ .

We let

P <− Q :⇔ ∀P̂ � P : ∃Q̂ � Q : P̂ <− Q̂,

P <−
I
Q :⇔ ∀P̂ � P : ∃Q̂ � Q : P̂ <−

I
Q̂,

P ≻−
I
Q :⇔ P <−

I
Q ∧ P 6= Q,

P <−
II
Q :⇔ P <− Q ∧ ¬(P <−

I
Q).

PROPOSITION 4.3.6 The relation <− is an ordering on pathT(Tα).

Proof: Let P,Q,R ∈ pathT(Tα). Reflexivity follows directly from the definition. Next
suppose that P <− Q <− P . Fix some P̂ � P , then there are Q̂ � Q and P̂ ′ � P such that
P̂ <− R̂ <− P̂ ′. Since the labels of the roots are monomials, we get

tP,0 = tQ̂,0 = tP ′,0.

Inductively, one shows that for all i 6 |P | one has

tP,i = tQ̂,i = tP ′,i.

Hence tQ̂,|P | ∈ T, which shows that |Q| 6 |P |. By symmetry we obtain |P | = |Q| and thus

P = Q. As for the transitivity, assume that P <− Q <− R. For every P̂ � P there are Q̂ � Q
and R̂ � R such that P̂ <− Q̂ <− R̂. Thus by transitivity of <− on path(Tα) we obtain P̂ <− R̂,
from which P <− R follows. 2

REMARK 4.3.7 For all P,Q ∈ path(Tα) there are unique P̌ , Q̌ ∈ pathT(Tα) with P � P̌
and Q � Q̌. We let P ∼ Q iff P̌ = Q̌. Then ∼ is an equivalence relation on path(Tα), and
the relations <− and <−

I
on pathT(Tα) are obtained from the relations <− and <−

I
on path(Tα) by

quotienting with respect to ∼.

LEMMA 4.3.8 Let P,Q,R ∈ path(Tα) with P <− Q <− R. Then P̌ <− Q̌ or Q̌ <− Ř.

Proof: We may assume that the relations are strict. First, we consider the case P ≻−
II
Q.

Then mP,0 < mQ,0 and there is a minimal i > 0 such that

tP,i < tQ,i ∧ tQ,i ∈ term (log mP,i−1 △ log mQ,i−1)
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fails. Fix some P ′ � P̌ . If i > |Q̌|, then we let

Q′ = [Q̌, tP ′,|Q̌|+1, tP ′,|Q̌|+2, . . . ]. (4.2)

Then Q′ � Q̌ and P ′ <−
I
Q′. If i 6 |Q̌|, then every Q′ � Q̌ satisfies P ′ <−

II
Q′. Similarly, one

obtains from Q ≻−
I
R that Q̌ <− Ř.

Next, we consider P ≻−
I
Q ≻−

I
R. Since tQ,|P̌ |+1 ∈ term log mP̌ ,|P̌ | is a term in T, we must have

|Q̌| 6 |P̌ | + 1. Similarly one gets that |Ř| 6 |Q̌| + 1 and, by transitivity, that |Ř| 6 |P̌ | + 1.
From this one of |P̌ | = |Q̌| or |Q̌| = |Ř| follows. Assume |P̌ | = |Q̌| and let P ′ � P̌ . Then we
let Q′ as in (4.2) and obtain again P ′ <−

I
Q′. The case |Q̌| = |Ř| is similar. 2

REMARK 4.3.9 Although P <− Q does in general not imply P̌ <− Q̌, the proof of Lemma 4.3.8
shows that at least

P <−
II
Q ⇒ P̌ <− Q̌

holds. Furthermore P <−
I
Q <−

I
R implies P̌ <−

I
Q̌ or Q̌ <−

I
Ř.

We now prove some properties of the relation ≻− and distinguish in particular between specific
properties for <−

I
and <−

II
.

LEMMA 4.3.10 Let α be an ordinal and (Pβ)β<α be a sequence in pathT(Tα) such that Pγ <−
I
Pβ

for all γ < β. Then there exists a sequence β0 < β1 < β2 < · · · < α such that

|Pβ1 | = |Pβ2 | = |Pβ3 | = · · · ,
mPβ1 ,|Pβ1 |, mPβ2 ,|Pβ2 |, mPβ3 ,|Pβ3 |, · · · ∈ supp log mPβ0 ,|Pβ0 |−1.

Proof: Suppose that the first claim fails, then there exist β0 < β1 < · · · such that |Pβ0 | <
|Pβ1 | < · · · . for all i < j we have

mPβj ,|Pβi |+1 ∈ supp log mPβi ,|Pβi | ⊆ M.

This implies |Pβi | + 1 = |Pβj |. But then

|Pβ1 | + 1 = |Pβ3 | = |Pβ2 | + 1 = |Pβ1 | + 2.

This contradiction shows the first claim. The second one follows from P̂β0 <−
I
P̂βi for all i. 2

LEMMA 4.3.11 Let P,Q ∈ pathT(Tα) with P ≻−
II
Q. Then for all terms v with tQ,|Q| �� v we

have


∏

i6|P |
tP,i


 ≻



∏

i6|Q|
tQ,i


 · v.
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P0 P1 P2 P3 P4 P5

N = 5

Figure 4.4: P0 ≻−
I
P1 ≻−

I
P2 ≻−

I
· · · .

Proof: We first observe that tP,0 < tQ,0. Let P̂ � P and Q̂ � Q be such that P̂ <−
II
Q̂. Then

there is an integer 0 < i such that for all 0 < j < i we have

tP̂ ,j < tQ̂,j and tQ̂,j ∈ term (log mP̂ ,j−1 △ log mQ̂,j−1),

and such that

tQ̂,i 6∈ term (log mP̂ ,i−1 △ log mQ̂,i−1). (4.3)

Notice that i 6 |P |, |Q|, for otherwise we would have P <−
I
Q. Hence

tP,0 · · · tP,i−2 < tQ,0 · · · tQ,i−2. (4.4)

On the other hand, by Remark 4.3.2, condition (4.3) implies that for all c ∈ C+ we have

tQ,i 4 c log
mP,i−1

mQ,i−1
= log

(
mP,i−1

mQ,i−1

)c
≺
(

mP,i−1

mQ,i−1

)c
.

Moreover, we notice that

v �� tQ,|Q| ≺ · · · ≺ tQ,i ≺
(

mP,i−1

mQ,i−1

)c
.

Hence if we let 1/c = |Q| − (i− 1) + 1, then we obtain

tP,i−1 · · · tP,|P | < tP,i−1 ≻ tQ,i · · · tQ,|Q| · v,

which together with inequality (4.4) proves the lemma. 2
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4.3.3 Noetherianity of path orderings

Throughout the rest of the section, we will work under the general assumption that we are
given a sequence s0 < s1 < · · · of terms and that for every i there is a path Pi in the maximal
tree-representation of ti. Our aim is to show that we can extract a well-ordered sub-sequence of
(Pi)06i for the ordering <−.

LEMMA 4.3.12 Let s0 < s1 < · · · and Pi ∈ path(si) for all i > 0. Then there is a sequence
(in)06n of integers with 0 6 in < in+1 for all 0 6 n such that for the sequence (Pin)06n of paths
one of the conditions A1 or A2 holds:

A1. ∀0 6 n : tPin ,1 6∈ term (log mP0,0 △ log mPin ,0),
A2. ∀0 6 n : tPin ,1 ∈ term (log mPi0 ,0

△ log mPin ,0) ∧ tPin ,1 < tPin+1
,1.

· · · · · ·

A2A1
tP0,1 tPi1 ,1 tPi2 ,1 tPi0 ,1 tPi0 ,1 tPi1 ,1 tPi2 ,1

tPi1 ,0 tPi2 ,0tP0,0 tPi0 ,0 tPi2 ,0tPi0 ,0 tPi1 ,0

Proof: Suppose that A1 fails. Then there are infinitely many i > 0 such that

tPi,1 ∈ term (log mP0,0 △ log mPi,0). (4.5)

We may assume that this is the case for all i > 0. Since log mP0,0 has well-ordered support,
there is a sequence 0 6 i0 < i1 < · · · such that

tPi0 ,1 < tPi1 ,1 < tPi2 ,1 < · · · .

From Remark 4.3.2 and mP0,0 < mPi0 ,0
< mPin ,0 it follows for all n > 0 that

log mP0,0 △ log mPin ,0 � log mPi0 ,0
△ log mPin ,0.

Condition (4.5) then implies that tPin ,1 is a term of log mPi0 ,0
△ log mPin ,0. But then condition

A2 holds. 2

PROPOSITION 4.3.13 Let s0 < s1 < · · · and Pi ∈ path(si) for all i > 0. Then the ordering <−
is Noetherian on

⋃
i path(si).
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t
PN
0
,N

< t
PN
1
,N

< t
PN
2
,N

< · · ·

RN+1
0 RN+1

1 RN+1
2 RN+1

3 · · ·

Figure 4.5: Constructing PN+1 from PN .

Proof: We start by remarking that we only need to show that there are i < j such that
Pi <− Pj . To this end, we construct sequences PN (0 6 N) of paths such that P 0 is the given
sequence (P0, P1, . . . ) and such that PN+1 is a sub-sequence of PN . We will write

PN = (PN0 , PN1 , PN2 , . . . ).

During the construction we will make sure that for every integer j 6 N we have

tPN0 ,j < tPN1 ,j < tPN2 ,j < · · · . (4.6)

Moreover, once we have constructed the sequence PN , we define a sequence RN = (RN0 , R
N
1 , . . . )

of paths by truncating every path PNi to its nodes of height > N . In other words, we let

PNi = [tPNi ,0, . . . , tPNi ,N−1, R
N
i ].

Note that R0 is the given sequence P 0 = (P0, P1, . . . ) of paths. We remark that we are done if
the sequence R0 has property A1 of Lemma 4.3.12, for then P0 <−

II
Pi for some i.

Furthermore, our construction will yield that the proposition is shown, if there is an integer
N such that RN admits property A1. In fact, if there is such a N , then we stop our construction.
The fact that RN will satisfy A2 will make sure that the sequence PN+1 can be constructed.
We will thus assume that RN has not property A1 in the following.

Let us suppose that PN has already been defined and that RN does not satisfy property
A1. Then we find a sequence 0 6 i0 < i1 < · · · of integers such that

tRNin ,1
∈ term (log mRNi0

,0 △ log mRNin ,0
) ∧ tRNin ,1

< tRNin+1
,1.

Note that this determines uniquely a sub-sequence of PN , namely (PNi0 , P
N
i1
, . . . ). We let

PN+1 := (PNi0 , P
N
i1 , P

N
i2 , . . . ).

(Figure 4.5 shows the situation where there are paths in PN such that their nodes of height
N + 1 are strictly 4-bigger than tPN0 ,N+1. In this case we do not carry these paths over to the

sequence PN+1.)
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N

N + 1

N + 3

N + 4

N + 2

RN
0

Figure 4.6: Paths converge towards RN0 .

One notices that if R0, . . . , RN do not have property A1 but the sequence RN+1 does, then
we have PN+1

0 ≻−
II
PN+1
m for some m > 0, which would stop our construction and finish the proof.

If RN+1 does not have property A1, then we can continue the construction, since condition (4.6)
holds now for PN+1.

Suppose that we have constructed all sequences P 0, P 1, . . . . Then we cannot have infinitely
often PN0 6= PN+1

0 . To see this, we first remark that PN0 6= PN+1
0 implies the existence of some

minimial integer MN > 0 such that

mPN0 ,MN
≻ mPN+1

0 ,MN
.

Since for all N > 0 we have

mPN+1
0 ,MN

∈ supp log mPN0 ,MN−1,

the sequence (mPN0 ,N )06N contradicts condition T4 of the definition of transseries fields. This
shows our claim.

Hence there is an integer M > 0 such that for all m > M we have Pm0 = Pm+1
0 and

tPm0 ,j < tPmi ,j

for all i, j ∈ N. But then we find for every i an integer J such that for all j > J

tPm0 ,j = tPmi ,j,

which shows Pm0 <−
I
Pmi . This finishes our proof. (For an illustration, see Figure 4.6. In the

figure, the path PN0 will not be eliminated anymore. Moreover, we see that some paths from
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PN , PN+1 etc. can be eliminated, but that the remaining paths must converge towards the path
PN0 . Otherwise RN0 would have cofinal branches to the right.) 2

We can transfer the proposition to the ordering between finite paths.

PROPOSITION 4.3.14 The ordering <− is Noetherian on
⋃

supp f pathT(s) for f ∈ Tα.

Proof: Suppose not, and let (Pi)06i be a sequence of pairwise incomparable elements of
pathT(Tα) such that

mP0,0 < mP1,0 < mP2,0 < · · · .

For every i, there is a path P̂i � Pi. By Proposition 4.3.13 there is a sequence 0 6 i0 < i1 < · · ·
such that P̂im <− P̂in , whenever n < m. Then by Lemma 4.3.8 we must have either Pi0 <− Pi1 or
Pi1 <− Pi2 , either of which contradicts the assumption on (Pi)06i. 2

4.4 Existence of extended derivations

We now turn back to the problem of extending a given derivation on some transseries field T to
any given transfinite exponential extension Tα = C[[Mα]].

PROPOSITION 4.4.1 Let f ∈ Tα, then

(Θ∂(Pi)) t∈term f :
P∈pathT(t)

is a Noetherian family.

Proof: Let t0 < t1 < · · · be a sequence in term f . Let Pi ∈ pathT(ti) for all i. We have
to show that if the paths Pi are pairwise distinct, then the family (Θ∂(Pi))06i is Noetherian.
For every i, we let ni ∈ suppΘ∂(Pi). We are done, if we show that we can extract a strictly
4-decreasing sub-sequence from (ni)06i.

From Proposition 4.3.14 it follows that we may assume that modulo extracting a sub-sequence
we have P0 ≻− P1 ≻− P2 ≻− · · · . We claim that modulo extracting another sub-sequence we may
restrict ourselves to the following two cases: either P0 ≻−

II
P1 ≻−

II
P2 ≻−

II
· · · or ∀i, j : Pi <−

I
Pj .

Suppose not, and let P0 ≻− P1 ≻− P2 ≻− · · · be a bad sequence. Let m be maximal such that
there is a sequence i0 < · · · < im of integers with Pi0 <−

II
· · · <− Pim . Such an m exists by badness

of the sequence. From the transitivity of <− it follows that Pim <− Pj for all j > im. From the
maximality of m it follows that Pim <−

I
Pj for all j > im. Then there are im < j < k with

Pk ≻−
I
Pk, for otherwise the given sequence would not be bad. But then one shows Pim ≻−

II
Pk,

which contradicts the maximality of m.

Case I: ∀i, j : Pi <−
I
Pj . Using Lemma 4.3.10, we find some i0 > 0 such that for all i > i0 the

paths Pi have the same length N . Then we obtain for all i > i0 that

∏

j6N

mPi,j ≻
∏

j6N

mPi+1,j.
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Moreover, we have mPi,N = mPi0 ,N
for all i > i0. This implies that for a sequence of integers

i0 < i1 < i2 < · · · we have

ai1 < ai2 < ai3 < · · · ∈ supp (log mi0,N )′.

From this ni1 ≻ ni2 ≻ · · · follows, which finishes the case I.

Case II: P0 ≻−
II
P1 ≻−

II
P2 ≻−

II
· · · . We consider the set the labels of all leaves of these paths,

{mP0,|P0|, mP1,|P1|, mP2,|P2|, · · · } ⊆ M.

Then there exists a sequence 0 6 i0 < i1 < i2 < · · · of integers such that one of

mPi0 ,|Pi0 | < mPi1 ,|Pi1 | < mPi2 ,|Pi2 | < · · · (4.7)

mPi0 ,|Pi0 | ≺ mPi1 ,|Pi1 | ≺ mPi2 ,|Pi2 | ≺ · · · (4.8)

holds. If we have monomials as in (4.7), then the set

⋃

06n

supp (log mPin ,|Pin |)
′

is well-ordered. Since for all m > 0 the monomial aim is an element of this union, we may — by
thinning out the sequence (in)06n, if necessary — assume that

ai0 <ai1 <ai2 < · · · . (4.9)

From Lemma 4.3.11 it follows that
∏

j6|Pi0 |
mPi0 ,j

≻
∏

j6|Pi1 |
mPi1 ,j

≻
∏

j6|Pi2 |
mPi2 ,j

≻ · · · . (4.10)

Multiplying the chains of inequalities (4.9) and (4.10) shows ni0 ≻ ni1 ≻ ni2 ≻ · · · .
If on the other hand (4.8) holds, then the sequence

((
1

mPin ,|Pin |

)′)

06n

is a Noetherian family, which means that — by thinning out again, if necessary — we have

ai0
m2
Pi0 ,|Pi0 |

<
ai1

m2
Pi1 ,|Pi1 |

<
ai2

m2
Pi2 ,|Pi2 |

< · · · . (4.11)

We use again Lemma 4.3.11 to show that


∏

j6|Pi0 |
mPi0 ,j


 · m2

Pi0 ,|Pi0 |
≻



∏

j6|Pi1 |
mPi1 ,j


 · m2

Pi1 ,|Pi1 |
≻ · · · . (4.12)

Multiplying chains (4.11) and (4.12) yields again ni0 ≻ ni1 ≻ · · · . This finishes case II and the
proof of the proposition. 2
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THEOREM 4.4.2 Let ∂ be a derivation on T. Then every transfinite exponential extension T̂ of
T admits a unique derivation which extends ∂.

Proof: By Proposition 4.4.1, the function ∂ as defined by (4.1) (on page 79) is correct. Clearly,
conditions D1 and D3 hold. To show D4, we first remark that pathT(m) = {[m, Q] | Q ∈
pathT(log m)}, hence that

m′ =
∑

P∈path(m)

P ′ =
∑

Q∈path(log m)

m ·Q′ = m · (log m)′.

Then D4 follows from Proposition 4.1.5. By lemma 1.6.5, condition D2 holds, if we can show
it for monomials. Let m = ef , n = eg ∈ Mα. Then by D4

(m n)′ = ef+g · (f + g)′

= ef · f ′ · eg + ef · eg · g′
= m′ · n + m · n′.

This shows the theorem. 2

COROLLARY 4.4.3 For all ordinal numbers α and L = C[[logZ⋆x]], the field Lα admits a deriva-
tion.

REMARK 4.4.4 Let λ be a limit ordinal. The fact that Tβ is stable under ∂ for each β < λ
implies that T<λ =

⋃
β<λ Tβ is also stable under ∂.

Hence T<λ is a non-complete field of transseries with total exponentiation, a total logarithm
on the set of positive elements and a dertivation.

REMARK 4.4.5 Instead of ≻−, one can actually choose a relation ≻̂− on the set of paths, which
is weaker than ≻−. Essentially, one replaces all conditions about maximal common truncations
by mQ,j ∈ supp log mP,j−1 for all 0 < j < i, and one replaces the last condition by mQ,i 6∈
supp log mP,i−1. In particular, we do not demand mP,i < mQ,i.

The relation ≻̂− is not transitive, but its transitive closure is an ordering. Furthermore, it is
possible to use <̂− instead of <− in the proofs of this section.

4.5 Valuated derivations

A derivation ∂ : T→ T is valuated iff for all f, g ∈ T with 1 6≍ g we have

f ≺ g ⇒ f ′ ≺ g′.

REMARK 4.5.1 A derivation is valued if and only if for all monomials m, n ∈ M with n 6≍ 1
and m ≺ n we have m′

asy n′. One direction is trivial. As for the other one, let f ≺ g 6≍ 1. Then for all m ∈ supp f
with df 6= m we have m ≺ df and thus m′ ≺ d′f . This implies f ′ ≍ d′f . Similarly for g. But
then df asy dg implies d′f ≺ d′g and therefore f ′ ≺ g′.
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EXAMPLE 4.5.2 The derivation on L is valuated: let loga x ≺ logb x, where b 6= 0. Let i, j be
minimal with ai, bj 6= 0. From the definition of ∂ it follows that

(loga x)′ ≍ loga x · 1

x · · · logi x
,

(logb x)′ ≍ logb x · 1

x · · · logj x
.

If i > j, then x · logi x 4 x · · · logj x and loga x ≺ logb x imply (loga x)′ ≺ (logb)′. If i < j, then
ai < 0 = bi. From this we obtain

loga x ≺ logb x · 1

logi+1 x · · · logj x
.

Hence (loga x)′ ≺ (logb)′.

PROPOSITION 4.5.3 If ∂ is a valuated derivation on T, then ∂α is a valuated derivation on Tα.

Proof: We use a transfinite induction. The Proposition holds for α = 0. So let us assume
α > 0 and that the Proposition holds for all β < α.

Let m ≺ n 6≍ 1. Then log m, log n ∈ T↑
β for some β < α. Then log m < log n. Let t =

log m △ log n and log m = t+ f and log n = t+ g. We claim that f ′ < g′. If 0 < f , then 0 < g
and thus df < dg. Hence δ′f < δ′g and τ ′f < τ ′g. If on the other hand f < 0, then df 4 dg. The
inductive assumption implies again d′f 4 d′g, thus τ ′f < τ ′g.

In both case, we obtain (log m)′ < (log n)′. But then we have
By Remark 4.5.1.



Chapter 5

Compositions

Having extended derivations, we now turn our attention to compositions. First, we define the
notion of compositions, and we show some basic properties. Then, we extend compositions
between transseries fields to their transfinite exponential extensions. Again, we can use the
framework of Noetherian operators to define such extensions and to show that our definitions
are correct.

5.1 Right-compositions on transseries fields

5.1.1 Notions of compositions

As for derivations, we want to introduce a notion of composition on transseries fields. This
notion should take in account both, the strongly linear and exponential nature of transseries
fields and properties of compositions.

DEFINITION 5.1.1 Let T = C[[M]] and U = C[[N]] be transseries fields. An injective function
∆ : T→ U is a right-composition iff

RC1. ∀c ∈ C : ∆(c) = c,
RC2. ∆ is multiplicative,
RC3. if F is a Noetherian family in T, then ∆(F ) = (∆(f))f∈F is a Noetherian family in U

and ∆(
∑
F ) =

∑
∆(F ),

RC4. ∀f ∈ T : f ∈ dom exp ⇒ ∆(exp f) = exp ∆(f).

REMARK 5.1.2 Right-compositions ∆ : T → U are strictly increasing, since for all f ∈ T we
have by linearity ∆(−f) = −∆(f) and for all 0 < f

∆(f) = ∆(exp log f) = exp ∆(log f) > 0.

For monomials m ≻ n in M we have ∆(m) ≻ ∆(n), since by RC1 and RC3 we have

m ≻ n ⇔ ∀c ∈ C : 0 < m + c n ⇔ ∀c ∈ C : 0 < ∆(m) + c∆(n) ⇔ ∆(m) ≻ ∆(n).

Furthermore, the restriction of ∆ to M is a Noetherian mapping by RC3. The unique strongly
linear extension of ∆|M to T is ∆.

95
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REMARK 5.1.3 Let ϕ be a Noetherian mapping M → C[[N]]. We have seen that if ϕ is multi-
plicative, then its unique strongly linear extension ϕ̂ to C[[M]] is also multiplicative. Similarly,
we have seem that if ϕ satisfies the Leibniz rule, then so does ϕ̂.

Similarly, we can show for mappings ϕ such that ∀m ∈ M : ϕ(m) = exp ϕ̂(log m), then the
same remains true for series f ∈ dom exp. In fact, let h ∈ L+ such that exp f = h. Then we
have h = cd(1 + δ) and

ϕ̂(f) = ϕ̂(log d + log c+ l(δ))

= ϕ̂(log d) + ϕ̂(log c) + ϕ̂(l(δ)).

From the hypotheses we obtain ϕ̂(log d) = logϕ(d) and ϕ̂(log c) = logϕ(c). Furthermore, since
ϕ̂ is strongly linear, we have ϕ̂(l(δ)) = l(ϕ̂(δ)). This implies

ϕ̂(f) = logϕ(d) + logϕ(c) + l(ϕ̂(δ))

= log(ϕ(cd) · (1 + ϕ̂(δ)))

= log ϕ̂(cd(1 + δ)).

But then exp ϕ̂(f) = ϕ̂(exp f). In other terms, if we want to show RC4 for series, it suffices to
show the property for monomials.

5.1.2 Example of a right-composition

Let T be a transseries field. We show that for every g ∈ T+
∞, there is a right-composition

∆g : L −→ T

x 7−→ g.

Let loga x ∈ logZ⋆x and g ∈ T+
∞. Then

ϕ(m) := loga g := ga0 loga1 g · · · logann g ∈ T.

We also write m ◦ g instead of ϕ(g). In view of Proposition 1.6.3 we have to show that the
mapping ϕ : logZ⋆x → T is strongly linear. This will allows us to extend ϕ to a mapping ϕ̂ on
all of L.

PROPOSITION 5.1.4 ϕ : logZ⋆x→ T as defined above is strongly linear.

Proof: For each i, let us write logi g = cidi(1+δi) with ci = clogi g, di = dlogi g and δi = δlogi g.
Notice that Proposition 2.2.4 implies

d0 ≻≻ d1 ≻≻ d2 ≻≻ · · · ,

whence d ◦ ϕ preserves the asymptotic ordering ≺ . We claim that

S = (supp δ0)
⋆(supp δ1)

⋆ · · ·
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is well ordered. Indeed, let n be such that g is log-confluent at order n. Then

T = (supp δ0)
⋆ · · · (supp δn)

⋆

{
1

dn+1
,

1

dn+1dn+2
, . . .

}⋆

is well-ordered. Let us show by induction that

supp δi ⊆
T

dn+1 · · · di
, (5.1)

for all i > n. This is clear for i = n. So assume that i > n and that we have proved (5.1) for all
strictly smaller i. Now τlogi g = log τlogi−1 g implies

logi g = log di−1 + log ci−1 + log(1 + δi−1) = di + log(1 + δi−1).

Consequently,

supp δi = supp
log(1 + δi−1)

di
⊆
{

T

dn+1 · · · di−1

}† 1

di
⊆ T ⋆

dn+1 · · · di
.

Hence the inclusion (5.1) holds for all i > n. In particular, we have supp δi ⊆ T for all i > 0,
whence S ⊆ T , which proves our claim.

Now let W ⊆ logZ⋆x be well-ordered. For all m ∈W we have m◦g = ϕ(m) = τϕ(m)·(1+δϕ(m)).
From the above we conclude

suppϕ(m) ⊆ {dϕ(m) |m ∈W} · (1 + S).

Since d ◦ ϕ preserves the ordering, the set {dϕ(m) |m ∈ W} is well-ordered. So is the set 1 + S.
Hence

⋃
m∈W suppϕ(m) is contained in a well-ordered set. We have to show that for all n ∈⋃

m∈W suppϕ(m) there are only finitely many m ∈W with n ∈ suppϕ(m). Suppose that for some
such n there is an infinite set Wn ⊆W such that n ∈ suppϕ(m) for all m ∈Wn. Let sm ∈ (1+S)
such that n = dϕ(m) · sm. Since {dϕ(m) |m ∈Wn} is well-ordered, the set {sm |m ∈Wn} ⊆ (1 +S)
is decreasing in ≻. But 1 + S is well-ordered. Contradiction. Hence the family (ϕ(m))m∈W is
Noetherian. 2

PROPOSITION 5.1.5 Let ϕ : logZ⋆x → T be defined as above. Then its unique extension ϕ̂ :
L → T is a right-composition. Moreover, if we let f ◦ g := ϕ̂(f), then for all f, h ∈ L and
g ∈ T+

∞ we have f ◦ (h ◦ g) = (f ◦ h) ◦ g.

Proof: Since for all m ≻ n in logZ⋆x we have ∆g(m) ≻ ∆g(n), the function ϕ̂ is injective.
Condition RC1 holds by strong linearity, i.e. Proposition 5.1.4, and so does RC3. Note that ϕ
is multiplicative on logZ⋆x, hence that by Lemma 1.6.5 condition RC2 holds.

As for RC4, we first remark that one easily verifies

∀m ∈ logZ⋆x : ϕ(m) = exp ϕ̂(log m).

Now we invoke Remark 5.1.3. The second assertion follows from Corollary 1.6.4. 2
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REMARK 5.1.6 It follows from the proof of Proposition 5.1.4 that if g ∈ T+
∞ is log-atomic (i.e.

log-confluent at order 0) and m ∈ logZ⋆x, then for all n ∈ suppϕ(m) there is a weakly decreasing
function a : N→ N such that

n 4
ϕ(dg)

da0g loga1 dg · · ·
.

5.1.3 Uniqueness of extensions

The next proposition shows that the real difficulty lies in showing the existence rather than in
showing the uniqueness of the extension of ∆ to Tα.

PROPOSITION 5.1.7 Let ∆ : T → U be a right-composition and 0 < α an ordinal. Then there
exists at most one right-composition ∆α : Tα → Uα such that ∆α|T = ∆.

Proof: We first notice that if α is such that ∆α exists, then ∆β exists for all β < α. Hence,
if we let α be the minimal ordinal such that there are distinct ∆α,∆

′
α with ∆α|T = ∆′

α|T = ∆,
then the restrictions of ∆α and ∆′

α to Tβ exist and are identical. In particular, this is true for
the monomial groups Mβ .

Then α is not a limit ordinal, for otherwise for all series f ∈ Tα we have

∆α(f) =
∑

m

fm∆α(m) =
∑

m

fm∆
′
α(m) = ∆

′
α(f),

since the monomials are elements of some Mβ with β < α. This contradicts the minimality.
Hence α is a successor ordinal β + 1. Let m ∈ Mα with ∆α(m) 6= ∆′

α(m). Then log m ∈ Tβ
and thus ∆α(log m) = ∆′

α(log m). Therefore

∆α(m) = ∆α(exp log m) = exp ∆
′
α(log m) = ∆

′
α(exp log m) = ∆

′
α(m),

by RC4. Now RC3 implies again ∆α(f) = ∆′
α(f), contradiction. 2

5.1.4 Extending using transfinite definitions

An alternative way of defining ∆α is the following. Assume that for all β < α, a right-composition
∆β on Tβ has already been defined such that

∆0 = ∆

∆γ ⊆ ∆β ∀γ 6 β.

Then for all m ∈ Mα we let

ϕ(m) := exp ∆β(log m) if log m ∈ Tβ.

REMARK 5.1.8 Firstly, we notice that the definition of ϕ does not depend on the choice of β
and that ϕ is totally defined on Mα. Secondly, let us notice that in order to extend ϕ to Tα, we
have to show that it is a Noetherian mapping. As the following proposition shows, from that it
will follow that ϕ = ∆α, i.e. that it is the unique right-composition on Tα extending ∆.
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PROPOSITION 5.1.9 If ϕ : Mα → Uα is a Noetherian mapping, then its unique strongly linear
extension

ϕ̂ : Tα → Uα

is the unique right-composition ∆α extending ∆.

Proof: In order to show that ϕ̂ is injective, it suffices by strong linearity of ϕ̂ to show that
m≻ n implies ϕ(m)≻ϕ(n). Indeed, we only need to show that logϕ(m) 6= logϕ(n). Suppose for
a contradiction that this is not the case. Then ∆β(log m) = ∆β(log n) for some β < α. Hence by
linearity, 0 = ∆β(log m− log n). But then the injectivity of ∆β implies log m = log n, thus m = n.

It remains to show conditions RC1 – RC4. Note that RC1 holds by linearity of ϕ̂ and that
RC3 is satisfied by hypothesis.

Let us show RC2. We claim that ϕ is multiplicative. Let m, n ∈ Mα. If α is a limit ordinal,
then m, n are elements of some Mβ with β < α, and the claim follows from ϕ = ∆β. If α is a
successor ordinal α = β + 1, then log m, log n ∈ Tβ. The linearity of ∆β then implies

ϕ(mn) = exp ∆β(log m + log n)

= exp(∆β(log m) + ∆β(log n))

= exp ∆β(log m) · exp ∆β(log n)

= ϕ(m) · ϕ(n).

By Lemma 1.6.5, the function ϕ̂ is multiplicative, hence RC2.
As for RC4, it suffices to notice that by definition we have ϕ(m) = exp ϕ̂(log m) for every

m ∈ Mα. Then Remark 5.1.3 shows RC4. The uniqueness follows from Proposition 5.1.7. 2

REMARK 5.1.10 We have to show that the function ∆α is defined on Tα. h is means that
for every sequence t0 ≻ t1 ≻ · · · of monomials in Mα and every sequence (ni)06i such that
ni ∈ suppϕ(ti), we can extract a sub-sequence (nik)06k in Nα with

ni0 ≻ ni1 ≻ ni2 ≻ · · · .

5.2 Combinatorial representation of compositions

5.2.1 Some notations

Let ∆ : T = C[[M]] → U = C[[N]] be a right-composition. For every f ∈ T, the series ∆(f) has
the canonical decomposition into its infinite, constant and infinitesimal part. We let

∆
↑(f) := (∆(f))↑,

∆
=(f) := (∆(f))=,

∆
↓(f) := (∆(f))↓,

so that for every t ∈ M we have

∆(t) = exp ∆(log t) = exp ∆
↑(log t) · exp ∆

=(log t) · e(∆↓(log t)).
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Then exp ∆↑(log t) ∈ N and exp ∆=(log t) ∈ C∗ are the leading monomial and leading coefficient
of ∆(t). We let

D∆(t) := exp ∆
↑(log t)

C∆(t) := exp ∆
=(log t).

Wherever ∆ is clear from the context, we write D and C instead of D∆ and C∆.

PROPOSITION 5.2.1 The functions D∆ and C∆ are multiplicative on M. Moreover, the func-
tion D∆ is strictly increasing.

Proof: The first claim follows from (f + g)↑ = f↑ + g↑ and

exp ∆
↑(log ts) = exp ∆

↑(log t + log s) = exp ∆
↑(log t) · exp ∆

↑(log s).

Similarly for C. As for the second one, suppose that 1 ≺ t. Then 1≺ t implies C < log t.
The function ∆ is strictly increasing, hence C < ∆(log t). Therefore we have 1 ≺ ∆(log t) and
0 < ∆(log t). We conclude that ∆↑(log t) > 0 2

REMARK 5.2.2 We extend the functions C and D to all terms s ∈ CM by

C(s) := cs · C(ds),

D(s) := D(ds).

The functions C and D remain multiplicative. Throughout the rest of this paragraph, we will
look at an example of a right-composition in detail.

5.2.2 Formulas for an example of composition

We let T = Lexp,exp = L2 and ∆g : L → L2 a right-composition for some g ∈ L+
2,∞ as in

Proposition 5.1.5. We extend ∆g to a mapping ϕ̂ : L2 → L4 as follows: let m ∈ (logZ⋆x)exp, then
we let

ϕ(m) := exp(∆g(log m)).

Assuming that the mapping ϕ is Noetherian, it extends uniquely to Lexp. We proceed similarly
for monomials from (logZ⋆x)exp,exp. We will prove the Noetherianity assumptions later in this
chapter. For the purpose of the example, we may assume that ∆g may be extended to a right-
composition on L2.

Let g = x+ 1
x + 1

exp2 x
∈ L2 and take

∆ : L −→ L2

f 7−→ f ◦ g.

We apply ∆ to f = ee
2x+x ∈ L2. From RC3 and RC4 we obtain that

∆(ee
2x+x) = exp ∆(e2x + x), (5.2)

∆(e2x + x) = exp ∆(2x) + ∆(x). (5.3)
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In order to evaluate the right-hand side of equation (5.2), we have to evaluate the right-hand
side of (5.3). Applying the definition of ∆ yields

∆(x) = x+
1

x
+

1

exp2 x
, (5.4)

exp ∆(2x) = e2x · e
(

2

x
+

2

exp2 x

)
. (5.5)

The next step is to obtain ∆↑(e2x+x), ∆=(e2x+x) and ∆↑(e2x+x). Clearly from equation (5.4)
it follows that ∆↑(x) = x, ∆=(x) = 0 and ∆↓(x) = 1

x + 1
exp2 x

. For equation (5.5) we obtain

∆
↑(e2x) = e2x ·

(
1 +

1

1!
· 2

x
+

1

2!
· 22

x2
+

1

3!
· 23

x3
+ · · ·

)
, (5.6)

∆
=(e2x) = 0, (5.7)

∆
↓(e2x) = e2x ·

∞∑

i=0

1

i!

i−1∑

j=0

(
i

j

)
2j

xj
· 2i−j

expi−j2 x
. (5.8)

Hence

∆
↑(e2x + x) = e2x ·

(
1 +

1

1!
· 2

x
+

1

2!
· 22

x2
+

1

3!
· 23

x3
+ · · ·

)
+ x,

∆
=(e2x + x) = 0,

∆
↓(e2x + x) =

1

x
+

1

exp2 x
+ e2x ·

∞∑

i=0

1

i!

i−1∑

j=0

(
i

j

)
2j

xj
· 2i−j

expi−j2 x
.

Equations (5.6) – (5.8) can be used to express ∆(ee
2x+x) using the equation

∆(ee
2x+x) = exp ∆

=(e2x + x) · exp ∆
↑(e2x + x) · e(∆↓(e2x + x))

= C(ee
2x+x)D(ee

2x+x) · e(∆↓(e2x + x)).

5.2.3 Combinatorial representation of the example’s formulas

Let us now show how to represent terms in ∆(x), ∆(e2x + x) resp. ∆(ee
2x+x) by faithfully

embedded trees, whose leaves are labeled using a second labeling. We distinguish between the
labeling of the faithfully embedded tree and the additional labeling of the leaves by referring to
them as the host-labeling and the labeling, respectively.

Level 0. t ∈ term ∆(x), then we take the one-point tree with host-label x. The node will get a
label from term ∆(x). In Figure 5.1, the two left-hand side trees illustrate the cases where the
labels are x and 1

exp2 x
.

Level 1. t ∈ term ∆(e2x + x). Then t is an element of one of the sets term ∆(x) or term ∆(e2x).
The former case has been treated at Level 0. If t ∈ term ∆(e2x), then there is an integer n > 0
such that

t ∈ e2x · term 1

n!

(
2

x
+

2

exp2 x

)n
.



102 CHAPTER 5. COMPOSITIONS

e2xx e2x

2x 2x

2
x

2
exp2 x

1
exp2 x

x

x

Figure 5.1: Faithful embeddings for t = x, 1
exp2 x

, e2x and e2x 1
2!

2
x

2
exp2 x

.

If n = 0, then we take again the one-point tree with host-label e2x. No labeling is assigned in
this case. Otherwise we have n > 0 and there are n elements t1, . . . , tn from the set { 2

x ,
2

exp2 x
}

such that

t = e2x · 1

n!
t1 · · · tn.

In this case we take a tree of height 1 with root in e2x and n successor nodes with host-labels
2x. The labeling maps every leaf to one term ti. For an illustration of the last two situations,
see the right-hand side of Figure 5.1.

Level 2. t ∈ term ∆(ee
2x+x). We remark that C(ee

2x+x) = e0 = 1. There is an integer n ∈ N
such that there is a tuple (u1, . . . , un) ∈ (term ∆↓(e2x + x))n with

t =
C(ee

2x+x)

n!
· D(ee

2x+x) · u1 · · · un.

Again, if n = 0, then we do not assign a labeling to the tree. We consider the case n > 0. The
terms ui are all infinitesimal and elements from the set

{
1

x
,

1

exp2 x
,

2i

i!

(
i

j

)
· e2x

xj · expi−j2 x

}

06j<i

.

To every ui we find some si ∈ {e2x, x} such that si ∈ supp ∆↓(si). This gives rise to a labeled
tree T as in the case of level 1. The root of T has host-label ee

2x+x, and the root has exactly n
successors which are respectively host-labeled by s1, . . . , sn. At a first stage, we equip the set
of leaves of T with a labeling which maps the leaf labeled by si to ui.

Hence, for every couple (ui, si) there is a faithfully embedded sub-tree Ui in the relative
tree-representation of si together with a labeling. We next substitute the trees Ui into the leaf
of T which is labeled by si and which has the extra label ui. The result is a faithfully embedded
sub-tree V of the relative tree-representation of ee

2x+x. On the set of leaves of V we define a
labeling in the obvious way. We choose three terms from term ∆(ee

2x+x) to illustrate the above.
Firstly, we consider the term

t1 = ee
2x (1+ 1

1!
2
x
+ 1

2!
22

x2
+··· )+x ∈ term ∆(ee

2x+x).
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Figure 5.2: Trees that can be associates with the terms t1, t2 and t3 from ∆(ee
2x+x).

