Introduction’

Dans cette these, nous présenterons la construction de corps munis des fonctions plus rapides
que toute itération d’une fonction exponentielle. Le but de cette introduction est de décrire la
signification des mots “construction”, “plus vite” et “fonction exponentielle”. Nous le faisons
espérant de donner aux lecteurs une bonne idée de ce a quoi ils peuvent attendre de cette these ;
nous espérons également fournir une motivation de I’étude présentée, et finalement nous pensons
qu’elle sert comme guide pour aider les lecteurs a traverser les différentes parties de la these.

Nous commencons en expliquant quelques concepts de base et en présentant les principaux
résultats. Ensuite, nous résumerons ce que ’on savait déja sur les fonctions super-exponentielles.
Dans la troisieme partie de I'introduction, nous donnerons les motivations pour la construction
présentée. Il suit une section qui constitue la “carte routiere” de la theése : nous résumerons
chaque chapitre en quelques mots pour munir les possibles lecteurs d’un guide d’orientation. Il
vy a un intérét particulier a faire cela, car quelques chapitres sont assez techniques, et il existe
un danger réel de se perdre dans les détails qui sont néanmoins nécessaires. Finalement, nous
donnerons une liste des notations les plus fréquemment utilisées.

Les résultats principaux

Le but principal de la these présentée est ’étude de la possibilité d’existence des fonctions avec
croissance rapide sur des corps de séries généralisées.

Pour tout corps C et tout groupe multiplicatif 91, totalement ordonnés, une fonction
f:m—C

est une série généralisée, si 'ensemble des m € M tels que f(m) # 0 (désormais appellé le support
de f) est bien-ordonné dans M. Pour C, M fixés, 'ensemble S = C[[M]] des séries généralisées
f 9 — C admet une multiplication et une addition telles que S est un corps. Donc, chaque
polynome P € S[X] avec des coefficients dans S peut étre associé d’une fagon canonique & une
fonction fp:S — S.

De plus, puisque C' et 91 sont totalement ordonnés, il est possible d’introduire un ordre total
sur S. Il existe donc une interpretation naturelle de “croissance” dans S. En effet, pour deux
polynémes P, Q € S[X], on dit que P est plus rapide que @, s’il y a une série s € S avec

[fo®)] < [fp(?)]

tA translation of this introduction can be found at the end of the thesis.
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pour t > s. Des résultats classiques concernant les séries généralisées impliquent que deux
polynomes distincts peuvent étre comparés dans ce sens. D’une maniere analogue aux fonctions
réelles, on peut se demander s'il y a des fonctions sur S ou au moins sur un interval (f,+o0)
qui est plus rapide que tout polynéme dans S[X]. En continuant I’analogie on pourrait méme
s’interesser & l'existence d’une fonction exponentielle sur S.!

Il n’y a a priori aucune raison pour le corps S = C[[MM]] d’avoir plus de structure que
celle mentionée au-dessus. Donc, pour admettre des fonctions exponentielles et logarithmiques,
les objets de base C et 91 doivent satisfaire des conditions supplémentaires. Sans les préciser
ici, nous remarquons que les corps de transséries constituent le bon cadre pour introduire des
fonctions exponentielles et logarithmiques.? Dans ce qui suit, les corps de transséries seront
notés T plutot que S.

Il y a une propriété importante particuliere aux corps de transséries T, notammnet que la
fonction logarithmique est totalement définie sur I'’ensemble de séries positives, mais que par
contre la fonction exponentielle n’est pas totale. Pour surmonter ce probleme, on utilise un
processus introduit par Dahn qui étend le corps T & un corps de transséries Teyp, et on construit
donc une tour des corps de transsiies

U

Texp,exp
U
Texp
U
T

tel que le logarithme et la fonction exponentielle peuvent étre totalement définis sur la partie
positive de la réunion. Nous montrerons comment on peut continuer cette construction au-dela
pour construire un corps T, pour chaque ordinal c. De plus, 'ordre sur la réunion des corps
sera de la facon que pour chaque série f suffisamment large, ’exponentiel de f est plus large
que chaque f? (i € N).

De nouveau, vu le corps des réels, il est raisonable de se demander si les corps des séries
généralisées possedent plus de structure que just les propriétés des corps ou — comme dans le cas
des corps des transséries — une fonction logarithmique. En particulier, est-il possible d’introduire
des sommes infinies, des dérivations ou compositions dans de tels corps 7

Comme c’était le cas pour la fonction exponentielle, il est d’avantage nécessaire de donner

!'Evidemment faut il spécifier la signification de c’est-ce que c’est une fonction exponentielle. Dans l'intérét de
cette section — notamment de présenter les principaux résultats — il suffit de penser & une fonction exponentielle
comme une fonction non-constante F' telle que F(x + y) = F(z) - F(y) si les deux termes sont définis.

211 mérite d’étre mentioné qu’il y a des approches différents de I'approche présentée dans la theése. Elles se
ressemblent pourtant dans le sens qu’elles ont le méme obstacle a surmonter. Les fonctions exponentielles et
logarithmiques ne sont pas simultanement totalement définies sur ’ensemble des séries positives. Ce fait a été
établi indépendamment par S. and F.-V. Kuhlmann et S. Shelah dans [KKS97] et J. van der Hoeven dans [vdH97].
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une signification aux telles notions. Soient S = C[[9M]] et F = (f;)ics € S'. Tout notion d'une
somme infinie devrait coincider avec les opérateurs du corps, si I est un ensemble fini. Cette
condition est satisfaite, si F est une famille noethérienne, i.e. si la réunion des supports de
toutes les séries f; est bien-ordonnée dans 91 et si pour chaque m € 91 'ensemble des indices
i € I tel que fj(m) # 0 est fini. Si c’est le cas, nous noterons par »_ F la série dans S avec
S Flm) = 5, fi(m).

De méme, la notion canonique d’une dérivation 0 sur S devrait satisfaire les propriétés
suivantes :

e 0 est constamment 0 sur C

e pour toute f,g € Sonad(fg)=09(f) g+ f-9(g9)
e si F = (fi)ier est une famille noethérienne, alors la famille 9(F) = (9(f;))icr l'est aussi et

I F) =2 0(F).

De plus, si S est un corps de transséries, la condition

e si0< f,alors 9(f) = f-9(log f)

doit étre vraie. Nous annongons notre premier résultat.

REsurTaT 1 Si O est une dérivation sur T, alors pour chaque ordinal o il y a une unique
dérivation O, sur T, qui étend O.

D’une maniere identique on définit une notion de composition. Soient T; et Ty des corps
de transséries, alors une fonction A : Ty — Ty est une composition a droite si les conditions
suivantes sont satisfaites :

e A est injective et Ve € C': A(c) = ¢

A est multiplicative

si F = (fi)icr est une famille noethérienne (dans Ty), alors A(F) = (A(f;))ier Vest aussi
(dans Ta) et A(D F) = > A(F)

pour toute f € dom exp dans Ty : A(exp f) = expA(f).

REsuLTAT 2 Si A : Ty — To est une composition a droite, alors pour chaque ordinal o il y a
une unique composition a droite Ay : T1 o — To o qui étend A.

A la lumiere des résultats ci-dessus, une question s’impose immédiatement, notamment
s’il y a une connection entre les dérivations et les compositions a droite. En particulier, les
développements de Taylor, peuvent-t-ils étre généralisés aux corps de transséries 7 Cette ques-
tion n’est pas purement académique ; en effet, il faut une réponse affirmative a cette question
pour pouvoir continuer avec des investigations structurelles dans les corps des transséries.

La premiere étape est une généralisation de la notion d’une composition a droite a une
composition en général. Soient T; (i = 1,2,3) des corps de transséries fixes avec des dérivations
0',0% sur T; et Ty.? Une fonction partielle o : Ty x T3 — Ty est une composition compatible, si

e T3 C Ty, et la restriction de 8% & T3 est une dérivation

3 Afin de facilier la lecture, nous écrivons désormais f’ au lieu de 8*(f) et 9?(f). La n-iéme dérivation de f
sera notée f( dans les deux cas.
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e pour chaque série g € T3 avec C' < g, la fonction Ay : Ty — Ty définie par A4(f) = fog
est une composition a droite

e pour chaque m € 9 plus grande que 1, la fonction mo - : {f € T3|C < f} — Tq est
strictement croissante

e la régle de chaine est satisfaite par o, i.e. pour toute série f € Ty et toute g € T3 avec
g€ dom(fo-), onagedom(fo)et(fog)=(fog) ¢

e soient f € Ty, g € T3 et (& );er une famille noethérienne dans Ty tel que

mog

Viel:Vmesuppf:0 < |—F——
mog-¢&;

)

alors g+ > ;e; €dom fo-, (f(") © g - €i)ogn,ici» est une famille noethérienne et

fo(9+216i):Z%f(n)°g'Z€i,

o<n ieln
ou g; =g, "€, pour ¢ = (il,... ,in) eI

REsuLTAT 3 Sio: Ty x Ty — To est une composition compatible et o un ordinal, alors il y a
une unique composition compatible oy : Ty o X T3z — To o qui étend o.

Une question qui découle naturellement de ces résultats concerne 'existence des corps de
séries généralisées admettant non seulement des fonctions exponentielles, mais aussi d’autres
fonctions & croissance supérieure a la croissance de chaque itération d’une fonction exponentielle.
Par exemple, une fonction F satisfaisant 1’équation fonctionnelle E(x + 1) = expoF(z) a cette
propriété. On remarquera que — une fois construite une telle fonction E — une fonction & avec
E(x+1) = Eo&(x) est aussi plus rapide que chaque exp;. Nous disons que e, est une fonction
exponentielle de force ¢ > 0, si e o0 = exp et

ei(z+1) = epoe,i(z)
e2(x+1) = egoep(r)
es(x+1) = e,2oe3(n)

Nous appelons aussi les fonctions exponentielles de force 1 fonctions super-exponentielles.
Comme il n’y avait pas de raison pour un corps de séries généralisées d’avoir une fonction
exponentielle, un tel corps n’a pas non plus nécessairement des fonctions exponentielles de force
n > 0. Nous appelons de force n de tels corps.

REsuLTAT 4 Pour chaque n € N, il y a des corps de force n.

En généralisant le processus d’une extension exponentielle di a Dahn, nous introduisons des
e n-extensions pour étendre un corps T de force n a un corps Te_, qui est également de force
n. Nous utilisons ces extensions pour montrer :

REsurTaT 5 Soit n > 0. 1l y a des corps K,, de séries généralisées admettant des fonctions
exponentielles de force n tel que eyn et sa fonction inverse l,,n sont totalement définies sur

Vensemble {f € K, |C < f}.



Fonctions super-exponentielles — une histoire breve

Les fonctions super-exponentielles et des problemes associés ont été déja étudiés a quelques
occasions. Dans cette section, nous citons quelques résultats ; pourtant, nous ne prétendons pas
donner un survol complet de I’histoire de ce sujet.

A la différence de notre construction, les fonctions super-exponentielles ont été utilisées soit
dans la construction d’autres classes de fonctions (en particulier, dans la construction des itérées
fractionnelles d’une fonction donnée) et elles ont donc servi plutét comme outil, soit elles ont
été considerées comme fonctions réelles (ou au moins des germes de telles fonctions). Nous ne
connaissons pas d’article traitant des fonctions exponentielles de force supérieure a 1.

Les premiers pas vers la construction d’une fonction super-exponentielle remontent au 19-
ieme siecle, ot P. du Bois-Raymond démontre qu’il n’y a pas de borne supérieure a la croissance
pour le fonctions réelles. Plus précisement, soientf; < fo < ---4 des fonctions définies sur un
intervalle (a,00) C R. Alors, il existe une fonction F : (a,00) — R telle que f; < F pour tout i.
Dans [Har10], G. H. Hardy montre ce fait de deux fagons différentes ; et appliqué a I’ensemble
des fonctions exp; = expo---oexp (la i-eme itération de la fonction exponentielle) on en déduit
I'existence d’une fonction F' de croissance supérieure a celle de chaque itération de la fonction
exp.

L’existence d’une telle fonction F' ne nous donne aucune information sur le comportement de
cette fonction. Pour au moins restreindre la croissance de telles fonctions, nous avons introduit
la notion de fonctions super-exponentielles comme solutions de ’équation fonctionnelle

exp E(x) = E(x + 1). (1)

Nous remarquons que si E est une solution de I’équation (1) et si g est une fonction de période 1,
alors E*(x) = E(x+ g(x)) est aussi une solution. C’est-a-dire, les fonctions super-exponentielles
sont loin d’étre uniquement déterminées par I’équation fonctionnelle qui restreint leur croissance.

C’est H. Kneser dans les années quarante qui a contribué au prochain progres significatif de
I’étude des solutions E. Dans [Kne50], il construit une fonction super-exponentielle analytique
en utilisant un point fixe complexe de la fonction e® et des transformations conformes. En effet,
il utilise sa solution afin de définir une demi-itérée analytique de la fonction exponentielle, i.e.
une fonction ¢ avec

pop(x)=-e".

De plus, il définit un ensemble des fonctions analytiques exp, (ou r € R), appelées les itérations
fractionnelles de exp, avec

expy(@) = ¢

eXpr-{—s(x) = exp,_oexps(a:)

4A Dinstar de Hardy, nous noterons < la relation de domination entre fonctions réelles, i.e. f < g ssi
lim_f(x)/g(x) =0,



vi

pour r,s € R. En construisant E et son unique inverse L, il obtient les fonctions recherchées
par exp,(z) = E(L(z) + ).

Apres la parution de Particle de Kneser, I’étude des itérations fractionnelles s’intensifie, et
la fonction exponentielle est de temps en temps remplacée par d’autres fonctions. Plus éminent,
dans les travaux de G. Szekeres et K. W. Morris [Sze58], [Sze62],[SM62], les fonctions a croissance
exponentielle ont été considerées, i.e. des fonctions f telles que

expy_1(x) < fi < exppyq(x)

pour tout k € NT. Les fonctions e” et e® — 1 en sont des exemples. Les itérations fractionnelles®
de f peuvent étre construites comme solutions de I’équation fonctionnelle

aussi appelée équation d’Abel, et puis définissant les fonctions f,.(z) = B_1(B(x) + r). Pour la
fonction f(x) = e®, une solution B est une fonction super-logarithmique. Parmi les travaux de
Szekeres, nous signalons un résultat intéressant concernant 1'unicité de B pour une large classe
des fonctions f. Si B est loin d’étre uniquement déterminé pour f(z) = €*, ce n’est pas le cas
pour les fonctions f réelles analytiques (pour x > 0) avec z < f(z) et 0 < f'(z) (pour = > 0)
qui admettent un développement

fx) =2+ az?*+ - oua > 0.

Ceci est le cas pour f(x) =e® —1 et a = 1/2. Puis, il n’y a qu’une seule fonction b telle que

lim z%b(x) = -
z—07t a
avec b = B’ pour une solution B de I’équation d’Abel. En d’autre termes, B est uniquement
déterminé a une constante pres.
Finalement, les fonctions super-exponentielles se retrouvent aussi dans les travaux de M. Bo-
shernitzan sur les fonctions trans-exponentielles. Dans [Bos86], il considere des solutions E de
I’équation fonctionnelle

h(E(x)) = B(z + 1),

ot h(x) est une des fonctions e* ou e* — 1. Compte tenu de leurs propriétés de croissance, il
baptise les solutions F trans-exponentielles, et il montre qu’il y a des germes de solutions qui
appartiennent aux champs de Hardy. Comme résultat intermédaire, il montre que si F est une
C'-solution, alors E' < E3. On reviendra & cette observation plus tard.

Bien que I’article remonte & 1950, Kneser remarque que Pexistence des fonctions analytiques exp 1 avait été
discutée pendant la conférence annuelle de la Société Mathématique Allemande en 1941. Les discussions étaient
motivées par le besoin d’une solution “raisonnable” dans l'industrie. En considerant le temps et le lieu et aussi
la situation politique en Allemagne, on pourrait rétrospectivement se demander quel était I'intérét de 1'industrie
allemande dans les demi-itérées analytiques de e® ou pour quelle raison Kneser le fait-il remarquer au juste.

Si.e. un ensemble de fonctions f, tel que fi = f et fris = fr o fs pour tout r,s € R
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Motivations

Apres notre bréve revue de 'histoire des développements autour des fonctions super-exponen-
tielles, nous allons dédier quelques remarques & nos motivations pour la construction présentée.
Comme on a déja vu, les fonctions super-exponentielles ont jusqu’a maintenant essentiellement
servi comme outil pour obtenir des ensembles d’itérations fractionnelles. Néanmoins, il existe
encore d’autres raisons pour poursuivre la construction ; on en mentionnera deux ici.

La premiére motivation est I’étude modele-théorique du corps réel. Soit R le corps totalement
ordonné des réels et £ le langage des anneaux ordonnés. Une observation bien connue et due
a A. Tarski [Tar51] dit que chaque sous-ensemble définissable de R est la réunion finie des
intervalles dans R U {£oo}. Autrement dit, les ensembles définissables peuvent étre décrits
en n’utilisant que la rélation d’ordre < et des parametres dans R U {+oc0}. Une question qui
découle du résultat de Tarski concerne la possibilité d’ajouter des fonctions & R (et de méme des
symboles de fonction & £) sans perdre cette propriété pour les sous-ensembles définissables (voir
par exemple [vdD84]). Plus précisement, si F est un ensemble de fonctions réelles et Lr est le
langage des anneaux ordonnés augmenté par un symbole de fonction pour chaque fonction dans
F, alors, chaque sous-ensemble définissable dans (R, F) est-t-il réunion finie des intervalles ?

Pour des F avec cette propriété on dit que (R, F) est o-minimale. Pendant les années quatre-
vingt et quatre-vingt-dix, les structures o-minimales ont été étudiées intensivement.” De plus,
les structures o-minimales posseédent beaucoup de propriétés intéressantes d’un point de vue
topologique (décomposition cellulaire, stratification, triangularisation etc.) qui ont été étudiées
en détail par L. van den Dries [vdD98].

Nous, par contre, sommes plus intéressés par des ensembles F qu’on peut ajouter a R tels que
la structure résultante est o-minimale. Plus précisement, nous nous occuppons de la croissance
d’une fonction définissable dans cette structure. Comme premier résultat important, on a con-
staté qu'il est possible d’augmenter R par I’ensemble de fonctions analytiques restreintes (voir
[vdD86]). Dans cette structure, la croissance d’une fonction définissable est polynémialement
bornée a linfinie. Ensuite, A. Wilkie [Wil96] montre qu’il est possible d’ajouter la fonction
exponentielle et d’obtenir une structure o-minimale. Ce résultat était généralisé a plusieurs
occasions [vdDMMO94], [Res93], mais les structures o-minimales sont toujours de sorte que les
fonctions définissables peuvent étre bornées par des itérations de la fonction exponentielle. D’ou
la question s'il y a des structures o-minimales (R, F) telles qu’il existe des fonctions définissables
la-dedans avec une croissance qui n’est pas bornée par une fonction exp;. Certes, la structure
(R, E) est un candidat.

En vue de la démonstration de J.P. Ressayre du théoreme de Wilkie, il est d’intérét d’avoir
des modeles non-standards de Th(R, exp, E). Nous ignorons pour l'instant si notre construction
est une vraie contribution a la solution de cette question, mais des résultats récents dis a
Ressayre [Res99] suggeérent qu’au moins notre modéle est un outil pour mieux comprendre le
comportement d’une fonction super-exponentielle dans un modele non-standard. De plus, une
fois la o-minimalité du corps réel avec une fonction super-exponentielle est démontrée, on posera
la question des bornes pour les fonctions définissables & nouveau. Il est donc raisonnable de

"Pour une introduction aux structures o-minimales, voir [PS86], [KPS86].
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poursuivre la construction & une force arbitraire plutdt que de se restreindre & la force 1.8

Notre deuxieme motivation est un programme de travail de J. van der Hoeven dans lequel
il cherche a construire un corps de transséries tel que chaque équation algébrique, fonctionnelle
ou différentielle avec des parametres dans le corps admet une solution dans ce méme corps, s’il
y a des solutions. Dans ce cadre, ajouter une fonction super-exponentielle peut étre vu comme
la cloture du corps sous 'action des solutions de ’équation fonctionnelle E(x + 1) = exp E(z).

Nous nous permettons en connection avec cette motivation le remarque que la Section 2.5
concernant les monomes et séries imbriqués font aussi partie de ce programme. Effectivement,
on a pas besoin des ces objets pour la construction des fonction F ou L (ni, d’ailleurs, dans
la construction des fonctions a force superieure), mais ces objets représentent des solutions des
équations fonctionnelles. Les travaux de van der Hoeven se poursuivent en ce moment, et nous
espérons que notre travail est une contribution valable pour une conclusion de son programme.

La structure de la thése

Dans cette section, nous donnons une description de la structure de la these en résumant chaque
chapitre.

Chapitre 1 : Le premier chapitre introduit les fondements. Bien qu’il n’est pas notre but
de présenter cette these comme étude independante, nous commencons avec quelques rappelles
concernant des idées et résultats bien connus.

Notre point de départ est la définition d’un ordre comme une rélation binaire anti-symétrique,
réflexive et transitive sur un ensemble P. En connection avec des ordres, nous introduisons les
notions de comparabilité, des ordres totals, des anti-chaines, des chaines décroissantes et des
ordres bien-fondés. Nous rappelons que tous ces objets sont des notions généralement connues
dans les mathématiques, et nous ne prétrendrons pas d’originalité particuliere en les introduisant.
De méme pour la généralisation du concept des ensembles bien-ordonnés dans des ordres totaux
au cadre d’ordres en général : un ordre est appelé noethérien s’il admet ni des chaines strictement
décroissantes ni des anti-chaines infinies.

La théorie des ordres noethériens est amplement étudiée, et nous donnons des formulations
équivalentes que nous utilisons fréquemment dans le reste de la these. Ensuite, nous introduisons
des mots sur un ensemble donné P, ol nous établisons une distinction entre des mots commutatifs
et non-commutatifs P® et P*. De plus, sil existe un ordre < sur P, alors nous introduisons
respectivement des ordres <po et <p+ sur les ensembles P9 et P*. Nous rappelons le résultat
de Higman que (P°,<po) et (P*, <p+) sont noethériens, si 'ordre (P, <) I'est aussi.

Apres remettre en mémoire la notion d’un corps archimédien et de comment généraliser
cette notion aux modules, nous introduisons enfin les principaux objets de notre étude, les séries
généralisées. En effet, & ce point 14, nous définissons l’ensemble S = C[[M]] de séries généralisées
sur 9 avec des coefficients dans C' d’une fagon plutot générale, car nous permettons 9 d’étre

8 A ce propos, nous remarquons qu’une réponse affirmative & la question de o-minimalité de la structure (R, E)
a aussi des implications concernant des structures o-minimales nivelées étudiées par D. Marker et Ch. Miller
[MMO7].
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un semi-groupe ordonné et C' d’étre un anneau. Puis f € C[[9N]], si f : 9 — C est une fonction
avec un support noethérien dans 9. En général, cependant, nous allons prendre des groupes
abeliens multiplicatifs et ordonnés pour 9. C’est le bon endroit d’introduire une collection de
notation utiles. Nous commencgons avec quelques sous-ensembles de 91. Soit = l'ordre sur 90,
alors

Mm = {meM|m>= 1},
M = {meM|m:= 1},
Mm = {meM|1>m},
M = {meM|1%=m

De plus, nous mettons ST = C[[9M']], et nous définissons les ensembles SI, St ST d’une maniére
semblante. Nous utlitisons les fleches aussi comme opérateurs qui agissent sur I’ensemble de
séries en définissant f1 € S par

£1(m) = { f(m) simem!,

0 sinon.

D’une facon pareille, nous définissons les séries f1, f!, fI qui sont respectivement éléments de
S, st ST Nous écrivons fr au lieu de f(m) pour exprimer I'idée que f devrait étre vu plutét
comme série (d’ou le nom) que comme une fonction, alors qu’il s’agit de fy, du coefficient lié au
mondéme m. En utilisant cette convention, nous écrivons f = > on fmm.

Nous introduisons une addition et une multiplication sur S par

frg = D (fu+ gmm,
meMN

Feg = D (D fage)m.

meMN ab=m

Avec ces opérations, ’ensemble S est un anneau. Il y a aussi des plongements canoniques de C
et M dans S. De plus, 'anneau S est un corps si et seulement si C' est un corps.

Afin de montrer la derniere propriété, il est nécessaire d’introduire la notion d’une somme
infinie qui étend ’addition d’un nombre fini de séries. Bien siir, on ne trouve pas nécessairement
une expression raisonnable f; 4+ fo + --- pour chaque séquence (f1, fo,...) de séries dans S.
Pourtant, si la séquence F' = (f;)ier € ST est telle que Uicrsupp fi est noethérien dans 9 et
telle que pour chaque m € 91 il n’y a qu’un nombre fini d’indices ¢ € I avec m € supp f;, alors
nous pouvons définir

S F=0fi=>Y fimm

meM icl

Des séquences F avec les propriétés au-dessus sont appelées familles noethériennes, et nous
montrons que les familles noethériennes admettent des propriétés algébriques agréables.

La sommation des familles noethériennes peut étre vue dans le carde plus général des algebres
fortes. Sans donner les détails ici, nous remarquons que des corps de séries généralisées C[[0]]



sont des C-algebres fortes par rapport a la sommation ) ; au-dessus. Une propriété clef, que
sera utilisée dans les constructions effectuées dans la these, est la suivante. Soient C[[91]], C[[]]
des anneaux de séries généralisées. Soit ¢ : M — C[[MN]] une application telle que I'image d’un
ensemble noethérien dans 9 est une famille noethérienne dans le corps C[[M]]. Alors, il y a une
unique application ¢ : C[[M]] — C[[MN]] qui étend ¢ telle que pour chaque famille noethérienne
(fi)ier dans C[[9M]] nous avons

Yo (fi) = o3 fi)-

De plus, si ¢ est multiplicatif, 'opération ¢ l’est aussi. De méme, si pour tout m,n € M
Iéquation p(mn) =m - p(n) 4+ ¢(m) - n est satisfaite, alors I'application ¢ hérite cette propriété
aussi, i.e. §(fg) = f-¢(g) + @(f) - g pour toutes les séries f,g € C[[9M]].

Le reste de ce chapitre ne cosidere que des corps de séries généralisées C[[M]] ou C et M sont
totalement ordonnés. Comme conséquence nous obtenons plusieurs représentations canoniques
d’une série f € S. D’abord, nous remarquons que dans ce cas nous avons M = M U {1} U M},

donc qu’il y a une unique constante f~ = fi,, € C telle que
fo=r+r+r
frtf
L+ fh

Au-dela, le support de f est bien-ordonné dans (9, =) et il admet donc un élément minimal
que nous appelons le monome minimal, symbolisé par d;. Le valeur de f dans 0f est cy, le
coefficient dominant. Soit 7; = ¢;0 le terme dominant de f, alors il y a des séries Ry, d; avec

f = 717+ Ry
= Tf(1+5f).

De plus, les ordres de C' et 9 induissent un ordre total sur 'ensemble S qui est défini par

0<f & 0<ey
g<f & 0<f—ug.

Nous finissons le premier chapitre avec quelques considerations générales sur des troncatures et
le comportement de supprtts pour des séquences de séries. Pour une série donnée f € S, la série
g est une troncature de f si le support de g est un ségment initial du support de f et si les deux
séries coincident sur le support de g. En autre mots, il existe un monome m, tel que

g = Z Jmm.

m > my

Nous utilisons des troncatures et leur propriétés dans des nombreuses démonstrations. D’une
maniere pareille, nous introduissons les cardinalités cofinales comme un outil. Pour un ordre
total P = (P,<) et un cardinal x nous disons que P admet une cardinalité cofinale < « si la
cardinalité de chaque sous-ensemble bien-ordonné dans P admet une cardinalité inferieur a k.
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Par exemple, les nombres réels avec leur ordre naturel ont une cardinalité cofinale < N;. Nous
montrons que si C et 9 ont respectivement les cofinalités cardinales < k1 et < ko, alors pour
toute séquence (fo)a<r, strictement décroissante dans S, nous avons |7| < max(k1, K2).

Chapitre 2 : Jusqu’a ici, les corps de séries généralisées sont munis de tres peu de struc-
ture. Pourtant, par demander quelques propriétés bies choisies, nous pouvons characteriser des
classes de corps de séries généralisées qui admettent au moins des fonctions exponentielles et
logarithmiques. Afin de le faire, nous commencons le deuxiem chapitre en fixant les conditions
pour qu’une fonction soit une fonction exponentielle.

En fait, une fonction exp qui est partiellement définie sur un corps totalement ordonné C'
est une fonction exponentielle si elle est strictement croissante, si a4+ 1 < exp a pour tout a € C'
dans le domain de exp, et si

exp(a + b) = (expa)(expb),

si les deux termes sont définis. Dans ce cas, les corps C' est appelé un corps exponentiel.
Si C' est un corps exponentiel tel que C' = dom exp, alors nous pouvons définir une fonction
exp sur C[[9]]! par

exp [ = exp(f7) - e(f1),

ol e(z) = > Za". L’image de exp est 'ensemble Sh* de séries positives et non-infinies. Dans
ce sens, chaque S admet une structure de base comme corps exponentiel. La fonction inverse de
exp est notée par log, elle satisfait

log f =log ¢y —I-l(fl)

_1\n+1
pour tout 0 < f, ou I(z) = Zlgn CEU"™n . Des propriétés supplementaires du corps S sont

nécessaires, si on veut que log est déﬁgi sur 'ensemble de ses séries positives. Un corps C|[[9]]
est corps de transséries, si C' est un exp-log corps avec C = dom exp et si log étend partiellement
a T = C[[M]] tel que

T1. dom log =TT

T2. logM C T

T3. log(1 + f) = I(f), pour tout f € T!

T4. pour chaque séquence (m;)og; € M telle que m;y; € supp logm; pour tout 0 < 4, il

existe un entier ng € N tel que

Vng < n:Vn€supplogm, :n=m, A (logmy)m,,, =1

Les conditions T1 — T'3 nous permettent de poursuivre le processus d’extension dia a Dahn
[Dah84], et la condition T4 est essentielle pour le traitement des expressions imbriquées. Les
expressions exponentielles et imbriquées sont au centre de l'intérét de ce chapitre.

Pour distinguer les corps de transséries des corps de séries généralisées au sense usuel, nous
utilisons le symbol T au lieu de S. Un exemple simple d’'un corps de transséries est L =
R[[logZ z]], ot

log” x = {log® & = % log™ x --- log® z | a € Z*}.
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Du fait qu’il n’y a pas de corps de transséries T tel que les fonctions exp et log sont respectivement
totalement définies sur T et T, il suit la nécessité d’élargier T. C’est le processus dii a Dahn
qui joue la role principale ici. Nous mettons Tey, = C[lexp T']], 'extension exponentielle de T.
Soit o un nombre ordinal, alors nous définissons le corps de transseries T, = C[[9N,]] par

T sia=0
Tg,exp sia=0+1
T = ,
C[ U Ms]] siaest un ordinal limit.
B<a

Nous appelons des corps de la forme T, aussi extensions exponentielles transfinies de T. 11
y a deux fagons différentes d’obtenir des corps de séries généralisées tels que exp et log sont
totalement définis. Premiérement, I'ensemble | J,y To admet cette propriété, si A est un ordinal
limit ; mais ce corps ne plus de la forme C[[91]]. La deuxiéme possibilité consiste a ajouter une
condition concernant la cardinalité du support a la définition des séries généralisées, notamment
on exige pour que f soit une série généralisée que la cardinalité de supp f est inferieure ou égale
a un cardinal fixé. Dans ce dernier cas, le processus d’extension est stabilisant.

Une raison particuliere pour regarder le processus d’extension exponentielle en détail est le
fait que beaucoup de principes qui font marcher ce processus vont réapparaitre dans une forme
semblante pendant la construction des extensions exponentielles de force positive. Effectivement,
le programme a suivre est le suivant :

e étendre le groupe de mondémes a un ensemble M D M,

e définire une structure d’un groupe multiplicatif sur 95?,

e définir un ordre sur M qui est compatible avec la multiplication,

e définir un logarithme sur M et T = C[[M]] tel que T est un corps de transséries.

Il y a deux résultats généraux concernant les corps de transséries que nous voulons men-
tioner ici. Premierement, ces corps admettent une composition avec les éléments du corps
L=C¢C [[logZ*m]]. Plus précisement, nous montrons que pour chaque série f € L et chaque
g € T (I'ensemble d’éléments positifs avec 9, € 9M'), nous pouvons remplacer x par g. En
autre mots, nous montrons que l'application ¢ : logZ*:v — T définie par

m=log”z+— mog=g"log"g---logy" g

est noethérienne et admet donc une extension unique ¢ : L. — T avec fog =) fuamog.
Deuxieément, nous continuons ’étude du comportement de supports sous le processus d’exten-
sion. Comme avant, nous supposons que C et M ont respectivement les cardinalités cofinales
< K1 et < Ko. Alors, nous montrons que

|supp f| < max(k1, ko)

pour toute série f € Texp.
La deuxiéme partie du chapitre montre qu’il est possible d’introduire des expressions mono-
mielles imbriquées. Par cela nous voulons dire qu’il y a des transmonémes comme

log2 a:+e'
2 log% e o4
e . 2)
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L’expression (2) nous fournis d’une solution canonique & 1’équation fonctionelle f(z) = exp(z? +
f(logy z)). Des expressions de cette forme apparaissent d’une fagon naturelle dans la character-
isation des intervalles de transséries. Plus d’information sur ce sujet on trouve dans [vdH97].

Des expressions comme (2) n’ont a priori aucune raison d’appartenir & un corps de transséries
donné. On peut, par exemple, facilement vérifier qu’elle est ni un élément de IL, ni dans une
extension exponentielle transfinie IL,. Nous mettons & la disposition un outil pour étendre un
corps de transséries T par des monomes imbriqués, qui nous fournis d’un moyen pour clore
le corps T sous 'action des équations fonctionnelles qui induissent de telles expressions. Plus
précisement, pour des séquences ¢ = (@g, p1,...) et 0 = (09,01,...) € {—1,+1} avec

° Vi}O:g@iETTAO<<pi+1,

o Vi>0:Vmesuppy; :3j>i:VeTh

it

oj—1¢€

Supp@; = ¥ = m = g; P ToIHe ’

nous montrons comment construire un corps de transséries Tpest qui contient T et ’expression

ePoto0 el toe

Remarques sur les notations






Contents

Introduction i
Les résultats principaux . . . . . . . . .. i
Fonctions super-exponentielles — une histoire breve . . . . . . . ... .. ... .. v
Motivations . . . . . . . .. e e e vii
La structure de lathese . . . . . . . .. . L L oo viii
Remarques sur les notations . . . . . . . .. . ... oo xiii

1 Generalized power series and Noetherian families 1

1.1 Noetherian orders. . . . . . . . . . . 1
1.2 Ordered structures . . . . . . . . . .. 5
1.3 Generalized power series . . . . . . . . . ... e 7
1.4 Rings of generalized power series . . . . . . . .. ... oo 9
1.5 Noetherian families . . . . . . . . . . . . ... e 10
1.6 Strongly linear algebra . . . . . . . .. .. L L L 13
1.7 Totally ordered supports . . . . . . . . . .. 18
1.7.1 Representations of generalized power series . . . . . ... ... ... ... 18

1.7.2 Lexicographic orderings . . . . . . .. .. . ... oL 19

1.8 On truncations and supports . . . . . . . .. .. L Lo 21
2 Fields of transseries 27
2.1 exp-logfields . . . . . . . L 27
2.2 Transseries fields . . . . . . . .. L L 30
2.3 Construction of transseries fields . . . . . . . ... ... L. 34
2.3.1 Fields of purely logarithmic transseries . . . . . . . ... .. .. ... ... 34
2.3.2 Exponential closure . . . . .. ... L Lo 35
2.3.3 Inductive limits . . . . . . . . . ... 37
2.3.4 Inductive exponential closure . . . . . ... . ... ... ... .. ..., 37

2.4 More on the supports . . . . . . .. L L 38
2.5 Nested transmonomials and transseries . . . . . . . . . .. ... ... L. 39
2.5.1 Determining sequences . . . . . . . . . .. ..o o e 40
2.5.2 Nested extensions: One-by-one vs. All-at-once . . ... ... ... .... 42
2.5.3 Extending by nested monomials . . . . . . . ... ..o 43

XV



xVi

3 Trees

3.1 Basicnotions . . . . . . . . . ..

3.2 Tree-representations of transseries

3.2.1 Definition of tree-representations . . . . . . .. .. .. ... ..
3.2.2 Maximal tree-representations . . . . .. .. .. ...
3.2.3 Minimal tree-representations . . . . .. .. ... ... ... ..

3.2.4 Relative tree-representations with respect to transseries fields

3.3 Closure properties for series with support-constraints . . . . . . . . ..

3.4 Embeddings in maximal tree-representations

3.5 Noetherian choice operators . . . . . . . .. .. .. .. ... ...,
3.5.1 Kruskal’s theorem . . .. .. ... ... ... ... ... ..
3.5.2 Labeled structures and choice operators . . . . .. .. ... ..
3.5.3 Kruskal’s theorem generalized . . . . . . .. .. .. ... ....

4 Derivations

4.1 Derivations on transseries fields . . . . . . . ... ...
4.1.1 The notion of a derivation . . . . . . ... ... ... ... ...
4.1.2 Example of a derivation . . . . ... ... ...
4.1.3 Derivations and finite paths . . . . . . . .. ... ... ... ..
4.1.4 Extending derivations to transfinite extensions . . .. ... ..

4.2 Derivations and transfinite recursions . . . . . . . .. ... ...
4.2.1 Uniqueness of the extension . . . . . ... ... ... ......
4.2.2 Transfinite extensions . . . . . . .. ... ...

4.3 Pathorderings . . . .. .. ... ..
4.3.1 Ordering infinite paths . . . . . . . . . ... 0oL
4.3.2 Ordering finite paths . . . . . . . ... ... 0oL
4.3.3 Noetherianity of path orderings . . . . . . . ... ... .....

4.4 Existence of extended derivations . . . . . . ... ...

4.5 Valuated derivations . . . . . .. ... Lo oo

5 Compositions
5.1 Right-compositions on transseries fields

5.1.1 Notions of compositions . . . . .. .. .. .. ... ...
5.1.2  Example of a right-composition . . . . ... ... ...
5.1.3 Uniqueness of extensions . . . . . . .. .. .. ... ... ...
5.1.4 Extending using transfinite definitions . . . . . . . ... .. ..
5.2 Combinatorial representation of compositions . . . . . .. .. ... ..
5.2.1 Some notations . . . . . . ...
5.2.2  Formulas for an example of composition . . . . . . ... .. ..
5.2.3 Combinatorial representation of the example’s formulas . . . .
5.2.4 Right-composition and well-labeled trees . . . . . . ... .. ..
5.3 Existence of extended right-compositions . . . . . . .. ... ... ...
5.3.1 First case: Root host-labeled by monomials in 9t . . . . . . ..
5.3.2 Second case: One-point trees . . . . . .. .. .. ... ... ..

CONTENTS



CONTENTS xvil

5.3.3 Third case: Strong disjointness of successors of the roots . . . . . . . . .. 108
5.3.4 Fourth and last case . . . . . . . . . ... L Lo L 111
5.3.5 The extension is a right-composition . . . . . . .. ... ... 112

6 Taylor series 115
6.1 Compositions on differential fields of transseries . . . . . . . .. . ... ... ... 115
6.1.1 Compositions and derivations . . . . . . . .. ... ... ... ... ..., 115
6.1.2 Extending compatible compositions . . . . .. ... o000 116
6.1.3 Showing compatibility . . . . . . .. ... o 117

6.2 Taylor families of operators . . . . . . .. . ..o 121
6.2.1 Definition of Taylor families . . . . . . ... ... ... ... ... ... 121
6.2.2 Saturated Taylor families . . . . .. .. .. .. .. 0. 122

6.3 Taylor series expansions of iterators . . . . . . .. ... . L L L. 125
6.3.1 Stirling polynomials . . . . . . . ... o 125
6.3.2 Vertical extensions of Taylor families . . . . . . .. ... ... ... .... 128
6.3.3 Application to logarithmic functions . . . . . . ... ... ... ... ... 130

6.4 Inverse functions . . . . . . . . . .. 131
7 Transseries fields of positive strength 135
7.1 Two aims of extending fields . . . . . .. . ... .. oo 135
7.2 Ordinal notations . . . . . . . . . . . L 136
7.3 Fields of positive strength . . . . . . . ... .o oo 137
7.3.1 Exponential fields of positive strength . . . . . .. ... ... 138
7.3.2 Dependencies during the construction . . . . ... ... .. ... ... .. 138
7.3.3 Logarithmic iterators . . . . . . . . . . . ... 139
7.3.4 Definition of positive strength for transseries . . . . ... ... ... ... 142

7.4 Basic properties of fields of positive strength . . . . . . . ... ... ... 144
7.5 The partial composition result for positive strength . . . . . .. .. .. .. .. .. 150
7.6 Examples of fields of positive strength . . . . . . .. ..o 156
8 Extending transseries fields of positive strength 161
8.1 The general outline of the extension process . . . . . . . . ... ... ... .... 161
8.2 New monomials of strengthn . . . . . . .. ... . oo o 162
8.2.1 The criterion for new monomials . . . . . . .. .. ... ... ... ... 163
8.2.2 Extending the group of new monomials . . . . . ... .. ... ... ... 164

8.3 The group structure of the extended set of monomials . . . . .. ... ... ... 167
8.4 Logarithms of positive strength on the extended field . . . . . . ... ... .... 173
8.4.1 Extensions of positive strength are transseries fields . . . ... ... ... 174
8.4.2 The logarithmic functions of strength <m . . . . ... ... ... ... 176

8.4.3 The logarithmic functions of strength >m . . . . .. .. ... ... ... 178



xviii CONTENTS

9 Exponential closures of positive strength 181
9.1 Properties of extended fields . . . . . . . .. ..o o 181
9.2 TIterating extensions and the closure of admissible fields. . . . . .. ... ... .. 183

9.2.1 Cofinal partitions . . . . . . . . ... 184
9.22 CloSUIes . . . . v v v v v 185
9.3 Generalizing structural properties . . . . . . . . ..o L 187
9.3.1 Tree-representations in fields of positive strength . . . . . . .. ... ... 187
9.3.2 Properties of tree-representations . . . . . . .. ... 190
9.3.3 Minimal and maximal tree-representations of higher strength . . . . . . . 191
9.3.4 Closure properties . . . . . . . . . . e 191
9.3.5 Strong cofinal partitions . . . . . .. ..o oo 192
9.4 Concluding remarks . . . . . . ... 193
Glossary 195
Index 199
References 203

A Al
Appendix - Exponential fields of positive strength Al

B B1
Appendix - Introduction (English Version) B1
B.1 Mainresults . . . . . . . . L B1
B.2 Super-exponential functions — a short history . . . .. .. .. ... ... B4
B.3 Motivations . . . . . . . L. e B6
B.4 The structure of the thesis . . . . . . . . .. . ... L Lo B7

B.5 Remarks on the notations . . . . . . . . . . . .. e B17



Chapter 1

Generalized power series and
Noetherian families

1.1 Noetherian orders

Let (P,<) be a (partial) order, i.e. P is a set and <C P? is a relation such that for all
a,b,c € P we have

POl. a<bAb<a=a=0b,
PO2. a < a and
PO3. a<bArb<c=a<ec

We will henceforth call < the ordering of the order (P, <), and we will speak of P as the order if
the ordering < is clear from the context. To every order (P, <), we can define the inverse order
(P, <*) by letting a <* b iff b < a for all a,b € P. If we let >=<*, then a <* b if and only if
a > b. Hence (P, >) is the inverse order of (P, <). The distinction between an ordering < and its
inverse ordering > will have advantages for formulating properties of subsets of the underlying
set P, but one should always be aware of the ordering with which the property is defined, since
otherwise confusion may arise. It is common practice to distinguish between partial and total
orders: total orders are orders (P, <) such that

TO. Va,be P:a<bVvb<a.

In the sequel, orders will be partial. If an order is total, it will be explicitly mentioned. From the
ordering < we obtain a strict ordering < by letting a < b iff a < b A a # b. For every subset
S C P, the ordering on P induces an ordering on S: if a,b € S, then a <g b iff « < b. In other
words, we have <g=< NS2. We call <g the restriction of < to S. In general, the restriction
of < to a subset of P will also be denoted by < since for all S,T C P: <g N <r=<g7-

A subset S C P is called a chain in P iff (S, <) is a total order. A chain S is said to be
strictly increasing iff for every s € S there is a t € S such that s < t. Similarly, we say that
the chain S is strictly decreasing iff for every s € S there is a ¢ € S such that t < s. We say
that the order (P, <) has the decreasing chain property iff there are no strictly decreasing
chains S C P. The order (P, <) has the increasing chain property iff there are no strictly

1
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increasing chains in P. From the above it follows that an order has the increasing chain property
if and only if its inverse order has the decreasing chain property.

A total order with the decreasing chain property is called a well-order. A (partial) order
is well-founded iff it has the decreasing chain property. Equivalently, we say that P is anti-
well-founded iff it has the increasing chain property. Again it follows from these notations that
(P, <) is well-founded if and only if (P, >) is anti-well-founded. Hence, if we want to express
that (P, <) is anti-well-founded, we say that (P, >) is well-founded.

Let A,B C P and a € P. We write a < B iff a < b for all b € B. Similarly we define a < B,
B<aand B<a. Welet A< Band A< B iff a < B and a < B, respectively, for all a € A.
Two distinct elements a,b € P are said to be incomparable in the order (P, <) (in symbols
a L< borsimply a L b, if the ordering < is clear from the context) iff neither a < b nor b < a.
We say that a,b are comparable iff they are not incomparable, i.e. if ¢ Y b then either a < b
or b < a. Hence a [ a for all a € P. Moreover, if a L b, then b L a and a L b if and only
if a L> b. We say that a € P is incomparable to a subset S C P, in symbols a L S, if P is
incomparable to every element of S, i.e. Vs € S: P L s.

A set A C P is an anti-chain in the order P iff any two distinct elements a,b of A are
incomparable, i.e. Va,b € A:a # b = a L b. An anti-chain in (P, <) is also an anti-chain
in (P, >). Note that anti-chains in total orders can only have one element. An order is called
Noetherian iff it has the decreasing chain property and if it has no infinite anti-chains. It
should be noticed that every subset of a Noetherian order is again Noetherian.

Every subset of a well-ordered set has a minimal element, i.e. an element such that no other
element of the subset is smaller than this element. To extend this notion to orders, we introduce
minimal sets. Let (P, <) be an order, then we call A = A(P) C P a minimal set of P iff

MS1. Vpe P:dge A:q<p,

MS2. Vge A:Vpe P:—(p <q).
From MS2 it follows that every minimal set is an anti-chain in the order P. This anti-chain is
maximal: assume the contrary, then for some p € P we have p 1 A, and by MS1 we can find a
q € A with ¢ < p, contradiction. Moreover, if (P, <) has a minimal set, then this set is uniquely
determined: Suppose that A; # Ay have both the properties MS1 and MS2. Then one of
A1\ Ag or Ay \ Ay is nonempty. Say, g1 € Aj \ Ag, but then there must be an element g € A,
with g2 < ¢1. Contradiction.

Let (P,<) be an ordering (not necessarily Noetherian). Then a subset S C P is called a
final segment of Piff Vpe P:Vse€ S:s<p=peS. For G C P we let
(G):={peP|3geG:g<p}
The set (G) is then a final segment of P, and we say that (G) is the final segment generated
by G, or equivalently that G is a generator of that final segment.

ProposITION 1.1.1 Let (P, <) be an order. Then the following are equivalent:
(1) P is Noetherian.
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(2) Every subset has a finite minimal set.
(3) Every final segment is finitely generated.
(4) From every sequence in P one can extract an increasing sub-sequence.

Proof: (1)=(2): Let M ={A C P|VYqge A:Vpe P:—=(p<q)}. This set is nonempty, for if
it was not, then we could find a strictly decreasing sequence in P. The set M can be (partially)
ordered by set inclusion. Let (A;);cr be a chain in M. We put A = (J;c; A;. Let now 6 € A
and p € P, then ¢ € A; for some ¢ € I, hence —(p < ¢). This shows A € M. By Zorn’s lemma,
the set M has a C-maximal element A*. Now suppose that there is a p € P such that for no
q € A* : q < p. Since A* has property MS2, the element p is incomparable to A*. Since P is
Noetherian, there must be an element ¢* € P such that ¢* < p and for no ¢ € P we have ¢ < ¢g*.
But then A* U {¢*} € M, a contradiction. Since A* is an anti-chain, it is finite.

(2)=-(1): A strictly decreasing sequence cannot have a minimal set. An infinite anti-chain
cannot have a finite minimal set.

(1)=(3): Let P be a Noetherian order and S C P a final segment of P. Then S has a
minimal set A(S). The finite segment generated by A(S) is S, and A(S) is thus a generator of
S.

(3)=(4): Suppose that a = (a;)1<; is a sequence in P. We show that there is an increasing
sub-sequence (a;, )1<n of a. Let Sy be the final segment generated by the set Ay = {a; |1 < i}.
Then S is finitely generated, i.e. there is a finite subset By of A; such that S; = (By). For
at least one element a;, of B; there are infinitely many elements a; € A; such that a;, < a;,
let Ay = {a;|i1 < iAa; < a;}. Inductively, we may assume that for n > 1 we already have
constructed an increasing sequence (a;;);j<n, and an infinite set A,y1 = {a; |in < i A a;, < a;}.
Then we take Sy,+1 = (Ap+1) and a finite By, 19 C Ayq1 with (By41) = Sp+1. Now there has to
be at least one element b of B, 11 such that for infinitely many elements a € A,,+1 we have b < a.
Let a; be one such element, then we let i1 = I and A0 = {a; | iny1 <@ A a4y, < a5}
Then the sequence (a;, )1<p 1S increasing,.

(4)=(1): Suppose that for an order (P, <) and every sequence a = (a;)1<; in P it is possible
to extract an increasing sub-sequence from a. If (P, <) was not Noetherian, then we could find
a sequence (b;)1<; which is either strictly decreasing or an anti-chain. But then we cannot find
an increasing sub-sequence. This shows that P is Noetherian. O

More equivalent statements can be found in [Mil85] and [vdH97] which can also be taken as
references for the rest of this section.

Let (P,<) be an order. Then w is a word in P iff there is an integer n € N such that
w € P™. We call n the length of w. The only word with length 0 is called the empty word.
By P* := ey P" we denote the set of all words, and P! denotes the set of non-empty words
over P. Let w € P* be a word of length n > 1, then we write w = [wy, ... ,w,]. Note that for
every bijective 7 : {1,... ,n} — {1,... ,n} which is not the identity, m(w) = [wr), ... , Wr(n)]
is again a word of length n, but that w # 7(w). For this reason, P* will also be called the set
of non-commutative words.

We will work with such orders P where the order of a word does not play a role, i.e. we will
in general not distinguish between w and 7(w). To this end, we introduce a relation ~,, on P"
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as follows. Let a,b € P™, then a ~,, b iff there is a bijective 7 : {1,... ,n} — {1,... ,n} with
a = 7(b). Note that ~,, is an equivalence relation on P". We put

Po:=J P/,

neN

and call P® the set of commutative words over P. The set of non-empty commutative words
is denoted by Pf. We introduce the relation ~ on P* by a ~ b iff there is an integer n € N with
a,b € P" and a ~, b. We remark that ~ is an equivalence relation on P* and that we have
P*/. = P®. For a € P* we let a/~ = a/,, if a has length n.

ExAMPLE 1.1.2 Let Z = (Z,<), the integers with their usual ordering. Then [|, [2, —56], [45]
and [4,1,1973] are words in Z*, but only the latter three are in Zf. Although the words [2, —56]
and [—56, 2] are distinct elements, we have [2, —56] ~2 [—56,2]. Hence [2, —56]/., = [—56,2] /-,
in Z1.

The ordering < on P induces orderings <p~ and <po on P* and P respectively: let
a,b € P*, then a <p« biff a € P",b € P™ and there is a strictly increasing 7 : {1,... ,n} —
{1,...,m} such that for all 1 <i<n:a; < bx(s)- It follows form this definition that whenever
a <p+ b, then the length of a is at most the length of b. Let a/,b/~ € P°, then a/. <po b/~
iff there is are elements ¢ € a/-,d € b/ with ¢ <p+ d. From this definition we obtain for all
a,be P*:a<psb=a/. <po b/e.

EXAMPLE 1.1.3 We illustrate the above definitions with the following words from Z* and Z.
We denote elements w/. by w.

5,4 %z [4,1,73]
[—11,72) <z [4,1,73]
9,74] Zzo [4,1,73]
5,4] <zo [4,1,73]

The following lemma is a classical result about Noetherian orders and due to Higman
(see [High2]).

LEMMA 1.1.4 (Higman) If (P,<) is an Noetherian order, then so are the orders (P*,<px)
and (P, <po).

Proof: A concise proof which is based on a proof by Nash-Williams (see [NW63]) can be
found in [vdH97]. O

Let P be an ordered multiplicative group with ordering < and neutral element 1. We suppose
that the multiplication is compatible with the ordering <, i.e. that for all a,b,c € P we have
a < b= ac < be. Since the same holds for the inverse of ¢, ¢!, we also have ac < be = a < b.
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Also, if a,b,c¢,d € P and a < b and ¢ < d, we obtain ac < be < bd, hence ac < bd. In what
follows, we will always assume that the multiplication is compatible with the ordering.

Let A C P. If w = [wy,...,w,] € A" is a nonempty word over A, then w;---w, is an
element in P. We write [[w = w; - - - wy, in that case. If P is abelian, then [[ w does not depend
on the order of the letters, i.e. for every v ~ w, we have [[w = [[v. Hence we can define [ for
elements of A®: if a/. € A and w € a/., then [[a/. := [Jw. The definition is independent
from the choice of the representant w. If P is abelian and a € P*, then [[a = [[a/.. We put
[TAC := {[Jw | w € A*}. Then [[A® C P, and we will write A® for [JA®. Note that with
this notation we have (A®)¢ = A9,

If a,b € P* and a <p+ b, then we have a strictly increasing 7 : {1,... ,n} — {1,... ,m},
where n and m are the lengths of a and b respectively, and [[a < byr1) -+ byr(n). Now consider
the case where for all i € {1,... ,m} : 1 < b;. Then [[a < [[b. Lemma 1.1.4 applied to this
situation gives the following lemma.

LEMMA 1.1.5 Let P be an abelian group with ordering <. Let S C P be such that 1 < S and
such that (S, <) is Noetherian. Then 1 < S© is Noetherian.

We will need the following lemma in the next chapters.

LEMMA 1.1.6 Let (P,<) be a multiplicative order and A, B C P such that (A,<) and (B, <)
are Noetherian.

(1) Then AB = {ab|a € A,b € B} is Noetherian. Note that the same holds for every finite
set of Noetherian subsets of P.

(2) Let q € P and P(q) = {(a,b)|a € A,b € B,ab = q}. Then P(q) is finite. The same holds
for every finite set of Noetherian subsets of P.

Proof: (1) Let (p;)icr C AB, and let for every i € I elements a; € A,b; € B such that
p; = a;b;. By Proposition 1.1.1 we find a sub-sequence (ip)nen of I such that (a;, )nen is
increasing. Again by Proposition 1.1.1, we find a sub-sequence (j,)nen Of (in)nen such that
(bj, )nen is increasing. But then so is (pj, )nen. From Proposition 1.1.1 it follows that AB is
Noetherian.

(2) The set P(q) C AB is Noetherian. If it was infinite, then we could choose the sequences
from (1) such that at least one of (a;, )nen and (bj, )nen is strictly increasing. But then so is the
product, contradiction. O

1.2 Ordered structures

Let K be aring. We let K*:= K \ {0} and Kt :={k € K|0 < k}. If K = (K, <) is an order
such that the multiplicative and additive groups on K are ordered groups, then we say that
(K, <) is an ordered ring. The absolute value |a| of an element a € K is a, if 0 < a, otherwise
—a. Note that |a| = 0 if and only if @ = 0 and that for all a,b € K
la+b] < al+ 0]
la-bf = la]-[b].
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We call a totally ordered ring K archimedean iff for all a,b € K* there exist integers n, m such
that |a| < |nb| and |b| < |mal.

Note that every ring R is a Z-module. We extend the notion of archimedean rings. Let R
and K be totally ordered rings such that K is an R-module. Then we define relations <r, <g
and =<p on K as follows. Let a,b € K. Then a <p biff Vr,p € R : |ra| < |pb| and a <y b iff
dr € R:la] < |rbl. Welet @ <p biff Ir,p € R : |a| < |rb| A |b] < |pal. We say that K is
archimedean over R iff for all a € K*:1 =g a. Note that with this notation archimedean
means archimedean over Z.

LEMMA 1.2.1 Let K be an R-module. For all a,b,c € K we have

(1) a Xg a, and if a <R b, then a KR b,

(2) ifa <g b and b LR ¢, then a KR c,

(3) ifa xgp band b R a, then a <p b,
Moreover, if R is an A-module, then K is archimedean over A, if K is archimedean over R and
R is archimedean over A. In particular, if R is archimedean and K archimedean over R, then
K s archimedean.

Proof: Most of the lemma follows directly from the definitions. If for instance a <g b, then
take ¢ = 1 and d arbitrary to show |a| < |db|, hence a <R b. O

Let G be a multiplicative group. For all ¢ € G and each integer n there is an element ¢" in
G. In other words, there is a function p : Z x G — G with p(n +m,g) = p(n,g) - p(m, g) for all
integers n,m and all g € G. We generalize this notion to rings R. We say that G is a group
with R-powers iff there is a function p : R x G — G such that

RP1. Vge G:VYn€eZ:p(n,g) =g",
RP2. Vge G :Vq,7r € R:p(q+r,9) =plq,9) - p(r,9)

We write p(r, g) = ¢" in this case. Now suppose that both G and R are ordered. We say that G
is an ordered group with R-powers iff in addition to the above for all r € R and all g € G
we have

1<gn0<r=1<g".

Note that in ordered groups with R-powers the function ¢g" is monotone in r for a fixed g, i.e.
for 1 < gand 0 < r < s we have g7 < 1 < ¢" < ¢°. For every totally ordered field K, the
set KT of strictly positive elements forms a multiplicative group. We say that K is a totally
ordered field with R-powers iff K is an ordered group with R-powers.

Let K be a totally ordered field and R a ring such that K is an R-module over R. For
all k € K* we let ||k|| = |k| iff 1 < k, otherwise |[k~!|. Note that for all k,I € K* we have
Ilk|| - []1]| < ||kl]]. Let K have R-powers. We define the relation < as follows. Let k,l € K*,
then we let k& < [ iff there is a p € R such that for all » € R™ we have [|k"|| < ||IP||. If k are
such that for some r,p € RT we have ||k|| < ||{?| and ||I]| < ||£"||, then we write kxI.
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1.3 Generalized power series

NotaTION 1.3.1 Let f : A — B be a function. We write f, = f(a) for a € A. If the
function is indexed, say f = f; for some ¢ in an index set I, then we write f; , = (fi)a. The set
supp f = {a € A| f, # 0} is the support of f. We let term f = {f,a|a € supp f} be the set of
terms of f.

Let in what follows C' = (C,+, —,-,1,0) be a ring. The orders that we will work with are in
general multiplicative orders.

NoTATION 1.3.2 Orders which are groups or semi-groups will henceforth be denoted by fraktur
type letters. The ordering will be written as . Thus, from now on, if we work with 91, then
M = (M, =) is both an order and a (semi-)group. In view of Warning 1.3.4, we point out that
a sequence (m;)og; is well-ordered in 9, if for all 0 <@ < j we have m; = m;.

DEFINITION 1.3.3 Let C # ) be a ring and M an ordered semi-group. Then f € C[[(IM, =)]] =
C[[9]] is called a generalized power series over I with coefficients in C iff f: M — C is a
function such that the support of f is Noetherian in M, i.e.

CM]] ={f : 9 — C|supp f is Noetherian}.

WARNING 1.3.4 We will in general write C[[9]] instead of the longer C[[(9, =)]] to enhance
readability. One should nonetheless keep in mind the ordering of 9. Although we try to make
it clear with which ordering we are working, the reader should always be aware of this warning.

REMARK 1.3.5 A set S of generalized power series with coefficients in C' is complete iff

S = ClI{ supp £
fes
With this definition, every C[[9]] is complete. A set of generalized power series which is not
complete will be called incomplete. We will mainly work with complete sets of series and only
occasionally encounter examples incomplete sets. Therefore, we will in general not mention if a
set of series is complete. If a set is incomplete, we will say so.

We embed 9t into C[[M]] in a canonical way: let m € M, then we denote the function
feCIM] by fm=1and Vn # m: f, =0 also by m. For ¢ € C we denote by ecm the function
f with fn=cand Vn # m: f, = 0. For f € C[[9N]] we write

f=" fom.

meMN

Let 9 be an ordered, abelian and multiplicative group with neutral element lgy and let
C = (C,-,+,1¢,0) be a commutative ring. We call 9t the set of monomials of the set of
generalized power series C[[91]]. Let
ml = {meMim> 1}
Mmb = {meM|l>ml
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Elements from 9! are called infinite monomials, and elements from M are infinitesimal
monomials. Note that 9T N9 = ) and M UM C M\ {195} with equality if and only if 9
is totally ordered. We let

ol = ol U {1gn}
mb = omb U {1}

Then 9T, 9L, ML, and M are closed under multiplication. Denote in the following C[[9]] by
S. Let

st = c[aml]],
st = Clod]],
st = Claml],
st = ¢[my).

Then f € S! if and only if f has purely infinite support, and f is called a purely infinite
generalized power series. The elements from S!, i.e. the generalized power series with purely
infinitesimal support, are called purely infinitesimal generalized power series.

ExAaMPLE 1.3.6 (1) Let 9 = (N,<y) = N, where > =<y denotes the natural ordering on
N. Notice that N is a totally ordered semi-group. Then f € C[|N]] if and only if supp f is
<y-well-ordered. But this is always the case for functions f : N — C. On the other hand, if
we take 91 = (N, =), then f € C[[MN]] if and only if supp f is ny>-well-ordered, i.e. if supp f
is finite which is the case if and only if f is a polynomial in x over C. We will later work with
the set of elements f of Z[[N]] such that range f C N, and we will (abusively) denote this set by
N[[N]].

(2) Let 2% = {2" |n € Z}. Let 1 = 2° and for integers n,m
and (zM) "t =g

Then (2%,-,7%,1) is an abelian multiplicative group. Note that ¢ : Z — z% with p(n) = 2" is a
group isomorphism between (Z, +, —,0) and (z%,-, 7!, 1). We define the ordering = on % by

VnmeZ:xz" =2" & n<m.

The ordering = thus defined is total. Let 2% = (2%,%) and C a ring. Note that C[[z%]] is the
set of Laurent series. It follows that f € C[[z%]] if and only if there is a k € Z and ¢, € C for
n < k such that f =}, c,2”. Purely infinite series in C [[#%]] are polynomials in z over C.
The purely infinitesimal series in C[[z%]] are the formal power series in #~! with constant term
0. Examples:

fi = 30— 24+ 1+a+2222 43323+ (Laurent series)
fo = a2 —-22273 44271 (polynomial)
2 3

B 2 oo
f3 = z-L 4+ —... (formal power series in )
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(3) Let 2N = {2"|n € N} C 2%. Then 2V = (2V,-,1, ) is a totally ordered, multiplicative
semi-group. For a ring C' the ring of generalized power series C[[z"]] is the set of formal power
series over C. If we consider the totally ordered semi-group 9 = (2%, -, 1, <), then C[[9]] is the
set of polynomials in x over C'. This illustrates the need to be aware of Warning 1.3.4.

(4) Let C aring and n € N. If k € Z", then we write k = (k1,... ,ky). Let 0= (0,...,0)
and for k,l € Z™

k1= (ki +1,... . kn+1,) and  —ki=(—Fki,...,—kn).

Then Z™ = (Z",+,—,0) is an abelian additive group. The set N* = (N",4,0) is an abelian
semi-group. Let k,l € Z", then we let k < [ iff Vi < n: k; <I;. Both Z™ and N" are ordered by
<. Let X = (X1,...,X,) and k € Z", then X¥ = XF ... XFn Let X% = {X¥ |k € Z"} and
XN ={X*|k € N*}. Let for all k,1 € Z"

1 = XV
Xk'Xl — XIC-H
(xXHt = xR

Again, XZ = (XZ,.,71 1) and XN = (X, -, 71, 1) are multiplicative, abelian groups and semi-
groups respectively. The ordering = on X7Z is defined by X* = X! & k < I. The mapping
@ : Z" — X7 with (k) = X* is a (semi-)group isomorphism between Z" and X% and between
N" and XV respectively. With XN = (XN 32), the ring C[[X"]] is called the ring of formal
power series in n indeterminates over the ring C'. The series

3+ X+Y +5XY —2X2Y +3XY3 ¢+ ...

is therefore a formal power series in two indeterminates X and Y over Z.

1.4 Rings of generalized power series

Let us show how to define a ring structure on S. Let g,h € S. Then g + h is the function
f 9N — C such that for all m € M : fi; = gm + hm, i€

g+h=""(gm+ hm)m.
meMN

Notice that supp f C suppg U supph is indeed Noetherian. The unique element with empty
support is denoted 0; for all f € S we obtain f4+0 =0+ f = f. We define for f € S the function
—f 9 — C such that for allm € M : (—f)m = —(fm), i€

—f=) (~fw)m.

meM

Notice that supp f = supp(—f), —f € Sand —f + f = 0. Since (C,+) is abelian, so is (S, +).
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For our purposes it will be sufficient to consider commutative rings C. Recall that (v,1) €
P(m) iff oo = m for all v,10,m € M. We define the function p = ps,: M — C by

p= Z( Z fogro)m.

meM (v,r0)eP(m)

This function is well defined by (2) of Lemma 1.1.6. By (1) of the same lemma, suppp is
Noetherian. Hence pr, € S. Note that pr, = pg . We write py, = f - g and call f - g the
product of f and g. The multiplication thus defined is commutative and associative. Let
1: 9 — C be the function with suppl = {lgn} and 1(lgp) = 1¢, then 1 € S and for all

FeES:1-f=f-1=F.
LEMMA 1.4.1 (S,-,+,1,0) is a ring.

Proof: 1t remains to show that for all f,g,h € S we have f(g+ h) = fg+ fh. Let m € 9,
then

flg+h)m = Z folg+ M) = Z fo(gw + hw) = Z (fogro + fohw)

vro=m vto=m vro=m

= > fowt D fohw = (fO)m+ (Fh)m

vro=m vro=m

= (fg"i_fh)m'

Hence the lemma. O

Note that for S = C[[9]] the subsets ST, S}, S, ST are closed under addition and multiplica-
tion. If C is a ring, then SI and S! are subrings of S.

REMARK 1.4.2 Some of the structural properties can be introduced for more general C' and
M. Let P # () be an ordered set. We let C[[P]] be set set of functions f : P — C with
Noetherian support. Then + can be defined as above, and (C[[P]],+,0) is an additive group if
and only if (C,+,0) is an additive group. The equivalence remains true, if we consider abelian
groups. Suppose that 9t is multiplicative. In this case, if (C,-, 1) is a commutative, associative
semi-group, then so is (C[[9]],-,1).

1.5 Noetherian families

From now on, we will work with generalized power series over rings C. For a finite number of
generalized power series f1,... , f, € S = C[[9N]] we have defined the sum f; +---+ f, € S. We
will extend this notion of addition to larger subsets of S.

NotaTIiON 1.5.1 Let F C S, then we will write F' = (f;)ics for an index set I. Let (X;);cr be
a family of subsets of a set X. Then we write [[,.; X; for [J;c; Xi, if the sets X; are pairwise
disjoint. If no confusion can arise, we simply write [ [ Xj.

el
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DEFINITION 1.5.2 F = (fi)ie; € S! is a Noetherian family iff

(a) U;crsupp fi is Noetherian in 9.
(b) Vme M : |{i € I|m € supp f;}| < co.

For a Noetherian family F = (fi)ier let ) F = > icrfi = D mem(Dicr fim)m. Note that
Y. FeSs.

Every generalized power series f € S gives rise to a Noetherian family

Fy = (fm™M) meom

In this case, we have supp ) Iy = supp f. Note that in general supp » F' C | J;c;supp f; for a
Noetherian family F' = (f;)ics. For two families F' = (f;)icr and G = (g;);es, the product F -G
is the set {f;-gj|i € I,j € J}. Letting D = I x J and hq = fig; for d = (i,j) € D, we can write
F -G = (ha)dep-

PROPOSITION 1.5.3 Let F' = (f;)ier be Noetherian family in S. Then

(1) If J C I, then (f;)ics is a Noetherian family.

(2) If I = [;e;1; and g; = Zielj fi, then G = (gj)jes is a Noetherian family and ) F =
> G.

(3) Let F and G be two Noetherian families, then F-G is a Noetherian family and Y F-> G =
S(F-G).

(4) Multiplication and addition with Noetherian families are commutative, distributive and
associative, i.e. for Noetherian families F,G,H € S we have

(0) 2F-2G=3G-3 F,
(b)) 2 FQ_G+ > H) = (FG) + > (FH),
(¢) XF-2(GH) =3 (FG) -3 H =) (FGH).

Proof: (1) follows from | J;c ;supp f; € U;c;supp fi. We remark that

supp Y G C | Jsuwppg; = |J | supp fi = | supp

jed jeJicl; iel

shows that supp D> G is Noetherian. Let m € 9t and j € J with m € supp g;, then there is an
i; € I with m € supp f;;. Therefore there can only be finitely many j € J with m € suppg;.
Hence G is a Noetherian family. To show the equality, let m € 9. Let {j1,... ,jn} = {Jj €
J|m € suppg;} and for every 1 < k < n, By = {i € I;, |m € supp f;}. Then m € supp > F if
and only if m € U, ¢, Bj, thus

(ZF)m - Zn: Z fim= égjk,m = (ZG)

k=1ieB, m

Hence (2).
Let with the above notations F'- G = H = (hg)4ep, then

supp H C |_Jsupp ha C (| supp £i)(| supp g5),
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hence by Lemma 1.1.6, the set supp H is Noetherian. Fix m € 9. By (2) of Lemma 1.1.6 applied
to S = |J,supp fi and T = [J, supp g;, there are only finitely many d € D with m € supp hy.
Thus the first part of (3). Let F' = (f;)ier be a Noetherian family and g a generalized power

series. Then for m € 9
(QZF)m: Z gnsz-

bro=m
For every w the sum ) F), is finite and we have
Z QUZFm = Z Z gnfi,m = Z(gfz)m = Z(QF)m-
vro=m icl oro=m i€l
Now for G = (g;)jcs we get
DG F= gy F=3 > giF=Y"> gifi=) ha=) (FG).
jeJ j€J iel jeJ deD

Hence (3). (4) follows from (3). O

CITERION 1.5.4 Let F' = (f;)ier be a family of series in S. We let
Sp:={(i,m)|i€l N m€suppf;}.

We define the strict ordering > on Sf by (i,m) > (j,n) iff m > n. Then F is a Noetherian family
if and only if (S¢, =) is Noetherian.

PROPOSITION 1.5.5 Let £ = (g;)icr be a Noetherian family in S such that e; < 1 for alli € I.
Then the sequence

(€61 ** €in)(in,e.. in)El*
is also a Noetherian family in S.
Proof: Let Sg and > be defined as in Criterion 1.5.4. Then (Sg, =) is Noetherian. The

ordering 7> induces an ordering ’=gs on Sz, which is Noetherian as well by Higman’s Theorem.
Criterion 1.5.4 then shows the proposition. O

COROLLARY 1.5.6 Let fi,..., [, € St and let f¥ = fF ... fhn for k € N*. Then (f*)renn is
a Noetherian family.

PROPOSITION 1.5.7 Let F = (f,)o<n be a Noetherian family in S. Then for all g € S} the
sequence (fr - g")ogn is again a Noetherian family.

Proof: By Criterion 1.5.4, the ordering (S¢, =) is Noetherian. Since suppg < 1, the set
(supp g)* is Noetherian, too, by Higman’s Theorem. Consider the mapping

p: 9% (suppg)* — [ J{(n,a) | a€supp fy-[[(suppg)*}
on

((n,m), (ng,... ,ng)) +—— (n,mng---ng).
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Then ¢ is strictly increasing and surjective. Hence range ¢ is a Noetherian set. But then again
by Criterion 1.5.4, the sequence (f, - g")o<n is a Noetherian family. 0

COROLLARY 1.5.8 Let (fn)o<n be a sequence in'S and € € S such that (fy, -€™)o<n is a Noethe-
rian family. Then for every 0 < e in S, the sequence (fy - 6"™)o<n is a Noetherian family.

5 n
<fn'5n' <E> ) = (fn - 0")ogn »
on

the corollary follows from Lemma 1.5.7. O

Proof: Since §/e < 1 and

1.6 Strongly linear algebra

Let F' = (f;)ier be a Noetherian family in the ring of generalized power series S. Then we have
defined a series ) F' =, f; in S. Hence for an index set I, we have a summation operator ) _;
which assigns a series from S to every Noetherian family which is indexed with /. This section
will treat such summation operators in an abstract way.

Let G be an abelian, additive group. Assume that for every index set I we have a partially
defined summation operator ), such that if (z;);cr € G! N dom > then > (x;)ier is an
element from G. We say that G is a strong abelian group iff ), is totally defined for all
finite I and if for all I and (x;);cr € G we have

SA1. if I = {i1,... ,i,} is finite, then Y, (x;)icr = s + -+ + 4,;
SA2. ) ;(0)jer =0 for all I;
SA3. if (z;)ic; € dom ) ; and ¢ is a permutation of I, then (z,(;))ie; € dom ; and

Yor(@i)ier = D21 (Typi))ier;

SAA4. if (zi)ier € dom }; and I =[], ; I;, then
e forall j € J: (7;)ics; € dom lev
o (2, (wi)icr;)jes € dom )
o > @iier)jer = 2 (wi)ier-

REMARK 1.6.1 We will also write )_; z;, if no confusion can arise. Hence the last condition
in SA4 can be written as > ;> %= > ;. Also, if I is clear from the context, we will
use y instead of > ;. Notice that we allow the implication in SA4 only in one direction.
One might think of series ZI]- zi = 1 —1. Then for J = N we have ) _; le xz; = 0, but

Siri=01-1)+1—-1)+---.

A strong ring is a ring R which is a strong additive group such that for all index sets I, J
and all (z;);e; € R, (yj)jes we have
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SR. if (x;); € dom ) ; and (y;); € dom > ;, then (z; - y;)rxs € dom ) _;, ; and
Dorxa iy = Qo) - (2 95)-

If R is a strong ring and (;);c; € RY Ndom Y, then for all » € R we have (r-2;);c; € dom Y,
and r- ) ;x; = Y ,r-x; Notice that this implies that the converse direction of condition SR
is true: let I, J be index sets such that (z; - y;)rxs € dom ), ;. By SA4, for all j € J the set
(@i - yj)ier is in the domain of ;. From SR follows > ; z;-y; = y;->_; ;. We have ) z; € R,
thus by SR

Let R be a ring and M be an R-module. Summation operators in R and M are denoted by
>_r.r and > ;5 respectively. We say that M is a strong R-module iff R is a strong ring, if
the additive group of M is strong and if

SM1. for all (z;)ier € dom >, and all 7 € R we have (r - z;)ie; € dom _; ,, and

ZI,M"” L =T ZI,M Li-

SM2. for all (r;)ies € dom ) ; p and all z € M we have (r; - z);e; € dom » 7, and

(ZI,R )X = ZI,M Ti T

A strong algebra is an R-algebra A together with infinite summation symbols, such that A
is a strong ring and a strong R-module. Let us apply these definitions to rings of generalized
power series. Let C' be a ring. We define ) r,c on Cif and only if I is finite. We can do this
for each ring R, and call this the trivial strong ring structure of R. Note that S = C[[9]] is
a C-algebra. For families F' = (f;);c; we define > rs if and only if F" is Noetherian, and in this
case we let } ;o I be defined as in Section 1.5. We now prove

PROPOSITION 1.6.2 With the above definitions of Y ; in C' and S the field C[[9M]] is a strong
C-algebra.

Proof: Since ) ; - is only defined for finite I, the ring C' is strong. We have to show that S
is both a strong riné and a strong C-module.

The conditions SA1, SA2 and SA3 need no comment. The condition SA4 follows from (2)
of Proposition 1.5.3. Thus C[[M]] is a strong abelian group. The condition SR follows from (3)
of the same proposition. Hence S is a strong ring.

Finally, we show that S is a strong C-module. The condition SM1 is a special case of SR.
So is condition SM2, since C' has the trivial strong ring structure. 0.

Let M and N be two strong R-modules. A mapping ¢ : M — N is a strongly linear
mapping iff it preserves the infinite summation symbols, i.e. for all I and all (z;)ier € dom > _; ),
we have

SL1. (¢(;))ier € dom }; y and

SL2. (3o i) = 3o (i)
We remark that strongly linear mappings are linear and that (>, r; - ;) = > ;rip(z;) for
all (rjw;)ier in the domain of »; ;,. We will consider strong linear mappings between rings of
generalized power series.
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PRrROPOSITION 1.6.3 Let C[[9]] and C[[N]] be two rings of generalized power series. Let
@M — O[N]

be a Noetherian mapping, i.e. a mapping such that the image of a Noetherian set in M is a
Noetherian family in C[[N]]. Then ¢ extends uniquely to a strongly linear mapping ¢ : C[[M]] —
cml.

Proof: Let f € C[[M]]. Then supp f is Noetherian, thus (¢(m))mesupp f is @ Noetherian
family. So is F' = (fme(m))mesupp f- We will prove that the mapping

pifr— > fup(m)

mesupp f

is the only strong linear mapping which coincides with ¢ on 1.

We first show that ¢ is a strong linear mapping. Let F' = (f;)icr be in dom ) ;. In other
words, F' is a Noetherian family. Note that supp ) F is contained in S = |J;c; supp f; which is
a Noetherian set. We claim that (f; m¢(m))@myerxs is a Noetherian family in C[[0]]. Since F
is a Noetherian family, we have

L  supp fime(m) € o(S5),
(i,m)eIxS

which is Noetherian by our hypothesis about ¢. Furthermore, given n € 9, the set {m €
S|e(m)y # 0} is finite, since (¢(m))mes is a Noetherian family. Finally, for each m € S with
p(m), # 0 the set {i € I'| fi m # 0} is also finite, since F' is a Noetherian family. Hence the set

{(i,m) € I x S| fimp(m) # 0}

is finite. This shows our claim.
Now the claim together with SA4 proves that (¢(f;))icr = (D mes fi,me(m))icr is a Noethe-
rian family and that

() =0 ) fimem) = D fimem) =D fimp(m) =G (3, fi)

mes (i,m)eIxS meS iel

This shows the strong linearity of ¢.
In order to show that ¢ is unique, it suffices to remark that for each f € C[[9]] we must

have 4(fmm) = fump(m) by linearity and 4(f) = > g, r fmp(m) by strong linearity. O

COROLLARY 1.6.4 Let ¢ : M — C[N]] and ¢ : N — C[[V]] be two mappings as in Proposi-
tion 1.6.3 and ¢ and ¥ their unique extensions to C[[M]] and C[[N]] as strong linear mappings.
Note that ¥ o ¢ : M — C[[V]] is a mapping such that the image of Noetherian sets in 9 are
Noetherian families in C[[Q]]. Then

hop=1hog.
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Proof: Note that 1& o is a strong linear mapping extending Q/A) 0. Then the corollary follows
from the uniqueness. O

Let us finally give an application of strong linearity as a tool. Let S = C[[9]] be a ring of
generalized power series and fi, ... , f, € St. For k € N we let f*¥ = ff“'l -+ fkn Corollary 1.5.6
implies that (f*)renn is a Noetherian family. Hence for every formal power series g € C[[XV]]
in 7 indeterminates, the family (gi f*)renn is Noetherian. We denote its sum by go f. If gg = 0,
then go f € St

Now let g1, ... , gm € C[[XN]]! be formal power series without absolute term. Then g;of € S
for 1 < ¢ < m. On the other hand, for every formal power series h in m indeterminates over C
the above implies that ho (g1,...gm) = h o g is a formal power series in n indeterminates with
coefficients in C.

This way we get two series ho (gio f,... ,gmo f) =ho(go f)and (hog)o fin S. We want
to show that they are identical. Instead of writing down each series g; and h and evaluating
every term in the development, we use the strong linearity.

LEMMA 1.6.5 Let C[[9N]] and C[[MN]] be two rings of generalized power series and
0 M — C[N]

be a mapping such that the image of a Noetherian set in M is a Noetherian family in C[[N]].
(1) If ¢ preserves multiplication, then so does its unique strong linear extension §.

(2) If p(mn) = p(m) -n+m-pn) for allmn € M, then @(fg) = &(f) g+ [ ¢(g) for all
frg € C[[M]].

Proof: (1) We have for all m,n € 9t that p(mn) = ¢(m) - p(n). Let ¢ be the unique strong
linear extension of ¢ to C[[9M]]. Fix f,g € C[[M]]. We have to show ¢(fg) = ¢(f) - ¢(g)-
For m € 9 we have by strong linearity

p(mg) = @m Y " gan) = > gn-p(mn) = Y gn-@(m) - p(n).
nemMm nemMm neMm
From the multiplication in S follows
D gn-p(m)- o) =pm) - > g o) =p(m)- @g).
M meM

Thus $(mg) = ¢(m) - $(g). From the strong linearity we now obtain

G(fg) = (Z - g) = ) fmp(m) 4(g) = ¢ (Z fmm) - $(g).

meM meM meMN

This shows ¢(fg) = &(f) - ¢(9)-
(2) For m € 9t and g € C[[9]] we have by strong linearity

pmg) = @MY gan) =D ganp(mn) = gap(m)-n+ > gam-ip(n)

= @(m)-g+m-o(g).
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Then
G(fg) = @O fumg) = fupmg) =) fulem) g+m-&(g))

= O fmpm) g+ O fum) - &(9) = ¢(f) - g+ f - &9)-

a

PROPOSITION 1.6.6 Let n,m € N and S = C[[9M]] be a ring of generalized power series.
Let fi,...,fn € St and g1,... ,gm € C[[XY--- XN]] be formal power series without absolute

term. Let h € C[[Xﬁ---X}i]] and g; o f == gi(f1,---, fn) and ho g := h(g1,... ,9m). Then
(hog)of=ho(gof)

Proof: Fix fy,...,fn and g1,... ,gm as above. We define mappings
pr Xy Xy — Ol X
Y X)X, — O]
9 X)X — C[am]]

by
p(XF) = gt g =X oy
WX = S =Xlof
IXY) = p(g)o f.

We remark that ¢, v and 9 are multiplicative, and by Corollary 1.5.6 they extent uniquely to
strongly linear operators

@:C[[XF“-XE’@H — CIX7 - X
YOy X0 — O],

which are also multiplicative. Then Yo CXN...xN| — C[[9m]] is strongly linear and
multiplicative. Thus 9 =¥ o ¢. Now let h as above, then

ho(gof)=d(h) = Y hi-top(X").
By strong linearity, this means
ho(go f) =1 ( > hk'@(Xk)) = <Z hk'sf?(Xk)> of.
keNm keNm
From Y, cm i - p(X*) = $(h) = h o g we then obtain
ho(gof)=(hog)of.

This shows the proposition. O
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1.7 Totally ordered supports

In this section, we will work with sets of generalized power series S = C[[9]] such that both
C and 9N are totally ordered. In this case, we introduce some canonical representations of
generalized power series from S as well as two orderings on this set.

1.7.1 Representations of generalized power series

Since 9M is totally ordered, we obtain M = M' U {19y} UM!. For every subset S C M there
are uniquely determined sets ST C !, St C M, and S C {1gn} such that S = STusCust.
Let f € S, then supp f = (supp f)' U (supp £) U (supp f)'. We let fT be the generalized power
series with support (supp f)! and Ym € (supp f)! : fimn = f,L, ie.

1= fam.

meMm’
Similarly, we define f© and f!. We let fI = 1+ f= and fl= f' + f=. Then
Fo= 1+
T+ 7L

We remark that f1, fI, =, £} and f! are uniquely determined. We call f1, = and f! the purely
infinite, constant and purely infinitesimal part of f. Note that fT € ST and f! € S%.

ExAMPLE 1.7.1 We illustrate the above notations with an example from C[[z%]]. Let f =
3¢ % —a7? + 1+ a4+ 2% +3%% + ... Then

1= 3z7% — 272

fl= 327 —x?2+1

f =1

fI= 14+a+2%2+3%% 4+
fb= z+222243%3+....

There is a second canonical representation of a generalized power series f € S. We call
minsupp f the leading monomial of f and denote it by df. We let ¢y = fp, and call ¢
the leading coefficient of f. The series 74 = c;0y is called the leading term of f. Let the
remainder be the series Ry with supp Ry = supp f \ {07} and Vm € supp Ry : Ry = fu, i.€.

Rf = Z fmm.
mesupp f\{os}
Then f = 7; 4+ Ry and 0y > supp Ry. The function ¢ : 9 — C which is defined by
op= Y (fmfcp)-m/oy

mesupp f\{0;}
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is in S, and we have f = ¢f04(1 4+ d¢) and ¢fd49y = Ry. Note that suppdy = {m/ds|m €
supp Ry} contains only infinitesimal elements. In later chapters, we will frequently use this
product representation for elements f € S, and we will write f = ¢d(1 + 9) instead of f =
cd¢(1 4 0y), if no confusion can arise. We summarize:

f = Cfaf(1+(5f)
= Cfo-i-Rf
= 717(1+y)
= 75+ Ry.

ExAMPLE 1.7.2 We use the series f from Example 1.7.1. Then

0f = z®
cg = 3
Ry = —a?+14+x+2%22+38%2%+ ...
1 1 1 22 33
of = —§x3+§$5—§x6+§m7+§$8+---

ExaAMPLE 1.7.3 We will use Proposition 1.6.6 mainly to show equalities between formal power
series that will be defined in different ways. Let us give an example of what we mean by this.
Assume that C is a field and that S = C[[9]]. Let f € S and f = cd(1 + ) as above. Then
(6%)i>0 is a Noetherian family, and for F(z) = > o<i X we know that 1 = (1+X)F(—X). From
Lemma 1.6.6 we now get 1 = (1 + 0)F(—6) and F(—d) € SL. Since ¢! € C and 27! € M,
we obtain (c0)"!F(—6) - f = 1. Therefore, there exists a multiplicative inverse in S. We have
proved:

COROLLARY 1.7.4 (C[[9M]],+,-,1,0) is a field if and only if C is a field.

Let St := {f € S|0 < f} and Se := {f € S| oy € M'}. Elements from Sy are called
infinite series. We let S, := S, N S*. Note that ST C S,. The series f from Example 1.7.1
is positive, infinite, i.e. f € C[[zZ]]. The remainder Ry is still infinite, but not positive. The
series dy is neither positive nor infinite.

1.7.2 Lexicographic orderings
The total orders C' and 991 give rise to a total ordering on the set of generalized power series S.
Let > and < be the total orderings on the sets 91 and C respectively. For each series
0# feS=C[M] we let
0<f iff 0<ey.

If f,g €S, then we let ¢ < f iff 0 < f — g. Note that S is totally ordered by <. We call this
ordering the lexicographic ordering of S, and we will also use the symbol <, to denote this
ordering. For f,g € S with f <, g we also say that f is lexicographically smaller than g.
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ExXAMPLE 1.7.5 Take the ring of generalized power series C[[z%]], where C is a totally ordered
ring and zZ totally ordered by = as in Example 1.3.6. For the series

fi = 207 45+ 427+
fo = 207 +d+a+a2?+-
f3 = a7 +d+a+a® 4
fr = —a7?
fs = a7?

we Obtain f4 <lex f3 <lex f2 <lex fl <lex f5

REMARK 1.7.6 The ring (S, <,.,) is a C-module and we have relations <¢, <¢ and <¢ on S
as above. For two m,n € 9 with m > n we obtain |en| <, |dm| for all 0 # ¢,d € C. It follows
that n <¢ m. Hence, we remark that >=c|om = >, =c|m = = and <¢ |gn = idgn. Since >¢, =¢
are extensions of -, = on 9, we denote them by > and »= as well. Note, however, that < is not
a total ordering on S. Take for instance f = z + 2% and g = z in C[[27]], then f < g and g < f,
but f # g. In fact, we have

f=g&0; =0, and f = g&0=0,

To show this, we may assume that f,g are positive. Let f < g. Then let ¢,d € C such that
d>0and c-cyg—d-cp > 0. If 0y <04, then this implies 0 < df < cg. We remark that the
second equivalence can be shown similarly.

An element f € S = C[[9M]] is said to be weakly decreasing iff Ym,n € supp f : m = n <
fm = fu=0 (in C). The set of weakly decreasing generalized power series will be denoted by
S¥d. For sets S C S we let ¥ := SN S¥ . For instance, from the series in Example 1.7.5
only the series f5 = 272 is a weakly decreasing series. Other examples in the ring C[[z%]] are
vzl +ad 4+ or brt Hdr 3 4+ 32 4227 + 1

LEMMA 1.7.7 Let C and 9 be well-ordered. Then (C[[M]]%?, <...) is well-ordered.

Proof: Suppose that (fi)og; is a strictly decreasing sequence in (C[[M]]*?, <,.). The set
Usupp fi € M is well-ordered. Then the set of leading monomials {df, |7 > 0} cannot be
infinitely decreasing; but on the other hand, it cannot be infinitely increasing either, since if
it was, we could extract an strictly increasing sub-sequence from (f;)o<;. We therefore find an
element my € M such that my = 0y, for infinitely many ¢ > 0. We can hence without loss of
generality assume that (f;)og; has this property. For the same reason, the set {cy, |0 < i} € C of
leading coefficients cannot have either infinitely increasing or decreasing sequences. We therefore
may assume that we have mg € 9t and ¢y € C such that for all i > 0: comg = cf,0y,.

Assume now that for an ordinal «, we have constructed a subset {mg|3 < a} C |Jsupp f;
such that

(Do VE<l<a:mg = my,
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(2)a Vi > 0:{mg|B < a} Csupp f; and min(supp f; \ {mg | B < a}) < mg for all < a, and
(B)a V8<a:3cg € C:Vi>0: fim, =cs.
Then let

fE=fi— ) camg,
B<a
ie. fo e C[]¥d with supp f* = supp f; \ {ms|B < a} and Vm € supp f? : o = fim
Repeating the above argument, we can find ¢, € C,m, € 91 such that for an infinite sub-
sequence of (f)o<; we have my, = o and ¢, = Cre. Hence, for successor ordinals, we can
always maintain the hypotheses.

Let A be a limit ordinal such that for all & < A we have (1)q, (2)a, (3)q. Since f; is weakly
decreasing and {fim, |8 < A} C C, this set cannot be either strictly increasing nor decreasing.
Hence there must be a ¢; € C and a §; < A such that for all 8 with 8; < 8 < A we have
¢i = fims- But this is true for all i. From (1)g,, (2)g,, (3)s, it follows now that for 3 > §; all
functions in the sequence take the same value, cg. Hence, the result of the extraction process is
always the same sequence from 3; on. We can therefore define f* as the element from C[[90]]%4
with supp f = supp fi \ {mg|B8 < A} and Vm € supp f} : i)"m = fi.m- We continue this process
until supp f; is empty. But then we have a constant sub-sequence, contradiction. O

Lemma 1.7.7 is not true if we replace C[[9]]“? by C[[9]]*. Let for instance C = N, 9t = N
and f; = (1,...,1,2,0,...), i.e. the function f; : N — N with f;(j) =1for 1,...,i—1, f;(i) =2
and f;(j) = 0 else. Then fy 1> f1 x> f2---. In fact, after w extractions in the proof of the
lemma, there are no series f; left. The set N[[N]]*“, which is by Lemma 1.7.7 well-ordered, will
be useful in later chapters.

1.8 On truncations and supports

Let f,g € S = C[[M]], then ¢ is a truncation of f, in symbols g < f, iff there is a monomial
m, € M such that for all m > m, : fy = gm and for all my = m: g, =0, i.e.

9= Z Jmm.

m > my

The truncation g of f is proper iff g # f, and we write g <0 f in this case. Suppose 0 # f. For
every proper truncation 0 # g of f we have supp g > supp (f—g) and in particular suppg > f—g.

Let f,g €S, then h=f A g €S is called the maximal common truncation of g and f
iff h<g, h < f and if for all A* < f with h < h* we have =(h* < g).

REMARK 1.8.1 To all given f, g € S a maximal common truncation exists and it is unique. To
see this suppose that h; and hy are distinct maximal truncations of g and f, but then either
h1 < ho or hy <1 hy, which contradicts the definition.

Let f1 > fo > f3 be generalized power series, then we have

i o fs < fo o fs,
i o fs D fi & fo
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To see this, we remark that we have 0 < fo — f3 < f1 — f3 and thus fo — f3 < f1 — f3. Then for
every t € term f3 with ¢t > f; — f3 we have t = fo — f3. Hence

fi A f3= Z t Z t=fa A f3.
teterm fs3: teterm f3:
t>f1—f3 t> fa—f3
Similarly, from 0 < f; — fo < f1 — f3 we obtain f; — fo < f1 — f3 and with the same argument
as above

fonfs= Y t2 > t=f 01 fo
teterm fi: teterm fi:
t—fi—f3 tfi—f2

It is in general not true that g < f implies g + h < f + h. A simple example in C[[z%]] is
x < x4+ 2x? and h = 22. In the following lemma, we give a condition on the support of the series
h under which g+ h remains a truncation of f + h. (Note that the truncations here are proper.)

LEMMA 1.8.2 Let f,g,h € S with g< f. Then g+h< f+h if and only if supp h > supp (f —g).

Proof: Note that g <0 f implies that () # supp (f — ¢g) = supp f \ supp g. First, suppose that
g+h<f+h. If there was some m € supp h with m ¥ supp (f—g), then we would find a monomial
n € supp (f — g) with n = m. From f, # 0 we obtain (h+ g)n = hn # fu+ hn = (f + h)n. Since
n = m € supp (g + h) this contradicts g + h < f + h.

Now suppose that supp h = supp (f —g). For all n with n ¥ supp (f —g) we obtain (g+h), =
0. Let n = supp (f — g), then g, = f,, implies (g + h)y = (f + h)n. O.

Recall that elements from S have well-ordered support in 9. The support is then isomorphic
to an ordinal. In this section, we will will consider cardinalities of supports. The lemmas shown
here will have applications to the fields which we will construct in the next chapters. In the
proofs, we will use two general facts about ordinals.

PropPOSITION 1.8.3 Let (R, <) be the set of real numbers with its natural order. Then:

(1) If X C R is such that (X, <) is well-ordered, then X is countable. The same holds for
anti-well-ordered sets X .

(2) Let (X, <) be a countable and well-ordered set. Then there is a monomorphism from (X, <)
to (R, <).

Proof: Let 3 be an ordinal number such that X = (24)a<p and such that for all o < 7 < 3
we have z, < z; in R. Let o < 8. Then let y, € Q with x4 < yo < Zo+1. Hence for a < 7 <
we have Yo < yr and (Yo )a<p € Q. This proves (1).

For (2), we can assume that X is an ordinal. Let 0 the smallest ordinal that cannot be
embedded into R. Then § must be a limit ordinal. If § was countable, then there would be a
strictly increasing sequence of countable ordinals (04 )a<w With 6 = sup,.,,(0a). Let 6_1 = 0.

For every n € N there is an embedding f,, of 6, \ ,—1 into [1 — %H, 1-— %H) Let £ € § and
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n = n, € N minimal with = € §,,, then we let f(x) := f,_ (x). We have therefore constructed an
embedding of § into [0, 1). Contradiction. O

REMARK 1.8.4 (1) Note that the proposition remains true if we replace R by any archimedean
field C'. This field must contain Q, and if there were elements ¢ < d such that there are no
rational numbers between ¢ and d, then 1 % d —c.

(2) An alternative proof for part (2) of Lemma 1.8.3 is the following: X is countable, hence
we can write X = (,,)n<w such that the x,, are pairwise distinct. We define the embedding
¢ X — R with z; < z; = ¢(z;) < ¢(z;) inductively as follows. Take ¢(z9) € R arbitrary.
Suppose that we have defined the embedding ¢ for zq, ... ,x,. The element z, 1, divides the set
Xn =A{x0,...,zn}. The set ¢(X,) = {p(x;)|i < n} is finite. Since R is dense, there is a y € R
which realizes the same cut over ¢(X,,) as x, 1 over X,,. We let ¢(z,+1) = y. Notice that we
could have taken Q instead of R.

(3) We can modify the morphism f such that the following holds. Let A < § a limit ordinal
and A = sup;_,(A\;) with A\; < A, then sup,_, f(Ai) < f(A). To see this this let A < § with
sup; ., f(Ai) = f(A), then we replace f(X) by %(f(/\) + f(A+1)).

Let P = (P,<) be a total order and s a cardinal number. We say that P has cofinal
cardinality < iff every well-ordered D C P has cardinality less than x. From Proposition 1.8.3
it follows that (R, <) has cofinal cardinality < W;. If an order has cofinal cardinality < &, then
so has the inverse order.

LEMMA 1.8.5 Let k1 and ko be cardinal numbers such that C' and 9 have cofinal cardinality
< K1 and < kg, respectively. Let (fo)a<r be a strictly increasing sequence of series in'S = C[[9]].
Then |T| < max(k1, k2).

Proof: Let k = max(r1,k2). The set CIM is totally ordered, and we first show that it is of
cofinal cardinality < k.

Let (78)g<a be a strictly increasing sequence in C9. For every B we have 73 = cgmg.
Suppose that 0 < 73 for all 3 < a. Then we have mg < m, for all 3 < v < a. Hence the set
N, = {mg | B < o} has cardinality < k. For every m € 91, the sequence

(Ca) a<T:
m=mgy

is strictly increasing in C' and has thus cardinality < ;. This shows our claim if all terms are
positive. The general case follows immediately.

Let f € C[[9]] and v be an ordinal number. Recall that every sequence of C[[9]] has an
order type, i.e. there is a unique ordinal number such that the support of f is isomorphic to
this ordinal. Then for v the series f either admits a unique truncation of order type v or there
is no such truncation at all. The latter is the case is v is larger than the order type of f. We
denote this truncation by tr,(f). Note that tro(f) = 0 and tri(f) = 7¢.

We construct a sequence Ag, Ay, ... of sets of series from the given sequence with |A,| = |7|
for all v < k. Let let Ay := {f; | i < 7}. Moreover, once we have defined the set A,, we define
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sets

B, = {tr'y(f) | fe A’Y}a
Cy = {fed | Hi<rlte,(f) =toy ()} <I|7| }.