The tree assigned to this tree is the one-point tree T with tT,r(T ) = ee
2x+x. This representation

can be seen on the left-hand side of Figure 5.2. Secondly, we choose

t2 =
1

3!
· ee2x (1+ 1

1!
2
x
+ 1

2!
22

x2
+··· )+x · 1

x
· 1

exp2 x
· 1

x
∈ term ∆(ee

2x+x),

to which we assign the tree in the middle of the same figure. Thirdly, as a more complex term
we take

t3 =
1

4!
· ee2x (1+ 1

1!
2
x
+ 1

2!
22

x2
+··· )+x ·

(
1

1!
· e2x · 2

exp2 x

)
·
(

1

2!
· e2x · 2

x

2

exp2 x

)
·
(

1

2!
· 1

x

1

exp2 x

)
.

The tree for this term can be seen on the right side of Figure 5.2.

REMARK 5.2.3 We see how faithfully embedded sub-trees occur naturally in this context, and
what is more, we even see the reason why we had included one-point trees in the definition of
such trees. Notice, though, that one-point trees were only given a labeling, if the node of the
host-tree was an element of T.

Going a step further, we can associate a term of ∆(e2x + x) to every tree that is faithfully
embedded into one of the children of ee

2x+x and which admits a labeling of its set of leaves.
Since our trees have some special characteristics – there are always only finitely many successors
and the labeling depends on ∆ on L – we will not allow all such trees. We will come back to
this point later.

5.2.4 Right-composition and well-labeled trees

Let ∆ : T→ U be a right-composition and α > 0 be an ordinal number. We denote the monomial
groups of T and U by M and N, respectively. Recall that the aim of this chapter is to extend ∆

to Tα. This section shows how to extend our observations from the example of Section 5.2.2 to
the general case.

Throughout the rest of this section, we will assume that ∆ has already been extended to a
right-composition ∆α : Tα → Uα. Recall that for terms t ∈ CMα we have defined the notion
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of a relative tree-representation of t with respect to T. It was denoted by Tt,T. Furthermore,
we have introduced faithfully CMα-embedded sub-trees of Tt,T. There are two kinds of such
sub-trees: those only consisting of a root and those with a non-empty set of leaves of positive
height. In the latter case, for all l ∈ leaf(Tt,T) we have tTt,T,l ∈ CM. We exclude from the set of
faithfully embedded trees the one -point trees where the host-label of the only node is not in T.

We denote by tree
T
(t) the set of all finite faithfully CMα-embedded sub-trees of Tt,T, and we

let furthermore

tree
T
(Tα) :=

⋃

t∈CMα

tree
T
(t).

We remark that nodes of finite trees have only finitely many successors. In the case of sub-trees
of Tt,T the converse is also true, since a relative tree-representation cannot have infinite paths.
Recall that we denote the label of the node n in the tree T by tT,n.

A couple (T, λ) is called a labeled tree associated to the term t ∈ CMα iff T ∈ tree
T
(t) and

if λ : leaf(T ) → CNα is such that for all l ∈ leaf(T ) we have λ(l) ∈ term ∆(tT,l). In the example
of Section 5.2.2 we have seen that labeled trees occur naturally in the representation of elements
of term ∆g,2(e

e2x+x). We have also seen that not all labeled trees from treeλ(ee
2x+x) contribute

to this set of terms. We will now generalize the observations from Section 5.2.2 to elements from
term ∆α(t) for t ∈ CMα.

Let Tλ ∈ treeλ(t). We say that U ⊆ T is a proper sub-tree iff there is a node n ∈ T \{r(T )}
such that

U = {t ∈ T | n 6· t}

and if the host-labeling of U is the restriction of the host-labeling of T to U , i.e. for all n ∈ U
we have tU,n = tT,n. We let Uλ = (U, λ|U ). Then Uλ is again a labeled tree. Note that one-point
trees have no proper sub-trees.

We next define a function Θ∆ on <·. If T = leaf(T ), then

Θ∆(T λ) := λ(r(T )).

Recall that we only allow one-point trees to be labeled, if the host-label is in CM.
Next let T 6= leaf(T ). We recursively assume that Θ∆ has been defined on the set of children

U1, . . . , Un of r(T ). Then we let

Θ∆(T λ) :=
C(tT,r(T ))

n!
· D(tT,r(T )) · Θ∆(U1,λ) · · ·Θ∆(Un,λ).

Note that Θ∆(T λ) exists for all T λ and that we have in the case T 6= leaf(T ) that

Θ∆(T λ) =
∏

n∈T\leaf(T )

C(tT,n)

|succ(n)|! · D(tT,n) ·
∏

n∈leaf(T )

λ(n).

We say that T λ is well-labeled iff Θ∆(Uλ) ≺ 1 for every proper sub-tree of T λ. Instead of
(T, λ) or T λ, we will also write or T •. The set of well-labeled trees with root t is denoted by
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Figure 5.3: The labeled trees Tλ and Tλ′ from Example 5.2.5.

tree•(t). Similar to the case of labeled trees, we let

tree•(f) :=
⋃

t∈term f

tree•(t), if f ∈ Tα,

tree•(Tα) :=
⋃

t∈CMα

tree•(t).

One-point trees are always well-labeled since they do not have any proper sub-trees.

REMARK 5.2.4 If l ∈ leaf(T ) is such that tT,l 6∈ CM, then T is the one-point tree labeled by
T . Labeling the root of T in this case corresponds to choosing a term from

∆α(t) = C(t)D(t) · e(∆↓
α(log dt)).

If T is a one-point tree with root in CM, then ∆ is defined on tT,r(T ). If T is not a one-point
tree, then tT,l ∈ CM for all leaves l. In this case, too, we can apply the function ∆ to the label
of l.

Moreover, let us point out that if (T1, λ1) 6= (T2, λ2) are both labeled trees, then T1 6= T2 or
T1 = T2 and λ1 6= λ2.

EXAMPLE 5.2.5 We take ∆g : L2 → L4 as in the example from Section 5.2.2, i.e. we have

g = x+ 1
x + 1

exp2 x
. We let again t = ee

2x+x. Then T is the labeled tree of height 1 with three
leaves l1, l2, l3. The root of T is labeled by t. The leaves have all the label x. We define λ on
leaf(T ) by

λ(l1) :=
1

x
,

λ(l2) :=
1

exp2 x
,

λ(l3) :=
1

x
.
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Figure 5.4: Well-labeled trees and non-well-labeled trees from Example 5.2.6.

Then Tλ is a labeled tree. For an illustration, see the tree on the left-hand side of Figure 5.3.
We remark that for the same T we can define a different labeling λ′ : leaf(T ) → C(logZ⋆x)2 by

λ′(l1) :=
1

x
,

λ′(l2) :=
1

x
,

λ′(l3) :=
1

exp2 x
.

Then Tλ is different from Tλ′ although λ′ is merely a permutation of the labeling λ.

EXAMPLE 5.2.6 We take again the right-composition ∆g from Section 5.2.2. First, let t = x.
The relative tree-representation of t is in this case the one-point tree with root-leaf x. It has
only one type of faithfully embedded sub-tree T . Let T λ1

2 , T λ2
2 ∈ treeλ(x) with T 1 = T2 = T ,

λ1(r(T
1) = x and λ1(r(T

2) = 1
x . Then T λ1

1 and T λ2
2 are permissible trees. Notice though that

Θ∆(T λ1
1 ) ≻ 1. See the left-hand side of Figure 5.4 for an illustration the two trees.

A more interesting example is t = ee
2x+x. We choose faithfully embedded sub-trees T3 and

T4 of its relative tree-representation as shown on the right-hand side of Figure 5.4. The labelings
λ3 and λ4 can also be read from this figure. The tree T λ3

3 is a well-labeled tree. On the other
hand, the tree T λ4

4 fails to be a well-labeled tree. Looking at it in terms of development of the
terms, we can say that the label determined by the node with host-label 2x and labels 2/x, 2/x
“fails to expand down to the ground level, in other words, it “gets stuck” in exponential level
at e2x.

PROPOSITION 5.2.7 Let t ∈ CMα and s ∈ term ∆α(t). Then there is a well-labeled tree T λ ∈
tree•(t) with ds = d(Θ∆(T λ)). In particular, if 1 ≻ s, then T λ can only be a one-point tree if
t ∈ CM.

Proof: We show the Proposition using a transfinite induction. We start with the remark
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that for all t ∈ CMα we have the equations

∆α(t) = C(t)D(t) · e(∆↓
α(log dt)), (5.9)

∆
↓
α(log dt) =

∑

u∈term log dt

∆
↓
α(u). (5.10)

The starting point of the induction is the case t ∈ CM. Then the proposition follows from
Θ∆(T λ) ∈ term ∆(t). Now let β > 0 and assume that we have shown the proposition already for
all terms from CMγ with γ < β. Let t ∈ CMβ, and we may assume that it is in no CMγ with
γ < β. By equation (5.9) there exist an integer n > 0, terms t1, . . . , tn ∈ term log dt and terms
s1, . . . , sn ≺ 1 such that

∀i 6 n : si ∈ term ∆α(ti),

s =
1

n!
C(t)D(t) · s1 · · · sn.

By the induction hypothesis, there are well-labeled trees Ti,λi ∈ treeλ(ti) such that si =
Θ∆(Ti,λi). Let T λ be the unique labeled tree with root t and children T1,λ1 , . . . , Tn,λn . Then

Θ∆(T λ) =
1

n!
· C(t)D(t) · Θ∆(T1,λ1) · · ·Θ∆(Tn,λn) = s.

This finishes the proof. 2

Let ∆ : T → U be a right-composition as above. We wish to extend ∆ to Tα for ordinal
numbers α > 0 by

∆α(f) :=
∑

Tλ∈tree•(f)

Θ∆(T λ). (5.11)

REMARK 5.2.8 The function ∆α defined in (5.11) is our candidate for a right-composition on
Tα. It clearly extends ∆ on T. Apart from showing conditions RC1 – RC4, we have to make
sure that the right-hand side of the equation is defined.

5.3 Existence of extended right-compositions

The aim of this section is to make sure that the right-hand side of equation (5.11) is defined.
We will then be able to prove that the resulting function is the unique right-composition on Tα
that extends ∆. More precisely, we will show the following statements.

THEOREM 5.3.1 The right-hand side of equation (5.11) is well-defined.

Proof: We show the theorem using a transfinite induction. It clearly holds for α = 0. In
what follows, we assume that α > 0 and that the theorem holds for all β < α.

Let f ∈ Tα. We fix a sequence (T •
i )06i of elements from tree•(f). Let mi be the monomial

of the term Θ∆(T •
i ) ∈ CMα. We have to show that there exist i < j such that

mi < mj (5.12)
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The roots of the trees Ti are labeled by terms from CMα. We may assume that they are
monomials ri. Modulo extracting a sub-sequence, we may furthermore assume that

r0 < r1 < r2 < · · · .
We distinguish the following four cases.

Case I: All ri are from M.
Case II: All Ti are one-point trees.
Case III: For all k < l and all s ∈ succ r(Tl) we have tTl,s 6∈ term (log rk △ log rl).
Case IV: None of the above.

The four cases will be treated separately in sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4. 2

THEOREM 5.3.2 Let ∆ : T → U be a right-composition. For every transfinite exponential
extension of T, there exists a unique right-derivation extending ∆.

This theorem will be proved in section 5.3.5

5.3.1 First case: Root host-labeled by monomials in M

In this case all Ti are one-point trees with tTi,r(Ti) = ri. Since r0 < r1 < · · · and ∆ is strongly
linear Noetherian mapping, the family (∆(ri))06i is Noetherian. In particular, the set

⋃

06n

supp ∆(tn)

is Noetherian. Since mi ∈
⋃

06n supp ∆(rn) for all i, there indeed exist i < j with mi < mj . This
finishes Case I.

5.3.2 Second case: One-point trees

We suppose that none of the ri are in M, for otherwise we may extract an infinite sub-sequence
as in case I. Hence mi = D(ri) for all i. Since D is strictly increasing, we have

m0 = D(r0) < m1 = D(r1) < m2 = D(r2) < · · · .
In particular m0 < m1. That finishes Case II.

5.3.3 Third case: Strong disjointness of successors of the roots

Assume that we are not in one of the cases I or II. We fix some notations. For any well-
labeled tree T • = (T, λ) we let

⌊T ⌋ :=
∏

n∈T\leaf(T )

mT,n

⌈T ⌉ :=
∏

n∈leaf(T )

mT,n

||T •|| :=
∏

n∈leaf(T )

dλ(n).
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LEMMA 5.3.3 Let T • ∈ tree•(t) and U• ∈ tree•(u) with succ r(T ), succ r(U) 6= ∅. Suppose that
t ≻ u are such that

∀s ∈ succ r(U) : tU,s 6∈ term (log t △ log u).

Then for all m ≺≺ D(t)/D(u) we have D(⌊T ⌋) ≻ D(⌊U⌋) ·m. In particular D(⌊T ⌋) ≻ D(⌊U⌋).

Proof: For s ∈ succ r(U) it follows from tU,s 6∈ term (log t △ log u) that

tU,s 4 log
t

u
≺≺ t

u
.

Since D is multiplicative and strictly increasing, one obtains D(tU,s) ≺≺ D(t)/D(u). Moreover,
for all n ∈ U with s <· n we have tU,n ≺ tU,s, hence D(tU,n) ≺ D(tU,s) and D(tU,n) ≺≺ D(tU,s).
Consequently,

D(⌊U⌋)
D(u)

≺≺ D(t)

D(u)

This implies the lemma. 2

PROPOSITION 5.3.4 Let (T •
i )06i be a sequence as above and assume that for all 0 6 k < l and

all s ∈ succ r(Tl) we have

tTl,s 6∈ term (log rk △ log rl).

Then there exist i < j such that mi < mj.

Proof: For all i > 0, we have ⌈Ti⌉ ∈ M and ||T •
i || ∈ supp∆(⌈Ti⌉). The latter follows from

λ(n) ∈ term ∆(tTi,n) and the multiplicativity of D. We distinguish two cases with respect to the
sequence (⌈Ti⌉)06i: modulo taking a sub-sequence if necessary, we may assume that one of

⌈T0⌉ < ⌈T1⌉ < ⌈T2⌉ < · · · (5.13)

⌈T0⌉ ≺ ⌈T1⌉ ≺ ⌈T2⌉ ≺ · · · (5.14)

holds. Note that the assumptions about (T •
i )06i imply that rk ≻ rl for all k < l.

Case A: ∀k < l : ⌈Tk⌉ < ⌈Tl⌉. Then from RC3 for ∆ it follows that

⋃

06i

supp ∆(⌈Ti⌉)

is a well-ordered set. Then there are i < j such that ||T •
i || < ||T •

j ||. By Lemma 5.3.3 we have
D(⌊Ti⌋) ≻ D(⌊Tj⌋). Hence

mi = D(⌊Ti⌋) · ||T •
i || ≻ mj = D(⌊Tj⌋) · ||T •

j ||.
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Case B: ∀k < l : ⌈Tk⌉ ≺ ⌈Tl⌉. Let us start with a general observation. Let a ∈ M and
b ∈ supp∆(a). Let δ ∈ T↓ with

1

∆(a)
= d 1

∆(a)
· (1 + δ) =

1

d∆(a)
· (1 + δ).

Then supp δ ⊆ d∆(a) · supp∆(1
a
) and ∆(a) = d∆(a) · (1 − δ + δ2 + · · · ). Hence for some k > 0 we

have b ∈ d∆(a) · supp δk. Then there are infinitesimals c1, . . . , ck ∈ supp∆(1
a
) such that

b = dk+1
∆(a) · c1 · · · ck.

Now consider the set of couples

S :=

{
(i,m)

∣∣∣∣ m ∈ supp∆

(
1

⌈Ti⌉

)}
.

We order S by (i,m) ≻ (j, n) iff m ≻ n. From (5.14) it follows that (S,<) is Noetherian. By
Higman’s Theorem 1.1.4, the ordering (S⋆,<S⋆) is also Noetherian.

For every i we find by the above observation an integer ki > 0 and infinitesimal monomials
mi,1, . . . ,mi,ki ∈ supp∆( 1

⌈Ti⌉) such that

||T •
i || = d

ki+1
∆(⌈Ti⌉) · mi,1 · · ·mi,ki .

By the Noetherianity of S⋆ there exist i < j with

[(i,mi,1), . . . , (i,mi,ki)] <S⋆ [(j,mj,1), . . . , (j,mj,kj )] and ki 6 kj .

Since all mj,l are infinitesimal, we obtain

mi,1 . . .mi,ki < mj,1 . . .mj,kj . (5.15)

Since on the other hand we have tTj ,s 6∈ term (log ri △ log rj), it follows that

d∆(⌈Tj⌉) ≍ ∆(⌈Tj⌉) ≺≺ D(ri)

D(rj)
,

from which with Lemma 5.3.3 it follows that D(⌊Ti⌋) ≻ D(⌊Tj⌋) · dkj+1

∆(⌈Tj⌉). But then

D(⌊Ti⌋) · dki+1
∆(⌈Ti⌉) ≻ D(⌊Tj⌋) · dkj+1

∆(⌈Tj⌉). (5.16)

Multiplying (5.15) and (5.16), we get mi ≻ mj. 2
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5.3.4 Fourth and last case

It remains to treat the case where the sequence (T •
i )06i cannot be reduced to one of the previous

cases. That means that modulo extracting a sub-sequence, we suppose that no ri is an element
of M, that no tree Ti is reduced to its proper root and that for every k > 0 we find a successor
node sk ∈ succ r(Tk) such that

tTk,sk ∈ term (log r0 △ log rk).

Furthermore, since all tTk,sk are elements of term log r0, we can derive from Remark 4.3.2 that
for all k < l:

log r0 △ log rl � log rk △ log rl.

Thus we also have tTl,sl ∈ term (log rk △ log rl) for all 0 < k < l. For sequences (sk)0<k with
these properties, we will in the following say that the badness of (T •

i )06i is realized by (sk)0<k.

PROPOSITION 5.3.5 Let (T •
i )06i be a bad sequence with the above properties. Then there exist

i < j such that mi < mj.

Proof: Suppose not and let (T •
i )06i be a bad sequence, i.e. a counter example to the proposi-

tion. We say that the bad sequence (T •
i )06i is minimal, if for every i and fixed T •

0 , . . . , T
•
i−1, the

number of children of r(Ti) is minimal. From now on, we will assume that (T •
i )06i is a minimal

bad sequence.

Fix for all i > 0 a node si ∈ succ r(Ti) such that (si)16i realizes the badness of the sequence.
We denote the proper sub-tree of Ti with root si by Ui. The trees Wi = Ti \ Ui are non-empty
and give rise to a sequence of well-labeled trees. We claim that {W •

i | 1 6 i} is Noetherian.
Otherwise, there exists a bad sequence Wj0,Wj1 , . . . with j0 < j1 < · · · . But then

(T •
0 , . . . , T

•
j0−1,W

•
j0,W

•
j1 , . . . )

is also a bad sequence, which contradicts the minimality of the sequence (T •
i )06i. This shows

our claim.

Since {W •
i | 1 6 i} is Noetherian, there exist i0 < i1 < · · · with

Θ∆(Ti0 \ Ui0) = Θ∆(Wi0) < Θ∆(Ti1 \ Ui1) = Θ∆(Wi1) < · · · .

Furthermore, all Uin have roots with host-labels in term log r0. Now log r0 ∈ Tβ for some β < α,
so that

∆(log r0) =
∑

Tλ∈tree•(log r0)

Θ∆(T λ).

In particular, we have Ui0 , Ui1 , . . . ∈ tree•(log r0), so that Θ∆(Uij ) < Θ∆(Uik) for some j < k.
We conclude that mij < mik . 2
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5.3.5 The extension is a right-composition

Proof of Theorem 5.3.2: By Theorem 5.3.1, the function ∆α as defined in equation (5.11) on
page 107 exists. We have to show conditions RC1 – RC4.

Condition RC1 holds, since ∆α extends ∆. Let us show RC3 next. Fix a Noetherian family
F in Tα. First we remark that for every series f we have

tree•(f) =
∐

t∈term f

tree•(t).

For T • ∈ tree•(t), we let T •
d be the tree which results from replacing the root label by dt. The

rest of both the host- and the labeling remain unchanged. We then have Θ∆(T •) = ct ·Θ∆(T •
d ).

We then obtain
∑

f∈F ∆α(f)

∑

f∈F
∆α(f) =

∑

f∈F

∑

m∈supp f

∑

Tλ∈tree•(m)

fm · Θ∆(T λ)

=
∑

m∈
S

F supp f

∑

Tλ∈tree•(m)

(
∑

f∈F
fm) · Θ∆(T λ)

=
∑

m∈supp
P

F

∑

Tλ∈tree•(m)

Fm · Θ∆(T λ).

This shows
∑

f∈F ∆α(f) = ∆α(
∑

F f) and thus RC3. Next. we show condition RC4. From
Remark 5.1.3 it follows that we are done if we can show that ∆α(m) = exp ∆α(log m) for all
m ∈ Mα. Let T • ∈ tree•(m). For every s ∈ succ r(T •) we denote by T •

s the child of r(T •) with
root s. Recall that for all s ∈ succ r(T •) we have Θ∆(T •

s ) ≺ 1. Moreover, we have

Θ∆(T •) = D(m) · 1

|succ r(T •)|! ·
∏

s∈succ r(T •)

Θ∆(T •
s ).

From the definition of ∆α it then follows that

∆α(m) = D(m) ·
∑

T •∈tree•(m)

1

|succ r(T •)|!
∏

s∈succ r(T •)

Θ∆(T •
s )

= D(m) ·
∑

06n

1

n!




∑

t∈term (log m)

∑

U•∈tree•(t):

Θ∆(U•)≺ 1

Θ∆(U•)




n

.

On the other hand, we have

∑

t∈term (log m)

∑

U•∈tree•(t):

Θ∆(U•)≺ 1

Θ∆(U•) =




∑

t∈term (log m)

∑

U•∈tree•(t)

Θ∆(U•)




↓

= ∆
↓
α(log m).
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This together with D(m) = exp ∆
↑
α(log m) shows

∆α(m) = exp ∆
↑
α(log m) · e(∆↓

α(log m)).

From C(m) = 1 the condition RC4 now follows. Condition RC2 can be shown as in Proposition
5.1.9. The uniqueness follows from Proposition 5.1.7. 2

COROLLARY 5.3.6 For every ordinal α and every transseries field T and every g ∈ T+
∞, there

is a unique right-composition ∆g : Lα → Tα such that x 7→ g.





Chapter 6

Taylor series

In the first part of the chapter, we estblish the link between derivations and right-composition.
The compatibility will be manifest in the presence of a Taylor series development.

Then we go on to show how to extend the concept to operators on transseries fields, which
will lay the groundwork for the third part, in which we consider infinite iterators of functions.

6.1 Compositions on differential fields of transseries

6.1.1 Compositions and derivations

NOTATION 6.1.1 Let ◦ : T×U→ U be a partial function for transseries fields T,U. Let us fix
the following simplifications for notations for the rest of this section. If f ∈ T, then there is a
(partial) unitary function ◦(f, ·) : U→ U defined by g 7→ ◦(f, g). Instead of ◦(f, ·) we write f ◦ ·
or even just f . Hence we write for instance dom f instead of dom ◦ (f, ·) and f(g) instead of
◦(f, g) or f ◦ g. If ∂ is a derivation on T, then we will write ∂f = f ′ and ∂n(f) = f (n).

Let (T, ∂T), (U, ∂U) be differential fields of transseries. A partially defined function

◦ : T× U −→ U

is a composition w.r.t. ∂T and ∂U (or just a composition, if the derivations are clear from the
context) iff

CC1. ∀g ∈ (U)+∞ the function ∆g : T→ U with ∆g(f) = f(g) is a right-composition,
CC2. for all f ∈ T+

∞, the function

f : U+
∞ −→ U

is strictly increasing,
CC3. ∀f ∈ T : ∀g ∈ U : if g ∈ dom f , then g ∈ dom f ′ and

(f(g))′ = f ′(g) · g′,

115
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CC4. ∀f ∈ T : ∀g, ε ∈ U : if ∀m ∈ supp f : m(g) ≻ m′(g) ·ε, then g+ε ∈ dom f , (f (n)g ·εn)06n

is a Noetherian family and

f(g + ε) =
∑

06n

1

n!
f (n)(g) · εn.

If ◦ is a compatible composition, then for all f ∈ T, we call the partial function Γf : U → U
defined by g 7→ f(g) a left-composition.

REMARK 6.1.2 Let T = C[[M]]. In order to show condition CC2, it suffices to show that for
all m ∈ M↑ the function m : U+

∞ → U is strictly increasing. To see this, let U be the monomial
group of U and u ∈↑. Then for all m ≻ n in M↑ we have m(u) ≻ n(u). Hence df ◦ u ≻ m ◦ u for
all m ∈ supp f \ {df}. Thus for series g1 < g2 from U+

∞ and for f ∈ T+
∞ we have

df◦g1 = ddf ◦dg1
df◦g2 = ddf ◦dg2 .

Then g1 < g2 implies dg1 4 dg2 . If dg1 ≺ dg2 , then the hypothesis implies the claim. Otherwise
cg1 < cg2 leads to τf◦g1 < τf◦g2.

REMARK 6.1.3 Condition CC4 shows a taylor series development of the series f in one vari-
able. However, we will in this chapter show that this implies a multivariable Taylor series
development. In other words, we will show that we can under appropriate conditions decompose
the series ε into a Noetherian family (εi)i∈I such that

f(g + ε) = f(g +
∑

I

εi) =
∑

(i1,... ,in)∈I⋆} 1
n!
·f(n)g·εi1 ···εin .

6.1.2 Extending compatible compositions

In this section, we start discussing the possibility of extending compatible compositions using
exp-extensions. Here, we will mainly show the points which are inherited from the initial tuple
(T,U) in a direct way.

Let T = C[[M]] and U = C[[]] and

◦ : T× U→ U

be a composition w.r.t. ∂T and ∂U. Fix g ∈ U+
∞. Then ϕg : T→ U with ϕg(f) = f(g) is a right-

composition. Theorem 4.4.2 shows that ∂T extends to every Tα and that every right-composition
ϕg extends uniquely to a right-composition ϕg : Tα → Uα. Hence the function

◦ : Tα × U+
∞ → Uα

(f, g) 7→ ϕg(f)

is our candidate for a composition. Some of the conditions are satisfied by construction, so for
instance CC1. Let us state the theorem that we want to show.
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THEOREM 6.1.4 Let ◦ : T×U→ U be a composition w.r.t. ∂T and ∂U. Then for every ordinal
number α, the function

◦ : Tα × U → Uα
(f, g) 7→ ϕg(f)

is a composition.

PROPOSITION 6.1.5 Let ◦ : T × U → U be a composition and α an ordinal number. Suppose
that for all β < α, the tuple (Tβ,Uβ) admits a unique composition which extends (T,U). Let ◦
as in Theorem 6.1.4. Then CC1, CC2 and CC3 hold.

Proof: Condition CC1 follows from the construction. Next, we show CC2. Suppose that
for β < α, the function ◦ : Tβ × U → Uβ is already a composition. We have to show that

for all m ∈ M
↑
α the function m : U↑ → Uα is increasing. If α is a limit ordinal, this holds by

inductive hypothesis. Let α = β + 1 and m = exp f for some 0 < f ∈ T↑
β. By RC4, we have

m(n) = exp(f(n)) for all n ∈ U↑. Hence for n1 ≺ n2 ∈ U↑, we have to show that

f(n1) < f(n2).

From supp f ⊆ M
↑
β and CC2 for β we obtain

∀a ∈ supp f : a(n1) ≺ a(n2).

By Remark 5.1.2, the leading term of f(n1) is the leading term of τf ◦ n1. Similarly, for n2 we
obtain τf◦n2 = τf ◦ n2. Condition CC2 for β now implies df ◦ n1 ≺ df ◦ n2. From cf > 0 now
τf ◦ n1 ≺ τf ◦ n2 follows. Hence τf◦n1 ≺ τf◦n2 and therefore the inequality. This shows CC2 for
α.

The first part of condition CC3 follows from Theorems 4.4.2 and 5.3.2. For the rest of
condition CC3, it suffices by strong linearity to show (m(g))′ = m′(g) ·g′ for monomials m ∈ Mα

and series g ∈ U+
∞. If α is a limit ordinal, this follows from m ∈ Mβ for some β < α. If α = β+1,

then m = exph for some h ∈ Tβ. Applying CC3, RC4 and D4 yields the following equations

(m(g))′ = (exp(h(g)))′ = exph(g) · (h(g))′
= exph(g) · h′(g) · g′ = (exph · h′)(g) · g′
= (exp h)′(g) · g′ = m′(g) · g′.

This shows CC3 for α. 2

6.1.3 Showing compatibility

We now finish the proof of Theorem 6.1.4 by showing CC5. Let T,U,U and α as in the theorem.
Fix f ∈ T1,α and g ∈ T+

3,∞ such that g ∈ dom f . Furthermore, fix a Noetherian family E = (εi)i∈I
such that

∀i ∈ I : ∀m ∈ supp f : εi ≺
m(g)

m′(g)
.
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Let XE ⊆ M1,α ×N be the set

XE :=

{
(m,m) |m ∈ N ∧ ∀i ∈ I : εi ≺

m(g)

m′(g)

}
∪ {(1,m) |m ∈ N}.

We define an ordering on XE by

(m,m) 6 (n, n) :⇔ ∀i ∈ I : m(g) · εmi < n(g) · εni .

We define a set of XE -labeled structures Σ by identifying each element from XE with the one-
point structure which is labeled with this element, i.e. for all σ we let Iσ = {•} and lσ(•) = σ.
We define the function ϑE : XE → P(M1,α × N) by

ϑE((m,m)) := {(a,m+ 1) | a ∈ suppm′}.

LEMMA 6.1.6 The function ϑE is a choice operator on XE .

Proof: Let (m,m) ∈ XE and a ∈ suppm′. Then there is a path P in Tm,max which determines
a, i.e. with tP,i = cP,imP,i:

P = [m, tP,1, . . . ] ∈ path(Tm,max),

n ∈ supp log mP,k for some k ∈ N,
a = mP,0 · · ·mP,k · n.

Note that we may replace k by larger integers. By hypothesis, for all i ∈ I the inequality
a(g) · εi≺m(g) holds. Hence for all i ∈ I we have

(mP,1 · · ·mP,k · n) ◦ g ≺ 1

εi
. (6.1)

Let b ∈ suppa′. Then there is a path Q which determines b, i.e.

Q = [a, sQ,1, . . . ] ∈ path(Ta,max),

n̂ ∈ supp log mQ,m for some m ∈ N,
b = mQ,0 · · ·mQ,m · n̂.

In particular, sQ,1 ∈ term log a, i.e. sQ,1 = (log a)mm for some m. Hence there is an integer
n ∈ N such that sQ,1 is a term in log mP,n. But then

Q̂ = [tP,0, . . . , tP,n, sQ,1, sQ,2, . . . ]

is an a path in Tm,max. Thus Q̂ determines an element of suppm′. By varying k if necessary, we
may assume that k = n and that inequality (6.1) holds for this monomial as well. Therefore for
all i ∈ I we have

1

εi
≻ (mP,1 · · ·mP,n · mQ,1 · · ·mQ,m · n̂) ◦ g.
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Since 14 tP,1 · · · tP,n (with equality if and only if n = 0) it follows from the fact that right-
compositions are strictly increasing that

1

εi
≻ (mQ,1 · · ·mQ,m · n̂) ◦ g =

(
mQ,0 mQ,1 · · ·mQ,m · n̂

mQ,0

)
◦ g =

b(g)

a(g)
.

Hence a′(g) · εi≺ a(g) and thus (a,m + 1) ∈ XE . This shows the lemma. 2

LEMMA 6.1.7 The choice operator ϑE is strictly extensive and Noetherian.

Proof: Let n ∈ suppm′, then

n 4 m′ ≺ m

εi

for all i ∈ I implies n · εm+1
i ≺m · εmi for all i ∈ I. Hence (m,m) < (n,m+ 1), thus the operator

is strictly extensive.
Let Y ⊆ XE be a Noetherian set. We first remark that

ΣY = {σ ∈ Σ | im lσ ⊆ Y } = {(m,m) ∈ XE | (m,m) ∈ Y } = Y,

hence that

A = {(σ, x) |σ ∈ ΣY ∧ x ∈ ϑE(σ)} = {((m,m), (n,m + 1)) | (m,m) ∈ Y ∧ n ∈ suppm′}.

Suppose that A is not Noetherian in the induced ordering. Let

((mi,mi), (ni,mi + 1))06i

be a 4-increasing sequence. Then for all i ∈ I the sequence (ni · εmi+1
i )06i is 4-increasing. But

this contradicts the fact that ΣY is Noetherian. 2

The pair (Σ, ϑE) now gives rise to a pair (Σ+, ϑ+
E ), and by van der Hoeven’s Theorem, the

function ϑ+
E is a strictly extensive, Noetherian choice operator. We will use this fact in the

following.
Let εi = cidεi(1 + δi), then

⋃
I δi is well-ordered and purely infinitesimal. Thus (

⋃
I δi)

⋆ is
well-ordered. We have to show that

(f (n)g · εi)06n,i∈In

is Noetherian. Since
⋃

06n

⋃

i∈In
supp f (n)g · εi ⊆

⋃

06n

⋃

i∈In
supp f (n)g · dεi · δi ⊆

⋃

06n

⋃

i∈In
supp f (n)g · dεi · (

⋃

I

δi)
⋆,

we only have to show that

⋃

06n

⋃

i∈In
supp f (n)g · dεi
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is well-ordered.

Recall that Σ+ = T1
‘

T2
‘ · · · . Let us determine the sets T1, T2, . . . in this application of

van der Hoeven’s Theorem. We have identified T0 with XE by looking at XE as the set of
one-point structures labeled with the elements from XE . Elements from T1 are determined by
some σ ∈ Σ and structures τi ∈ T0 for all i ∈ Iσ. But since Iσ = {1}, the structure σ is a one-
point structure and elements τ1 from T1 are of the form (m,m)[(n, n)]. Moreover, the condition
lσ(1) ∈ ϑ∗(τ1) = ϑ(σ) = ϑE(m,m) implies that

τ1 = (m1,m+ 1)[(m,m)],

where m1 ∈ suppm′. Inductively, we see that every element τk ∈ Tk is a one-point structure of
the form

τk = (mk,m+ k)[(mk−1,m+ k − 1)[. . . (m1,m+ 1)[(m0,m)]] . . . ]

where mj+1 ∈ suppm′
j for all j < k. For the series f , the set Y = supp f × {0} is Noetherian in

XE , hence (XE)Y is Noetherian. But then so is the set

⋃

06n

⋃

i∈In
supp f (n)g · dεi .

This shows the first part of CC5.

Let m ∈ M1,α and assume that CC5 holds for all series from T1,β with β < α. Then in
particular, the equation holds for log m. We show that this fact implies the equation for m and
that from this the condition follows.

We have to show

m(g +
∑

I εi) =
∑

06n
1
n!m

(n)g ·∑i∈In εi.

This is equivalent to

log(m(g +
∑

I εi)) = log
∑

06n
1
n!m

(n)g ·∑i∈In εi = log m(g) + l
(∑

16n
1
n!

m(n)g
m(g) ·∑i∈In εi

)
.

Since log m ∈ T1,β, we obtain from RC4 and the inductive hypothesis for h = log m

log(m(g +
∑

I εi)) = h(g +
∑

I εi) =
∑

06n
1
n!h

(n)g ·∑In εi.

On the other hand, from the definition of l(X) we obtain

l



∑

16n

1

n!

m(n)g

m(g)
·
∑

In

εi


 =

∑

16j

(−1)j+1

j



∑

16n

1

n!

m(n)g

m(g)
·
∑

In

εi



j

=
∑

16n

1

n!

∑

In

εi ·
n∑

j=1

(−1)j+1

j

∑

L∈T ∗(j,n)

n!

L!
· m(L)g

m(g)j
.
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Hence, we are done, if we can show

(log m)(n)g =

n∑

i=1

(−1)i+1

i

∑

L∈T ∗(i,n)

n!

L!
· m(L)g

m(g)i

for all n > 1. This clearly holds for n = 1. The general case can be shown inductively using the
equation

(
m(L)g

m(g)i

)′

=
m(L)g

m(g)i
·

i∑

j=1

m(Lj+1)g

m(Lj)g
· g′ − i · m(L)g

m(g)i
· m′(g)

m(g)
· g′.

Now by strong linearity we have

f(g +
∑

I εi) =
∑

m∈M1,α

fmm(g +
∑

I εi)

=
∑

m∈M1,α

fm

∑

06n

1

n!
m(n)g ·∑In εi

=
∑

06n

1

n!
· (

∑

m∈M1,α

fm · m(n)g) ·∑In εi

=
∑

06n

1

n!
f (n)g ·∑In εi.

This shows CC5 and finishes the proof of Theorem 6.1.4.

6.2 Taylor families of operators

6.2.1 Definition of Taylor families

Let F be a set of partially defined functions Φ : T→ T, where T = C[[M]] is a transseries field.
Then F = (F ,′ ) is a Taylor family iff

Tf1. ∀Φ ∈ F : Φ′ ∈ F and dom Φ′ ⊇ dom Φ,
Tf2. ∀f, ε ∈ T : ∀Φ ∈ F : if f, f + ε ∈ domΦ and if

(
1

n!
· Φ(n)f · εn

)

06n

is a Noetherian family, then

Φ(f + ε) =
∑

06n

1

n!
· Φ(n)f · εn.

REMARK 6.2.1 First let us remark that we use again the convention Φ′ = Φ(1) and (Φ(n))′ =
Φ(n+1) in the above definition. The usage of the derivation notation is justified since the function
′ : F → F will in applications always be a derivation.
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The second point to notice concerns condition Tf2. In fact, the condition states that Φ(f+ε)
is actually independent from the decomposition into f and ε. That is, if we find g, δ with
f + ε = g + δ such that the hypotheses of Tf2 hold for g and δ in place of f and ε, then

∑

06n

1

n!
· Φ(n)f · εn =

∑

06n

1

n!
· Φ(n)g · δn.

If a couple (f, ε), satisfies the hypotheses of condition Tf2, then we call

RΦ(f, ε) :=
∑

16i

1

i!
Φ(i)f · εi

the restricted Taylor series of Φ in (f, ε). The series TΦ(f, ε) := Φf +RΦ(f, ε) is called the
Taylor series of Φ in (f, ε).

EXAMPLE 6.2.2 Let α > 0 be an ordinal number. Fix a transseries field T. Then T ⊆ Tα. For
a series Φ(x) ∈ Lα we let

FΦ := {Φ,Φ′,Φ′′, . . . }

with the derivation in Lα, which exists by Theorem 4.4.2. Recall that then for all f ∈ T+
∞ we

have f ∈ dom Φ(n). This is by Theorem 5.3.2. In other words, the set FΦ satisfies Tf1. Theorem
6.1.4 shows that Tf2 holds as well.

6.2.2 Saturated Taylor families

A Taylor family F is said to be saturated iff for all Φ ∈ F and all f, ε ∈ T such that f ∈ dom Φ
and such that

(
1

n!
· Φ(n)f · εn

)

06n

is a Noetherian family, we have f + ε ∈ dom Φ. Note that the family FΦ from Example 6.2.2 is
saturated.

Our first aim will be to show that every Taylor family can be extended to a saturated family.
This of course means that the domains of the functions Φ ∈ F will be extended. The proof of
this property requires some preliminary steps.

Let Φ ∈ F and f, ε ∈ T be such that ( 1
n!Φ

(n)f ·εn)06n is a Noetherian family. Then Corollary
1.5.8 implies that for every δ 4 ε in T, the sequence

(
1

n!
· Φ(n)f · δn

)

06n

is a Noetherian family.
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LEMMA 6.2.3 Let F be a Taylor family and Φ ∈ F . Suppose that f ∈ T and that (εi)i∈I is a
Noetherian family in T such that f and f +

∑
I εi are in the domain of Φ. Furthermore, suppose

that for all i ∈ I the sequence ( 1
n! · Φ(n)f · εni )06n is a Noetherian family. Then

(
1

n!
· Φ(n)f · εi1 · · · εin

)

(i1,... ,in)∈I⋆

is a Noetherian family and

Φ(f +
∑

Iεi) =
∑

(i1,... ,in)∈I⋆

1

n!
· Φ(n)f · εi1 · · · εin .