Note that Cy = (). Furthermore, we suppose that

Ay =40\ [] Cs.
B<y

We show that for all v < x we have

o |4y =7,

o |C,| <k,

e Ww<y:C, N C,=0.
First we consider the case where v =0 + 1 is a successor ordinal. We claim that |C,| < |7|. By
definition, for every series f € A, the set

Dy ={i <7 |trs(f) = trs(fi)}

has cardinality |7|. Moreover, the set admits a minimal element j. Hence {f; — f; | i € Dy} is
a strictly increasing sequence of series. Moreover, we have

Vi€ Dy :trspi(fi) = trs(fi) +troi(fi — f5)-

Now |Cy| > k would imply that for at least one f the set Dy gives rise to an increasing sequence
of length « of terms, which on the other hand contradicts the cofinal cardinality < x of C9N.
Now that |C,| < k, there is at least one f € As such that the set

{fi € As | trs(f) = trs(fi)}

has cardinality |7|. Since this set is contained in A,, our claim holds. Clearly, the set C, has
no common element with any of the sets B, for e < v. We notice that |Bi| < k. Furthermore
|Bs| < k implies |Bsy1| < k. This finishes the case of successor ordinals.

Let v be a limit ordinal. From the inductive assumptions it follows that [ [ ], Cs| < £y = .
Hence the set A, has cardinality |7|. On the other hand, we have

1B, <[ Bsl = &.
o<y
But then |C| < |B,| - |7| =|7].
We can thus continue the construction of A, for all v < s and therefore construct a decreasing
sequence of monomials of length . This contradiction shows the lemma. O

LEMMA 1.8.6 Let C' be archimedean and MM = (M, =) be such that (fo)a<p is a strictly de-
creasing sequence in S = C[[IM]], i.e. for all a« < 1 < B: fo > fr. Suppose that the support of
fa is countable for all a < B, and that all well-ordered subsets S C 9 are countable. Then (G is
countable. (The same holds for strictly increasing sequences.)
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Proof: Apply Lemma 1.8.5 with k1 = kg = Ny. O

Some monomial sets are countable. Take for instance 2%. Then we obtain from the above
that every decreasing sequence in R[[z7]] is countable. If C has cofinal cardinality < x, then
there are no decreasing sequences of cardinality x in C[[#%]]. The Lemmas 1.8.5 and 1.8.6 will
be applied to larger monomial groups in the next chapters. We finish with a simple consequence

of the above.

LEMMA 1.8.7 Let k be a cardinal, o be an ordinal and (9M;)i<q be such that every IM; has
cofinal cardinality < k and |a| < k. Let Mo = U, .o, M. Then for every f € C[[M,]] we have
|supp f| < k.

Proof: Let 9M_1 =0 and for i < «

fi: Z fmm~

meN\M; 1

Then f =3, , fi and supp f =[], supp fi. Then [supp f| < |a| - & = &. O






Chapter 2

Fields of transseries

In this section, we will introduce the notion of a field of transseries. Such a field will be a field
T = C[[9M]] of generalized power series, on which we have an additional partial exponentiation
function. This exponential function both satisfies a certain number of algebraic requirements (see
Section 2.1) and several compatibility conditions with the serial structure of T (see Section 2.2).

The introduction of the notion of transseries fields provides a great flexibility in the study
of transseries. First, it forces one to clearly state the essential properties of such fields. Next,
it provides a framework for the construction of complicated fields of transseries, such as fields
which contain iterators of the exponential function. But most importantly, it enables us to think
of constructions of specific fields of transseries as repeated extensions of algebraic structures.

For example, in Section 2.3.1, we show how to construct the “simplest”, non trivial transseries
field. In Sections 2.3.2 and 2.3.3, we respectively show how to adjoin exponentials to transseries
fields, and how to take inductive limits. Finally, we show in Section 2.5 how to extend transseries
fields by nested expressions.

2.1 exp-log fields

DEFINITION 2.1.1 An ordered field C' with ordering < is called an exp-log field (or simply
an exponential field) iff there is a partial function exp : B C C' — C such that

el. If two among f, g, f + g € C are in dom exp, then so is the third and

exp(f +g) = (exp f)(expg),
e2. For all f,g € dom exp:
f<g&expf<expg,
e3. Forall fedomexp: f+1<expf.

REMARK 2.1.2 If C'is an exp-log field, then the function exp is called exponential function.
If g € C'is such that thereis an f € C with ¢ = exp f, then it follows from e2 that f is unique and
we write f = logg. We call f the logarithm of g. It follows from el that log gh = log g + log h,
whenever two among log g, log h and log gh are defined.

27
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In what follows, we will denote e = exp 1, if 1 € dom exp. We also denote a® = exp(alog x),
for x € dom log and alogz € dom exp.

EXAMPLE 2.1.3 Let C be a totally ordered exp-log field with dom exp = C and dom log = C*
such as C' = R. Let 91 be a monomial group. In view of Lemma 1.5.6 we may extend the
exponentiation on C' to a partial exponentiation on S = C[[M]] with domain C[[MN]]}. Let e(X)
and [(X) be the formal power series

1, -
e(X) =) FXT andU(X) = >
0<i 1<

For f € C[[9M]]! we let
exp f = (exp f7) -e(f1).

We claim that C[[9]] with this function is an exp-log field.

We have to show el, i.e. for f,g € C[[9]] we have to show exp(fg) = (exp f)(exp g). Since
C is an exp-log field, we have to show that the equation yields for purely infinitesimal series f, g.
By Property 1.6.6 it suffices to show that e(X)e(Y) = e(X +Y) for formal power series. But

1
e(X)e(Y) = Zz Y] ZZ lleZ Z Z lel

il
i>0 3>0‘7 i=0 j=0 k>0 Citj=k

1
k>0

This shows el. Now let f < g, both in SI. Then 0 < g — f € S, and from the definition of exp
we obtain 1 < exp(g — f). Multiplying both sides with exp f yields e2. As to the last property,
note that in the case f~ = 0 we have

L+ fh< 14 A (D22 + £1/80 4 ) = e(fh).

In the case f= # 0 we have 1 4+ f= < exp f~ in C. Hence for all infinitesimal series g, h we have
1+ f~+g<expf~+h. Taking g = f! and h = (exp f~) - (e(f') — 1) shows e3. This proves
our claim.

In a similar way, given f € C[[P]]} with f= > 0, we may define

log f :=log f~ + 1(d¢).

We claim that log is the inverse function of exp. Since log f= € C and [(§) € C[[M]]}, we only
have to show that I(e(df) — 1) = 67 and e(l(df)) — 1 = 65.

LEMMA 2.1.4 In C[[XYN]] the equations [(e(X) — 1) = X and e(I(X)) — 1 = X hold.

Proof: The series e and [ are the Taylor-series developments of analtyic functions, which are
inverse one to another. The lemma then follows from the fact that 1 is the development of the
identity. O
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REMARK 2.1.5 Let us give an alternative proof of Lemma 2.1.4 which relies entierly on prop-
erties of formal power series. To this end, we start by recalling that for two integers 7 < n
we have Z?:j (;j) = (’;) Furthermore, we use the following notations. For k € N! with
k= (ki,... k) welet |k| =k +---+k; and k! = ky!---k;!. Let T(i,n) = {k € N*||k| = n}
and T*(i,n) = {k € T(i,n) | k € (N*)*}.

Then l(e(X) — 1) =131 <, LX) = D i<k cx X* where

i=1 neT*(i,k) i=1 neT™*(i,k)
From
i—1 i—1
1 1 7 k! 1 7
S oaeaen(t) X H-gyew(Ha-ar
neT*(ik) " j=0 J ne€T (i—j,k) J=0 J
we obtain
- (D)L (T ik . g1 (= 1Y e
ke, = ~1)~ = 1
@ = YR () D (7))
k M i k
= ey (G0 = e (§)
J=1 i=j J=1

Note that for by = klcp we have by = 1 and by = 0. We want to show that by = 0 holds for every
k> 2.

Let for 1 <7<k — 3, df = Z?;%(—l)j (k;l)jl Note that for all m > 2 we have djj* = —1.
One also can verify that d¥,; = (1 —k)(1+ds '+ o (a7 ™) = 1 —k) S, ()di . We
also remark that for kK = 4,7 = 1 we have df = 0. Now suppose that we have already shown

that if df_l =0 for all I < k — 4, then d?+1 =0 for all # < k — 2. From the definition of b, we
obtain by /k = Y2072 (*72)dl — by for all k > 2. Hence by = 0 for all k > 2 and thus ¢, = 0
for k > 2. We finally obtain [(e(X) — 1) = X. The second equation follows similarly. From
Proposition 1.6.6 the claim now follows.

This proof of Lemma 2.1.4 has its advantages and disadvantages. Due to its technical
character, one would certainly prefer the first proof, which also has links to other fields of

mathematics. On the other hand, the second proof does not need any extra knowledge.
Note that we have

log(fg) = log f +1ogg

for all f,g € C[[M]] with 0 < f=,¢9=. The field C[[9]] together with the partial exponential
function exp on C[[9]]} will be called the basic exp-log field.
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REMARK 2.1.6 Let £ be a first-order language. Recall that for two L-structures M and N
we say that M is a L-substructure of N iff [M| C |N| and if for every function symbol and
every relation symbol of the language L the restriction of the interpretation of the symbol in
the structure A to elements from M coincides with the interpretation of the symbol in M. Let
Lexp be the language of ordered rings with a unitary function symbol exp. Let M and N be
exp-log fields, hence Leyp-structures. If M is a Lexp-substructure of A, then we also say that
M is an exp-log-subfield of .

2.2 Transseries fields

Let C be a totally ordered exp-log field such that dom exp = C' and dom log = C*. Let 9 be
a totally ordered monomial group such that S = C[[91]] is an exp-log field. Suppose that the
exponentiation restricted to S! is the exponentiation of the basic exp-log field structure from
Example 2.1.3. Let f € S be such that f € dom log,, for all n € N. Then we say that f
is log-confluent at order k iff for all n > k we have 7og af = log 7105, - The series f is
log-confluent iff it is log-confluent at some order k. Similarly, we say that a set S C SZ is log-
confluent (at order k) iff every element of S is log-confluent (at order k). Instead of log-confluent
at order 0, we use the expression log-atomic.
Note that if f is log-confluent at order k, then for all ¢ > 0 we have

log; Viog, = log,, f

1= Clogy; s

To see this, we remark that the logarithm of infinite elements of S are infinite, since log is
monotone and range log = C'. Then the claim follows from the functional equation.

DEFINITION 2.2.1 Let C be a totally ordered exp-log field with dom exp = C' and dom log =
Ct. Let T = C[[9M]] be a complete exponential field of generalized power series, where M is a
totally ordered monomial group. We say that T is o transseries field iff

T1. dom log = T,

T2. logM C T,

T3. log(1+ f) =I(f), for all f € T},

T4. for every sequence (m;)o<i € I such that m;y; € supp logm; for all 0 < i, there is an
integer ng € N such that

Vng < n:Vn€supp logm, :n=m, A (logmy)m,,, =1

REMARK 2.2.2 Note that transseries fields are always complete fields. We will see that there
are fields whose elements are transseries which are incomplete. If they are, we will say so.
Otherwise, let us remark that we also use the expression fields of transseries for such complete
or incomplete fields.

REMARK 2.2.3 The condition T2 gives a characterization of the monomials in 9, in terms
of the exponential structure. The condition T3 states that the exp-log structure on T extends
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the basic exp-log structure from Example 2.1.3. Notice that T3 is equivalent to the condition
that exp f = e(f) for all f € T!. Condition T4 is the most intricate one. Roughly speaking, it
ensures that we are able to compose transseries in T on the left by purely logarithmic transseries.
Condition T4 means that we do not allow monomials of the form

2 logq z+e +logr =
6I2+610g2 e o4 5 +logs I+1Og$

We remark that condition T4 implies that every € TZ is log-confluent. To see this, let m be a
monomial and let (m;)og; = (d1og, m)o<i- Then by T4 for a certain ig we have

Vig < 4 :supp logm; = m;yq,

which means that for all i > iy we have supp logm; = {m;;1}. Then m is log-confluent at order
1.

Let T be a transseries field. Given f,g € T \ C, the following notations will sometimes be
convenient in what follows:

f=<g & logl|f| < logl|gl;
f=Xg & logl|f| < loglgl;
=g & log|f| < log|gl.

Notice that f < g if and only if |f]|* < |g| for all @ > 0 in C, in the case when |f|* is defined
for all such a. For instance, z < e*, but z < 21000,

PROPOSITION 2.2.4 Let T = C[[9M]] be a transseries field. Then

1. For all f € T, we have log f < f and even log f < f.

o0

2. Given f € T, the canonical decomposition of log f is given by

logf = (logf)! + (logf)= +  (logf)!
I I I

log 0 log cf log(1 4 dy).
3. For all f,g € T, we have
f<g & (ogf) <(logg)';
f=g & (ogf) <(logg)l;
f =g & (logf)l=(logg);
f~g & (logf)=(logg)l
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Proof: (1) We first claim that for all n € N we have nlog f < f. Let g = log f, thus
g € dom exp. Then from e3 we obtain g + 1 < exp g, hence log f < f. We have 1 < log f for
all series f € TL, since dom exp, = C. Condition T1 implies f/2n € dom log for all n. Hence,

logi < e = 2nlogi < f=2n(log f —log2n) < z.
2n  2n 2n

On the other hand, (2n)? < f implies 2nlog 2n < nlog f. Our claim follows by multiplication.

In particular, for ¢ = log f we obtain 2logg < g. From 1 < g it follows that C + logg <
2log g < g. Since exp is total on C, we obtain log(C*g) < g, whence C* log f < f by e2. This
shows log f < f. Finally, log f < f < log, f < log f, by definition.

(2) follows from el, T2 and T3.

(3) We have f < g &0 <0, 05 <0y & (log f)T = logoy < logd, = (log g)". The other
relations are proved in a similar fashion. O

REMARK 2.2.5 We remark that the above properties of log have their exponential counterparts.
For instance, for all f € dom exp, we have f < exp f, f < exp f and

expf = (expfl) - (expf=) - (expf})
I I I

Dexpf Cexp f (1 + 5exp f)~

In particular, if f € T is in dom log, then exp f € 9t. Moreover, if g € T is such that log g € 9,
then g € M.

We finish this section with some properties concerning the log-confluence.

LEMMA 2.2.6 Let f,g € TL . Then

(1) If f is log-confluent at order k and g =< f, then g is log-confluent at order k.
(2) The set T, is log-confluent if and only if M' is log-confluent.
(3) If f is log-confluent at order k then Riog, f € T! and Riog, ., f € T,

Proof: (1) follows then from djog, f = Dlog, o, for all @ > 0. Then (2) follows from (3) and
f = o, €Ml As for (3), conditions T2 and T3 imply 2, = (log,, f)! and I(¢) € T! for ¢ € T
This shows the lemma. |

REMARK 2.2.7 Define 0, f = 0105, . If we consider 0, as an operator on the set of positive
infinite series in T, then 9, 0 0,, = 0y, for all n,m € N. In other terms, for all n,m € N and
all f € TY we have

0,00, f = Ologn Dlog, f Dlogn_‘_m f= Vpym f-

The same does in general not remain true if we replace 9 by ¢, § or R.
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REMARK 2.2.8 Let us show that the condition T4 is independent from the conditions T1, T2,
T3 by constructing a field of generalized power series satisfying these conditions but admitting
elements which are not log-confluent.

Let C, = C[[logZ" y]] and 2 such that C, < x. We will define a function log on C,[[logZ" z]].
On the set C, we let log = log. We have to define log on the set of monomials logZ x. For i € N,
a €log? z and f € C,[[log” z]]*, we let

log(log;z) := log;,1x+y
la|
log(log®z) := Zailog(logix)
log(f) := logds+log(cy)+ ().

By definition, the conditions T1 and T3 hold. We cannot take C, as field of constants, since
otherwise the definition of log on logZ" z would not satisfy condition T2. Instead, we take C as
field of constants. We let

Yo=Yy XTo =X
1 :=logy 1 :=logx
= logyy T :=logyx

Then we can rewrite the field C,[[logZ" z]] as
Cll-~ sy13y0i -+ s w13w0]],
where the element x;,y; are ordered lexicographically. The set of monomials of this field is
{a®y’|a,b e 2"},
and for monomials m = z%y® in this group we have

Jal b
log(m) = log(z?®) + log(y Zazlog log; ) +  _ b;log(log; y)

This shows T3. Now we remark that x is not log-confluent, hence that T4 does not hold in this
field. An immediate consequence is that we cannot have a composition with fields T where we
replace x by a positive infinite series. Take for instance the series f = = + logz + logyx + - - -
Then

(log;r o wo)1<i = <93z‘+yo+l( Y ))
Ti—1 1<t

is not a Noetherian family. In this example, we have an element, which is in infinitely many
members of the family. By modifying the construction of the field, we might even have con-
structed a family (log;z(); such that the supports contain a strictly decreasing subset in > by

taking log(x;) = =i + (Yo/Yit+1)-
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2.3 Construction of transseries fields

2.3.1 Fields of purely logarithmic transseries

Let C be a totally ordered exp-log field with dom exp = C' and dom log = C'". Recall that Z*
is the set of non-commutative words over Z. Now Z* has the structure of an abelian group by
taking a + b = [ag + bo, ... ,a; + by] for words a = [ag, ... ,q;] and b = [by,... ,b;] of the same
length; for words of different lengths, we complete the shortest word on the right with zeros.
We also define an ordering on Z* by setting a > 0, if a # [] and a; > 0 for the smallest i with

a; 75 0.
For each a € Z*, we now define
log® z = 2% log™ x - - - logp™
and logZ" x = {log® z | a € Z*}. We give logZ"  the structure of a totally ordered monomial group,

isomorphic to Z* by 1 = log®z, (log® z)(log® z) = log®*® x for a,b € Z*, and log®z = log® x if
a > b. Notice that

x> logx »logyx 5 - .
Now let I = C[[log”" z]]. For monomials log? z, with a = [aq, . .. , ], we define
loglog®x = aglogx + - - - + a;log; | =.

Notice that loglog®z € LT and log®z < logbz < a < b < loglog® z < loglog® z. We extend
the logarithm to L™ via

log f =logd; +log ey +1(dp),
where [(z) = log(1 + z) € C|[z]].

REMARK 2.3.1 The construction of the group logZ*:L‘ can be extended to a group logc* x by
systematically replacing Z by C. One then obtains a group with C-powers. This extension is
necessary, if one works with asymptotic scales. For our purposes it suffices to take Z. Note that
the following proposition only generalizes to the extended construction if 9 has C-powers.

ProprosITION 2.3.2 L is a transseries field.

Proof: First, el is equivalent to the condition that log fg = log f + log g for all f,¢g € L*.
This follows from the fact that logds, = log(0/9,) = logd + logd, and Property 1.6.6.

As to €2, let f,g € LT be such that f < g. If 0y < 0y, then (log f)! < (logg)!, whence
log f < logg. If 0 = d,, but ¢f < ¢4, then (logg —log f)I = logcy — loges > 0 and again
log f <logg. If 74 = 74, then

— _ (99 =05\ _ 9y =9 dg — 9y ’
log g —log f = 1(6g) l<5f)_l<1+5f>_1+5f +0 Ty > 0.
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If f <1, then e3 follows from Example 2.1.3. Now suppose that 1 < f and f € dom exp.
If f <0, then 1 < f implies f + 1 < 0 < ef. Otherwise e3 is equivalent to log(f 4+ 1) < f. Let
0 = log{" - -log% x with a; > 0. Then (log(f + 1))! =logdss1 = logd; =< log;,; z. Hence
log(f +1) =< log; ;= <97 = f. In particular, we have e3.

By construction, T1, T2 and T3 are satisfied. As to T4, let mg € logZ*x, then for every
m; € supp logmy we have m; = logy x for some N € N*. Consequently, for every sequence
(m;)o<; such that m;; € supp logm;, we have m;; = logy,;« for all ¢ > 0. But then ng = 1,
and condition T4 holds. O

PROPOSITION 2.3.3 Every non-trivial transseries field T = C[[M]] # C contains an isomor-
phic copy of L.

Proof: We claim that there exists a monomial z € 9! whose iterated logarithms are all
monomials. Indeed, choosing f € TL arbitrarily, the series f is log-confluent at some order nq,
and we may take x = Olog,,, f Our claim implies that z,logz,log, x,... are all monomials in

M. Hence, log? z C 9, since M is a group. We conclude that L. C T. O

REMARK 2.3.4 The above construction can be slightly generalized by considering the set Z**
of infinite words a = [ag, a1,...] over Z instead of Z*. The analogous construction then yields
another transseries field L = C[[log”"" z]] which strictly contains L.

2.3.2 Exponential closure

Let T = C[[91]] be a transseries field. In this section, we show how to construct an extension
Texp = C[[Mexp)] of T, which itself is a transseries field such that the exponential function in
Texp is totally defined on T.

We take Meyp = exp TT, ie. Mexp is the set of formal expressions exp f with f € TT. We
give Meyp, the structure of a totally ordered monomial group, isomorphic to the additive group
of T by setting (exp f)(expg) = exp(f + ¢g) and exp f = expg < f > g for f,g € T!. Let
f € (Texp)L with 0y = exp g for some g € T'. Then we define

log f = g +logcy 4 1(0y),

where {(z) = log(1+z) € C[[2]], as above. The field Tey}, together with the function log is called
the exponential extension or exp-extension of T.

PROPOSITION 2.3.5 Tey, is a transseries field.

Proof: We prove el, €2 and e3 in the case when f & (Texp)d, in a similar way as in
Proposition 2.3.2. So assume that f € (Texp)d N dom exp. Since T is a transseries field and
Ologo, € M, we have logdiogo, < Voga, < logdys. In particular, (logblogaf)T < (logbf)T, SO
that logds < ?f, by construction. We conclude that log(f + 1) =< logd; <0y = f, which
implies e3.

By construction, we again have T1, T2 and T3. We observe that these conditions imply
that Tiog f = Tiogr, for all f € T+ . By induction, this yields Tlog,, f = Tlog,, 7, for all n. > 0. Now
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let f € TL. Since T is a transseries field, the series log 7y € T is log-confluent at some order
ng € N, i.e. Tog, trlogry = log Tiog,, 1og Tf for all n > ng. Then the above observation implies that
Tlog,, 4o log f = log Tiog,, ot for all n > ng. In other words, f is log-confluent at order ng + 1.

We finally remark that for every sequence (m;)og; with m;4; € supp logm;, the sequence
(m;)1<i is in M. Hence since T is a transseries field, there is an integer ng > 1 such that T4
holds for (m;)1<;. But then T4 holds for (m;)o<;. O

ExAMPLE 2.3.6 The series

11 1 .
f B E T elog2 T elog3 T ’
g = eez + eez/x + ee“”/ac2 4.

respectively belong to Ley, and Lexp, exp-

REMARK 2.3.7 First we remark that the exponential function of Tey, is totally defined on T
for all transseries fields. Secondly, note that C[[log”” z]] is a subset of Leyp, since log(log®z) is
an element of LT. Recall that LZ is log-confluent at order 2. That is not true for Ley, anymore.
Take for instance exp 5z2 log® z, which is log-confluent at order 3, but not at order 2. In general,
in the n-th exp-extension of L the monomial exp,, 5z log®  is not log-confluent at order n + 1.

REMARK 2.3.8 Using exp-extensions, we can introduce an exponentiation with elements from
C on T as follows. Let f € TT and d € C. The series d - log f is in T, thus

fd = etlos/ ¢ Texp-

We remark that fet¢ = f¢. f¢ and that f" defined as above coincides with the n-fold multipli-
cation of f with itself.

Moreover, if 9 is a group with C' powers, then the above definition is coherent with the
following alternative definition of exponentiation. Let f = cd - (1 4+ §). Then ¢ = e8¢ ¢ C,
since ¢ > 0. We define a formal power series (1 + X)? € C[[XY]] as follows.

() = =5

(1+Xx)¢ = Z(f)x

0<e

One checks that (1+X)% - (14 X)% = (14 X)4+% for dy,dy € C. Applying Proposition 1.6.6
yields (14 6)% € T and (14 6)% - (1 + )% = (1 + 6)%+9%. One verifies

fl=ct 4. (14 6)4.

In particular, if 9t has C-powers, then f¢ € T for all f € Tt and d € C.

Note that the definition of f¢ makes it possible to define a relation < as in Section 1.2,
ie. f <o giff [|£¢] < |lg?]| in Texp. We remark that < coincides with the definition of < in
this chapter.
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2.3.3 Inductive limits

Let I be a totally ordered index set and (T;);cr a family of transseries fields T; = C[[9;]] such
that T; is an exp-log subfield of T; whenever 7 < j. In particular, we have I; C 9; and logr,
is the restriction of logr, to T;. Consider the fields

’]T = UT“
el
T = C[M]], with M = ;.
el

Then T naturally has the structure of an exp-log field, such that each T; is an exp-log subfield
of T. Given f € Tt with 0y € M, we define its logarithm by log f = logy, 0 + logcy + log .

Clearly, T C T, but this inclusion is usually strict: consider (Ty)ieny with To = L, T; =
Lexp, T2 = Lexp exps - - - - Then

1 1 1

_|_
T  eXpT expexpcT

is in T, but not in T. In fact, the field T will in general be incomplete.
PropoSITION 2.3.9 C[[U,c; M]] is a transseries field.

Proof: We prove el, €2 and e3 in the case when f ¢ TX in a similar way as in Propo-
sition 2.3.2. So assume that f € TZ N dom exp. Then there exists an ¢ € I with 9y € ;.
Consequently, we have log(f +1) =< logdy <9y =< f, since logd; and 9 are both in T;. In
particular, log(f 4+ 1) < f, which implies e3.

The properties T1, T2 and T3 are satisfied by construction. As to T4, let m € [J; 9;, then
m € 9, for some i € I. Condition T4 for m follows now from the same condition in T;. O

PROPOSITION 2.3.10 Let o be an ordinal, and let Mg be monomial groups for B < a such
that all Tg = C[[Mg]] are transseries fields and such that Ty is an exp-log sub-field of T, for
all 8 < vy. Suppose that J C « is cofinal in o and such that M1 = M exp for all j € J. Then
exp is total on T.

Proof: Let f € T. Then f € Ty for some 3 < o Let # < j € J. Then f! € T} and thus
exp f1 € 9;41. But then exp f = exp f1 -exp f~ - e(f!) € Tj11. O

2.3.4 Inductive exponential closure

Let T be a transseries field. As an application of Propositions 2.3.5 and 2.3.9, we construct for
each ordinal «v a transseries field T, = C[[M,]] as follows:
TO = T;
Tat1 = Taexp, for successor ordinals a + 1;

Ty = C[[U M,]], for limit ordinals .
a<A
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For limit ordinals A, we also define

Tox= | Ta-
a<A

Note that exp is total on T.,. We call T, the exponential closure of T and denote it
also by Ce,[[M]]. We remark that the exponential closures of C[[logZ z]] and C[[log?" z]] are
the same fields, i.e.

Ceo [[logZ* z]] = Cey [[logZ**x]].

REMARK 2.3.11 We will later show that if one puts a restriction on the cardinality of the
support, then the transfinite sequence T, stabilizes from a certain limit ordinal A on. For
instance, if one adds to the definition of a transseries that the support should not have a
cardinality larger then some fixed cardinal , then we will find such a A which depends on k.
At this stage, we have Ty = T_,.

This property does no longer hold if one does not put a restriction on the cardinality of the
support, which means that T is incomplete and thus no transseries field.

EXAMPLE 2.3.12 Let T = L = C[[logZ z]]. Then we also denote T, by Cy[[[#]]. Accordingly,
we write Ty = C.y[[[z]]]. Note that

x

e e +em +-r e Clllzl]\ Cull[2])]-

2.4 More on the supports

In this section we apply the results from Section 1.8 to transseries fields. Throughout this
section we assume that C has cofinal cardinality < k1. We start with a direct consequence of
Lemma 1.8.6.

LEMMA 2.4.1 Let T = C[[90]] and T = C[[N]] such_that N has cofinal cardinality < k. Let
f € T such that for every m € 9 we have logm € T. Then the support of f has cardinality
< max(k1, K2).

Proof: The sequence (log M)mesupp f is a strictly decreasing sequence in T. Now the lemma
follows from Lemma 1.8.5. O

EXAMPLE 2.4.2 Let M = logZ’z and C = R. For every m = logFz € M with k € Z»
the support of logm = ) k;log; |z is finite, hence countable. Moreover, in order to apply

Lemma 2.4.1 we can take T = T. Hence every element in . = R[[log”" z]] has countable support.
In general, the lemma shows that no element of C[[[x]]] has support &;.

LEMMA 2.4.3 Let f € Texp. Let k2 be a cardinal such that MM has cofinal cardinality < ko.
Then f has support of cardinality < max(ki, k2).
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Proof: Apply Lemma 2.4.1 with T=T.. O

REMARK 2.4.4 It should be noticed that the assumption on C' is essential here, if ko < k1.
Choose an ordinal o with |a| = k1. Suppose that B = (b;);<q is a well-ordered subset of C. Let
m e M and p; = e %™ for all i < . Then

Po = p1 P2

and ), ¢; is a series in C[[Meyp]] which has a support of cardinality a.

Let again 91 have cofinal cardinality < xo. From Lemma 2.4.3 it follows that series from
Texp cannot have a support of cardinality max(s1,#2). Replacing T and Texp by Texp and its
exp-extension, we find that the same holds for Texp exp. We can continue this process and ask
how long we can keep control over the support. To this end let My = M, T, = C[[M,]] and
Maot+1 = exp Tll. For limit ordinals A we let My = J, ) Ma. Moreover, we let M_; = 0.

COROLLARY 2.4.5 Let o be an ordinal with |a| < max(k1,k2). Then the support of f € T,
has cardinality < max(k1,k2). In particular, if a is a countable ordinal, then for f € Ry[[[x]]]
the support supp f is countable.

Proof: Let o be the smallest ordinal such that the corollary is wrong. From Example 2.4.2
it follows that 0 < a. If @ was a successor ordinal, then this would contradict Lemma 2.4.3. Let
a be a limit ordinal and (m;);c; a well-ordered set in 9t,. Let for all successor ordinals 3 < «

Ig={i€l|m; €M\ Ms_1}.

Every (m;)ier, has cardinality < max(k1, s2). The first part of the lemma follows from |I] < |a.
For the second part, apply Lemma 1.8.6. O

REMARK 2.4.6 Even if we replace log” 2 by the larger group log”" z, the support of every
element of the resulting field C[[log”" z]] is countable. To see this, we apply Lemma 2.4.1 with
T = C[[log” «]]. It should be noticed that we do not demand C' to be archimedean. This
hypothesis is, however, essential in the study of supports of series in the field of logarithmic-
exponential series in [vdDMM97]. From the construction of the field R((¢))*¥ and Lemma 2.4.1
it follows that every element of this field has countable support if and only if every element of
R((t®)) has countable support. But this is ensured by Proposition 1.8.3.

2.5 Nested transmonomials and transseries

Given a transseries field T, we have seen how to construct an extension Tey, such that the
domain of exp contains T. Taking inductive limits, we have shown how to extend T into fields of
generalized power series which are closed under exponentiation. However, a nested transseries

like

§ log2 z+e'
2 logg zte o4
et te (2.1)
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has no reason to belong to T. This transseries occurs for instance as natural solution to the
functional equation

f(z) = "/ og2),
In this section, we show how to construct extensions of T which contain expressions like (2.1).

More precisely, we want to add expressions of the form

p1Ee ’
eéoozl:e 1 ’
where ¢g, ©1,... € T. The series ¢; will have to satisfy a certain condition imposed by condition
T4 in order to avoid expressions like
2 log2 z+51034 z+e +logs z+log3 >
v +e7°82 +1ogx. (22)

Next we introduce an ordering on the multiplicative group generated by the new expressions.
We define a logarithm and show that the field over the new ordered multiplicative group is a
transseries field.

REMARK 2.5.1 Nested expressions like (2.1) also occur naturally in the characterization of
intervals of transseries. For more on this see [vdH97].

2.5.1 Determining sequences

Let ¢ = (¢0, ¢1,-..) and o = (0¢,071,...) € {—1,+1} be sequences such that
NM1. Vi >0:p; € T A0 < @41,
NM2. Vi >0:Vmesuppyp; : 3j >i:Vy e Th:

T d

cTj-1e

supp; = ¥ =m > o; epititoitie

We say that the pair (0, ) determines the nested transmonomial

p1tore
Ny = 6¢o+ao e

)

REMARK 2.5.2 Condition NM1 makes sure that nested transmonomials cannot be developed
as series, which corresponds to condition T2. Moreover, it will ensure that the logarithm of a
nested transmonomial will be a series with purely infinite support.

Similarly, condition NM2 corresponds to condition T4. Actually, if one thinks of the nested
transmonomial determined by a pair (o, ), then we should have

supp @; - ePit1 +oi+1 e



2.5. NESTED TRANSMONOMIALS AND TRANSSERIES 41

for each ¢. This, however, presumes an ordering on the set of nested transmonomials, which is
yet to be defined. We have thus to find a condition in T expressing this property. Actually, if
we weaken condition MIN2 to

oy P
W}O:EIj>i:V¢ETT:suppg0j >¢:>suppg0i>aie%“+ai+1é ) (2.3)
then we lose transmonomials. Let for instance
clogd; @
a =", a = exzfeloggm, a = er*elog% HEIOgiI, TS e:"Q*elogg e’ e
Then ap > a; > ---. The series ¢y = ), a; exists in every transseries field containing the

exponential closure of L. We let o = (1,—1,1,1,...) and ¢; = log3;, 52 for i > 1. The couple
(0,¢) satisfies the conditions NM1 and NM2. Hence it determines a nested transmonomial.
Condition (2.3) fails. For j we may choose 1) = logy; 1« to obtain a counter-example.

REMARK 2.5.3 Instead of restricting the values of o; to £1, one might want to let these
coefficients range over all non-zero elements from C. In fact, it would be possible to modify
our definition of nested monomials by allowing sequences o = (0g,01,...) with o; € C* such
that o; = +1 for all i greater than some I € N. We remark, though, that these monomials
can be obtained by using the more restrictive definition and exponential extensions. Since we
eventually construct exponential closures, we will obtain all monomials with ¢ above even with
our definition.

It should be noticed, however, that one cannot let o be an arbitrary sequence in C*. Allowing
o that general can lead to incoherences, for instance concerning the definition of a total ordering
on the extended set of monomials. To illustrate the last point, let

= 26\/5+e\/@+26 losa ohe = eﬁ+26\/m+e logg w2e

f(z)

Then f(x) and g(z) are formal solutions of the system of equations

and f(x)

f(z) = 9¢eVr+g(logz)
eVat+f(logz)

Assume that f(z) < g(z). Replacing = by log x should preserve the ordering, hence

f(ogz) < g(log z).
This implies v/ + f(logz) < /= + g(logx). Whence

g(z) = eVFt/logz)  oVatg(logz) %f(m).

Thus f(z) < g(z) implies g(x) < f(x). A similar contradiction can be obtained from the assump-
tion g(x) < f(z).



42 CHAPTER 2. FIELDS OF TRANSSERIES

REMARK 2.5.4 The monomial group 991 can already contain nested transmonomials n. By this
we mean monomials also in the broader sense where o; can take any value from C* for a finite
number of integers ¢. The sequences ¢ and ¢ corresponding to n are uniquely determined as
follows. By condotion T2, the series logn is purely infinite. Since n is nested, the support of
logn has a least element in the ordering »>. More generally, if we let m_; = n, then for all ¢ > 0
we have

Jm; € supp logm;_; : Vim € supp logm;_; : m > m;.
Then we let

@i = logm;y —m,

o; = (logm;_1)m,.

One shows inductively that o; and ¢; exist for all i. By T4, there is some iy such that o; €
{—1,+1} for all i > ig. If n was not a nested monomial, then the above process terminates since
for some i the support of logm;_; has not a least element.

Inversely, let o € CN such that eventually o; € {—1,0,+1}, and ¢ € TN be arbitrary
sequences with properties NM1 and NM2. Then we remark that there are three different cases
to distinguish. First consider sequences with dn : o, = 0. The monomials n, , are said to be
non-nested. Note that since ¢, € T', the monomial n,, is the element of some transfinite
exponential extension T, (where 0 < ).

The remaining two cases suppose Vn : g, # 0. For every i > 0 we let n; be the nested
transmonomial determined by the sequences (0,041, -..) and (¢, Yit1,.-.). If for some i € N,
the monomial n; is in some transfinite exponential extension of T, then so is n,,. In other
words, we will capture n, , using the exponential extension process.

The last case concerns sequences o, such that no n; is in some transfinite exponential
extension, which is to say that n,, does not result from the exponential extension process. It
is this kind of monomials we want to add in this section.

The set of all sequences (0, ) with o € {—1,+1} and properties NM1, NM2 such that
N, is not in some transfinite exponential extension of T will be denoted by Nt. We let

Ny = {na,cp | (J, 90) S NT}

2.5.2 Nested extensions: One-by-one vs. All-at-once

Before describing the extension by nested transmonomials, let us discuss two options. Either
we extend 9 by all of Nr, or we take one couple (o, ¢) € Nt and extend 9 by n, . Let us
informally consider the pros and cons of both possibilities.

The first option appeals for its strength; one adds all possible monomials. In opposition to
the second approach, one will never have to be concerned about sequences from N7 anymore,
once that extension step is done. There are, however, disadvantages when using this extension
process. Formulating the conditions about the monomials becomes rather cumbersome, as many
indices are involved. Especially, defining the ordering on the new set of monomials is very tedious.
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One has to distinguish a number of cases, which does not really contribute to the understanding
of the nature of nested transmonomials. We remark that this is nonetheless possible.

Generally speaking, the disadvantages of one method are the advantages of the other. In
this sense the description of the extended monomial group and its ordering become easier and
more transparent for the second option. This also enhances working with the extended set. On
the other hand, we lose the advantage of having added all possible nested monomials. Also, one
might ask whether inductively applying this extension process actually depends on the order in
which couples from N are chosen.

Keeping in mind that one will in general not be interested to extend just one transseries
field by nested monomials, but that one will rather aim at constructing fields which are closed
under nested monomials, we state that this virtual disadvantage is actually none. Using the first
option, i.e. adding all possible nested transmonomials determined by a field T, we obtain a field
Thest which in general will not be closed under nested monomials. Hence in this case, we would
have to continue the extension process in a similar way as we had to do for the exponential
closure. We will thus not escape from taking inductive limits in pursuing this aim.

Another similarity to the exponential case is that taking inductive limits only stabilizes the
field when we work under the assumption of a support-constraint. But then both methods will
lead to the same stable field.

For these reasons we have opted to continue with the extension process in the case where we
only add one single new nested transmonomial.

2.5.3 Extending by nested monomials

Throughout this section we fix a couple (o,p) € Np. Recall that for every i > 0 we let n;
be the nested transmonomial determined by the sequences (0;,0i11,...) and (@;, @it1,...). In
particular, n; & 9.

If T is a transseries field extension of T with monomial group M and n; € 93?, then n; 1 € m
since logn; € T by T2 and thus, since n;y; is a monomial,

1 .
iyl = ;(bg n; — ;) € M.

7

Hence, if we want to add ng, we have to add ny,ne,... as well. The smallest group containing
I and ng is thus the multiplicative group generated by
M U {no,nl,...}.

Recall that n® =ng° - - -n2 for a € Z* with n = |a| and that n® = 1. Let
Mo, ={a-n"lacMAacZ}.
We define a multiplication on 9, , by
(a-n%) - (b-nb) :=ab - n®*’

Then M, , is a multiplicative group extending M. In order to extend = to M, ,, we will first
characterize when n® > a for a € 91 and a € Z*. We distinguish three cases:
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Case 1: n* =ny
Case 2: n* =n; with 7 > 0
Case 3: n® for general a € Z*

REMARK 2.5.5 The cases are ordered by their generality, i.e. case 1 is a sub-case of case 2,
which in turn is a sub-case of case 3. We point out that a definition for case 3 alone is possible,
but we have decided to differentiate for better readability.

Case 1: Let Y9 be the maximal truncation of log a such that
et

Vo € suppdp: 35 > 0:Vep € T! : suppp; = ¢ = v > ep1tore

Note that ¥ is uniquely defined. Let m; and dg be the leading monomial and coefficient of
loga — Y, i.e.

d0m1 = T(lOg a— 190)

Moreover, let pg € T! such that loga = ¥y + dymy + po. Either of dy and py can be 0. We
recursively define

900>190 or
wo=U9g Amp<n AN0<oy or
wo=% Amy>=n; A0>dy or
wo=U9 Adyg=0 A0 < ap.

ng »~a =

Indeed, in order to decide whether ny > my, we use the same procedure with m; and ny in place
of a and ng respectively. We have to show, though, that this procedure terminates. To do this,
we construct sequences

(mg, mq,...)

(0, %1,...)
(do,dq,...)
(p0>p17"')

as follows. Let mg := a and my, g, dg and pgy as above. For ¢ > 0, we suppose that m;,9;_1,d;_1
and p;_1 are already defined. Then let ¥J; be the maximal truncation of logm; such that

ety

Yo € suppd; : 35 >i: Ve € T i suppp; = ¢ = 0 = P toitie

Again, ¥; is (uniquely) defined, if d;_; # 0. We denote the leading monomial and coefficient of
logm; — ¥; by m; 1 and d; respectively, i.e.

dimiﬂ = T(lOg m; — ’191)
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The process terminates if d; = 0 for some 4. If this is the case, then n; > m; can be decided. We
may thus assume that d; # 0 for all 7. Note that by condition T4 for the field T, there is some
ig € n such that for all ¢ > ig:

pi = 0
d € {-1,+1}.

Let p be minimal such that 9, # ¢,. If p exists, then m, > n, is decidable, and we have thus
recursively defined ng > a. It remains the situation where p does not exist, i.e. where ¥; = ¢;
for all i. Let ip be large enough such that o;,d; € {—1,+1} for all i > iy. Since ng € Ny, there
must be some minimal g > ig with o; # d;. We let

mg =-n, & o,=-1<1=d,.

Again, we can now recursively decide ng_1 > mg_1,... ,n9 > mp. This finishes the first case.
Case 2: Replace in case 1 systematically n; by n;4; for all j > 0.
Case 3: Let a € Z* and ¢ be minimal with a; # 0. Note that

t =loga — (ajp; + -+ anpn) € T'.
Since n; € M, we have n; # 0, and we let

0 <nip1 A 0 < oja4
n® - a:s Oia; N1 > Ty <
0 =nip1 A0 <o

This finishes the third case of the definition of the ordering on M, ..

REMARK 2.5.6 In order to show that the definition is correct, we claim that one of p and ¢ in
the first case exists. Suppose that p and ¢ do not exist. Then we have in particular d; # 0 for
all . Condition T4 implies then that there is an integer 7 such that m; = n;; for all j > 7. But
this contradicts (o, ) € Nr.

REMARK 2.5.7 Let us motivate the definition of the ordering in case 3. In order to extend
T into a transseries field, we will define a logarithm. This function log has to extend the
logarithm of T, it has to satisfy the functional equation logxy = logx + logy and it has to
satisfy 1 < ¢ = 0 < logz. In particular,

a

a<n" & loga<amn +- -+ apn,
< loga< (aigpi Tt an@n) + (Uiai Nip1+ -+ onan nn—f—l)'
Also, we will show that n; > n;11,n;42,.... Since t € T, we only need to compare the leading

terms 7 and o;a;n;4 1.

Let us show some consequences of the definition of n® > a. In particular, we prepare the
ground for the definition of a compatible total ordering on 9, .
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LEMMA 2.5.8 Let (0,9) € Np. Then Vi > 0 : supp ; » Supp pi+1, i-e. we have

Supp o »— SUpppi »— Suppps »- - .

Proof: Let m € suppy;. By NMZ2, there is some j > i such that for all ¢» € T! with
supp ¢; = ¢ we have

oj g efitY

m = ePi+1toit1 e — ePit1toiti-a(®)

Hence m % logm > ¢; 1 + 0441 - a(¢). But this holds for all ¢ € TT with 1 < supp ¢;, thus
there are ¢ with ¢;11 % a(). Then for such series 1) we have

Pit1 X Qit1 +0iy1 - a(y) <logm,

which implies m % ;4. O

REMARK 2.5.9 Similarly, one shows suppy; = nj and Vk € Z : 1 < ning? for all 0 < ¢ < j. The
former property corresponds to the condition that n;; is the smallest element in the support
of the series @; + o;n;41, whereas the latter one will imply n; > ng > ---

LEMMA 2.5.10 Let a € M and i € N be such that n; = a. Then
VbeIM:a=b=mn; > b.

Proof: Since > is recursively defined, we will show the lemma recursively as well. We describe
a procedure that eventually terminates and thus proves the lemma. Also, it suffices to show the
lemma for n; = ng. The general statement follows from re-indexing.

Recall from the definition of ng > a that we have constructed sequences (9;)o<i, (di)o<i and
(m;)ogi, where mp = a. We let (191-)0@, (d Jo<i and (m;)o<; be the corresponding sequences for
b (in particular, we have mg = b).

From np > mp we obtain ¥y < g, and equality implies dgmg < ogny. Similarly, mg > mg
leads to 790 < vy, and 190 = 9¢ implies d0m1 < domg. If one of the inequalities is strict, then
190 < ¢p, which immediately yields ng > mg = b.

It remains to consider the case ¢y = Yy = 790 and czoﬁ'tl < domg < ognp. We are done if
czo < 0 < gy, for then cioml < ogny and thus ng = m;. Hence we have to consider the case where
0<og- czo. In particular, we remark that og and dy have the same sign. In other words, if og
and dy have different signs, then we are in one of the preceding cases, the procedure stops, and
the lemma is proven. If both oy and czo are positive, then we have to show

mpe=m; A npo=mp = ng > my.
Otherwise, if both are negative, then it remains to prove
my=my A my>=n; = m; > ny.

Taking this process further, we see that the lemma holds if there is an ¢ € N such that at least
one of ¥; # 9 and ; # 9J; holds. Otherwise, if p; = ; = ¥; for all 4, then the process terminates
if o; and d; have different signs for some 7. But this will be the case by condition T4 and

(07 90) € NT- U
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LEMMA 2.5.11 Let a € M and i € Nt such that a = ;. Then a = n; for all j > i. Moreover,
if a,b € M and i < j are such that n; = a and n; = b, then for all c,d € C : n; > ca+ db.

Proof: We only need to show the first part for j = ¢ + 1. The full statement follows by
induction. Let ¥y be the maximal truncation of log a with

et

Va € suppdo: 3j >i: Ve € T' - supp@; = ¢ = a > ePir1toitie

Then from the definition of a > n; it follows that ¥y = ;. We have ¢; > @;11, since @;, @ir1 > 0
and supp ¢; > supp ¢;+1 (by Lemma 2.5.8). Thus ¥g > ¢;+1, and therefore a > n;;1.

To show the second assertion, we remark that b< n; and ¢ < j imply b<n;. Thus
Teatdb < @, b <n;. This finishes the proof. O

PROPOSITION 2.5.12 Let a,b € M and a,b € Z* be such that n® = a and n® = b. Then
n®tt — qb.

Proof: We define I, J, M, and N by

I := min{ i |a; # 0} M :=max{ i |a; # 0}
J :=min{ i | b; # 0} N :=max{ i | b; # 0}.

If I does not exist, then neither does M, and in this case we have a = 0. The same holds for
J. Hence, if neither of I and J exists, then a = b = 0, and the proposition follows from the
compatibility of the ordering with the group structure of 9. Therefore we will in the following
assume that at least one of I and J exists.

We let

t = loga— (arpr+---+apnpn) if I exists,
s = logb—(bjps+---+bynen) if J exists.

We first treat the case I where exactly one of I and J exists, say I € N. Then we have b <1
and thus logb < 0. We distinguish two subcases.

Sub-case 1.1: 0, > n;11. Then from a < n® we obtain ¢; < 0. If logb <, then t +logb =< ¢
and cqy10gp = ¢t < 0. Hence the inequality

log(ab) — (arpr + -+ - +amem) < oramryr (2.4)

holds. On the other hand, if logb >~ ¢, then ¢ +logb = logb and ci110g6 = Clogp < 0, which
implies inequality (2.4) again. Finally, if £ =< logb, then t +1logb =< ¢ =< logb and ciyiogp =
¢t + clogp < 0. Hence in all cases we obtain ab <n®.

Sub-case 1.2: 9y <n;11. Then ora; > 0. Again, we distinguish three cases. First, if logb <1,
thent =< t+4logb<nyy; and thus t+logb < g;a; nryq. Next, if t < log b, then logb =< t+logb
which implies ¢i 1056 = Clogp < 0. Thus again ¢ + logb < oya;n741. And finally, if ¢ < logb,
then t+logb < t <nyy1. Again, orar > 0 implies t + log b < ;a; nyy1. This finishes the case I.
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Next, we treat the case IT where both I and J exist. Let L := min{ ¢ |a; + b; # 0}. Then
L > min(I, J). We consider four sub-cases.

Sub-case 11.1: 0, = nyyq and 05 > nj41. Then ¢, cs < 0. Hence
01s = max (04, 0s) > Nyy1,Nyi1

and ¢4s < 0. Since L > min(/,J), we obtain by Lemma 2.5.11 that ;45 > nzy;. Thus
t+s<oplar +br)npy1.

Sub-case 11.2: 0 <nyy1 and 05 <nyyq1. Then ojay,o5b; > 0. Hence op(ar, + by) > 0.
Moreover, by Lemma 2.5.11 we have

[UEES max(bt,bs) < Nr41.

Hence t + s < or(ar, +br) np41.

Sub-case I1.3: 0 <ny41 and 05 > ny41. Then ora;y > 0 and ¢s < 0. If J < I, then by
Lemma 2.5.10 we have 0, <05. Thus t+s =< s> nyy; and ¢y = ¢ < 0. From L > J,
s = ny41 and Lemma 2.5.11 it then follows that

Otys ™ NL41.