Proof: Let j ∈ I be such that εj <
∑

I εi. Then we let g =
∑

I εi and apply the above
observation to ( 1

n! · Φ(n)f · εnj )06n and g. Then the sequence ( 1
n! · Φ(n)f · gn)06n is a Noetherian

family. Then by Remark 1.5.4, the set

{(n,m n1 · · · nn) | m ∈ suppΦ(n)f ∧ ∀i 6 n : ni ∈ supp
∑

I

εi}

is Noetherian for the ordering (i, a) ≻ (j, b) ⇔ a ≻ b. Since

⋃

n∈N

{n} × suppΦ(n)f · εi1 · · · εin

is contained in this set, we obtain the first part of the lemma.
As for the second assertion, we remark that by generalized associativity for Noetherian

families, we have

∑

(i1,... ,in)∈I⋆

1

n!
· Φ(n)f · εi1 · · · εin =

∑

06n

1

n!
· Φ(n)f ·




∑

(i1,... ,in)∈I⋆
εi1 · · · εin


 .

Since for Noetherian families F,G we have
∑
F G = (

∑
F )(
∑
G), we obtain

∑

(i1,... ,in)∈I⋆

1

n!
· Φ(n)f · εi1 · · · εin =

∑

06n

1

n!
· Φ(n)f ·

(
∑

i∈I
εi

)n
= Φ(f +

∑
Iεi).

This finishes the proof. 2

PROPOSITION 6.2.4 Every Taylor family (F ,′ ) can be extended to a (minimal) saturated Taylor
family Fhor, called the horizontal closure of F .

Proof: For Φ ∈ F we let

XΦ := {(f, ε) | f ∈ dom FΦ ∧ (Φ(n)f · εn)06n is a Noetherian family},
YΦ := {f + ε | (f, ε) ∈ XΦ} ⊇ dom ΦF .
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if (f, ε) ∈ XΦ, then (f, ε) ∈ XΦ′ . Hence YΦ ⊆ YΦ′ . We extend every Φ ∈ F to YΦ by

Φ(f + ε) :=
∑

06n

1

n!
· Φ(n)f · εn.

Let us show that this definition indeed only depends on the sum f + ε and not on the choice of
(f, ε) ∈ XΦ. Let (f, ε), (g, δ) ∈ XΦ with f + ε = g+ δ. We have δ 4 ε or ε 4 δ. We will assume
that δ 4 ε; the othercase is treated similarly.

The couple (ε− δ, δ) is a Noetherian family. From ε− δ 4 ε and Lemma 1.5.8 it follows that
the sequence (Φ(n)f · (ε− δ)n)06n is a Noetherian family. Then so is (Φ(n+i)f · (ε− δ)n)06n for
all 0 6 i. Since f + ε− δ = g ∈ dom Φ in F , it follows from Tf2 for F that

Φ(i)g =
∑

06n

1

n!
· Φ(n+i)f · (ε− δ)n. (6.2)

Moreover, Lemma 6.2.3 implies that the sequence ( 1
n!m! ·Φ(m+n)f ·(ε−δ)m·δn)06n,m is Noetherian.

By generalized associativity for Noetherian families

∑

06n

1

n!m!
· Φ(m+n)f · (ε+ δ)m · δn =

∑

06s

1

s!
· Φ(s)f ·

s∑

n=0

(
s

n

)
(ε− δ)s−n δn =

∑

06s

1

s!
· Φ(s)f · εs.

(6.3)

By generalized associativity and (6.2) we have

∑

06n

1

n!m!
· Φ(m+n)f · (ε+ δ)m · δn =

∑

06n

1

n!
·
∑

06m

1

m!
· Φ(m+n)f · (ε+ δ)m · δn =

∑

06n

1

n!
· Φ(n)g · δn.

(6.4)

Equations (6.3) and (6.4) show that Φ(f + ε) is well-defined in F̃ . We have to show Tf1 and
Tf2. Condition Tf1 follows from YΦ ⊆ YΦ′ . Now, let f ∈ domΦF̃ = YΦ and ε ∈ T such that

(
1

n!
· Φ(n)f · εn)06n

is a Noetherian family. We first claim that f + ε ∈ YΦ. Let h, ρ ∈ T with h ∈ dom ΦF such that

(
1

m!
· Φ(m)h · ρm)06m

and f = h+ ρ. Then for all n the family ( 1
m! · Φ(m+n)h · ρm)06m is Noetherian, and we have

Φ(n)f =
∑

06m

1

m!
· Φ(m+n)h · ρm.

By the above, this definition is correct. Then ( 1
m! n! · Φ(n+m)h · ρn · εm)06m,n is a Noetherian

family. But then so is by generalized associativity the family

(
1

n!
· εn

∑

06m

1

m!
· Φ(n+m)h · ρm)06n = (

1

n!
· Φ(n)f · εn)06n.
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This shows that f + ε ∈ YΦ. But then from the above it follows that Φ(f + ε) = Φ(g+ δ) for all
(g, δ) ∈ XΦ with g + δ = f + ε. This shows Tf2. 2

REMARK 6.2.5 Also, it should be noticed that Lemma 6.2.3 allows a Taylor development in
the widest possible way. In fact, if f + ε can be developed into the series

∑
06n

1
n! · Φ(n)f · εn,

then we can actually take the Noetherian family (εi)i∈I := term ε. In particular, we are not
confined to finite decompositions of ε.

6.3 Taylor series expansions of iterators

6.3.1 Stirling polynomials

We are interested in constructing transseries fields admitting super-logarithmic functions, that
is, functions L such that the functional equation Lf = L log f + 1 is satisfied whenever both
sides are defined. More generally, we are interested in solving functional equations of the form

Φf = Φφf + 1. (6.5)

REMARK 6.3.1 We use Taylor families for constructing such functions. Let F be a Taylor
family and φ,Φ ∈ F such that

∀f ∈ dom φ : φf ∈ dom Φ ⇒ f ∈ dom Φ ∧ Φf = Φφf + 1.

The right-hand side will be used in order to extend Φ to all series f such that φf ∈ dom Φ.
Similarly, if f ∈ dom φ is such that f ∈ dom Φ, then we extend Φ to φf by letting Φφf = Φf−1.
However, we will have to extend the domains of Φ′,Φ′′, . . . as well if f resp. φf is not in their
domains yet.

On the other hand, the function ′ will in all our applications be a derivation on some
transseries field. One effect is that equation (6.5) determines already Φ′f,Φ′′f, . . . . Indeed,
using the chain rule for derivations, we obtain

Φ′f = Φ′φf · φ′f. (6.6)

Similarly, applying a derivation and the chain rule again, equation (6.6) leads to

Φ′′f = Φ′′φf · (φ′f)2 + Φ′φf · φ′′f, (6.7)

Φ′′′f = Φ′′′φf · (φ′f)3 + Φ′′φf · 3φ′f · φ′′f + Φ′φf · φ′′′f, (6.8)

(6.9)

In other terms, we have a dependence between Φ(n)f on the one side, and the terms Φ(i)φf and
φ(i)f (where i 6 n) on the other side. We formalize this connection in the following.

NOTATION 6.3.2 We denote by 1̄ and 0̄ the tuples (1, . . . , 1) and (0, . . . , 0) respectively. Recall
that addition and subtraction between tuples is pointwise. If k ∈ Nn, then Xk = Xk1

1 · · ·Xkn
n .

Recall that for integers i, n we denote the set {k ∈ (N+)i|k1 + · · ·+ ki = n} by T ∗(i, n). To keep
the subscripts of some sums short, we sometimes will write

∑
T ∗(i,n) YL instead of

∑
L∈T ∗(i,n) YL.

Since in general the summation can only be over one index, this should not lead to any confusion.
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Let X1,X2, . . . be indeterminates. The formal derivation with respect to Xi will be denoted
by ∂

∂Xi
, i.e. ∂

∂Xi
Xj is 1 if i = j, and 0 otherwise. We construct polynomials Sn,i in n indetermi-

nates X1, . . . ,Xn with coefficients in N for all n, i ∈ N as follows. If i = 0 or i > n, then we let
Sn,i := 0. For n = 1 we let

S1,1[X1] := X1.

For all k ∈ Nn we denote the coefficient of Xk in the series Sn,i by ckn,i, i.e. for all i, n ∈ N we
have

Sn,i[X] =
∑

k∈Nn

ckn,iX
k.

Then for all i, n ∈ N we recursively define Sn,i by

Sn+1,i := Sn,i−1 ·X1 +
n∑

j=1

∂Sn,i
∂Xj

·Xj+1.

One shows recursively that all Sn,i are polynomials. They generalize Stirling numbers. For
that reason, we call them Stirling polynomials.

EXAMPLE 6.3.3 One verifies that S1,1 = X1, S2,2 = X2
1 and S3,3 = X3

1 . Also we have S2,1 =
X2, S3,1 = X3 and S3,2 = 3X1X2.

Using Stirling polynomials, we can express equations (6.6), (6.6) and (6.8) by

Φ′f = Φ′φf · S1,1[φ′f ],

Φ′′f = Φ′φf · S2,1[φ′f, φ′′f ] + Φ′′φf · S2,2[φ′f, φ′′f ],

Φ′′f = Φ′φf · S3,1[φ′f, φ′′f, φ′′′f ] + Φ′′φf · S3,2[φ′f, φ′′f, φ′′′f ] + Φ′′′φf · S3,3[φ′f, φ′′f, φ′′′f ].

LEMMA 6.3.4 For all n, i ∈ N, the series Sn,i[X] are polynomials in n indeterminates over N
such that for all n > 1

(1) Sn,1[X] = Xn and Sn,n[X] = Xn
1 ,

(2) for all 1 6 i 6 n: if ckn,i 6= 0, then
n∑

j=1

j · kj = n and
n∑

j=1

kj = i,

(3) for all 1 6 i 6 n:

Sn,i[X] =
n!

i!

∑

L∈T ∗(i,n)

XL

L!
.

Proof: The properties (1) and (2) follow easily from the recursive definition. Let us show (3)
in detail. We first remark that for all n > 1 we have T ∗(1, n) = {n} and T ∗(n, n) = {1̄ ∈ Nn},
hence that Xn = Sn,1 and Xn

1 = Sn,n. Suppose that (3) holds for all integers 6 n. Let
1 < i < n+ 1. From the recursive condition one infers that

Sn+1,i = X1 · Sn,i−1 +
∑

k∈Nn

n∑

j=1

kj · ckn,i ·Xk · Xj+1

Xj
.
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From n+ 1 = L1 + · · · + Li we obtain

(n+ 1)!

i!

∑

T ∗(i,n+1)

XL

L!
=
n!

i!

∑

T ∗(i,n+1)

(n+ 1)XL

L!
=
n!

i!

i∑

j=1

∑

T ∗(i,n+1)

LjXL

L!
.

From the hypothesis about Sn,i−1 and

i∑

j=1

∑

T ∗(i,n+1):
Lj=1

LjXL

L!
= X1 · i

∑

T ∗(i−1,n)

XL

L!

we then infer

(n+ 1)!

i!

∑

T ∗(i,n+1)

XL

L!
= X1 · Sn,i−1 +

n!

i!

i∑

j=1

∑

T ∗(i,n+1):
Lj>1

LjXL

L!
.

One verifies that

i∑

j=1

∑

T ∗(i,n+1):
Lj>1

LjXL

L!
=

∑

T ∗(i,n)

XL

L!

(
XL1+1

XL1

+ · · · XLi+1

XLi

)
.

Fix L ∈ T ∗(i, n). For 1 6 j 6 n we let kLj = |{m 6 i|Lm = j}|. Then XL = Xk(L) where

k(L) = (kL1 , . . . , k
L
n ). From the hypothesis about Sn,i we obtain

∑

T ∗(i,n)

n!

i!L!
XL =

∑

k∈Nn

ckn,iX
k and thus ckn,i =

∑

T ∗(i,n):
k(L)=k

n!

i!L!
.

This implies

∑

T ∗(i,n)

i∑

j=1

n!

i!L!
XL · XLj+1

XLj

=
∑

k∈Nn

n∑

j=1

ckn,iX
k · kj

Xj+1

Xj
.

Then we obtain

(n+ 1)!

i!

∑

T ∗(i,n+1)

XL

L!
= X1 · Sn,i−1 +

∑

k∈Nn

n∑

j=1

kjc
k
n,iX

k · Xj+1

Xj
= Sn+1,i.

This finishes the proof. 2

REMARK 6.3.5 An alternative route to show (3) of Lemma 6.3.4 uses the fact that for every
k ∈ Nn, the coefficient ckn,i equals the number of possibilities to partition a set of n points into
k1 sets of size 1, k2 sets of size 2 and so forth. A similar inductive argument can then be used.
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6.3.2 Vertical extensions of Taylor families

Let F be a Taylor family and φ,Φ ∈ F . Suppose that F is horizontally closed for φ. Then Φ is
an infinite iterator of φ if for all f ∈ dom Φ we have f ∈ dom φ and φf ∈ dom Φ and

Φf = Φφf + 1 (6.10)

Φ(N)f =

N∑

j=1

Φ(j)(φf) · SN,j[φ′f, . . . , φ(N)f ]. (6.11)

A Taylor family is vertically closed for the infinite iterator Φ of φ ∈ F iff for all f ∈ dom φ we
have f ∈ dom Φ ⇔ φf ∈ dom Φ. The family F is vertically closed iff it is vertically closed for
all infinite iterators Φ ∈ F of operators φ ∈ F .

PROPOSITION 6.3.6 If φ,Φ ∈ F and Φ is an infinite iterator of φ, then the same holds in Fhor.

Proof: Denote the extension of Φ to Fhor by Φ̃. Let f ∈ dom Φ̃. We have to show three
points, namely that f ∈ dom φ, that φf ∈ dom Φ̃ and that the equations (6.10) and (6.11) hold.

In order to show that f ∈ dom Φ̃, let f = h+δ such that h ∈ dom Φ, such that (Φ(N)h·δN )06N

is a Noetherian family and such that

Φ̃f =
∑

06N

1

N !
Φ(N)h · δN .

From h ∈ dom Φ it follows that h ∈ dom φ, φ′, . . . . We claim that (φ(N)h ·δN )06N is a Noetherian
family. The series Φ′(φh) · φ(N)h · δN is a component of the N -th element of the sequence
(Φ(N)h · δN )06N . To see this recall that

Φ(N)h =
N∑

j=1

Φ(j)(φh) · SN,j[φ′h, . . . , φ(N)h].

Hence the sequence (Φ′(φh) · φ(N)h · δ)06N is Noetherian. But then so is (φ(N)h · δ)06N . Thus
h+ δ ∈ dom φ, which shows our claim.

In order to show that φf ∈ dom Φ̃, we let h, δ as above. Then φf = φh + ρ, where ρ =
φ′h · 1

2! φ′′h · δ2 + · · · . From h ∈ domΦ, it follows that φ ∈ dom Φ,Φ′, . . . . We claim that

(Φ(j)φh · ρj)06j is a Noetherian family. Since (Φ(N)h · δN )06N is a Noetherian family, so is

(

N∑

j=1

Φ(j)(φh) · SN,j[φ′h, . . . , φ(N)h] · δN )06N

For every j > 1 we let

Fj := (Φ(j)(φh) · SN,j[φ′h, . . . , φ(N)h] · δN )j6N
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Then every Fj is a Noetherian family and we have
∑
Fj = Φ(j)(φh) · ρj. The claim follows from

the fact that (
∑
Fj)16j is Noetherian. On the other hand, we have

∑

16j

1

j!
·
∑

Fj =
∑

16j

1

j!
· Φ(j)(φh) · ρj .

From Φ(φh) = Φh− 1 it then follows that Φ̃(φf) = Φ̃f − 1, from which equation (6.10) follows.
The equations (6.11) follow from a similar argument. 2

A Taylor family is not necessarily vertically closed. For f ∈ dom φ one can have f 6∈
dom Φ ∧ φf ∈ dom Φ. We add φf resp. f to the domains of Φ,Φ′,Φ′′, . . . via (6.10) and (6.11).
Since φf ∈ dom Φ, all Φ(N)f are defined in T, since all terms on the right-hand side of (6.10)
and (6.11) exist. We extend F by all f ∈ dom φ with one of the above properties. Let

Y := {f ∈ dom φ | f 6∈ dom Φ ∧ φf ∈ dom Φ},
and we extend F to F̃ by adding X and Y to dom Φ,Φ′,Φ′′, . . . using the equations (6.10) and
(6.11). We have to show that F̃ is again a Taylor family.

LEMMA 6.3.7 Suppose F = Fhor. Then F̃ is a Taylor family, and Φ is an infinite iterator of
φ in F̃ .

Proof: Let f ∈ dom φ. Since for all N > 0 we have

dom F̃Φ(N) = dom FΦ(N) ∪ Y,

the condition Tf1 holds in F̃ . Next, let f ∈ dom F̃Φ. If f ∈ domFΦ, then Tf2 follows from
the same condition in F . We may thus suppose that f ∈ X or f ∈ Y . Let ε ∈ T be such that
f + ε ∈ dom F̃Φ and such that

(Φ(n)f · εn)06n

is a Noetherian family. If f ∈ X, then f ∈ dom FΦ,Φ′, . . . . We are done by Tf2, since F = Fhor.
If f ∈ Y , then it follows from the definition of Φ(n)f that

∑

06n

1

n!
· Φ(n)f · εn = Φf +

∑

16n

1

n!
· Φ(n)f · εn

= 1 + Φφf +
∑

16n

1

n!
εn ·

n∑

i=1

Φ(i)(φf) · Sn,i[φ′f, . . . , φ(n)f ]

From Lemma 6.3.4 it then follows that

∑

06n

1

n!
· Φ(n)f · εn = 1 + Φφf +

∑

16n

1

n!
εn ·

n∑

i=1

Φ(i)(φf) · n!

i!

∑

L∈T ∗(i,n)

1

L!
φ(L)f

= 1 + Φφf +
∑

16i

1

i!
Φ(i)(φf) ·



∑

16k

1

k!
φ(k)f · εk



i

= 1 + Φ(φf +
∑

16k

1

k!
φ(k)f · εk).
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This shows Tf2 for F̃ and Φ(f + ε) = Φφ(f + ε) + 1. The fact that Φ is an infinite iterator of φ
on F̃ as well follows with the same argument. 2

PROPOSITION 6.3.8 Every Taylor family (F ,′ ) can be extended to a (minimal) vertically closed
Taylor family Fver.

Proof: If F is not vertically closed, then extend one of the domains of Φ as in Lemma 6.3.7.
The result is a Taylor family, and we can apply Proposition 6.3.8. We thus obtain a saturated
Taylor family, where the domains of the functions Φ,Φ′, . . . contain all series which could be
obtained by applying the functional equations.

Since T remains unchanged throughout the extension process, this process will lead to a
horizontally and vertically closed Taylor family. 2

REMARK 6.3.9 We call Fver from Prposition 6.2.4 the vertical closure. Alternating horizon-
tal and vertical closures, Zorn’s lemma implies the existence of infinite iterator functions which
are both horizontally and vertically closed.

6.3.3 Application to logarithmic functions

Let us look at the described closures in an example. Let T ⊇ L be a transseries field containing
x and at least a partially defined infinite iterator Φ of log.

We first remark that x, log x, log2 x, . . . are all elements of T. We define first Φ′,Φ′′, . . . .

REMARK 6.3.10 Since Φ is the infinite iterator of log, we have

Φ′x =
1

x
· Φ′ log x =

1

x log x
· Φ′ log2 x = · · · .

We will thus let

Φ′x =
1

x log x log2 x · · ·
.

Then Φ′x ∈ Lexp. Since we have a derivation on Lexp, we obtain the functions Φ′′,Φ′′′, . . .
recursively by applying equation (6.11). All of them are again elements of Lexp. We have in this
case Φ(N) : L→ Lexp for all n > 1.

Note that ({Φ′,Φ′′, . . . }, ∂L) is a Taylor family. We extend the field L by monomials Lx,
L2x, L3x, . . . where we demand

Lx = Φx

L2x = ΦLx

L3x = ΦL2x
...
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Hence from now on, we will denote Φ by L, too. Then the family ({L,L′, L′′, . . . }, ∂L) is again a
Taylor family. Now assume that for some i, the monomial logi x is in the domain of L. If i > 0
and logi−1 x is not in the domain of L, then we can apply the vertical extension step and let

L logi−1 x := L logi x+ 1.

This way we can extend L to all monomials x, . . . , logi x. If on the other hand j > i and
logj x 6∈ domL, then we have in the vertical closure

L logj x = L logi x− (j − i) = Lx− j.

The action of the horizontal closure is similar. Suppose that ε is a series such that (Lx,L′x ·
ε, L′′x · ε2, . . . ) is a Noetherian family. Then we have in the horizontal closure

L(x+ ε) = Lx+
1

1!
· L′x · ε+

1

2!
· L′′x · ε2 + · · · .

We can thus define L for certain x+ ε. The fact that the horizontal closure is saturated tells us
now that if we can splitt ε into a sum ε = ε1+ε2 such that (L(n)x·εn1 )06n and (L(m)(x+ε1)·εm2 )06m

are Noetherian families, then

L(x+ ε) =
∑

06m

1

m!
L(m)(x+ ε1) · εm2 .

In other words, we do not obtain any incoherences from different possibilities of developing the
series L(x+ ε). Similarly, the fact that the vertical closure is a Taylor family again allows us to
extend L to series like 3x+ 1

x . Indeed, we have

L(3x+
1

x
) = L log(3x+

1

x
) + 1

= L(log x+ log(3 +
1

x2
))

=
∑

06n

1

n!
L(n) log x · logn(3 +

1

x2
).

What is more, we might have applied log not just once, but as many times as we like to the
series 3x + 1

x and then have developed the resulting series. That would have yielded the same
result.

6.4 Inverse functions

We will finish with some remarks on the inverse function of Φ, if it exists. In view of the appli-
cations we have in mind for the pair (φ,Φ), namely the pair (log, L), this provides information
concerning the construction of extensions of a given field. In particular, we will use the following
facts in the construction of super-exponential functions.
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As before, we will work under some assumptions about the functions φ and Φ as well as
about T. Let φ be strictly monotone. This ensures that φ admits an inverse function on its
image range φ. We remark that this assumption holds for the example φ = log.

Also, we assume that Φ is strictly monotone wherever it is defined. Following the notations for
iterations of functions, the inverse functions are denoted by φ−1 and Φ−1 respectively. However,
we also use ψ and Ψ. In other words, we have φ ◦ψ = ψ ◦ φ = id and Φ ◦Ψ = Ψ ◦Φ = id. Recall
that for all f ∈ T with f ∈ dom φ and f, φf ∈ dom Φ we have Φφf = Φf − 1. It follows that ψ
and Ψ satisfy a functional equation.

LEMMA 6.4.1 Let T be atransseries field and ψ and Ψ the inverse operators of φ and Φ respec-
tively. Let f ∈ T be such that f, f + 1 ∈ dom Ψ and Ψf ∈ dom ψ. Then Ψ(f + 1) = ψΨf .

Proof: Let y ∈ T be such that f + 1 = Φy. Then Ψ(f + 1) = y. From Φy− 1 = Φφy = f one
obtains Ψf = φy and therefore y = ψΨf . 2

As for Φ, we can now introduce operators Ψ(i). Once we have fixed the operator Ψ′, the
choice of the operator Ψ(i) (i > 2) can be made in the same way as it was done for Φ. Since the
series are thought to stand for derivatives, we use the equation 1 = Φ′Ψ · Ψ′ to let

Ψ′f :=
1

Φ′(Ψf)

Note that is f ∈ dom Ψ, then Ψf ∈ dom Φ. Since Φ ∈ F is an operator from a Taylor family,
this implies Ψf ∈ dom Φ(n) for all n > 0. In particular, this means that the right-hand side of
the above definition of Ψ′f is defined, and we have dom Ψ = dom Ψ′.

EXAMPLE 6.4.2 Let E be a super-exponential function on T, i.e. E satisfies the functional
equation expEf = E(f + 1). Then E′f = Ef ·E(f − 1) ·E(f − 2) · · · .

Suppose that we have already defined the operators Ψ′, . . . ,Ψ(i). Recall that for all j > 2
the polynomials Si+1,j[X] do not contain the indeterminate Xi+1. This makes the following
definition possible: if f ∈ dom Ψ, then

Ψ(i+1)f := −Ψ′f
i+1∑

j=2

Φ(j)(Ψf) · Si+1,j[Ψ
′f, . . . ,Ψ(i+1)f ].

Again, we find dom Ψi+1 = dom Ψ. Since all Si,j are polynomials, all series Ψ(i)f are elements
of T. As for Φ, it is now possible to define the restricted Taylor series.

LEMMA 6.4.3 ({Ψ,Ψ′, . . . },′ ) is a Taylor family.

Proof: For the condition Tf1 it suffices to remark that by the construction we have dom Ψ =
dom Ψn. We have thus to show Tf2. The proof of this condition is similar to the proof of
Lemma 6.3.7 by inserting the definitions of Ψ(n)f and invoking Lemma 6.3.4. 2

The functional equation ψΨf = Ψ(f+1) is again a potential source of incoherences. However,
as the next lemma shows, the conditions imposed on both Φ and Ψ prevent contradictions.
Moreover, we show that Ψ is also the inverse operator in the horizontal closure of F .
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LEMMA 6.4.4 Let f, ε be series in T such that f, f+1 ∈ dom Ψ and such that both (Ψ(n)f ·εn)06n

and (Ψ(n)(f + 1) · εn)06n are Noetherian families. Suppose that

∑ 1

n!
· Ψ(n)f · εn ∈ dom φ.

Then in the horizontal closure of F we have ΦΨ = id and ψΨ(f + ε) = Ψ(f + 1 + ε).

Proof: We first claim that for all i > 2:

0 =
i∑

j=1

Φ(j)(Ψf) · Si,j[Ψ′f, . . . ,Ψ(i)f ].

From the definition of Ψ′f we get (Ψ′f)−1 · Ψ(i)f = Φ′(Ψf) · Ψ′f . From the definition of Ψ(i)f
it now follows

−Φ′(Ψf) · Ψ′f =

i+1∑

j=2

Φ(j)(Ψf) · Si,j[Ψ
′
f, . . . ,Ψ(i+1)f ],

from which the claim follows. From the definition of Φ we obtain

Φ(Ψf + RΨ(f, ε)) = ΦΨf +
∑

16i

1

i!
Φ(i)(Ψf) ·



∑

16k

1

k!
Ψ(k)f · εk



i

,

hence

Φ(Ψf + RΨ(f, ε)) = f +
∑

16n

εn

n!

n∑

i=1

Φ(i)f
n!

i!

∑

K∈T ∗(i,n)

Ψ(K)f

K!
.

We apply Lemma 6.3.4 and obtain

Φ(Ψf + RΨ(f, ε)) = f +
∑

16n

εn

n!

n∑

i=1

Φ(i)f · Sn,i[Ψ′f, . . . ,Ψ(n)f ].

From Φ′(Ψf) · Φ′f = 1 and the above claim it now follows that Φ(Ψf + RΨ(f, ε)) = f + ε.
Since ψ is the inverse operator of φ, we have for all series h ∈ dom ψ with ψh ∈ domΦ that
Φψh = 1 + Φh. Let h = Ψ(f + ε), then the second assertion follows from the first one. 2





Chapter 7

Transseries fields of positive strength

7.1 Two aims of extending fields

Recall that one of our objectives is to construct fields K of generalized power series such that
there are functions E and L with

• E ◦ L = L ◦E = id,
• K+

∞ ⊆ domE,domL,

such that for all f ∈ K+
∞ the functional equations

expEf = E(f + 1)

L log f = Lf − 1.

hold. More generally, let us call E = eω and L = lω , and let us suppose that this construction
has been carried out already. That means we have solved the case n = 0 of the following
generalization of the above: construct a field K of generalized power series such that there are
functions eωn , eωn+1 , lωn and lωn+1 with

• eωn ◦ lωn = eωn+1 ◦ lωn+1 = id,
• K+

∞ ⊆ dom eωn ,dom eωn+1 ,dom lωn ,dom lωn+1 ,

such that for all f ∈ K+
∞ the functional equations

eωn ◦ eωn+1f = eωn+1(f + 1) (7.1)

lωn+1 ◦ lωnf = lωn+1f − 1. (7.2)

hold.

Both topics are closely related. We will use the tools developed in Chapter 6 to tackle
them. As we will see, many properties of the fields have their origin in the functional equations
(7.1) and (7.2). We have therefore decided not to distinguish between the construction of the
structures 〈K, E, L〉 and 〈K, eωn , lωn〉. Many of the necessary lemmas and properties are proved
in the same way for the initial and general case (although sometimes the generalized version
requires more care; but one can always simplify the generalized proof to the case (exp, E)).

135
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Before we go into the details, let us briefly sketch the structure of this chapter.

• In the case (exp, E), all properties and proofs can be given using these functions and their
inverse functions (log, L). Since we want to treat the general case (exp, . . . , eωn), this becomes
difficult, if one wants to keep the proofs readable. We therefore introduce a new notation. This
will be done in Section 7.2.

• Then we revise some properties of transseries fields and show that they provide the initial
conditions for a notion of transseries fields of higher strength. Indeed, usual transseries fields
will then be of strength 0. The definition of strength n + 1 requires the definition of strength
n. We show that the process of increasing the strength has a starting point. We will apply the
new notations to the results of Chapter 6. Section 7.3 will cover this topic.

• Section 7.4 will provide general properties of transseries fields of strength n. Most of the
properties in this section will be needed to extend a given field of strength n to a larger field of
strength n.

• More properties of transseries fields of positive strength are shown in Section 7.5. This
time, however, the focus of the properties is to provide tools that will help to go from strength n
to strength n+1. Centrepiece of this section is a partial composition result similar to Proposition
5.1.5.

• Finally, we show in Section 7.6 the existence of fields of arbitrary positive strength, and we
give a simple but useful application of the properties of transseries fields shown in this chapter.

7.2 Ordinal notations

We start with some recalls about ordinal numbers. Let in what follows α, β, γ, . . . be ordinal
numbers. We use λ to denote limit ordinals. The total ordering on the class of ordinal numbers
is defined by α < β iff α ∈ β. The smallest limit ordinal is denoted by ω. Let + be the addition
on the ordinals which is defined by

α+ 0 := α,

α+ (β + 1) := (α+ β) + 1,

α+ λ :=
⋃

β<λ

α+ β.

Similarly, one defines a multiplication · on the class of ordinal numbers:

α · 1 := α,

α · (β + 1) := α · β + α,

α · λ :=
⋃

β<λ

α · β.

The addition and multiplication are not commutative. Standard examples are 1 + ω < ω + 1
and 2 · ω < ω · 2. Let ωω =

⋃
N
ωn. A frequently used result about countable ordinals < ωω is

Cantor’s theorem: let α < ωω, then there are n ∈ N and a0, . . . , an ∈ N with an 6= 0 and

α = ωn · an + · · · + ω · a1 + a0.
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We remark that if α, β < ωω are such that

α = ωn · an + · · · + ωm · am (n > m) and

β = ωm · bm + · · · + ω · b1 + b0 (bm > 0)

then

α+ β = ωn · an + · · · + ωm · (am + bm) + ωm−1 · bm−1 + · · · + b0.

Recall that our aim is to construct functions log, L,L, . . . and exp, E, E , . . . such that the func-
tional equations

L log x = Lx− 1 expEx = E(x+ 1)

LLx = Lx− 1 EEx = E(x+ 1)

...
...

hold. Let ψ, φ,Ψ and Φ be functions with ψ ◦ φ = Ψ ◦ Φ = id and Φφx = Φx− 1, then we let
ψω := Ψ and φω = Φ. Hence with 1 = ω0 we obtain

log = l1 exp = e1

L = lω E = eω

L = lω2 E = eω2

...
...

Thus for all n > 0 we have

lωn+1 ◦ lωnx = lωn+1x− 1

eωn ◦ eωn+1x = eωn+1(x+ 1).

For countable ordinals α = ωn · an + · · · + a0 and for functions φ we then have

φαx = φα0
◦ φω·a1 ◦ · · · ◦ φωn·anx.

For instance the term log5 L3L7x then can be written as lω2·7+ω·3+5x. Also, from the above
remark we obtain that lβ ◦ lαx = lα+βx, if α = ωn · an + · · · + ωm · am and β < ωm+1.

7.3 Fields of positive strength

In Chapter 2, we have introduced transseries fields. We will now extend this concept to fields of
generalized power series with functions eω , eω2 and so forth. We will speak of them as transseries
fields of strength n. In this sense, all transseries fields will be of strength 0; and our aim is to
introduce transseries fields of strength n > 0.

WARNING 7.3.1 The definition of positive strength of T will require that T has strength n−1.
Hence the notion of transseries fields will serve as starting point from which we will define
strength 1. Then – using properties of transseries fields of strength 1 – we will define transseries
fields of strength 2 and so on. The reader should always be aware of this inductive method and
of the fact that the case n = 0 plays a special role.
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7.3.1 Exponential fields of positive strength

As in the case of transseries fields (of strength 0), we start with a general definition of fields
admitting functions eωn and lωn . Let C be a totally ordered field. We say that C is an exponen-
tial field of strength 0 iff it is an exponential field. For n > 0, the field C is an exponential
field of strength n iff there are functions exp, . . . , eωn such that

E1. C is an exponential field of strength n− 1 for the functions exp, . . . , eωn−1 ,
E2. ∃cn ∈ C : ∀cn 6 x < y:

(i) x ∈ dom eωn ,
(ii) x+ 1 < eωnx and eωnx < eωny,
(iii) eωnx ∈ dom eωn−1 and eωn−1 ◦ eωnx = eωn(x+ 1).

REMARK 7.3.2 One example of an exponential field of positive strength are the real numbers.
In the interest of this chapter, we will not dwell on explicitely describing such examples. This
will be done in Appendix A. There we also show some analytical properties of exponential
functions of positive strength.

7.3.2 Dependencies during the construction

Recall from Chapter 2 that transseries fields T admit by Proposition 5.1.5 a partial composition
with series from C[[logZ⋆x]]. In other words, we have a partial composition result for the strength
0 which allows for all f ∈ T+

∞ to define series L
′
f , L′′f, . . . in Texp. In order to define transseries

fields of strength n > 0, we need a similar partial composition result for n− 1.

The case of strength 0 provides again the initial step for an inductive argument. Indeed,
we will assume that we already have an appropriate partial composition result for strength

n − 1 > 0. This will allow to define series l
(i)
ωnf for all f ∈ T+

∞ and all i > 1 and, eventually,
the definition of transseries fields of strength n. We then have to show that transseries fields of
strength n admit a partial composition result. This will be done in Section 7.5. Hence, we have
the following dependencies:

Definition of trans-

series fields T

Definition: fields

T of strength 1

Definition: fields

T of strength n

↓ ր ↓ ր · · · ր ↓ ր · · ·
Partial composition

result of strength 0

(Proposition 5.1.5)

Partial composition

result of strength 1

( (PC)1 )

Partial composition

result of strength n

( (PC)n )

We first define the partial composition result for strength n > 0 such that the case n = 0
coincides with Proposition 5.1.5. Then we will assume that for some n > 0 the notion of
transseries fields of strength n − 1 has already been defined and that the partial composition
result holds for such fields. We then give the definition for transseries fields of strength n.
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7.3.3 Logarithmic iterators

In the construction of functions lωn with positive n we will apply the results from Chapter 6.
In particular, we are interested in our definitions to be coherent. Also, Chapter 6 provides
information about the derivatives. This section will be concerned with these questions.

In the case n = 0, we have already seen how to define a field of purely logarithmic transseries.
This field, L = C[[logZ⋆x]], has properties which made it possible to define a composition with
transseries fields. More precisely, it was possible to define a derivation on L and to define a
partial composition for transseries fields. As a result we obtained a compatible composition,
which could be extended by taking exp-extensions.

The general case n > 0 will need similar properties. We define for all n > 0 sets Bn. Let
B0 := logZ⋆x, i.e.

B0 =

{
∏

i<n

logaii x | n ∈ ω ∧ a : n→ Z

}
.

From Section 2.3 it follows that B0 admits an ordered group structure. Let for n ∈ N

Bn :=



loga x =

∏

β<α

l
aβ
β x | α ∈ ωn+1 ∧ a : α→ Z



 .

We introduce on Bn a multiplicative group structure by loga x · logb x = loga+b x. An ordering
on Bn is defined by 1 4 loga x ⇔ 0 6 a. Let Bn = C[[Bn]]. Note that in the case n = 0, this
is a transseries field. We will later see, that also for n > 0, the field Bn is a transseries field.
Moreover, let us assume that we have a derivation ∂ on Bn. This assumption, too, is true for
n = 0.

Let T be such that there are functions log, . . . , lωn on T+
∞. In particular, assume that T is of

strength n. We say that the partial composition result (PC)n of strength n > 0 holds for T iff

(PC1)n Bn is an ordered group structure extending Bn−1, if n > 0,
(PC2)n ∀n ∈ Bn : ∀f ∈ T+

∞ : n(f) ∈ T,
(PC3)n Let (ni)i∈I ⊆ Bn be well-ordered and f ∈ T+

∞, then (ni(f))i∈I is a Noetherian
family in T.

In other words, if we let Bn = C[[Bn]], then the composition ◦ : Bn × T+
∞ → T is defined for

fields T of strength n. Note that (PC)0 follows from Proposition 5.1.5. Let us remark that the
hard part in showing (PC)n is condition (PC3)n.

In the case n = 0, we have seen that B0 admits a derivation ∂ and that every positive infinite
series f of a field T determines a right-composition ϕf such that

◦ : B0 × T −→ T

(g, f) 7−→ ϕf (g) = g ◦ f
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is a compatible composition. We will therefore assume that for fields T of strength n the function

◦ : Bn × T → T

(g, f) 7→ ϕf (g) = g ◦ f

is also a compatible composition. This will make the definition of lωn+1 coherent.

LEMMA 7.3.3 Let n > 0. For all i > 1 and all α ∈ (ωn)i−1 there are integers aα, bα with

(1) l
′
ωnx =

∏

γ<ωn

1

lγx
;

(2) e
′
ωnx =

∏

γ<ωn

lγ(eωnx);

(3) l
[i]
ωnx = l

′
ωnx ·

∑

α∈(ωn)i−1

aα · l′α+1̄x (aα ∈ Z);

(4) e
[i]
ωnx = (e

′
x)
i ·

∑

α∈(ωn)i−1

bα · l′α+1̄(eωnx) (bα ∈ Z).

Proof: We start with l
′
ωnx. For n = 0 we have ω0 = 1. With log

′
x = x−1 we obtain the initial

case. Now suppose that we have shown the claimed equality for φ = lωn . Then for Φ = lωn+1 we
have Φ

′
x =

∏
n<ω φ′φnx. For any m ∈ N we have φm = lωn·mx and thus

φ
′
φmx =

∏

γ<ωn

1

lγ lωn·mx
=
∏

γ<ωn

1

lωn·m+γx
.

Therefore

Φ
′
x = l

′
ωn+1x =

∏

m<ω

∏

γ<ωn

1

lωn·m+γx
=

∏

γ<ωn+1

1

lγx
.

This shows the equation (1). Equation (2) follows from 1 = e
′
ωnx·l

′
ωn (eωnx). In order to show the

third equation, we start with the case n = 0. The initial case follows from log(i) x = (−1)i−1 ·x−i
and x−(i−1) = log1̄ x for 1̄ ∈ Ni−1. Now assume that we have shown the equation for n > 0.

Let m ∈ suppΦ(N)x. From the definition of Φ(N) it follows that there are i > 0 and
1 6 j 6 N − 1 such that

m ∈ suppΦ(j)φi+1x · SN,j[φ′φix, · · · , φ(N)φix] · (
i−1∏

l=0

φ′φlx)
N .

We first remark that
∏
l6i−1 φ′φlx = φ′ix. Let a ∈ suppΦ(j)φi+1x then by inductive hypothesis

there is a tuple β ∈ (ωn+1)j−1 such that a = Φ
′φi+1x · l′

α+1̄
(φi+1x). Then there is an α̂ ∈

(ωn+1)j−1 such that

l′α+1̄(φi+1x) =
l′
α̂+1̄

x

(φ′
i+1x)

j−1
.
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From (Φφi+1x)
′ = Φ′φi+1x · (φi+1x)

′ we then obtain that

a =
Φ′x · l′

α̂+1̄
x

(φ′
i+1x)

j
.

On the other hand, let b ∈ suppSN,j[φ′φix, · · · , φ(N)φix]. Then by Lemma 6.3.4, there are
integers 0 6 k1, . . . , kN such that

j = k1 + · · · + kN

N = k1 + 2k2 + · · ·N · kN

and such that

b ∈ supp (φ′φix)
k1 · · · (φ(N)φix)

kN .

Now we apply the inductive hypothesis for φ. We obtain

b ∈ supp (φ′φix)
k1 ·


φ′φix ·

∑

(ωn−1)1

l′β+1̄φix



k2

· · ·


φ′φix ·

∑

(ωn−1)N−1

l′β+1̄φix



kN

,

thus there is a β ∈ (ωn+1)N−j such that b = (φ′φix)j · lβ+1̄(φix). But then

b =
(φi+1x)

j

(φ′
ix)

N
· lβ̂+1̄x.

Hence m = Φ′x · l(α̂,β̂)+1̄x, where (α̂, β̂) ∈ (ωn+1)N−1. This shows (3).

Assume that we have shown the equation for j 6 i− 1. From the equation for φ(j)(ψx) and
1 = ψ′

x · φ
′
(ψx) we obtain

ψ
′
x · φ(j)(ψx) =

∑

α∈(ωn)j−1

aα · l′α+1̄(ψx).

On the other hand, we have

Si,j[ψ
′
x, . . . ,ψ(i)x] =

∑

k∈Ni

cki,j · (ψ
′
x)k1 · · · (ψ(i)x)ki .

Note that ki = 0. From the hypothesis we obtain that for all 1 6 m 6 i− 1

(ψ(m)x)km = (ψ
′
x)m·km ·




∑

α∈Nm−1

bα · l′α+1̄ψx



km

.

From k1 + 2 · k2 · · · i · ki = i and k1 + · · · + ki = j (by Lemma 6.3.4) we obtain

Si,j[ψ
′
x, . . . ,ψ(i)x] = (ψ

′
x)i ·

∑

α∈Ni−j

b̂α · l′α+1̄(ψx).
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Hence

ψ
′
x · φ(j)(ψx) · Si,j[ψ

′
x, . . . ,ψ(i)x] = (ψ

′
x)i ·

∑

α∈Ni−1

b̃α · l′α+1̄(ψx)

for integers b̃α. Substituting these terms into the definition of ψ(i) yields the claimed equation
(4). 2

COROLLARY 7.3.4 For each countable ordinal α < ωω we have l
′
αx =

∏

β<α

1

lβx
.

Proof: The corollary holds for α 6 ω. Hence assume that α > ω and that the corollary holds
for all β < α. If α = γ + 1, then

l
′
γ+1x = log

′
lγx · l′γx =

1

lγx
·
∏

β<γ

1

lβx
=

∏

β<γ+1

1

lβx
.

Now assume that α is a limit ordinal. If α = ωn, then the corollary follows from Lemma 7.3.3.
Otherwise we have α = ωn ·an+ · · ·+ωm ·am with m > 0. If n > m, then am > 0; and if n = m,
then an > 1. In both cases there is an ordinal α̂ < α such that α = α̂+ ωm. Hence

l
′
αx = l

′
ωm(lα̂x) · l

′
α̂x =

∏

β<ωm

1

lα̂+βx
·
∏

β<α̂

1

lβx
=
∏

β<α

1

lβx
.

This shows the corollary. 2

REMARK 7.3.5 Note that for all i > 1, the series l
(i)
ωnx are in Bn−1,exp. Moreover, for all ε ≺ f ,

the family

(
1

i!
l
(i)
ωnf · εi

)

16i

is Noetherian, thus its sum exists and is an element from Texp. Chapter 6 implies the coherence
of a possible definition of lωn in T, that is, if lωn is already partially defined on T.

7.3.4 Definition of positive strength for transseries

Assume that n > 0 and that we have already defined strength n − 1 for transseries fields such
that the partial composition result (PC)n−1 holds for such fields T. From the definition of
exponential fields of strength n − 1 it follows that for all f ∈ T+

∞ the function lωn−1 is defined
for the series f and that lωn−1f ∈ T+

∞. Hence for all i > 0 we have

• f ∈ dom lωn−1·i and
• lωn−1·if ∈ T+

∞.
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We define a relation ≺l
ωn−1 on T as follows. Let f, g ∈ T such that 1 6≍ f . Then we let

g ≺l
ωn−1 f iff ‖g‖ ≺ lωn−1·i‖f‖

for all i > 0. Note that if 1 6≍ f ∈ T, then the unary relation · ≺l
ωn−1 f is totally defined.

Let n > 0. A series f ∈ T+
∞ is lωn -confluent at order k ∈ N iff for all i > 0

dlωn·(k+i)f = lωn·i(dlωn·kf )

1 = clωn·(k+i)f .

We say that f is lωn -confluent iff it is lωn-confluent at some order k ∈ N. A subset S of T+
∞ is

lωn -confluent (at some order k) iff every series f ∈ S is lωn -confluent (at order k). Instead of
lωn-confluent at order 0 we also say lωn-atomic.

DEFINITION 7.3.6 The transseries field T = C[[M]] is of strength n > 0 iff C is an expo-
nential field of strength n, if T is of strength n− 1 and if there is a partial function logarithmic
function

lωn : T −→ T

of strength n with

Tn1 T+
∞ ⊆ dom lωn ,

Tn2 if eωn denotes the inverse function of lωn , then

∀f ∈ dom eωn : supp f↓ ≺l
ωn−1

eωnf ⇒ eωnf ∈ M,

Tn3 for all f ∈ T+
∞ there is some k ∈ N with

• f is lωn−1-confluent at order k,
• m = dl

ωn−1·kf
∈ dom lωn ,

• l
′
ωnm ∈ T,

• for R ∈ T

7→

with lωn−1·kf = m +R we have lωnf = k + Tlωn (m, R),

Tn4 T+
∞ is lωn-confluent.

REMARK 7.3.7 Condition Tn2 is a strong property for monomials. Indeed, it is only a sufficient
condition for being a monomial. Assume that f ∈ T+

∞ satisfies this condition. Then for all k ∈ N
we have f↓ = (f − k)↓ and f − k ∈ dom eωn . The latter property follows from f ∈ dom eωn and
eωnf ∈ dom lωn−1·k for all k > 0. Hence we can apply Tn2 and obtain that eωn(f − k) is again
a monomial. Note that this is in general not the case. Take for instance the case n = 1 and the
monomial m2 for m ∈ M.

REMARK 7.3.8 Let n > 0 and T of strength n− 1. Let f, g ∈ T+
∞ such that suppf↓ ≺l

ωn−1 g.
Then we have

∀i > 0 : ‖supp f↓‖ ≺ dl
ωn−1·ig

.

In particular, if f ∈ dom eωn , then for g = eωnf this implies ‖supp f↓‖ ≺ deωn (f−i). We will use
this observation in proofs that a field has strength n.
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NOTATION 7.3.9 We generalize the notion of exp-log-substructures. Let n > 0 and T1 =
C[[M1]], T2 = C[[M2]] be of strength n. Denote the exponential functions of strength n of the
fields T1 and T2 with eT1

ωn and eT2
ωn , respectively. Then T1 is an eωn -lωn -substructure of T2 iff

(1) T1 is an eωn−1 -lωn−1 -substructure of T2 and
(2) eT1

ωnf = eT2
ωnf for all f ∈ dom eT1

ωn .

We remark that (1) implies M1 ⊆ M2, thus T1 ⊆ T2. By T1 in the definition of transseries
fields it then follows that dom eT1

ωn ⊆ dom eT2
ωn . In other words, if Llωn ,eωn denotes the first-order

language of ordered rings with function symbols exp, . . . , eωn and log, . . . , lωn , then T1 is an
Leωn ,lωn -substructure of T2. We further notice that if T1 is an eωn -lωn-substructure of T2 and
T2 is an eωn-lωn -substructure of T3, then T1 is an eωn-lωn -substructure of T3.

7.4 Basic properties of fields of positive strength

In this section, we will prove a number of properties for transseries fields of positive strength.
The results will mainly be used to extend a given field T of strength n > 0 to a field T̂ ⊇ T
which again will be of strength n. Some of the following lemmas, however, only serve to show
the properties. They need in turn the properties in a lower-strength version. Throughout this
section, we will try to make the dependencies of the different lemmas clear.

LEMMA 7.4.1 Let T be of strength n > 0. Suppose that (f, ε) is an eωn-Taylor couple of series
from T. Then eωn(f + ε) ≍ eωnf .

Proof: Since T is of strength n, it follows from Lemma 7.3.3 that for every i > 1 there is a
series δi ∈ T↓ such that

e
(i)
ωnf = (e

′
ωnf)i ·

(
1

eωnf

)i−1

· (1 + δi).

Since (f, ε) is an eωn-Taylor couple, the sequence

(gi)16i =

(
(e

′
ωnf · ε)i ·

(
1

eωnf

)i−1
)

16i

must be a Noetherian family. This implies g1 ≻ g2 ≻ · · · . Hence

e
′
ωnf · ε ≻ (e

′
ωnf · ε)2 · 1

eωnf
,

which implies eωnf ≻ e
′
ωnf · ε. From e

′
ωnf · ε ≍ Reωn (f, ε) the lemma follows. 2

LEMMA 7.4.2 Let T of strength n > 0. Let f, g, ε ∈ T with f ∈ T+
∞. Then:

(1) If f ∈ dom e
(i)
ωn for all i > 0 and 1 ≻ e

′
ωnf · ε, then (f, ε) is an eωn-Taylor couple.

(2) If |g| < f , then (f, g) is a lωn-Taylor couple.
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Proof: (1) From the partial composition result for fields of strength n − 1 one concludes
that the family (

∑
α∈(ωn)i−1 bα · l

′
α+1̄f)16i is Noetherian (where bα are the integers from Lemma

7.3.3). From 1 ≻ e
′
ωnf · ε it follows that the sequence ((e

′
ωnf · ε)i)16i is Noetherian. Hence the

sequence

(e
(i)
ωnf · εi)16i =


(e

′
ωnf)i ·

∑

α∈(ωn)i−1

bα · l′α+1̄f · εi



16i

is Noetherian, from which (1) follows.
(2) From the partial composition result for n− 1 it follows that

• ∀i > 1 : ∃εi ≺ 1 : l
′
ωnf ·

∑

α∈(ωn)i−1

aα · l′α+1̄f =
1

f i
l
′
ωn(log f) · (1 + εi) and

• the family (εi)16i is Noetherian.

First assume that g ≺ f . From |g| < f is follows that ((g/f)i)16i is Noetherian, thus the
sequence

((
g

f

)i
· l′ωn(log f) · (1 + εi)

)

16i

is Noetherian. Hence (l
(i)
ωnf · gi)16i is a Noetherian family. Now let g ≍ f . We are done if we

can show that for h = c+ ε with c ∈ C, |c| < 1 and ε ≺ 1 the sum
∑

06i h
i is defined in T. We

first remark that

⋃

06i

supphi ⊆
⋃

06i

i⋃

j=0

supp εj ⊆
⋃

06j

supp εj ,

which is a well-ordered set, since ε ≺ 1. Hence for each m ∈ ⋃06i supphi there is a k ∈ N such

that m ∈ supp εj implies j 6 k. Then the sum
∑

06i(h
i)m is bounded if and only if the sum∑

k6i(h
i)m is bounded. But

∑

k6i

(hi)m =
∑

k6i

(c+ ε)im =
∑

k6i

k∑

l=0

(
i

l

)
ci−l · (εl)m =

k∑

l=0

·
∑

06j

(
i+ j

l

)
ci−l+j .

We remark that
∑

06j

(i+j
l

)
Xi−l+j converges for all |X| < 1. Thus the last sum is bounded.

Now apply this fact for h = g/f . This shows (2). 2

COROLLARY 7.4.3 Let T be of strength n > 0. Then the function lωn is strictly increasing, and
the function eωn is defined on range lωn .

Proof: Let f, g ∈ T+
∞ such that f < g. Then 0 < ε = g − f and | − ε| < g. Then (g, ε) is a

lωn-Taylor couple. From the horizontal coherence, we obtain

lωnf = lωn(g − ε) = lωng + Rlωn (g,−ε).
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From 0 > Rlωn (g,−ε) the corollary follows. 2

We remark that until now we only needed strength n. The next lemma uses Lemma 7.4.2,
therefore it also only needs strength n. The lemma will have applications in later sections.

LEMMA 7.4.4 Let n > 0 and M ⊆ N totally ordered groups such that

• the field TM = C[[M]] is of strength n and
• the field TN = C[[N]] is of strength n− 1.

Let (f, g) be a lωn-Taylor couple in TN (i.e. f, g ∈ TN) such that f ≻ g. Then

Rlωn (f, g) ∈ TM ∧ f ∈ TM ⇒ g ∈ TM.

Proof: Suppose not. Then let h� g be the maximal truncation of g such that h ∈ TM. From
g 6∈ TM it follows that h is a proper truncation of g, hence that ĥ = g − h 6= 0. In particular,
dĥ ∈ N \ M. We claim that Rlωn (f, h) ∈ TM. If h = 0, then this is true since Rlωn (f, 0) = 0.
If h 6= 0, then h ≍ g and Lemma 7.4.2 imply that (f, h) is a lωn-Taylor couple in TM. Thus
Rlωn (f, h) is defined since TM is of strength n. Hence it is an element of TM, which shows the
claim.

Then

Rlωn (f, g) = Rlωn (f, h+ ĥ) =
∑

16i

1

i!
l
(i)
ωnf · (h+ ĥ)i

implies Rlωn (f, g) = Rlωn (f, h) + l
′
ωnf · ĥ · (1 + µ) where µ ∈ T↓

N
is of the form

µ =
∑

26i

1

i!
· l

(i)
ωnf

l
′
ωnf

·
i−1∑

j=0

(
i

j

)
hj · ĥi−j−1 ≺ 1.

Now from Rlωn (f, g),Rlωn (f, h), l
′
ωnf ∈ TM we obtain

Rlωn (f, g) −Rlωn (f, h)

l
′
ωnf

= ĥ · (1 + µ) ∈ TM.

This implies dĥ ∈ M. This contradiction shows the lemma. 2

The next two lemmas will have applications in proofs of other lemmas in this section.

LEMMA 7.4.5 Let T be of strength n − 1 > 0. Recall that l
′
ωn is totally defined on T+

∞. Let
φ = lωn−1 and Φ = lωn . Then for all f ∈ T+

∞:

(1) 1 ≻ φ
′
f .

(2) If ∀i > 0 : φif ∈ domΦ
′
, then ∀i > 0 : 1 ≻ Φ

′φi+1f ≻ Φ
′φif .

(3) If ∀i > 0 : φif ∈ domΦ
′
, then ∀i > 0 : Φ

′φi+1f ≻ φ′φif ≻ Φ
′φif .

(4) ∀i > 0 : φ
′
φi+1f ≻ 1

φif
≻ φ

′
φif .
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Proof: For all α < ωn−1 we have 1 ≺ lαf ≺ f . Then from φ
′
f =

∏
α<ωn−1 l−1

α f the part (1)

follows. From Φ
′φif = φ′

(φif) · Φ′φi+1f and φif ∈ T+
∞ it follows – using (1) – that

Φ
′
φif ≺ Φ

′
φi+1f.

The inequality Φ
′φif ≺ 1 can be shown as part (1). Hence (2). Since 1 ≻ Φ

′φi+1f , the equation

Φ
′φif = φ

′
(φif) · Φ′φi+1f implies that Φ

′φif ≺ φ
′
φif . On the other hand,

Φ
′
φi+1f =

∏

06m

φ
′
φi+1+mf ≺ 1

leads to log Φ
′φi+1f < 0. From φ

′
φif ≺ φ

′
φi+1+mf ≺ 1 we obtain log φ

′
φif < log φ

′
φi+1+mf < 0

and thus

log φ
′
φif <

∑

06m

log φ
′
φi+1+mf < 0

But this shows φ′φif ≺ Φ
′φi+1f , hence (3). We are done if we can show that for all i > 0 the

inequality

0 > log φ
′
φi+1f > − log φif > log φ

′
φif (7.3)

holds. Recall that for all g ∈ T+
∞ we have

log φ
′
g = −

∑

α<ωn−1

lα+1g = − log g − ĝ

where ĝ ∈ T+
∞ with ĝ ≺ log g. Applying this to φif and φi+1f leads to

log φ
′
φi+1f = −

∑

α<ωn−1

lα+1φi+1f = − log φi+1f − h1

log φ
′
φif = −

∑

α<ωn−1

lα+1φif = − log φif − h2

with h1, h2 ∈ T+
∞ and h1 ≺ log φi+1f and h2 ≺ log φif . From this we obtain

0 > − log φi+1f − h1 > − log φif > − log φif − h2,

from which inequality (7.3) follows. 2

LEMMA 7.4.6 Let T be of strength n > 0. Let φ = lωn−1 and Φ = lωn . Then for all i > 0 and
all f ∈ T+

∞:

1 ≻ Φ
′
φi+1f ≻ 1

φif
≻ Φ

′
φi−1f.
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supp f−

(M,<)

supp f+

Φ′mΦ′φm· · · Φ′φim · · ·Φ′φi−1m

Figure 7.1: Determining f+ and f−

Proof: Apply Lemma 7.4.5 and note that for all i > 0 we have φif ∈ dom Φ
′
. 2

The next lemma will be used frequently in proofs of strength n. Essentially, we show that
for a special class of monomials m the support of lωnm is strictly bigger than the entire support
of the restricted Taylor development Rlωn (m, ·). In the proof, we use the Lemmas 7.4.1, 7.4.2
and 7.4.6. Hence the proof entirely relies on the strength n of T.

LEMMA 7.4.7 Let T = C[[M]] be of strength n > 0. Let m ∈ M be such that lωn−1·im ∈ M for
all i > 0. Then supp lωnm ≻ l

′
ωn lωn−1·im for all i > 0.

Proof: Let φ = lωn−1 and Φ = lωn , and let Ψ = eωn . We define two series f+ and f− in T as
follows. (See Figure 7.1.)

(1) Φm = f+ + f−,
(2) f+ � Φm,
(3) ∀i > 0 : supp f+ ≻ Φ

′φim and
(4) ∀n ∈ supp f− : ∃i > 0 : Φ

′φim ≻ n.

The series f+ and f− are uniquely determined by these conditions, and we have to show that
f− = 0. We remark that supp f− is well-ordered in M, therefore supp f− cannot contain
a strictly <-decreasing sequence. Since the sequence (Φ

′φim)06i is strictly <-decreasing, the
sequence of leading monomials is strictly <-decreasing, and therefore there must be an I ∈ N
such that Φ

′φIm ≻ supp f−. We may assume that I > 1.
From Φ

′φIm = Φ
′
Ψ(Φm − I) and Φ′φIm ≻ f− it follows then by Lemma 7.4.2 that

(Ψ(i)(Φm − I) · (−f)i)06i

is a Noetherian family. From Φm− I−f− = f+− I it follows now that Ψ(f+− I) ∈ T. In other
words, we have f+ − I ∈ dom Ψ. We now show that Ψ(f+ − I) ∈ M.

First, we note that from the definition of the series f+ and f− it follows that

supp (f+ − I)↓ = supp (f+)↓ ≻ Φ
′
φim (∀i > 0).

Fix n ∈ supp (f+ − I)↓, then both ‖n‖ = n−1 and n ≻ Φ
′φim imply

∀i > 0 : ‖n‖ ≺ 1

Φ
′φim

.
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Since T is of strength n, it is also of strength n − 1, and we can apply Lemma 7.4.6. Then
∀i > 0 : n ≻ Φ

′φim implies ∀i > 0 : ‖n‖ ≺ φim. In particular, we have for all i > 0 that
‖n‖ ≺ φiφIm. From Lemma 7.4.1 we obtain Ψ(f+ − I) = Ψ(ΦφIm − f−) ≍ φIm. Therefore we
have

∀i > 0 : ‖n‖ ≺φ Ψ(f+ − I).

Since T is of strength n, we conclude that Ψ(f+ − I) ∈ M. From the hypothesis about m we
get φIm ∈ M↑ and

φIm = Ψ((f+ − I) + f−) = Ψ(f+ − I) + RΨ(f+ − I, f−).

This means RΨ(f+ − I, f−) = 0, which shows f− = 0. 2

We have seen in Chapter 2 that in transseries fields the logarithm of a series can only be a
monomial, if the series itself is a monomial. This result can be generalized to fields of positive
strength. Note in particular, that we use the fact that the forthcomming lemma is true in the
case n = 0. If n > 0, we may therefore assume that the lemma holds in the case n− 1, and we
can use the lemma in this case in order to show the case n.

LEMMA 7.4.8 Let T = C[[M]] be of strength n > 0. If f ∈ T is such that lωnf ∈ M, then
f ∈ M.

Proof: The case n = 0 holds by T2 for transseries fields. We therefore assume that in the
following n > 1. Note that in particular, we can apply Lemma 7.4.7 for the case n.

Let φ = lωn−1 and Φ = lωn , assume that we have already shown the lemma in the case n− 1.
Let f ∈ T such that Φf ∈ M. By Tn3 there is a k ∈ N such that f is φ-confluent at order k.
We show that k = 0. Suppose k > 0 and let φkf = m + ε such that m ∈ M, ε 4 1 and φif ∈ M↑

for all i > 0. Applying Lemma 7.4.7 for n yields suppΦm ≻ RΦ(m, ε). On the other hand, we
have

Φf = k + Φφkf = k + Φm + RΦ(m, ε) ∈ M.

Hence ε = 0 and Φm = Φφkf . This means m = φkf = φ(φk−1f). Applying the lemma in the case
n − 1 implies φk−1f ∈ M. This contradicts the minimality of k. Hence k = 0 and f = m ∈ M.
2

Another frequently used tool in proofs that certain fields are of positive strength will be the
following lemma. Recall that atomic means to be of confluence at order 0.

LEMMA 7.4.9 Let n > 0 and T be of strength n. If f ∈ T+
∞ is lωn-atomic, then f is lωn−1-

atomic. Consequently, the series f is lωi-atomic for all i 6 n.

Proof: Let again φ = lωn−1 and Φ = lωn . Fix f ∈ T+
∞ such that f is Φ-atomic. For all

φ-Taylor couples (g, ε) we have φg ≻ Rφ(g, ε), hence

τφ(g+ε) = τφg.
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This observation implies that for n = df and all k > 0 we have

τφkf = τφkn.

As an immediate consequence we obtain that for all k > 0 the series f is φ-confluent at order k
if and only if n is φ-confluent at order k. Hence instead of showing that f is φ-atomic, we show
that n is φ-atomic.

Suppose that this is not the case and let k > 0 be minimal such that n is φ-confluent at order
k. Such an integer k exists by Tn3. We can also assume that φkn = m + ρ such that φim ∈ M↑

for all i > 0. Hence, we can apply Lemma 7.4.7 and obtain suppΦm ≻ RΦ(m, ρ). But we have

Φm + RΦ(m, ρ) = Φφkn = Φn − k ∈ M − N.

Thus (Φ(m + ρ))↓ = 0, i.e. RΦ(m, ρ) = 0 and therefore ρ = 0. Hence φkn = m ∈ M. We apply
Lemma 7.4.8 to conclude φk−1n ∈ M. But this is a contradiction to the minimality of k. 2

REMARK 7.4.10 We point out that throughout this section, we never needed the condition
that T+

∞ is lωn-confluent, if T is of strength n. All properties can therefore be shown in more
general fields. Furthermore, we notice that Lemma 7.4.8 uses a lower-strength version of itself,
and that Lemma 7.4.9 needs Lemma 7.4.8. Apart from this, all lemmas follow from the fact
that the field T is of strength n. Hence there are no loops in the dependencies of the lemmas.

7.5 The partial composition result for positive strength

This section provides the proof of the partial composition result (PC)n for fields of strength
n > 0. This will enable us to define structures of strength n+ 1. In particular, we will use the
fact that T+

∞ is lωn-confluent, if T is of strength n.

Let in the following T be of strength n > 0. We need the following lemma in for the proofs
of (PC1)n – (PC3)n.

LEMMA 7.5.1 Let T = C[[M]] be of strength n > 0. Let m ∈ M↑ be lωn-atomic. Then

(1) ∀α ∈ ωn+1 : lαm ∈ M↑.
(2) {l′αm |α ∈ (ωn+1)i, 0 6 i} ⊆ M

7→

is well-ordered.
(3) {(l′ωn lωn·lm)−1 | l > 0} ⊆ M↑ is well-ordered.

Proof: Let Φ = lωn . The case n = 0 is clear. Assume n > 0. If m is Φ-atomic, then so is
Φkm for all k > 0. Hence if α = ωn an + · · · + a0, then Φanm is Φ-atomic. By Lemma 7.4.9, the
monomial Φanm is lωi-atomic for all i < n. Since T is of strength n − 1 and β = ωn−1 an−1 +
· · · + a0 < ωn, we can apply this lemma for the case n− 1 and obtain lαm = lβ(lωn·anm) ∈ M↑.
This shows (1).

Recall that for α = (α1, . . . , αi) ∈ (ωn+1)i we have

l
′
αm = l

′
α1

m · · · l′αim =
i∏

j=1

∏

β<αj

1

lβm
.
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From (1) it follows that l
′
α ∈ M

7→

(note that we allow i = 0 here). Also, we remark that for every
α there exists a function a : ωn+1 → N with

• l
′
αm =

∏
β<ωn+1 l

−aβ
β m = log−a m,

• the function a is weakly decreasing.

By Lemma 1.7.7 the set {a : ωn+1 → N | a is weakly decreasing} is well-ordered in the lexico-
graphic ordering. Since a <lex b if and only if log−a m ≻ log−b m, it follows that

{log−am | a : ωn+1 → N weakly decreasing} ⊆ M

7→
is well-ordered. Hence (2).

From Φlm ≻ Φl+1m follows Φ
′
Φlm ≺ Φ

′
Φl+1m ≺ 1, thus (3). 2

We now show (PC)n and start with (PC1)n. Let m, n ∈ Bn with

n = loga x =
∏

γ<α

l
aγ
γ x (α ∈ ωn+1 and a : α→ Z)

n = logb x =
∏

γ<β

l
bγ
γ x (β ∈ ωn+1 and b : β → Z)

Note that 1 = log0 x ∈ Bn. We may assume that α = β, for if not, then for α < β we extend
the function a to β be letting aγ = 0 for all γ > α; similarly if β < α). Let a+ b : α→ Z be the
pointwise sum of a and b, and let −a the function with (−a)γ = −aγ for γ < α. Then we let

n · m := loga+b x

n−1 := log−a x.

Hence n · m, n−1 ∈ Bn and n · n−1 = 1. This defines a multiplicative group structure on Bn.
We remark that B0 = logZ⋆x and that for n > 1 the group structure of Bn extends the group
structure of Bn−1.

The second step is to define an ordering < on Bn. For n = loga x we let

Mn := min{γ < ωn+1 | aγ 6= 0}.

Then we let n ≻ 1 iff aMn
> 0. For n,m ∈ Bn we let m < n iff m · n−1 < 1. The ordering <

on Bn extends the ordering < on Bn−1; and for n = 0 the ordering coincides with the ordering
from Section 2.3. This shows (PC1)n.

Next, we show (PC2)n. Let T be of strength n and f ∈ T+
∞. Let n ∈ Bn with n = loga x

and a : α < ωn+1 → Z. In view of the infinite-product notation we let

n(f) := exp
∑

γ<α

aγ · lγ+1f.

In order to show that n(f) ∈ T, we have to show that
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(i) ∀γ < α : lγ+1f ∈ T,
(ii) (lγ+1f)γ<α is a Noetherian family,
(iii)

∑
γ<α aγ · lγ+1f ∈ dom exp.

For all integers l > 0 we let fl := lωn·lf . Since α < ωn+1, we have α = ωn an + · · · + a0. Hence
for every γ < α there are integers g0, . . . , gn ∈ N such that gn 6 an and

lγx = logg0 ◦ lω·g1 ◦ · · · ◦ lωn·gnx.

Since T is of strength n, we have fd ∈ T+
∞ for all d 6 an. Inductively invoking the strengths

i < n yields

logg0 ◦ lω·g1 ◦ · · · ◦ lωn·gnf ∈ T+
∞.

Hence lγ+1f ∈ T. This shows (i). In order to show (ii) we remark that from dn 6 an it follows
that

(lγ+1f)γ<α = (lγ+1fd)γ<ωn
d6an

.

For each d 6 an, the family (lγ+1fd)γ<ωn is Noetherian. This follows from (PC)n−1. As a finite
union of Noetherian families, the sequence (lγ+1f)γ<α is itself Noetherian. Hence (ii). (PC)n−1

also implies that

∑

γ<ωn

aγ · lγ+1fd ∈ dom exp

for d 6 an. Thus

∑

γ<α

aγ · lγ+1f =

an∑

d=0

∑

γ<ωn

aγ · lγ+1fd ∈ dom exp .

Hence (iii) and therefore (PC2)n.

We show (PC3)n in three steps. In a first step, we show that we can reduce the statement
to series f ∈ T+

∞ which are lωn-atomic. The second step consists in showing properties of the
support of lωn·if for i > 0 assuming that f is lωn-atomic. In a final step, we apply the properties
from the second step to conclude the proof. In the following, we let Φ = lωn and Ψ = eωn .

Step 1: We show that we can restrict ourselves to series which are Φ-atomic. Since T is of
strength n, the series f ∈ T+

∞ is Φ-confluent at order k ∈ N. For n ∈ Bn with n = loga x and
a : α < ωn+1 → Z there is a sequence (nl)l<ω ⊆ Bn−1 such that

n =
∏

l<ω

nl(Φlx).
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Let a =
∏
l<k nl(Φlx) and b =

∏
k6l nl(Φlx), then a · b = n and a(f) · b(f) = n(f). For the

sequence (ni)i∈I we now obtain ai(f) · bi(f) = ni(f), where

ai(f) =
∏

l<k

ni,l(Φlf)

bi(f) =
∏

k6l

ni,l(Φlf).

If we have shown (PC3)n for series are Φ-atomic, then (bi(f))i∈I is a Noetherian family. In
this case it remains to show that (ai(f))i∈I is a Noetherian family. From (PC)n−1 it follows
that for all l < k the sequence

sl = (ni,l(Φlf))i∈I

is a Noetherian family. From (ai(f))I ⊆ s0 · · · sk−1 it now follows that (ai(f))I is a Noetherian
family. This finishes the first step.

Step 2: Assume that f = m+ε ∈ T+
∞ is Φ-atomic. By Lemma 7.4.9, the series f is lωi-atomic

for all i 6 n. Hence for all α < ωn+1 by Lemma 7.5.1 we must have (lαf)↑ = lαm ∈ M. In order
to show that (ni(f))i∈I is a Noetherian family, we have to consider the family (log ni(f))i∈I . We
start with the following lemma.

LEMMA 7.5.2 Let T be of strength n > 0. Let f ∈ T+
∞ be lωn-atomic, m = df and ε = Rf .

Then for all α < ωn+1:

supp (lα+1f)

7→

⊆ (supp ε)† · {log−a m | a : α+ 1 → N+, weakly decreasing}.

Proof: For α < ω, the lemma follows from Remark 5.1.6. Now let i 6 n, and suppose that
the lemma holds for all ordinals α < ωi. We first treat the case α = ωi and then by induction
the case ωi < α < ωi+1. By Lemma 7.4.9, the monomial m is lωi-atomic for i 6 n.

From lωi+1f = log lωif and lωif = Tl
ωi

(m, ε) we obtain that

lωi+1f = log Tl
ωi

(m, ε).

Thus

(lωi+1f)

7→

=

(
log ◦ lωim ·

(
1 +

Rl
ωi

(m, ε)

lωim

)) 7→

= l

(Rl
ωi

(m, ε)

lωim

)
,

where l(X) is the formal power series
∑

16i
(−1)i−1

i Xi. This implies

supp (lωi+1f)

7→

⊆
(

supp
Rl

ωi
(m, ε)

lωim

)†
.

Note that

supp
Rl

ωi
(m, ε)

lωim
= supp

∑

16j

1

j!
· l

(j)
ωi

m

lωim
· εj ⊆ (supp ε)† ·

⋃

16j

supp
l
(j)
ωi

m

lωim
.
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If a ∈ supp l
(j)
ωi

m for some integer j > 1, then there is α ∈ (ωi)j−1 such that a = l
′
ωim · l′αm, hence

there is a function â : ωi → N+ which is weakly decreasing such that a = log−â m. Thus for

b ∈ supp l
(j)
ωi

m/lωim there is a function a : ωi+1 → N+, weakly decreasing, such that b = log−a m.
Hence

supp (lωi+1f)

7→

⊆ ((supp ε)† · {log−am | a : ωi+1 → N+, weakly decreasing})†
= (supp ε)† · {log−a m | a : ωi+1 → N+, weakly decreasing}

This shows the case α = ωi.
Now suppose that α = β + 1 where ωi 6 β < ωi+1, and suppose that the lemma is true for

β. From lαf = lαm + εα = lαm + εβ+1 we obtain

(lα+1f)

7→

=

(
log ◦ lαm ·

(
1 +

εβ+1

lαm

)) 7→
= l

(
εβ+1

lαm

)
,

thus

supp (lα+1f)

7→

⊆
(

supp

(
εβ+1

lαm

))†
.

Now let a ∈ supp (lα+1f)

7→

, then for some integer j > 1 there are b1, . . . , bj ∈ supp εβ+1 such
that

a =
b1

lαm
· · · bj

lαm
.

By the inductive hypothesis for all 1 6 m 6 j there are weakly decreasing functions am : α→ N+

such that bm ∈ log−am m · (supp ε)†. The function a1 + · · ·+ aj is weakly decreasing, and for all
γ < α we have (a1 + · · · + aj)γ > j. Hence the function a : α+ 1 → N+ with

aγ :=

{
(a1 + · · · + aj)γ if γ < α
j if γ = α

is weakly decreasing and a ∈ log−am · (supp ε)†. This shows the remaining case and finishes the
proof. 2

Step 3: Note that the set
⋃

α<ωn+1

{log−a m | a : α+ 1 → N+, weakly decreasing}

is a subset of the set

{log−a m | a : ωn+1 → N+, weakly decreasing}.

Then from Lemma 7.5.2 it follows that
⋃

α<ωn+1

supp (lα+1f)

7→

⊆ (supp ε)† ·
⋃

α<ωn+1

{log−a m | a : α+ 1 → N+, weakly decreasing}

⊆ (supp ε)† · {log−a m | a : ωn+1 → N+, weakly decreasing}.
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The set {log−a m | a : ωn+1 → N+, weakly decreasing} is by Lemma 7.5.1 well-ordered in M.
The set (supp ε)† is by Lemma 1.1.5 well-ordered. Hence the set

⋃
α<ωn+1 supp (lα+1f)

7→

is well-
ordered in M.

Now let (ni)i∈I ⊆ Bn be a well-ordered sequence with ∀i ∈ I : ∃αi ∈ ωn+1 and a function
ai : αi → Z such that ni = loga x. Then ni(f) = loga f implies

ni(f) = exp
∑

β<αi

ai,β · lβ+1f = exp
∑

β<αi

ai,β · (lβ+1m + (lβ+1f)
7→

),

hence ni(f) = ni(m) · e(∑β<αi
ai,β · (lβ+1f)

7→

). Therefore

supp ni(f) ⊆ ni(m) ·


supp

∑

β<αi

ai,β · (lβ+1f)

7→



♦

.

From the above we conclude

⋃

i∈I
suppni(f) ⊆ {ni(m) | i ∈ I} · (supp ε)♦ · {log−a m | a : ωn+1 → N+, weakly decreasing}.

Thus
⋃
i∈I supp ni(f) is contained in a well-ordered set and therefore well-ordered itself. Lemma

1.1.6 now implies that for all monomials a from
⋃
i∈I supp ni(f) there are only finitely many

i ∈ I such that a ∈ suppni(f). Thus (ni(f))i∈I is a Noetherian family. This finishes the proof
of (PC3)n. We therefore have proved

PROPOSITION 7.5.3 The partial composition result (PC)n holds for fields of strength n > 0.

We finish this section with the following corollary.

COROLLARY 7.5.4 Let T be of strength n > 0. Suppose that m ∈ M↑ is lωn-atomic. Then:

(1) l
′
ωn+1m ∈ Mexp.

(2) For all i > 1 and all n ∈ l
(i)
ωn+1m there is a weakly decreasing function a : ωn+1 → N such

that n = l
′
ωn+1m · log−a m.

(3) For all n ∈ suppRl
ωn+1 (m, ε) with ε 4 1 there is a weakly decreasing function a : ωn+1 → N

such that n 4 l
′
ωn+1m · log−a m.

Proof: (1) follows from log l
′
ωn+1m = −∑α<ωn+1 lα+1m ∈ T↑. In order to show (2), recall

that

l
(i)
ωn+1m = l

′
ωn+1m ·

∑

α∈(ωn+1)i−1

aα · l′α+1̄m

for integers aα. Hence for n ∈ supp l
(i)
ωn+1m there is an α ∈ (ωn+1)i−1 such that n = l

′
ωn+1m·l′

α+1̄
m.

This shows (2). (3) follows from (2). 2
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7.6 Examples of fields of positive strength

We will give examples of fields of arbitrary strength. In fact, the example of a field of strength
n > 0 will be contained in the example of the field of strength m > n. This is due to our choice
of the monomial group.

Recall from Section 7.3.4 that for all n > 0 we have defined totally ordered, multiplicative
groups Bn. We extend these groups to sets Ln = {loga x | a : ωn+1 → Z}. Note that L0 =
logZ⋆⋆x. We define a group structure on each Ln as follows. Let a, b : ωn+1 → Z, then

1 := log0 x

loga x · logb x := loga+b x

(loga x)−1 := log−a x.

We let 1 ≺ m = loga x iff for Mm = min{γ | aγ 6= 0} we have 0 < aMm
. Hence each Ln is a totally

ordered group, and Ln is a subgroup of Ln+1 with L0  L1  L2  · · · . The field Ln := C[[Ln]]
will be our example for strength n. Note that

L0  L1  L2  · · · .

Fix an integer n > 0. In the following, we will equip Ln with functions log = l, lω , . . . , lωn such
that for each i < n the structure

〈Ln, log, . . . , lωi〉

is of strength i. We then use the partial composition result (PC)i to define a function lωi+1 .
This will eventually lead to a field of strength n.

We begin by defining a logarithmic function log on Ln. Let loga x ∈ Ln and f = cm ·(1+δ) ∈
Ln, then we let

log(loga x) :=
∑

γ<ωn+1

aγ · lγ+1x

log f := log m + log c+ l(δ).

One verifies that log m ≺ m for all m ∈ Ln. Hence, Ln is an exponential field. From the definition
of the ordering on Ln we obtain that {lαx |α < ωn+1} ⊆ L

↑
n is well-ordered. Thus log Ln ⊆ L↑

n.
Remark that each f ∈ (Ln)+∞ is log-confluent at order 2. For the same reason, condition T4 of
the definition of transseries fields holds. We have therefore proved

LEMMA 7.6.1 Let n > 0 and Ln = {loga x | a : ωn+1 → Z}. Define an ordered group structure
on Ln as above. Then Ln = C[[Ln]] is a transseries field, i.e. of strength 0.

The next step is to define functions lω , . . . , lωn such that 〈Ln, log, . . . , lωi〉 is of strength i.
In fact for every i < n we will show that for our choice of lωi we have
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• 〈Ln, log, . . . , lωi〉 is of strength i,
• (Ln)+∞ admits a partial function lωi+1 .

Having these properties will suffice to extend the structure 〈Ln, log, . . . , lωi〉 to a field of strength
i+ 1.

LEMMA 7.6.2 Let n > 0, then there are functions log, . . . , lωn such that Ln is of strength n.