Hence t + s < or(ar + bp)np41. If J > I, then L = I and or(ar + bp)np41 = orarnry.
Furthermore, t + s < max(d;,05). If 0y > 05, then t +s < t<npy; and ¢ys = ¢. From
orar > 0 it now follows that

t+s<op(ar +br)npyr. (2.5)

On the other hand, if 9; <0,, then ¢ +s =< s and ¢ys = ¢s < 0. This also shows the
inequality (2.5). Finally, ift < s, then t+s=<t<np41. Again, orar > 0 shows inequality (2.5).

Sub-case 11.4: 0, > nryq and 05 <njyyi. This case is similar to the case I1.3.

Thus, we have shown ¢t + s < or(ar + br)np+1 in the case II, from which the proposition
follows. O

Remark that for all a € 91 and all a € Z* with 0 # a we have either a > n® or n® > a. We
extend the relation > to > by

n=a & n">aV (a=1Aa=0).

We define the binary relation = on M, ., as follows. Let a,b € 9 and a,b € Z*. Then we let

b b—a

an® =bn’ = ablx=n

ProPOSITION 2.5.13 The relation = is a total ordering on M, ,. It extends the ordering of
M and is compatible with the group structure of M, .
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Proof: Throughout this proof, let a,b,¢c € 9 and a,b,c € Z*. If one of a # b and a # b
holds, then either an® > bn® or bn® = an® Hence the relation = is total. Next we show PO1
- PO3. Suppose

b

a

an® = bn® and bn’ = an®

Applying the definition, this is equivalent to

b—a —1

ab l=n and n®% = ab

If one of the inequalities were proper, then the other inequality would have to be proper as well.
But then we have an immediate contradiction, which shows PO1. As for PO2, we remark that

¢ o agal=nv? o 10

a

an® = an

which holds by the definition of =. Finally, we show PO3. Assume that an® = bn® and
bn = cn®. If at least one of these inequalities is an equality, we are done. Let as thus assume
that an® = bn? and bn® = c¢n®. Then by Proposition 2.5.12 we have

act=ab tboc = nbratet = pema

which is equivalent to an® > ¢n®. This shows PO3 and the compatibility with the group
structure. a

Let
Top := C[[Mo,0]].

We define log on M, , and Ty, as follows. Let a € M and a € Z* with n = |a]. Then with
e N:

logni = Y + o; Ni+1
log(an®) = loga+ap lognyg+ -+ ay, logn,
log f = logds+logcy+1(dy).

PropPOSITION 2.5.14 The field T, , is a transseries field.

Proof: We prove el, e2 and e3 (the latter for f ¢ (T,,)%) in a similar way as in
Proposition 2.3.2. It remains thus to show e3 for series f € (T, ,)d. First remark that
log(f +1) =< logd; and that 9y = an® for some a € M and a € Z*. If logds =< loga, then
e3 follows from the same property of T. If logd; =< logn®, then let i be minimal with a; # 0.

From 1 < f it then follows that a; > 0, hence that n;;; < an®. Therefore
logn® =< n;j11 < an”

In particular, log(f 4 1) < f, which implies e3. Hence, T, is an exp-log field.
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Property T1 follows from the above definition of log. In order to show T2 we have to show
that all n; are infinite monomials. But this follows from the definition of the ordering and from
0 < ¢; for ¢« > 0. By construction, T3 is true. We show T4. Let mg,mq,... a sequence of
monomials in 9, , such that

V0 < ¢:myqg € supp logm,.

Let n € N be minimal such that m,, € 9. If n exists, then the property follows from condition
T4 for M. Otherwise there are a € Z* and 0 < i such that mg = n® and m; = n;; for all j € N.
But then T4 holds since supp ¢; > n;41 for all q. O

REMARK 2.5.15 Nested extensions will not play any role in the rest of this thesis. One reason
to introduce them was to give another example of a possible extension of a transseries field, thus
illustrating the general method — extending the group 9 to a set M, introducing compatible
multiplication and ordering on 9, defining a function log on 90t such that C[[9]] is a transseries
field — once more.

Another reason was to extend transseries fields by canonical solutions of certain functional
equations. In fact, constructing a super-exponential function can be motivated in that way, too.
Therefore, introducing nested extensions does not provide a tool for every functional equation.
On the other hand, the functional equation

f(l‘) _ egc2+f(log2 x)+logx (2.6)

has natural solutions like (2.2), which causes problems, since this expression does not belong to
any transseries field. It should be noticed that there is a solution of (2.6) which can be expressed
in terms of nested expressions. (See [vdH97], p. 86 for more on this.)



Chapter 3

Trees

So far, we have defined sets of generalized power series, given them a field structure and addi-
tional functions exp and log. This chapter will study the combinatorial aspects of the theory of
transseries.

Transseries admit several properties which cause such properties to emerge naturally. Let
us mention three of them.

e Transseries can be represented as trees.

e Paths and sub-trees of such tree-representations can be used to define derivations and
compositions on transseries fields.

e Noetherian operators and a generalized form of Kruskal’s theorem are the combinatorial
analog to the concept of strongly linear algebras.

In this chapter, we cover the first and the last point. As for the second point, we use the proper-
ties shown in this chapter in Chapters 4 and 5 in order to define derivations and compositions.

3.1 Basic notions

An order T' = (T, <r) is a tree iff

Trl. IreT:VneT:r <pn,
Tr2. for all n € T', the set i, = {s € T'|s < n} is finite.

Note that the element r in condition Tr1 is unique. We call r the root of the tree 7', in symbols
r = r(T). The order-type of i, is called the height of n, symbolized by h(n). The root is the only
element of a tree with height 0. If there is an integer N such that the height of each element of
the tree T is less than IV, then we call T' a uniformly finite tree.

Elements of a tree will also be called nodes. If the height of a node n € T is a successor
ordinal, then there is a unique node p € T with p <7 n such that for no other s € T" we have
p < s <7 n. In this case, we call p the predecessor of n, and we write p = pred(n). Then
the set succ(n) = {s € T'|n = pred(s)} is the set of successors of n. A leaf is a node without
successors. (See Figure 3.1.)

REMARK 3.1.1 We remark that trees are often defined more generally. Condition Tr2 can
be modified by replacing “finite” by “well-ordered”. This allows trees to have nodes n with

o1



52 CHAPTER 3. TREES

Figure 3.1: A tree of finite height (but not uniformly finite) with root r and leaves Iy, lo, . ...

h(n) > w. In this setting, a tree is said to be of finite height iff every element has finite height.
We will later associate trees to transseries. Those trees will be of finite height. Since this is the
only type of trees we will encounter, we have decided to define trees more restrictively.

Moreover, in parts of the literature [Jec78],[Kun80], the definition of a tree does not demand
the existence of a root, i.e. one does not have condition Tr1l. With this definition, every subset
of a tree is again a tree. This is in general not the case with the present definition of a tree. If,
for instance, the root of a given tree T' has more than one successor, then the set 7\ {r(T")} is
not a tree anymore. On the other hand, every subset containing the root will be a tree.

A well-ordered subset P of T is a path iff i, C P for all n € P and P ¢ i, for all nodes
n € T. For a fixed tree, every path has r(T") as a minimal element. For a path P and an ordinal
a, we denote by np, the element of the path with height «, if there is such an element. If a
path is finite, then we write P = [npp,... ,npp|] for the path. Note that trees can have infinite
paths.

REMARK 3.1.2 For every path of a tree T, the least element of P is npg = r(T"). The first
characteristic element of P is therefore a successor of r(T). For this reason, we will sometimes
not mention npo and start instead with the successor of the root, i.e. the element of the path
with height 1. When we do so, we will mention it, in order to avoid confusion.

For each node n, the set K, = {s € T'|n <r s} is a tree. For all n € succ(p), we call the trees
K, the children of the node p, and we call p the parent of n € succ(p). (See Figure 3.2.) Note
that for all s,t € T the set {p € T'|p < s,t} is non-empty and well-ordered. Moreover, this set
has a maximal element. (We remark that this is in general not true, if we allow trees to have
nodes n with height h(n) > w as in Remark 3.1.1.) We denote this element by sV t.
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1 Kng

No

Figure 3.2: Children K, , K, of the parent-node p.

Let leaf(T") be the set of leaves of a tree T" and (S))icicat(r) be a family of trees. There is
a canonical way to substitute the trees S| into T' by replacing | € leaf(T') by the root of S.
Formally, this is done as follows.

Let S) = S x {1} for all | € leaf(T) and 7' = T\ leaf(T). We put U := T U] [,cjeat(r) 9> and
we define <y on U by

n,mET and n<pm or

n<y m iff nmeS with n=(ngl),m=(mg,|) and ng<g mg or

nci and meS for |cleaf(T).

One verifies that every node of U has finite height, hence that U = (U, <) is a tree. We also
write U = T'[Si|icieat(T)-

Let T'= (T, <r) be a tree, M a set and [ : T — M a function. We call the tuple (7',1)
an M-labeled tree. We can substitute M-labeled trees into M-labeled trees — given that the
labelings of the leaves and the roots are the same — by substituting the underlying trees and
adjusting the mapping in the natural way.

REMARK 3.1.3 The reason to introduce labeled trees is that trees only provide information
about structure. For our purposes, this will not be enough.

One disadvantage of trees is that their nodes are pairwise distinct. For representations of
transseries, this limits the use of trees as a tool considerably, as we will see later. Adding a
labeling to a tree provides thus an easy way to extend the range of applications of trees.

ExAMPLE 3.1.4 Let T be an M-labeled tree, where M has a total ordering <,;. For a node
n € T, the set {l(s)|s € succ(n)} is therefore totally ordered. We can thus totally order the
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children of a node. Moreover, suppose that if s # p € succ(n), then I(s) # I(p). This will always
be the case in our applications.

We define a total order on the set of paths in 7. Let P,Q € path(T"), and let ¢ be minimal
with {(np;) # l(ng,;). Remark that if P # @, then i exists and 0 < i. Then we let

P<@Q & l(npﬂ') < l(nQ,i).

One checks that this defines indeed a total ordering. This ordering is in general not Noetherian.
However, if T is a uniformly finite tree and if for every node n € T the set

{l(s) | s € succ(n)}

is well-ordered in (M, <), then the set of paths is also well-ordered. For if this was not
the case, then there would be a strictly decreasing sequence of paths (Py, Pi,...). Thus the
sequence (I(np, 1))o<i is decreasing. Hence for some v € M, the set {F; | [(np, ;1) = v} contains a
strictly decreasing sub-sequence. Repeating this argument inductively, we can construct paths
of arbitrary lengths, which contradicts the assumption about 7.

3.2 Tree-representations of transseries

Throughout this section, let T = C[[9M]] be a transseries field. We will associate series f € T
with labeled trees.

3.2.1 Definition of tree-representations

DEFINITION 3.2.1 A labeled tree T = (T,1) of finite height is a tree-representation of f € T
iff the labeling 1 : T\ r(T') — COMN is such that
TR1. I(r(T)) = f,
TR2. [ : T\ r(T) — CM,
TR3. for each n € T\ (leaf(T') Ur(T)) there exists a bijection ¢ : supp log 9,y — succ(n)
with
(i) Ym,n € supp logdyy) : m = n & I(p(m)) = I(p(n)) and
(i4) Vm € supp log 0;(n) : I(¢(m)) = (log d;(n))mm.
We say that T = (T,1) represents the term l(r(T)) = f.

EXAMPLE 3.2.2 Every f € T has a trivial tree-representation T iy, namely the one-point
tree which is labeled with f. Clearly, it satisfies TR1. Since leaf (T} 4iv) = 0, there is nothing
to show for the remaining conditions. Denote the labeling of the trivial tree-representation by

lf,triv-
Let t € C9. We let S; be the tree of height 1 such that there is a bijection

[ : succr(S;) — term log ;.

We extend [ to r(S;) by I(r(S¢)) :=t. We say that (S;,() is the log-tree of ¢ (for an example,
see Figure 3.3).
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logz  2logyr 3logsxz  4log,z

5elog z+2logy 4

Figure 3.3: The log-tree of t = 5elog@+2logz +3logg x4

3.2.2 Maximal tree-representations

Let T = (T, f) be a tree-representation of some series f € T. We define a labeled tree T+ =
(T*,1") by replacing all leaves n € leaf (T') by their respective log-trees Sj(n:

T .= T[Sl(n)]neleaf(T) :

Note that substituting the log-trees into the series is possible, since the labelings of the leaves
and the roots match. One checks that T is a tree-representation of f. The restriction of I* to
T is I. Note that T = T7 if and only if leaf(T") = 0.

A CM-labeled tree T' = (T, 1) is a maximal tree-representation of f iff there exists a sequence
(T3)o<i of tree-representations T; = (Tj,1;) of f such that
Tmax1. To = Tf,trivy
Tmax2. Vi >0: Ty =T,1,
Tmax3. T := ;. T;, the inductive limit of (T})og;, and I := [ J, ; the induced labeling.

REMARK 3.2.3 Note that we have to show that
have to make sure that J,_, T; is well defined.

By condition Tmax2, the ordering on T ;11 extends the ordering on 7' ;. Thus the inductive
limit in Tax3 exists. For n,m € Ui<wT’i we let n < m iff there is an ¢ € N with n <pm,
where <7, is the ordering of T;. Hence |J;_, T; exists and is a labeled tree of finite height. The
conditions TR1 — TR3 can be easily verified.

i<w Li 1s a tree-representation. Moreover, we

PROPOSITION 3.2.4 There is exactly one mazximal tree-representation Tfyax of f.

Proof: We define a sequence (T;)o<; as in conditions Tmax1 and Tmax2. The inductive limit
exists. Hence, it remains to show the uniqueness. Let T and T” be two different maximal tree-
representations. Then there are sequences (T;); and (77}); such that 7' and 7" are the inductive
limits of these sequences.
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Figure 3.4: The maximal tree-representation of f = 5e¢ + 3¢ ~% 4 2¢*

If there was a P € path(T) \ path(7”) (in the labeled tree), then there is a minimal i € N
such that

[tP,Oa e ,tp,i] S path(TZ-/)
[tpp, - ,tpﬂqu] & path(TZ-/Jrl).

But tp;4+1 is a label of a leaf in the log-tree of tp;. Since tp; is also the label of a leaf of TZ-’
it follows from Tmax2 that tp;y1 is a label of a leaf of T} i1 This contradiction shows that
path(T') C path(T”). Similarly, on obtains equality. This shows the proposition. |

REMARK 3.2.5 The tree-representation T’ . is maximal in the sense that every tree-repre-
sentation 7' = (T',1) of f is a sub-tree of T ax. By that we mean that paths of 7" are truncations
of paths in T’ nax and that the restriction of the labeling 7 . to T is [.

NOTATION 3.2.6 Let P be a path in a tree-representation. By tp; we will denote the term
which labels the node np;. Since for ¢ > 0 we have tp; € C9, for every ¢ there are cp; € C and
mp; € I with

tp; = cp;mp,.
We will henceforth write mp; instead of 0tp;.

A path P in the maximal tree-representation of f is convergent iff there is some i such
that tp; is log-atomic. We say that P is a right-most path iff tp;; is the least element in
term logmp; for all ¢ > 0. By condition T4 of the definition of transseries, for all paths P in
Tt max there is some 7o such that

[tP,’i()u tP,’L'()+17 [ ]
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is a right-most path. A path P has cofinal bifurcations iff
Vi:dj >1:ds € term logmp : 8 = tjg1.
If P has no cofinal bifurcations, then we say that P is eventually bifurcation-free.

REMARK 3.2.7 Not every path is necessarily convergent. Take for instance the nested mono-
mial

§ log2 z+e.
2 log% zte ©4
n=e" "t
Then Ty max contains the path P = [n,ny,ny,...]| where
z+e10g12+2 r+e

2
2 logiiq
n; elogl T+e

Note also that P is a right-most path which has cofinal bifurcations. On the other hand, all
other paths in T max are convergent.

PRrROPOSITION 3.2.8 Paths are either log-convergent or have cofinal bifurcations.

Proof: Let P be convergent, then let ¢ be such that ¢p; is log-atomic. Thus
term logmp; = {logtp;} C M.

This shows that P is eventually bifurcation-free.

Now let P be a path which is not convergent. Then no tp; is log-atomic. By condition
T4, we may assume that for sufficiently large ¢, the leading coefficient of ¢p; is 1. Then for
every ¢ there is an integer j > i such that either term logmp; has more than one element, and
tpj+1 cannot be eventually the leading term of logmp ;. But then we have a cofinal sequence of
bifurcations, and P is therefore not bifurcation-free. O

3.2.3 Minimal tree-representations

A tree-representation 1" = (7,1) of f is minimal iff

Tminl. T C Tf,max and [ C lf,maxa
Thin2. t € leaf(T") if and only if I(t) is log-atomic.

ProOPOSITION 3.2.9 There is a unique minimal tree-representation Tt min of f.

Proof: We start with the existence of minimal tree-representations. We define a labeled tree
T by defining its set of paths. Note that this completely determines T'. Let P € path(T) iff

e cither P is not a convergent path in T’ max,
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Figure 3.5: The minimal tree-representation of f = 5ef” + 3e€"~% 4 2¢”

e or there is a convergent path @ € path(7'f max) such that

P = [th, o ,tQﬂ']

and ¢ is minimal such that ¢g ; is log-atomic.

Note that all nodes of T" have finite height. We let [ be the restriction of I . to T. The
conditions Tr1l — Tr3 hold by construction. Thus T' = (T',1) is a tree-representation. Condition
Tminl also holds by construction. A node n of T is a leaf if and only if it is the minimal node
on an convergent path such that its label I(n) is log-atomic. This immediately implies Tpin2.
The tree (7,1) is thus minimal.

As for the uniqueness, we assume that 7,7’ are two different minimal trees. Then we let
T.,, T, be the trees that result from substituting the maximal trees Sj into all leaves t of T
and T" respectively. Then T, = T, since both are maximal tree-representations. But then the
set of paths in T' and T are identical. Thus T' = T". Contradiction. O

REMARK 3.2.10 In other words, the minimal tree-representation results from cutting off the
branches of the maximal tree-representation where they start to become non-branching trees.
Moreover, by Proposition 3.2.8, the only non-finite paths in T ,;, are the paths in the
maximal tree-representation T’ max Which are not convergent. The minimal and maximal tree-
representation provide thus the same information about f.
We will show next, that the paths which are not convergent do not play an important role
in neither the minimal nor maximal tree-representation of f.

PROPOSITION 3.2.11 The minimal tree-representation Tt min s completely determined by its
set of finite paths. In other words, the maximal tree-representation is completely described by its
set of log-convergent paths.
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Proof: Let P be a path which is not convergent. We have to show that for every ¢ there is a
convergent path ) in T’ nax such that

V] < i tPJ' = tQJ’. (31)

Suppose not. Then for some i = g, all paths Q in T'f max With condition (3.1) are not convergent.
There cannot be a finite number of such paths, for P has cofinal bifurcations. Hence, we construct
a contradiction as follows. Let i; > ig be such that P bifurcates in tp;,. Let Qo := P, and let
()1 be a path such that

Visii: tpj=1Qij N tQii+1 > tPij41-

Now suppose that we have already constructed a sequence ¢, > --- > 4p such that for all
n > m > 1 we have

v] < /Lm : tQm—lyj = tva] /\ tQm—lyim+1 =< tmeim‘i’l’

Then @, bifurcates in some tg, i, ., with 4,41 > 4, such that for some non-convergent path
Qn+1, which coincides with @, up to tg, i, , we have

th+l,in+1+1 -~ th,in+1+1 .

This finishes the construction. Let m, = mg, ;, be the monomial of the term tg, ;,. Then
(my,)ogn violates condition T4. This shows the proposition. O

3.2.4 Relative tree-representations with respect to transseries fields

Minimal and maximal tree-representations exist uniquely for all transseries. We change now the
setting. Recall that Tey, is the exp-extension of T and that we have defined transseries fields
T = C[[M,]] for all ordinals « by letting To = T, Toq1 = Taexp and Ty = C[[Uqyey Ma]] for
limit ordinals A. The fields T, are called transfinite exponential extensions of T.

Let in the following f € T,. A tree-representation 1" = (T,1) of f is relative with respect
to T iff for all nodes n € T we have [(n) € CI = n € leaf(T"). We denote the relative tree-
representation of f w.r.t. T by T r, and we will not mention T, if it is clear from the context.
(Note that in the definition of this tree-representation, the group 9, replaces 91.)

EXAMPLE 3.2.12 Let f € T,. We define a labeled tree T = (T¥,1s) as follows.

First assume that a = 0. If f € C9N, then we let Ty = {8} and l¢(e) = f. Hence, T is the
unique tree of height 0 which is labeled with f. Clearly, this is a relative tree-representation of
f wrt. T.

Otherwise let Ty be the tree of height 1 such that I;(r(T})) = f and lf(leaf(T})) = term f.
This determines the labeled tree T uniquely. Again, the tree T is relative w.r.t. T.

Now assume that o > 0 and that for all 3 < a and all g € Ty a relative tree-representation
Ty w.r.t. T has already been defined. If there is an ordinal 3 < « such that f € Ty, then let T}
be the labeled tree defined in Tg. If not, then let pre(T}) be the labeled tree of height 1 with
r(pre(Ty)) = f and leaf (pre(7y)) = term f. (See for example Figure 3.6.)
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Figure 3.6: The pre-tree of f = % + 2+ -3 +...¢cL,.

exp T eXpy &

For every m € supp f, there is an ordinal 3, < « such that logm € Tg, . Hence logm admits
already a relative tree-representation Tjogm in Tg, w.r.t. T. Let T, be the labeled tree which is
identical to Tjog m except that

((Tw) = fumh.
Then we substitute the family (Tm)mesupp ¢ into the labeled tree pre(Ty) by replacing fnm by
T

Ty := pre(Tt)[Twmlmesupp f-

Now, Ty is a tree-representation of f, and form the relativity of all Tjgm, it follows that T is
relative.

PRrOPOSITION 3.2.13 FEach series f € T, admits a unique relative tree-representation Ty .

Proof: The existence follows from the construction of Ty in Example 3.2.12. We have to
show the uniqueness. Let @ be minimal such that there is a series f with two distinct relative
tree-representations 7' and 7”. The uniqueness in the case o = 0 follows directly from the fact
that the root is labeled with f and that the successors of the root are labeled with elements
from C9I.

Hence o > 0. Note that r(T) = r(T”). Let t € term f and T} the child of the root in 7"
which is labeled with ¢. Replace the root of T ¢ by logd;, then the resulting tree T} is a tree-
representation of logd;. Since leaf(7}) C leaf(T'), these tree-representations are relative with
respect to the field T, hence T} = T; for all ¢ € term f. This shows 7" = T. O

Let < be the ordering in the underlying tree of the relative tree-representation Ty of f € T,.
Then the next proposition shows that Tt 1 has no infinite paths.

PROPOSITION 3.2.14 The relative tree-representation w.r.t. T does not contain infinite chains
for <.
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Figure 3.7: The relative tree-representation of f = 5¢¢” + 3e¢" =% + 2¢* w.r.t. L = C[[log? ]|

Proof: Suppose not, and let ng <- ny < --- be an infinite chain of nodes in T 1 with

no = r(Tyr)
ni € succ(ng)

ng € succ(ng)

For i > 0, let 5; be the minimal ordinal such that I(n;) € C9g,, where [ is the labeling of T} .

Fix i > 0, then 5; > 0, for otherwise [(n;) € C9 and the relativity imply that n; is a leaf
of T, hence succ(n;) = ). Furthermore, f3; is a successor ordinal: if it was a limit ordinal, then
L(ni) € Upep, Mg implies I(n;) € CMg for some 3 < F;, which contradicts the minimality of 3;.

Hence for all ¢ > 0 there is an ordinal «; with 8; = a; + 1. By TR3 we have I(n;;1) €
term log 9;(,,). Since logd;(,,) € ']T,L., this means [(n;+1) € COM,,, which proves ;41 < §; for all
12 0.

Therefore, (3;)o<o is a strictly decreasing sequence of ordinals. This contradiction shows the
proposition. O

The next proposition shows that one can represent series with less information. Indeed, the
inner nodes (that is, nodes which are neither leaves nor the root) only need to be labeled by
elements from the field of constants C.

PROPOSITION 3.2.15 The labeling I : T \ {r(Tt1)} — CMy of a relative tree-representation
Ty is uniquely determined by its restriction to leaf(Ty 1) and by the mapping Ty \{r(Ts1)} —
C which is defined by c(t) = ).

Proof: We prove the proposition by transfinite induction over the depth « of the tree T .
If a =0, then T 7 is reduced to the root and the leaves, and there is nothing to prove.
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Hence assume that o > 0 and that we have proved the proposition for all 3 < «. Let S be
a child of the root of T . We have to show the proposition for S. Each of the children of r(S5)
is a tree-representation of depth < a. Hence [ is uniquely determined on S\ {r(S)}.

Now assume that [,1' : S — CON,, are two labelings with

aes)) = aws)

Us\iry = Uls\ir®)}s

such that (S,1) and (S, 1) are both relative tree-representations w.r.t. T. Let s = r(S). By TR3
we have bijections

¢ :supp log0y5y  — succ(s)
¢’ s supp logdy (s — succ(s)

which satisfy the conditions from Definition 3.2.1. For each m € supp log 9;(,) we then have

(log 9y(5))mm = L(p(m)) = (108 0y1(5)) (1)1 (p(m)) (') " (2(m)).

(log 0y(5))m for all m. Hence 05y = 0p(5). By assumption, we

Hence ¢ = ¢" and (log 0;(s))m =
=1U(s). .

have ¢(5) = ¢y (5). Thus I(s)

REMARK 3.2.16 It should be noticed that the relative tree-representation of some series f
with respect to a field T can always be extended to a tree-representation such that all leaves
are log-atomic. This can be done by replacing every leaf of Ty 1 by its unique minimal tree-
representation. The result is the unique tree-representation of f such that

e all leaves are monomials from 9 which are log-atomic,
e if a node is in M and log-atomic, then it is a leaf.

We call this tree the relative-minimal tree-representation of f with respect to T. We denote
it by Tfrm (See Figure 3.8.)

NOTATION 3.2.17 Let t be a term, then we let

path(t) = path(ﬂ,max)u
path(T) := [ J path(m).
me

Similarly, we define in transfinite exponential extensions

pathy(t) := path(Tyr),
pathy(T,) = U pathrp(p.-
mema

REMARK 3.2.18 Let us finish this section with a short remark about the connection between
the different types of trees we have defined. Let f € T,. Then T iy, Ty1 and Typm T are
sub-trees of T'f max. Moreover, we have that Ty and Tf i are sub-trees of T’ T.
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log

Figure 3.8: T 1, for f = 5e” 4 3e" 7T 4 2%,

Something similar does not hold for the relative tree-representation w.r.t. T and the minimal
tree-representation. Let for instance T = L = C[[log? z]] and f € Ley, with

2 _ _ _
f:ezr log$+e$+e$ 10g$+e$ log z 10g2$+‘“ )

Then the first term e*” 1082 provides an example where the path in T T is shorter than the paths
in Tt min. In fact, x?log = is a monomial in logZ*x, but not log-atomic. The second term e* is
log-atomic, but not in log” z. Thus the path in Ty is in this case longer.

For every series f, any of the above tree-representations is uniquely determined by the respec-
tive tree-representations of the terms of f. The only difference is that paths in a representation
of f always start with the label f. Already the successor of the root determines in which term
the paths is continued, and there can be only one such term. We can therefore see any of
the above tree-representations as the distinct union of the tree-representations for elements of
term f. For instance

Typ = ]_[ T; 1.

teterm f

We call the right-hand side union the forest of the series f.

3.3 Closure properties for series with support-constraints

Let us give an application of the properties shown in the last section. We will consider a
special type of generalized power series. Indeed, we will assume that for an infinite cardinal
Kk > Ng generalized power series have a support of cardinality < x. Our aim is to show that
adding this condition to the definition of generalized power series stabilizes the extension process
T — Texp - Texp,exp e
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For the rest of this section, let us fix a cardinal kK > Ry. We say that a series f € C[[9]] has
r-support iff [supp f| < k. We only consider series with k-support. If C' and 9t have cofinal
cardinality < k1 and < kg respectively, then ko < k. If max(ki,k2) < K, then Lemma 2.4.3
implies that all series in Tex, = C[[M]]exp have s-support, and even more, by Corollary 2.4.5,
for every ordinal a@ < max(k1,k2) the set T, contains only series with k-support.

On the other hand, we have seen that if ko < k1, then the series from Tey;, can have supports
with cardinality > ko. Thus, if we have kK = ko, then for m € M and a well-ordered sequence
(ba)a<w; € O, the series } . exp(—bsm) would not be in the exp-extension of T anymore,
since this series violates the k-support condition.

Let us show that the extension process is stabilizing under the additional assumption that
all series have k-support.

ProrosiTioN 3.3.1 There exists a unique ordinal A such that
1. Va < A: T, & Ty,
2. Va>2A:T,=T,.

Moreover, this ordinal is either 0 or a limit ordinal.

Proof: Consider the class 7 of labeled trees T" such that

T1. each node in T has less than x successors,

T2. T is of finite height,

7T 3. the inner nodes are labeled by constants from C,
T 4. the leaves of T are labeled by terms in C9ON.

We claim that 7 is a set. To see this we remark that every path in every T' € 7T is represented
by a tuple in C* x COM. There are at most 2/ x 2P guch tuples. Trees are then subsets of
this set, hence

‘T‘ < 22\0\ x 21CM| '
This shows the claim.

The propositions of the previous section imply that we have an injection of T, into 7 for
each «, hence that |T,| < |7]. Now assume for a contradiction that T, & Tg for all a < .
Then let (fy)y<j7| with f, € T,y1 \ T,. Hence |T,| > |a|, contradiction. Consequently, there
are ordinals o < 3 with T, = Tp.

Let A be minimal such that for some o« > A we have T) = Ty. Then T, & T for all o < A.
On the other hand,

VA<ﬂ<a:’]I‘,\gTﬁg’]I‘a

implies Ty = Ty for all A < 8 < a. Next, we show that Ty = Ty for all @ < 3. Assume that
6 > « and that we have shown the assertion for all smaller ordinals. If 3 =~ + 1, then

Tﬁ = T’y,exp = T)\,exp = Ton
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since A < A+ 1 < a. If 8 is a limit ordinal, then we have

mg=Jm, = Jm,u |J M, =m,

<8 <A ALY<B

This shows the existence and the uniqueness.

Let us finally show that A is either zero or a limit ordinal. If not, then A = a + 1, and
My & . Choose m € Dﬁ; \ M,. Then we claim that m & exp M), Otherwise expm € Iy,
since m = m!. Hence m € ’]I‘L, since M) = exp i)ﬁll But then m € DJTL, since it is a monomial.
This contradiction finishes the proof. O

REMARK 3.3.2 We will later show that without the constraint on the support, the exp-
extension process is not stabilizing.

3.4 Embeddings in maximal tree-representations

Every subset T” of a tree T is an ordered set with the induced ordering. If for one element of T’
condition Tr1 holds, then T” is again a tree. In particular, this is true, if it contains the root of
T. In this sense, a sub-tree can be seen as an injective embedding of a tree into its host-tree.

We will need tree-embeddings in a broader sense. For instance, we will not demand injec-
tivity, but we will always demand that the roots of the sub- and host-tree coincide. What is
more, in our applications we will encounter situations where paths in the sub-trees are merely
truncations of paths in the host-tree. The purpose of this section is to introduce the right setting
for this kind of tree-embeddings.

Let T and U be trees and ¥ : T'— U be a mapping. In particular, if P is a path in T', then
to every node np; of height ¢ in the path we find an image ¥ (np;) in U. The pair (U, 7)) is a
tree-embedding iff for every P € path(T) there is a path @ € path(U) such that

VneP: h(n)=i = (n)=ng,.

We denote the sequence [¢)(npg), ¥(np1),...] by ¥(P). A tree-embedding is said to be faithful
iff all P € path(T) of length at least 2 are mapped onto paths.

REMARK 3.4.1 Note that the definition of tree-embeddings does not suppose that either of the
trees is finite. On the other hand, we even allow embeddings where T has only one element, the
root. In such cases, of course, the root is mapped to the root of U.

In fact, the condition on v makes sure that paths are mapped on truncations of paths in the
sense that there are no gaps in ¢(P). Faithfully embedded trees (with the exception of the case
where T' is a one-point tree and U is not) have the property that ¢ (P) streches over all of U.
That is, not only do we map the root of T" to the root of U, we also map the leaf of P — if there
is one — onto a leaf of U.

We include the particular case of trees with only one element, since they will appear naturally
in our applications. Hence even though the extra condition for faithfully embedded trees may
look unmotivated at this point, it will serve us well in future and render the treatment of
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T

Figure 3.9: A faithful tree-embedding .

sequences of trees easier. Figure 3.9 shows an example of a tree-embedding, where all paths are
mapped onto paths and which is therefore faithful.

We extend the notion of faithful tree-embeddings to labeled trees. To start with, we gener-
alize the labeling notion for path to trees. Let 1" be a labeled tree and n € T'. Then I, denotes
the label of n in T. In particular, if the range of the labeling is a set C91 of terms, then we
write

trn = Crnmpn

instead of I7,. If T and U are both M-labeled trees, then T" is a faithfully M-embedded
sub-tree of U iff there is an embedding ¢ : T'— U of the underlying trees such that (7,v) is a
faithful tree-embedding into U and I7,n = l7y(n) for all nodes n € T

We are particularly interested in faithfully embedded trees of tree-representations of terms
and monomials. Indeed, for such settings there is an alternative way to express that a labeled
tree is a faithfully embedded labeled tree. Recall that for any term ¢t € C9M, the maximal
tree-representation 7} max is the inductive limit of the sequence (73, 1)o<;.

ProPOSITION 3.4.2 U is a faithfully CON-embedded tree of T max tf and only if U is either the
one-point tree with label t or if it is the inductive limit of a sequence (U;)ogi with

ssl. Vi > 0: U; is a faithfully C9MN-embedded tree of T;,
ss2. Vi > 0: VI € leaf(U;) : there is a faithful tree-embedding 0S| of the log-tree Sy such that

Uit1 = UilS|licieat ()

(Note that condition ss2 implies that U; is a sub-tree of U;y11, hence that the inductive limit
exists.)
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Proof: Suppose that U is not the one-point tree labeled by ¢t. Let U = (U, v) be a faithfully
CM-embedded tree of T} jnax with embedding ¥ : U — T} max. We define inductively C9i-labeled
trees U; = (Uj,v;) and embeddings ; : U; — T;; such that ss1 and ss2 hold and such that U
is the inductive limit of this sequence. Let in the following  be the labeling of T} max-

We let Uy := T} triv as labeled trees and 1y := 9|y,. Then Uy is a faithfully C9-embedded
tree of T} ¢riv via 1)p. This shows ssl. For the other ss2 there is nothing to show.

Now suppose that we have constructed U;, v; and v; with properties ss1 and ss2. Let

U1 = Ui [[{neU|3Tpeleaf(V;): p=pred(n)},
Vi+1 = U‘Ui+17
Vi1 = ¢|Ui+l'

Then U; C U;11, v; € vi41 and ¢; C ;41. Furthermore, leaf(U; 1) = U1 \ U;. We claim that
Uit is a faithfully C9-embedded tree of T; ;. First we remark that r(U) = r(Up) implies

(Tit1) = r(Ttmax) = Y (r(U)) = %o(r(Uo)) = ¢it1(r(Uit1)).

Fix n € leaf(U;+1). Then there is some | € leaf(U;) with | = pred(n). But then, since U is a
sub-tree of T} max, we have

tU,n € term IOg mUW(D.

In other words, the term #y, is the label of a leaf of the log-tree of my; ). Hence leaf(U;) C
leaf (7;) implies leaf(U;4+1) C leaf(Tj41). This finishes the inductive step and thus our construc-
tion. Conditions ss1 and ss2 hold by construction.

Inversely, let (U;)ogi be a sequence of faithfully C9t-embedded trees of T; with properties
ss1 and ss2. For every i, there is a mapping v; : U; — T; with properties which realizes the fact
that U; is a faithfully C9-embedded sub-tree of 7T;. Condition ss2 implies ¢; C 1;41. Thus

¢ := |, ¢ defines a mapping

YU = Ui = Thmax-
0<i

Let v; be the labeling of U;. Again by ss2 we have v; C viy1. We let v := |J, v;, which then
defines a labeling of U. The labelings of the labeled trees T; are denoted by I;, and | = |J; ; is
the labeling of T} max-

First, we have to show that 1) : U — T} nax is a faithful tree-embedding. We start by noticing
that r(U) = r(Up) and that for (Sp, 1) we have

P(r(U)) = tho(r(Uo)) = r(Tiiv) = r(Timax)-

TThis shows the first part of the definition of faithful embeddings. Fix P € path(U) and let <
be the ordering of the underlying tree T} max. Since npg = r(Up), we have

$(P) = [tho(npo), Y1(np1), da(npz), ... |-
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Let P, = [npg,...,np;] € path(U;). Then conditions Tmax2 and ss2 inductively imply for
all i > 0 that ¥;(F;) = [¢Yo(npo),...,¥i(np;)]| is a path in T;. If ¢)(P) was bounded by an
element from T .y, then it would be bounded by an element from some Tj. Contradiction.
Furthermore, if there was some t € T ax With

Yi(nppj+i) < s < Yir1(np|p|4it1)

for some 7, then the same would be true in 7}, which contradicts the fact that ;11 (FP;11) is a path
in Tj;1. Hence 9(P) is a path in T max. The mapping 1) realizes thus a faithful tree-embedding.
Let n € U, then n € U; for some i € N and

l(n) = 1i(n) = vi(¢i(n)) = v(¢(n)).

This finishes the proof. O

3.5 Noetherian choice operators

3.5.1 Kruskal’s theorem

A tree (T, <7) is finite iff the set T is finite. The root r of a finite tree T" has only finitely many
successors s, ... ,Sg, hence finitely many children K, = {n € T'|s; <7 n} (with i = 1,... , k).
The trees K, are pairwise distinct. The tree 7" is thus completely described by r and the trees
Ks,,... , K, . We write

T =r[Ks,...,Ks]

in this case.

For a set M we let M be the set of M-labeled, finite trees. Hence for every T € M T there
is a labeling lp : T'— M. We write T = (T, <p,lr). If M is an ordered set, then we define
an ordering < ;v on the set M1 as follows. Let T,7" € M, then T <,,r T" iff there exists a
mapping ¢ : T — T such that

fitl. VnmeT :n<rm = @) <p o(m),

fit2. Vaym e T : o(nV m) = p(n) V ¢(m),

fit3. Vne T : ZT(n) <wm ZT/(<p(n)).

The following theorem is due to Kruskal [Kru60]. We give a proof which is due to Nash-Williams
[NW63].

THEOREM 3.5.1 (Kruskal) If (M, <,s) is Noetherian, then so is (M7, <;7).

Proof: Assume that there are sequences (7;)1<; of trees in M T which are not Noetherian.
We call such series bad. We may assume that we have a bad sequence which is minimal in the
following sense. For fixed trees T7,...,7T;—1 the cardinality of 7; is minimal. (We use Zorn’s
lemma to show the existence of minimal bad sequences: let 17 have minimal cardinality, and let
for all ¢ > 2 and fixed 17, ... ,T;_1, the set M; be the set of trees T; which are not comparable to
T1,...,T;—1. By hypothesis, the M; are non-empty, and we have M; D M;; for all <. Hence
N; = M; \ M;41 is a family of non-empty sets. Thus the existence of Ty, T5,....)
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1 7
2
3 <yt
5
Figure 3.10: Example for <yr.
For each i > 1 we write T; = r;[T; 1,... ,Tjp,]. For all i and all j < n; the trees T; ; are again

in MT. We claim that the set S = {T;,; 11 <1i,1<j<n;}is Noetherian in MT.
Suppose not, then there is a bad sequence

(Til,jlvTiij s ) cs.
Let k € N be such that ¢ is minimal. Then the sequence

(Th,- - Th s T T ycMT

ksJko T ik41,0k+10

is also bad. But the cardinality of Tj, ;, is smaller than the cardinality of T;, , which contradicts
the minimality of (7})1<;. This shows the claim.

Now, M x S* is Noetherian by Higman’s theorem. Each tree T; can be interpreted as an
element of this set. This gives the desired contradiction. O

3.5.2 Labeled structures and choice operators

We extend the concept of labeled trees. Recall that to a labeled tree we could associate an
underlying tree T' and a labeling [ which assigns a value from a given set to every node. Our
present objects will be similar, only we do not demand that the underlying set is a tree, anymore.

DEFINITION 3.5.2 Let X = (X,<x) be an ordered set. An X-labeled structure is a couple
o = (Iy,l,) such that 1, is a set (called the underlying structure of o) and l, : I, — X is a
mapping (called the labeling of o ).

Let X be a set of X-labeled structures. We define an ordering on ¥ x X by

(o,2) < (o,2") & z<2.
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For a subset Y C X we let
Yy :={oceX|iml, CY},

that is, 2y is the subset of all X-labeled structures in ¥ such that all labels of o are in Y.
A mapping ¥ : ¥ — P(X) is called a choice operator. We say that ¥ : ¥ — P(X) is
Noetherian iff for all Noetherian sets Y C X the set

{(o,2)|]c ey ANz €ed(o)} CEXx X
is Noetherian. A choice operator is extensive iff for each o € X:
Va €iml,: Vbed(o):a<xb,
and ¢ is strictly extensive iff for all o € X:
Va €iml,: Vbed(o):a<xb.

ExAMPLE 3.5.3 Every M-labeled tree (7,1) is an M-labeled structure, where 7" is the under-
lying structure and [ the labeling. The mapping ¥(7,1) = {l(n) | n € leaf(T)} is an example for a
choice operator on the set of labeled trees. Then 9 is Noetherian, but not necessarily extensive.

In order to give an example of a Noetherian and extensive choice operator, let X be an
ordered set, n € N and 3 = X™. More precisely, the underling set of every X-labeled structure
is the set {1,... ,n} and the labeling of z = (21,... ,z,) € ¥ is

I :{L,... ,n}3i—x € X.
Let f: X™ — X be extensive, i.e. z; < f(z) forall 1 <i<nand z € X". Then
V:EX 3z {f(x)} € P(X)

is a Noetherian and extensive choice operator.

3.5.3 Kruskal’s theorem generalized

Given a set ¥ of X-labeled structures and a choice operator ¢ : ¥ — P(X) we can generate
new sets of X-labeled structures and choice operators on these sets. In fact, we construct sets
¥* and X7 together with choice operators ¥* and 97, respectively. To this end, we inductively
define pairwise disjoint sets Ty, 711, ... of X-labeled sets.

The initial step: Let {e} be the one-point tree. For x € X, we denote by [+ : {#} — X the
labeling of {e} with I,:(e) = 2. In other words, o = ({e},l,:) is the X-labeled structure where
the only element of the underlying structure is labeled by x by e — x. We let

To:={o; = ({e}, e — z) [z € X},
and we remark that there is a bijection between Ty and X. For o* € Ty, we let

V(o") ={z} & o"=o0].

xT
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Then 9* : Ty — P(X) is a choice operator. This finishes the initial step.

The inductive step: Suppose that we have defined pairwise disjoint sets Tp,... , T} (where
0 < k) and for each o* € T; (i < k) an underlying structure I, and a labeling [,~. Moreover,
suppose that we have defined ¥* for o*, i.e. that we have ¥*(¢*) € P(X). Hence our next step
is to define the set Tyy; of X-labeled structures o, and we have to define ¥*(c*). Moreover,
we remark that in the construction of Ty, the set X has not played a role yet. It will come into
play now.

Let 0 € ¥ with underlying set I, and labeling I,. To every point ¢ € I, we let 7; be an
element from Ty []---1]71%, i.e.

Viel,:dl; <k: i €7Ty,.

Note that I; < k is uniquely determined, and we call it the depth of 7;. We add an additional
constraint on the choice of 7;, namely that for each i € I, the labeling [, (i) of the point i in the
underlying structure is contained in ¥*(7;), i.e.

Viel,: lo(i) € V" (m;).

We replace each [,(i) by the entire structure 7; for each point i € I,, and we write for the
resulting structure

o = o[rier, -
The underlying structure of o is I« = [[;c; Ir,- The labeling l,+ is defined by
Vi€ lo: lo+(j) = 15,(j) & j € L.

The structure o* = o|r;]ier, is X-labeled. The set of these new structures is T;41. It remains
to define ¥* for o* € Ty11. For o* = o[r;]ic1, we let

U (0") :=Y(o) € P(X).

Hence ¥* is a choice operator on Tj1. This finishes the inductive step of the definition of the
sets Ty, 11, ... .

We let
> o= [T
0k
»t o= HTk.
1<k

The function 97 : ¥ — P(X) is the restriction of 9* to ¥ T, hence a choice operator on X7.
ExAMPLE 3.5.4 To illustrate the above construction with an easy example, let
X ={zy,yi,2 |1 < i}

Elements from 7 are one-point labelings like ® — x; (for i > 1). Let 71, 7,73 € T} and o the
X-labeled structures in Figure 3.11. Then we have an X-labeled structure o* = o1, 72, 73] € T»
as shown in the same figure.
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T2 T3
0_*
T T2 73 - o: x1
Ya2 Y3
1 Ya
T2 I3 Y2 Ys Ya Z2
VNS ] i .
U1
Z9 21
z Y1 1

Figure 3.11: The Structures 71,7, 73,0 and o*

We finish this section with a theorem by van der Hoeven, which generalizes Kruskal’s theo-
rem.

THEOREM 3.5.5 (van der Hoeven) Let 3 be a set of X-labeled structures and 9 : ¥ — P(X)
a strictly extensive, Noetherian choice operator. Then 9% : ¥ — P(X) is a strictly extensive,
Noetherian choice operator.

Proof: We first show that 97 is strictly extensive. This will be done inductively. First let
ot € Ty. Then there are ¢ € ¥ and

(7i)ier, € X

such that o = o[r;];er,. From the definition of 9" we obtain 9% (c1) = J(0). Let a € iml,+,
then a € iml;, for some ¢ € I,. Since 7; € Tp, the only label is 7;, hence a = 7;. The
conditions I, (i) € 91 (r;) and 91 (r;) = {r} imply ,(i) = 7;. Since 9 is strictly extensive, we
have 7; < ¥(c) = 97 (o). Hence iml + < 9" (a™T).

Now assume that for all 57 € Ty [[---[[ T we have shown imlz;+ < 97 (67). Let ot € Tjy1.
Then there are o € ¥ and

(i)ier, €To [1--- 11 Tk

with o™ = o[ri]er,. For each a € iml,+ there is a point i € I, such that a € iml,,. The
inductive hypothesis implies

iml, <9(r),

hence a < 91 (r;). Also, we have l,(i) € 97 (7;), therefore a < I,(i). In other words, if a is
associated to 7;, then the label in the structure o for the same ¢ is bigger than a. Since o is
strictly extensive, we have [, (i) < 9(c) = 97 (o). Hence a < 91 (o"), thus iml,+ < It (™).

Let us now show that ¥+ is Noetherian. Assume the contrary, and let Y be a Noetherian
subset of X such that

{(ocT,2)|cT €Sy A zedt(oT)}CEt xX
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is not Noetherian. Then there is a bad sequence ((c;",z;))1<; with

We assume that the series is minimal in the following sense. For each ¢ > 1 and fixed z1,... ,x;_1
the depth of U;r is minimal. We write each U;r as

of = ailrijljel,,,

where 0; € ¥ for all 4 > 1. Note that for all j € I, the depth of each 7; ; is smaller than the
depth of oi+ .

We claim that the induced ordering on the set S = {(7;,15,(7)) |1 <iAj € I, } is Noethe-
rian. Suppose not and let

((Tihjl’lo'il (7)) (Tiz o ZUQ (J2)),---)

be a bad sequence. Let k£ € N be such that i is minimal. Then the sequence
((va 1), (U]:r_lv Tp-1), (Tik,jw le‘k (Jk)), (Tik+17jk+1’l0'ik+1 (Jk+1))s---)
is also bad. But this contradicts the minimality of the sequence ((0;",;))1<;. This shows the
claim.
To finish the proof we distinguish two cases. First we assume that all O';r are elements from

Ty. Then l,,(j) = 7;; implies that o; is Y-labeled. Moreover, we have z; € 97 (0;") = 9(0;).
Hence

((o1,21), (02,22),...)

is a sequence in Yy x X, and the theorem follows, since ¥ is Noetherian.
Secondly, assume that there is an integer k£ > 1 such that alj ¢ Th. Then the sequence

((O’i’—,l‘l), ey (0’2—_1,]}]6,1), (Tk,j’lcf}c (]))7 (0—]:—+1’xk+1)? cee )

is in Z?} x X and cannot be bad. Then there is a strictly increasing sub-sequence in (z;);>+1-
This contradiction finishes this case and the proof of the theorem. O






Chapter 4

Derivations

In this chapter, we study derivations on fields of transseries. In the first part of the chapter, we
axiomatize such derivations and we give an example of a transseries field admitting a derivation.
We go on to discuss one possible way of extending a derivation on some transseries field to every
transfinite exponential extension, and we show that the correctness of our definition depends
essentially on some Noetherianity-property.

In order to prove this Noetherianity-property, we look at the problem from a different angle.
Namely we show how to establish a link between derivations and tree-representations. This
provides a second, more combinatorical way to define derivations. The advantage of considering
tree-representations is to obtain a combinatorical proof of the Noetherianity-property.

4.1 Derivations on transseries fields

4.1.1 The notion of a derivation

Let throughout this chapter T = C[[91]] be a fixed transseries field. A function which acts as
derivation on T should satisfy a number of conditions which express the compatibility between
the properties of derivations and the properties of transseries fields. By that we mean for instance
that C is contained in the set of constants with respect to the derivation, that the Leibniz rule
holds and that the operator is strongly linear. If functions are defined, a chain rule should also
be a property of the derivation.

We summarize these points in the following definition.