Proof: The lemma holds for n = 0. Now suppose that i < n is such that

(lωi)1 〈Ln, log, . . . , lωi〉 is of strength i,
(lωi)2 (Ln)+∞ is lωi-confluent at order 2, and for f ∈ (Ln)+∞ there is an ordinal

β = ωn bn + · · · + ωi bi < ωn+1

with bi > 2 and dl
ωi·2f

= lβx,
(lωi)3 (Ln)+∞ admits a partial function lωi+1 such that for all f ∈ (Ln)+∞ we have dl

ωi·2f
∈

dom lωi+1 .

We start with the case i = 0. Condition (log)1 follows from Lemma 7.6.1. Note that (Ln)+∞
is log-confluent at order 2. From dlog2 f = dlog2 df

it follows that we only need to consider L
↑
n.

Let m = loga x ∈ L
↑
n, then

log2 m = log(aα · lα+1x · (1 + ρ)) = lα+2x+ ε

where α < ωn+1 and ε 4 1. From α = ωn an + · · ·+ a0 we obtain α+ 2 = ωn an + · · ·+ (a0 + 2).
Hence the monomial lα+2x is log-atomic and a0 + 2 > 2. Thus (log)2. Finally we let

β := ωn an + · · · + ω (a1 + 1)

lω(lα+2x) := lβx− (a0 + 2).

This shows (log)3 and therefore the initial case.

Now suppose that (lωi)1 – (lωi)3 are satisfied for i < n. We define the function lωi+1 for a
series f ∈ (Ln)+∞ by

lωi+1f := 2 + lωi+1(lωi·2f) = 2 + lωi+1(dl
ωi·2f

+ ε) = 2 + Tl
ωi+1

(dl
ωi·2f

, ε).

From Chapter 6 it now follows that this is a coherent definition of a logarithmic function
of strength i + 1, which proves Ti+11 and Ti+11. In order to show Ti+13, let f ∈ dom eωi+1

with supp f↓ ≺l
ωi

eωi+1f . Then there is some h ∈ (Ln)+∞ with f = lωi+1h. From the definition
of lωi+1 we then obtain

f = 2 + lωi+1(dl
ωi·2h

+ ε)

= lωi+1(dl
ωi·2h

) + 2 + Rl
ωi+1

(dl
ωi·2h

, ε)

where ε 4 1. Let β = ωn bn + · · · + ωi bi such that dl
ωi·2h

= lβx and bi > 2. Then from

lωi+1(lβx) + 2 = lωn bn+···+ωi+1 (bi+1+1)x− (bi − 2) ∈ L↑
n + Z
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we conclude that f↓ = Rl
ωi+1

(lβx, ε). From Lemma 7.5.4 it now follows that for all n ∈ supp f↓

there is a weakly decreasing function a : ωi+1 → N such that

n 4 l
′
ωi+1(lβx) · log−a(lβx).

Hence

∀j > 1 : ‖n‖ = n−1 = (lβx)
a0+1(lβ+1x)

a1+1 · · · ≻ lβ+jx.

From eωi+1f = h we obtain for j > 3 that lωi·j(eωi+1f) = lωi·jh ≍ lωi·j(lβx). This contradicts
the assumption supp f↓ ≺l

ωi
eωi+1f . Therefore ε = 0 and

eωi+1f = lωi·2(lβx) ∈ L↑
n,

which shows Ti+13. As for Ti+14 we remark that fom the definition of lωi+1 for a series f we
obtain that

(lωi+1f)↑ = lωi+1(dl
ωi·2f

)↑ = (lωi+1 lβx)
↑

where β = ωn bn + · · ·+ωi bi. Thus lωi+1 ◦ lβx = lγx− bi with γ = ωn bn + · · ·+ωi+1 · (bi+1 + 1).
Now lγx = (lωi+1 ◦ lβx)

↑ is lωi+1-atomic. Hence every f ∈ (Ln)+∞ is lωi+1-atomic. This shows
(lωi+1)1 and (lωi+1)2, and what is more, we have Ti+14.

We have to define a function lωi+2 for all lβx with β = ωn bn + · · · + ωi+1 bi+1. We let

lωi+2(lβx) := lωn bn+···+ωi+2 (bi+2+1)x− bi+1.

This shows (lωi+1)3 and completes the proof. 2

Now we have examples of fields of positive strength. Let us generate more such fields. In
the following, we give first applications of the properties shown in Sections 7.4 and 7.5.

LEMMA 7.6.3 Let T = C[[M]] be of strength n > 0. Then its exp-extension Texp is of strength
i for all i 6 n. In particular, the field Texp is of strength n.

During the proof of the lemma, we will use the following fact, which will also have applications
in the next chapter.

FACT 7.6.4 Let i > 0 and T ⊆ T̂ fields of generalized power series such that T is of strength
i+ 1 and such that T̂ is of strength i. Let f, h ∈ T̂+

∞ be such that

(1) there is a k ∈ N such that lωi·kh = m + ε, ε 4 1 and such that (m, ε) is a lωi+1-Taylor
couple.

(2) f = k + Tl
ωi+1

(m, ε).

We let in this case eωi+1f := h. If supp f↓ ≺l
ωi

eωi+1f . Then either we have suppRl
ωi+1

(m, ε) ⊆
supp lωi+1m or we have Rl

ωi+1
(m, ε) = 0.
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Proof: Suppose that 0 6= n ∈ suppRl
ωi+1

(m, ε) \ supp lωi+1m. We show ε = 0. Remark first

that from Corollary 7.5.4 it follows that there is a weakly decreasing function a : ωi+1 → N such
that

n 4 l
′
ωi+1m · log−a m ≺ 1

m
.

Thus m ≺ ‖n‖. From ‖n‖ ≺l
ωi

eωi+1f = h it follows that ‖n‖ ≺ lωi·jh. In particular, for j = k,
we obtain ‖n‖ ≺ m + ε, hence

m ≺ ‖n‖ ≺ m + ε ≍ m.

This contradiction shows Rl
ωi+1

(m, ε) = 0, thus the fact. 2

We can now prove Lemma 7.6.3.

Proof: For n = 0 the lemma follows from Section 2.3.2. We assume from now on that n > 0.
Recall that Texp is a transseries field. We have to define a function lω on (Texp)+∞.

Let f ∈ (Texp)+∞ with f = ceg · (1 + δ) where 0 < g ∈ T↑. Then dlog f = dg ∈ M, and
there is an integer k ∈ N such that g is log-confluent at order k with dlogk g ∈ dom lω . Hence
logk+1 f = m + ε such that m ∈ dom lω and ε ∈ T

7→

exp. Then we let

lωf := (k + 1) + lωm + Rlω (m, ε),

which shows T11 and T13.
In order to show T12 for Texp, we fix f ∈ domeω with supp f↓ ≺lω eωf . Let h ∈ Texp such

that f = lωh. Let m, ε be as above with logk+1 h = m + ε, i.e.

f = lωh = lωm + (k + 1) + Rlω (m, ε).

From Lemma 7.4.7 it now follows that supp lωm ≻ Rlω (m, ε). Hence

supp f↓ = supp (lωm)↓
∐

suppRlω (m, ε).

Fact 7.6.4 implies eωf = h = expk+1 m ∈ Mexp. Note that for f ∈ Texp we have τlωf ∈ M. Thus
(Texp)+∞ is lω -confluent, i.e. T14 holds. This shows strength 1.

We show strength i > 0 inductively. Assume that Texp is of strength i − 1. Let φ = lωi−1 ,
Ψ = eωi and Φ = lωi . Assume that for i > 0 the conditions

(a)φ ∀f ∈ (Texp))
+
∞ : ∃n ∈ M↑, ε ∈ T

7→

exp : φf = φn + ε,
(b)φ dφkn ∈ dom Φ for some k ∈ N.

hold. Note that these conditions are satisfied in the case i = 1. We have to define Φ on (Texp)+∞.
Fix f ∈ (Texp)+∞ and let k ∈ N, n and ε as above. Then n is φ-confluent at order k and

φkf = φk−1(φn + ε) = φkn + Rφk−1
(φn, ε).

We let

Φf := k + Φφkn + RΦ(φkn,Rφk−1
(φn, ε)).
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With this definition we have Ti+11 and Ti+11. Moreover φkn = n̂ + µ for some µ ∈ T
7→

.
From Rφk−1

(φn, ε) ∈ T

7→

exp and n̂ ∈ dom Φ it now follows that for

ρ = µ+ Rφk−1
(φn, ε) ∈ T

7→

exp

we have φkf = n̂ + ρ and

Φf = Φn̂ + k + RΦ(n̂, ρ) = Φn̂ + ε̂,

where ε̂ ∈ T

7→

exp. Since n ∈ M↑ and since T is of strength i, it follows that n̂ ∈ M↑ is Φ-confluent
at order l ∈ N such that dΦln̂ ∈ dom eωi+2 . This shows (a)Φ and (b)Φ.

We have to show Ti+12. The fact that f ∈ (Texp)+∞ is lωi-confluent follows from Ti4 for T.
Hence is suffices to show Ti+12. Let f ∈ dom eωi+1 . Then there is a series h ∈ Texp such that
f = lωi+1h = lωi+1 n̂ + ε̂ as above. Again, Lemma 7.4.7 implies that

supp lωi+1 n̂ ≻ Rl
ωi+1

(n̂, ρ).

Hence supp f↓ = supp (lωi+1 n̂)↓
∐

suppRl
ωi+1

(n̂, ρ). Applying Fact 7.6.4 yields ρ = 0. Thus
f = lωi+1 n̂ + k ∈ T. Since T is a transseries field, we then obtain eωi+1f ∈ M ⊆ Mexp. This
finishes the proof. 2



Chapter 8

Extending transseries fields of
positive strength

In Chapter 7, we have defined the notion of transseries fields of positive strength, we have shown
some basic properties of such fields, and we have given some examples. We have also shown that
the exponential extension of a transseries field of strength n > 0 is again of strength n. The
present chapter is concerned with generalizing the latter result.

8.1 The general outline of the extension process

Recall that for transseries fields T = C[[M]], the logarithm is totally defined on T+, but that the
exponential function is not total on T+. An immediate consequence is that the same remains
true for logarithmic and exponential functions of positive strength. We have seen, however, that
we can construct a field of generalized power series such that the logarithmic and exponential
function are total on the set of positive elements of this set. This field was called the exponential
closure, and it was constructed as the inductive limit of a chain of transeries fields. We recall
that the exponential closure is not of the form C[[N]] anymore.

In what follows, we will employ the same idea to construct fields of generalized power series
with total logarithmic and exponential function of positive strength n on the sets of positive
and infinite elements. Again, the resulting field cannot be of the form C[[N]].

The construction requires a number of steps; and we will treat the steps separately and add
remarks about the motivation of the definitions in every step. Although this might lengthen
the construction, we have chosen to do so because we think that knowing what motivates the
definitions makes it easier to follow the necessary proofs. However, the reader may always skip
the explanations and go straight to the definitions.

Recall that in order to construct an exponential extension of some transseries field, we have
first defined a set of new monomials (which included the monomials of the field which was to be
extended), that we had to define a multiplication and an ordering on the set of new monomials
and that in a third step we had to define a logarithm on the extended field.

In the case of positive strength, the method will be carried out along the same lines. We

161
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have, however, to be more careful when choosing the set of monomials in the first step. As a
result, the definitions of the multiplication and the ordering become slightly more difficult. The
third step will then be broken down into a number of sub-tasks. We have to define functions
log = l, lω , . . . such that the new field is of strength i for the function lωi . Hence we have to
start with strength 0, then we treat the case of strength 1 and so on.

Fix a transseries field T = C[[M]] of strength n > 0. We will define the eωn -extension of T.
Moreover, we will show that if T is of strength N > n, then its eωn-extension is also of strength
N . Note that that the case n = 0 has been treated in Section 7.6. For integers n > 0 we will
now

• define the extended set of monomials Meωn ⊇ M;
• define a multiplication and a total ordering on Meωn such that M is a totally ordered

subgroup of Meωn ;
• define a logarithm on Teωn = C[[Meωn ]] such that 〈Teωn , log〉 is a transseries field;
• inductively define functions lω , . . . , lωN such that the structure 〈Teωn , log, . . . , lωi〉 is of

strength i for all i 6 N .

8.2 New monomials of strength n

Recall that for all f ∈ T+
∞ we eventually want an extension T̂ ⊇ T of strength N such that

f ∈ dom eωn in T̂. In the case of the exponential extension Texp, we have chosen a truncation of
f (namely its infinite part f↑) and we have added the exponential of this truncation as a new
monomial.

We had thus obtained a set Mexp = {exp f↑ | f ∈ T+
∞} which could be equipped with a

multiplication and an ordering in a canonical way. Moreover, we have seen that M ⊆ Mexp.
Note that Mexp = {exp f | f ∈ T+

∞ : f = f↑}.

In the case of strength n > 0 we will proceed similarly. Given a series f ∈ T+
∞, we determine

a truncation tf � f and let eωn(tf ) be a new monomial. Instead of determining the truncations
tf we can as well give the condition of when f coincides with this truncation (in analogy with
the second way of writing the monomial group Mexp in the case n = 0).

Hence the question is: when is eωnf a new monomial? Generally speaking, we have to avoid
two different kinds of instability which we call (in accordance with the coherence) horizontal
and vertical instability.

• The horizontal instability: Suppose that we want to add eωnf as a monomial and that
g� f is a proper truncation of f such that f = g+ ε and such that eωng is also defined in
the extended field. Then we have to make sure that (g, ε) is not an eωn-Taylor couple, for
otherwise eωnf could be developed into a series and therefore would not be a monomial.

• The vertical instability: Suppose that f 6∈ dom eωn in T, but that for some k ∈ N we
have f −k ∈ dom eωn in T. In this case, we might let eωnf = eωn1 ·k ◦eωn(f −k). Assuming
that we already have defined the notion of eωn−1 -extensions, the series eωn−1·k ◦ eωn(f − k)
would eventually be defined in an extension of T. Hence vertical stability means that we
have to make sure that eωn(f − k) is not horizontally instable for any k ∈ N.
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8.2.1 The criterion for new monomials

We start by introducing a new notation. For all i 6 n and all f ∈ T+
∞ we define the exponential

depth of strength i in T by

πi,Tf :=





min{k ∈ N | f − k ∈ dom eωi} if there is a k ∈ N : f − k ∈ dom eωi in T,

∞ otherwise.

EXAMPLE 8.2.1 We consider series from the field T = C[[L1]]. Let L = lω . First notice that
the exponential depth of strength 1 of the series Lx,L2x, . . . is 0, i.e. π1,T(Ljx) = 0 for all
j > 1. On the other hand we have π1,T(x) = ∞. For all N ∈ N we have π1,T(Lx+N) = N . We
remark that for all f ∈ T+

∞ such that f↑ is not a singleton from the set {Ljx | j > 0} we always
have π1,Tf = ∞.

In the following, we will only consider series f with πn,Tf = ∞. Let T̂ ⊇ T be of strength n

such that f is in the domain of eωn in T̂. For eωnf to be a new monomial, we demand that eωnf
is a monomial in T̂. In other words, the series f is neither vertically nor horizontally instable.
Consequently, in a first version, the criterion can be formulated (in T̂) as follows: eωnf is a new
monomial iff

∀k ∈ N : ∀g � f : (g − k, f − g) is not an eωn -Taylor couple. C1.

Let k ∈ N, g � f and ε = f − g. Then (g − k, ε) is an eωn-Taylor couple if and only if the

sequence (e
(i)
ωn(g − k) · εi)06i is a Noetherian family. If this is the case, then

(e
(i)
ωn(g − k) · εi)16i (8.1)

is a Noetherian family. From Lemma 7.3.3 it follows that there are series δi ∈ T̂↓ such that

e
(i)
ωn(g − k) · εi = (e

′
ωn(g − k) · ε)i · (1 + δi).

Hence, sequence (8.1) is Noetherian if and only if 1 ≻ e
′
ωn(g − k) · ε. Thus, if

1 4 e
′
ωn(g − k) · ε, (8.2)

then the families are not Noetherian, and eωnf is therefore a new monomial. Note that if 1 4 ε,
then this is always the case. Hence we can restrict our criterion to all ε ≺ 1. For such ε we have
f 7→ = g 7→. Since inequality (8.2) must hold for all k ∈ N, we can restate the criterion C1 in T̂ as
follows: eωnf is a new monomial iff

∀g � f : ∀k ∈ N : ∀n ∈ supp (f − g)↓ : ‖n‖ ≺ e
′
ωn(g − k). C2.

We remark that ‖n‖ ≺ e
′
ωn(g − k) implies

log ‖n‖ < log eωn(g − k) + log eωn(g − k − 1) + · · · .
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Since log eωn(g − k − 1) ≺ log eωn(g − k) for all k, we obtain log ‖n‖ < log eωn(g − k). Thus
criterion C2 is in T̂ equivalent to the following criterion: eωnf is a new monomial iff

∀g � f : ∀k ∈ N : ∀n ∈ supp (f − g)↓ : ‖n‖ ≺ eωn(g − k) C3.

Since T̂ admits a strictly increasing function lωn , criterion C3 is in T̂ equivalent to: eωnf is
a new monomial iff

∀g � f : ∀k ∈ N : ∀n ∈ supp (f − g)↓ : lωn‖n‖ < g − k. C4.

From f 7→ = g 7→ it now follows that ∀k ∈ N : lωn‖n‖ < g−k if and only if ∀k ∈ N : lωn‖n‖ < f−k.
Moreover, the function lωn from T̂ coincides with lωn in T. Since supp f ⊆ M, the criterion can
finally be formulated in T as follows:

eωnf is a new monomial iff lωn‖supp f↓‖ < f − N. C5.

EXAMPLE 8.2.2 Let n = 1 and E = eω . We consider the series f, g with

f = Ex+
1

expiEx
(i > 0)

g = Ex+
1

logiE2x
(i > 0)

Note that f↑ = g↑ = Ex. We claim that Ef verifies C5. To see this note that ‖supp f↓‖ =
{expiEx} and that L‖supp f↓‖ = x+ i. Thus

L‖supp f↓‖ = x+ i < Ex− N.

Hence E(Ex + 1
expi Ex

) will be a monomial for every i > 0. On the other hand, Eg does not

verify the criterion C5, since ‖supp g↓‖ = {logiE2x} implies

L‖supp g↓‖ = Ex− i =≮ g − N.

Indeed, one develops E(g − (i+ 1)) as a series

E(g − (i+ 1)) = E(Ex− (i+ 1)) +
E

′
(Ex− (i+ 1))

logiE2x
+

1

2!

E′′(Ex− (i+ 1))

log2
i E2x

+ · · · .

8.2.2 Extending the group of new monomials

Let

Fn,T := {f ∈ T+
∞ |πn,Tf = ∞ ∧ lωn‖supp f↓‖ < f − N},

be the set of positive, infinite series f in T such that eωnf is a new monomial. Note in particular
that M ∩ eωnFn,T = ∅.
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In order to extend T to a transseries field of strength n, the multiplicative group generated
by eωnFn,T does not suffice yet. Take for instance the problem of defining the function lωi for
some i < n. We might consider a series g = eωnf + ε where f ∈ Fn,T and ε ≺ eωnf . Then lωig
would be defined as

lωi(eωnf + ε) = lωi(eωnf) + l
′
ωi(eωnf) · ε+

1

2!
l
(2)
ωi

(eωnf) · ε2 + · · · .

Recall that if l
′
ωi(eωnf) ∈ T, then also l

(n)
ωi

(eωnf) ∈ T for all n > 1. However, the expression

l
′
ωi

(eωnf) cannot be defined in T yet, for otherwise its logarithm would be in T↑, and thus

eωnf ∈ M. We have therefore to add all l
′
ωi

(eωnf).

REMARK 8.2.3 From πn,Tf = ∞ and f↓ = (f − k)↓ it follows that f − k ∈ Fn,T. Thus
lωn−1·k(eωnf) = eωn(f−k) is a new monomial for all k. Generalizing this result to every α < ωn,
we will let lα(eωnf) to be a new monomial. We have, however, to make sure that this does
not lead to incoherences. In particular, we have to make sure that lα(eωnf) is not a series with
non-zero remainder or leading coefficient different from 1.

LEMMA 8.2.4 Let f ∈ Fn,T and α < ωn. Suppose that T̂ = C[[M̂]] is of strength n and that

lα(eωnf) ∈ T̂. Then eωn(f − k) ∈ T̂ for some k ∈ N and lα(eωnf) ∈ M̂.

Proof: Let a0, . . . , an−1 ∈ N be such that α = ωn−1an−1 + · · · + a0. For i 6 n− 1 we let

αi := ωn−1an−1 + · · · + ωiai + ωi.

Since T̂ is of strengh > 1, we have

lω ◦ lα(eωnf) = lα1(eωnf) − a0 ∈ T̂,

hence lα1(eωnf) ∈ T̂. Applying lω2 , . . . , lωn−1 , we inductively obtain lαi(eωnf) ∈ T̂ for all
i 6 n− 1. In particular, this implies eωn(f − an−1) ∈ T̂.

To show the second assertion, we assume that eωih is a monomial for all i < n and all
0 < h ∈ T̂ 7→. Note that this is true for n = 1 which therefore provides the initial step of the
following inductive argument.

Note that f ∈ Fn,T implies that for all an−1 ∈ N we have f − an−1 ∈ Fn,T, hence that
lωn−1an−1

(eωnf) is a monomial. We therefore only need to show the lemma for α < ωn−1. Let
k ∈ N and g = lωn−2·k(eωnf). Then lωn−1g = lωn−1(eωnf)−k = eωn(f−1)−k. Since eωn(f−1)−k
has no infinitesimal part, we conclude that g = eωn−1(eωn(f − 1) − k) is a monomial in M̂. We
can repeat the same argument for

lωn−3·an−3
◦ lωn−2·an−2

(eωnf)

lωn−4·an−4
◦ lωn−3·an−3

◦ lωn−2·an−2
(eωnf)

and so forth. This shows that lα(eωnf) ∈ M̂ for all α < ωn−1. 2
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By Remark 8.2.3 the group of new monomials must contain the multiplicative group gener-
ated by the set

{lα(eωnf) |α < ωn ∧ f ∈ Fn,T}.

However, the multiplicative closure of this set is still too small. Let again g be a series in the
extended field with leading term lα(eωnf), i.e. for a series ε ≺ lα(eωnf) we have g = lα(eωnf)+ε.
In order to define lωig using Taylor-series developments, we need

lωi lα(eωnf)

l
′
ωi

lα(eωnf)

l
[2]
ωi

lα(eωnf)

...

The derivatives of lωi are not captured by the multiplicative closure of the above set. We
therefore need the closure under l

′
ωi as well.

Finally, we define the set of new monomials Nn,T as follows. Recall that for any countable
ordinal number α we have l

′
αx =

∏
β<α 1/lβx. We let

Nn,T :=

{
N∏

l=1

l
′
αl

(eωnfl)
nl |N ∈ N ∧ ∀1 6 l 6 N : αl 6 ωn, nl ∈ Z∗, fl ∈ Fn,T

}
.

REMARK 8.2.5 Note that M ∩ Nn,T = ∅. To see this, we remark that if there was some

m =

N∏

l=1

l
′
αl

(eωnfl)
nl ∈ M ∩ Nn,T,

then log m ∈ T, and thus dlog m ∈ M. But then there are f ∈ Fn,T and α < ωn such that
dlog m = lα(eωnf). By Lemma 8.2.4 this implies eωn(f − 1) ∈ M, which contradicts f ∈ Fn,T.

Since Nn,T does not contain the monomial group M, we have to add M and define the
eωn -extension of M by Meωn := M · Nn,T.

REMARK 8.2.6 First we remark that for all α < ωn and all f ∈ Fn,T we have

lα(eωnf) =
l
′
α(eωnf)

l
′
α+1(eωnf)

∈ Nn,T.

Thus the multiplicative group generated by the set {lα(eωnf) |α < ω, f ∈ Fn,T} is contained in
Nn,T. Furthermore, if we fix a countable ordinal γ < ωn with

γ = ωn−1 an−1 + · · · + ωi ai
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where 0 < ai and 0 6 ai+1, . . . , an−1, then for all α < ωi+1 we have

lγ+α(eωnf) = lα ◦ lγ(eωnf) ∈ Nn,T.

Thus l
′
γ+α(eωnf) and l

′
γ(eωnf) are elements of Nn,T and

l
′
γ+α(eωnf)

l′γ(eωnf)
=
∏

β<α

1

lβ ◦ lγ(eωnf)
= l

′
α(lγ(eωnf)) ∈ Nn,T.

for all α 6 ωi 6 ωn−1 an−1 + · · · + ωi ai < ωn. In other words, Nn,T has the desired closure
properties.

EXAMPLE 8.2.7 In the case n = 1, we let E = eω and L = lω . Then α 6 ω is either an integer
or ω. If α ∈ N, then

l
′
α(Ef) = (Ef · E(f − 1) · · ·E(f − α+ 1))−1 =

1

Eg1 · · ·Egα

for series g1, · · · , gα ∈ F1,T. As in Remark 8.2.6, we can write each Egi as L
′
E(gi − 1)/L

′
Egi.

If α = ω, then l
′
αEf = L

′
Ef . Hence from L

′
Ef = 1/E

′
f we then obtain

N1,T =

{
N∏

l=1

(E
′
fl)

nl |N ∈ N ∧ ∀1 6 l 6 N : nl ∈ Z∗, fl ∈ F1,T

}
.

Let us summarize the three important sets defined in this section. Recall that T = C[[M]]
is of strength n. Then

Fn,T := {f ∈ T+
∞ |πn,Tf = ∞ ∧ lωn‖supp f↓‖ < f − N}

Nn,T :=

{
N∏

l=1

l
′
αl

(eωnfl)
nl |N ∈ N ∧ ∀1 6 l 6 N : αl 6 ωn, nl ∈ Z∗, fl ∈ Fn,T

}

Meωn := M · Nn,T

8.3 The group structure of the extended set of monomials

The next step after having defined the set Meωn is to define a multiplication and a total ordering
on this set such that Meωn is a totally ordered, multiplicative group containing M. We start
with the multiplication. Let N,M ∈ N, and for all 1 6 l 6 N resp. M let ml, nl ∈ Z, αl, βl 6 ωn

and fl, gl ∈ Fn,T. Let m, n ∈ Nn,T with

m =

M∏

l=1

l
′
αl

(eωnfl)
ml and n =

N∏

l=1

l
′
βl

(eωngl)
nl .



168 CHAPTER 8. EXTENDING TRANSSERIES FIELDS OF POSITIVE STRENGTH

For M < l 6 M +N we let

ml := nl−M
αl := βl−M
fl := gl−M .

Then for m, n ∈ Nn,T we define m · n and m−1 ∈ Nn,T by

m · n :=
M+N∏

l=1

l
′
αl

(eωnfl)
ml

m−1 :=

M∏

l=1

l
′
αl

(eωnfl)
−ml .

If M = 0, then we let m = 1. This defines an abelian multiplication on Nn,T. Note that this
multiplication defines a group structure on Nn,T. For a, b ∈ M and m, n ∈ Nn,T we let

(am) · (b n) := ab · mn ∈ Meωn .

Hence Meωn is a group which extends the group M.

Next, we define the total ordering. We start by defining an ordering on Nn,T. Let f, g ∈ Fn,T
and α, β < ωn−1, then we let

lβ(eωng) ≻ lα(eωnf) :⇔
{

if g > f or
if f = g and β < α.

Note that ≻ totally defined on

{lα(eωnf) | α < ωn ∧ f ∈ Fn,T},

since for every α < ωn there are a ∈ N and α̂ < ωn−1 such that α = ωn−1 a + α̂. Then
lα(eωnf) = lα̂(eωn(f − a)), where f − a ∈ Fn,T.

REMARK 8.3.1 Let us explain why ≻ is the canonical choice for an ordering of the set of
monomials lα(eωnf). Suppose that f < g are series from Fn,T and that α, β < ωn−1 are such
that lα(eωnf) ≻ lβ(eωng). Let ai, bi ∈ N be such that

α = ωn−2 an−2 + · · · + a0

β = ωn−2 bn−2 + · · · + b0.

We let for i 6 n− 2

α̂i = ωn−2 an−2 + · · · + ωi (ai + 1)

β̂i = ωn−2 bn−2 + · · · + ωi (bi + 1).



8.3. THE GROUP STRUCTURE OF THE EXTENDED SET OF MONOMIALS 169

Since log is strictly monotone, we obtain

lβ̂1
(eωng) − b0 < lα̂1(eωnf)− a0.

Note that lβ̂1
(eωng) and lα̂1(eωnf) are monomials. Hence

lβ̂1
(eωng) < lα̂1(eωnf).

Inductively applying the strictly monotone functions lωi (where i 6 n− 2) leads to

lβ̂n−2
(eωng) < lα̂n−2(eωnf).

Applying lωn−1 yields eωn(g − 1) < eωn(f − 1), which implies g < f . The asymptotic behaviour
of iterated logarithmic functions provides the motivation for the definition in the case f = g.

Let 1 6= n ∈ Nn,T. Then there are N ∈ N+ and nl ∈ Z∗, fl ∈ Fn,T, αl 6 ωn for 1 6 l 6 N
such that

n =
N∏

l=1

l
′
αl

(eωnfl)
nl .

To each v ∈ {lβ+1(eωnfl) | 1 6 l 6 N ∧ β < αl}, there is a set

S(v) = {(l, β) | v = lβ+1(eωnfl) ∧ 1 6 l 6 N ∧ β < αl}.

We let

nv :=
∑

(l,β)∈S(v)

nl

v∗ := max{v |nv 6= 0}
n∗ := nv∗ .

Then we let n ≻ 1 iff 0 > n∗.

REMARK 8.3.2 We motivate again our definition. Suppose that we have a logarithmic function
on Nn,T. Then from the product rule we obtain

log n =

N∑

l=1

nl · log l
′
αl

(eωnfl).

The support of this series is contained in the set {lβ+1(eωnfl) | 1 6 l 6 N ∧ β < αl}. The
leading term is −n∗v∗. This together with log n > 0 ⇔ n ≻ 1 motivates the definition of the
ordering.
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EXAMPLE 8.3.3 Let α < ωn and f ∈ Fn,T. Then lα(eωnf) is by Remark 8.2.6 equal to
l
′
α(eωnf)+1 · l′α+1(eωnf)−1. We have to consider

v ∈ {lβ+1(eωnf) |β < α+ 1}.

Note that S(v) = 0 if and only if β < α. Thus v∗ = lα+1(eωnf) and n∗ = −1. Hence
lα(eωnf) ≻ 1.

PROPOSITION 8.3.4 Let n,m ∈ Nn,T. Then n,m ≻ 1 implies nm ≻ 1.

Proof: Let n∗ < 0 be as in the definition of n ≻ 1. Similarly, we let

mw =
∑

(l,β)∈S(w)

ml,

and w∗ = max{w |mw 6= 0} and m∗ = mw∗ . Then m∗ < 0. The proposition follows from
0 > m∗, n∗,m∗ + n∗. 2

Finally, we have to define an ordering on Meωn . Let a ∈ M and n ∈ Nn,T. We consider the
case a 6= 1, for otherwise we have already defined the ordering. As in the definition of ≻ on
Nn,T, we assume that

n =

N∏

l=1

l
′
αl

(eωnfl)
nl

v∗ = lβ+1(eωnfl).

Let n∗ = nv∗ . There are α < ωn−1 and g ∈ Fn,T with v∗ = lα(eωnf). We let

a n < 1 :⇔





a, n < 1

a < 1 < n and f < lωn
(

log a

n∗

)

n < 1 < a and f > lωn
(

log a

n∗

)
,

with equality iff 1 = a = n. Note in particular that log a ∈ T↑, thus that lωn(log a/n∗) is defined
in T. Hence the conditions in the definition can be verified in the exponential extension of T.

REMARK 8.3.5 We have chosen this definition with a similar motivation as in the case of the
ordering of Nn,T. If a, n ≻ 1, then we will let an ≻ 1. Similarly, if 1 ≻ a, n, we will have 1 ≻ an.
In the cases n ≻ 1 ≻ a and a ≻ 1 ≻ n we have to give a separate condition in order to decide
whether 1 ≻ an or an ≻ 1. Also, this condition must be such that we can verify it in T already.

Clearly, if a logarithm is defined for the product an, then 1 ≺ a n if and only if 0 < log a+log n.
According to Remark 8.3.2, the leading term of log n is −n∗lβ+1(eωnfl). Since it is different
from the leading term of log a (this follows from πn,Tf = ∞), it suffices to compare log a/n∗ and
lβ+1(eωnf). Since T is of strength n, the functions which are necessary to define these series
exist. This motivates the definition.
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PROPOSITION 8.3.6 For a, b ∈ M and m, n ∈ Nn,T we let

a n < b m :⇔ ab−1 · nm−1 < 1,

with equality iff a = b and n = m. Then < is a total ordering on Meωn which is compatible with
the group structure.

Proof: We have to show that am ≻ 1 and bn ≻ 1 implies ab mn ≻ 1. Before going through the
different cases of the definition, let us fix some notations. Let v∗, n∗ and f be elements of Nn,T, Z
and Fn,T respectively as in the definition of an ≻ 1. Then, similarly, we have w∗ ∈ Nn,T, m∗ ∈ Z
and g ∈ Fn,T with respect to m. Also, we remark that we only have to consider monomials such
that the inequalities are strict. Finally let z∗, k∗ and h be the corresponding elements of Nn,T,
Z and Fn,T with respect to mn . Then there are ordinals β, γ, δ such that

v = lβ+1(eωnf)

w = lγ+1(eωng)

z = lδ+1(eωnh).

We distinguish three main-cases relative to the definition of an ≻ 1 and in each main-case
three sub-cases relative to the definition of bm ≻ 1.

Case I: a, n ≻ 1.

Sub-case I.1: b,m ≻ 1. Then ab ≻ 1, and by Lemma 8.3.4 we have nm ≻ 1. Hence the claim.

Sub-case I.2: b ≻ 1 and m ≺ 1. Then

g < lωn

(
log b

m∗

)

and ab ≻ 1. If v ≺ w, then k∗ = m∗ and z = w. In particular, h = g. Thus 0 < log a implies

h = g < lωn

(
log b

k∗

)
< lωn

(
log ab

k∗

)
,

and we are done. If v ≻ w, then k∗ = n∗ < 0 and thus nm ≻ 1. This also shows the lemma.
Finally, if v = w, then we have to distinguish two cases. First, if z = v, then k∗ = m∗ + n∗ and
f = g = h. Thus

0 <
log ab

k∗
=

log a + log b

n∗ +m∗ <
log a

n∗
+

log b

m∗ .

Otherwise, we have n∗ +m∗ = 0 and z ≺ v. Note that in this case we must have h < g, hence
kz < mv for all k,m. Letting m = k∗ yields

h < g < lωn

(
log b

k∗

)
< lωn

(
log ab

k∗

)
,

since 1 ≺ a. This finishes case I.2.
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Sub-case I.3: b ≺ 1 and m ≻ 1. Then nm ≻ 1. In particular, this means g 6 h and k∗ < 0.
Again, the lemma follows immediately if ab < 1. However, if ab ≺ 1, then log a and − log b have
a non-empty common truncation. In other words, dlog ab ≺ dlog b. Hence

log ab

k∗
<

log b

m∗ .

Then the hypothesis of this case and the fact that lωn is strictly monotone imply

lωn

(
log ab

k∗

)
< lωn

(
log b

m∗

)
< g 6 h.

This finishes case I.3 and thus case I.
Case II: a ≻ 1 and n ≺ 1.
Sub-case II.1: b,m ≻ 1. This case is equivalent to I.2.
Sub-case II.2: b ≻ 1 and m ≺ 1. Then ab ≻ 1 and mn ≺ 1. If v ≺ w, then k∗ = m∗ and

h = g. In this case

h = g < lωn

(
log b

m∗

)
< lωn

(
log ab

k∗

)
.

Similarly, on treats the case w ≺ v. If v = w, then f = g = h and h∗ = n∗ +m∗. In this case
we obtain

h < lωn

(
log ab

h∗

)

as in case I.2.
Sub-case II.3: b ≺ 1 and m ≻ 1. Suppose that ab ≻ 1. We are done if mn < 1. So let us

suppose mn ≺ 1. Then h 6 f and k∗ > 0. Notice that the hypotheses imply dlog a ≻ dlog b, and
thus log a ≍ log ab ≻ log b. Then

log ab

k∗
≍ log a

n∗
.

Applying lωn then yields

h 6 f < lωn

(
log a

n∗

)
≍ lωn

(
log ab

k∗

)
.

If 1 ≺ mn and 1 ≻ ab, then on the one hand, we obtain h < f = g and k∗ < 0. On the other
hand, as in case I.3, the series log a and − log b have a proper common truncation and thus

log a

n∗
<

log ab

k∗
.

Again, we obtain

h < f < lωn

(
log a

n∗

)
< lωn

(
log ab

k∗

)
.
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It remains the case ab ≻ 1 and 1 ≺ mn, which can be treated similarly. This finishes case II.
Case III: a ≺ 1 and n ≻ 1.
Sub-case III.1: b,m ≻ 1. This case is equivalent to I.3.
Sub-case III.2: b ≻ 1 and m ≺ 1. This case is equivalent to II.3.
Sub-case III.3: b ≺ 1 and m ≻ 1. This case is equivalent to II.2.
Showing conditions PO1 – PO3 is now straightforward. This finishes the proof of the

proposition. 2

8.4 Logarithms of positive strength on the extended field

Recall that T is of strength n. Fix an integer 0 6 m 6 n. Then T is of strength m, too. The
field Teωm exists therefore.

Of the programme outlined in Section 8.1 we have so far covered the first two points, i.e.
we have defined a set Meωm of new monomials and we have defined a group structure and a
compatible total ordering on the set. We use this group to enlarge T to the field Teωm . The
remaining two points of the programme now consist of defining functions log, lω , . . . , lωn such
that the structure

〈Teωm , log, . . . , lωi〉

is of strength i for every i 6 n.

Before we start the construction of the functions lωi (where 0 6 i 6 n), let us explain the
method of the construction.

In a first step, we will define a function

log : T+
eωm

−→ Teωm

such that 〈Teωm , log〉 is a transseries field. Then we will show how to define a partial function

lω on M
↑
eωm which has a large enough domain to allow a Taylor-series like definition of lω on the

set (Teωm )+∞. In other words, we show that the case i = 0 of the following two conditions holds:

(Teωm 1)i 〈Teωm , log, . . . , lωi〉 is of strength i.

(Teωm 2)i There is a partial function lωi+1 : M
↑
eωm → T↑

eωm such that for all a ∈ Meωm

• if a, lωia ∈ dom lωi+1 , then lωi+1 ◦ lωia = lωi+1a − 1,
• ∃k ∈ N : a is lωi-confluent at order k and dl

ωi·ka ∈ dom lωi+1 .

If the two conditions hold for i > 0, then we say that (Teωm )i holds. Note that condition
(Teωm 2)i implies Ti+11 and Ti+13 for Teωm . From the first step it will therefore follow that
(Teωm )0 holds. The results about transseries fields for positive strength then imply that we can
define a function

lωi+1 : (Teωm )+∞ −→ Teωm

such that 〈Teωm , log, . . . , lωi+1〉 is of strength i+1. Hence (Teωm 1)i+1 will follow from (Teωm )i.
We will use the fact that T is a transseries field and the construction of Meωm to show that also
(Teωm 2)i+1 follows. Hence, our work breaks into two main parts.
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• Showing that (Teωm )0 holds.
• Showing that (Teωm )i+1, if i < n and if (Teωm )i holds.

Once this is done, we will obtain the chain

〈Teωm , log〉 →֒ · · · →֒ 〈Teωm , log, . . . , lωi〉 →֒ · · · →֒ 〈Teωm , log, . . . , lωn〉.

This eventually leads to a field Teωm of strength n.

REMARK 8.4.1 To show the lωi+1-confluence requires some care, and indeed, we will see that
the proofs of the condition are different in the cases i < n and i > n. On the other hand, the
lωi-atomic monoials will prove to be appropriate to define a function lωi+1 . Hence the condition
(Teωm 1)i+1 will be used to show (Teωm 2)i+1.

8.4.1 Extensions of positive strength are transseries fields

We start by defining a function log : Meωm → Teωm and use this function to define a function

log : T+
eωm

−→ Teωm .

Let f = cd (1 + δ) ∈ T+
eωm

where cd = τf ∈ CMeωm is the leading term of f . Let a ∈ M and

n ∈ Nm,T be such that d = an and n =
∏N
l=1 l

′
αl

(eωmfl)
nl . Then we let

log n := −
N∑

l=1

∑

β<αl

nl · lβ+1(eωmfl)

log d := log a + log n

log f := log d + log c+ l(δ).

LEMMA 8.4.2 Let T be of strength n > 0. For 0 6 m 6 n let Teωm and log be defined as above.
Then

(1) If m ∈ Meωm is such that dlog m 6∈ M, then there is a series g ∈ Fm,T and an ordinal
β < ωm such that dlog m = lβ+1(eωmg).

(2) 〈Teωm , log〉 is a transseries field. In particular, the set M
↑
eωm is log-confluent, and if for

m ∈ M
↑
eωm we have dlog m 6∈ M, then m is log-confluent at order 2 and dlog2 m = lα+2(eωmg)

for some α < ωm and g ∈ Fm,T.

Proof: Throughout the proof, whenever we write m = an, then we mean by that a ∈ M and

n =
N∏

l=1

l
′
αl

(eωmfl)
nl ∈ Nm,T.

We start with (1). We have either dlog m ∈ M or dlog m 6∈ M. In the latter case we have
dlog m = dlog n for some n ∈ Nm,T. From the definition of log n it follows then that for some
1 6 l 6 N there is an ordinal β < αl 6 ωm such that dlog n = lβ+1(eωmfl). This shows (1).
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(2) We have to show that Teωm is an exp-log field and that log Meωm ⊆ T↑
eωm . To show the

first point we remark that from the definition of log we obtain that for all n1, n2 ∈ Nm,T we have
log(n1 n2) = log n1 + log n2. Since T is an exp-log field, this means that for all m1,m2 ∈ Meωm

we have log(m1 m2) = log m1 + log m2, thus that log(fg) = log f + log g for all f, g ∈ T+
eωm

. This
shows e1.

As for e2, it suffices to show that log is monotone on Nm,T. But this follows directly from
the definition of ≻ on Nm,T.

We have to show that for all f ∈ Teωm in the domain of exp the inequality f+1 6 exp f holds.
For f = f

7→

, this follows from the definition of the basic exp-log structure (see Example 2.1.3
in Section 2). It remains to show the claim for infinite series f . Let g ∈ (Teωm )+∞ such that
f = log g. We have to show log g+1 6 g. We distinguish the cases dlog g ∈ M and dlog g ∈ Nm,T.
Let an = dg, then in the first case we have a ≻ n and a ≻ log a. The latter holds since T is
an exp-log field. Moreover, we have log a ≍ log g. In the second case, we have n ≻ a and
n ≻ log n, where the last inequality follows from the definition of ≻ is Nm,T. Hence, n ≍ log g.
In both cases we have

g ≍ dg = an ≻ log g,

which shows the inequality and thus e3. Hence Teωm is an exp-log field.

T1 and T3 hold by construction. Since log a ∈ T↑, we have to show that log n ∈ T↑
eωm . But

for all n ∈ Nm,T we have

supp log n ⊆ {lα(eωmf) |α < ωm ∧ f ∈ Fm,T} ≻ 1.

This shows T2. As for T4, we remark that the case dlog m ∈ M follows from the same property
in T. Hence let dlog m 6∈ M. Then dlog2 m = lβ+2(eωmg) is log-atomic. This shows T4. 2

Let f ∈ (Teωm )+∞ and df = an, where a ∈ M and n ∈ Nm,T. By Lemma 8.4.2, the series
f is log-confluent. We will use this fact to define lω for f . To do so, we distinguish two cases,
dlog f ∈ M and dlog f 6∈ M. In the first case dlog f = dlog a ∈ M. Since T is of strength 1, there is
a k ∈ N such that

• f is log-confluent at order k,
• dlogk f ∈ dom lω and l

′
ω (dlogk f ) ∈ T.

We let R 4 1 be the remainder of logk f , i.e. logk f = dlogk f +R. Then (dlogk f , R) is a lω -Taylor
couple and we let

lωf := k + Tlω (dlogk f , R).

In the second case, there are β = ωm−1 bm−1 + · · · + b0 and g ∈ Fm,T such that for some R 4 1
we have log2 f = lβ+2(eωmg) +R. Then we let

β̂ := ωm−1 bm−1 + · · · + ω · (b1 + 1)

lω (lβ+2(eωmg)) := lβ̂(eωmg) − (b0 + 2)

lωf := 2 + Tlω (dlog2 f , R).
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Note that by Remark 8.2.6 we have

l
′
ω(lβ+2(eωmg)) ∈ Nm,T,

hence that (lβ+2(eωmg), R) is a lω -Taylor couple. Thus the definition of lωf is correct. We
remark in particular that (lωf)↑ is a monomial of the form lγ(eωmg), where

γ = ωm−1 gm−1 + · · · + ω g1

is an ordinal with g1 > 1. Hence (Teωm )0 holds.

8.4.2 The logarithmic functions of strength < m

The properties of the transseries field

〈Teωm , log〉

shown in Lemma 8.4.2 provide the initial step for the inductive process in which we define
functions log, . . . , lωm−1 such that 〈Teωm , log, . . . , lωm−1〉 is of strength m − 1. Moreover, the
structure will have properties which allow to continue a similar process beyond m − 1. This
will be done in the next section. Here we are only concerned with logarithmic functions lωi of
strength i < m.

The inductive step will require several assumptions on Teωm and the function lωi . These
assumptions will – as in the case i = 0 – make sure that the function lωi+1 can be defined. We
will, however, have to make sure that the new structure 〈Teωm , log, . . . , lωi+1〉 possesses the same
properties to make the induction work.

We say that the inductive assumptions (IA<m)i hold for Teωm in the case i < m iff there
are functions log, . . . , lωi such that:

(IA<m
0 )i For all j < i the inductive assumptions (IA<m)j hold.

(IA<m
1 )i If m ∈ M

↑
eωm is such that dlog m 6∈ M, then there are g ∈ Fm,T and α < ωm such that

α = ωm−1 am−1 + · · · + ωi ai (0 < ai)

dl
ωi

m = lα(eωmg).

(IA<m
2 )i 〈Teωm , log, . . . , lωi〉 is of strength i.

(IA<m
3 )i In particular, for all m ∈ M

↑
eωm we have

• if dlog m 6∈ M, then m is lωi-confluent at order 2,
• if dlog m ∈ M, then there is a k ∈ N such that dl

ωi·km ∈ dom lωi+1 in T.

Lemma 8.4.2 implies that (IA<m)0 holds for Teωm . Now assume that (IA<m)i holds for
〈Teωm , lω , . . . , lωi〉. Before we show that then (IA<m)i+1 holds for Teωm , we have to define a
function lωi+1 . Let f ∈ (Teωm )+∞ with m = df . As in the case i = 0, we have to distinguish the
two cases dlog m ∈ M and dlog m 6∈ M.
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• dlog m ∈ M : From (IA<m)i it follows that for some k ∈ N we have dl
ωi·km ∈ dom lωi+1

in T. Since dl
ωi·km = dl

ωi·kf
, this means that for a series ε ∈ T

7→

eωm
and a monomial

a ∈ dom lωi+1 ∩ M we have lωi·kf = a + ε. Then we let

lωi+1f := k + Tl
ωi+1

(a, ε).

• dlog m 6∈ M : From (IA<m)i it follows that the monomial dl
ωi·2f

= dl
ωi·2m is of the form

lα(eωmg) where g ∈ Fm,T and α = ωm−1 am−1 + · · · + ωi ai with ai > 1. Let ε ∈ T

7→

eωm
be

such that lωi·2f = lα(eωmg) + ε. Then we let

lωi+1f := 2 + Tl
ωi+1

(lα(eωmg), ε).

Note in particular that

lωi+1(lα(eωmg)) = lωm−1 am−1+···+ωi+1 (ai+1+1)(eωmg) − ai

l
′
ωi+1(lα(eωmg)) =

∏

β<ωi+1

1

lα+β(eωmg)

are elements of Meωm − N and Meωm , respectively.

LEMMA 8.4.3 Let i < m. If condition (IA<m)i holds for 〈Teωm , log, . . . , lωi〉, then condition
(IA<m)i+1 holds for 〈Teωm , log, . . . , lωi+1〉, where lωi+1 is the function defined above.

Proof: Condition (IA<m
0 )i+1 clearly holds. Condition (IA<m

1 )i+1 follows directly from
conditions (IA<m

1 )i, (IA<m
3 )i and the definition of lωi+1 in the case dlog m 6∈ M. Hence Ti+11

and Ti+13 hold. In order to show Ti+12, we let f ∈ dom eωi+1 with suppf↓ ≺l
ωi

eωi+1f . Then
there is a series h ∈ Teωm such that f = lωi+1h. Let m = dh. We have to distinguish the cases
dlog m ∈ M and dlog m 6∈ M.

First assume that dlog m ∈ M. Then by (IA<m)i there is a k ∈ N such that h is lωi-
confluent at order k, and we can assume that k is large enough such that lωi·kh = a + ε where
a ∈ M∩ dom lωi+1 and ε 4 1. Then by Lemma 7.4.7 and the fact that T is of strength i+ 1, we
have

supp lωi+1a ≻ l
′
ωi+1a < Rl

ωi+1
(a, ε).

Hence supp f↓ = (supp lωi+1a)↓
∐

suppRl
ωi+1

(a, ε). We apply Fact 7.6.4 and obtain ε = 0.

Whence f = k+ lωi+1a ∈ T, and we can apply Ti2 for T. We obtain eωi+1f ∈ M ⊆ Meωm . This
finishes the case dlog m ∈ M.

Now let us assume that dlog m 6∈ M. By (IA<m)i the series h is lωi-confluent at order 2 and
dl
ωi·2h

= lα(eωmg) for some g ∈ Fm,T and α = ωm−1 am−1 + · · ·+ωi ai. Let lωi·2h = lα(eωmg)+ε,
then

f↑ = lωm−1 am−1+···+ωi+1 (ai+1+1)(eωmg) = lα̂(eωmg)

f↓ = Rl
ωi+1

(lα(eωmg), ε).



178 CHAPTER 8. EXTENDING TRANSSERIES FIELDS OF POSITIVE STRENGTH

Again Fact 7.6.4 shows that ε = 0. Thus we obtain f = lα̂(eωmg)−ai. Since f ∈ dom eωi+1 , this
implies

eωi+1f = eωi+1(lα̂(eωmg) − ai)

= lωi·aieωi+1 lα̂(eωmg)

= lγ(eωmg)

where

γ = ωm−1 am−1 + · · · + ωi+1 ai+1 + ωi ai = α.

This shows eωi+1f = lα(eωmg). Hence we obtain eωi+1f ∈ Meωm and therefore the case dlog m 6∈
M, thus (IA<m

2 )i+1 and Ti+12.

Finally, we remark that if dlog m ∈ M, then the lωi+1-confluence follows from Ti+24 for T.
If dlog m 6∈ M, then (IA<m

3 )i+1 follows directly from the definition of lωi+1 . This finishes the
proof. 2

REMARK 8.4.4 From Lemmas 8.4.2 and 8.4.3 it follows that there are functions lωi for i 6 m−1
such that 〈Teωm , log, . . . , lωi〉 is of strength i 6 m− 1. Hence we have a chain

〈Teωm , log〉 →֒ · · · →֒ 〈Teωm , log, . . . , lωi〉 →֒ · · · →֒ 〈Teωm , log, . . . , lωn−1〉.

Moreover, the inductive assumption (IA<m)m−1 allows to define a function lωm as before. Note
that always dlωmf ∈ M and that (Teωm )+∞ is therefore lωm-confluent. We will use this fact in the
following section to extend the chain beyond m− 1.

8.4.3 The logarithmic functions of strength > m

We show now how to add functions lωn , . . . , lωm to the field Teωm such that for all i > m the
structure 〈Teωm , log, . . . , lωi〉 is of strength i. We start by defining a set of inductive assumptions
(IA>m)i similar to the case i < m.

We say that for 〈Teωm , log, . . . , lωi〉 with i > m the inductive assumption (IA)>m
i holds iff

(IA>m
0 )i If m < i, then for all m 6 j < i the inductive assumption (IA>m)j holds.

(IA>m
1 )i (Teωm )+∞ is lωi-confluent.

(IA>m
2 )i 〈Teωm , log, . . . , lωi〉 is of strength i.

(IA>m
3 )i For all f ∈ (Teωm )+∞ there is a k ∈ N such that dl

ωi·kf
∈ dom lωi+1 ∩ M.

As in the case i < m, our inductive process breaks down into two parts:

• Showing that 〈Teωm , log, . . . , lωm〉 is of strength m.
• Showing that for all m 6 i < n such that (IA>m)i holds for Teωm , there is a function

lωi+1 on (Teωm )+∞ such that (IA>m)i+1 holds for 〈Teωm , log, . . . , lωi+1〉.
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LEMMA 8.4.5 Let 0 < m 6 n and T of strength n Let Teωm be defined as above. Let lωm be the
function defined in Remark 8.4.4. Then 〈Teωm , log, . . . , lωm〉 satisfies the inductive assumption
(IA>m)m.

Proof: In view of Remark 8.4.4 it suffices to show that Teωm is of strength m. In fact, we
only need to show Tm2.

Fix a series f ∈ dom eωm with suppf↓ ≺l
ωm−1 eωmf . Then for some h ∈ Teωm we have

f = lωmh. The series h is lωm−1 -confluent at order k ∈ N such that dl
ωm−1·kh

= lωm−1·a(eωmg) for
a series g ∈ Fm,T and an integer a > 0. Let ε 4 1 be such that lωm−1·kh = lωm−1·a(eωmg) + ε,
then from the definition of lωm it follows that

lωmh = k + Tlωm(lωm−1·a(eωmg), ε)

= g + (k − a) + Rlωm (lωm−1·a(eωmg), ε).

We claim that ε = 0. This follows from Fact 7.6.4, if we can show that

supp g ≻ Rlωm (lωm−1·a(eωmg), ε).

Notice first that from g ∈ Fm,T it follows that

∀j > 0 : lωm‖supp g↓‖ < g − j.

In particular, for j = a+ 1 this implies

‖supp g↓‖ ≺ lωm−1(lωm−1·a(eωmg)).

But from

lωm−1n ≺ log n ≺ n · log n · log2 n · · ·

we obtain with n = lωm−1·a(eωmg) that

supp g↓ ≻ l
′
ωm(lωm−1·a(eωmg)) < Rlωm (lωm−1·a(eωmg), ε).

Hence the same holds for supp g. Now ε = 0 implies lωmh = g + (k − a) ∈ T, thus f ∈ T. From
Tm2 for T it then follows that eωmf ∈ M. This shows the lemma. 2

Now we assume that for m 6 i < n we have functions log, . . . , lωi such that the inductive
assumption (IA>m)i holds for the field Teωm . We define a function lωi+1 on (Teωm )+∞ as follows.
Let f ∈ (Teωm )+∞ and k ∈ N such that dl

ωi·kf
∈ dom lωi+1 ∩M. This is possible by the inductive

assumption (IA>m)i. Then there is a series ε ∈ T

7→

eωm
such that lωi·kf = dl

ωi·kf
+ ε. We let

lωi+1f := k + Tl
ωi+1

(dl
ωi·kf

, ε).

LEMMA 8.4.6 Assume that for the integers m 6 i < n the inductive assumption (IA>m)i

holds for 〈Teωm , log, . . . , lωi〉. Let the function lωi+1 be defined as above. Then the inductive
assumption (IA>m)i+1 holds for 〈Teωm , log, . . . , lωi+1〉.
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Proof: From the definition of lωi+1 it follows that for every k ∈ N and every f ∈ (Teωm )+∞
the leading monomial of lωi+1·kf is an element of M. Hence (IA>m

1 )i+1 and (IA>m
3 )i+1 hold,

since T is of strength i+ 1. We only need to show that Teωm is of strength i+ 1, and to do this
it suffices to show Ti+12. Let f ∈ dom eωi+1 with supp f↓ ≺l

ωi
eωi+1f . Then there is a series

h ∈ Teωm with f = lωi+1h. Choose k ∈ N large enough such that a = dl
ωi·kh

∈ dom lωi+1 ∩ M

and lωi+1a ∈ M. Then for ε 4 1 with lωi·kh = a + ε we have

f = lωi+1a + k + Rl
ωi+1

(a, ε).

Hence f↓ = Rl
ωi+1

(a, ε). Fact 7.6.4 implies ε = 0. Thus f = lωi+1a + k ∈ T. Applying Ti+12
for T finishes the proof. 2

We summarize the results in the following

PROPOSITION 8.4.7 Let n,m be integers with n > 0 and 0 6 m 6 n. Let T be of strength n
and Teωm be defined as above. Then there are functions lωi for i 6 n such that

〈Teωm , log, . . . , lωi〉

is of strength i. Moreover, we have the following chain:

〈Teωm , log〉 →֒ · · · →֒ 〈Teωm , log, . . . , lωm−1〉→֒

〈Teωm , log, . . . , lωm〉 →֒ · · · →֒ 〈Teωm , log, . . . , lωn〉.

In particular, the field Teωm is of strength n.



Chapter 9

Exponential closures of positive
strength

We can now apply the tools developed so far in order to construct a field of generalized power
series with exponential and logarithmic functions of positive strength. These functions will be
total on the set of positive and infinite elements. We show some properties of such fields.

9.1 Properties of extended fields

Throughout this section we fix a field T = C[[M]] which is of strength n > 0. By Proposi-
tion 8.4.7, the eωi-extension of T is of strength n for every i 6 n. Starting from T, we can thus
generate ever larger transseries fields. Before we use these extensions to construct eωn-closed
fields, let us study some properties of eωn-extensions.

Recall that for all f ∈ T+
∞ we have defined a truncation tf �f which defines a new monomial

eωntf ∈ Nn,T, if πn,Tf = ∞. This does not mean, however, that the function eωn is defined for
f in Teωn . But — as the next lemma shows — using finitely many eωi-extensions with i 6 n is

a strong enough tool to eventually ensure f ∈ dom eωn in a field T̂ ⊃ T.

LEMMA 9.1.1 If T is of strength n > 0, then for all f ∈ T+
∞:

(1) If πn,Tf = ∞, then πn,Teωn
f <∞.

(2) If πn,Tf <∞ and πn−1,Te
ωn−1

(eωn(f − πn,Tf)) = 0, then

πn,Te
ωn−1

f = max(0, πn,Tf − 1).

(3) If π1,Tf <∞, then π1,Texpf = max(0, π1,Tf − 1).

Proof: (1) Let f ∈ T+
∞ with πn,Tf = ∞. Let g� f be the maximal truncation with g ∈ Fn,T,

and let ε ∈ T↓ with f = g + ε. Then g ∈ dom eωn in Teωn and

lωn‖ε‖ ≮ g − N.

181
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The assumption πn,Tf = ∞ implies that (g− j, ε) is not an eωn-Taylor couple for j > 0. Assume
for a contradiction that πn,Teωn

f = ∞. Then from g − j ∈ dom eωn in Teωn it follows that then
for all j > 0 the sequence

(e
(i)
ωn(g − j) · εi)06i

is not a Noetherian family. Lemma 7.3.3 implies 1 ≺ e
′
ωn(g − j) · ε for all j > 0. Hence

∀j > 0 : ‖ε‖ < e
′
ωn(g − j).

From e
′
ωn(h − 1) ≺ eωnh for all series h, we now obtain ‖ε‖ ≺ eωn(g − j) for all j > 0. Hence

lωn‖ε‖ < g − j which implies lωn‖ε‖ < g −N. This contradiction shows (1).
The assumptions imply eωn(f − πn,Tf) ∈ T and

eωn−1(eωn(f − πn,Tf)) = eωn(f − (πn,Tf − 1)) ∈ Te
ωn−1 .

This proves (2). The part (3) follows from (2) using the fact that for all h ∈ T+
∞ we have

π0,Texph = 0. 2

We will eventually consider chains of extensions. More generally, we will have families of
totally ordered, multiplicative groups (Mi)i∈I which are totally ordered by set-inclusion such
that for all i ∈ I the fields C[[Mi]] are of a common strength. Recall from Proposition 2.3.9
that if this common strength is 0, then C[[

⋃
I Mi]] is a transseries field. We generalize this

proposition to fields of positive strengths.

PROPOSITION 9.1.2 Let α be an ordinal and (Mi)i<α a sequence of totally ordered, multiplica-
tive groups such that for some n > 0

• ∀i < j < α : Mi is a subgroup of Mj,
• ∀i < α : the field Ti = C[[Mi]] is of strength n,
• ∀i < j < α : Ti is an eωn-lωn-substructure of Tj.

Let T<α =
⋃
i<α Ti and Tα = C[[

⋃
i<α Mi]]. Then there is a function lωn : T+

α → Tα such that:

(1) Tα is of strength n.
(2) If there is a cofinal set J ⊆ α with ∀j ∈ J : Mj+1 = (Mj)eωn , then for all f ∈ (T<α)+∞:

πn,T<αf <∞.

Proof: (1) First, we have to define a function lωn on T+
α . Let f ∈ T+

α , then there is an i < α
such that the leading term τ of f is a series in Ti. Let R be the remainder of f , i.e. f = τ +R.
Then we let lωnτ as in Ti, and (τ,R) is a lωn-Taylor couple in Tα. We let

lωnf := Tlωn (τ,R).

This definition is coherent by Chapter 6. This shows Tn1 and Tn3. Now let f ∈ dom eωn in
Tα and h ∈ Tα such that f = lωnh. Suppose that supp f↓ ≺l

ωn−1 eωnf . Then for m = dh there
is an integer k ∈ N such that

n := dl
ωn−1·kh

= dl
ωn−1·km ∈ dom lωn ∩ Mi
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for some i < α. Then for lωn−1·kh = n + ε we have lωnh = Tlωn (n, ε), and by Lemma 7.4.7 we
have

supp lωnn ≻ Rlωn (n, ε).

From Fact 7.6.4 it follows that suppf↓ ≺l
ωn−1 eωnf implies ε = 0. Hence f = lωnn + k ∈ Ti.

Condition Tn2 for Ti then shows eωnf ∈ Mi ⊆ Mα, hence Tn2. Condition Tn4 follows from
the same condition for T. This shows (1).

(2) Let f ∈ (T<α)+∞, then f ∈ Ti for some i < α. Pick j ∈ J with j > i. Then by
Lemma 9.1.1, we have πn,Tj+1f <∞. 2

Finally, we consider questions concerning the size of the support of series in the eωn -extension
of T. Again, our present results will generalize results about the support in exp-extensions Texp.

PROPOSITION 9.1.3 Let T = C[[M]] be of strength n, and let κ1, κ2 be cardinal numbers such
that C and M have cofinal cardinality < κ1 and < κ2, respectively. Then for every f ∈ Teωn the
support of f has cardinality < max(κ1, κ2).

Proof: Let (aβ)β<τ be well-ordered in Meωn . Then the lemma follows, if we can show that
τ < max(κ1, κ2). For each β < τ there are mβ ∈ M and nβ ∈ Nn,T such that aβ = mβ · nβ. The
sequence (log aβ)β<τ is strictly decreasing in Teωn . From the hypothesis about T, we obtain that
the support of each log mβ has cardinality < max(κ1, κ2). Since for every n ∈ Nn,T the support
of log n is countable, we have |supp log aβ| < max(κ1, κ2). We apply Lemma 1.8.5 and conclude
|τ | < max(κ1, κ2). 2

EXAMPLE 9.1.4 Let C = R, i.e. κ1 = ℵ1. Take the monomial group Ln from Section 7.6. We
apply Lemma 2.4.3 and obtain that every series f ∈ R[[Ln]] has countable support. Moreover,
we see that applying the extension process (of strength 6 n) countably many times does not
affect the size of the support of the series. It remains countable.

9.2 Iterating extensions and the closure of admissible fields

We have now all necessary tools to construct a field of generalized power series which has
functions eωn and lωn for some n > 0 which both are total on the set of positive and infinite
elements. As we will see, we can even extend the functions such that they are total on the set
of positive elements.

Section 7.6 provides a transseries field of strength n. Let in the following T be such a field
and let f ∈ T+

∞. Suppose that f 6∈ dom eωn in T. Proposition 9.1.1 now suggests how to
construct a field T̂ ⊇ T such that f is in the domain of the function eωn in T̂. First, we check
whether πn,Tf = ∞ or <∞. If πn,Tf = ∞, then we apply an eωn-extension to T, and we obtain
an integer k ∈ N such that f − k ∈ dom eωn in Teωn . More generally, if there is an i 6 n such
that πi,Tf = ∞, then we apply the eωi -extension process to T. We thus find an extension T̃ ⊇ T
such that πi,T̃f < ∞ for all i 6 n. Now Proposition 9.1.1 shows how to choose the extensions
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to reduce all πi,T̃f . Hence after a finite number of extensions, we will obtain a field T̂ ⊇ T such
that f is in the domain of eωn in that field.

9.2.1 Cofinal partitions

Throughout this section, let λ be a limit ordinal. Recall that the set λ is totally ordered by
<=∈. Two totally ordered sets S = (S,6), P = (P,6) are isomorphic, in symbols S ∼= P , iff
there is a surjective and strictly increasing mapping ϕ : S → P . Note that ϕ is bijective and
that ∼= is an equivalence relation. We remark that for limit ordinals λ1, λ2 we have λ1

∼= λ2 if
and only if λ1 = λ2. A set S ⊆ λ is cofinal in λ iff there is no α < λ such that S ⊆ α. We will
use the following lemma.

LEMMA 9.2.1 Let S ⊆ λ be totally ordered by <=∈. If S ∼= λ, then S is cofinal in λ.

Proof: Let λ′ 6 λ be the smallest limit ordinal such that S is cofinal in λ′. If S ∼= λ′, then
λ′ ∼= S ∼= λ, hence λ′ = λ.

Now assume that S ≇ λ′. Let ϕ : S → λ be bijective and increasing and ψ : S → λ′

injective and increasing. Then ϑ = ψ ◦ ϕ−1 : λ → λ′ is strictly increasing. We claim that
ϑi+1(λ \ λ′) < ϑi(λ \ λ′) for all i > 0. From rangeϑ ⊆ λ′ we obtain ϑ(λ \ λ′) < λ \ λ′.
Now assume that ϑi(λ \ λ′) < ϑi−1(λ \ λ′). Let α ∈ ϑi+1(λ \ λ′). Then α = ϑ(β) for some
β ∈ ϑi(λ \ λ′) < ϑi−1(λ \ λ′). Since ϑ is strictly increasing, this implies α = ϑ(β) < ϑi(λ \ λ′),
thus the claim.

If λ′ < λ, then for α ∈ λ\λ′ the sequence (ϑi(α))06i is strictly decreasing. This contradiction
shows λ = λ′. 2

For an ordinal α and n ∈ N, a function p : α→ n+ 1 = {0, . . . , n} is called a partition of
α of strength n, or simply a partition, if n is clear from the context. For the limit ordinal λ
and a partition p : λ→ n+ 1 we define sets

Sp,i := p−1(i) ⊆ λ (0 6 i 6 n).

We say that p is a cofinal partition in λ iff Sp,i ∼= λ for all i 6 n. By Lemma 9.2.1 the sets
Sp,i are cofinal in λ, if p is cofinal in λ.

EXAMPLE 9.2.2 Let us give examples in ω and ω2. We write a partition p : λ → n + 1 as a
sequence p = (p0, p1, · · · ). Let n = 2. First let λ = ω.

pa = (1, 2, 0, 2, 0, 2, · · · )
pb = (1, 0, 1, 0, 1, 0, · · · )
pc = (0, 1, 2, 0, 1, 2, · · · )
pd = (1, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, · · · ).
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Then the partitions pa, pb are not cofinal in ω, and pc, pd are cofinal in ω. Let λ = ω2.

pe = (0, 0, . . . , 1, 1, . . . , 2, 2, . . . , 2, 2, . . . , · · · )
pf = (0, 1, 2, 0, 1, 2, . . . , 0, 1, 0, 1, . . . , 0, 1, 0, 1, . . . , · · · )
pg = (0, 1, 2, 0, 1, 2, . . . , 0, 1, 2, 0, 1, 2, . . . , · · · )
ph = (0, 1, 0, 1, . . . , 0, 2, 0, 2, . . . , 0, 1, 2, 0, 1, 2, · · · ).

The partitions pe, pf are not cofinal in ω2, but pg and ph are cofinal in ω2.

REMARK 9.2.3 Let p : λ → n + 1 be a partition. For α < λ we let p ↾α: α → n + 1 be the
restriction of p to α. Then p↾α is a partition of α of strength n. We say that a partition p of λ
is strongly cofinal in λ iff for all limit ordinals λ′ 6 λ the partition p↾λ′ is cofinal in λ′. Note
that the partition ph of Example 9.2.2 shows that not every cofinal partition is strongly cofinal.

Every ordinal α is either a limit ordinal, or there are λ and n ∈ ω such that α = λ+n, where
in the following we allow λ = 0. (Suppose that this is not the case, then let α be the smallest
ordinal which is neither a limit ordinal nor of the form λ + n. Then α must be a successor
ordinal, and α = β + 1. But then β < α has the same property, contradicting the minimality of
α.)

We let ⌊α⌋ be the integer such that α = λ + ⌊α⌋ for some limit ordinal λ. A partition
p is regular of strength n iff ⌊α⌋ ≡ pα (mod n + 1). Hence the regular partition on ω is
p = (0, 1, . . . , n, 0, 1, . . . , n, · · · ). Note that regular partitions are uniquely determined and
strongly cofinal.

9.2.2 Closures

Let T = C[[M]] be of strength n. Fix α, an ordinal, and p, a partition of strength n of α. We
define a sequence (T〈p,β〉)β6α of fields of generalized power series over monomial groups M〈p,β〉

with the field of constants C. Moreover, each T〈p,β〉 will be of strength n. We let

M〈p,0〉 := Me
ωp(0)

T〈p,0〉 := C[[M〈p,0〉]]

M〈p,β+1〉 := M〈p,β〉
e
ωp(β+1)

T〈p,β+1〉 := C[[M〈p,β+1〉]] (β < α)

M〈p,λ〉 :=
⋃

β<λ

M〈p,β〉 T〈p,λ〉 := C[[M〈p,λ〉]] (λ 6 α, limit ordinal)

In other words, the field T〈p,β+1〉 is the eωp(β+1)-extension of T〈p,β〉. If T〈p,β〉 is of strength
n, then so is T〈p,β+1〉. By that we mean that the field T〈p,β+1〉 is equipped with functions
log, . . . , lωn such that 〈T〈p,β+1〉, log, . . . , lωn〉 is of strength n as done in Section 8.4. I.e. each
step T〈p,β〉 → T〈p,β+1〉 requires intermediate steps

T〈p,β〉 T〈p,β+1〉

↓ ‖
T〈p,β+1〉 →֒ · · · →֒ 〈T〈p,β+1〉, log, . . . , lωj 〉 →֒ · · · →֒ 〈T〈p,β+1〉eωi+1 , log, . . . , lωn〉
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Similarly, we identify T〈p,λ〉 with its structure of strength n for limit ordinals λ. We use Lemma
9.1.2 to show that T〈p,λ〉 is of strength n. Thus T〈p,β〉 will be an eωn -lωn-substructure of T〈p,γ〉

for all β < γ 6 α. Therefore, since T is of strength n, so are all T〈p,β〉 for β 6 α.

We define a set T〈p,<λ〉 for every limit ordinal λ 6 α by

T〈p,<λ〉 :=
⋃

β<λ

T〈p,β〉.

Note that T〈p,<λ〉 is a proper subset of T〈p,λ〉 for every limit ordinal λ 6 α. If p is cofinal in λ,
then we call T〈p,<λ〉 a closure of T. A closure is regular iff p is regular. Since regular partitions
are unique, we denote the regular closure of T by Treg

<λ, and call it the regular eωn -closure of
length λ.

PROPOSITION 9.2.4 Let T = C[[M]] be of strength n > 0. Let p be a cofinal partition of
strength n of the ordinal α . Then

(1) The field T〈p,α〉 is of strength n.
(2) If λ is a limit ordinal, then functions eωn and lωn are total on (T〈p,<λ〉)+∞.
(3) Suppose that C and M have cofinal cardinality < κ1 and < κ2, respectively, for some

cardinals κ1, κ2. If α < max(κ1, κ2), then for all β 6 α :

|supp f | < max(κ1, κ2)

for all f ∈ T〈p,β〉.

Proof: (1) follows from the above considerations. We show (2). Let f ∈ (T〈p,<λ〉)+∞. Then
there is an ordinal β < λ such that f ∈ (T〈p,β〉)+∞. Since λ is a limit ordinal, we have β+ω 6 λ.
Since p is a cofinal partition, the sets

Sp,i ∩ (λ \ β)

are cofinal as well for all i 6 n. Thus there is a sequence (γj)j∈N such that

• β < γ0 < γ1 < · · · < λ;
• for all 0 6 j and i 6 n we have ∅ 6= (γj+1 \ γj) ∩ Sp,i.

Let T̂j = T〈p,γj〉. From part (1) of Proposition 9.1.1 it follows that we have π0,T̂1
f = 0 and

ki := πi,T̂1
f <∞ (0 < i 6 n).

Let Ki = k1 + · · · + ki for all i 6 n. Then inductively applying part (2) of Proposition 9.1.1
shows that

πi,T̂Ki
f = 0.

Hence f ∈ domeωn in T̂Kn ⊆ T〈p,<λ〉. The function lωn is defined as in T〈p,λ〉.
(3) follows from Proposition 9.1.3. This proves the proposition. 2
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REMARK 9.2.5 From Proposition 9.2.4 it now follows that the regular eωn -closure of T has
total exponential and logarithmic functions of strength i 6 n on the set of positive and infinite
elements. Moreover, if for all f ∈ T the support of f is countable (as it is the case in the
admissible field R[[Ln]]) and λ is a countable limit ordinal, then all series in Treg

<λ have countable
supports.

We can now state

THEOREM 9.2.6 For all n > 0 there are fields of generalized power series Kn such that there
are functions exp, . . . , eωn and log, . . . , lωn which are totally defined on (Kn)

+
∞ with ∀i < n :

∀f ∈ (Kn)
+
∞:

eωi ◦ eωi+1f = eωi+1(f + 1)

lωi+1 ◦ lωif = lωi+1f − 1

Proof: Let C = R and M = Ln. Then the regular eωn -closure Kn of T = R[[M]] (of length
ω) has the above properties by Proposition 9.2.4. This shows the theorem. 2

REMARK 9.2.7 Note that we can extend Theorem 9.2.6 to all positive elements of Kn. Recall
that R is an exponential field of strength n such that eωn and lωn are totally defined and analytic
on R+. Then for each 0 < f ∈ K

7→
n there is a positive real rf and an infinitesimal εf such that

f = rf + εf . Then eωnf = Teωn (rf , εf ) and lωnf = Tlωn (rf , εf ) are defined.

9.3 Generalizing structural properties

In this section, we generalize results about transseries fields to fields of higher strength. We
work along the same lines as in the case of extensions of strength 0.

9.3.1 Tree-representations in fields of positive strength

We have seen how to define a tree-representation of a series of a transfinite exponential extension
T̂ of a transseries field T (of strength 0). Recall that this only involves exp-extensions.

Let T = C[[M]] be of strength n > 0. Let α be an ordinal and p a partition of α of strength
6 n, i.e.

p : α −→ n+ 1 = {0, . . . , n}.

Recall that T〈p,α〉 denotes the field of strength n which results from the extension process deter-
mined by p:

T −→ T〈p,0〉 = Te
ωp(0)

−→ T〈p,1〉 = Te
ωp(1)

−→ · · · .

For every term cm ∈ CM〈p,α〉 and every series f ∈ T〈p,α〉, we have already defined maximal
and minimal tree-representations. Moreover, we have introduced relative and relative-minimal
tree-representations with respect to T of terms and series, if p(β) = 0 for all β < α.
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However, if extensions of positive strength are involved in the definition of T〈p,α〉, then these
tree-representations do not suffice anymore. Moreover, some of the properties do not generalize
to the new setting. Let us explain this with an example.

EXAMPLE 9.3.1 Let T = C[[M]] be of strength 1 and α = 1. We choose p(0) = 1 as partition.
Note that in this case T〈p,α〉 = TE. From g ∈ F1,T, we obtain

n := E(g)E(g − 1)E(g − 2) · · · ∈ N1,T.

The root of the maximal tree-representation Tn,max is labeled by n, and the labels of the succes-
sors of the root are E(g − 1), E(g − 2), . . . . Now we remark that for every i > 1, the maximal
tree-representation of E(g − i) has only one successor, which is labeled by E(g − i− 1). Hence,
the paths in Tn,max are of the form

[n, E(g − i), E(g − i− 1), E(g − i− 2), . . . ],

where i > 1. Thus the minimal tree-representation of n is the tree of height 1 such that the
leaves are labeled by monomials E(g − i) ∈ N1,T.

n = E(g)E(g − 1)E(g − 2) · · ·

E(g − 1) E(g − 2)

E(g − 3)

E(g − 3)

E(g − 4)E(g − 2)

Note that no label of Tn,max is an element of CM. Moreover, this labeled tree does not provide
any information about the series g. As for the relative and relative-minimal tree-representations,
they do not even exist.

On the other hand, once we know that a monomial is of the form E(h) ∈ N1,T, the maximal
tree-representation of E(h) consists only of the admissible path [E(h), E(h − 1), E(h − 2), . . . ].
The series h ∈ T admits maximal, minimal and relative-minimal tree-representations.

Hence, the notion of tree-representation for transseries fields will usually not be enough, and
we have to extend this notion as follows.

DEFINITION 9.3.2 Let T = C[[M]] be of strength n and p : α → n + 1 a partition for some
ordinal number α. Let t ∈ CM〈p,α〉. Then a tree-representation of strength n of t with
respect to T is a labeled tree T = (T, l) such that l(r(T )) = t and such that for the labeling
l : T → CMα we have
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TRn1. ∀n ∈ T \ leaf(T ): if l(n) is of the form lβ(eωmg), then there exists a bijection ϕ :
term g → succ(n) with

(i) ∀s, t ∈ term g : s ≻ t⇔ l(ϕ(s)) ≻ l(ϕ(t)) and

(ii) ∀t ∈ term g : l(ϕ(t)) = t.

TRn2. ∀n ∈ T \ leaf(T ): if l(n) is not of the form lβ(eωmg), then there exists a bijection
ϕ : term log dl(n) → succ(n) with

(i) ∀s, t ∈ term log dl(n) : s ≻ t⇔ l(ϕ(s)) ≻ l(ϕ(t)) and

(ii) ∀t ∈ term log dl(n) : l(ϕ(t)) = t.

We say that T = (T, l) represents l(r(T )) = t. If for all n ∈ T we have l(n) ∈ CM ⇒ n ∈ leaf(T ),
then we say that T is a relative tree-representation of strength n with respect to T.

REMARK 9.3.3 We extend the definition of tree-representations to series f ∈ T〈p,α〉 as follows.
If f ∈ CM〈p,α〉, then (T, l) is a tree-representation of the series f iff it is a tree-representation
of the term f . If 1 < |term f |, then a labeled tree T = (T, l) is a tree-representation of f iff the
restriction of l to every child Kt (where t ∈ term f) is a tree-representation of t and l(r(T )) = f .

REMARK 9.3.4 In the case n = 0, this is exactly the definition of tree-representations in trans-
finite exponential extensions, since the condition TRn1 never applies in this case. Moreover,
we remark that this definition is upwards-compatible: if n1 < n2 and T is a tree-representation
of strength n1, then T is a tree-representation of strength n2.

EXAMPLE 9.3.5 Let f ∈ T〈p,α〉. If f ∈ CM, then Tf is the labeled tree with only one element,
the root, which is labeled with f . If f ∈ T \ CM, then Tf is the tree of height 1 such that the
label of r(Tf ) is f and such that there is a bijection between the leaves of Tf and term f . Note
that this coincides with the construction of Tf from Example 3.2.12 in Chapter 3.