DEFINITION 4.1.1 A function 9 : T — T is called a derivation on T iff

D1. Yee C: 0c =0,

D2. Vf,geT:0(f-g)=0f g+ f- 9y,

D3. if F is a Noetherian family, then so is OF = (0f)fcp and ) 0F =0) F,
D4. VfeTt:0f = f-0(log f).

We will also use f’ to denote df, and we will write f(™ for d,f. In particular, if 8 is a

75
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derivation, then for all f € T the family (fmm')mesupp f is Noetherian and

fl=> fa'.

mesupp f

REMARK 4.1.2 It would be possible to define the notion of a derivation over fields S of gener-
alized power series by just using conditions D1 and D2. One might thus distinguish between
those “purely algebraic” derivations and our derivations which take both the strong linearity
and the exponential structure in account.

Since derivations without condition D3 are of no further interest for our purposes and since
all our fields will be transseries fields, it seems reasonable to consider only operators admitting
D1 - D4 and to call them derivations.

REMARK 4.1.3 Let us remark that we can naturally extend the derivation to functions on T
as follows. Let ¢ : T — T be a function. Let

o = o

Assume that 7 > 0 and that qb(o), .. ,(b(i) : T — T are already defined. For all f € T we have
£ (0D F) € T. If f' # 0, then we let

(i-l—l)f — (¢(;,f)/

We will come back to this observation in the chapter about compositions.

¢

REMARK 4.1.4 Our aim is to define derivations on fields T. Condition D3 suggests to define
a derivation on the set of monomials. We will have to show that this function is a Noetherian
mapping. Then its unique strongly linear extension to T will be well-defined, and D2 for
monomials implies D2 for series by Lemma 1.6.5. The following proposition shows that condition
D4 is similarly inherited by T from the same property on 91.

PROPOSITION 4.1.5 Let ¢ : M — C[[MN]] be a Noetherian mapping such that p|c = 0, such
that p(mn) = p(m) -n+m- p(n) and such that p(m) = m - p(logm), where ¢ is the unique
strongly linear extension of ¢ to C[[9]]. Then

¢(f) = [ - ¢(og f)
for all f € C[[DM]]T.

Proof: Let f > 0 and f = ¢d- (1 + ). Then the Leibniz rule for monomials inductively
implies

p(") =871 p(9).
From the linearity of ¢ and the assumption that ¢ is 0 for elements from C' we then obtain

¢(log f) = ¢(log ¢+ logd +1(0)) = $(log0) + (I(9))-
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From the definition of {(§) it now follows that
N i—1gi—1 |~ . i p(0
PE) = S~ p(0) = p() - () = A
1<i 0<i
Hence
f-p(ogf)=co-¢(logd) - (146)+cd-p(d) =cp®) - (14+6) +cd-¢(I).

The strong linearity of ¢ yields then
m m
f-@(log f) = me (0 —+me 2 (2 me( )3 +0-0(3))

hence by the Leibniz rule for monomials we obtain f - ¢(log f) = > ., fme(m) = ¢(f). This
shows the proposition. O

4.1.2 Example of a derivation

Take L = C[[log? z]]. We define a function ¢ on the set log” z as follows. Fix log®z where
a € Z*. Recall that log for log® x is defined by

|al

log(log® x) Z a;log; 1 .

Then we define the function ¢ by

p(x) = 1
1
o(log;z) = ——— for ieNT
|a|
p(log”z) = log"z-> a;-p(log x).
=0

We let ¢|c = 0, thus D1 holds by definition. The function ¢ verifies D2 and D4. It remains
to show that ¢ is Noetherian. To see this let (log® x);c; be well-ordered in log”" z. First, we
observe that

1 1
supp p(log® z) C log® x - {1, }’
x’ zlogx’
hence that
| supp p(log® ) € {log® x|i € I} - LN
"z’ wlogx’

i€l
The set on the right-hand side is well-ordered. Hence, by Lemma 1.1.6, the family
(¢(log™ x))icr

is Noetherian. Lemma 1.6.5 and Proposition 4.1.5 now imply that the unique strongly linear
extension ¢ : L. — L is a derivation.
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REMARK 4.1.6 This example illustrates already that the derivation conditions are in general
harder to prove for transseries fields than for usual power series fields. The derivation of a
monomial " (where n € Z) is nz"!, thus again only one term. This is not the case in
logZ"  anymore, since ¢(log” ) can be a finite sum. In fact, if we consider the monomial
m = exp(z + logz + logyz + -+ ) in (logZ*x)exp, then D3 and D4 imply that the derivation of
this monomial has infinite support:

€x+logx+log2 x+) — eerlongrlogQ x+(1 + 1 + 1

r xlogx

Fo).

On the other hand, we remark that the monomials log; x have derivations which are again mono-
mials. Moreover, elements from suppm’ correspond to products mn where n € supp (logm)’.

o(

4.1.3 Derivations and finite paths

There is a close connection between derivations and tree-representations. The aim of this sec-
tion is to explain this link, which we will later use for two purposes. Firstly, it will allow us to
define extensions of a given derivation to every transfinite extension of T. In fact, this forth-
coming definition will be one of two possible ways to extend derivations. Secondly, we use this
correspondence in order to show that both definitions are correct.

EXAMPLE 4.1.7 Let

t _ 762633:+5 logo z+4x3

be a term in the field Lexpexp. This term has a unique relative tree-representation Ty with
respect to I as shown in Figure 4.1.

3z 5log,
423

762633J+5 logo x +4m3

Figure 4.1: The relative tree-representation 7Ty, of ¢ over L

Assume that we have already extended the derivation on IL to this field, then we obtain by
applying the derivation properties that

/
t = U + u2 + us,
where w1, u2, ug are series in Lexp exp With

w = t- 263$+5 logg x| (3%),
uy = t-2e3150827 (5100, 1)

uz = t-4e318. (423,



4.1. DERIVATIONS ON TRANSSERIES FIELDS 79

Every term u; corresponds to exactly one path P; in the minimal tree-representation of the term
t. For an illustration, see Figure 4.2.

P1 P2
Ps

t-2¢3vHolosaw gy t-2e30H5loBa e 500! o t-4(z®)

Figure 4.2: The paths P, P and P3 in T}, corresponding respectively to ui, us and us

Hence, in our example, we observe that to every monomial n in the support of ¢ we find a
path P = [tpo,... ,t P p|] in the relative tree-representation of ¢ such that

n— mP,O “ee mP,|P‘—1 -a
for some a € suppm’, P This fact holds in general. What is more, we can write ¢’ as

t'= Z Z tpo--tp|p|—1- U

Pepathr(yy ucterm t;,,‘P‘

This observation, too, will in the following be generalized, and it will serve as main tool for the
second way of defining derivations.

4.1.4 Extending derivations to transfinite extensions

Throughout this section, we fix a derivation 0 : T — T. Our aim is to extend 0 to every
transfinite exponential extension T, of T. Recall that the relative tree-representation of a series
in T, is completely determined by its set of paths. We have introduced the forest of a series
f € T, as the union of all relative-minimal tree-representations 7; T, where ¢ € term f. For
every path P € Ty 1 we let

0%(P) :=tpo---tpip|-1-tpp|

We then define a function 0 : T, — T, by

of)y:=f = >  op). (4.1)
tEterm f:
Pepathq(t)
In section 4.4, we will show that the right-hand side of (4.1) is indeed the sum of a Noetherian
family, which justifies this definition. We will also show there that this function, which clearly
extends 0 on T, satisfies D1, D2, D3 and D4.
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4.2 Derivations and transfinite recursions

We will show that there is at most one extension of a given derivation on T to every transfi-
nite exponential extension. One way is to use a transfinite induction, which will also yield an
alternative way of defining such an extension.

4.2.1 Uniqueness of the extension

We start by showing that there can only be at most one such extension.

LEMMA 4.2.1 Let T C Tg C T, and 9,0, be derivations on T and T, respectively, such that
Oq extends 0. Let Og be the restriction of O, to Tg. Then Og is a derivation on Tpg.

Proof: For every (3 < «, the conditions D1 — D4 for T follow from the same conditions for
T,. It remains thus to show that range dz C Tpg.

Let  be minimal such that this is not the case. Then 0 < 8 < a. We show that dg(m) € Tj
for all m € M. From this and D3 the necessary contradiction follows.

Let m € Mg. Then logm € T, for some 0 < v < B; and

Js(logm) = 0, (logm) = 0 (logm) € T, C Ty
implies m - dg(logm) € Tg. But then by D4 we have dz(m) € Tg. This finishes the proof. O
PROPOSITION 4.2.2 For every « there is at most one derivation extending 0 : T — T.

Proof: Let a be minimal such that the proposition fails. Then there are two extensions @', 9"
of 0. We show that they are identical on IM,.

Let m € M,. Then logm € Ty for some 3 < . By Lemma 4.2.1, the restrictions of 0" and
0" to Ty are derivations. Thus they are by minimality identical. But then

d'(m) =m-dg, (logm) = m - Jy, (logm) = 9"(m)

by D4 for 9" and 0" on Tg. From the strong linearity condition D3 on T, it now follows that
0 = 0”. This contradiction shows the proposition. O

4.2.2 Transfinite extensions

Now that we know that there is at most one derivation d,, we set out to define it. One way to
do this is to use a transfinite induction. Let o > 0 be an ordinal number, and assume that for
all 8 < a, a unique derivation dg : Tg — Tg has already been defined such that

87 - 8[3 Vv < 6.

Before defining a mapping ¢ : 9, — T, which will be used to define d,, we remark that
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o if m € My for some B < «, then logm € Ty, and logm € dom dg; therefore we have
Os(m) =m - dg(logm) € Ty;
e this is always the case, if « is a limit ordinal;
e if & = 41 is a successor ordinal, then logm € Ty, and again logm € dom Jg; in this case
Os(logm) € Tz and m - 9g(logm) € Ty;
o if logm € T, NTg for 7,5 < «, then m - 9, (logm) = m - Jg(log m).
Hence, for every m € M, the mapping ¢ defined by

p(m) :=m- Jg(logm) if logm € Ty

is a well-defined function ¢ : 9, — T, i.e. the definition does not depend on the choice of
B and there is always at least one ordinal 8 < « with logm € Tg. In order to extend ¢ to a
strongly linear function ¢ : T, — Ty, we have to show that ¢ is a Noetherian mapping. In fact,
as the following proposition shows, this is the key to showing that ¢ is the unique extension of
0 to T, as derivation.

PRrROPOSITION 4.2.3 If the above defined function ¢ : M, — Ty is a Noetherian mapping, then
its unique linear extension

p: Ty — T,
is the unique derivation on T, extending 0.

Proof: We have to show the conditions D1 — D4 for ¢. Note that D3 is the hypothesis, and
that from range ¢ C T, and strong linearity it follows that range ¢ C T,.

Condition D1 follows from D1 on T and linearity. Next, we show that for m,n € 91, we
have

p(mn) = p(m) -n+m-pn).
For some 8 < a, we have log(mn) € Ty. By linearity of dz we have

p(mn) = mn-0dg(logm + logn)

n-m-Jdz(logm)+m-n-Jdsz(logn)
= n-p(m)+m-pn).

Then D2 follows from Lemma 1.6.5. Condition D4 follows from Proposition 4.1.5 and the
definition of . The uniqueness follows from Proposition 4.2.2. O

REMARK 4.2.4 In order to show that the function ¢ thus defined is Noetherian, we will have
to show that for every sequence of terms

to > t1 > tg =

in CM,, the family (p(t;))ogi is Noetherian. In other words, for every sequence (n;)o<; with
n; € supp p(t;), there must be a <-decreasing sub-sequence.
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Since the mapping ¢ admits on the set of term condition D4, we can in a similar way as in
Example 4.1.7 show that to every t € CI, and n € supp ¢(t) there is a path P in the relative
tree-representation of ¢ over T such that for some a € supp (logmp,p|)’ we have

l‘lzmp70"'mp7|p‘-a.

Again, this reduces the problem of showing that ¢ is Noetherian to a problem about paths.

4.3 Path orderings

We have seen how to extend 0 to a function T, — T, in two different manners. Either way we
will have to show the correctness of the definitions, and we have seen that this means that we
have to show certain Noetherianity conditions.

The correspondence between derivations and paths expresses the underlying combinatorial
properties of the derivation, and this close connection will thus play an important role in the proof
of the Noetherianity of the defined operators. To prepare the ground, we will next introduce an
ordering between paths.

4.3.1 Ordering infinite paths

REMARK 4.3.1 The relation which will be defined in the following does not depend on the
existence of a derivation on some transseries field, nor do we need to consider transfinite exten-
sions. Throughout this section, we fix T = C[[M]], a field of transseries. We recall that for a
path P, the label of the node of height 7 is a term denoted by tp; € C and that we write

tp; = cp;mp;.

REMARK 4.3.2 Recall that for series f and g we symbolize the maximal common truncation
by f A g. Let m > n be transmonomials and ¢ € term logn. Then we have

m
t € term (logm A logn) < t> logm—logn <& > log;.
From Remark 1.8.1 it follows that for transmonomials my = mo = mg, we have

logm; A logms logm; A logmao,

IA 1A

logm; A logms logmy A logms.

Let s,t € 9 be terms, and let P € paths and () € patht be paths. Then we let P » @ iff
tpo = tg,o and

1 N mg €term(logmpg A logmgp),
2 N mgo€term(logmp; A logmg ),
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and we let P > Q iff P 3 @Q and P # Q. Furthermore, we let P > Q iff tpg = tgo and if there
is an integer ¢ > 0 such that

and tp1 =t A to1 € term(logmpy A logmg)

and tpi—1 =tQi-1 A tgi-1 €term(logmp;_o A logmg;_2)
AN tg ¢term(logmp; 1 A logmg—1).

Moreover, we let P+ Q iff P+ Q or P = (). Finally, we define the relation  on the set of
paths by P=Q iff P Q or P = Q.

REMARK 4.3.3 We illustrate P > ) with Figure 4.3. The shaded area indicates the set of
terms of logmp ;, and the bar on top of each such triangle symbolizes the maximal common
truncation of logmp; and logmg ;. We use the solid line for the path P and the dotted line for
the path Q.

The two figures on the left-hand side show possible situations where P + ). The path @
will either coincide with P or be on the right of P. It is also possible for distict paths that they
coincide up to a certain height, then split and then coincide again, as shown in (i). However,
we remark that there can be only finitely many such splitting points, for otherwise the sequence
(mp,;)o<i contradicts condition T4 of the definition of transfinite fields. Hence, the paths P and
@ will coincide from some height on, which can be seen in (ii).

If P+ @, then one encounters four different situations on the level ¢, where 7 is as in the
definition. The first two — which correspond to (iii) and (iv) — concern the case where tp; is
an element of the maximal common truncation logmp;_1 A logmg;—1. Then the term tq;
cannot be an element of this truncation, and we have either that ¢¢; is a term of logmp;_1 or
not.

Otherwise, the term tp; is itself not in logmp;_1 A logmg;—1, which implies that tg;
is neither. Again, we can distinguish between tg; € term logmp;_1 or not. These cases are
illustrated by (v) and (vi).

PROPOSITION 4.3.4 The relation += is an ordering.

Proof: Reflexivity and anti-symmetry follow directly from the definition. We thus have to
show transitivity, i.e. condition PO3 of the definition of an ordering. Whenever in the following
we have P # @, then we let ¢ be the positive integer from the definition of the relation +;.
Accordingly, if @ + R, then we let j be the positive integer which replaces i. We have to
distinguish four cases.

Case 1: P > Q > R. The relation tpy, = tg holds for all k > 0. Let m be minimal such that
tom+1 € term (logmp,, A logmpg.,).

If m does not exists, then P 3 R. If it does, then P > Q. Either way we have P 3= R.

Case 2: P> @+ R. First we note that we have tpy = tgy for all k < j. If there is some
k < j with

tpy € term (logmpy_1 A logmpp_1),
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P

3 Lo a1 .

(i) (ii) § (iii) (iv) - (v) (vi)

e
O
)
O
e
RS

O

Figure 4.3: Paths with P > Q).

then we have P + R. If not, then we have on the one hand
tr,; € term (logmg j—1 A logmp;_1).
On the other hand, Remark 4.3.2 implies
logmp;_1 A logmpg;_1 <logmg ;1 A logmpg;_1.
Hence
tr,; & term (logmp;_1 A logmpgi_1),

which shows P + R.

Case 3: P+ @ > R. this case is symmetric to case 2. We have tpy = tgy for all kb < i. If
there exists a 0 < k: < i with

try € term (logmpy_1 A logmpgp_1),
then we are done. Otherwise, from tq; = tr; we obtain
tri & term (logmp,;_1 A logmg;—1).
From Remark 4.3.2 it now follows that
logmp;—1 A logmp;—1 Jlogmp;_1 A logmg ;1.
This implies
tri € term (logmp,;_; A logmp,;_1),

which shows P + R.

Case 4: P > @ = R. The case j < i can be shown as case 2, and the case i < j can be shown
using the proof of case 3. a
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4.3.2 Ordering finite paths

Let T = C[[9]] and « > 0. In this section, we consider a transfinite exponential extension T,
of T.

NOTATION 4.3.5 For P € pathy(T,) and P € path(T,) we write

P> P & Vi<|Pl:itpi=tp,,

i.e. if P is a truncation of the path P.

We let
PxQ = VP> P:30 > Q: P30,
PrQ = VP> P:3Q > Q: P Q,
P=Q & P%=Q A P#Q,
PxQ & PxQ A ~(PQ).

PROPOSITION 4.3.6 The relation 3= is an ordering on pathy(Ty).

Proof: Let P,Q,R € pathy(T,). Reflexivity follows directly from the definition. Next
suppose that P += @ += P. Fix some P> P, then there are Q > @ and P’ > P such that
P R+ P'. Since the labels of the roots are monomials, we get

tro=1p=1tpr0-
Inductively, one shows that for all i < |P| one has
tP,Z — tQAﬂ/ — tP/,Z"

Hence ¢y p € T, which shows that |Q| < |P|. By symmetry we obtain |P| = |@Q] and thus

P = Q As for the transitivity, assume that P+ Q@ + R. For every P > P there are Q > Q
and R > R such that P+ Q % R. Thus by transitivity of % on path(T,) we obtain P % R,
from which P 3= R follows. O

REMARK 4.3.7 For all P,Q € path(T,) there are unique P,Q € pathy(T,) with P > P
and Q > Q. Welet P~ Q iff P = Q. Then ~ is an equivalence relation on path(T,), and
the relations += and 3 on pathy(T,) are obtained from the relations 3= and #5 on path(T,) by
quotienting with respect to ~.

LEMMA 4.3.8 Let P,Q, R € path(T,) with P Q = R. Then P Q or Q =

Proof: We may assume that the relations are strict. First, we consider the case P + Q.
Then mpy = mg,o and there is a minimal ¢ > 0 such that

tpi = tgi N tg: € term (lOg mp;—1 A long,i,l)
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fails. Fix some P/ > P. Ifi > |Q|, then we let
Q/ = [Q, tP/"Q"_i_l, tP’,|Q|+2’ e ] (42)

Then Q' > Q and P’ Q’ If i < |Q|, then every Q' > @ satisfies P’ += @Q'. Similarly, one
obtains from @ > R that Q =

Next, we consider P > @Q > R. Since to,|pl41 € term log mp p| is a term in T, we must have
|Q| < |P|+ 1. Similarly one gets that |R| < |Q| + 1 and, by transitivity, that |R| < |P| + 1.
From this one of |P| = |Q| or |Q| = |R| follows. Assume |P| = |Q| and let P’ > P. Then we
let Q' as in (4.2) and obtain again P’ % Q'. The case |Q| = |R| is similar. O

REMARK 4.3.9 Although P 3= Q does in general not imply P % @, the proof of Lemma 4.3.8
shows that at least

wQ = P»Q
holds. Furthermore P = @ # R implies P = Qor Q= R

We now prove some properties of the relation + and distinguish in particular between specific
properties for 3= and +=.

LEMMA 4.3.10 Let « be an ordinal and (Pg)g<q be a sequence in pathy(Ty) such that P, 3= Pg
for all v < B. Then there exists a sequence By < f1 < Pa < -+- < « such that

|Pﬂ1|:|Pﬂ2|:‘Pﬁ3‘:"'7

Mp, [Py, > WPy, [Py, WP, |Pg,|» ~** € SUPP logmp, 1p, 1.

Proof: Suppose that the first claim fails, then there exist 8y < 1 < --- such that |Ps,| <
|Pg,| < ---. for all i < j we have

mpy Py, |+1 € SUpp logmp, |p, | C M.
This implies |Pg,| + 1 = |Pg,|. But then
[Poy | +1 = [Pay| = |Pp, [ +1 = [Py, | + 2.
This contradiction shows the first claim. The second one follows from ]550 = Pgi for all 4. O

LEMMA 4.3.11 Let P,Q € pathy(T,) with P+ Q. Then for all terms v with tg g = v we
have

H tp; | > H tQi| v

i| P i<|Q)
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Py P, P, P3P, P;

Figure 4.4: Py > P1 = Py » ---
Proof: We first observe that tpg = tgo. Let P> Pand Q > @ be such that P = Q Then
there is an integer 0 < ¢ such that for all 0 < 5 < ¢ we have
tp; 7 ta; and tgy. €term(logmp, | A logmgs; ),
and such that
to; & term(logmp, | A logmy, ). (4.3)
Notice that i < |P|,|Q|, for otherwise we would have P 4= Q. Hence
tpo - -tpi—2 = tQo Q-2 (4.4)

On the other hand, by Remark 4.3.2, condition (4.3) implies that for all ¢ € C we have

C c
mp;— mp;— mp,;—
vai_l mQ,i—l mQ7i_1

Moreover, we notice that

mp;1\°
v Xt < <toq < 7”).
Q7|Q| Q7Z <mQ,i—1

Hence if we let 1/c¢ = |Q] — (i — 1) + 1, then we obtain
tpi-1-tp|p| 7 tri-1 = tQi 1, |qQ| - Vs

which together with inequality (4.4) proves the lemma. O
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4.3.3 Noetherianity of path orderings

Throughout the rest of the section, we will work under the general assumption that we are
given a sequence 5g = §1 = --- of terms and that for every i there is a path P; in the maximal
tree-representation of ¢;. Our aim is to show that we can extract a well-ordered sub-sequence of
(Pi)oxi for the ordering +=.

LEMMA 4.3.12 Let 59 = 51 = --- and P; € path(s;) for all i > 0. Then there is a sequence
(in)osn of integers with 0 < ip < iny1 for all 0 < n such that for the sequence (P;,)o<n of paths
one of the conditions A1 or A2 holds:

Al. YO <n:tp, 1 &term (logmpyo A logmp, o),

A2. VO n: tPinJ € term (logmpiwo A logmpimo) N tPiml = tPin+171'

Al A2

tpy,1 tp; 1 tp, .1 tPg 1 tp,

ol TPyl tRy

tPy,0 tp,0tr,0  tp,o tp,y,0 tp,0  tP,.0

Proof: Suppose that A1 fails. Then there are infinitely many ¢ > 0 such that
tp1 € term (logmp o A logmp, o). (4.5)

We may assume that this is the case for all ¢ > 0. Since logmp, ¢ has well-ordered support,
there is a sequence 0 < 79 < 41 < --- such that
1 >; e

1= tp

tp, 1 7 tp, -

109 i1

From Remark 4.3.2 and mp, o = mp, 0 = mp, o it follows for all n > 0 that

logmp, o A logmp, o < lOngimQ A logmp, o.

Condition (4.5) then implies that tp, 1is a term of log mp, 0 A logmp, . But then condition
A2 holds. O

PROPOSITION 4.3.13 Let s = 61 = --- and P; € path(s;) for all i > 0. Then the ordering +=
is Noetherian on | J; path(s;).
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RY+1 RN+1 RN+1 RYFL ...

Fanii

PNN>FtPNN PNN

Figure 4.5: Constructing PN*! from PV,

Proof: We start by remarking that we only need to show that there are ¢ < j such that
P; = P;. To this end, we construct sequences PN (0 < N) of paths such that P is the given
sequence (P, Py,...) and such that PV*+! is a sub-sequence of PV. We will write

PN = (PY, PN, PN, ...
During the construction we will make sure that for every integer j < N we have

Moreover, once we have constructed the sequence PV, we define a sequence RY = (RO ,R )
of paths by truncating every path PZ-N to its nodes of height > N. In other words, we let

N __ N
Pi — [thN707 7tPiN,N717RZ‘ ]

Note that R° is the given sequence P® = (P, Py,...) of paths. We remark that we are done if
the sequence R has property Al of Lemma 4.3.12, for then P % P for some 1.

Furthermore, our construction will yield that the proposition is shown, if there is an integer
N such that RY admits property A1. In fact, if there is such a N, then we stop our construction.
The fact that RV will satisfy A2 will make sure that the sequence PN*! can be constructed.
We will thus assume that RY has not property A1 in the following.

Let us suppose that PV has already been defined and that R does not satisfy property
A1l. Then we find a sequence 0 < ig < i1 < --- of integers such that

tRN 1 eterm(long%’o A longafl’O) N tpN o 7 tR{v+1 1-

Note that this determines uniquely a sub-sequence of PV, namely (PY,PY,...). We let

20 7 71 ?

207 Zl? 7,27"')

(Figure 4.5 shows the situation where there are paths in PV such that their nodes of height
N + 1 are strictly <-bigger than ¢ PN Nt1- In this case we do not carry these paths over to the

sequence PVH1)



90 CHAPTER 4. DERIVATIONS

N+4
N+3 .4
N+2 o4

N+1 oo

Figure 4.6: Paths converge towards Rév .

One notices that if R, ... , RN do not have property A1 but the sequence RN*1 does, then
we have Pév +1 i Pn]y *1 for some m > 0, which would stop our construction and finish the proof.
If RV*! does not have property A1, then we can continue the construction, since condition (4.6)
holds now for PN+1,

Suppose that we have constructed all sequences P°, P!, .... Then we cannot have infinitely
often P # Pév +1 To see this, we first remark that Py + Pév 1 implies the existence of some
minimial integer My > 0 such that

mpozvaN - mPON+1’MN.
Since for all N > 0 we have
MpN+1 5y, € SUPP long({V,MN—h

the sequence (m Py ~)o<n contradicts condition T4 of the definition of transseries fields. This
shows our claim.
Hence there is an integer M > 0 such that for all m > M we have Pj* = Pé”“ and

tpyry = tpmj
for all 7,5 € N. But then we find for every ¢ an integer J such that for all j > J
tppj =tpm,

which shows Fj* 3= P/™. This finishes our proof. (For an illustration, see Figure 4.6. In the
figure, the path P(fv will not be eliminated anymore. Moreover, we see that some paths from
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PN, PN+1 ete. can be eliminated, but that the remaining paths must converge towards the path
PYN. Otherwise R} would have cofinal branches to the right.) O

We can transfer the proposition to the ordering between finite paths.
PROPOSITION 4.3.14 The ordering += is Noetherian on g, s pathy(s) for f € Tq.

Proof: Suppose not, and let (P;)og; be a sequence of pairwise incomparable elements of
pathy(T,) such that

Mpy,0 = Mp o 7 Mpyo = -

For every i, there is a path B > P. By Proposition 4.3.13 there is a sequence 0 < g < 1 < ---
such that P;, + P;, , whenever n < m. Then by Lemma 4.3.8 we must have either P;, += P;; or
P;, = P,,, either of which contradicts the assumption on (FP;)o<;. O

4.4 Existence of extended derivations

We now turn back to the problem of extending a given derivation on some transseries field T to
any given transfinite exponential extension T, = C[[I,]].

ProposSITION 4.4.1 Let f € T,, then

(68(131)) teterm f:
Pepathy(t)

is a Noetherian family.

Proof: Let tg = t1 = --- be a sequence in term f. Let P; € pathy(t;) for all i. We have
to show that if the paths P; are pairwise distinct, then the family (©2(P;))o<; is Noetherian.
For every ¢, we let n; € supp @‘9(Pi). We are done, if we show that we can extract a strictly
<-decreasing sub-sequence from (n;)o<;.

From Proposition 4.3.14 it follows that we may assume that modulo extracting a sub-sequence
we have Py = Py = P> > ---. We claim that modulo extracting another sub-sequence we may
restrict ourselves to the following two cases: either Py > P+ Po 5 --- or Vi, j: P+ P;.

Suppose not, and let Py = P; ~ P> > --- be a bad sequence. Let m be maximal such that
there is a sequence ig < - -+ < iy, of integers with P, % --- %= B;,,. Such an m exists by badness
of the sequence. From the transitivity of += it follows that P; , » P; for all j > 4p,. From the
maximality of m it follows that P; -+ P; for all j > 4,,. Then there are i, < j < k with
Py, # Py, for otherwise the given sequence would not be bad. But then one shows PF;, + F,
which contradicts the maximality of m.

Case I: Vi,j : P;+ P;. Using Lemma 4.3.10, we find some i > 0 such that for all ¢ > i the
paths P; have the same length N. Then we obtain for all ¢ > ¢y that

H mp;j >~ H Mp; .-

JSN JSN
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Moreover, we have mp, y = mp, N for all ¢ > i9. This implies that for a sequence of integers
ig < i1 < 19 < --- we have

i, = Gy = Gy = --- € supp (logmy, n)'.

From this n;; > n;, > --- follows, which finishes the case I.
Case II: [}y = P # P2+ ---. We consider the set the labels of all leaves of these paths,
{Mpy (Rl Py Py> My Ry 0} E TN
Then there exists a sequence 0 < ig < i1 < 42 < --- of integers such that one of
WPy [Pyl 7 B (P | 7 WPy Py F (4.7)
MPig,|Pigl = TP [Py | = TP, P, < 48

holds. If we have monomials as in (4.7), then the set

U supp (logmp, |p, |)'

in>s
on

is well-ordered. Since for all m > 0 the monomial a;,, is an element of this union, we may — by
thinning out the sequence (i )o<n, if necessary — assume that

Qg >Fai1 >f'ai2 . (49)

From Lemma 4.3.11 it follows that

mp, ;> mp, j - mp, o= (4.10)
0

J<|Pig | J<|Py | J<|P,|

Multiplying the chains of inequalities (4.9) and (4.10) shows n;, > n;, > ny, > ---.
If on the other hand (4.8) holds, then the sequence

/
(( 1 ) )
mp,,.|P;,| o<n

is a Noetherian family, which means that — by thinning out again, if necessary — we have

Qo a;, a5,

= e (4.11)
2 ) - 2 &
sz’O 3| Pig | mPil | Piq | mPiQ | Pig |
We use again Lemma 4.3.11 to show that
2 2
H mPZ.O’j . mPi07|Pi0‘ - H mPil’j . mPi17|Pil‘ — e, (412)
J<I P J<| Py |

Multiplying chains (4.11) and (4.12) yields again n;, > n;, > ---. This finishes case I and the

proof of the proposition. O
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THEOREM 4.4.2 Let 0 be a derivation on T. Then every transfinite exponential extension T of
T admits a unique derivation which extends 0.

Proof: By Proposition 4.4.1, the function 0 as defined by (4.1) (on page 79) is correct. Clearly,
conditions D1 and D3 hold. To show D4, we first remark that pathp(m) = {(m,Q] | Q €
pathyp(log m)}, hence that

m' = Z P = Z m-Q =m- (logm)’.

Pepath(m) Qepath(log m)

Then D4 follows from Proposition 4.1.5. By lemma 1.6.5, condition D2 holds, if we can show
it for monomials. Let m = e/, n = e9 € M,. Then by D4

(mn) = /9. (f+g)
= e floedtel et g
= m-n+m-n.

This shows the theorem. O

COROLLARY 4.4.3 For all ordinal numbers a and L. = C[[log?" z]], the field Lo, admits a deriva-
tion.

REMARK 4.4.4 Let A be a limit ordinal. The fact that Ty is stable under 0 for each 8 < A
implies that T\ = [Jg.) Tp is also stable under 0.

Hence T, is a non-complete field of transseries with total exponentiation, a total logarithm
on the set of positive elements and a dertivation.

REMARK 4.4.5 Instead of -, one can actually choose a relation & on the set of paths, which
is weaker than +. Essentially, one replaces all conditions about maximal common truncations
by mg ; € supp logmp;_1 for all 0 < j < 4, and one replaces the last condition by mg; &
supp logmp;_1. In particular, we do not demand mp; = mg ;.

The relation + is not transitive, but its transitive closure is an ordering. Furthermore, it is
possible to use += instead of 3= in the proofs of this section.

4.5 Valuated derivations
A derivation 0 : T — T is valuated iff for all f,g € T with 1 % g we have

<9 = [f=<d.

REMARK 4.5.1 A derivation is valued if and only if for all monomials m,n € 9t with n % 1
and m < n we have m’

asy n'. One direction is trivial. As for the other one, let f < g % 1. Then for all m € supp f
with 9y # m we have m < 9y and thus m’ < ?%. This implies f' =< 0. Similarly for g. But
then 07 asy d, implies o < 0y and therefore f' < g'.
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EXAMPLE 4.5.2 The derivation on L is valuated: let log® z < log?z, where b # 0. Let 4,5 be
minimal with a;,b; # 0. From the definition of 0 it follows that

1
(log”z) = log®x  ———)
x---log; x

1
(logbz) = loglae ————.
x---log;x

Ifi > j, then z -log;x < z---log; x and log" z < log® = imply (log®z)" < (log?)’. If i < j, then
a; < 0 =b;. From this we obtain

1
log; 1@ ---log;

log?z < log®z -

Hence (log® z)" < (log®)".
ProproSITION 4.5.3 If 0 is a valuated derivation on T, then 0, is a valuated derivation on T.

Proof: We use a transfinite induction. The Proposition holds for o = 0. So let us assume
«a > 0 and that the Proposition holds for all 8 < a.

Let m <n % 1. Then logm,logn € ’]I‘; for some 8 < «a. Then logm < logn. Let t =
logm A logn and logm =t + f and logn =t + g. We claim that f/ < ¢. If 0 < f, then 0 < g
and thus 0f = 0,. Hence 5} = 0, and T],c < 7,. If on the other hand f < 0, then 0y < 0,. The
inductive assumption implies again 0 < 9y, thus 74 < 7.

In both case, we obtain (logm)’ < (logn)’. But then we have

By Remark 4.5.1.



Chapter 5

Compositions

Having extended derivations, we now turn our attention to compositions. First, we define the
notion of compositions, and we show some basic properties. Then, we extend compositions
between transseries fields to their transfinite exponential extensions. Again, we can use the
framework of Noetherian operators to define such extensions and to show that our definitions
are correct.

5.1 Right-compositions on transseries fields

5.1.1 Notions of compositions

As for derivations, we want to introduce a notion of composition on transseries fields. This
notion should take in account both, the strongly linear and exponential nature of transseries
fields and properties of compositions.

DEFINITION 5.1.1 Let T = C[[9]] and U = C[[N]] be transseries fields. An injective function
A: T — U is a right-composition iff

RC1. Vee C: A(c) =c,

RC2. A is multiplicative,

RC3. if ' is a Noetherian family in T, then A(F) = (A(f))fer is a Noetherian family in U

and A(Y F) = S a(F),
RC4. Vf e T: f € dom exp = A(exp f) = expa(f).

REMARK 5.1.2 Right-compositions A : T — U are strictly increasing, since for all f € T we
have by linearity A(—f) = —a(f) and for all 0 < f

A(f) = A(explog f) = exp a(log f) > 0.
For monomials m > n in 9t we have A(m) > A(n), since by RC1 and RC3 we have
m-n& VeeC:0<m+cen & VeeC:0<a(m)+ca(n) & a(m) = A(n).

Furthermore, the restriction of A to 9 is a Noetherian mapping by RC3. The unique strongly
linear extension of Algy to T is A.

95
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REMARK 5.1.3 Let ¢ be a Noetherian mapping 9t — C[[N]]. We have seen that if ¢ is multi-
plicative, then its unique strongly linear extension ¢ to C[[99]] is also multiplicative. Similarly,
we have seem that if ¢ satisfies the Leibniz rule, then so does ¢.

Similarly, we can show for mappings ¢ such that Vm € 9 : p(m) = exp p(logm), then the
same remains true for series f € dom exp. In fact, let h € L™ such that exp f = h. Then we
have h = cd(1 + ¢) and

o(f) = ¢(logd +loge+1(5))
= ¢(logd) + $(log ) + ¢(1(9)).

) and ¢(log ¢) = log p(c). Furthermore, since

From the hypotheses we obtai w0
This implies

n ¢(logd) = logy
¢ is strongly linear, we have ¢(I(d)) = ).

) = 1($(9)

@(f) = logp(d) +logp(c) +1(£(0))
= log(p(cd) - (1 +£(9)))
= logp(cd(1+9)).

But then exp ¢(f) = ¢(exp f). In other terms, if we want to show RC4 for series, it suffices to
show the property for monomials.

5.1.2 Example of a right-composition
Let T be a transseries field. We show that for every g € T, there is a right-composition

Ag: L — T

r — g
Let log z € logZ" z and g € TX. Then

p(m) :=log® g := ¢g* log" g---logy" g € T.

We also write m o g instead of ¢(g). In view of Proposition 1.6.3 we have to show that the
mapping ¢ : log” 2 — T is strongly linear. This will allows us to extend ¢ to a mapping ¢ on
all of L.

PRrROPOSITION 5.1.4 ¢ : log” x — T as defined above is strongly linear.

Proof: For each i, let us write log; g = ¢;0;(1+6;) with ¢; = ciog, g, 0 = Vlog, g and J; = Flog, ¢-
Notice that Proposition 2.2.4 implies

0 » 01 > 09 3 ---,
whence 0 o ¢ preserves the asymptotic ordering < . We claim that

S = (supp do)*(supp dy)* - - -



5.1. RIGHT-COMPOSITIONS ON TRANSSERIES FIELDS 97

is well ordered. Indeed, let n be such that g is log-confluent at order n. Then

1 1 *
T = (Suppéo)*'“(suppén)*{ , }
041 Ont10n42

is well-ordered. Let us show by induction that

supp ; C 3 (5.1)

Y
ntl 0

for all ¢ > n. This is clear for ¢ = n. So assume that ¢ > n and that we have proved (5.1) for all
strictly smaller i. Now 704, ¢ = log 710, | 4 implies

log; g = log0;—1 + log ¢;—1 +log(1 + d;—1) = 0; + log(1 + &;—1).

Consequently,

log(1 4+ &;_ T L T*
SuUpp 6; = supp o8(1 1 9i-1) Q{ }

Sl G
0; Opg1--°0;-1) 0 Opy1---04

Hence the inclusion (5.1) holds for all ¢ > n. In particular, we have suppd; C T for all ¢ > 0,
whence S C T, which proves our claim.

Now let W C logZ" & be well-ordered. For all m € W we have mog = ¢(m) = o(m) (1+00(m))-
From the above we conclude

Supp (1) < {0y | € W (14 5).

Since 9 o ¢ preserves the ordering, the set {0,y |m € W} is well-ordered. So is the set 1+ S.
Hence |Jyep supp¢(m) is contained in a well-ordered set. We have to show that for all n €
Umemw supp ¢(m) there are only finitely many m € W with n € supp ¢(m). Suppose that for some
such n there is an infinite set W, C W such that n € supp ¢(m) for all m € W,,. Let s, € (1+.5)
such that n = 0, () - Sm. Since {d,(m) |m € Wy} is well-ordered, the set {5y |m € Wy} C (14 5)
is decreasing in >. But 1+ S is well-ordered. Contradiction. Hence the family (¢(m))mew is
Noetherian. O

PROPOSITION 5.1.5 Let ¢ : logZ x — T be defined as above. Then its unique extension [
L — T is a right-composition. Moreover, if we let f o g := ¢(f), then for all f,h € L and
g € T, we have fo(hog)=(foh)og.

Proof: Since for all m = n in logZ"z we have a,(m) = a,4(n), the function ¢ is injective.
Condition RC1 holds by strong linearity, i.e. Proposition 5.1.4, and so does RC3. Note that ¢
is multiplicative on logZ*x, hence that by Lemma 1.6.5 condition RC2 holds.

As for RC4, we first remark that one easily verifies

Vm € log? z : p(m) = exp $(log m).

Now we invoke Remark 5.1.3. The second assertion follows from Corollary 1.6.4. O
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REMARK 5.1.6 It follows from the proof of Proposition 5.1.4 that if g € TZ is log-atomic (i.e.
log-confluent at order 0) and m € logZ" z, then for all n € supp ©(m) there is a weakly decreasing
function a : N — N such that

@(ag)
05° log® 0y - -+

S

5.1.3 Uniqueness of extensions

The next proposition shows that the real difficulty lies in showing the existence rather than in
showing the uniqueness of the extension of A to T,,.

PRrROPOSITION 5.1.7 Let A : T — U be a right-composition and 0 < « an ordinal. Then there
exists at most one right-composition A, : T — Uy such that Ay|T = A.

Proof: We first notice that if « is such that A, exists, then Ag exists for all 3 < a. Hence,
if we let o be the minimal ordinal such that there are distinct A4, AL, with A,|r = Al |1 = A,
then the restrictions of A, and A/, to Ty exist and are identical. In particular, this is true for
the monomial groups M.

Then « is not a limit ordinal, for otherwise for all series f € T, we have

2a(f) = fmta(m) = fmal(m) = a4,(f),

since the monomials are elements of some Mg with 8 < «. This contradicts the minimality.
Hence « is a successor ordinal 3+ 1. Let m € 9, with A4(m) # Al (m). Then logm € Tj
and thus A, (logm) = A/ (logm). Therefore

Aa(m) = Aq(explogm) = exp A (logm) = A (explogm) = A, (m),

by RC4. Now RC3 implies again A, (f) = a/ (f), contradiction. O

5.1.4 Extending using transfinite definitions

An alternative way of defining A, is the following. Assume that for all § < «, a right-composition
Ag on Tg has already been defined such that

A, C Ag Yy < 6.
Then for all m € M, we let
p(m) := exp Ag(logm) if logm € Tg.

REMARK 5.1.8 Firstly, we notice that the definition of ¢ does not depend on the choice of g
and that ¢ is totally defined on 9M,. Secondly, let us notice that in order to extend ¢ to Ty, we
have to show that it is a Noetherian mapping. As the following proposition shows, from that it
will follow that ¢ = A,, i.e. that it is the unique right-composition on T, extending A.
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ProposITION 5.1.9 If ¢ : M, — U, is a Noetherian mapping, then its unique strongly linear
extension

9 : Ty — Uy
1s the unique right-composition A, extending A.

Proof: In order to show that ¢ is injective, it suffices by strong linearity of ¢ to show that
m > n implies ¢(m) > p(n). Indeed, we only need to show that log p(m) # log ¢(n). Suppose for
a contradiction that this is not the case. Then Ag(logm) = Ag(logn) for some 3 < . Hence by
linearity, 0 = Ag(log m —logn). But then the injectivity of Ag implies logm = logn, thus m = n.

It remains to show conditions RC1 — RC4. Note that RC1 holds by linearity of ¢ and that
RC3 is satisfied by hypothesis.

Let us show RC2. We claim that ¢ is multiplicative. Let m,n € 9. If « is a limit ordinal,
then m,n are elements of some Mgz with 3 < «, and the claim follows from ¢ = Ag. If ais a
successor ordinal a = 3+ 1, then logm,logn € Tg. The linearity of Ag then implies

p(mn) = expag(logm +logn)

= exp(ag(logm) + ag(logn))
= expag(logm) - exp ag(logn)

= p(m)-p(n).

By Lemma 1.6.5, the function ¢ is multiplicative, hence RC2.
As for RC4, it suffices to notice that by definition we have p(m) = exp ¢(logm) for every
m € M,. Then Remark 5.1.3 shows RC4. The uniqueness follows from Proposition 5.1.7. O

REMARK 5.1.10 We have to show that the function A, is defined on T,. h is means that
for every sequence ty > t; > --- of monomials in 9, and every sequence (n;)og; such that
n; € supp ¢(t;), we can extract a sub-sequence (n;, )ogk in 9, with

Ny > Mg > Ny > -0

5.2 Combinatorial representation of compositions

5.2.1 Some notations

Let Ao : T = C[[M]] — U = C[[MN]] be a right-composition. For every f € T, the series A(f) has
the canonical decomposition into its infinite, constant and infinitesimal part. We let

so that for every t € 91 we have

A(t) = expa(logt) = expal(logt) - expa=(log t) - e(al(log t)).
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Then exp al(logt) € 91 and exp A=(log t) € C* are the leading monomial and leading coefficient
of A(t). We let

Dat) = expal(logt)
Ca(t) = expa™(logt).

Wherever A is clear from the context, we write © and C instead of ©A and Ca.

PrROPOSITION 5.2.1 The functions DA and Ca are multiplicative on M. Moreover, the func-
tion DA s strictly increasing.

Proof: The first claim follows from (f + ¢)! = f1 + ¢! and
exp al(log ts) = exp Al (log t + logs) = exp al(logt) - exp Al (log s).

Similarly for C. As for the second one, suppose that 1 < t. Then 1<t implies C' < logt.
The function A is strictly increasing, hence C' < A(logt). Therefore we have 1 < A(logt) and
0 < a(logt). We conclude that A'(logt) > 0 O

REMARK 5.2.2 We extend the functions C and ® to all terms s € C91 by

C(s) = c¢s5-C(0s),
D(s) = D(0s).

The functions C and ® remain multiplicative. Throughout the rest of this paragraph, we will
look at an example of a right-composition in detail.

5.2.2 Formulas for an example of composition
+

We let T = Lexpexp = L2 and Ay : L. — Lo a right-composition for some g € H"Z,oo as in
Proposition 5.1.5. We extend A, to a mapping ¢ : Lo — Ly as follows: let m € (logz*a:)exp, then

we let

p(m) := exp(a,4(logm)).

Assuming that the mapping ¢ is Noetherian, it extends uniquely to Lex,. We proceed similarly
for monomials from (logZ*x)eXp,eXp. We will prove the Noetherianity assumptions later in this
chapter. For the purpose of the example, we may assume that A, may be extended to a right-
composition on Lo.

Letg:x—ké—i- L_ ¢ L, and take

expy &

AL — Ly
f — [fog
We apply A to f = e“+% € L. From RC3 and RC4 we obtain that
A7) = expa(e? +z), (5.2)
A(e% +z) = expa(2z)+ A(x).
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In order to evaluate the right-hand side of equation (5.2), we have to evaluate the right-hand
side of (5.3). Applying the definition of A yields

1 1
Alr) = o+ —+

, 5.4

T exXpyT (54)
2 2

expa(2z) = e* e <— + > . (5.5)
T expy X

The next step is to obtain Al (e?* + 1), A=(e?® +z) and al(e?® +z). Clearly from equation (5.4)
it follows that al(z) =z, A=(z) = 0 and al(z) = 1 + L~ For equation (5.5) we obtain

T expo T’

1 2 1 22 1 2
T(e2xy = e2¢. e s I B
Ale™) = e <1+1! T x2+3! P >’ (56)
AT(e*) = 0, (5.7)
00 i—1 . ; o
1 27 AN
Al(e%) _ 62:1:,2._ <z>_27 (5.8)
i = N/ expy
Hence
o e (L 2,1 22 1 23
A(e —|—l‘) = e . +FE+§F+§F+ +.1‘,
AT(e¥® +12) = 0,
1 1 i AN T
s v = Doy gy ()5 2
T €Xpy oo NI/ expy '

Equations (5.6) — (5.8) can be used to express A(e?”" %) using the equation

A(ee%+$) = expa(e® + 1) -expal(e® + ) - e(al(e® + 1))
= C(eT)D(e” ) e(at (€ + 1))

5.2.3 Combinatorial representation of the example’s formulas

Let us now show how to represent terms in A(z), A(e2® + x) resp. A(e® %) by faithfully
embedded trees, whose leaves are labeled using a second labeling. We distinguish between the
labeling of the faithfully embedded tree and the additional labeling of the leaves by referring to
them as the host-labeling and the labeling, respectively.

Level 0. ¢ € term A(z), then we take the one-point tree with host-label . The node will get a
label from term A(z). In Figure 5.1, the two left-hand side trees illustrate the cases where the

1
labels are x and .

Level 1. t € term A(e?® + x). Then t is an element of one of the sets term A(z) or term A(e??).
The former case has been treated at Level 0. If ¢ € term A(e2®), then there is an integer n > 0

such that
1 /2 2 "
tEe%-term—(——l— ) .
nl \z  expyx
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expy T

Figure 5.1: Faithful embeddings for ¢t = x, ex;ﬂ, e?® and e** % % 2

If n = 0, then we take again the one-point tree with host-label €*. No labeling is assigned in

this case. Otherwise we have n > 0 and there are n elements t1,... ,t, from the set {%, exszx}
such that
1
t=e* . —t; -t
n!

In this case we take a tree of height 1 with root in e?* and n successor nodes with host-labels
2x. The labeling maps every leaf to one term ¢;. For an illustration of the last two situations,
see the right-hand side of Figure 5.1.

Level 2. ¢ € term A(e®" 7). We remark that C(e®" %) = ¢¥ = 1. There is an integer n € N
such that there is a tuple (uy,... ,u,) € (term Al (e?* + 2))" with

Cee™ )

—~ DY g -y

t =
Again, if n = 0, then we do not assign a labeling to the tree. We consider the case n > 0. The
terms u; are all infinitesimal and elements from the set

{ 1 1 (z) €22 }
9 ) _' . ° 77/7] .
X exp2 X 1! ] x] . exp2 €T 0<j<7;

To every u; we find some s; € {€?*, 2} such that s; € supp Al(s;). This gives rise to a labeled
tree T as in the case of level 1. The root of T has host-label € %, and the root has exactly n
successors which are respectively host-labeled by s1,...,s,. At a first stage, we equip the set
of leaves of T" with a labeling which maps the leaf labeled by s; to u;.