Now assume that for all β < α and all series from T〈p,β〉 there is a representation as a tree
w.r.t. T. In particular, terms from CM〈p,β〉 have a representation w.r.t. T. If f ∈ T〈p,β〉 for
some β < α, then we let Tf be a tree-representation defined in T〈p,β〉.

If

f ∈ T〈p,α〉 \
⋃

β<α

T〈p,β〉,

then we define pre(Tf ) to be the tree of height 1 such that the label of r(Tf ) is f and such that
there is a bijection between the leaves of Tf and term f .

If α is a limit ordinal, then for all t ∈ term f we already have a representation Tt w.r.t.
T. If α is a successor ordinal β + 1, then we have to define Tt for those t ∈ term f such that
dt 6∈ M〈p,β〉. Fix t ∈ term f . We distinguish three cases.

First, assume that p(α) = 0. Then M〈p,α〉 = T〈p,β〉
exp . Hence for every cm ∈ CM〈p,α〉 there is

a purely infinite series log m ∈ (T〈p,β〉)↑, which already admits a representation Tlog m. The root
of Tlog m is labeled with log m, and the successors of the root are labeled with elements from
term log m. We let Tt be the labeled tree which we obtain if we replace the root of Tlog dt by t.
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Second, assume that 0 < m = p(α) and that dt = lβ(eωmg) for some β 6 ωm and g ∈
Fm,T〈p,β〉 . Then g ∈ T〈p,β〉 admits a representation as a labeled tree Tg w.r.t. T already. We let
Tt be the labeled tree which results from replacing the root of Tg by t.

Finally, assume that 0 < m = p(α) and that dt is not of the form lβ(eωmg). Then for all
n ∈ supp term dt we have either n ∈ M〈p,γ〉 with γ < α or n = lβ(eωg) for some β 6 ωm and
g ∈ Fm,T〈p,β〉 . Hence for all s ∈ term log dt, there are already labeled trees Ts w.r.t. T. As in
the exponential case, we let pre(Tt) be the tree of height 1, such that the root is labeled with t
and such that there is a bijection between the set of leaves and the term log dt. We let

Tt := pre(Tt)[Ts]s∈term log dt .

We let Tf be the representation that we obtain by substituting Tt into the leaf of pre(Tf )
which is labeled with t, i.e.

Tf := pre(Tf )[Tt]t∈term f .

In fact, the labeled tree Tf is a relative tree-representation of strength n of the series f ∈ T〈p,α〉.

Tree representations in purely exponential extensions (i.e. in the case n = 0) have several
properties shown in Chapter 3. Some of them generalize to the case of positive strength. Large
parts of the proofs are similar to the case n = 0, and we will not repeat those parts. We only
give the information needed to extend the proofs to the situation n > 0.

9.3.2 Properties of tree-representations

The following properties are formulated for the tree-representations of series f . Notice that f
can be a term or monomial.

PROPOSITION 9.3.6 Each series f ∈ T〈p,α〉 admits a unique relative tree-representation Tf,T of
strength n > 0 w.r.t. T.

Proof: Assume that there are monomials which admit two different relative tree-represen-
tations T, T ′. Let m ∈ M〈p,γ〉 with this property such that γ is minimal. We only need to
consider the case where m = lβ(eωng). Then the relative tree-representation of g is unique, since
g ∈ T〈p,ν〉 for some ν < γ. The roots of T and T ′ are labeled with m. But the labelings of T
and T ′ restricted to T \ r(T ) and T ′ \ r(T ′) are the labeling of Tg \ r(Tg), hence identical. But
then T = T ′. Contradiction. The rest follows as in Proposition 3.2.13. 2

PROPOSITION 9.3.7 A relative tree-representation of strength n > 0 does not contain infinite
chains for 6·, the ordering in the underlying tree of Tf,rel.

Proof: We extend the proof of Proposition 3.2.14 by showing that if l(ni) ∈ M〈p,βi〉 (where βi
is minimal) and l(ni) = lβ(eωmg), then l(ni+1) ∈ M〈p,βi+1〉 (where βi+1 is minimal) and βi+1 < βi.
But l(ni+1) ∈ supp g and g ∈ T〈p,βi+1〉 for some βi+1 < βi imply this property. 2

REMARK 9.3.8 Proposition 3.2.15 does not generalize. For instance, if g = x2 + x, then it is
not possible to decide whether g contributes to a monomial of the form exp(x2 + x) or to some
lβ(eω (x2 + x)). Nonetheless, the closure properties can be generalized.
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9.3.3 Minimal and maximal tree-representations of higher strength

We now introduce maximal and minimal tree-representations for extensions of positive strength.
Throughout this section, we fix a field T of strength n, an ordinal α > 0 and a partition
p : α → n + 1. Recall that for fixed terms or series in T〈p,α〉 there are already maximal and
minimal tree-representations as defined in Chapter 3. We had also defined relative and relative-
minimal tree-representations for transfinite exponential extensions, but these were with respect
to the starting field.

As mentioned above, these representations may be not sufficient to express all information
about the given object. For objects from T〈p,α〉, maximal and minimal representations will have
to take in account the partition p.

Let t ∈ CM〈p,α〉 and Tt,rel the relative tree-representation of t w.r.t. T with labeling l.
For every leaf n, the term l(n) is an element of CM and admits therefore a maximal tree-
representation Tl(n),max. We let

Tt,max := Tt,rel[Tl(n),max]n∈leaf(T
t,rel)

be the maximal tree-representation of t with respect to T. Similarly, we define the
maximal tree-representation w.r.t. T of series from T〈p,α〉.

REMARK 9.3.9 If p(β) = 0 for all β < α, then we have T〈p,α〉 = Tα, a transfinite exponential
extension. For terms and series in Tα, we have already defined maximal tree-representations.
We remark, though, that this is coherent with the above definition: both, the maximal tree-
representation and the maximal tree-representation w.r.t. T yield the same tree. Since there is
no danger of confusing the two representations, we use the same symbol for them.

We define the minimal tree-representation of t w.r.t. T as in Chapter 3, i.e. as the
sub-tree (T, l) of the maximal tree-representation of t w.r.t. T such that a node n of T is a leaf
if and only if there is an admissible path P in Tt,max such that

nP,n = n

tP,n+i = logi mP,n

for some n ∈ N and all i > 0. One shows similarly as Proposition 3.2.9 that every term (or
series) has a unique minimal tree-representation Tt,min w.r.t. T. Remark 9.3.9 remains also true
for minimal tree-representations w.r.t. T.

9.3.4 Closure properties

Let κ > ℵ0 be a cardinal number. Proposition 9.2.4 implies that if the support of all series from
T have cardinality < κ and if |α| < κ, then series from T〈p,α〉 also have supports of cardinality
less than κ. The situation changes in general for α > κ.

We will now assume that we add the κ-support condition to the definition of generalized
power series, that is, we only allow generalized power series such that the support has a cardi-
nality smaller than κ. We will show that in this case the extension process

T −→ T〈p,0〉 −→ T〈p,1〉 −→ · · · −→ T〈p,β〉 −→ · · ·
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is stabilizing.

PROPOSITION 9.3.10 Assume that generalized power series have κ-support. Let p be a partition
of the class of ordinals of strength 6 n. Then there exists a unique ordinal λ such that

1. ∀α < λ : T〈p,α〉  T〈p,λ〉,

2. ∀α > λ : T〈p,α〉 = T〈p,λ〉.

Proof: We use the same techniques as in the proof of Proposition 3.3.1, but we have to make
the following adaptations. Every relative tree-representation T = Tf,T admits a function

ι : T \ (r(T ) ∪ leaf(T )) −→ {0, . . . , n} × ωn

which is defined by

ι(t) :=

{
(m,β) if l(t) = lβ(eωmg)
(0, 0) else.

Then we change condition T 3 into

T 3′. the inner nodes are labeled with elements from (n+ 1) × ωn × C

and we consider the class T of labeled trees T such that T 1, T 2, T 3′ and T 4 hold. Paths in
a tree T in the class T are represented by tuples from the set

((n+ 1) × ωn × C)⋆ ×CM.

This shows that T is a set. Consistently replacing Tα by T〈p,α〉 shows the existence and unique-
ness of λ. 2

9.3.5 Strong cofinal partitions

Let T be of strength n and p : λ → n + 1 a cofinal partition of the limit ordinal λ. We have
shown that T〈p,<λ〉 is a field such that eωn is total on the set of positive and infinite series.

PROPOSITION 9.3.11 Let p, q : λ→ n+ 1 be strong cofinal partitions. Then T〈p,<λ〉 = T〈q,<λ〉.

Proof: We show that for all limit ordinals λ′ < λ we have M〈p,λ′〉 = M〈q,λ′〉. This shows the
proposition. Let λ′ < λ be the smallest limit ordinal such that M〈p,λ′〉 6= M〈q,λ′〉.

For every m ∈ M〈p,λ′〉 there is a limit ordinal κ and an integer n ∈ N such that m ∈ M〈p,κ+n〉.
Since q is strongly cofinal, there are integers 0 < i1 < · · · < in such that q(κ+ ij) = p(κ+ j) for
1 6 j 6 n. But then

M〈p,κ+in〉 ⊇ M〈q,κ+n〉.

This shows M〈p,λ′〉 ⊇ M〈q,λ′〉. By symmetry, we obtain the equality, which contradicts the
minimality of λ′. 2
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9.4 Concluding remarks

Transseries fields of positive strength share many properties with usual transseries fields. We
have shown how to extend such fields, and we have shown how to construct a field which is
closed under an exponential function of positive strength.

Furthermore, we have seen that we can indeed carry out this process arbitrarily often. In-
troducing a restriction on the size of the supports has also the same stabilizing effect in fields
of positive strength that it already had in transseries fields. And finally, transseries of positive
strength admit a tree-representation, which describes the series in a canonical way.

Of course, all this generates again many questions which we have to leave unanswered in
this thesis. One might for instance be interested in the effects that occur when we replace
exponential extensions by nested extensions. In particular, can the results about derivations
and compositions be generalized to transfinite extensions including nested extensions? The same
question can of course be posed for extension processes which do not allow nested extensions,
but exponential extensions of positive strength. Or what can one say about the set of derivations
in given transseries fields in general, can they be classified?

Let us point out that we provide for at least some of these questions tools. Especially, the
relative tree-representations of fields of positive strength allow to generalize the results about
derivations and compositions. Already, the definition of such functions were in the purely
exponential case defined using purely structural properties of tree-representations: the existence
of paths and tree-embeddings.

Even though we do not give answers to any these questions here, we hope that we have at
least made the point that the end of this thesis is by far not the end of the story of transseries.





Glossary

Glossary

General notations

α, β, γ, . . . ordinal numbers
κ, κ1, κ2, · · · cardinal numbers
k,m, n, . . . integer numbers
a, b,K, . . . tuples of integers, words over Z
|α| cardinality of the ordinal α
|k| k1 + · · · + ki for k ∈ Zi, 29
k! k1! · · · ki! for k ∈ Ni, 29
fpxq = (f(xq))p for a function f
φnx n-th iteration of the function φ, n ∈ Z
fk fk1 · · · fki for a function f and k ∈ Zi, 12

f̄k fk11 · · · fkii for f̄ = (f1, . . . , fi) and k ∈ Zi
f̄ (k) f

(k1)
1 · · · f (ki)

i for f̄ = (f1, . . . , fi) and k ∈ Ni
f(A1, . . . , Ai) the set {f(a1, . . . , ai) | ai ∈ Ai} for n-ary functions f and

sets A1, . . . , Ai
R(A1, . . . , Ai) R∩A1 × · · ·Ai for n-ary relations R and sets A1, . . . , Ai
fx = f(x) index convention for series f , 7
fi,x = (fi)x double index convention for series, 7
ak ak1 · · · aki for a sequence a = (ai)06i and k ∈ Ni
ak ak10 · · · akii−1 for a sequence a = (ai)06i and k ∈ Ni∐
i∈I Xi,

∐
Xi disjoint union of the sets (Xi)i∈I , 10

K∗ the set K \ {0K} for a field K, 5
T (i, n) the set {k ∈ Ni | |k| = n} for i, n ∈ N, 29
T ∗(i, n) the set {k ∈ (N+)i | |k| = n} for i, n ∈ N, 29

Ẑ the tuple (Z1, . . . , Zi−1), if Z = (Z1, . . . , Zi),

Orders

(P,6P ) a partial order; also denoted by P , if 6P is clear
from the context, 1
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6=6P the ordering on P , 1
> the inverse ordering of 6, 1
|a| absolute value of the element a in a total order, 5
a⊥6b, a⊥b a and b are incomparable in the ordering 6, 2
(G) final segment generated by the set G, 2
P ⋆ set of words over P , 3
P ♯ set of non-empty words over P , 3
P♦ set of commutative words over P , 4
P † set of non-empty commutative words over P , 4∏
w = w1 · · ·wn product notation for the word w = [w1, . . . , wn], 5

≺R,4R,≍R asymptotical relations with respect to the ring R, 6

Series

supp f support of a function f , 7
term f set of terms of a function f , 7
C[[P ]] set of functions f : P → C with Noetherian support, 10
M = (M,<) order with (semi)group structure, set of monomials, 7
S = C[[M]] set of generalized power series over M with coefficients in C, 7
M↑,M↓ sets of infinite or infinitesimal monomials, 8

M 7→ = M↑∐{1} set of infinite monomials, 8

M

7→

= M↓∐{1} set of infinitesimal monomials, 8
S↑,S↓ sets of purely infinite and purely infinitesimal series respectively, 8

S 7→,S

7→

sets S↑ + C and S↓ of infinite and infinitesimal series respectively, 8
S∞,S+

∞ the set of infinite and positive, infinite series respectively, 19 and 19∑
F,
∏
F sum and product of the Noetherian family F = (fa)a∈A, 11 and ??

f =
∑

M
fmm sum convention for functions f : P → C, 7

f = f↑ + f= + f↓ representation ofthe series f as sum of its purely infinite, purely
infinitesimal and constant parts, 18

f 7→ = f↑ + f= infinite part of the seriesf , 18

f

7→

= f↓ + f= infinitesimal part of theseries f , 18
f = cfdf (1 + δf ) canonical representation of the series f , 18
f = cfdf +Rf canonical representation of the series f , 18
cf , df leading coefficient and leading monomial of the series f , 18
Rf = f − cfdf remainder of the series f , 18
g � f, g � f g is a truncation (resp. proper truncation) of f , 21

Transseries fields

T a transseries field, 30
∂ a derivation, 75
f ′ = ∂f alternative notation for the derivation of a series f , 75
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F [i] the i-th pseudo-derivation operator of F , ??
RF (x, ε) restricted Taylor series of F in x, ??
TF (x, ε) Taylor series of F in x, ??

Trees

T = (T,6·) tree T with ordering 6·, 51
n, t, s, . . . nodes of a tree, 51
r = r(T ) root of T , 51
h(n) height of the node n, 51
path(T ) set of paths in T , 52
leaf(T ) leaves of T , 51
succ(n) set of successors of the node n, 51
pred(n) set of predecessors of the node n, 51
Kn child generated by n, i.e. {t ∈ T | n 6· t}, 52
nP,i node of height i in the path P , 52
Tf,max, Tf,min maximal and minimal tree-representation of f , 55 and 57
Tf,T, Tf,rm,T relative and relative-minimal tree-representation of f with respect

to T, 59 and 62
<− ordering on the set of path, 83
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κ-support
series with, 62

lωn-atomic, 149

admissible field
of strength n, 150

algebra
strong, 13

anti-chain, 2
archimedean, 6

over Z, 6
over a ring, 6

atomic
log-, 28

basic exp-log field, 27

chain, 1
strictly decreasing, 1
strictly increasing, 1

chain property
decreasing, 1
increasing, 1

child, 50
choice operator, 68

extensive, 68
Noetherian, 68
strictly extensive, 68

closure
exponential, 36
regular, 194

coefficient
leading, 18

cofinal cardinality, 23
cofinal set, 192
coherence

horizontal, 122

vertical, 123

compatible composition, 113

complete set of series, 7

composition

compatible, 113

left-, 113

right-, 93

confluent

lωn-, 149

log-, 28

convergent path, 54

depth, 69

exponential, of strength i, 171

derivation, 73

pseudo-, 122

element

weakly decreasing, 20

elements

comparable, 2

incomparable, 2

expωn-logωn -substructure, 150

exp-extension, 33

exp-log field, 25

exp-log field

basic, 27

exp-subfield, 28

exponential field, 25

exponential closure, 36

exponential depth

of strength i, 171

exponential extension, 33

exponential field

of strength n, 138

of strength 0, 138
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exponential function
of strength n, 138

extension
exponential, 33

transfinite, 57

extensive choice operator, 68

faithful M-embedded sub-tree, 64
faithful tree-embedding, 63
family

Noetherian, 11

field
admissible

of strength n, 150
exp-log, 25

exponential, 25
of strength n, 138
of strength 0, 138

transseries, 28
final segment, 2

finite height
tree of, 50

finite tree, 66
forest of a series, 61
function

exponential, 25
of strength n, 138

logarithmic, 25
of strength n, 138

super-exponential, 138

super-logarithmic, 138

generator, 2
group

strong abelian, 12

height, 49

incomplete set of series, 7
infinite product

notation, 126
isomorphic ordered sets, 192

labeling, 67
leaf, 49

leaf-labeled tree, 100
left-composition, 113
length of a word, 3
logωn -confluent, 149
log-atomic, 28
log-confluent, 28

at order k, 28
logarithmic function

of strength n, 138

M-labeled tree, 51
mapping

Noetherian, 14
strong linear, 14

minimal set, 2
monomial, 7

infinite, 8
infinitesimal, 8
leading, 18

multiplication
compatible with an ordering, 4
of generalized power series, 10

nested transmonomial, 38
node, 49
Noetherian choice operator, 68
Noetherian mapping, 14

order
anti-well-founded, 2
inverse, 1
lexicographic, 19
Noetherian, 2
partial, 1
total, 1
well-founded, 2

ordering, 1
strict, 1

parent, 50
part of a series

constant, 17
purely infinite, 17
purely infinitesimal, 17

partition, 192
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cofinal, 192
of α of strength n, 192

regular, 193

strongly cofinal, 193
path, 50

convergent, 54

eventually bifurcation-free, 55

right-most, 54
with cofinal bifurcations, 55

predecessor, 49

product
infinite, 126

of generalized power series, 10

proper sub-tree, 102

pseudo-derivation, 122

R-module
strong, 13

R-powers

field with, 6

group with, 6
ordered group with, 6

regular closure, 194

remainder, 18
restricted Taylor series, 122

right-composition, 93

right-most path, 54

ring
strong, 13

root, 49

series

formal power, 9

generalized power, 7
purely infinite, 8

purely infinitesimal, 8

Laurent, 8
restricted Taylor, 122

Taylor, 122

series with κ-support, 62

set
cofinal, 192

Stirling polynomial, 124

strictly extensive choice operator, 68

strong abelian group, 12
strong algebra, 13
strong linear mapping, 14

strong R-Module, 13
strong ring, 13

strong ring structure
trivial, 13

structure
underlying, 67
X-labeled, 67

sub-tree
faithful M-embedded, 64

proper, 102
subfield

exp-, 28

substructure
eωn-lωn -, 150

successor, 49
super-exponential function, 138

super-logarithmic function, 138
support, 7

countable, 22

Taylor couple, 122

Taylor series, 122
restricted, 122

term, 7
leading, 18

theorem

Higman’s, 4
Kruskal’s, 66

van der Hoeven’s, 70
transfinite exponential extension, 57

transmonomial
nested, 38

transseries, 28

transseries field, 28
tree, 49

finite, 66
labeled, 51
leaf-labeled, 100

M-labeled, 51
uniformly finite, 49

tree of finite height, 50
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tree-embedding, 63
faithful, 63

tree-representation, 52
maximal, 53
minimal, 55
of strength n, 196
relative, 57

of strength n, 197
relative-minimal, 60

trivial strong ring structure, 13
truncation, 21

maximal common, 21
proper, 21

underlying structure, 67
uniformly finite tree, 49

well-order, 2
word, 3

commutative, 4
empty, 3
non-commutative, 3

X-labeled structure, 67
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Appendix A

Exponential fields of positive
strength

C is an exponential field of strength 0 iff it is an exponential field. For n > 0, the field C
is an exponential field of strength n iff there are functions exp, . . . , eωn such that

E1. C is an exponential field of strength n− 1 for the functions exp, . . . , eωn−1 ,
E2. ∃cn ∈ C : ∀cn 6 x < y:

(i) x ∈ dom eωn ,
(ii) x+ 1 < eωnx and eωnx < eωny,
(iii) eωnx ∈ dom eωn−1 and eωn−1 ◦ eωnx = eωn(x+ 1).

By (ii), the function eωn is unbounded in C. Since eωn is strictly increasing on (c,∞) ⊆ C,
its inverse function lωn is uniquely defined on (eωnc,∞) ⊆ C. Moreover, the function lωn−1 is
defined on (eωn(c+ 1),∞) and satisfies

lωn ◦ lωn−1x = lωnx− 1.

If C is an exponential field of strength n, then eωn and lωn are called the exponential and
logarithmic functions of strength n . Note that exponential and logarithmic functions are
of strength 0. Exponential and logarithmic functions E = eω and L = lω of strength 1 are also
called super-exponential and super-logarithmic functions, respectively.

REMARK A.0.1 Let C = R. Recall that the exponential function exp is ultimately faster than
every polynomial function over R, i.e. for every i ∈ N there is a real number di such that

∀di < x : xi < ex.

The same holds for exponential functions of positive strength. We show inductively that for all
i, n ∈ N there are dn,i ∈ R (for a fixed set of functions exp, eω , eω2 , . . . ) with

∀dn,i < x : xi < eωnx.

The initial case n = 0 is clear. Now suppose that we have shown that dn,i exists for a fixed n
and all i. Let cn and cn+1 as in E2. Then applying eωn yields

∀x > max(cn, cn+1) : x+ 2 < eωn(x+ 1) < eωn+1(x+ 1).

A1
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Hence for all x > max(dn,i, cn + 1, cn+1 + 1) we have

xi < eωnx < eωn+1x.

This finishes the induction.

EXAMPLE A.0.2 Let C = R and expx =
∑

06i
1
i!x

i. Then 〈R, exp〉 is an exponential field of
strength 0. Suppose that for some integer n > 0 we have functions exp, . . . , eωn defined on
[0,∞) such that 〈R, exp, . . . , eωn〉 is an exponential field of strength n. Let cn ∈ R+ be such
that for all real numbers x > cn we have eωnx > x+ 1.

Let f : [0, 1] → R be strictly increasing with f(0) = cn+1 and f(1) = eωn(cn+1). We define
a function eωn+1 on [0,∞) as follows. Let x > 0 and nx ∈ N such that rx = x − nx ∈ [0, 1).
Then we let

eωn+1x := eωn·nxf(rx).

For all x > 0 we have nx+1 = nx+1, which shows the functional equation for eωn and eωn+1 . Since
eωn and f are strictly increasing, so is eωn+1 . We have to show that there is a cn+1 > 0 such that
eωn+1x > x+ 1 for all x > cn+1. From eωn+10 = cn + 1 we obtain eωn+11 = eωn(cn + 1) > cn + 2.
Let us assume that for all integers k > 0

eωn+1k > cn + 1 + k.

Then eωn+1(k + 1) > eωn(cn + 1 + k) > cn + 2 + k. Choosing cn large enough, we may let
cn+1 = cn + 1. This shows the existence of cn+1.

The function eωn+1 defined as in Example A.0.2 is continuous. We remark that it is possible
to construct C0- and even Ck-solutions (for k ∈ N ∪ {∞}). Results by Écalle (see [Éca92])
imply that there are always quasi-analytic functions eωn . In [Kne50], Kneser has constructed an
analytic super-exponential function. Using his result, we prove:

PROPOSITION A.0.3 For all n > 0, there are analytic exponential functions eωi of strength
i 6 n such that 〈R, exp, . . . , eωn〉 is an exponential field of strength n.

Proof: The case n = 0 is clear; and the case n = 1 has been shown by Kneser. In fact,
Kneser’s proof can be applied to eωn and eωn+1 , if there is an analytic expansion of eωn into C
such that there is a z ∈ C and an open neighbourhood U of z such that eωn is holomorph on Uz
and such that z is a fixed point of eωn .

First remark that for all 1-periodic, analytic functions g : R→ R the function

egωnx := eωn(x+ g(x))

again defines an analytic exponential function of strength n. In particular, for constant functions
g(x) = −b ∈ R, we obtain that

e−bωnx := eωn(x− b)
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z

y

eωnx

b

e−b
ωnx

z

x

x = y

Figure A.1: Translation of eωnx by b.

is the translation of eωn in direction 1 by b. Since limx→∞ eωnx = ∞, there must be a real
number b such that e−bωn admits a fixed point z ∈ R (i.e. the graph of e−bωn eventually cuts the line
x = y, see Figure A.1). Hence there is an open neighbourhood Uz ⊂ C such that e−bωn extends
holomorphically to Uz. Now apply Kneser’s proof. 2

In [Bos86], Boshernitzan considers super-exponential functions E on R in order to construct
Hardy-fields containing functions of ultimately faster growth than expi (i ∈ N). For C1-functions
E he shows that E′ is ultimately bounded by E3, i.e. there is some x2 ∈ R such that

∀x2 < x : E′x < E3x.

In the following, we will strengthen this bound and generalize the result to exponential functions
of arbitrary positive strength. The case of strength 1 will be treated separately since the proof
is simpler here.

PROPOSITION A.0.4 Let ε > 0 be a real number and E be a C1-super-exponential function on
R. Then there is a real number xε ∈ domE such that

∀xε < x : E′x < E1+εx. (A.1)

Proof: First, we remark that we only need to show the proposition for ε = 1/m with m ∈ N+.
For the rest of the proof, we fixm. Furthermore, we may assume [0, 1) ⊆ domE and that E′r > 0
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for all r ∈ [0, 1) (by a translation of E if necessary). Let C be such that | logE′r| 6 C for all
r ∈ [0, 1). Let a = E(0).

Claim 1: ∀x ∈ R : ∀k ∈ N : x+ · · · + expk x < expk+1 x.

We show the claim inductively. The case k = 0 follows from 1+x 6 ex. As for the inductive
step, we remark that for all y ∈ R we have 0 < 1+(y−1)2, thus 2y < ey for all y > 0. Applying
this to y = expk+1 x > 0 yields

k+1∑

i=0

expi x < 2 expk+1 x < expk+2 x,

whence the claim 1.

Claim 2: Fix D ∈ R. Then there is an integer ND ∈ N such that

∀n > ND : ∀y ∈ [a, ea] : m · (y + · · · + expn y) +D < expn+1 y.

For large enough n we have D < m · (y + · · · + expn y). Thus claim 2 holds if we can show
that there is an ND such that for all n > ND and all y ∈ [a, ea] the inequality

2m · (y + · · · + expn y) < expn+1 y (A.2)

holds. By claim 1, we have for all n and y

2m · (y + · · · + expn y) < 4m · expn y.

Let zm ∈ R be such that 4m · z < ez for all z > zm. Then there is an integer ND ∈ N such that
zm < expn y for all y ∈ [a, ea] and all n > ND. Thus

2m · (y + · · · + expn y) < 4m · expn y < expn+1 y.

This shows inequality (A.2) and therefore claim 2.

Let for the rest of the proofD = m·C and ND as in claim 2. Then for all x > ND+1 there are
n > ND +1 and r ∈ [0, 1) such that x = n+ r. From the functional equation Ex = expE(x− 1)
we obtain

E′x = Ex ·E′(x− 1)

= Ex · · ·E(1 + r) · E′r

= exp(Er) · · · expn(Er) ·E′r.

Let y = Er, then y ∈ [a, ea] and

logE′x = y + · · · + expn−1 y + logE′r 6 y + · · · + expn−1 y + C.

Since n− 1 > ND, claim 2 now implies

m logE′x 6 m · (y + · · · + expn−1 y) +D < expn y = Ex,
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hence E′x < E(x+ 1)
1
m . Multiplying with E(x+ 1) yields

E′(x+ 1) < E(x+ 1)1+
1
m .

This proves the proposition for x 1
m

= ND + 2. 2

REMARK A.0.5 Fix 0 < ε. Let xε be minimal such that for all x > xε the inequality (A.1)
holds on (xε,∞). Then the function ε 7→ xε is decreasing. In other words, the stronger we want
inequality (A.1) to be, the bigger we have to choose xε. The same remains true for the general
case.

PROPOSITION A.0.6 Let eωn be a C1-exponential function of strength n on R. For each ε > 0
there is an xε ∈ dom eωn such that

∀xε < x : e′ωnx < e1+ε
ωn x.

Proof: Let Ψ = eωn and cn the constant from E2 for Ψ. Let ψ be the exponential function
of strength n− 1 such that for all cn < x ∈ R with Ψx ∈ dom ψ the functional equation

ψ(Ψx) = Ψ(x+ 1) (A.3)

holds. The constant from E2 for ψ is denoted by cn−1. By applying a translation Ψ(x + b) if
necessary, we may assume that Ψ satisfies the following conditions.

Ψ1. [0, 1] ⊆ dom Ψ,
Ψ2. cn 6 0,
Ψ3. 1 < cn−1 < Ψ(0).

Note that by Ψ3 we have Ψx ∈ dom ψ for all x > 0. Hence equation (A.3) holds for all x > 0.
Let a = Ψ(0). Then ψ(a) = Ψ(1), and for all y ∈ [a,ψ(a)] we have cn−1 < y. Condition E2 for
ψ implies y < ψ(y), and using a simple induction shows y + i < ψi(y) for all i. Whence

∀y ∈ [a,ψ(a)] : lim
k→∞

ψk(y) = +∞ (A.4)

Claim 1: Let D ∈ R. Then there is an integer ND ∈ N such that

∀k > ND : ∀y ∈ [a,ψ(a)) : D <

k−1∑

i=1

log ψi(y).

To show claim 1, we remark first that from (A.4) it follows that

∀y ∈ [a,ψ(a)] : lim
k→∞

log ψk(y) = +∞.

Since ψ is continuous on [a,ψ(a)], there is an integer ND such that for all k > ND and all
y ∈ [a,ψ(a)] the inequality D < log ψk−1(y) holds. But then the same inequality is true on
[a,ψ(a)). From Ψ3 we now obtain 0 < log ψi(y). Thus

∀k > ND : ∀y ∈ [a,ψ(a)) : D < log ψ(y) + · · · + log ψk−1(y).
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This shows claim 1.

Claim 2: ∃Na : ∀k > Na : ∀y ∈ [a,ψ(a)) :

k−1∑

i=1

log ψi(y) < log ψk(y).

Recall from Remark A.0.1 that dn−1,3 is the real number with

∀x > dn−1,3 : x3 < ψ(x).

ChooseM ∈ N such that dn−1,3 < ψM (y) for all y ∈ [a,ψ(a)). Such an integer exists for the same
reason as ND exists in claim 1. We assume that M is sufficiently large such that cn−1 < ψM (y)
for all y ∈ [a,ψ(a)). Consequently, log ψM (y) < log ψM+1(y). We show by induction that

∀i > 0 :
i∑

j=1

log ψM+j(y) +
i∑

j=0

log ψM+j(y) < log ψM+i+1(y)

whenever y ∈ [a,ψ(a)). For i = 0 there is nothing to show. Assume that the inequality holds
up to i. Then

i+1∑

j=1

log ψM+j(y) +

i+1∑

j=0

log ψM+j(y) < 3 log ψM+i+1(y). (A.5)

From dn−1,3 < ψM+i+1(y) we obtain ψ3
M+i+1(y) < ψM+i+2(y). Applying this to inequality (A.5)

yields the inductive step. Now choose i large enough such that

M−1∑

j=0

log ψj(y) <
i+1∑

j=1

log ψM+j(y).

Then claim 2 holds for Na = M + i+ 1.

Claim 3: Let K ∈ N+. Then there is an integer NK ∈ N such that

∀k > NK : ∀y ∈ [a,ψ(a)) : K ·
k−1∑

i=0

log ψi(y) < log ψk(y).

Let again dn−1,2K ∈ R be such that x2K < ψ(x) for all x > dn−1,2K . Let N2K ∈ N be such
that for all k > N2K and all y ∈ [a,ψ(a)) the inequality dn−1,2K < ψk−1(y) holds. Then

∀k > N2K : ∀y ∈ [a,ψ(a)) : ψ2K
k−1(y) < ψk(y). (A.6)

On the other hand, by claim 2 we have for NK > max(Na, N2K)

∀k > NK : ∀y ∈ [a,ψ(a)) : log ψ(y) + · · · log ψk−2(y) < log ψk−1(y). (A.7)

Adding log ψk−1(y) and multiplying by K, we see that (A.7) is equivalent to

∀k > NK : ∀y ∈ [a,ψ(a)) : K ·
k−1∑

i=0

log ψi(y) < 2K · log ψk−1(y).
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Invoking (A.6) proves claim 3.

We now show the proposition. First, we remark that we can restrict ourselves to ε = 1
m

where m ∈ N+. Fix m. The function Ψ′ is continuous on [a,ψ(a)], hence there is a real number
C with

∀y ∈ [a,ψ(a)) : | log Ψ′(y)| 6 C.

Let D = m · C and N = max(Nm+1, ND) (where ND and Nm+1 are the integers from claim 1
and claim 3 respectively). Then since log y > 0:

∀k > N : ∀y ∈ [a,ψ(a)) : (m+ 1) ·
k−1∑

i=0

log ψi(y) +D <

k∑

i=1

log ψi(y) <
k∑

i=0

log ψi(y).

Hence

∀k > N : ∀y ∈ [a,ψ(a)) :
k−1∑

i=0

log ψi(y) + C <
1

m
log ψk(y),

which is equivalent to

∀k > N : ∀y ∈ [a,ψ(a)) :
k∑

i=0

log ψi(y) + C < (1 + ε) log ψk(y). (A.8)

For x > N , we have k > N and r ∈ [0, 1) such that x = k + r. Then (A.8) and y = Ψ(r) imply

∀x > N : log((Ψx) · · ·ψk(Ψx) · Ψ′r) < (1 + ε) log ψkΨ(r) = log(Ψx)1+ε.

Hence

Ψ′x = Ψx · · ·ψk(Ψx) · Ψ′r < (Ψx)1+ε.

The proposition holds thus for xε = N . 2





Appendix B

Introduction (English Version)

In this thesis, we present the construction of fields with functions which are faster than every iterated
exponential function. This introduction will describe what we mean by “construction”, “faster than” and
“exponential function”. By doing this, we hope to give the reader a good idea of what he can expect from
this thesis, and we hope to provide a motivation for the presented work. Moreover, this introduction will
serve as a guide to help the reader through the different parts of the thesis.

We start by explaining some basic concepts and by presenting the main results. We go on to summa-
rize what is known about super-exponential functions. The third part of this introduction will motivate
the given construction. Then we will come to the “road map” of the thesis: we give a short summary of
each of the forthcoming chapters, thus equipping a possible reader with an orientation guide. This will
be of particular interest since some chapters are rather technical, and there is a real danger of losing the
overview when working through the unavoidable details. Finally, we list some of the notations used.

B.1 Main results

The main objective of the presented thesis is to study the possibility of the existence of fast-growing
functions on fields of generalized power series.

For a totally ordered field C and a totally ordered multiplicative group M, a function

f : M −→ C

is a generalized power series, if the set of m ∈ M with f(m) 6= 0 (called the support of f) is well-ordered
in M. For fixed C,M the set S = C[[M]] of generalized power series f : M → C admits a multiplication
and an addition which provide S with a field structure. Thus every polynomial P ∈ S[X ] with coefficients
in S corresponds canonically to a function fP : S→ S.

Moreover, since C and M are totally ordered, it is possible to introduce a total ordering on S. Hence,
there is a natural interpretation of “growth” in S. Indeed, for two polynomials P,Q ∈ S[X ], we say that
P is faster than Q, if there is some s ∈ S such that

|fQ(t)| < |fP (t)|

for all series t > s. Classical results about generalized power series fields imply that distinct polynomials
can be compared in this sense. In analogy with functions over the real line, the question arises whether
there are functions on S or at least on some interval (f,+∞) which are faster than every polynomial in

B1
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S[X ]. Taking this analogy further, one might even be interested in the existence of exponential functions
on S.1

The field S = C[[M]] has a priori no reason to provide more structure than the one described above.
So, admitting exponential and logarithmic functions requires extra assumptions on the basic objects C
and M. Without listing these assumptions here, let us remark that so called transseries fields yield the
right setting for introducing exponential and logarithmic functions.2 Transseries fields will be denoted
by T rather than by S.

An important feature of transseries fields T is that on the one hand the logarithm is totally defined on
the set of positive series, but that on the other hand the exponential function is not total. To overcome
this problem, Dahn introduced a process which extends T to a transseries field Texp, thus building towers
of transseries fields

...

∪
Texp,exp

∪
Texp

∪
T

such that the logarithm and the exponential function can be totally defined on the positive subset of their
union. We will show how to continue this construction beyond the union of this tower, thus constructing
transseries fields Tα for every ordinal number α. Moreover, the ordering on the extended field is such
that for sufficiently large series f , the exponential of f is larger than every f i (i ∈ N).

Again, in view of the field of real numbers, it is natural to ask whether fields of generalized power
series possess more structural properties than the field structure or – as in the case of transseries fields
– logarithmic functions. In particular, can we introduce infinite sums, derivations and compositions in
such fields?

As for the exponential function, it is necessary to give those notions a meaning for generalized power
series. Let S = C[[M]] and F = (fi)i∈I ∈ SI . Any notion of infinite sums should coincide with the
field operations, if I is a finite set. This is satisfied if F is a Noetherian family, i.e. if the union of the
supports of all fi is well-ordered in M and if for every m ∈ M, there are only finitely many i ∈ I such
that fi(m) 6= 0. If this is the case, then we let

∑F be the series in S with
∑F(m) =

∑
I fi(m).

The canonical notion of a derivation ∂ on S should have the following properties:

• ∂ is constantly 0 on C
• for all f, g ∈ S we have ∂(fg) = ∂(f) · g + f · ∂(g)
• if F = (fi)i∈I is a Noetherian family, then so is ∂(F) = (∂(fi))i∈I and ∂(

∑F) =
∑
∂(F).

Moreover, if S is a transseries field, then the condition

1One has, of course, to specify what an exponential function is. To serve the purpose of this section, namely to
present the main results, we will assume that exponential functions F are non-constant functions with F (x+y) =
F (x) · F (y) whenever both sides are defined.

2There are, however, approaches alternative to the one presented in this thesis. All these approaches are
similar in that they have to overcome the same problem: the exponential and logarithmic functions are not
simultaneously totally defined on the set of all positive series. This fact has been independently shown by S. and
F.-V. Kuhlmann and S. Shelah [KKS97] and J. van der Hoeven [vdH97].
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• if 0 < f , then ∂(f) = f · ∂(log f)

should hold. We state our first result.

RESULT 1 If ∂ is a derivation on T, then for every ordinal number α there is a unique derivation ∂α

on Tα which extends ∂.

Similarly, one can define a notion of composition. Let T1 and T2 be transseries fields, then a function
∆ : T1 → T2 is a right-composition if the following conditions hold:

• ∆ is injective and ∀c ∈ C : ∆(c) = c
• ∆ is multiplicative
• if F = (fi)i∈I is a Noetherian family (in T1), then so is ∆(F) = (∆(fi))i∈I (in T2) and ∆(

∑F) =∑
∆(F)

• for all f ∈ dom exp in T1: ∆(exp f) = exp ∆(f).

RESULT 2 If ∆ : T1 → T2 is a right-composition, then for every ordinal number α there is a unique
right-composition ∆α : T1,α → T2,α which extends ∆.

An immediate question arising from the above is whether there is a link between derivations and
right-compositions. In particular, can Taylor-series developments be generalized to transseries fields?
This question is not only interesting in its own right. If we want to study structural properties of
transseries fields, in particular the existence of super-exponential functions, then we have to answer this
question affirmatively.

The first step is to extend the notion of right-compositions to compositions in general. Fix transseries
fields Ti (i = 1, 2, 3) with derivations ∂1, ∂2 on T1 and T2 respectively.3 A partially defined function
◦ : T1 × T3 → T2 is a compatible composition if it satisfies the following conditions:

• T3 ⊆ T2, and the restriction of ∂2 to T3 is a derivation
• for every series g ∈ T3 with C < g, the function ∆g : T1 → T2 with ∆g(f) = f ◦ g is a right-

composition
• for every m ∈ M1 larger than 1, the function m ◦ · : {f ∈ T3 |C < f} → T2 is strictly increasing
• ◦ satisfies the chain rule for compositions, i.e. for all f ∈ T1 and all g ∈ T3 with g ∈ dom (f ◦ ·),

we have g ∈ dom (f ′ ◦ ·) and (f ◦ g)′ = (f ′ ◦ g) · g′
• let f ∈ T1, g ∈ T3 and (εi)i∈I be a Noetherian family in T2 such that

∀i ∈ I : ∀m ∈ supp f : C <

∣∣∣∣
m ◦ g

m′ ◦ g · εi

∣∣∣∣ ,

then g +
∑

I εi ∈ dom f ◦ ·, (f (n) ◦ g · εi)06n,i∈In is a Noetherian family and

f ◦ (g +
∑

I εi) =
∑

06n

1

n!
f (n) ◦ g ·

∑

i∈In

εi,

where εi = εi1 · · · εin for i = (i1, . . . , in) ∈ In.

RESULT 3 If ◦ : T1 × T3 → T2 is a compatible composition, then for every ordinal number α there is a
unique compatible composition ◦α : T1,α × T3 → T2,α which extends ◦.

3We abbreviate both ∂1(f) and ∂2(f) by f ′ for better readability. The n-th derivation of f will in both cases
be denoted by f (n).
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A natural follow-up question to the above results about transseries fields concerns the existence of
generalized power series fields admitting not only exponential functions, but also functions with faster
growth than every iteration of the exponential function. For instance, a function E satisfying the func-
tional equation E(x+1) = exp ◦E(x) has this property. Note that once we have a function E, a function
E with E(x+ 1) = E ◦ E(x) will also be faster than every expi. We let eωi be an exponential function of
strength i > 0, if eω0 = exp and

eω1(x+ 1) = eω0 ◦ eω1(x)

eω2(x+ 1) = eω1 ◦ eω2(x)

eω3(x+ 1) = eω2 ◦ eω3(x)

...

Exponential functions of strength 1 are also called super-exponential functions. As there is no reason
for generalized power series fields to admit an exponential function, transseries fields do not necessarily
have exponential functions of positive strength. However, one can again choose a set of additional
conditions which provide the right framework for the definition of exponential functions of strength
n > 0. Those fields will be called transseries fields of strength n.

RESULT 4 For all n ∈ N, there are transseries fields of strength n.

Generalizing Dahn’s exp-extension process, we introduce eωn -extensions which extend transseries
fields T of strength n to fields Teωn which are again of strength n. Using these extensions we show

RESULT 5 Let n > 0. There are fields Kn of generalized power series with exponential functions of
strength n such that both eωn and the inverse function lωn are total on {f ∈ Kn |C < f}.

B.2 Super-exponential functions – a short history

Super-exponential functions and related problems have already been studied occasionally. In this section
we highlight some results; by no means, however, do we claim completeness.

In contrast to our construction, super-exponential functions have either been used to construct other
classes of functions (in particular, fractional iterates of some given function) and therefore rather been a
tool, or else the main attention has been given to super-exponential functions (or at least germs of such
functions) over the real line. To our knowledge, exponential functions of strength higher than 1 have not
yet been investigated.

First steps towards super-exponential functions can be traced back to the 19th century, when P. du
Bois-Raymond showed that there is no limit to growth for real functions. More precisely, let f1 ≺ f2 ≺ · · ·
be functions4 defined on some interval (a,∞) ⊆ R. Then there exists a function F : (a,∞) → R such
that fi ≺ F for all i. G. H. Hardy [Har10] gives two proofs of this fact. Applied to the set of functions
expi = exp ◦ · · · ◦ exp (the i-fold iteration of the exponential function), this fact yields the existence of a
function F which is faster than every iteration of exp.

The mere existence of such a function F , though, says nothing about the actual behaviour of F . In
order to at least give a restriction on the growth of such functions, we have introduced the notion of
super-exponential functions as solutions to the functional equation

expE(x) = E(x + 1). (B.1)

4The symbol ≺ denotes Hardy’s relation of domination between real functions which is defined by f ≺ g iff
lim
x→∞

f(x)/g(x) = 0.
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Now, if E is a solution to equation (B.1) and g a 1-periodic function, then E∗(x) = E(x + g(x)) is also
a solution. Hence, super-exponential functions are far from being uniquely defined by the functional
equation which determines their growth.

The next significant progress in the study of solutions E was made by H. Kneser in the 1940s. In
[Kne50], he constructs an analytic super-exponential function by using a complex fixed point of ex and
conformal transformations. In fact, he uses his solution to define an analytic half-iterate of the exponential
function, i.e. an analytic function ϕ with

ϕ ◦ ϕ(x) = ex.

More generally, he defines a set of analytic functions expr (where r ∈ R), called the fractional iterates of
exp, with the properties

exp1(x) = ex

expr+s(x) = expr ◦ exps(x)

for all r, s ∈ R. By constructing E and its unique inverse function L, he obtains the desired functions by
letting expr(x) = E(L(x) + r).5

Kneser’s article led to more study of fractional iterates, where ex was occasionally replaced by other
functions. Most notably, work by G. Szekeres and K. W. Morris [Sze58],[Sze62],[SM62] considers functions
of exponential growth, that is, functions f such that

expk−1(x) ≺ fk ≺ expk+1(x)

for all k ∈ N+. Examples are ex and ex − 1. Fractional iterates6 of f can now be constructed by solving
the functional equation

B(f(x)) = B(x) + 1,

which is also called the Abel equation, and then letting fr(x) = B−1(B(x)+ r). Note that for f(x) = ex,
a solution B is a super-logarithmic function. An interesting result of Szekeres concerns the uniqueness
of B for a large class of functions f . As mentioned above, super-exponential and -logarithmic functions
are far from being uniquely determined. The situation changes, if we consider functions f which are real
analytic for x > 0, which satisfy x < f(x) and 0 < f ′(x) for x > 0 and which allow a development

f(x) = x+ ax2 + · · · where a > 0.

This is the case for f(x) = ex − 1 and a = 1/2. Then there is only one function b such that

lim
x→0+

x2b(x) =
1

a

with b = B′ for a solution B of the Abel equation. In other words, B is uniquely determined up to a
constant.

Finally, super-exponential functions appear in M. Boshernitzan’s work about trans-exponential func-
tions. In [Bos86], he considers solutions E of the functional equation

h(E(x)) = E(x + 1),

5Even though his article was published in 1950, Kneser mentions that the question of the existence of analytic
functions exp 1

2
was discussed during the 1941 meeting of the German Mathematical Association and that these

discussions were sparked by a need for a “reasonable” solution in industry. Considering the time and place as well
as the political situation in Germany, one might with hindsight wonder what interest German industrials had in
analytic half-iterates of ex or what caused Kneser to mention this fact at all.

6i.e. a set of functions fr such that f1 = f and fr+s = fr ◦ fs for all r, s ∈ R
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where h(x) is either ex or ex − 1. Due to their growth properties, he calls solutions E trans-exponentials,
and he shows that there are germs of solutions which belong to Hardy fields. As an intermediate result,
he shows that for C1-solutions E, the inequality E′ ≺ E3 yields. We will come back to this observation
later.

B.3 Motivations

Having given a short review on the historical developments concerning super-exponential functions, we
will now devote a few remarks to our motivations for our construction. As mentioned above, super-
exponential functions have until now mainly served as a tool to obtain sets of fractional iterates. There
are, however, other reasons to pursue the construction. We will mention two of them here.

The first motivation lies in the model-theoretic study of the field of real numbers. Let R̄ denote
the reals with their field structure and L the language of ordered rings. A well known observation by
A. Tarski [Tar51] states that every definable subset of R̄ is the finite union of intervals in R ∪ {±∞}. In
other words, definable sets can already be expressed using the relation 6 and parameters from R∪{±∞}.
Tarski’s result led to the question of how to add functions to R̄ (and likewise function symbols to L)
without losing this property for definable sets (see for instance [vdD84]). More precisely, if F is a set of
functions over the reals and LF is the language of ordered rings augmented by a functional symbol for
every function in F , is every definable subset of 〈R̄,F〉 then a finite union of intervals?

For F with this property, one says that 〈R̄,F〉 is o-minimal. During the 1980s and 1990s, o-minimal
structures have been intensively studied.7 Furthermore, o-minimal structures admit many interesting
topological properties (cell-decomposition, stratification, triangularisation, etc.), which have been studied
in great detail by L. van den Dries [vdD98].

More important to us are the sets F , which can be added to R̄ such that the resulting structure
remains o-minimal. We are especially interested in possible growth properties of definable functions. A
first important result states that one can add restricted analytic functions to R̄ (see [vdD86]). Here, the
growth of definable functions is ultimately polynomially bounded. In his paper [Wil96], A. Wilkie then
shows that one can add the exponential function to R̄ and still retain the o-minimality property. This
result has been generalized [vdDMM94], [Res93] to a great extend, but one always obtains structures
with exponential bounds for all definable functions. Hence, a natural question is whether or not there
are o-minimal structures 〈R̄,F〉 with definable functions which are not bound by some expk. Certainly,
〈R̄, E〉 is a candidate.

In view of J.P. Ressayre’s proof of Wilkie’s theorem it is interesting to have a non-archimedean model
of Th(R̄, exp, E). We do not know whether our construction really contributes to a concluding solution
to this question, but recent results by Ressayre [Res99] suggest that our model is at least a tool to gain
more insight into the behaviour of super-exponential functions in non-standard models. Moreover, once
the o-minimality of the reals with super-exponential functions is shown, the question of the limits of
growth of definable functions arises anew. Hence, it makes sense to treat the construction for arbitrary
strength rather than just for strength 1.8

Our second motivation is J. van der Hoeven’s programme to construct a field of transseries in which
every algebraic, functional or differential equation with parameters in this field has a solution within the
field itself, if it admits solutions at all. In this context, adding a super-exponential function (or exponential

7For introductory articles see [PS86], [KPS86].
8In this context, we remark that an affirmative answer to the question of o-minimality of the structure 〈R̄, E〉

also addresses the question of leveled o-minimal structures studied by D. Marker and Ch. Miller [MM97].
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functions of arbitrary strength for that matter) can be seen as closing the field under solutions of the
functional equation E(x+ 1) = expE(x).

Let us in connection with this mention that Section 2.5 about nested transmonomials and -series is
also part of this programme. In fact, we do not need nested objects for the construction of E or L (and
their higher-strength versions), but they yield solutions to functional equations. Work by van der Hoeven
is currently still in progress, and we hope that our present work is a helpful contribution towards the
conclusion of his programme.

B.4 The structure of the thesis

We now outline the structure of the thesis chapter by chapter.

Chapter 1: The first chapter introduces the very basics. Although it is not our aim to make the
thesis a completely self-contained exposition, we start by recalling some well-known concepts and results.

We begin with the definition of an ordering being a binary anti-symmetric, reflexive and transitive
relation over some set P . In connection with orders, we introduce the notions of comparability, total
orders, anti-chains, decreasing chains and well-founded orders. We repeat that these objects are math-
ematical folklore, and that we do not claim any originality in introducing them. The same is true for
the generalization of the concept of well-ordered sets in total orderings to general orderings: an order is
Noetherian if it has no strictly decreasing chains and no infinite anti-chains.

The theory of Noetherian orders is well-studied, and we give some equivalent formulations, which we
will freely use throughout the rest of the thesis. Next, we introduce words over a given set P , where we
make a distinction between commutative and non-commutative words, P♦ and P ⋆ respectively. Moreover,
if there is an ordering 6 defined on P , then we introduce orderings 6P ♦ and 6P⋆ on the sets P♦ and P ⋆

respectively. We recall Higman’s result that if (P,6) is Noetherian, then so are (P♦,6P ♦) and (P ⋆,6P⋆).
After a short reminder of what an archimedean field is and how to generalize this notion to modules,

we finally introduce the main object of our study, the generalized power series. In fact, at this stage, we
define the set S = C[[M]] of generalized power series over M with coefficients in C rather generally by
allowing M to be any ordered semi-group and C a ring. Then f ∈ C[[M]] if f : M → C is a function
with Noetherian support in M. In general, however, we will let M be an ordered, multiplicative abelian
group. At this point it is important to introduce a whole set of notations. We start with sub-sets of M.
Let < be the ordering of M, then

M↑ = {m ∈ M | m ≻ 1},
M 7→ = {m ∈ M | m < 1},
M↓ = {m ∈ M | 1 ≻ m},
M

7→

= {m ∈ M | 1 < m}.

Moreover, we let S↑ = C[[M↑]], and define the sets S 7→, S↓, S

7→

accordingly. We also use the arrow-notation
as an operator on the set of series by letting f↑ ∈ S with

f↑(m) =

{
f(m) if m ∈ M↑,
0 otherwise.

Similarly, we can define series f 7→, f↓, f

7→

, which are elements of S 7→, S↓, S

7→

, respectively. We write fm

instead of f(m) to express the idea that f should be seen as a series (hence the name) rather than as a
function, thus fm acting as the coefficient belonging to the monomial m. Using this convention, we write
f =

∑
m∈M

fmm.



B8 APPENDIX

We introduce an addition and a multiplication on S by letting

f + g =
∑

m∈M

(fm + gm)m,

f · g =
∑

m∈M

(
∑

ab=m

fagb)m.

These operations equip S with a natural ring structure. There are also canonical embeddings of both C
and M into S. Moreover, it is shown that S is a field if and only C is a field.

In order to show the latter property, it is necessary to introduce a notion of addition which extends
the sum of finitely many series. Sure enough, one may not find a reasonable expression f1 + f2 + · · · for
every arbitrarily given sequence (f1, f2, . . . ) of series in S. However, if the sequence F = (fi)i∈I ∈ SI is
such that

⋃
i∈I supp fi is Noetherian in M and that for all m ∈ M there are only finitely many i ∈ I such

that m ∈ supp fi, then we may let
∑

F =
∑

I fi =
∑

m∈M

∑

i∈I

fi,mm.

Sequences F with the above properties are called Noetherian families, and it is shown that Noetherian
families admit good algebraic properties.

The summation of Noetherian families can be seen in the more general context of strong algebras.
Without going into details here, we only mention that generalized power series fields C[[M]] are strong
C-algebras with respect to the above summations

∑
I . A key property, which will be used throughout

the construction process in this thesis, is the following. Let C[[M]], C[[N]] be rings of generalized power
series. Let ϕ : M −→ C[[N]] be a mapping such that the image of every Noetherian set in M is a
Noetherian family in C[[N]]. Then ϕ extends to a unique mapping ϕ̂ : C[[M]] −→ C[[N]] such that for
any Noetherian family (fi)i∈I in C[[M]] we have

∑
I ϕ̂(fi) = ϕ̂(

∑
I fi).

Moreover, if ϕ preserves multiplication, then so does ϕ̂. Also, if for m, n ∈ M, the mapping ϕ satisfies
ϕ(mn) = m · ϕ(n) + ϕ(m) · n, then ϕ̂ inherits this property as well, i.e. for all f, g ∈ C[[M]] we have
ϕ̂(fg) = f · ϕ̂(g) + ϕ̂(f) · g.

The rest of the first chapter is devoted to generalized power series fields C[[M]] where both C and M

are totally ordered. One effect is that we have several canonical ways of representing series f ∈ S. First,
we notice that since now M = M↑ ∪ {1} ∪ M↓, there is a unique constant f= = f1 ∈ C such that

f = f↑ + f= + f↓

= f↑ + f

7→

= f 7→ + f↓.

Moreover, the support of f is well-ordered in (M,<) and admits thus a minimal element, called the
leading monomial of f , denoted by df . The value which f takes in df is cf , the leading coefficient. Let
τf = cfdf be the leading term of f , then there are series Rf , δf with

f = τf +Rf

= τf (1 + δf).

Also, the total orderings of C and M induce a total ordering on S defined by

0 < f ⇔ 0 < cf

g < f ⇔ 0 < f − g.
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We finish the first chapter with some general considerations about truncations and the behaviour of
supports for sequences of series. For a given f ∈ S, a series g is a truncation of f if the support of g is
an initial segment of the support of f and if the two series coincide on the support of g. In other terms,
there is a monomial mg such that

g =
∑

m ≻ mg

fmm.

We will sometimes use truncations and their properties in proofs. Similarly, we introduce cofinal cardi-
nalities as a tool. For a total order P = (P,6) we say that P has cofinal cardinality < κ (where κ is a
cardinal number), if every well-ordered set in P has cardinality less than κ. The real numbers with their
natural ordering have, for instance, cofinal cardinality < ℵ1. However, we show that if C and M have
cofinal cardinalities < κ1 and < κ2 respectively, then for every strictly decreasing sequence (fα)α<τ in S
we must have |τ | < max(κ1, κ2).

Chapter 2: Fields of generalized power series – up to this point – provide little structure. However,
by demanding some well-chosen properties, we single out classes of generalized power series fields which
have at least logarithmic and exponential functions. To this end, we start the second chapter by fixing
the conditions of a function to be called an exponential function.

In fact, a function exp which is partially defined on a totally ordered field C, is an exponential function
if it is strictly increasing, if a+ 1 6 expa for all a ∈ C in the domain of exp, and if

exp(a+ b) = (exp a)(exp b),

whenever both sides are defined. The field C is called an exp-log field in this case.
If C is an exp-log field such that C = dom exp, then one can define a function exp on C[[M]]

7→

by

exp f = exp(f=) · e(f↓),

where e(x) =
∑

N

1
n!x

n. The range of exp is the set S

7→

,+ of positive non-infinite series. Hence every S
provides a basic exp-log field structure. The inverse function of exp is denoted by log and satisfies

log f = log cf + l(f↓)

for all 0 < f ∈ S
7→

, where l(x) =
∑

16n
(−1)n+1

n
xn. Additional properties are, however, required in order

for a field S to allow a logarithm to be defined on the set of all positive elements. A field C[[M]] is said to
be a transseries field, if C is an exp-log field with C = dom exp and if log extends partially to T = C[[M]]
such that

T1. dom log = T+

T2. log M ⊆ T↑

T3. log(1 + f) = l(f), for all f ∈ T↓

T4. for every sequence (mi)06i ⊆ M such that mi+1 ∈ supp log mi for all 0 6 i, there is an integer
n0 ∈ N such that

∀n0 6 n : ∀n ∈ supp log mn : n < mn+1 ∧ (log mn)mn+1
= ±1.

Conditions T1 – T3 allow Dahn’s extension process [Dah84], whereas condition T4 is essential for nested
extensions. Both the exponential and the nested extensions are the focus of this chapter.

In order to distinguish transseries fields from usual generalized power series fields, we will use T
instead of S. Elements of transseries fields are called transseries. A simple example of a transseries field
is L = R[[logZ

⋆

x]], where

logZ
⋆

x = {loga x = xa0 loga1 x · · · logan
n x | a ∈ Z⋆}.
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Now, since there are no transseries fields T such that both exp and log are total on T and T+ respectively,
there is a need to enlarge T. This is where Dahn’s extension process comes into play. One lets Texp =
C[[expT↑]], the exponential extension of T. For an ordinal number α one defines the field Tα = C[[Mα]]
by

Tα =





T if α = 0
Tβ,exp if α = β + 1

C[[
⋃

β<α

Mβ ]] if α is a limit ordinal.

Fields of the form Tα are also called transfinite exponential extensions of T. There are two different ways
to obtain fields of generalized power series fields for which exp and log are total. First, if λ is a limit
ordinal, then

⋃
α<λ Tα has this property; but it is no longer of the form C[[N]]. The second possibility is

to only allow transseries such that the cardinality of the support does not exceed a fixed cardinal number.
In the latter case, the extension process is stabilizing. One reason why we treat the case of exponential
extensions in great detail is that many of the underlying principles will re-occur in a similar shape in the
construction of exponential extensions of positive strength. In fact, the plan we have to follow is to

• extend the monomial group to a set M̂ ⊇ M,
• define a multiplicative group structure on M̂,
• define an ordering on M̂ which is compatible with the multiplication,
• define a logarithm on M̂ and T̂ = C[[M̂]] such that T̂ is a transseries field.

Let us mention a general result about transseries fields. Suppose that C and M have cofinal cardinality
< κ1 and < κ2 respectively. Then we show that

|supp f | < max(κ1, κ2)

for all series f ∈ Texp.

The second part of the chapter demonstrates the possibility of introducing nested monomial expres-
sions. By that we mean transmonomials like

ex2+elog22 x+e
log24 x+e

.
.
.

. (B.2)

The expression (B.2) provides a canonical solution to the functional equation

f(x) = exp(x2 + f(log2 x)).

Expressions of this kind also occur naturally in the characterization of intervals of transseries. For more
on this see [vdH97].

Monomials like (B.2) have a priori no reason to belong to a given transseries field. One can easily
check that it is not in L, for instance, nor in any transfinite exponential extension Lα. We provide a tool
for extending transseries fields T by nested monomials, thus giving us a means to close such fields under
functional equations which lead to such expressions. More precisely, for sequences ϕ = (ϕ0, ϕ1, . . . ) and
σ = (σ0, σ1, . . . ) ∈ {−1,+1}N with

• ∀i > 0 : ϕi ∈ T↑ ∧ 0 < ϕi+1,
• ∀i > 0 : ∀m ∈ suppϕi : ∃j > i : ∀ψ ∈ T↑:

suppϕj ≻ ψ ⇒ m ≻ σi e
ϕi+1+σi+1 e

.
.
. σj−1 e

ϕj+ψ

,
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we show how to construct an transseries field Tnest containing T and the expression

eϕ0+σ0 eϕ1+σ1 e

.
.
.

.

Chapter 3: This and the next two chapters pursue a structural study of transseries fields. This study
is motivated by the necessity for a Taylor-series-like development in the construction of super-exponential
functions. More precisely, we need notions of derivations and compositions for both transseries fields and
their transfinite exponential extensions. Chapter 3 prepares the ground by introducing the representation
of terms and series as trees.

We start by a general review of trees. Historically, there are many different approaches to this topic,
depending on the purpose of the particular problem at hand. It seems therefore reasonable to define
exactly the set of objects (tree, node, height, path) which we will need. Also, we define labeled trees
and embeddings between trees. We show properties which are relevant to our later work. Moreover, we
introduce a generalization of labeled trees, the labeled structures. Readers familiar with those objects
and their properties may of course skip the technicalities of these sections.

We then apply the thus developed toolbox to series in fields T = C[[M]]. The idea is indeed quite
simple. Firstly, let cm ∈ CM. Then log m is a series in T. Hence, we have the set term log m = {tβ | β <
α} for some ordinal α such that

t0 ≻ t1 ≻ · · · ≻ tβ ≻ tβ+1 ≻ · · ·

We represent cm as a tree with a root which is labeled with cm such that from this root a branch leads
to a leaf labeled by tβ for every β < α. A tree thus constructed is unique for cm.

t0 t1 tβ tβ+1

cm = cet0+t1+···

Clearly, to every tβ we can define a similar tree, and what is more, we can insert that tree into the
leaf of the first tree labeled by tβ . Inductively continuing this process, we obtain the representation of
the term cm as a labeled tree of infinite height. Let us call this tree Tcm,max.

Secondly, it is possible to extend the concept from mere terms to series f . Note that the first step
in the construction of the tree Tcm,max can be imitated. We replace the term cm by f as the label of the
root, and we replace the set of terms in log m by the set of terms of f . Then we continue as above.9

The representation thus obtained will be called the maximal tree-representation of the given term
or series. In fact, we first formalize the notion of a tree-representation, and then show the existence
and uniqueness of maximal tree-representations. From the maximal tree-representation we derive several
other tree-representations of terms or series. First, we observe that – by the properties of transseries
fields – a path P in Tt,max either admits an integer i such that the label tP,i of the node of height i in P
is log-confluent of order 0, or for every i ∈ N there is some j > i such that

term log tP,j \ {tP,j+1} 6= ∅.
9We remark that in practice, if the given series is already a term, then we leave out the first step.
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...
...

...
...

cm, f

t0 t1

t0,0 t0,1 t1,0 t1,1

In the former case, we say that P is convergent. It is shown that Tt,max is completely determined by the
set of its convergent paths. The minimal tree-representation of the term t, symbolized by Tt,min is the
sub-tree of Tt,max such that a node is a leaf if and only if its label is log-confluent at order 0. One defines
Tf,min of series f in a similar way.

The tree-representations Tt,max and Tt,min exist uniquely for all terms (or series) in transseries fields

T. For terms from transfinite exponential extensions T̂ = Tα we define two more tree-representations
with respect to the field T. The relative tree-representation Tt,T of t with respect to T is the sub-tree
of Tt,max where a node is a leaf if and only if its label is an element from CM. The relative-minimal
tree-representation w.r.t. T is the sub-tree of Tt,max such that a node is a leaf if and only if the label of the
node is log-confluent at order 0 and an element from CM. The latter representation will be symbolized
by Tt,rm,T. We remark that all these trees are uniquely determined. Moreover, we show further properties
and give an application of the use of these trees.

Chapter 4: We turn to derivations and the possibility of the existence of derivations for transfinite
exponential extensions. We assume that there is a derivation ∂ on T. Recall from above that by that we
mean that ∂ is a strongly linear mapping which sends elements from C to 0, which satisfies the functional
equation

∂(fg) = ∂(f) · g + f · ∂(g)

for all series f, g and such that ∂(f) = f · ∂(log f) for all 0 < f . We fix an ordinal number α > 0 and
show that there is at most one derivation ∂α : Tα → Tα which extends the given derivation ∂.

There are two ways of defining ∂α, and we mention here only the definition which uses a transfinite
induction. Under the assumption that there are already derivations ∂β for all β < α, we define a function

ϕ : Mα −→ Tα

using the fact that for every m ∈ Mα, the series log m is contained in a field Tβ with β < α. We let

ϕ(m) := m · ∂β(log m).

This definition does not depend on the choice of the ordinal β. Moreover, we show that if ϕ is a Noetherian
mapping, then its unique strongly linear extension ϕ̂ : Tα → Tα is the derivation ∂α. The problem thus
reduced, it remains to show that ϕ is Noetherian. We invoke the Noetherian-like property concerning
paths by associating in a canonical way a path to every element of supp ∂(m) for some m ∈ Mα. The
claimed Noetherianity can then be shown. We thus extend derivations from a given transseries field to
all transfinite exponential extensions.

Chapter 5: Similar to derivations, we can introduce a notion of compositions between transseries
fields as done in the introduction. In fact, one shows that for every transseries field T there are right-
compositions ∆ : L→ T which are defined as follows. Let g ∈ T+

∞ (the set of positive elements such that
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dg ∈ M↑). Then we can replace x by g. More precisely, we show that the mapping ϕ : logZ
⋆

x −→ T
defined by

m = loga x 7−→ m ◦ g = ga0 loga1 g · · · logan
n g

is Noetherian and extends thus uniquely to ϕ̂ : L −→ T with f ◦ g =
∑

m
fm m ◦ g.

Next, we consider extensions of right-compositions. More precisely, let T1,T2 be transseries fields
with monomial groups M,N, respectively. We suppose the ∆ : T1 → T2 is a right-composition, i.e. a
multiplicative, strongly linear mapping such that for all f ∈ T1 we have

∆(f) = 0 ⇒ f = 0,

f ∈ dom exp ⇒ ∆(exp f) = exp ∆(f).

Again, we show that there is at most one extension of ∆α to T1,α. As for the derivation, we show its
existence by using a transfinite induction. Assuming the existence of ∆β for all β < α, we define a
mapping

ϕ : Mα −→ T2,α

m 7−→ exp ∆β(log m)

if log m ∈ T1,β ⊆ T1,α. We establish a link between right-compositions and tree-representations, and we
can use this connection to show that ϕ is a Noetherian mapping. This implies that ϕ̂ = ∆α. On the other
hand, the correspondence will open a combinatorial way of defining extensions of right-compositions.

The third part of the chapter considers Taylor-series developments, which can be seen as the canonical
link between derivations and compositions. Therefore, it is natural to ask whether we have something
similar for those operators in transseries fields. In fact, we first formalize the concept by introducing
the notion of compatible compositions. If Ti = C[[Mi]] (i = 1, 2, 3) are transseries fields, then we call
a function ◦ : T1 × T3 → T2 a compatible composition, if it satisfies a number of conditions. First,
we assume that there are derivations on T1 and T2. Moreover, we demand that T3 ⊆ T2 and that the
restriction of the derivation of T2 to T3 is an derivation. Secondly, if we fix a series g ∈ (T3)

+
∞, then the

function

∆g : T1 −→ T2

f 7−→ f ◦ g

is a right-composition. The third point that we need is

∀m ∈ M
↑
1 : ∀n1, n2 ∈ M

↑
3 : n1 ≻ n2 ⇒ m ◦ n1 ≻ m ◦ n2.

Also, if ◦ is defined for (f, g) ∈ T1×T3, then f ′ ◦g is defined as well and the chain rule (f ◦g)′ = f ′ ◦g ·g′
holds. The last condition, that we demand, requires the most attention. Suppose that ◦ is defined for
the couple (f, g) ∈ T1 ×T3. Fix a Noetherian family (εi)i∈I in T2. We can certainly not expect that ◦ is
defined for the couple (f, g +

∑
I εi). If, on the other hand, for all i ∈ I we have

∀m ∈ supp f :
m ◦ g
m′ ◦ g ≻ εi,

then we demand that (f, g +
∑

I εi) ∈ dom ◦ and that (f (n) ◦ g · εi)06n,i∈In is a Noetherian family with

f ◦ (g +
∑

Iεi) =
∑

06N

f (n) ◦ g ·
∑

i∈In

εi,



B14 APPENDIX

where εi = εi1 · · · εin . Note that this is a very strong Taylor-property which allows a great freedom in
the manipulation of series.

If we have a compatible composition ◦ : T1 × T3 → T2, then for every fixed series g ∈ (T3)
+
∞ the

right-composition

∆g : T1 −→ T2

f 7−→ f ◦ g

extends uniquely to a right-composition

∆g,α : T1,α −→ T2,α.

It is therefore natural to ask whether the function

◦α : T1,α × (T3)
+
∞ −→ T2,α

(f, g) 7−→ ∆g,α(f)

is a compatible composition. In fact, it is the last condition, which is the hardest to prove. Using the
facts about labeled structures as shown in Chapter 3, we can show this property, too.

Chapter 6: Until now, we were mainly concerned with functions of at most exponentially growth.
From now on, our interest will be on functions which are faster. We start with some general considera-
tions. The main question remains of how to define super-exponential and super-logarithmic functions in
generalized power series fields. Since we will eventually broaden that question to exponential functions
of arbitrary positive strength, we will first focus on properties originating from the defining functional
equation. In fact, it is one of the purposes of chapter 5 to settle some technical questions once and for
all.

Fix an transseries field T and assume that we have defined a function φ at least partially on that field.
A special case would be φ = log, but actually we have φ = lωn in mind. At any rate, we are interested to
know how to define a function Φ on T such that the functional equation

Φφ(g) = Φ(g) − 1 (g ∈ T)

holds whenever both sides make sense. We employ two ideas. First, if g = f + ε such that the sequence

(Φ(f),Φ′(f) · ε,Φ′′(f) · ε2, . . . )

is a Noetherian family, then we will let

Φ(g) = Φ(f + ε) = Φ(f) + Φ′(f) · ε+ Φ′′(f) · ε2 + · · · .

In other words, we define Φ(g) using the Taylor-development of Φ in f . There are, however, some
problems to consider.

• We already need a partial function Φ in order to let f ∈ domΦ.
• What if there is no derivation defined on T?
• What if there are g = f̂ + ε̂ which also allow the Taylor-series development?

In fact, the first problem does not concern us here; we will simply work under the assumption that there is
already a partially defined function Φ on T. The second problem is in theory more serious. Even though
we will always have a derivation in our applications, we address this problem because of its generality.
In fact, we show a way to define Φ′(f),Φ′′(f), . . . by imitating a derivation. The third problem then
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disappears completely, for we then have only to apply the last point of the definition of a compatible
composition.

So, let us dwell on the second point a little more. We will show that Φ′(f) is uniquely determined
by the functional equation in transseries fields, if there is an derivation. But then, we can express Φ′(f)
without even mentioning a derivation at all. The same principle will hold for higher derivations. For
instance, if we want to determine the first derivative of a super-logarithmic function, we will find that

L′x =
1

x log x log2 x · · ·
=

1

exp(log x+ log2 x+ · · · ) .

We remark that in this example, we have L′x ∈ Lexp. The same will be true for L′′x, L′′′x, . . . . In fact,
derivatives of higher degrees can be recursively defined.

Now, there can be series g such that a decomposition into a sum f + ε as above is not possible. To
overcome those situations, we use the function φ to reduce the series g. Even though the above process
may fail on g, there could be some n ∈ N such that φn(g) can be decomposed into such a sum enabling
a definition of Φ(φn(g)) in the above sense. But then, we may let

Φ(g) = Φ(φn(g)) + n.

Again, we have to tackle one problem. There could be more than one integer allowing that definition. In
other words, we have to show that Φ(φn(g)) + n = Φ(φm(g)) +m, whenever both sides make sense. This
property, which we will call the vertical coherence of the definition of Φ, will be shown.

Finally, we add some remarks about possible inverse functions ψ,Ψ of φ,Φ. It should be noticed that
for these functions the functional equation ψ(Ψ(f)) = Ψ(f + 1) holds, whenever both sides are defined.

Chapter 7: We are now well-equipped to extend Dahn’s construction to exponential functions of
higher strength. To do so, we use the same method as in the exponential extension process, only, due to
the amount of technical work involved, we have decided to split the process into two chapters. Actually,
the difficulties arise from the fact that we want to treat all possible positive strength at a time. We could,
of course, first construct fields with super-exponential and -logarithmic functions and then generalize the
construction to general positive strength. But this would mean repeating the same definitions, lemmas
and properties, thus lengthening the exposition unnecessarily.

First, we introduce some notations which will be helpful for keeping the formulas short. Also, we
introduce the convention that if we speak of an exponential or logarithmic function of strength 0, then we
mean the usual exponential and logarithmic functions. We fix a positive integer n. A totally ordered field
C is an exponential field of strength n if there are functions exp, . . . , eωn−1 such that C is an exponential
field of strength n− 1 for these functions and if there is a constant cn ∈ C and a function eωn partially
defined on C such that for all cn 6 x < y we have

• x ∈ domeωn ,
• x+ 1 < eωnx and eωnx < eωny,
• eωnx ∈ domeωn−1 and eωn−1eωnx = eωn(x+ 1).

We show that R is an exponential field of strength n and that – by generalizing Kneser’s proof – we can
also assume that eωn is analytic. Moreover, we strengthen a result by Boshernitzan. Assume that eωn is
a C1-function on R and ε > 0. Then there is a real number xε such that e′ωnx < e1+ε

ωn x for all x > xε.
The next step is to define transseries fields of strength n. Recall that we had a specific composition

result for transseries fields. This composition result can indeed be generalized to positive strength.
Similarly, we need to extend the definition of log-confluence to a confluence property for logarithmic
functions of any non-negative strength.10 We then say that T = C[[M]] is of strength n if it is of strength

10The only difficulty in this approach of treating all positive strength at once is in keeping track of the depen-
dencies.
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n − 1, if C is an exponential field of strength n and if there is a partially defined function lωn with
T+
∞ ⊆ dom lωn such that

• if f, lωn−1f ∈ dom lωn , then lωn ◦ lωn−1f = lωnf − 1
• if f ∈ T+

∞, then there is some k ∈ N such that f is lωn−1-confluent at order k, such that

lωn−1·kf = m + ε

with m ∈ dom lωn , and l′ωnm ∈ T and

lωnf = k + lωnm + l′ωnm · ε+
1

2!
l′′ωnm · ε2 + · · ·

• for all f ∈ domeωn with

∀k ∈ N : ∀m ∈ supp f↓ : 1 ≺ m · eωn(f − k)

we have eωnf ∈ M

• T+
∞ is lωn -confluent.

This definition provides the right framework for both the generalized Dahn-process and the extension of
the definition of transseries fields of strength n− 1 to strength n.

The rest of this chapter consists of three different parts. First, we show some properties of transseries
fields, which will have applications later. Secondly, we show that the partial composition result of
strength n holds for transseries fields of strength n, thus making way for the definition of transseries
fields of strength n+ 1. Finally, we give an example of an transseries field of strength n.

Chapter 8: This chapter extends Dahn’s process to positive strength..

Fix integers 0 6 i 6 n and assume that T is of strength n. Note that T is also of strength i, hence that
there are functions eωi and lωi . Now, as in the exponential case, the function eωi is not totally defined
on the set T+

∞. Again, we will define a field T̂ ⊇ T, which is of strength n and such that T̂+
∞ ⊆ domeωi .

Obtaining such a field is an iterative process.

In a first instance, we construct an extension Te
ωi

= C[[Me
ωi

]] of T. In fact, we start by defining a
set of new monomials, Ni,T, as follows. Let Fi,T ⊆ T+

∞ be the set of series f such that f − k 6∈ domeωi

for all k. Since we want to add eωif as a monomial, we let Ni,T be the multiplicative closure of the set

{l′α(eωnf) | α 6 ωi ∧ f ∈ Fi,T}.

We then let Me
ωi

= M · Ni,T. We now have to work through the following programme:

• define a multiplicative group structure on Me
ωi

,
• define an ordering on Me

ωi
which is compatible with the multiplication,

• for j = 0, . . . , n, define functions lωj on Me
ωi

and Te
ωi

= C[[Me
ωi

]] such that

〈Te
ωi
, log, . . . , lωj 〉

is of strength j.

Note that the extension step T→ Te
ωi

does not only generate an transseries field of strength i, but that
Te

ωi
is even of strength n. Also, we remark that the extension step involves numerous intermediate steps,

namely the construction of transseries fields 〈Te
ωi
, log, . . . , lωj 〉 of strength j 6 n.

Chapter 9: In the last chapter we show how to apply those processes in order to define exponential
closures of positive strength
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We use the extension process to construct the exponential closure of strength n. Let T be a transseries
field11 of strength n. Then we let

T0 := T

Tm+1 := (Tm)exp,eω ,... ,eωn

T<ω :=
⋃

m<ω

Tm.

In other words, we apply iteratively the extensions for exp, . . . , eωn and then take the inductive limit of
the resulting chain of transseries fields. Now, the field T<ω , although not a transseries field itself, is a
field of generalized power series with functions eωn and lωn which are total on the set T+

<ω,∞.
Moreover, we show that we have a certain degree of freedom in the choice of the order of the iterative

process. We also reconsider the behaviour of the supports of series under the extension processes. Finally,
we generalize the results about tree-representations.

B.5 Remarks on the notations

We introduce various notations for objects defined in the thesis. There are, however, some general
notations which will be employed throughout the following chapters.

Integer numbers will in general be denoted by k,m, n and occasionally by i, j, where the latter two
usually stand for non-negative integers. For tuples of integers, we will often write a, b,K, L.

We reserve α, β, γ, ... for ordinal numbers. In particular, λ will generally stand for a limit ordinal.
Cardinal numbers will be denoted by κ and indexed versions thereof.

Unless otherwise stated, I and J will stand for index sets and i, j for elements of I and J . It will be
clear from the context whether i and j stand for integers or indices.

Let f and R be a n-ary function and relation respectively. For sets A1, . . . , An we let

f(A1, . . . , An) = {f(a) | a ∈ A1 × · · · ×An}
R(A1, . . . , An) = R ∩A1 × · · · ×An.

In other words, they denote the restriction of f and R to the sets A1, . . . , An. For integers n, we let fn

be the n-th iteration of the function f . Note that with this notation f−1 denotes the inverse function of
f . Where an exponentiation is defined, fpxq stands for the term (f(xq))p. All the above conventions are
understood in cases where the terms are well-defined.

Finally, we remark that we use “iff” for definitions and “if and only if” for equivalent statements.
Similarly, we use t :⇔ s to define the term t by s, and we use t⇔ s to express the equivalence of t and s.

Further notations are introduced when they occur in the text. We add a glossary and an index at
the end of the thesis for further orientation.

11This always suggests the existence of appropriate functions lωi for all i 6 n.