Hence, for every couple (u;,s;) there is a faithfully embedded sub-tree U; in the relative
tree-representation of s; together with a labeling. We next substitute the trees U; into the leaf
of T which is labeled by s; and which has the extra label u;. The result is a faithfully embedded
sub-tree V of the relative tree-representation of e+ On the set of leaves of V we define a
labeling in the obvious way. We choose three terms from term A(eeh*"ﬁ) to illustrate the above.
Firstly, we consider the term

=
‘w
v

621 (1+

[~
8 0o

+

22T perm A(eehﬂ).

o
N

tlze
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2 2 2
exXpo T T eXpg T

N I

8=

exps T

08— 8=

62m+z

(&

Figure 5.2: Trees that can be associates with the terms t1, ¢t and t3 from A(eeh*x).

The tree assigned to this tree is the one-point tree T' with tp (1) = "+ This representation
can be seen on the left-hand side of Figure 5.2. Secondly, we choose
Lol 24 5440 11

1 @
lo=—"-¢€ C= - = EtermA(ee2 ),
3! T eXpaX X

to which we assign the tree in the middle of the same figure. Thirdly, as a more complex term

we take
b= e g Srte (L e 2 N (L 5y 22 ) (11
4! 1! expy T 2! T eXpy T 2 xexpyz /)’

The tree for this term can be seen on the right side of Figure 5.2.

REMARK 5.2.3 We see how faithfully embedded sub-trees occur naturally in this context, and
what is more, we even see the reason why we had included one-point trees in the definition of
such trees. Notice, though, that one-point trees were only given a labeling, if the node of the
host-tree was an element of T.

Going a step further, we can associate a term of A(e?* 4 x) to every tree that is faithfully
embedded into one of the children of e®***2 and which admits a labeling of its set of leaves.
Since our trees have some special characteristics — there are always only finitely many successors
and the labeling depends on A on I — we will not allow all such trees. We will come back to
this point later.

5.2.4 Right-composition and well-labeled trees

Let A : T — U be a right-composition and a > 0 be an ordinal number. We denote the monomial
groups of T and U by 9t and N, respectively. Recall that the aim of this chapter is to extend A
to T,. This section shows how to extend our observations from the example of Section 5.2.2 to
the general case.

Throughout the rest of this section, we will assume that A has already been extended to a
right-composition A, : T, — U,. Recall that for terms t € C9, we have defined the notion
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of a relative tree-representation of ¢ with respect to T. It was denoted by T} . Furthermore,
we have introduced faithfully C9N,-embedded sub-trees of T; . There are two kinds of such
sub-trees: those only consisting of a root and those with a non-empty set of leaves of positive
height. In the latter case, for all | € leaf(7} 1) we have t7, ;| € C9. We exclude from the set of
faithfully embedded trees the one -point trees where the host-label of the only node is not in T.

We denote by tree, (t) the set of all finite faithfully C9,-embedded sub-trees of T; T, and we
let furthermore

tree, (T U tree, ()
teCMq

We remark that nodes of finite trees have only finitely many successors. In the case of sub-trees
of Ty v the converse is also true, since a relative tree-representation cannot have infinite paths.
Recall that we denote the label of the node n in the tree T' by t7 .

A couple (T, ) is called a labeled tree associated to the term ¢ € CO, iff T € tree, () and
if X :leaf(T') — CN, is such that for all | € leaf(T") we have A(l) € term A(t7). In the example
of Section 5.2.2 we have seen that labeled trees occur naturally in the representation of elements
of term Ay 5(e”" 7). We have also seen that not all labeled trees from tree (e¢” %) contribute
to this set of terms. We will now generalize the observations from Section 5.2.2 to elements from
term A, (t) for ¢t € CMy,.

Let T, € tree*(t). We say that U C T is a proper sub-tree iff there is a node n € T'\ {r(T)}
such that

U={teT |n<t}

and if the host-labeling of U is the restriction of the host-labeling of T to U, i.e. for all n € U
we have tyn = tr,n. Welet Uy = (U, M|y). Then U}, is again a labeled tree. Note that one-point
trees have no proper sub-trees.

We next define a function ©* on <-. If T = leaf(T'), then

OA(T™) == A(r(T)).

Recall that we only allow one-point trees to be labeled, if the host-label is in C9ON.
Next let T # leaf(T). We recursively assume that © has been defined on the set of children
Ui,... U, of r(T). Then we let

Cltre(r))

n!

O (T*) = D(tryry) - O2(Ury) -+ 02 (Unn).

Note that ©2(T?) exists for all T* and that we have in the case T # leaf(T) that
C(trn)
O™ (T = =D (trn) - A(n
() H \succ(n)\ (tr, H
neT\leaf(T) n€leaf (T')

We say that T* is well-labeled iff ©2(U,) < 1 for every proper sub-tree of T*. Instead of
(T, \) or T, we will also write or T®. The set of well-labeled trees with root ¢ is denoted by
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88—, -
O

08—~

8 —m8l=

Figure 5.3: The labeled trees T and Ty from Example 5.2.5.

tree®(t). Similar to the case of labeled trees, we let

tree®(f) := U tree®(t), if feT,,
tE€term f

tree®(T,) = U tree®(t).
teCMa

One-point trees are always well-labeled since they do not have any proper sub-trees.

REMARK 5.2.4 If | € leaf(T') is such that t7) ¢ CON, then T is the one-point tree labeled by
T. Labeling the root of T' in this case corresponds to choosing a term from

Balt) = C(O)D(1) - e(ak(logd,)).

If T is a one-point tree with root in C'I, then A is defined on t7 (7). If T is not a one-point
tree, then t7) € COMN for all leaves |. In this case, too, we can apply the function A to the label
of I.

Moreover, let us point out that if (77, A1) # (T3, A2) are both labeled trees, then 77 # T5 or
T1 = TQ and )\1 75 )\2.

ExXAMPLE 5.2.5 We take A, : Ly — Ly as in the example from Section 5.2.2, i.e. we have
g=x+ % + @. We let again t = "+ Then T is the labeled tree of height 1 with three
leaves l1,ls,13. The root of T is labeled by t. The leaves have all the label x. We define A on
leaf (T') by

)\('1) = %,

1
All2) = expy T’
M) = L
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Ny

e2m+z 662m+z

1
exps T

T

*8 "> &
ey | 8=
o

8
8
®

Figure 5.4: Well-labeled trees and non-well-labeled trees from Example 5.2.6.

Then T) is a labeled tree. For an illustration, see the tree on the left-hand side of Figure 5.3.
We remark that for the same T we can define a different labeling X’ : leaf(T') — C/(log? )o by

1
)\/(Il) = E,
1
)\/(Ig) = E’
1
)\/(|3) = p— .

Then T), is different from T although )\ is merely a permutation of the labeling \.

ExXAMPLE 5.2.6 We take again the right-composition A, from Section 5.2.2. First, let ¢t = x.
The relative tree-representation of t is in this case the one-point tree with root-leaf x. It has
only one type of faithfully embedded sub-tree T'. Let TQ’\l,TQ’\2 € tree’(z) with T! = T», = T,
M(r(Th) = z and \(r(T?) = L. Then T and T52 are permissible trees. Notice though that
OA(TM) > 1. See the left-hand side of Figure 5.4 for an illustration the two trees.

A more interesting example is t = "t We choose faithfully embedded sub-trees T3 and
Ty of its relative tree-representation as shown on the right-hand side of Figure 5.4. The labelings
A3 and A4 can also be read from this figure. The tree T. 3)‘3 is a well-labeled tree. On the other
hand, the tree TL;\“ fails to be a well-labeled tree. Looking at it in terms of development of the
terms, we can say that the label determined by the node with host-label 2z and labels 2/z, 2/x
“fails to expand down to the ground level, in other words, it “gets stuck” in exponential level
at e??,

PROPOSITION 5.2.7 Let t € COM, and s € term Ay (t). Then there is a well-labeled tree T €
tree®(t) with 05 = (O (T?)). In particular, if 1 = s, then T* can only be a one-point tree if
te CM.

Proof: We show the Proposition using a transfinite induction. We start with the remark
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that for all t € C9M, we have the equations
Aat) = C(t)D(t) - e(al(logdy)), (5.9)
Al (logo,) = > ak(w). (5.10)

uEterm log 0t

The starting point of the induction is the case t € C91. Then the proposition follows from
OA(T?) € term A(t). Now let 3 > 0 and assume that we have shown the proposition already for
all terms from C9MN,, with v < 3. Let t € CMz, and we may assume that it is in no C9N,, with
v < (. By equation (5.9) there exist an integer n > 0, terms t1,... ,t, € term logd; and terms
S1y... ,8, < 1 such that

Vi<n:s; € termag(t;),
1
s = aC(t)@(t) 81 Sp.

By the induction hypothesis, there are well-labeled trees T; ), € tree*(t;) such that s; =
@A(TMZ.). Let T be the unique labeled tree with root ¢ and children Tix,--- Ty, Then

Lo D)-02(T1a,) - 02 (Thnr,) = 5.

Ay
© (T)_n!

This finishes the proof. O

Let A : T — U be a right-composition as above. We wish to extend A to T, for ordinal
numbers a > 0 by

Aolf)= D O%TH. (5.11)

TXetree® (f)

REMARK 5.2.8 The function A, defined in (5.11) is our candidate for a right-composition on
T,. It clearly extends A on T. Apart from showing conditions RC1 — RC4, we have to make
sure that the right-hand side of the equation is defined.

5.3 Existence of extended right-compositions

The aim of this section is to make sure that the right-hand side of equation (5.11) is defined.
We will then be able to prove that the resulting function is the unique right-composition on T,,
that extends A. More precisely, we will show the following statements.

THEOREM 5.3.1 The right-hand side of equation (5.11) is well-defined.

Proof: We show the theorem using a transfinite induction. It clearly holds for « = 0. In
what follows, we assume that a > 0 and that the theorem holds for all g < «.

Let f € T,. We fix a sequence (T} )og; of elements from tree®(f). Let m; be the monomial
of the term ©2(T®) € C9M,,. We have to show that there exist i < j such that

m; =my (5.12)



108 CHAPTER 5. COMPOSITIONS

The roots of the trees T; are labeled by terms from C9,. We may assume that they are
monomials t;. Modulo extracting a sub-sequence, we may furthermore assume that

Yo mt1 im0
We distinguish the following four cases.

Case I: All v; are from 9.

Case II: All T; are one-point trees.

Case III: For all £ <[ and all s € succr(1}) we have tr, s € term (logt, A logt;).
Case I'V: None of the above.

The four cases will be treated separately in sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4. a

THEOREM 5.3.2 Let A : T — U be a right-composition. For every transfinite exponential
extension of T, there exists a unique Tight-derivation extending A.

This theorem will be proved in section 5.3.5

5.3.1 First case: Root host-labeled by monomials in 9%

In this case all T; are one-point trees with t7, (1,) = v;. Since tg = t1 = --- and A is strongly
linear Noetherian mapping, the family (A(t;))og; is Noetherian. In particular, the set

U supp A(t,)

on

is Noetherian. Since m; € Uogn supp A(vy,) for all 4, there indeed exist ¢ < j with m; = m;. This
finishes Case 1.

5.3.2 Second case: One-point trees

We suppose that none of the t; are in 9, for otherwise we may extract an infinite sub-sequence
as in case I. Hence m; = D(v;) for all 4. Since ® is strictly increasing, we have

my =D(tg) =my =D(t1) = mg=D(ra) = -

In particular my > m;. That finishes Case II.

5.3.3 Third case: Strong disjointness of successors of the roots

Assume that we are not in one of the cases I or II. We fix some notations. For any well-
labeled tree T* = (T, \) we let

IT):= ] ma

neT\leaf (T)

T := [] mr.

n€leaf(T)

I7*:= J] o

n€leaf(T)
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LEMMA 5.3.3 Let T® € tree®(t) and U® € tree®(u) with succr(T),succr(U) # (). Suppose that
t > u are such that

Vs € succr(U) : tys & term (logt A logu).
Then for allm < D(t)/D(u) we have D(|T]) = D(|U]) - m. In particular D(|T']) = D(|U]).

Proof: For s € succr(U) it follows from trs & term (logt A logu) that

t t
tys <X log— < —.
u u
Since ® is multiplicative and strictly increasing, one obtains D (tys) < D(t)/D(u). Moreover,
for all n € U with s <- n we have ty, < tys, hence D(tyn) < D(tys) and D(tyn) < D(tys)-
Consequently,
2(1U)) 2(1)

o) D)

This implies the lemma. O

PROPOSITION 5.3.4 Let (1)< be a sequence as above and assume that for all 0 < k <1 and
all s € succr(1;) we have

t1,s & term (logt, A logt).
Then there exist © < j such that m; = m;.

Proof: For all i > 0, we have [T;] € 9 and |T}°| € suppa([7Z;]). The latter follows from
A(n) € term A(t7, n) and the multiplicativity of ©. We distinguish two cases with respect to the
sequence ([T;])o<;: modulo taking a sub-sequence if necessary, we may assume that one of

[To] = [Th] =
[T(ﬂ =< (Tﬂ =<

o) - - (5.13)

[

holds. Note that the assumptions about (7)o imply that t; > ¢ for all & <.
Case A: Vk < 1:[Ty] = [1;]. Then from RC3 for A it follows that

| supp a([7i7)

0<i

is a well-ordered set. Then there are i < j such that [T}*] = [77]. By Lemma 5.3.3 we have
D([Ti]) = D(|1;]). Hence

m; =D(|T)) - IT7] = m; = D(T;)) - 1T
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Case B: Vk < | : [T}] < [T;]. Let us start with a general observation. Let a € 9 and
b € suppa(a). Let § € T! with

1
=0 (144) =
Aa) xy (1 F0) UND)

(1+9).

Then suppd C 0a(q) - suppA(2) and A(a) = 0p(q) - (1 — 0+ 6% + -+ ). Hence for some k >0 we

have b € 0 (q) - SUPP 8%, Then there are infinitesimals ¢i,. .. , ¢z € supp A(%) such that
Y

Now consider the set of couples

S::{“’“‘) '“‘ES“"MGA)}'

We order S by (i,m) > (j,n) iff m > n. From (5.14) it follows that (S, =) is Noetherian. By
Higman’s Theorem 1.1.4, the ordering (S*, =g+ ) is also Noetherian.

For every 7 we find by the above observation an integer k; > 0 and infinitesimal monomials
Mi1,... ., Mg, € suppA(ﬁ) such that

HT.” D]ZT;]) m; 1. Mg,

By the Noetherianity of S* there exist ¢ < j with
[(iv mi,l)? ERE) (iv ml,kz)] ES*[(jv mj,l)a cee (]a mj,kj )] and k; < kj-
Since all m;; are infinitesimal, we obtain

mi1... Mg =M,q... Mk, (515)

Since on the other hand we have tr, s  term (logt; A logt;), it follows that

D (i)
1y = T;
oagry = A(T;]) < ;)
from which with Lemma 5.3.3 it follows that D(|T]) = D(|T}]) -9%(7,)- But then
k 1
D(IT)) - 0% (1) = DT - 0X1,7)- (5.16)

Multiplying (5.15) and (5.16), we get m; > m;. O
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5.3.4 Fourth and last case

It remains to treat the case where the sequence (7})o<; cannot be reduced to one of the previous
cases. That means that modulo extracting a sub-sequence, we suppose that no v; is an element
of M, that no tree T; is reduced to its proper root and that for every k > 0 we find a successor
node s € succr(7Ty) such that

tr,s, € term (logrg A logty).

Furthermore, since all t7, s, are elements of term log vy, we can derive from Remark 4.3.2 that
for all k£ < I:

logtg A logry; < logt, A logy.

Thus we also have t7,, € term (logv, A logy) for all 0 < k < I. For sequences (si)o<k with
these properties, we will in the following say that the badness of (T})og; is realized by (si)o<k-

PROPOSITION 5.3.5 Let (1})o<i be a bad sequence with the above properties. Then there exist
1 < j such that m; = m,;.

Proof: Suppose not and let (7})o<; be a bad sequence, i.e. a counter example to the proposi-
tion. We say that the bad sequence (7})o<; is minimal, if for every i and fixed T,... , T ;, the
number of children of r(7;) is minimal. From now on, we will assume that (7 )og; is a minimal
bad sequence.

Fix for all i > 0 a node s; € succr(T;) such that (s;)1«; realizes the badness of the sequence.
We denote the proper sub-tree of 7; with root s; by U;. The trees W; = T; \ U; are non-empty
and give rise to a sequence of well-labeled trees. We claim that {W? | 1 < i} is Noetherian.

Otherwise, there exists a bad sequence Wj,, W;,,... with jo < j1 <---. But then
L] L] L] °
(To, 5 jO*l’Wj07Wj17°”)

is also a bad sequence, which contradicts the minimality of the sequence (7}*)o<;. This shows
our claim.
Since {W? | 1 < i} is Noetherian, there exist igp < i1 < --- with

@A(Tio \ Uio) = @A(Wio) s GA(Til \UZ1) = @A(Wil) s

Furthermore, all U;,, have roots with host-labels in term logty. Now logtg € Ty for some 3 < a,
so that

A(logtg) = > 02 (T™).

T etree® (log to)

In particular, we have U;,,U;,,... € tree®*(logtg), so that @A(Uij) = ©2(U;,) for some j < k.
We conclude that m;; = mg,. O



112 CHAPTER 5. COMPOSITIONS

5.3.5 The extension is a right-composition

Proof of Theorem 5.3.2: By Theorem 5.3.1, the function A, as defined in equation (5.11) on
page 107 exists. We have to show conditions RC1 — RCA4.

Condition RC1 holds, since A, extends A. Let us show RC3 next. Fix a Noetherian family
F in T,. First we remark that for every series f we have

tree®(f) = H tree®(t).

teterm f

For T € tree®(t), we let Ty be the tree which results from replacing the root label by d;. The
rest of both the host- and the labeling remain unchanged. We then have ©2(T*) = ¢, - ©2(T}).
We then obtain }_ e Aa(f)

doaal) = D) > > w08

fer fEF mesupp f T ctree® (m)

= > > (Ot 03

melJp supp f T*€tree®(m) fEF

= > > Fu-0%(TY).

méesupp »_ F TAEtree® (m)

This shows >, Aa(f) = 2a(3_p f) and thus RC3. Next. we show condition RC4. From
Remark 5.1.3 it follows that we are done if we can show that A,(m) = exp ay(logm) for all
m € M,. Let T* € tree®(m). For every s € succr(T®) we denote by T2 the child of r(T*) with
root s. Recall that for all s € succr(T*®) we have ©2(T?) < 1. Moreover, we have

OAT*) =D(m). — . [[ e

' |succr(T)|!
sesuccr(T®)

From the definition of A, it then follows that

Ap(m) = D(m)- SN [ e

|succ r(T)|!
T ctree®(m) sesuccr(T®)

- om- Yl Y Y et

0<n | teterm (log m) U®Etree® (t):
eAwe <1
On the other hand, we have
!
> Y erU) = > Y e2U®) | =al(logm).
teterm (log m) U® Etree® (t): teterm (log m) U®Etree® ()

eAwWw) <1
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This together with D(m) = exp Al (log m) shows
Aa(m) = exp al(log m) - e(a (logm).

From C(m) = 1 the condition RC4 now follows. Condition RC2 can be shown as in Proposition
5.1.9. The uniqueness follows from Proposition 5.1.7. a

COROLLARY 5.3.6 For every ordinal o and every transseries field T and every g € T1,, there
is a unique right-composition Ay : Ly — Tq such that x +— g.






Chapter 6

Taylor series

In the first part of the chapter, we estblish the link between derivations and right-composition.
The compatibility will be manifest in the presence of a Taylor series development.

Then we go on to show how to extend the concept to operators on transseries fields, which
will lay the groundwork for the third part, in which we consider infinite iterators of functions.

6.1 Compositions on differential fields of transseries

6.1.1 Compositions and derivations

NOTATION 6.1.1 Let o: T x U — U be a partial function for transseries fields T, U. Let us fix
the following simplifications for notations for the rest of this section. If f € T, then there is a
(partial) unitary function o(f,-) : U — U defined by g — o(f, g). Instead of o(f,-) we write fo-
or even just f. Hence we write for instance dom f instead of dom o (f,-) and f(g) instead of
o(f,g) or fog. If @ is a derivation on T, then we will write df = f’ and 8, (f) = f™.

Let (T, 0r), (U, dy) be differential fields of transseries. A partially defined function
0:TxU—T0

is a composition w.r.t. dr and dy (or just a composition, if the derivations are clear from the
context) iff

CC1. Vg € (U)L the function a, : T — U with a4(f) = f(g) is a right-composition,
CC2. for all f € T, the function

f: Ut —U

is strictly increasing,
CC3.VfeT:VgeU:if g€ domf, then g € dom f’ and
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CC4. Vf € T:Vg,e € U:ifVm € supp f : m(g) = m'(g)-¢, then g+¢ € dom f, (f™g-e")o<n
is a Noetherian family and

flo+e) =3~ fMg) <"

on

If o is a compatible composition, then for all f € T, we call the partial function ry : U — U
defined by g — f(g) a left-composition.

REMARK 6.1.2 Let T = C[[9]]. In order to show condition CCZ2, it suffices to show that for
all m € M' the function m : UL — U is strictly increasing. To see this, let 4 be the monomial
group of U and u €'. Then for all m = n in M' we have m(u) > n(u). Hence dfou > mou for
all m € supp f \ {07}. Thus for series g1 < g from UL, and for f € TZ we have

afogl = aafoam
afOQQ = anODQQ .
Then g1 < g7 implies 04, < 0g,. If 04, < 0y,, then the hypothesis implies the claim. Otherwise

Cgy < Cgy leads to Trog, < Trogs-

REMARK 6.1.3 Condition CC4 shows a taylor series development of the series f in one vari-
able. However, we will in this chapter show that this implies a multivariable Taylor series
development. In other words, we will show that we can under appropriate conditions decompose
the series € into a Noetherian family (g;);er such that

flg+e)=flg+> &)= >
I (’il,... ,in)EI*}%~f(n)g-€il---Ein.
6.1.2 Extending compatible compositions

In this section, we start discussing the possibility of extending compatible compositions using
exp-extensions. Here, we will mainly show the points which are inherited from the initial tuple
(T, U) in a direct way.

Let T = C[[9]] and U = C[[]] and

0:TxU—-U

be a composition w.r.t. oy and dy. Fix g € UL, Then ¢, : T — U with p4(f) = f(g) is a right-
composition. Theorem 4.4.2 shows that dr extends to every T, and that every right-composition
g extends uniquely to a right-composition ¢4 : T, — U,. Hence the function

0:Ty x UL — U,

(f,9) = ¢4(f)

is our candidate for a composition. Some of the conditions are satisfied by construction, so for
instance CC1. Let us state the theorem that we want to show.
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THEOREM 6.1.4 Leto: T xU — U be a composition w.r.t. Or and Oy. Then for every ordinal
number «, the function

0:TyxU — U,
(f,9) — w4(f)

18 a composition.

PRrOPOSITION 6.1.5 Let o : T x U — U be a composition and o an ordinal number. Suppose
that for all B < «, the tuple (Tg,Ug) admits a unique composition which extends (T,U). Let o
as in Theorem 6.1.4. Then CC1, CC2 and CC3 hold.

Proof: Condition CC1 follows from the construction. Next, we show CC2. Suppose that
for 8 < a, the function o : Tg x U — Ug is already a composition. We have to show that

for all m € sz the function m : 4! — U, is increasing. If o is a limit ordinal, this holds by
inductive hypothesis. Let « = 4+ 1 and m = exp f for some 0 < f € ’]I‘;. By RC4, we have

m(n) = exp(f(n)) for all n € U'. Hence for n; < ny € U!, we have to show that
fn) < f(n2).
From supp f C sm}} and CC2 for § we obtain
Va € supp f : a(ng) < a(ng).

By Remark 5.1.2, the leading term of f(ny) is the leading term of 7 o ny. Similarly, for ny we
obtain 7fon, = 7 o na. Condition CC2 for 3 now implies 0y ony; < 05 ony. From ¢y > 0 now
Trong < 7y ong follows. Hence Tfon, < Tfon, and therefore the inequality. This shows CC2 for
a.

The first part of condition CC3 follows from Theorems 4.4.2 and 5.3.2. For the rest of
condition CC3, it suffices by strong linearity to show (m(g))’ = m’(g)-¢' for monomials m € M,
and series g € UL. If o is a limit ordinal, this follows from m € Mg for some 3 < a. If @ = f+1,
then m = exp h for some h € Tg. Applying CC3, RC4 and D4 yields the following equations

(m(g))" = (exp(h(g)))’ = exphl(g) - (h(g))’
= exph(g) - 1'(g)-g' = (exph-1')(g) - ¢

/

= (exph)(g) g =w'(g)-g"
This shows CC3 for a. d

6.1.3 Showing compatibility

We now finish the proof of Theorem 6.1.4 by showing CC5. Let T, U, U and « as in the theorem.
Fix feTiqandg € ']T{{OO such that g € dom f. Furthermore, fix a Noetherian family & = (&;)er
such that

m(g)

Viel:Vmesuppf: € < — -
m’(g)
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Let Xeg € My o x N be the set

m(g)
m’(g)

Xg::{(m,m)\mEN/\WEI:Ei-< }U{(l,m)\mEN}.

We define an ordering on Xg by

m

(m,m) < (n,n) &= Viel:m(g)- " =n(g)- e

We define a set of X¢-labeled structures 3 by identifying each element from Xg¢ with the one-
point structure which is labeled with this element, i.e. for all o we let I, = {®} and [,(e) = 0.
We define the function ¥g : Xg — P(My o x N) by

Je((m,m)) := {(a,m +1)|a € suppm'}.
LEMMA 6.1.6 The function ¥g is a choice operator on Xg.

Proof: Let (m,m) € X¢ and a € suppm’. Then there is a path P in Ty max which determines
a, i.e. with tp; = cpimp;:

P = [m,tp1,...] € path(Tmmax),
n € supplogmpy for some k € N,

= Mmpo---Mpg-N.

Note that we may replace k by larger integers. By hypothesis, for all ¢ € I the inequality
a(g) - i <m(g) holds. Hence for all i € I we have

1
(mpy1---mpg-njog < —. (6.1)
1

Let b € suppa’. Then there is a path Q which determines b, i.e.

Q = [0,501,--.] € path(Tgmax),
n € supp logmg., for some m € N,
b = mgo---mgu,-n.

In particular, sg1 € term loga, i.e. sg1 = (loga)mm for some m. Hence there is an integer
n € N such that sg 1 is a term in logmp,. But then

Q= [tP0;--- s tPn:5Q.1,5Q,2,- -

is an a path in Ty max. Thus Q determines an element of suppm’. By varying k if necessary, we
may assume that k& = n and that inequality (6.1) holds for this monomial as well. Therefore for
all ¢ € I we have

1 .
; >_ (mP’lmP7an’1mQ7mn)og
(2
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Since 1<xtp1---tpy (with equality if and only if n = 0) it follows from the fact that right-
compositions are strictly increasing that
1 <mQ,omQ,1'“mQ,m'ﬁ> b(g9)

— v (Mo Mom-f)og= og=29)
£ ( Q,1 Qm ) g mQ,O g a(g)

Hence d'(g) - £; < a(g) and thus (a,m + 1) € X¢. This shows the lemma. O

LEMMA 6.1.7 The choice operator V¢ is strictly extensive and Noetherian.
Proof: Let n € suppm’, then

,  m
nxm < —
&

for all ¢ € I implies n - 5?”’1 <m-e" for all i € I. Hence (m,m) < (n,m + 1), thus the operator
is strictly extensive.
Let Y C X¢ be a Noetherian set. We first remark that

Yy ={oceX|iml, CY}={(mm)e Xeg|(mm)eY} =Y,
hence that
A={(o,z)]c €y Az € V¢(o)} = {((m,m),(n,m +1))| (m,m) €Y An € suppm'}.
Suppose that A is not Noetherian in the induced ordering. Let

((mg,m;), (ng, m; + 1))ogi

m;+1

be a <-increasing sequence. Then for all i € I the sequence (n; - ¢; )o<i is <-increasing. But

this contradicts the fact that Xy is Noetherian. O

The pair (3,9¢) now gives rise to a pair (X*,9), and by van der Hoeven’s Theorem, the
function ﬁzf is a strictly extensive, Noetherian choice operator. We will use this fact in the
following.

Let ¢; = ¢;0.,(1 + 6;), then (J; §; is well-ordered and purely infinitesimal. Thus (|J; 9;)* is
well-ordered. We have to show that

(Ff™g - &)ogn,icrm

is Noetherian. Since

U U suwpf™g-e | | suwp ™y 0., -6 < | J | supp f™g-oc, - ()",

o<n ieIn 0<n ieln o<n ieln I

we only have to show that

U U supp f™g -2,

0<n ieln
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is well-ordered.

Recall that ¥ = Ty[[T5]]---. Let us determine the sets T3,75,... in this application of
van der Hoeven’s Theorem. We have identified Ty with Xg by looking at Xg as the set of
one-point structures labeled with the elements from X¢. Elements from 77 are determined by
some o € ¥ and structures 7; € Tp for all ¢ € I,. But since I, = {1}, the structure o is a one-
point structure and elements 7; from T} are of the form (m,m)[(n,n)]. Moreover, the condition
ls(1) € 9*(m1) = ¥(0) = J¢(m, m) implies that

71 = (my,m + 1)[(m, m)],

where m; € suppm’. Inductively, we see that every element 7, € T} is a one-point structure of
the form

T = (mk,m—i—kz)[(mk,l,m—i—k; — 1)[ (ml,m—i— 1)[(mo,m)]] ]

where m;; € supp m;- for all j < k. For the series f, the set Y = supp f x {0} is Noetherian in
X¢, hence (X¢)y is Noetherian. But then so is the set

U U supp f™g -2,

0<n el

This shows the first part of CCS5.

Let m € My , and assume that CC5 holds for all series from Ty g with 8 < «. Then in
particular, the equation holds for logm. We show that this fact implies the equation for m and
that from this the condition follows.

We have to show

m(g+ ) ;&)= ZO<n n,m g > icIn Ei-

This is equivalent to

(n)
log(m(g + 32, &) =log > o, %m(n)g Diern € = logm(g) +1 (Zlgn Al nl:l(g)g Dierm 51’) :
Since logm € Ty g, we obtain from RC4 and the inductive hypothesis for h = logm

log(m(g + 32y 1) = hig + Xy €0) = Yocn wih™g - X e

On the other hand, from the definition of [(X) we obtain

1 mg —1)i+1 1 m®
S 2] = T a2

|
1<n 1<y J 1<n - m(g) In
1 DL (—1)it! n! myg
- Y aYa X Y gy
P S A S L A()
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Hence, we are done, if we can show

n 2-1—1

n! mBg
(log m g — - .
|
i=1 LET*(i,n) Lt m{g)’
for all n > 1. This clearly holds for n = 1. The general case can be shown inductively using the
equation

/ i .
mHg)" mg mithg i mPg w(g)
m(g)? m(g)" = mihlg m(g)t m(g

Now by strong linearity we have

flg+Yre) = D famlg+;e)

meUﬁ_a

D SIS DE-C LI S

meUﬁ o O<n

= Z Z Jin -m(" ) 2o i

on n! meNy o
= Z f g > pn Ei-
0<n

This shows CC5 and finishes the proof of Theorem 6.1.4.

6.2 Taylor families of operators

6.2.1 Definition of Taylor families

Let F be a set of partially defined functions ® : T — T, where T = C[[9]] is a transseries field.
Then F = (F,) is a Taylor family iff

Tfl. V® € F: ®' € F and dom ®’' O dom P,

Tf2. Vf,ee T:Vo e F: if f, f + e € dom® and if

(i' N 5n>
n! o<n

1
<I>(f+5)zzﬁ~<1>()
on

is a Noetherian family, then

REMARK 6.2.1 First let us remark that we use again the convention ® = &) and (&) =
®(+1) in the above definition. The usage of the derivation notation is justified since the function
"+ F — F will in applications always be a derivation.
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The second point to notice concerns condition T£2. In fact, the condition states that ®(f+¢)
is actually independent from the decomposition into f and e. That is, if we find g,d with
f 4+ e =g+ such that the hypotheses of T2 hold for g and ¢ in place of f and &, then

1 1
Z LM = — .pmg.
Zn! o) f en_zn! dMg. 5.
on on
If a couple (f,¢), satisfies the hypotheses of condition Tf2, then we call
1. ,
— Zp@ . o
Ra(f.e) = 2; PR
1<i

the restricted Taylor series of ® in (f,e). The series 7o (f,€) := @f + Ra(f, <) is called the
Taylor series of ® in (f,e).

EXAMPLE 6.2.2 Let a > 0 be an ordinal number. Fix a transseries field T. Then T C T,. For
a series ®(z) € L, we let

Fo = {0, 8" ...}

with the derivation in L, which exists by Theorem 4.4.2. Recall that then for all f € TL we
have f € dom ®™. This is by Theorem 5.3.2. In other words, the set Fp satisfies Tf1. Theorem
6.1.4 shows that Tf2 holds as well.

6.2.2 Saturated Taylor families

A Taylor family F is said to be saturated iff for all ® € F and all f,e € T such that f € dom ®

and such that
1
Il 3 () I
CRERY
on

is a Noetherian family, we have f 4+ & € dom ®. Note that the family F¢ from Example 6.2.2 is
saturated.

Our first aim will be to show that every Taylor family can be extended to a saturated family.
This of course means that the domains of the functions ® € F will be extended. The proof of
this property requires some preliminary steps.

Let ® € F and f,e € T be such that (%(I)(”) f-€")ogn is a Noetherian family. Then Corollary
1.5.8 implies that for every é < € in T, the sequence

(i' FOrs 5n>
n! o<n

is a Noetherian family.
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LEMMA 6.2.3 Let F be a Taylor family and ® € F. Suppose that f € T and that (g;)icr s a
Noetherian family in T such that f and [+ €i are in the domain of ®. Furthermore, suppose
that for all v € I the sequence ( () f. eMogn 5 a Noetherian family. Then

1
(L0 )
n (i1, sin)ET*

1
f+TE) = D e

(i1,ee0 in ) ET*

18 a Noetherian family and

Proof: Let j € I be such that €; = > ;&;. Then we let g = ) ;¢; and apply the above
observation to (2 - ® ) f. €7 )ogn and g. Then the sequence (5 ~®M f . g")o<p is a Noetherian
family. Then by Remark 1. 5 4, the set

{(n,mny---n,) | m e supp®™f A Vi <n:n; €supp Z‘EZ}
I

is Noetherian for the ordering (i,a) > (j,b) < a > b. Since
U {n} xsupp® ™ f g gy,
neN

is contained in this set, we obtain the first part of the lemma.
As for the second assertion, we remark that by generalized associativity for Noetherian
families, we have

1 n 1 n
(i1, in)ET* 0<n (4150 yin)ET*
Since for Noetherian families F, G we have > F G = (> F)(>_ G), we obtain
Z l.(b(n)f.g....g- _Zi.@(n ZE O(f +3,6).
n! " o n! ! =
(31 yeee yin ) ET* on i€l

This finishes the proof. O

PROPOSITION 6.2.4 Every Taylor family (F, ) can be extended to a (minimal) saturated Taylor
family Fror, called the horizontal closure of F.

Proof: For ® € F we let

Xo = {(f,e) | fedomz® A (D™ f.c")g, isa Noetherian family},
Yo = {f+e]|(f,e) € Xo} O domPr.
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if (f,e) € Xg, then (f,e) € X¢/. Hence Yy C Ygr. We extend every & € F to Yy by
1
= Bl N R
B(f+e)i= Y - Mf -

o<n

Let us show that this definition indeed only depends on the sum f 4 & and not on the choice of
(f,e) € Xo. Let (f,e),(g,0) € Xo with f+e =g+ 9. We have 6 < ¢ or ¢ < . We will assume
that § < ¢; the othercase is treated similarly.

The couple (¢ — 0, 9) is a Noetherian family. From € — 0 < ¢ and Lemma 1.5.8 it follows that
the sequence (®(M f - (¢ — §)")o<y is a Noetherian family. Then so is (@) f - (e — §)")g<, for
all 0 < 4. Since f+e—6 =g € dom® in F, it follows from Tf2 for F that

7 1 n+i n
Q()g:(;a-@(Jr)f-(e—é). (6.2)
<n

Moreover, Lemma 6.2.3 implies that the sequence (== -®(m+") f (€—=0)™-0")o<n,m is Noetherian.

nlml’
By generalized associativity for Noetherian families

1 1 /s 1
E:_ (m+n) £ . _E:_. ().E: 55— _E:_. (s) £ .
n!m! A s! v n=0 (n) SR s! LA

on 0<s 0<s
(6.3)
By generalized associativity and (6.2) we have
1 1 1 1
Zm@(m%)f.(pr(s)m.gn:zﬁ.Z ﬁ.q>(m+n)f.(5+5)m.5n:ZE.@(n)g.(sn_
ogn T ogn  0<m o<n
(6.4)

Equations (6.3) and (6.4) show that ®(f 4 ¢) is well-defined in F. We have to show Tfl and
Tf2. Condition Tf1 follows from Yg C Yg. Now, let f € dom®z =Yg and € € T such that
1
(E M LMo,

is a Noetherian family. We first claim that f +¢ € Yp. Let h,p € T with h € dom @£ such that

1
— .pmyp . m

and f = h+ p. Then for all n the family (=; - B R o), is Noetherian, and we have

1
M f = Z — emtn)p . pm,
o<m

By the above, this definition is correct. Then (m!ln! S pntm)p p" - €™)ogm,n is a Noetherian
family. But then so is by generalized associativity the family
1
(

n!

1 m 1 n n
En(;%.q)(n-l—m)h'p )ognz(a"l’( )f'E)ogn-
<m
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This shows that f+¢ € Yp. But then from the above it follows that ®(f +¢) = ®(g+ 4) for all
(9,0) € Xo with g + 6 = f + . This shows Tf2. O

REMARK 6.2.5 Also, it should be noticed that Lemma 6.2.3 allows a Taylor development in
the widest possible way. In fact, if f + & can be developed into the series Zogn % L) fLgn,
then we can actually take the Noetherian family (¢;);c; := terme. In particular, we are not
confined to finite decompositions of .

6.3 Taylor series expansions of iterators

6.3.1 Stirling polynomials

We are interested in constructing transseries fields admitting super-logarithmic functions, that
is, functions L such that the functional equation Lf = Llog f + 1 is satisfied whenever both
sides are defined. More generally, we are interested in solving functional equations of the form

Of = dof + 1. (6.5)

REMARK 6.3.1 We use Taylor families for constructing such functions. Let F be a Taylor
family and @, ® € F such that

Vfedome: @f cdom® = [fecdom®d A Of = @f + 1.

The right-hand side will be used in order to extend ® to all series f such that @f € dom ®.
Similarly, if f € dom @is such that f € dom ®, then we extend ® to @f by letting ®@f = & f —1.
However, we will have to extend the domains of ®,®”, ... as well if f resp. @f is not in their
domains yet.

On the other hand, the function ’ will in all our applications be a derivation on some

transseries field. One effect is that equation (6.5) determines already ®'f, ®”f,.... Indeed,
using the chain rule for derivations, we obtain
'f='of ¢f. (6.6)
Similarly, applying a derivation and the chain rule again, equation (6.6) leads to
o"f = dof -(¢f)+Pof - ¢, (6.7)
O"f = "of (¢f)+0"gf -3¢ f - f+Pof - ¢"f, (6.8)
(6.9)

In other terms, we have a dependence between ® f on the one side, and the terms <I’(i)(pf and
@D f (where i < n) on the other side. We formalize this connection in the following.

NOTATION 6.3.2 We denote by 1 and 0 the tuples (1,... ,1) and (0,... ,0) respectively. Recall
that addition and subtraction between tuples is pointwise. If k € N”, then X*¥ = X fl e Xﬁ”.
Recall that for integers i,n we denote the set {k € (N*)i|ky +---+k; =n} by T*(i,n). To keep
the subscripts of some sums short, we sometimes will write ) . (i,n) Y instead of Y 1 e (in) YL-
Since in general the summation can only be over one index, this should not lead to any confusion.
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Let X1, Xs,... be indeterminates. The formal derivation with respect to X; will be denoted
by 8iXi’ ie. aiXiX jis 1if 7 = j, and 0 otherwise. We construct polynomials S, ; in n indetermi-
nates X1,...,X, with coefficients in N for all n,7 € N as follows. If ¢ = 0 or ¢ > n, then we let
Sp,i:=0. For n =1 we let

5171[X1] = Xl.

For all k € N we denote the coefficient of X* in the series Sni by ck . ie. forall i,n € N we

have

TL’L’

SnilX] =D o XF.
keNm

Then for all i,n € N we recursively define .S, ; by
0Sn i
Snt1i = Snji—1- X1 +Z =

One shows recursively that all S, ; are polynomials. They generalize Stirling numbers. For
that reason, we call them Stirling polynomials.

EXAMPLE 6.3.3 One verifies that S11 = Xy, So2 = X12 and S33 = Xf’. Also we have Sy 1 =
XQ, 5371 = X3 and 5372 = 3X1X2.
Using Stirling polynomials, we can express equations (6.6), (6.6) and (6.8) by

f = Pof Sial@fl,

"f = V'of - S [@f @ fl+ "Qf - Sap[@f. ¢ f],

o"f = dof S3idf, @' f, "1+ "of - Sza(d f, @ f, G f] + 2" of - Sz f, ' f, ¢ f]
LEMMA 6.3.4 For all n,i € N, the series Sy ;[X] are polynomials in n indeterminates over N
such that for allm > 1

(1) Spa1[X] =X, and Sy ,[X] = X7,

(2) forall1 <i< n: z'fcﬁﬂ-#o, then Zj'kj =n andej =1,
j=1 =1
(8) foralll <i<n
n! XL
Swil¥I=% 2.
LeT*(i,n)

Proof: The properties (1) and (2) follow easily from the recursive definition. Let us show (3)
in detail. We first remark that for all n > 1 we have T*(1,n) = {n} and T*(n,n) = {1 € N"},
hence that X, = S, 1 and X" = S,,,. Suppose that (3) holds for all integers < n. Let
1 <i < n+1. From the recursive condition one infers that

X
St = X1 Snic1+ Y ij Xk ;(H
keNn j=1 J
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From n+ 1= Ly + --- 4+ L; we obtain

n+ 1)! X n! n—l—l LX
) z#gz(—:zz L

T+ (i,n+1) T*(i,n+1) J=1T*(i,n+1)

From the hypothesis about S, ;1 and

: LiXp _ X

> > T =Xei > gp

§=1T*(i,n+1): T*(i—1,n)
Li=1

we then infer

+ 1)! X L:X
DS N sty Y B

T (i,n+1) J=1T*(i,n+1):
L;j>1

One verifies that

L; X Xr (X X,
> oy By (R K
L! - L! XL1 XL~
J=1T*(i,n41): T*(in) ‘
Lj>1
Fix L € T*(i,n). For 1 < j < n we let k' = [{m < i|Ly, = j}|. Then X; = X*&) where
k(L) = (k¥,... ,kL). From the hypothesis about S,,; we obtain

Z —i!L!XL = X" and thus ¢, = Z ET7k
T*(i,n) keNn T*(i,n):
k(L)=Fk

This implies

7

FXL XL i+1 _ ZZ k Xk ]+1'

T*(iyn) j=1 Lj keNn j=1
Then we obtain
n+1)! X, Xt
D DI R REED DB DT (o
’ T*(in+1) keNn j=1 X
This finishes the proof. O

REMARK 6.3.5 An alternative route to show (3) of Lemma 6.3.4 uses the fact that for every
k € N", the coefficient sz,i equals the number of possibilities to partition a set of n points into
k1 sets of size 1, ko sets of size 2 and so forth. A similar inductive argument can then be used.
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6.3.2 Vertical extensions of Taylor families

Let F be a Taylor family and @, ® € F. Suppose that F is horizontally closed for @. Then & is
an infinite iterator of @ if for all f € dom ® we have f € dom @ and @f € dom ® and

df = dof +1 (6.10)
N

oM = N oUef)- Snyl@f, ..., o™ 1. (6.11)
j=1

A Taylor family is vertically closed for the infinite iterator ® of @ € F iff for all f € dom @ we
have f € dom® < @f € dom ®. The family F is vertically closed iff it is vertically closed for
all infinite iterators ® € F of operators @ € F.

PROPOSITION 6.3.6 If @, ® € F and @ is an infinite iterator of @, then the same holds in Fpoy.

Proof: Denote the extension of ® to Fior by ®. Let f € dom®. We have to show three
points, namely that f € dom @, that @f € dom ® and that the equations (6.10) and (6.11) hold.

In order to show that f € dom ®, let f = h+4 such that h € dom @, such that ((I)(N)h'(sN)ogN
is a Noetherian family and such that

T 1 N N
Of = quﬂ - &V,
o0<N

From h € dom ® it follows that h € dom @, @,.... We claim that ((p(N)h~5N)O<N is a Noetherian
family. The series ®(@h) - ¢V)h - 6V is a component of the N-th element of the sequence
(@M h - 6M)o<n. To see this recall that

N
oMh =" ®U)(gh) - Sn;[@h, ..., Nh].

J=1

Hence the sequence (®'(@h) - ¢V)h - 5())<N is Noetherian. But then so is (¢/™h - (5())<N. Thus
h + ¢ € dom @, which shows our claim.

In order to show that @f € dom ®, we let h,d as above. Then @f = @h + p, where p =
@h - %(p”h .62+ ... From h € dom®, it follows that @ € dom®,®’,.... We claim that

(®U)@h - pP)og; is a Noetherian family. Since (2N - §V)o<y is a Noetherian family, so is

N
(O 2(gh) - S (@, @] 5N )oew
j=1

For every 7 > 1 we let

Fy = (®Y(@h) - Sw j@h, ... , ¢ n] - o")jcn
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Then every F} is a Noetherian family and we have 3" F; = ®U)(@h) - p/. The claim follows from
the fact that (D F})1<; is Noetherian. On the other hand, we have

SRS IR SERTIING

1<] 1<]
From ®(@h) = ®h — 1 it then follows that ®(@f) = ®f — 1, from which equation (6.10) follows.
The equations (6.11) follow from a similar argument. O

A Taylor family is not necessarily vertically closed. For f € dom@ one can have f ¢
dom® A @f € dom ®. We add @f resp. f to the domains of &, &', " ... via (6.10) and (6.11).
Since @f € dom ®, all ®V) f are defined in T, since all terms on the right-hand side of (6.10)
and (6.11) exist. We extend F by all f € dom @ with one of the above properties. Let

Y = {fedom@| f¢dom® A @f € dom D},

and we extend F to F by adding X and Y to dom ®, ', ®",... using the equations (6.10) and
(6.11). We have to show that F is again a Taylor family.

LEMMA 6.3.7 Suppose F = Fnor- Then F is a Taylor family, and ® is an infinite iterator of
¢ F.
Proof: Let f € dom@. Since for all N > 0 we have
dom z&™) = dom @™ U Y,

the condition Tfl holds in F. Next, let J € dom z®. If f € dom £®, then Tf2 follows from
the same condition in F. We may thus suppose that f € X or f € Y. Let € € T be such that
J 4 ¢ € dom z® and such that
(q)(n)f € ogn
is a Noetherian family. If f € X, then f € dom #®,®’,.... We are done by Tf2, since F = Fjor.
If f €Y, then it follows from the definition of ®(™ f that

Z%.q)(n)f.gn _ q)f+z L f .

o<n 1<n

1<n

From Lemma 6.3.4 it then follows that

Z%-@(”)f-sn 1+<I>(pf+z Z@@ @)= > %(p(L)f

o<n 1<n : LeT*(i,n)
1. 1
L+ of + =2V (ef) - | Y 50"
1< 1<k

= L+®(gf +) %(p(k')f ek,

1<k
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This shows Tf2 for F and ®(f 4 ¢) = ®@(f 4+ €) + 1. The fact that ® is an infinite iterator of @
on F as well follows with the same argument. O

PROPOSITION 6.3.8 Every Taylor family (F,') can be extended to a (minimal) vertically closed
Taylor family Fer-

Proof: If F is not vertically closed, then extend one of the domains of ¢ as in Lemma 6.3.7.
The result is a Taylor family, and we can apply Proposition 6.3.8. We thus obtain a saturated
Taylor family, where the domains of the functions ®,®’,... contain all series which could be
obtained by applying the functional equations.

Since T remains unchanged throughout the extension process, this process will lead to a
horizontally and vertically closed Taylor family. O

REMARK 6.3.9 We call Fy; from Prposition 6.2.4 the vertical closure. Alternating horizon-
tal and vertical closures, Zorn’s lemma implies the existence of infinite iterator functions which
are both horizontally and vertically closed.

6.3.3 Application to logarithmic functions

Let us look at the described closures in an example. Let T 2 L be a transseries field containing
x and at least a partially defined infinite iterator ® of log.
We first remark that z,logz,log, x, ... are all elements of T. We define first ®', " .. ..

REMARK 6.3.10 Since @ is the infinite iterator of log, we have

@' loggr =---.

1
'z =— P logx =
x x logx

We will thus let

1

Oy = .
x logx logy - -

Then ®'z € Ley,. Since we have a derivation on Ley,, we obtain the functions ®”, 0" ...
recursively by applying equation (6.11). All of them are again elements of Lex,. We have in this
case @) . L — Lexp for all n > 1.

Note that ({®',®”,...},0L) is a Taylor family. We extend the field I by monomials Lz,
Lox, Lsx,... where we demand

Lxr = &z
Lox = ®OLx
L3J} = (I)LQ.I‘
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Hence from now on, we will denote ® by L, too. Then the family ({L,L’,L”,...},dL) is again a
Taylor family. Now assume that for some ¢, the monomial log; x is in the domain of L. If i > 0
and log,_; = is not in the domain of L, then we can apply the vertical extension step and let

Llog;, |z := Llog, x + 1.

This way we can extend L to all monomials z,...,log;z. If on the other hand 7 > ¢ and
log; ¢ dom L, then we have in the vertical closure

Llog;x = Llog;z — (j —i) = Lz — j.

The action of the horizontal closure is similar. Suppose that ¢ is a series such that (Lz, L'z -
e, L"z €% ...) is a Noetherian family. Then we have in the horizontal closure

1 1
L(l‘+€) :L.I'—FF'L/J}'E—FE'LH.T'EZ‘F'“ .
We can thus define L for certain x + . The fact that the horizontal closure is saturated tells us
now that if we can splitt € into a sum € = ¢1+¢4 such that (L(n)x'ETf)ogn and (L™ (x+e1)-€5")ogm
are Noetherian families, then

1
Lz+e) =) WLW(:C +e1) - €
o<m

In other words, we do not obtain any incoherences from different possibilities of developing the
series L(z + ¢). Similarly, the fact that the vertical closure is a Taylor family again allows us to
extend L to series like 3z + % Indeed, we have

1 1
LBx+ =) = Llog(3z+=)+1
T T
1
= L(logz + log(3 + ﬁ))

1 1
= g —lL(”) logz -log"(3 + —).
n! x
on

What is more, we might have applied log not just once, but as many times as we like to the
series 3x + % and then have developed the resulting series. That would have yielded the same
result.

6.4 Inverse functions

We will finish with some remarks on the inverse function of @, if it exists. In view of the appli-
cations we have in mind for the pair (¢, ®), namely the pair (log, L), this provides information
concerning the construction of extensions of a given field. In particular, we will use the following
facts in the construction of super-exponential functions.
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As before, we will work under some assumptions about the functions @ and ® as well as
about T. Let @ be strictly monotone. This ensures that @ admits an inverse function on its
image range @. We remark that this assumption holds for the example @ = log.

Also, we assume that @ is strictly monotone wherever it is defined. Following the notations for
iterations of functions, the inverse functions are denoted by @_; and ®_; respectively. However,
we also use Y and V. In other words, we have oy = Po@=id and Po V¥ = Vo d = id. Recall
that for all f € T with f € dom@ and f,@f € dom ® we have ®Qf = &f — 1. It follows that @
and VU satisfy a functional equation.

LEMMA 6.4.1 Let T be atransseries field and W and ¥ the inverse operators of @ and ® respec-
tively. Let f € T be such that f,f+1 € domW¥ and Vf € domWy. Then U(f+1)=YV¥f.

Proof: Let y € T be such that f+1 = ®y. Then U(f+1) =y. From &y —1 = ®@y = f one
obtains ¥ f = @y and therefore y = YU f. O

As for ®, we can now introduce operators U, Once we have fixed the operator ¥’, the
choice of the operator () (i > 2) can be made in the same way as it was done for ®. Since the
series are thought to stand for derivatives, we use the equation 1 = ®'W¥ - ¥’ to let

1
Ufi=———
= )
Note that is f € dom ¥, then ¥ f € dom ®. Since ® € F is an operator from a Taylor family,
this implies U f € dom ™ for all n > 0. In particular, this means that the right-hand side of

the above definition of W’ f is defined, and we have dom ¥ = dom ¥’.

ExXAMPLE 6.4.2 Let E be a super-exponential function on T, i.e. E satisfies the functional
equation exp Ef = E(f +1). Then E'f = Ef -E(f —1)-E(f —2)---.

Suppose that we have already defined the operators U, ..., U(®)  Recall that for all j > 2
the polynomials S;y1;[X] do not contain the indeterminate X;y;. This makes the following
definition possible: if f € dom ¥, then

WD f o= W N OO (T f) - Sipr (W f, ..., WD ).
j=2

Again, we find dom ¥*! = dom W. Since all S; ; are polynomials, all series ¥ f are elements
of T. As for @, it is now possible to define the restricted Taylor series.

LEMMA 6.4.3 ({U, V' ... })) is a Taylor family.

Proof: For the condition Tf1 it suffices to remark that by the construction we have dom ¥ =
dom ¥U™. We have thus to show Tf2. The proof of this condition is similar to the proof of
Lemma 6.3.7 by inserting the definitions of (™ f and invoking Lemma 6.3.4. O

The functional equation YV f = W(f+1) is again a potential source of incoherences. However,
as the next lemma shows, the conditions imposed on both ® and ¥ prevent contradictions.
Moreover, we show that W is also the inverse operator in the horizontal closure of F.
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LEMMA 6.4.4 Let f, e be series in T such that f, f+1 € dom ¥ and such that both (\P(”)f-sn)ogn
and (W™ (f +1) - €™)ogn are Noetherian families. Suppose that

Z S f e e dome.
n!
Then in the horizontal closure of F we have ®V = id and Y¥(f +¢) =V (f+1+¢).

Proof: We first claim that for all ¢ > 2

0=> dW(wf) S;;[Wf,... v

j=1
From the definition of W'f we get (¥ f)~1. W f = &'(Uf) . ¥'f. From the definition of W f
it now follows
i+1

—®'(Wf) W f =Y @D(Wf) Si[W S, WD),

=2

from which the claim follows. From the definition of ® we obtain

(WS + Ra(f,0) =@0f+ 3 zowf)- [ 3 Lwp k)

1< 1<k
hence
n (K)
N Y s
Uf+Ro(f) =F+3 3D 5 D~
1<n i=1 KeT*(i,n)
We apply Lemma 6.3.4 and obtain
(U f + Ry(f,e) f+Z Z@ feSnal¥'f,. .. W],
1<n ! i=1

From ®'(¥f) - ®'f = 1 and the above claim it now follows that ®(Vf + Ry(f,e)) = f + e
Since Y is the inverse operator of @, we have for all series h € dom ) with Yh € dom @ that
OYh =1+ Ph. Let h = ¥(f + €), then the second assertion follows from the first one. 0






Chapter 7

Transseries fields of positive strength

7.1 Two aims of extending fields

Recall that one of our objectives is to construct fields IC of generalized power series such that
there are functions E and L with

e FoL=LoFE =id,

e KX CdomEFE,domL,
such that for all f € KX the functional equations

expEf = E(f+1)
Llogf = Lf-—1.

hold. More generally, let us call E = e, and L =1, and let us suppose that this construction
has been carried out already. That means we have solved the case n = 0 of the following
generalization of the above: construct a field IC of generalized power series such that there are
functions eyn, e n+1,lyn and 1 nt1 with

® enoln =€ nr1 0l np =id,

e K1 Cdomeyn,domegnt1,domlyn, doml ni1,

such that for all f € KX the functional equations

e,n O ewn+1f = ewn+l(f + 1) (7.1)
lwn+1 (¢} lwnf - lwn+1f — 1

hold.

Both topics are closely related. We will use the tools developed in Chapter 6 to tackle
them. As we will see, many properties of the fields have their origin in the functional equations
(7.1) and (7.2). We have therefore decided not to distinguish between the construction of the
structures (IC, E, L) and (K, e, n,l,n). Many of the necessary lemmas and properties are proved
in the same way for the initial and general case (although sometimes the generalized version
requires more care; but one can always simplify the generalized proof to the case (exp, F)).

135
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Before we go into the details, let us briefly sketch the structure of this chapter.

e In the case (exp, E), all properties and proofs can be given using these functions and their
inverse functions (log, L). Since we want to treat the general case (exp,... ,eyn), this becomes
difficult, if one wants to keep the proofs readable. We therefore introduce a new notation. This
will be done in Section 7.2.

e Then we revise some properties of transseries fields and show that they provide the initial
conditions for a notion of transseries fields of higher strength. Indeed, usual transseries fields
will then be of strength 0. The definition of strength n + 1 requires the definition of strength
n. We show that the process of increasing the strength has a starting point. We will apply the
new notations to the results of Chapter 6. Section 7.3 will cover this topic.

e Section 7.4 will provide general properties of transseries fields of strength n. Most of the
properties in this section will be needed to extend a given field of strength n to a larger field of
strength n.

e More properties of transseries fields of positive strength are shown in Section 7.5. This
time, however, the focus of the properties is to provide tools that will help to go from strength n
to strength n+41. Centrepiece of this section is a partial composition result similar to Proposition
5.1.5.

e Finally, we show in Section 7.6 the existence of fields of arbitrary positive strength, and we
give a simple but useful application of the properties of transseries fields shown in this chapter.

7.2 Ordinal notations

We start with some recalls about ordinal numbers. Let in what follows «, 3,7,... be ordinal
numbers. We use A to denote limit ordinals. The total ordering on the class of ordinal numbers
is defined by o < 3 iff @ € 8. The smallest limit ordinal is denoted by w. Let + be the addition
on the ordinals which is defined by

a+0 = aqa,
a+(B+1) = (a+p)+1,
at+ A = Ua—i—ﬁ.
B<A

Similarly, one defines a multiplication - on the class of ordinal numbers:

a1 = q,
a-(B+1) = a-f+a,
a-A = Ua-ﬁ.
B<A

The addition and multiplication are not commutative. Standard examples are 1 + w < w + 1
and 2-w < w-2. Let w* = Jyw". A frequently used result about countable ordinals < w* is
Cantor’s theorem: let a < w®, then there are n € N and ay, ... ,a, € N with a, # 0 and

a=w" ap+- - +w-a+ ap.
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We remark that if o, 6 < w® are such that
a = W apt 0" an (n>m) and
B = W bp+--Fw-bp+by (by=0)
then
at+B=w"an+- W™ (g + b)) + W™ by + -+ Do
Recall that our aim is to construct functions log, L, L,... and exp, E,&, ... such that the func-
tional equations
Llogz = Lx —1 expEx = E(x + 1)
LLr=Lx—1 E€x=E(x+1)

hold. Let @, @, ¥ and ® be functions with po@ = Vo ® = id and ®@r = &z — 1, then we let
W, := ¥ and @, = ®. Hence with 1 = w° we obtain

log =1; exp = e
L=1, E=e,
L=1, E=e,
Thus for all n > 0 we have
].wn+1 o lwnl‘ = lwn+l$ —1
eun O €yn1T = eynt1(x+1).

For countable ordinals a = w™ - a, + - -+ + a¢ and for functions @ we then have

Q,xr = (pa() o (pw-a1 ©---0 (pw"-anx'

For instance the term logg L3L7x then can be written as 1,2.74,.3157. Also, from the above
remark we obtain that lgoloz = lyypz, if a=w" - a, + - +w™ - a; and 8 < wmt,

7.3 Fields of positive strength

In Chapter 2, we have introduced transseries fields. We will now extend this concept to fields of
generalized power series with functions e, , e, 2 and so forth. We will speak of them as transseries
fields of strength n. In this sense, all transseries fields will be of strength 0; and our aim is to
introduce transseries fields of strength n > 0.

WARNING 7.3.1 The definition of positive strength of T will require that T has strength n — 1.
Hence the notion of transseries fields will serve as starting point from which we will define
strength 1. Then — using properties of transseries fields of strength 1 — we will define transseries
fields of strength 2 and so on. The reader should always be aware of this inductive method and
of the fact that the case n = 0 plays a special role.
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7.3.1 Exponential fields of positive strength

As in the case of transseries fields (of strength 0), we start with a general definition of fields
admitting functions e,» and l,». Let C be a totally ordered field. We say that C' is an exponen-
tial field of strength 0 iff it is an exponential field. For n > 0, the field C is an exponential
field of strength n iff there are functions exp, ... ,e,n such that

E1. C is an exponential field of strength n — 1 for the functions exp, ... ,e n-1,
E2. d¢, € C: Ve, <z <y
(i) « € domegyn,
(ii) x4+ 1 < eynz and e nx < eyny,
(iii) eynx € domeyn-1 and e n—1 0 enx = eyn(z + 1).

REMARK 7.3.2 One example of an exponential field of positive strength are the real numbers.
In the interest of this chapter, we will not dwell on explicitely describing such examples. This
will be done in Appendix A. There we also show some analytical properties of exponential
functions of positive strength.

7.3.2 Dependencies during the construction

Recall from Chapter 2 that transseries fields T admit by Proposition 5.1.5 a partial composition
with series from C[[log”" z]]. In other words, we have a partial composition result for the strength
0 which allows for all f € TL to define series L'f, L'f, ... in Texp- In order to define transseries
fields of strength n > 0, we need a similar partial composition result for n — 1.

The case of strength 0 provides again the initial step for an inductive argument. Indeed,
we will assume that we already have an appropriate partial composition result for strength
n —1 > 0. This will allow to define series lij)L f for all f € T and all i > 1 and, eventually,
the definition of transseries fields of strength n. We then have to show that transseries fields of
strength n admit a partial composition result. This will be done in Section 7.5. Hence, we have
the following dependencies:

Definition of trans- Definition: fields Definition: fields
series fields T T of strength 1 T of strength n
Partial composition Partial composition Partial composition
result of strength 0 result of strength 1 result of strength n
(Proposition 5.1.5) ((PC)1) ((PC)n )

We first define the partial composition result for strength n > 0 such that the case n = 0
coincides with Proposition 5.1.5. Then we will assume that for some n > 0 the notion of
transseries fields of strength n — 1 has already been defined and that the partial composition
result holds for such fields. We then give the definition for transseries fields of strength n.



7.3. FIELDS OF POSITIVE STRENGTH 139

7.3.3 Logarithmic iterators

In the construction of functions l,»~ with positive n we will apply the results from Chapter 6.
In particular, we are interested in our definitions to be coherent. Also, Chapter 6 provides
information about the derivatives. This section will be concerned with these questions.

In the case n = 0, we have already seen how to define a field of purely logarithmic transseries.
This field, L = C[[log?" z]], has properties which made it possible to define a composition with
transseries fields. More precisely, it was possible to define a derivation on L and to define a
partial composition for transseries fields. As a result we obtained a compatible composition,
which could be extended by taking exp-extensions.

The general case n > 0 will need similar properties. We define for all n > 0 sets B,,. Let
- VAN
By :=log™ z, i.e.

%oz{Hlog?ix\nEw A a:n—>Z}.

<n

From Section 2.3 it follows that By admits an ordered group structure. Let for n € N

B, = logax:ngﬁx|a€wn+1 Na:a—17
[A<a

We introduce on %B,, a multiplicative group structure by log® z - log® z = log®*?z. An ordering
on B, is defined by 1 < log®z < 0 < a. Let B, = C[[%B,]]. Note that in the case n = 0, this
is a transseries field. We will later see, that also for n > 0, the field B,, is a transseries field.
Moreover, let us assume that we have a derivation @ on B,,. This assumption, too, is true for
n = 0.

Let T be such that there are functions log, ... ,1,» on TZ . In particular, assume that T is of
strength n. We say that the partial composition result (PC),, of strength n > 0 holds for T iff

(PC1),, B, is an ordered group structure extending B,,_1, if n > 0,

(PC2),, Vne B, :VfeTL :n(f) €T,

(PC3),, Let (n;)icr € B, be well-ordered and f € TZ, then (n;(f))ier is a Noetherian

family in T.

In other words, if we let B,, = C[[®B,]], then the composition o : B,, x T — T is defined for
fields T of strength n. Note that (PC)g follows from Proposition 5.1.5. Let us remark that the
hard part in showing (PC),, is condition (PC3),,.

In the case n = 0, we have seen that By admits a derivation 0 and that every positive infinite

series f of a field T determines a right-composition s such that

0o:BpxT — T
(9,f) — wslg)=gof
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is a compatible composition. We will therefore assume that for fields T of strength n the function

o:B,xT — T
(9. ) = ¢rlg)=gof

is also a compatible composition. This will make the definition of 1 »+1 coherent.

LEMMA 7.3.3 Let n>0. Foralli>1 and all o € (W")*~! there are integers aq, by with

(1) 1z = H —

H<wn vm
(2) e nx = H L (epn);
7<w"
() We=Lne Y aa-lqz (1 €Z);
ac(wnm)i—1
(4) ha=) - Y ba-Uii(ewmz)  (ba€Z).
a€(wn)i—1

Proof: We start with l;n:v. For n = 0 we have w” = 1. With log, x = ! we obtain the initial
case. Now suppose that we have shown the claimed equality for ¢ =1,». Then for ® =1 n+1 we
have @'z = [I,<, ®®,z. For any m € N we have @,, = l,n.,z and thus

90w = ]I Il ma:_ H

A<wn on [—a

Therefore

Vo=lpr=[ [ ——= I o
n+

m<w y<w™ lwn.m+7l‘

This shows the equation (1). Equation (2) follows from 1 = e .21 . (eynz). In order to show the

third equation, we start with the case n = 0. The initial case follows from log(i) r= (=171t

and 2z~ (-1 = log; x for 1 € Ni~!, Now assume that we have shown the equation for n > 0.
Let m € supp®@®™z. From the definition of ®@Y) it follows that there are i > 0 and

1 <j < N —1such that
me SUPI)‘p(j)(I)iJr1m -Snjldga, - (p(N ¢,z] H (p((plx

We first remark that Hl@;l ¢@x = @x. Let a € supp @(j)(pi 112 then by inductive hypothesis
there is a tuple 8 € (w™"1)/~! such that a = <I>/(pi+1m . l;+i((pi+1m). Then there is an & €
(w17 =1 such that

l/
L yi(002) = W
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From (@@, 2) = ®'@, 2z - (¢, 2)" we then obtain that

/
a:q)x 1a+1

((924—195) '

On the other hand, let b € supp Sy ;[@@z, - ,(p(N)(pZ-:z:]. Then by Lemma 6.3.4, there are
integers 0 < k1,... , kn such that

jo= ki+-+ky
N = ki +2ky+---N-ky
and such that

b € supp (@)™ - (N ga)"™
Now we apply the inductive hypothesis for @. We obtain

kz kN

b € supp (@) - | gz > lgﬂcpz ol dere > Lgex]

(wn—1) (wn=1)N=1
thus there is a 8 € (w™*!)NJ such that b = (g@z)’ - 15, 71(@z). But then

(@12)
4)41%> Where (& ,B) € (Wt1)N=1, This shows (3).

Assume that we have shown the equation for j < i — 1. From the equation for ¢V (l]Ja:) and
1 =y'z- @ (Px) we obtain

b=

Hence m = &'z - l(

Vo) = > aa-1, 7(Wx).

ac(wn)i—l
On the other hand, we have
SiilWe, ... ,wWa] = Z o W)k (W)
keN?
Note that k; = 0. From the hypothesis we obtain that forall 1 <m <i—1
km

aeNm—1

From k1 +2-ko---i-k;j=1dand k; +---+ k; = j (by Lemma 6.3.4) we obtain

SijlWa,... ,p® Z ba

aeNi—
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Hence

W@ (pz) - SijWa, ..., w0l - > ba L (W)

aeNi—1

for integers b,. Substituting these terms into the definition of P yields the claimed equation
(4). 0

COROLLARY 7.3.4 For each countable ordinal oo < w* we have l T = H I
ﬁx
B<a

Proof: The corollary holds for o < w. Hence assume that o > w and that the corollary holds
for all 8 < a. If a =+ 1, then

/ / / 1 1 1
L, 417 = log L,:L‘-L{leﬂ/—x- 15_33: H e
B<y B<y+1

Now assume that « is a limit ordinal. If & = w", then the corollary follows from Lemma 7.3.3.
Otherwise we have o = w™ - a, +---+wW™ - a,, with m > 0. If n > m, then a,, > 0; and if n = m,
then a, > 1. In both cases there is an ordinal & < « such that a = & + w™. Hence

/ / 1 1
I,z =1 m(lgz) la:—H ng—x:ng_x
[B<a [A<a

[B<w™

15 _|_/6’l’
This shows the corollary. O

REMARK 7.3.5 Note that for all 7+ > 1, the series l( 7)1:1: are in B, _1 exp. Moreover, for all e < f,

the family
1) >
—1 nf . 52
<Z! v 1<i

is Noetherian, thus its sum exists and is an element from Tey,. Chapter 6 implies the coherence
of a possible definition of 1,» in T, that is, if 1,» is already partially defined on T.

7.3.4 Definition of positive strength for transseries

Assume that n > 0 and that we have already defined strength n — 1 for transseries fields such
that the partial composition result (PC),—; holds for such fields T. From the definition of
exponential fields of strength n — 1 it follows that for all f € T the function 1 ,»-1 is defined
for the series f and that 1,»-1f € TZ . Hence for all i > 0 we have

e fedoml,.1,; and
o ln1,feTt.
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We define a relation <, , , on T as follows. Let f,g € T"such that 1 % f. Then we let

9 <1 A lgll < Lon-ng [ £]

for all ¢ > 0. Note that if 1 % f € T, then the unary relation - <, , f is totally defined.
Let n > 0. A series f € TL is lyn-confluent at order k € N iff for all i > 0

Dlw"~(k+i)f = lw"-i(alwn»kf)

IS Clyn. (kti) S+

We say that f is l,n-confluent iff it is l,n-confluent at some order k € N. A subset S of TZ is
l,n-confluent (at some order k) iff every series f € S is ln-confluent (at order k). Instead of
l,n-confluent at order 0 we also say l,»-atomic.

DEFINITION 7.3.6 The transseries field T = C[[9N]] is of strength n > 0 iff C is an expo-
nential field of strength n, if T is of strength n — 1 and if there is a partial function logarithmic
function

In : T— T

of strength n with
T™1 T C domlyn,
T™2 if e,n denotes the inverse function of 1, then

Vf € domeyn : supp fl =<1 n-1 egn f = eunf €I,

T™3 for all f € TL, there is some k € N with

o f isl n—1-confluent at order k,

o m= alwn—lkf € doml,n,

e l,.meT,

o for R € TV with ln—1.,f = m+ R we have lyn f =k +7|_, (m, R),
T™4 T is l,n-confluent.

REMARK 7.3.7 Condition T"™2 is a strong property for monomials. Indeed, it is only a sufficient
condition for being a monomial. Assume that f € T satisfies this condition. Then for all kK € N
we have fl = (f —k)! and f — k € dome,n. The latter property follows from f € dome,» and
eonf € domln-1, for all £ > 0. Hence we can apply T™2 and obtain that e,n(f — k) is again
a monomial. Note that this is in general not the case. Take for instance the case n = 1 and the
monomial m? for m € M.

REMARK 7.3.8 Let n > 0 and T of strength n — 1. Let f,g € TX such that supp f! <11 9
Then we have

Vi>0: [supp fH <0, 4

In particular, if f € domegn, then for g = en f this implies [|supp ft]| < _, (r—i)- We will use
this observation in proofs that a field has strength n.
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NoTATION 7.3.9 We generalize the notion of exp-log-substructures. Let n > 0 and T; =
C[[Pr]], Ty = C[[9M2]] be of strength n. Denote the exponential functions of strength n of the
fields T; and Ty with ef}l and egi, respectively. Then T, is an e n-l,n-substructure of Ty iff
(1) Ty is an e n-1-l n-1-substructure of Ty and
(2) efLf=cl2f forall f € domelh.
We remark that (1) implies My C My, thus Ty € Te. By T1 in the definition of transseries
fields it then follows that dom ef}l C dom eE%. In other words, if £; ,, ¢ . denotes the first-order
language of ordered rings with function symbols exp,... ,e,» and log,... ,1,n, then T; is an
Le n 1 ,n-substructure of To. We further notice that if Ty is an e,n-l,n-substructure of T2 and
Ty is an ey n-l, n-substructure of Ty, then T, is an e,n-l,n-substructure of Tj.

7.4 Basic properties of fields of positive strength

In this section, we will prove a number of properties for transseries fields of positive strength.
The results will mainly be used to extend a given field T of strength n > 0 to a field T D T
which again will be of strength n. Some of the following lemmas, however, only serve to show
the properties. They need in turn the properties in a lower-strength version. Throughout this
section, we will try to make the dependencies of the different lemmas clear.

LEMMA 7.4.1 Let T be of strength n > 0. Suppose that (f,e) is an eyn-Taylor couple of series
from T. Then e,n(f +¢) < eynf.

Proof: Since T is of strength n, it follows from Lemma 7.3.3 that for every ¢ > 1 there is a
series §; € T+ such that

1
€wn f

Since (f,¢) is an e,n-Taylor couple, the sequence

) 4 1 i—1
(9i)hi<i = ((ewnf‘E)Z' (e nf> )
w 1<i

1—1
) :(e;nf)i( ) C(146).

must be a Noetherian family. This implies g; > go > ---. Hence
! ! 2 1
ew"f'€ e (ew"f'g) ' ﬁv
which implies e n f = e;,nf -¢. From e;,nf € =X Re,n(f,e) the lemma follows. O

LEMMA 7.4.2 Let T of strength n > 0. Let f,g,e € T with f € TL. Then:

(1) If f € dom efj% foralli >0 and 1 > e:unf - €, then (f,€) is an eyn-Taylor couple.
(2) If |g| < f, then (f,g) is a lon-Taylor couple.
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Proof: (1) From the partial composition result for fields of strength n — 1 one concludes
that the family (3 ,e(nyi-1 ba - l; 41/ )1<i is Noetherian (where b, are the integers from Lemma

7.3.3). From 1 > e . f - ¢ it follows that the sequence ((e_. f - £)?)1<; is Noetherian. Hence the
sequence

(Shfehci=|(wh) - D barl if &

is Noetherian, from which (1) follows.
(2) From the partial composition result for n — 1 it follows that

/ 1 !
oVi>1:3g; <1:luf- > aa-l ;f=—la(logf) (1+e) and
ac(wn)i—1 f
e the family (&;)1«; is Noetherian.

First assume that g < f. From |g| < f is follows that ((g/f)")1<: is Noetherian, thus the

sequence
((?)iw;%bgf%(1+fﬁ)

is Noetherian. Hence (lij)l [+ g")1<i is a Noetherian family. Now let g = f. We are done if we
can show that for h = ¢ + ¢ with ¢ € C,|c| <1 and € < 1 the sum } 5, h' is defined in T. We
first remark that

1<i

U supp h C U LZJ suppEj - U Suppfja

0<i 0<i j=0 0<j

which is a well-ordered set, since ¢ < 1. Hence for each m € Uogz‘ supp h! there is a k € N such
that m € suppe’ implies 5 < k. Then the sum Eo<z( “)m is bounded if and only if the sum
> k<i(h “)m is bounded. But

ghi)m:;cﬂ gz() ig(jﬂ)w

We remark that Eogj (HZ'J )X i=1+J converges for all |[X| < 1. Thus the last sum is bounded.
Now apply this fact for h = g/f. This shows (2). O

COROLLARY 7.4.3 Let T be of strength n > 0. Then the function l,n is strictly increasing, and
the function e,n is defined on rangel .

Proof: Let f,g € T such that f < g. Then 0 <e=g— f and | —¢| < g. Then (g,¢) is a
l,»-Taylor couple. From the horizontal coherence, we obtain

lon f = lw”(g - E) =lng + len (97 _E)'
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From 0 > R;_, (g9, —¢) the corollary follows. O

We remark that until now we only needed strength n. The next lemma uses Lemma 7.4.2,
therefore it also only needs strength n. The lemma will have applications in later sections.

LEMMA 7.4.4 Letn > 0 and M C N totally ordered groups such that
o the field Top = C[[IM]] is of strength n and
o the field Toy = C[[MN]] is of strength n — 1.
Let (f,qg) be a l,n-Taylor couple in Ty (i.e. f,g € Ton) such that f >~ g. Then

Rin(f.9) €Ton A f € Ton = g € Ton.

Proof: Suppose not. Then let h <g be the maximal truncation of g such that h € Tgy. From
g & Tgy it follows that h is a proper truncation of g, hence that h = g — h # 0. In particular,
0;, € M\ M. We claim that Ry, (f,h) € Ton. If h = 0, then this is true since Ry, (f,0) = 0.
If h #0, then h < ¢ and Lemma 7.4.2 imply that (f,h) is a 1,n-Taylor couple in Tgy. Thus
R, (f,h) is defined since Toy is of strength n. Hence it is an element of Tyy, which shows the
claim.

Then

. 1.6 A
Rin(f:9) = Rign (Foh 1) = D" 210 F - (h+ )’

1<i

implies Ri_, (f,9) = Ri . (f,h) + Lynf - h+ (14 p) where yu € Ty is of the form

1197 SN/,
“:Zﬁ'l’ f.z<_>hﬂ.h <o

J

!

Now from Ry, (f,9), Ri_n (f,h),lnf € Top we obtain

)t
R n ) - R n 7h 7
L f
This implies 0; € 9. This contradiction shows the lemma. O

The next two lemmas will have applications in proofs of other lemmas in this section.

LEMMA 7.4.5 Let T be of strength n — 1 > 0. Recall that 1. is totally defined on TL,. Let
@=1,n-1 and ® =1n. Then for all f € TL :

(1)1+-¢qf. , , ,

(2) IfViz0:@f cdom®, thenVi>0:1~ @, f >~ Pqf.

(3) IfVi=0:@f € dom®’, then Vi > 0: @' ¢, f - 9@ f = D@ f.

. / 1 ’
(4)ViZ0:9@, 1 f - W ~-QQf.
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Proof: For all a < w" ! we have 1 < 1, f < f. Then from @ f = [Tocon—1 131 f the part (1)
follows. From ®'q,f = @ (¢, f) - <I>/(pi+1f and @, f € TL it follows — using (1) — that

‘I)/(Pif = ‘I’,(Pi+1f-

The inequality ®'@,f < 1 can be shown as part (1). Hence (2). Since 1 > <I>/(pi+1f, the equation
D@ f = (pl((pif) . <I>/(pi+1f implies that ®'@,f < (p/(pif. On the other hand,

‘I’/(Piﬂf = H (P,(Pi+1+mf <1

om

leads to log <I>/(pi+1f < 0. From (p/(pz-f < (p,(pi+1+mf < 1 we obtain log (p,(pz-f < log (p/(pH_Hmf <0
and thus

log @@, f < Y log @@y, f <0

osm

But this shows cp,(pl- f= <I>/(pi 41, hence (3). We are done if we can show that for all i > 0 the
inequality

0 > log (P/(Pi+1f > —log @, f > log (Pl(Pif (7.3)

holds. Recall that for all g € T we have

log@g=— > lojig=—logg—g

a<wn—1

where g € TZ, with § < logg. Applying this to @, f and @, f leads to

0g @@ f = — > lap@ f =—logq,f —h
a<wn—1

og@@f = — > lop1@f = —log@,f — ho
a<wn—1

with hy,hy € TS, and hy < log @, f and hy < log@,f. From this we obtain
0> —log®,1f —h1>—log@,f > —log®,f — ha,
from which inequality (7.3) follows. O

LEMMA 7.4.6 Let T be of strength n > 0. Let @ =1,-1 and ® =1 ,n. Then for all i > 0 and
all f € TL:

’ 1 ’
1= 3@, [ — =3¢ f
(pz-l—lf (Plf (pz lf
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supp f supp [~

P i “T’Jﬁ, =)

P’om d'@_m --- dem P'm

Figure 7.1: Determining f* and f~

Proof: Apply Lemma 7.4.5 and note that for all ¢ > 0 we have @,f € dom o' O

The next lemma will be used frequently in proofs of strength n. Essentially, we show that
for a special class of monomials m the support of ,~m is strictly bigger than the entire support
of the restricted Taylor development R;_,(m,-). In the proof, we use the Lemmas 7.4.1, 7.4.2
and 7.4.6. Hence the proof entirely relies on the strength n of T.

LEMMA 7.4.7 Let T = C[[M]] be of strength n > 0. Let m € M be such that 1 ,n-1.,;m € M for
all i > 0. Then suppl,m > l;)nlwnq.im for alli > 0.

Proof: Let @ = 1,01 and ® = I n, and let ¥ = e,n. We define two series f™ and f~ in T as
follows. (See Figure 7.1.)
(1) dm= f*+f7,
(2) 1+ <om,
(3) Vi>0:supp fT = ®'@m and
(4) Vnesuppf~:3i>0:d'@m > n.
The series f* and f~ are uniquely determined by these conditions, and we have to show that
f~ = 0. We remark that supp f~ is well-ordered in 9, therefore supp f~ cannot contain
a strictly =-decreasing sequence. Since the sequence (<I>/(pim)0<i is strictly >-decreasing, the
sequence of leading monomials is strictly =-decreasing, and therefore there must be an I € N
such that @,(plm > supp f~. We may assume that [ > 1.
From ® @m = & ¥(dm — I) and ®'@;m >~ f~ it follows then by Lemma 7.4.2 that

(q;(ﬂ(q;m — 1) (—=f)oi
is a Noetherian family. From ®m — 1 — f~ = f* — I it follows now that ¥(f* —1I) € T. In other
words, we have f* — I € dom ¥. We now show that ¥(f* — 1) € M.
First, we note that from the definition of the series f* and f~ it follows that
supp (f* — )" =supp (f)! = @'gm (Vi >0).
Fix n € supp (f* — I)!, then both |[n|| = n~! and n > ® @m imply
1
Vi>0:|n|| < —
d'pm

(3
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Since T is of strength n, it is also of strength n — 1, and we can apply Lemma 7.4.6. Then
Vi > 0:n>®@m implies Vi > 0 : |[n|| < @m. In particular, we have for all 4 > 0 that
In|] < @,@;m. From Lemma 7.4.1 we obtain ¥(f* —I) = U(®@m — f~) =< @m. Therefore we
have

Vi >0 |n]| = U(f —1I).

Since T is of strength n, we conclude that ¥(f* — I) € M. From the hypothesis about m we
get @ym € M and

om=V((f" D)+ ) =" - D) +Re(f" —1,f)
This means Ry (f™ — I, f~) = 0, which shows f~ = 0. O

We have seen in Chapter 2 that in transseries fields the logarithm of a series can only be a
monomial, if the series itself is a monomial. This result can be generalized to fields of positive
strength. Note in particular, that we use the fact that the forthcomming lemma is true in the
case n = 0. If n > 0, we may therefore assume that the lemma holds in the case n — 1, and we
can use the lemma in this case in order to show the case n.

LEMMA 7.4.8 Let T = C[[9M]] be of strength n > 0. If f € T is such that lynf € M, then
fem.

Proof: The case n = 0 holds by T2 for transseries fields. We therefore assume that in the
following n > 1. Note that in particular, we can apply Lemma 7.4.7 for the case n.

Let =1,+.-1 and ® = 1,», assume that we have already shown the lemma in the case n — 1.
Let f € T such that &f € 9. By T™3 there is a k € N such that f is @-confluent at order k.
We show that &£ = 0. Suppose k£ > 0 and let @, f =m+esuchthat me M, e < 1and @, f € I
for all ¢ > 0. Applying Lemma 7.4.7 for n yields supp ®m > Rg(m,e). On the other hand, we
have

Of=k+QQ.f=Fk+Pm+ Ro(m,e) € M.

Hence ¢ = 0 and ®m = &, f. This means m = @ f = @(@,_, f). Applying the lemma in the case
n — 1 implies @,_, f € 9. This contradicts the minimality of k. Hence kK = 0 and f = m € 9.
O

Another frequently used tool in proofs that certain fields are of positive strength will be the
following lemma. Recall that atomic means to be of confluence at order 0.

LEMMA 7.4.9 Let n > 0 and T be of strength n. If f € TL is l,n-atomic, then f is lyn-1-
atomic. Consequently, the series f is 1 -atomic for all ¢ < n.

Proof: Let again @ = l,n-1 and ® = l,n. Fix f € T4 such that f is ®-atomic. For all
@-Taylor couples (g,¢) we have @g > Rg(g,¢), hence

Tog+e) = Tag-
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This observation implies that for n = 9 and all k£ > 0 we have

As an immediate consequence we obtain that for all k& > 0 the series f is @-confluent at order k
if and only if n is @-confluent at order k. Hence instead of showing that f is @-atomic, we show
that n is @-atomic.

Suppose that this is not the case and let k£ > 0 be minimal such that n is @-confluent at order
k. Such an integer k exists by T™3. We can also assume that @,n = m + p such that g;m € om!
for all ¢ > 0. Hence, we can apply Lemma 7.4.7 and obtain supp ®m > Rg(m, p). But we have

dm+ Ro(m,p) = d@n=&&n—k e M —N.

Thus (®(m + p))! =0, i.e. Rep(m, p) = 0 and therefore p = 0. Hence @.n = m € M. We apply
Lemma 7.4.8 to conclude @,_;n € 9. But this is a contradiction to the minimality of k. O

REMARK 7.4.10 We point out that throughout this section, we never needed the condition
that T} is l,»-confluent, if T is of strength n. All properties can therefore be shown in more
general fields. Furthermore, we notice that Lemma 7.4.8 uses a lower-strength version of itself,
and that Lemma 7.4.9 needs Lemma 7.4.8. Apart from this, all lemmas follow from the fact
that the field T is of strength n. Hence there are no loops in the dependencies of the lemmas.

7.5 The partial composition result for positive strength

This section provides the proof of the partial composition result (PC),, for fields of strength
n > 0. This will enable us to define structures of strength n + 1. In particular, we will use the
fact that TZ is 1,n-confluent, if T is of strength n.

Let in the following T be of strength n > 0. We need the following lemma in for the proofs
of (PC1),, - (PC3),.

LEMMA 7.5.1 Let T = C[[M]] be of strength n > 0. Let m € M be 1,n-atomic. Then
(1) Va € w1 1,m € M.
(2) {Lm|a e (W), 0<i} €M is well-ordered.
(8) {(Lalyngm)~ |1 >0} €M is well-ordered.

Proof: Let ® = 1,n. The case n = 0 is clear. Assume n > 0. If m is ®-atomic, then so is
®;m for all £ > 0. Hence if « =w™a, + -+ ap, then &, m is ¢-atomic. By Lemma 7.4.9, the
monomial ¢, m is 1 :-atomic for all ¢ < n. Since T is of strength n — 1 and 8 = w la, 1 +
-+ +ap < w", we can apply this lemma for the case n — 1 and obtain lo,m = lg(lyn.q,m) € ml.
This shows (1).

Recall that for a = (a,... ,q;) € (W) we have

i
l,am:llalm---l/aim: H H %

7j=1 ﬁ<aj s
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From (1) it follows that 1., € 9! (note that we allow i = 0 here). Also, we remark that for every
« there exists a function a : w1 — N with

o Im= [Tpcins lgaﬁm = log™*m,
e the function a is weakly decreasing.

By Lemma 1.7.7 the set {a : w""! — N|a is weakly decreasing} is well-ordered in the lexico-
graphic ordering. Since a <, b if and only if log~*m > log~®m, it follows that

{log™%m|a: w"™ — N weakly decreasing} C 90!

is well-ordered. Hence (2).
From &;m > &, ;m follows ® &;m < & &, ;m < 1, thus (3). O

We now show (PC),, and start with (PC1),,. Let m,n € B,, with

n= logaa::HI?Y”:v (aew"™anda:a— 2)
<o

n= logba::ng”a: (Bew" ™ andb: B — 7)
<8

Note that 1 = log’ z € B,,. We may assume that a = £, for if not, then for o < 8 we extend
the function a to 3 be letting a, = 0 for all v > «; similarly if 3 < o). Let a+b: o — Z be the

pointwise sum of a and b, and let —a the function with (—a), = —a, for v < a. Then we let
n-m:= log®y
nli= log %z

Hence n-m,n~! € B,, and n-n~! = 1. This defines a multiplicative group structure on B,,.
We remark that By = logZ*x and that for n > 1 the group structure of B,, extends the group
structure of B,,_1.

The second step is to define an ordering = on B,,. For n = log® x we let

My := min{y < w"™|a, # 0}.

Then we let n = 1 iff apy, > 0. For n,m € B,, we let m = n iff m-n~! 3= 1. The ordering 3=
on *B,, extends the ordering = on B,,_1; and for n = 0 the ordering coincides with the ordering
from Section 2.3. This shows (PC1),,.

Next, we show (PC2),. Let T be of strength n and f € TX. Let n € B,, with n = log®z
and a : o < W™ — Z. In view of the infinite-product notation we let

n(f):=exp Z ay - Ly f.

<o

In order to show that n(f) € T, we have to show that
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(i) Vy<a:lypf e,
(i) (Iy+1f)y<a is a Noetherian family,
(iii) X2, <4 @y Ly1f € dom exp.
For all integers [ > 0 we let f; := lyn.;f. Since oo < w™*!, we have e = w™ a,, + - - + ag. Hence
for every v < « there are integers g, ... ,gn € N such that g, < a, and

Lz =logy oly.g 0 0lyn.g,x.

Since T is of strength n, we have f; € TL for all d < a,,. Inductively invoking the strengths
1 < n yields

logg oly.g, 0+ 0lyny, f € TZ.

Hence 1,11 f € T. This shows (i). In order to show (ii) we remark that from d, < a,, it follows
that

(L1 f)v<a = g1 fa)y<om-

d<an

For each d < ay, the family (141 f4)y<wn is Noetherian. This follows from (PC)y—1. As a finite
union of Noetherian families, the sequence (1,41 f)y<q is itself Noetherian. Hence (ii). (PC)p—1
also implies that

Z ay - lyy1fq € dom exp

y<w™

for d < a,,. Thus

Za,y-l,yﬂf:zn: Z ay - 1y11fq € dom exp.

<o d=0 y<w"

Hence (iii) and therefore (PC2),,.

We show (PC3),, in three steps. In a first step, we show that we can reduce the statement
to series f € T which are l,n-atomic. The second step consists in showing properties of the
support of 1,n.; f for ¢ > 0 assuming that f is 1 ~-atomic. In a final step, we apply the properties
from the second step to conclude the proof. In the following, we let ® =1,» and ¥ = e, n.

Step 1: We show that we can restrict ourselves to series which are ®-atomic. Since T is of
strength n, the series f € T1 is ®-confluent at order & € N. For n € %B,, with n = log”x and
a:a<w'l — 7 there is a sequence (n;);<,, € B,_1 such that

n= H n ().

I<w
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Let a =[], m(®z) and b = [[; o, m(Piz), then a-b = n and a(f) - b(f) = n(f). For the
sequence (n;);c; we now obtain a;(f) - b;(f) = n;(f), where

a;i(f) = H 5,11 f)
<k

bi(f) = Hni,l(q)lf)'

k<l

If we have shown (PC3),, for series are ®-atomic, then (b;(f))icr is a Noetherian family. In
this case it remains to show that (a;(f))ier is a Noetherian family. From (PC),—; it follows
that for all [ < &k the sequence

sp= (i1 (@i f))ier

is a Noetherian family. From (a;(f)); C so---sk_1 it now follows that (a;(f)); is a Noetherian
family. This finishes the first step.

Step 2: Assume that f = m+¢e € T is ®-atomic. By Lemma 7.4.9, the series f is 1 i-atomic
for all i < n. Hence for all & < w™*! by Lemma 7.5.1 we must have (I, f)! = l,m € 9. In order
to show that (n;(f))ier is a Noetherian family, we have to consider the family (logn;(f))icr. We
start with the following lemma.

LEMMA 7.5.2 Let T be of strength n > 0. Let f € T be ln-atomic, m = 9y and € = Ry.
Then for all o < w"t1:

supp (la1f)! C (suppe)’ - {log™®m | a: o+ 1 — NT, weakly decreasing}.

Proof: For @ < w, the lemma follows from Remark 5.1.6. Now let i < n, and suppose that
the lemma holds for all ordinals a < w’. We first treat the case o = w’ and then by induction
the case w' < a < w'tl. By Lemma 7.4.9, the monomial m is 1 ;-atomic for i < n.

From 1,41 f = logl,i f and 1, f = 71_,(m,€) we obtain that

lwiJrlf = log ﬁwi (m,e).

Thus
R, (me)\\' /R, (m,e)
. . (—1)1'*1 i .. .
where [(X) is the formal power series > ; ~——X". This implies
1' Rl i (m7 5) T
supp (Liy1 /)" € (supp ——— ) -
il
Note that
Ry ,(m,e) 1 l(ji)m . l(ji)m
supp —4——— = supp ZT - &J C (suppe)t - U supp +—.
lwim lgjj' lwim 1< lwim
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©)
w? .
there is a function a : w* — N7 which is weakly decreasing such that a = log~%m. Thus for

If a € suppl”/m for some integer j > 1, then there is a € (w?)?~! such that a = l;)im-l;m, hence

b € supp lgi)m/ 1im there is a function a : w't! — N*, weakly decreasing, such that b = log™*m.
Hence
supp (Lyis1 )V € ((suppe) - {log™*m|a : w'*! — N*, weakly decreasing})
= (suppe)l - {log7®m|a: wt! — N*t, weakly decreasing}
This shows the case o = w’.
Now suppose that a = 3 + 1 where w’ < 3 < w't!, and suppose that the lemma is true for
B. From l, f =1lym+ e, = loym + €541 we obtain

I
€341 841
(lagpr1 f)V = <logolam- <1+ 12;)) :z<lz;),

thus

I €641 f

supp (la+1 /)" S (supp { =) | -
am

Now let a € supp (Io41f)}, then for some integer j > 1 there are by, ... ,bj € suppegqy such
that

_ b by

l.m  lym’

By the inductive hypothesis for all 1 < m < j there are weakly decreasing functions a,, : « — NT
such that b, € log™*" m - (supp €)T. The function aj + - - - + a; is weakly decreasing, and for all
v < o we have (a1 + -+ + a;)y > j. Hence the function a : &« + 1 — Nt with

{(al—l-”--i-aj)ﬂY ify<a
ay =

J ify=«

is weakly decreasing and a € log™*m - (suppe)’. This shows the remaining case and finishes the

proof. O
Step 3: Note that the set

U {log7*m|a:a+1— Nt weakly decreasing}
a<wntl
is a subset of the set
{log™®m|a: w"™ — NT, weakly decreasing}.
Then from Lemma 7.5.2 it follows that
U supp (lap1f)! € (suppe)'- U {log”*m|a:a+1— N, weakly decreasing}

a<wntl a<wntl

C (suppe)l-{log7%m|a: " — NT, weakly decreasing}.
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The set {log"*m|a : w1 — NT, weakly decreasing} is by Lemma 7.5.1 well-ordered in 901.
The set (suppe)’ is by Lemma 1.1.5 well-ordered. Hence the set |, <wn+1 5Upp (log1f ) is well-
ordered in 9.

Now let (n;)ie;r € B, be a well-ordered sequence with Vi € I : 3a; € w™*! and a function
a; : o; — 7Z such that n; = log® z. Then n;(f) = log® f implies

ni(f)=exp Y aig-lpaf =exp > aip- (lgaam+ (g1 f)Y),

B<a; B<a;

hence n;(f) = n;(m) - e(X_5.,, @i - (1541/)}). Therefore

supp () C ni(m) - [ supp Y aip- (g1 f)!
B<a;

From the above we conclude

U suppn(f) C {ny(m) i € I} - (suppe)® - {log™%m|a : w1 — NT, weakly decreasing}.
i€l
Thus |J;c; suppn;(f) is contained in a well-ordered set and therefore well-ordered itself. Lemma
1.1.6 now implies that for all monomials a from |J;.;suppn;(f) there are only finitely many

i € I such that a € suppn;(f). Thus (n;(f))ier is a Noetherian family. This finishes the proof
of (PC3),. We therefore have proved

PROPOSITION 7.5.3 The partial composition result (PC)y, holds for fields of strength n > 0.

We finish this section with the following corollary.

COROLLARY 7.5.4 Let T be of strength n > 0. Suppose that m € M is l,n-atomic. Then:
(1) l;nﬂm € Mexp-
(2) For alli > 1 and alln € lgiﬂm there is a weakly decreasing function a : W™ — N such
that n = l;nﬂm -log™%m.
(8) For alln € supp Ri_. (m,e) with e < 1 there is a weakly decreasing function a : W™t — N
such that n < l;nﬂm -log™*m.

Proof: (1) follows from log l;nﬂm = =Y pcuntt logim € TT. In order to show (2), recall
that
lg}zﬂm = l:unﬂm : Z (g I;Hm
ac(wnt1yi-1
for integers a,. Hence for n € supp ISBLHW there is an a € (w"1)"~! such that n = l;nHmJ;Hm.
This shows (2). (3) follows from (2). O
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7.6 Examples of fields of positive strength

We will give examples of fields of arbitrary strength. In fact, the example of a field of strength
n > 0 will be contained in the example of the field of strength m > n. This is due to our choice
of the monomial group.

Recall from Section 7.3.4 that for all n > 0 we have defined totally ordered, multiplicative
groups B,. We extend these groups to sets £, = {log®z|a : w"*! — Z}. Note that £y =
logZHx. We define a group structure on each £, as follows. Let a,b : w"t! — Z, then

1 = log’z
log?z -log’z = log*z
(log®z)™' = log %=z.

We let 1 < m = log® « iff for My = min{y |a, # 0} we have 0 < ayr, . Hence each £, is a totally
ordered group, and £, is a subgroup of £,1 with £y & £1 & £ & ---. The field L,, := C[[£,,]]
will be our example for strength n. Note that

LoGLy GLo G- -.

Fix an integer n > 0. In the following, we will equip LL,, with functions log =L, 1,,... ,1,» such
that for each ¢ < n the structure

(Ly,log, ... 1)

is of strength i. We then use the partial composition result (PC); to define a function 1 1.
This will eventually lead to a field of strength n.

We begin by defining a logarithmic function log on L,,. Let log? z € £, and f = em-(1490) €
L,,, then we let

log(log® x) := Z ay - L1
y<wntl
log f := logm+logc+ ().

One verifies that logm < m for allm € £,,. Hence, LL,, is an exponential field. From the definition
of the ordering on £, we obtain that {l,z|a < w1} C ¢! is well-ordered. Thus log £, C L.
Remark that each f € (L)% is log-confluent at order 2. For the same reason, condition T4 of
the definition of transseries fields holds. We have therefore proved

LEMMA 7.6.1 Letn >0 and £, = {log”x | a : w"*t! — Z}. Define an ordered group structure
on £, as above. Then LL,, = C[[£,]] is a transseries field, i.e. of strength 0.

The next step is to define functions 1, ... ,l,» such that (L,,log,... 1) is of strength .
In fact for every i < n we will show that for our choice of 1, we have



7.6. EXAMPLES OF FIELDS OF POSITIVE STRENGTH 157

e (L,,log,..., 1) is of strength i,
e (L,)% admits a partial function 1 it1.

Having these properties will suffice to extend the structure (L,,log, ... ,1) to a field of strength
1+ 1.

LEMMA 7.6.2 Letn > 0, then there are functions log, ... 1,n such that L, is of strength n.

Proof: The lemma holds for n = 0. Now suppose that ¢ < n is such that
(1yi)1 (Ly,log,... 1) is of strength i,
(1,)2 (L)L is 1 i-confluent at order 2, and for f € (L)% there is an ordinal

B=wby+ - +wh <w't!

with b; > 2 and Dlwi.gf = lgz,
(1,)s (L)L admits a partial function 1 ,+1 such that for all f € (IL,,) we have 0, ,f€
dom lwi+1 .

We start with the case i = 0. Condition (log); follows from Lemma 7.6.1. Note that (IL,)%
is log-confluent at order 2. From Djog, f = Dlog, 0, it follows that we only need to consider ,STE.

Let m=logx € 2;, then
logom = log(aq - la17 - (1 + p)) = lagoz + ¢

where o < W™ and € < 1. From a = w™a,, + - -+ ag we obtain a +2 = w" a, + - -- + (ag +2).
Hence the monomial 1,192 is log-atomic and ag + 2 > 2. Thus (log)2. Finally we let

B = wap+- - +wla +1)
l,(lagoz) = lgz — (ap +2).
This shows (log)s and therefore the initial case.

Now suppose that (1,:)1 — (1. )3 are satisfied for i« < n. We define the function 1 +1 for a
series f € (L,)% by
lwi""lf =2+ lwi‘H (leZf) =2+ lwi“'l (alwigf + 5) =2+ ﬂwzﬁrl (olwigf’ 5)'

From Chapter 6 it now follows that this is a coherent definition of a logarithmic function
of strength i + 1, which proves T**t11 and T*t11. In order to show T+13, let f € dome, i+
with supp f* <1, €i+1f. Then there is some h € (L)%, with f =1,i+1h. From the definition

7

of 1 i+1 we then obtain

f = 2+ lwi+1 (Dlwiah + E)
= Lyt (0, n) +2+ R, (01 ni€)

where € < 1. Let = w"by, + --- + w'b; such that 0, b= lgz and b; > 2. Then from

lwi+1 (lﬁl‘) +2= ].wn b+ +wit! (bip+1)T — (bl — 2) S EIL + Z
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we conclude that f = Ri s (Igz,€). From Lemma 7.5.4 it now follows that for all n € supp fi
there is a weakly decreasing function a : w**! — N such that

n <1 (gz) - log~%(1sz).
Hence
Vji>1: Infl = 07" = (Ig2) T (g pa2) = lgy .

From egit1f = h we obtain for j > 3 that 1, (e i+1f) =1, ;b =< 1, ;(lgz). This contradicts
the assumption supp f* <1; €yi+1f. Therefore e =0 and

ewi+1f = lwi,Q(lgl‘) S £,T1,

which shows T®t13. As for T*+14 we remark that fom the definition of 1,41 for a series f we
obtain that

(lwi+lf)T = lwi“(alwiAQf)T = (lwi+lllg$)T

where 8 = w" b, + - - +w' b;. Thus l,i+1 0 gz = Lo —b; with v = w™ b, +- - + w1 (b1 +1).
Now L,z = (li+1 0lgz)! is L i+1-atomic. Hence every f € (L)% is l+1-atomic. This shows
(1,i+1)1 and (li+1)2, and what is more, we have T*t14,

We have to define a function 11> for all lzz with 8 = w™ by, + -+ + w1 biyq. We let

lwi+2 (lgx) = ].wn by Fwit?2 (b¢+2+1)$ - bi+1.

This shows (1i+1)s and completes the proof. O

Now we have examples of fields of positive strength. Let us generate more such fields. In
the following, we give first applications of the properties shown in Sections 7.4 and 7.5.

LEMMA 7.6.3 Let T = C[[M]] be of strength n > 0. Then its exp-extension Teyxp is of strength
i for all i < n. In particular, the field Texy, is of strength n.

During the proof of the lemma, we will use the following fact, which will also have applications
in the next chapter.

Facr 7.6.4 Leti 20 and T C T fields of generalized power series such that T is of strength
i+ 1 and such that T is of strength i. Let f,h € TL be such that

(1) there is a k € N such that 1, h = m+¢e, e < 1 and such that (m,e) is a l,i+1-Taylor
couple.
(2) f=k+T

witl (mv E) .

We let in this case eyit1f := h. If supp f* =l

. eyit1f. Then either we have supp R m,e) C
suppli+1m or we have Ry ., (m,e) = 0.

wi+1(
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(m,e) \ supply,irim. We show ¢ = 0. Remark first
i+1

Proof: Suppose that 0 # n € supp Ri i
that from Corollary 7.5.4 it follows that there is a weakly decreasing function a : w
that

— N such

1
n % 1;1-4_11‘(1- logfam =< a

Thus m < ||n||. From ||n|| <1,

7

we obtain ||n|| < m + ¢, hence

e i+1f = h it follows that |[n|| <1, ;h. In particular, for j = F,

m=<|n| <m+4e xm

This contradiction shows R; ., (m,e) = 0, thus the fact. O
We can now prove Lemma 7.6.3.

Proof: For n = 0 the lemma follows from Section 2.3.2. We assume from now on that n > 0.
Recall that Texp is a transseries field. We have to define a function 1, on (Texp)Z.

Let f € (Texp)d with f = ce? - (1 +6) where 0 < g € TI. Then djgs = 0, € M, and
there is an integer £ € N such that g is log-confluent at order k with 044, y € doml,. Hence
log.1 f = m+ ¢ such that m € dom]1, and ¢ € T.. .. Then we let

exp*
lf=(k+1)+1l,m+ Ry, (me),

which shows T11 and T13.
In order to show T12 for Texp, we fix f € dome,, with supp f ! <1, €wf. Let h € Teyp such
that f =1,h. Let m,e be as above with log; .y h =m +¢, i.e.

f=lbh=l,m+ (k+1)+ Ry, (m,e).

From Lemma 7.4.7 it now follows that suppl,m > R, (m,¢). Hence

supp f* = supp (Lym)* [ [ supp Ry, (m, &).

Fact 7.6.4 implies e, f = h = expy, 1 m € Meyp,. Note that for f € Texp, we have 1, p € M. Thus
(Texp)ds is ly-confluent, i.e. T14 holds. This shows strength 1.

We show strength ¢ > 0 inductively. Assume that Teyp, is of strength ¢ — 1. Let @ = 1i-1,
VU =e, and ® =1,;. Assume that for ¢ > 0 the conditions

(@)g Vf € (Texp))do : meM e € TL, - 0f = g+,
(b)g 0g,n € dom @ for some k € N.

hold. Note that these conditions are satisfied in the case i = 1. We have to define ® on (Texp)Z.
Fix f € (Texp)d and let k € N, n and ¢ as above. Then n is @-confluent at order k and

O.f =@, _1(+e)=@n+Ry _ (gne).
We let

df:=k+ <I>(pk.n + R@((pkm R(pk—l ((pn’ E))
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With this definition we have T**11 and T*t'1. Moreover @,n = fi + p for some p € TV.
From Ry,  (gn,e) € Tk, and &t € dom @ it now follows that for
p=p+ R(Pk,l (gn,e) € T(Iexp
we have @, f = n+ p and
Of =Pn+k+ Ro(n,p) = P+ ¢,

where € € ']T(Iaxp. Since n € M and since T is of strength 4, it follows that & € M is d-confluent

at order | € N such that 04,4 € dome,i+2. This shows (a)s and (b)s.

We have to show T#12. The fact that f € (Teyp)L is 1,i-confluent follows from T4 for T.
Hence is suffices to show T?t12. Let f € domegi+1. Then there is a series h € Texp such that
f=1,+1h=1,+11+ € as above. Again, Lemma 7.4.7 implies that

supp ].wi+1ﬁ - lei-&-l (ﬁ, p).
Hence supp f! = supp (li+10)¢ HsuppleiH(ﬁ,p). Applying Fact 7.6.4 yields p = 0. Thus

f =1l,+in+k € T. Since T is a transseries field, we then obtain e i+1f € 9 C Meyp. This
finishes the proof. O



Chapter 8

Extending transseries fields of
positive strength

In Chapter 7, we have defined the notion of transseries fields of positive strength, we have shown
some basic properties of such fields, and we have given some examples. We have also shown that
the exponential extension of a transseries field of strength n > 0 is again of strength n. The
present chapter is concerned with generalizing the latter result.

8.1 The general outline of the extension process

Recall that for transseries fields T = C[[90]], the logarithm is totally defined on T, but that the
exponential function is not total on T*. An immediate consequence is that the same remains
true for logarithmic and exponential functions of positive strength. We have seen, however, that
we can construct a field of generalized power series such that the logarithmic and exponential
function are total on the set of positive elements of this set. This field was called the exponential
closure, and it was constructed as the inductive limit of a chain of transeries fields. We recall
that the exponential closure is not of the form C[[91]] anymore.

In what follows, we will employ the same idea to construct fields of generalized power series
with total logarithmic and exponential function of positive strength n on the sets of positive
and infinite elements. Again, the resulting field cannot be of the form C[[NM]].

The construction requires a number of steps; and we will treat the steps separately and add
remarks about the motivation of the definitions in every step. Although this might lengthen
the construction, we have chosen to do so because we think that knowing what motivates the
definitions makes it easier to follow the necessary proofs. However, the reader may always skip
the explanations and go straight to the definitions.

Recall that in order to construct an exponential extension of some transseries field, we have
first defined a set of new monomials (which included the monomials of the field which was to be
extended), that we had to define a multiplication and an ordering on the set of new monomials
and that in a third step we had to define a logarithm on the extended field.

In the case of positive strength, the method will be carried out along the same lines. We

161



162 CHAPTER 8. EXTENDING TRANSSERIES FIELDS OF POSITIVE STRENGTH

have, however, to be more careful when choosing the set of monomials in the first step. As a
result, the definitions of the multiplication and the ordering become slightly more difficult. The
third step will then be broken down into a number of sub-tasks. We have to define functions
log = 1,1,,... such that the new field is of strength ¢ for the function 1 . Hence we have to
start with strength 0, then we treat the case of strength 1 and so on.

Fix a transseries field T = C[[9]] of strength n > 0. We will define the e,n-extension of T.
Moreover, we will show that if T is of strength IV > n, then its e,n-extension is also of strength
N. Note that that the case n = 0 has been treated in Section 7.6. For integers n > 0 we will
now

e define the extended set of monomials M, ,, 2 M;

e define a multiplication and a total ordering on 9, _, such that 90 is a totally ordered
subgroup of M. _,.;

e define a logarithm on T, , = C[[Me,.]] such that (T, ,log) is a transseries field;

e inductively define functions l,,...,l,~ such that the structure (Te_,,log,... 1) is of
strength ¢ for all 4+ < N.

8.2 New monomials of strength n

Recall that for all f € TZ we eventually want an extension T DT of strength N such that
f € domeyn in T. In the case of the exponential extension Teyp, we have chosen a truncation of
f (namely its infinite part f7) and we have added the exponential of this truncation as a new
monomial.

We had thus obtained a set Meyp, = {exp f! | f € TL} which could be equipped with a
multiplication and an ordering in a canonical way. Moreover, we have seen that 9 C IMey.
Note that Meyx, = {exp f | f € TL : f = f1}.

In the case of strength n > 0 we will proceed similarly. Given a series f € TZ,, we determine
a truncation ty < f and let e, (t¢) be a new monomial. Instead of determining the truncations
t; we can as well give the condition of when f coincides with this truncation (in analogy with
the second way of writing the monomial group My, in the case n = 0).

Hence the question is: when is e,n f a new monomial? Generally speaking, we have to avoid
two different kinds of instability which we call (in accordance with the coherence) horizontal
and vertical instability.

e The horizontal instability: Suppose that we want to add e,» f as a monomial and that
g < f is a proper truncation of f such that f = g+ and such that e,ng is also defined in
the extended field. Then we have to make sure that (g, ) is not an e, n-Taylor couple, for
otherwise e,n f could be developed into a series and therefore would not be a monomial.

e The vertical instability: Suppose that f € dome,» in T, but that for some k € N we
have f —k € dome,n in T. In this case, we might let e,n f = e ni.poeun (f —k). Assuming
that we already have defined the notion of e »-1-extensions, the series e n-1.;, 0 eyn (f — k)
would eventually be defined in an extension of T. Hence vertical stability means that we
have to make sure that e,n(f — k) is not horizontally instable for any k € N.
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8.2.1 The criterion for new monomials

We start by introducing a new notation. For all ¢ < n and all f € TZ we define the exponential
depth of strength ¢ in T by

min{k € N| f —k € dome,;} ifthereisakeN:f—Fkecdome, inT,

™ i,’Jl‘f =
00 otherwise.

ExAMPLE 8.2.1 We consider series from the field T = C[[£;]]. Let L =1,. First notice that
the exponential depth of strength 1 of the series L, Lox,... is 0, i.e. m1(Ljz) = 0 for all
j = 1. On the other hand we have 71 7(2) = co. For all N € N we have m; 7(Lz + N) = N. We
remark that for all f € TL such that f! is not a singleton from the set {L;z|j > 0} we always
have 7y 1f = oo.

In the following, we will only consider series f with m, rf = co. Let T DT be of strength n
such that f is in the domain of e, n in T. For eyn f to be a new monomial, we demand that e n f
is a monomial in T. In other words, the series f is neither vertically nor horizontally instable.
Consequently, in a first version, the criterion can be formulated (in ']T) as follows: e n f is a new
monomial iff

VkeN:Vg<af:(g—k,f—g)isnot an e,n-Taylor couple. C1.
Let k e N, g< fand e = f — g. Then (g — k,¢) is an e,n-Taylor couple if and only if the
(1)

sequence (e,n(g — k) - €%)o<; is a Noetherian family. If this is the case, then

(i (g — k) - e (8.1)
is a Noetherian family. From Lemma 7.3.3 it follows that there are series §; € T+ such that
efjl(g — k)&t =(en(g—k)-e) - (1+8).
Hence, sequence (8.1) is Noetherian if and only if 1 = ¢ . (g — k) - €. Thus, if

1 <eun(g—k)-e, (8.2)

then the families are not Noetherian, and e n f is therefore a new monomial. Note that if 1 < ¢,
then this is always the case. Hence we can restrict our criterion to all € < 1. For such ¢ we have
fL = gl. Since inequality (8.2) must hold for all k¥ € N, we can restate the criterion C1 in T as
follows: e, f is a new monomial iff

Vg<f:VkeN:Vnesupp(f—g)t:|n|| < e nlg—k). C2.
We remark that ||[n| < e (g — k) implies

log [|n|| < logeyn(g—k)+logesn(g—k—1)+---.
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Since loge,n(g —k — 1) < logeyn(g — k) for all k, we obtain log|n|| < logeyn(g — k). Thus
criterion C2 is in T equivalent to the following criterion: e,n f is a new monomial iff

Vg<f:VkeN:Vnesupp(f—g):|n|| < eun(g—Fk) Cs.

Since T admits a strictly increasing function l», criterion C3 is in T equivalent to: eyn f is
a new monomial iff

Vg < f:VkeN:Vnesupp(f —g)t: ||| < g— k. C4.

From f1 = gl it now follows that Yk € N : In[[n|| < g—Fk if and only if Vk € N : In[[n|| < f—&.
Moreover, the function l,» from T coincides with 1,» in T. Since supp f C 9, the criterion can
finally be formulated in T as follows:

eon f is a new monomial iff e |jsupp f1|| < f — N. C5.

ExAMPLE 8.2.2 Let n =1 and E =e,. We consider the series f, g with

= F >0

/ T exp; Ex (@ )
1

= F _ >0

g v log, Eox (@ )

Note that f1 = ¢! = Ex. We claim that Ef verifies C5. To see this note that ||supp f!| =
{exp; Ex} and that L||supp f!| = = + 4. Thus

L|jsupp f!|| = +i < Ex — N.

Hence E(Ex + p} 7z) Will be a monomial for every ¢ > 0. On the other hand, Eg does not

verify the criterion C5, since ||supp g'|| = {log; Faz} implies
L|jsuppg!|| = Bz —i=# g — N.
Indeed, one develops E(g — (i + 1)) as a series

E(Ex—(i+1) 1E"FEzx—(i+1))
log; Epx 2! log? By

E(g—(i+1)=FEFz—-(i+1))+

8.2.2 Extending the group of new monomials

Let
Fari={f € TL | mprf =00 A lyn|supp f}|| < f — N},

be the set of positive, infinite series f in T such that e, f is a new monomial. Note in particular
that MM N e nFyr = 0.
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In order to extend T to a transseries field of strength n, the multiplicative group generated
by e nF, 1 does not suffice yet. Take for instance the problem of defining the function 1 for
some ¢ < n. We might consider a series g = e, f + ¢ where f € F,, v and € < e,n f. Then l,ig
would be defined as

/ 1
li(ewn f4¢€) =1yi(ewn f) +1 i(ewnf) €+ Elg)(ewnf) T

Pl{ecall that if l;i (ewonf) € T, then also lgﬁ) (ewonf) € T for all n > 1. However, the expression

1 (eyn f) cannot be defined in T yet, for otherwise its logarithm would be in T', and thus
eyn f € M. We have therefore to add all 1;1- (ewn f)-

REMARK 8.2.3 From 7, 1f = oo and f! = (f — k) it follows that f — k € F,r. Thus
lyn—1.p(ewn f) = eyn(f — k) is a new monomial for all k. Generalizing this result to every a < w”,
we will let 1,(eyn f) to be a new monomial. We have, however, to make sure that this does
not lead to incoherences. In particular, we have to make sure that l,(e,n f) is not a series with
non-zero remainder or leading coefficient different from 1.

LEMMA 8.2.4 Let f € For and a < w". Suppose that T = C[[9N]] is of strength n and that
lo(ewn f) € T. Then egn(f — k) € T for some k € N and 1, (eun f) € M.

Proof: Let ag, ... ,an—1 € N be such that o« = w™ ta,_1 +---+ag. For i <n —1 we let

= w" tay g + - Fwlay 4 W

Since T is of strengh > 1, we have
lw o la(ew”f) = 1a1 (ew”f) —ap € Ta

hence lo, (eon f) € T. Applying 12,... 1,01, we inductively obtain lo,(eon f) € T for all
i <n— 1. In particular, this implies eyn (f — an_1) € T.

To show the second assertion, we assume that e ;h is a monomial for all ¢ < n and all
0 < h € Tl. Note that this is true for n = 1 which therefore provides the initial step of the
following inductive argument.

Note that f € F,, 1 implies that for all a,—1 € N we have f — a,—1 € F, 1, hence that
lyn-1q,_, (€un f) is a monomial. We therefore only need to show the lemma for a@ < w™!. Let
keNand g =1 n-24(eonf). Thenln-1g =1, n-1(ewnf)—k = eun(f—1)—k. Since e,n(f—1)—k
has no infinitesimal part, we conclude that g = e n-1(eyn(f — 1) — k) is a monomial in 9. We
can repeat the same argument for

lw”*3~an,3 © lw"*2~an,2 (ew"f)

lwn74,an74 (0] lwn73,an73 (o] lwn72,an72 (ew’ﬂ f)

and so forth. This shows that l(eyn f) € 9 for all o < w1, O
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By Remark 8.2.3 the group of new monomials must contain the multiplicative group gener-
ated by the set

{la(ewn f)|la <w™ N feFyr}

However, the multiplicative closure of this set is still too small. Let again g be a series in the
extended field with leading term 1, (e n f), i.e. for a series € < 1, (ewn f) we have g = 1o (eun f)+e.
In order to define 1 ;g using Taylor-series developments, we need

lilo (e f)
l;ila (ewn f)
IEJ la (ew” f)

The derivatives of 1, are not captured by the multiplicative closure of the above set. We
therefore need the closure under l:ﬂ- as well.

Finally, we define the set of new monomials 91, T as follows. Recall that for any countable
ordinal number o we have 1,z = [I5-0 1/1pz. We let

N
N1 1= {ngl(ewnﬁ)m INENAVISIS N :oq <w,m €Z*, fi € fnm} .
=1

REMARK 8.2.5 Note that 0 NN, r = 0. To see this, we remark that if there was some

m =[] 1, (ewn fi)™ € MMM, 1,
=1

then logm € T, and thus djogm € M. But then there are f € F, 1 and a < w™ such that
Ologm = la(€un f). By Lemma 8.2.4 this implies e (f — 1) € M, which contradicts f € F, T.

Since M, 1 does not contain the monomial group M, we have to add 9 and define the
e n-extension of M by M, _,, = M- N, .

REMARK 8.2.6 First we remark that for all o < w™ and all f € F, v we have

_ l/a(ew"f)
la(ew"f) - 1;+1(ew"f) € mn,’ﬂ‘-

Thus the multiplicative group generated by the set {1, (e, f) | < w, f € Fp, 1} is contained in
My, 7. Furthermore, if we fix a countable ordinal v < w" with

Y=w""ap1+ o Fwha
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where 0 < a; and 0 < a;41,... ,a,_1, then for all & < w'*! we have

Liya(ewn f) =1aoly(ewn f) € My .

Thus I, ,(eyn f) and 1;(ewn f) are elements of M, T and

Yt+a

ew”f H 1,3 Ol ew"f) (l"/(ewnf)) € mn,’ﬂ"

n—1

for all o < W' < w an_1+ - +w'a; < w". In other words, My, has the desired closure

properties.

ExXAMPLE 8.2.7 In the case n =1, welet £ =¢, and L =1,. Then a < w is either an integer
or w. If a € N, then

L(Bf) = (Bf - B(f = 1)+ B(f =+ 1) = po——pm

for series g1,--- ,9a € F1,7- As in Remark 8.2.6, we can write each Fyg; as L,E(gi — 1)/L/Egi.
If & = w, then l/aEf = L'Ef. Hence from L' Ef = 1/E f we then obtain

N
Mt = {H(E/fl)nl INeEN AVIKISN:meZ' fie .7:1,11‘} .
=1

Let us summarize the three important sets defined in this section. Recall that T = C[[91]]
is of strength n. Then

For = {f€TL |murf =00 A ly|supp f!|| < f — N}
N
Npr = {Hl;l(ewnfl)”l INEN AVIKISKN:oq<w,m eZ* fie fn,T}
=1
Dﬁewn = M-N, 7

8.3 The group structure of the extended set of monomials

The next step after having defined the set Mi¢_,, is to define a multiplication and a total ordering
on this set such that M, , is a totally ordered, multiplicative group containing 9. We start
with the multiplication. Let N, M € N, and for all 1 <1 < N resp. M let my,n; € Z, oy, 5; < w"
and f1,9 € Fpr. Let m,n € N, 1 with

M N
m= H 1:1; (ewn f1)™ and n= H llﬁz (ewng)™
=1 =1
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For M <l <M + N we let

my n—M
o = Bi_u
fi = g-m-

Then for m,n € M, T we define m - n and mte My, by

M+N

m-n = H l,al (ewn fi)™
=1

M
m_l = H 1:311 (ewn fl)_ml .
=1
It M = 0, then we let m = 1. This defines an abelian multiplication on N, r. Note that this
multiplication defines a group structure on 9, 7. For a,b € 9 and m,n € N, T we let
(am)-(bn):=ab-mneM_,.

Hence M, is a group which extends the group 9.

Next, we define the total ordering. We start by defining an ordering on N, r. Let f,g € Fp 1
and «a, 3 < w™!, then we let

. ifg> for
lﬂ(ewng) > la(ew"f) = { if f =g and 8 < a.

Note that > totally defined on

{la(ewn f) [ <w™ A f € Far},

since for every a < w™ there are a € N and & < w™ ! such that &« = w® 'a + & Then
lo(ewn f) =la(ewn (f —a)), where f —a € Fy 1.

REMARK 8.3.1 Let us explain why > is the canonical choice for an ordering of the set of
monomials 1,(e,n f). Suppose that f < g are series from F, 1 and that a, 3 < w™ 1 are such
that 1 (ewn f) > 1g(ewng). Let a;,b; € N be such that

o = wn72an72+"'+ao
B = W Pby_g+ -+ by
We let fori <n—2
G = W lau o+ +w (a;+1)
Bi = W' Pbygt o+ (b + 1)
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Since log is strictly monotone, we obtain
13, (ewng) —bo <lg, (ewn f) — ao.
Note that 15 (ewng) and lg, (eyn f) are monomials. Hence
13 (ewng) <la,(ewn f).
Inductively applying the strictly monotone functions 1,; (where i < n — 2) leads to
15, (ewng) <la,_,(ewn f).

Applying 1 ,n—1 yields e,n(g — 1) < eyn(f — 1), which implies g < f. The asymptotic behaviour
of iterated logarithmic functions provides the motivation for the definition in the case f = g.

Let 1 # n € M, 7. Then there are N € N* and n; € Z*, f; € For, ay <w" for 1 <1< N
such that

n= Hllal(ew"fl)m'
=1
To each v € {Ig1(ewn fi) |1 SIS N A B < oy}, there is a set

S(0) = {(1,8) |6 =lgs1(ewn i) A TSI N A B < ay).

We let

Ny = Z ]

(1,B)ES(v)
o* = max{v|n, # 0}
n* = Ny

Then we let n = 1 iff 0 > n™*.

REMARK 8.3.2 We motivate again our definition. Suppose that we have a logarithmic function
on 9, v. Then from the product rule we obtain

N

logn = Z n; - log 1;1 (ewn fi)-
=1

The support of this series is contained in the set {lg1i(ewnf;) |1 < I < N A § < oq}. The
leading term is —n*v*. This together with logn > 0 < n > 1 motivates the definition of the
ordering.
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ExAMPLE 8.3.3 Let a < w" and f € F,7. Then ly(eynf) is by Remark 8.2.6 equal to
I (ewn f) 11,41 (ewn f) . We have to consider

(NS {lg+1(ewnf) ‘ﬂ <o+ 1}

Note that S(v) = 0 if and only if 5 < a. Thus v* = l,41(eynf) and n* = —1. Hence
la(ewnf) > 1.

PROPOSITION 8.3.4 Let n,m € N, . Then n,m >~ 1 implies nm > 1.

Proof: Let n* < 0 be as in the definition of n > 1. Similarly, we let
My = Z mi,
(1,8)€S(r)
and * = max{r |my # 0} and m* = myp+. Then m* < 0. The proposition follows from

0> m*,n*,m"+n* a

Finally, we have to define an ordering on M, _,,. Let a € 9 and n € N, . We consider the
case a # 1, for otherwise we have already defined the ordering. As in the definition of > on
My, T, we assume that

N
no= Hlill(ew"fl)m
=1

*

0 = lﬁJrl(ew”fl)'
Let n* = ny+. There are a < w" ! and g € Fn1 with v* =1, (eyn f). We let

an =1
PN a>1>nand f <l

loga
*

Y
[

an

nx=1>aand f >l 1c;ia ,
with equality iff 1 = a = n. Note in particular that loga € T', thus that 1, (log a/n*) is defined
in T. Hence the conditions in the definition can be verified in the exponential extension of T.

REMARK 8.3.5 We have chosen this definition with a similar motivation as in the case of the
ordering of M, 7. If a,n > 1, then we will let an > 1. Similarly, if 1 > a,n, we will have 1 > an.
In the cases n = 1 > a and a >~ 1 > n we have to give a separate condition in order to decide
whether 1 > an or an > 1. Also, this condition must be such that we can verify it in T already.

Clearly, if a logarithm is defined for the product an, then 1 < an if and only if 0 < log a+logn.
According to Remark 8.3.2, the leading term of logn is —n*lgyi(e,n fi). Since it is different
from the leading term of log a (this follows from m,, 1 f = 00), it suffices to compare log a/n* and
lg41(ewn f). Since T is of strength n, the functions which are necessary to define these series
exist. This motivates the definition.
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PROPOSITION 8.3.6 For a,b € 9 and m,n € N, 1 we let
an=bm o abl.aml =1,

with equality iff a = b and n = m. Then = is a total ordering on Me_, which is compatible with
the group structure.

Proof: We have to show that am > 1 and bn > 1 implies abmn > 1. Before going through the
different cases of the definition, let us fix some notations. Let v*, n* and f be elements of N,, T, Z
and F,, T respectively as in the definition of an > 1. Then, similarly, we have w* € N, r, m* € Z
and g € F,, T with respect to m. Also, we remark that we only have to consider monomials such
that the inequalities are strict. Finally let 3*, £* and h be the corresponding elements of 9, T,
Z and F,, 1 with respect to mn . Then there are ordinals 3,~,d such that

= lga(ewnf)
= L (ewng)
= 15+1 (ewn h)

o~ 8 o

We distinguish three main-cases relative to the definition of an > 1 and in each main-case
three sub-cases relative to the definition of bm > 1.

Case I: a,n > 1.

Sub-case.1: b,m > 1. Then ab > 1, and by Lemma 8.3.4 we have nm > 1. Hence the claim.

Sub-case 1.2: b = 1 and m < 1. Then

1
g < Ln ( Og*b>
m

and ab > 1. If v < o, then £* = m* and 3 = w. In particular, h = ¢g. Thus 0 < log a implies

log b log ab
h = lw" lw” )

and we are done. If v > tv, then k* = n* < 0 and thus nm > 1. This also shows the lemma.
Finally, if v = 1w, then we have to distinguish two cases. First, if 3 = v, then k* = m* + n* and

f =g =h. Thus

0< log ab _ loga+logb < loga+ logb'
Jo* n* + m* n* m*

Otherwise, we have n* +m* = 0 and 3 < v. Note that in this case we must have h < g, hence
k3 < mo for all k,m. Letting m = k* yields

log b log ab
h < < lw" . < lwn )

since 1 < a. This finishes case 1.2.




172 CHAPTER 8. EXTENDING TRANSSERIES FIELDS OF POSITIVE STRENGTH

Sub-case 1.3: b < 1 and m > 1. Then nm > 1. In particular, this means g < h and k£* < 0.
Again, the lemma follows immediately if ab = 1. However, if ab < 1, then log a and — log b have
a non-empty common truncation. In other words, djog ap < 010g 5. Hence

logab loghb

k* m*

Then the hypothesis of this case and the fact that 1 is strictly monotone imply

This finishes case 1.3 and thus case I.
CaseIl: a > 1 and n < 1.
Sub-case I1.1: b,m > 1. This case is equivalent to 1.2.
Sub-case 11.2: b > 1 and m < 1. Then ab > 1 and mn < 1. If v < to, then k* = m™* and

h = g. In this case
h—g<lwn <—10gb) <1wn <10gab> .
m* k*

Similarly, on treats the case v < v. If v = w, then f = g = h and h* = n* + m*. In this case
we obtain
log ab
h <lyn
- (5)
as in case 1.2.

Sub-case 11.3: b < 1 and m > 1. Suppose that ab > 1. We are done if mn > 1. So let us
suppose mn < 1. Then h < f and k* > 0. Notice that the hypotheses imply dj55q > D1og 6, and
thus loga =< logab > logb. Then

logab _ loga
T o

h< f<lyn (k’i“> SE <bg—“[’>
n* k*

If 1 < mn and 1 > ab, then on the one hand, we obtain h < f = g and k* < 0. On the other
hand, as in case 1.3, the series loga and —log b have a proper common truncation and thus

Applying I ,» then yields

1 log ab
oga _ loga

Again, we obtain
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It remains the case ab > 1 and 1 < mn, which can be treated similarly. This finishes case II.
Case III: a < 1 and n > 1.
Sub-case I11.1: b,m > 1. This case is equivalent to I.3.
Sub-case I11.2: b > 1 and m < 1. This case is equivalent to I1.3.
Sub-case I11.3: b < 1 and m > 1. This case is equivalent to II.2.
Showing conditions PO1 — PO3 is now straightforward. This finishes the proof of the
proposition. O

8.4 Logarithms of positive strength on the extended field

Recall that T is of strength n. Fix an integer 0 < m < n. Then T is of strength m, too. The
field T ., exists therefore.

Of the programme outlined in Section 8.1 we have so far covered the first two points, i.e.
we have defined a set M, ,, of new monomials and we have defined a group structure and a
compatible total ordering on the set. We use this group to enlarge T to the field T¢_,,. The
remaining two points of the programme now consist of defining functions log,1,,,... ,l,» such
that the structure

(Te_m,log,... 1)

is of strength 4 for every i < n.

Before we start the construction of the functions l,; (where 0 < i < n), let us explain the
method of the construction.
In a first step, we will define a function

log : T;;m — Te m

such that (T._,.,log) is a transseries field. Then we will show how to define a partial function
1, on smlwm which has a large enough domain to allow a Taylor-series like definition of 1,, on the
set (Te,m)d. In other words, we show that the case i = 0 of the following two conditions holds:
(Te,m1)i (Te_m,log,... 1) is of strength i.
(Te,m 2); There is a partial function 1 i+1 : smlwm — ']lem such that for all a € M,
e if q, l,ia € doml i+1, then 1 41 0l a0 =1 410 — 1,
e Jk € N: ais ] i-confluent at order k and 9 ; o € doml,i+1.
If the two conditions hold for i = 0, then we say that (Te_m ): holds. Note that condition
(Te,m2)s implies TH1 and T'!3 for Te,_m. From the first step it will therefore follow that

(Te_m )o holds. The results about transseries fields for positive strength then imply that we can
define a function

Lji+r : (Tewm); — Teym

such that (Te_,.,log, ... ,1,+1) is of strength i+ 1. Hence (Te_,. 1)i41 will follow from (Te_m )s-
We will use the fact that T is a transseries field and the construction of 9 _,, to show that also
(Te_m2)it+1 follows. Hence, our work breaks into two main parts.
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e Showing that (Te_.n )o holds.
e Showing that (Te,m )i+1, if ¢ <n and if (Te,.n )s holds.

Once this is done, we will obtain the chain
(Tem,log) — -+ = (Te m,log,... 1) = = (Te m,log,... lun).

This eventually leads to a field Te_,, of strength n.

REMARK 8.4.1 To show the 1 +1-confluence requires some care, and indeed, we will see that
the proofs of the condition are different in the cases ¢ < n and ¢ > n. On the other hand, the
1i-atomic monoials will prove to be appropriate to define a function 1 +1. Hence the condition
(Te,m 1)i+1 will be used to show (Te,m 2)it1-

8.4.1 Extensions of positive strength are transseries fields

We start by defining a function log : M, _,, — Te ., and use this function to define a function
log : T, — Tem-

Let f = cd(1+46) € TS where @ = 77 € CM,_,, is the leading term of f. Let a € 9 and

e,m

n € N, 1 be such that 9 = an and n = Hf\il llal (ewm f1)™. Then we let

N
logn := —Z Z ny - lgy1(ewm f1)

=1 <y
logd := loga-+logn
log f = logd+logc+1(d).

LEMMA 8.4.2 Let T be of strength n > 0. For 0 < m < n let Te_,, and log be defined as above.
Then

(1) If m € Me ., is such that Vogm & M, then there is a series g € Fpr and an ordinal
B < w™ such that Vogm = lg11(€wmg).

(2) (Te,m,log) is a transseries field. In particular, the set Dﬁlwm is log-confluent, and if for
me Dﬁlwm we have Vogm & M, then m is log-confluent at order 2 and V1og, m = lay2(€wmg)
for some a <w™ and g € Fp 1.

Proof: Throughout the proof, whenever we write m = an, then we mean by that a € 91 and
N
n =[], (eom fi)™ € M.
=1

We start with (1). We have either djpgm € 9 Or Vogm & M. In the latter case we have
Ologm = Ologn for some n € M, 7. From the definition of logn it follows then that for some
1 <1< N there is an ordinal # < a; < w™ such that 0jog n = lg41(€wm f). This shows (1).
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(2) We have to show that Te_,, is an exp-log field and that log 9. ., C T!_... To show the
first point we remark that from the definition of log we obtain that for all ny,na € M, T we have
log(n; ng) = logny + logny. Since T is an exp-log field, this means that for all my,my € M, _,,
we have log(mj ma) = logm; +log my, thus that log(fg) = log f +logg for all f,g € TS . This
shows el.

As for e2, it suffices to show that log is monotone on N, r. But this follows directly from
the definition of > on M, T.

We have to show that for all f € Te_,, in the domain of exp the inequality f+1 < exp f holds.
For f = fl, this follows from the definition of the basic exp-log structure (see Example 2.1.3
in Section 2). It remains to show the claim for infinite series f. Let g € (Te_, )& such that
f =logg. We have to show log g +1 < g. We distinguish the cases 01,54 € 9 and Vjo5 4 € My T
Let an = 04, then in the first case we have a > n and a > loga. The latter holds since T is
an exp-log field. Moreover, we have loga =< logg. In the second case, we have n > a and
n > logn, where the last inequality follows from the definition of = is 9, . Hence, n < logg.
In both cases we have

g X 0y =an > logyg,

which shows the inequality and thus e3. Hence T, _,, is an exp-log field.

T1 and T3 hold by construction. Since loga € TT, we have to show that logn € Tlmm. But
for all n € M, T we have

supp logn C {lp(epm f) |a <w™ A f € Fpnr} > L

This shows T2. As for T4, we remark that the case 955 m € 9 follows from the same property
in T. Hence let 0jo5 m & 9. Then 0195, m = 1g12(ewmg) is log-atomic. This shows T4. O

Let f € (Te,m)d and 9y = an, where a € 9 and n € M, 7. By Lemma 8.4.2, the series

f is log-confluent. We will use this fact to define 1, for f. To do so, we distinguish two cases,
Vlog £ € M and 0y ¢ € M. In the first case Vjpg f = Djoga € M. Since T is of strength 1, there is
a k € N such that

e f is log-confluent at order k,
® Dlog, f € doml, and 1; (Olog, 1) € T.

We let R < 1 be the remainder of logy, f, i.e. logy f = 01og, s+ R. Then (0144, f, R) is a l,,-Taylor
couple and we let

lf=Fk+ ﬁw (Dlog,c fo R)

In the second case, there are f = w™ 1 b,,_1+---+byand g € Fm,T such that for some R < 1
we have log, f = lg12(ewmg) + R. Then we let

= W by e w e (b 1)
= ls(ewmg) = (bo +2)
= 2+7, (010g2 fs R).

=

L, (lﬁ+2 (ewm g)
L,

~
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Note that by Remark 8.2.6 we have

1:.0 (lg+2(ewmg)) € Ny,

hence that (lgya(ewmg), R) is a l,-Taylor couple. Thus the definition of 1, f is correct. We
remark in particular that (I, f)! is a monomial of the form L, (e,mg), where

V=" g4t we

is an ordinal with g; > 1. Hence (Te,.m )o holds.

8.4.2 The logarithmic functions of strength < m

The properties of the transseries field

<Tewm ) 10g>

shown in Lemma 8.4.2 provide the initial step for the inductive process in which we define
functions log, ... ,1,m-1 such that (Te_,.,log,... 1 m-1) is of strength m — 1. Moreover, the
structure will have properties which allow to continue a similar process beyond m — 1. This
will be done in the next section. Here we are only concerned with logarithmic functions 1 of
strength ¢ < m.

The inductive step will require several assumptions on T, _,, and the function 1. These
assumptions will — as in the case i = 0 — make sure that the function 1 +1 can be defined. We
will, however, have to make sure that the new structure (Te_,,,log, ... ,1,+1) possesses the same
properties to make the induction work.

We say that the inductive assumptions (IA<™); hold for Te_,, in the case i < m iff there
are functions log, ... ,1 such that:

(IA™); For all j < i the inductive assumptions (IA<™); hold.
(IA1<m)i Ifme Dﬁlwm is such that 0jog m & M, then there are g € F,, 7 and a < w™ such that

a = wmflam_l—l-----i-wiai (0 < ay)

la (ewmg).

Dlwim

(TAS™); (Te_m,log, ... 1) is of strength .
(IA5™); In particular, for all m € Mm! .. we have

o if Djpgm & M, then m is 1 i-confluent at order 2,
® if Djpgm € M, then there is a k € N such that 0, ,m€ dom]l i+1 in T.

Lemma 8.4.2 implies that (IA<™)¢ holds for Te_,, . Now assume that (IA<"); holds for
(Te mslo, -, 1i). Before we show that then (IA<™);41 holds for Te_,., we have to define a
function 1 i+1. Let f € (Te_,. )& with m = 9;. As in the case i = 0, we have to distinguish the

two cases Djogm € M and Vogm & M.



8.4. LOGARITHMS OF POSITIVE STRENGTH ON THE EXTENDED FIELD 177

® Vjogm € Mt : From (IA<™); it follows that for some k € N we have 0, m € doml i+
in T. Since 9 ;, w = 01, f, this means that for a series ¢ € ’]I‘(Iawm and a monomial
a € domlit1 NN we have 1 i, f = a+ €. Then we let

Lot f=k+T_,, (ac).

® Vjogm & M : From (IA<™); it follows that the monomial 0, f =01, mis of the form
lo(ewmg) where g € Fopr and @ = w™ Vay, 1 4 -+ w'a; with ¢; > 1. Let e € T} be
such that 1,iof = lo(eumg) + €. Then we let

lyitif =2+ ,sz#l (la(ewmg),e).

Note in particular that

lwi+l (la (ewmg)) = lw’”*l am—1+-Fwitl (ai+1+1) (ewmg) — a5
/ 1
L (la(ewmg)) =

g lats(Cwmg)

are elements of M, _,, — N and M, _,,, respectively.

LEMMA 8.4.3 Let i < m. If condition (IA<™); holds for (Te_m,log,... 1), then condition
(IA<™);11 holds for (Te_,.,log, ... l+1), where 1 w1 is the function defined above.

Proof: Condition (TA5™);41 clearly holds. Condition (IAF"™);1; follows directly from
conditions (IAT™);, (IA5™); and the definition of 141 in the case Djogm & M. Hence TEH11
and T**t13 hold. In order to show T2 we let f € domegir1 with supp f! < , egit1f. Then
there is a series h € Te_,, such that f =1 i+1h. Let m = 9;. We have to distiﬁdguish the cases
Dlogm € M and Vjog m & M.

First assume that 0jpgm € M. Then by (IA<™); there is a & € N such that h is 1,-
confluent at order k, and we can assume that k is large enough such that 1. ,h = a + ¢ where
aeMNdoml, i+1 and € < 1. Then by Lemma 7.4.7 and the fact that T is of strength i+ 1, we
have

/
supplyitia = 1ia = Ry ., (a,¢).

Hence supp f! = (suppli+1a)! []supp leiﬂ(a, ). We apply Fact 7.6.4 and obtain ¢ = 0.
Whence f =k +1,+1a € T, and we can apply T?2 for T. We obtain e_i+1 f € MM C Me_ - This
finishes the case 9155 m € M.

Now let us assume that djogm & M. By (IA<™); the series h is 1 i-confluent at order 2 and
0, ,h = lo(eymg) for some g € Fpor and o = w™ L a1+ +wia;. Let 10k =14(eumg) +¢,

then

fT =l m-1 A1+ it (ai+l+1)(ewmg) = la(ewmg)
fl - lei+1 (la (ewmg)a E)
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Again Fact 7.6.4 shows that £ = 0. Thus we obtain f = l5(e,mg) —a;. Since f € domegi+1, this
implies

€it1 f = Cuitl (léz (ewmg) - ai)
= lwi -a; Cwitl 1@ (ewm g)
= L(esmg)

where
y=w" g+ W T g W = o

This shows e i+1f = lo(ewmg). Hence we obtain e i+1f € M, ,, and therefore the case jogm &
oM, thus (IA5"™);41 and T#H12.

Finally, we remark that if 0jpgm € 9, then the 1,i+1-confluence follows from Ti+24 for T.
If Olog m & M, then (IA3<m),-+1 follows directly from the definition of 1 i+1. This finishes the
proof. O

REMARK 8.4.4 From Lemmas 8.4.2 and 8.4.3 it follows that there are functions 1 for ¢ < m—1
such that (Te_,.,log,... 1) is of strength i < m — 1. Hence we have a chain

(Te m,log) — -+ = (Te m,log,... i) = - = (Te m,log,... Iyn-1).

Moreover, the inductive assumption (LA <™),,,_1 allows to define a function l,m as before. Note
that always 9y_,, r € 9 and that (Te_,, )% is therefore l,m-confluent. We will use this fact in the
following section to extend the chain beyond m — 1.

8.4.3 The logarithmic functions of strength > m

We show now how to add functions ln,... ,l,m to the field Te_,, such that for all i > m the
structure (Te_,.,log, ... 1) is of strength i. We start by defining a set of inductive assumptions
(IA>™); similar to the case i < m.

We say that for (T._,,,log,...,1,:) with ¢ > m the inductive assumption (IA)?m holds iff

(IA(% ™); If m < i, then for all m < j < i the inductive assumption (IA>™) ; holds.
(IA%m)z’ (Te,m )L is 1 i-confluent.

(TA5™); (Te_m,log, ... 1) is of strength i.
(IA?m)i For all f € (Te,n )3, there is a k € N such that 9 , ;€ doml,it1 NN

As in the case i < m, our inductive process breaks down into two parts:

e Showing that (Tc_,.,log,... ,l,m) is of strength m.

e Showing that for all m < i < n such that (IA®™); holds for Te_,., there is a function
lyit1 on (Te_,. )L such that (IA>™),;11 holds for (T,_,.,log, ... 1 it1).
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LEMMA 8.4.5 Let 0 <m < n and T of strength n Let T, ,, be defined as above. Let 1,m be the

function defined in Remark 8.4.4. Then (Te ..,log,... lom) satisfies the inductive assumption
(IAZ™),,.

Proof: In view of Remark 8.4.4 it suffices to show that T, _,, is of strength m. In fact, we
only need to show T™2.

Fix a series f € dome,m with supp f* <l m_1 €wmf. Then for some h € T, we have
[ =lumh. The series h is 1,m-1-confluent at order k¥ € N such thatd, , »= lym-1.4(eumg) for
a series g € Fp, 1 and an integer a > 0. Let € < 1 be such that 1 m—1.,h = 1 m-1.,(eymg) + ¢,
then from the definition of 1, it follows that

lwmh = k+ﬁwm(lwm*1-a(ewmg)75)
g+ (k‘ — a) + lem (lwm*La(ewmg)? 5)'

We claim that € = 0. This follows from Fact 7.6.4, if we can show that

supp g > Rim (lym=1.4(ewmg), €).
Notice first that from g € F,,, 1 it follows that

Vj > 0: L |supp gt < g — j.

In particular, for j = a + 1 this implies

Isupp g*[| < L1 (Lym—1.q(em))-
But from

lym—1n < logn < n-logn-logoyn---
we obtain with n =1,m-1.,(e,mg) that
supp gt > L (lym-1.a(ewm g)) = Rim (Lym-1.q(e0mg), ).

Hence the same holds for supp g. Now ¢ = 0 implies lymh = g + (k — a) € T, thus f € T. From
T™2 for T it then follows that e,m f € 1. This shows the lemma. O

Now we assume that for m < ¢ < n we have functions log, ... ,1, such that the inductive
assumption (LA=™); holds for the field T,_,,. We define a function 11 on (Te_,, )% as follows.
Let f € (Te, )% and k € N such that 0, 5 € domlirs N This is possible by the inductive

assumption (IA>™);. Then there is a series ¢ € Tgw such that L, f =01, r+e. We let

m

lwi“'lf =k+ ﬁwi+1 (Dlwzﬁkf’ 5)'

LEMMA 8.4.6 Assume that for the integers m < i < n the inductive assumption (IAZ™);
holds for (Te_m,log,... ,l,i). Let the function l,i+1 be defined as above. Then the inductive
assumption (LAZ™); 41 holds for (Te_,.,log, ... ,Lt1).
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Proof: From the definition of 111 it follows that for every k € N and every f € (Te,m )L
the leading monomial of 11,/ is an element of 9. Hence (IA7™);41 and (IA3™);11 hold,
since T is of strength i 4+ 1. We only need to show that T ,, is of strength i + 1, and to do this
it suffices to show T*t12. Let f € dome,i+1 with supp f' <1 i+l f. Then there is a series
h € Te,, with f =1,i+1h. Choose k € N large enough such that a = 0, n € doml,iva NN
and 1 i+1a € M. Then for ¢ < 1 with 1 i ,h = a + ¢ we have

f=liria+k+ 'leiﬂ (a,€).

Hence f' =Ry .., (a,¢). Fact 7.6.4 implies ¢ = 0. Thus f = l,i1a 4+ k € T. Applying T*+'2
for T finishes the proof. O

We summarize the results in the following

PROPOSITION 8.4.7 Let n,m be integers with n > 0 and 0 < m < n. Let T be of strength n
and Te_,, be defined as above. Then there are functions 1, for i < n such that

(Te,m,log, ... 1)
is of strength i. Moreover, we have the following chain:

(Tem,log) — = (Te n,log,... 1ym-1)
[

(Tem,log, ... ,Jym) == (Te_n,log,... lun).

In particular, the field Te_,, is of strength n.



Chapter 9

Exponential closures of positive
strength

We can now apply the tools developed so far in order to construct a field of generalized power
series with exponential and logarithmic functions of positive strength. These functions will be
total on the set of positive and infinite elements. We show some properties of such fields.

9.1 Properties of extended fields

Throughout this section we fix a field T = C[[9]] which is of strength n > 0. By Proposi-
tion 8.4.7, the e :-extension of T is of strength n for every ¢ < n. Starting from T, we can thus
generate ever larger transseries fields. Before we use these extensions to construct e,n-closed
fields, let us study some properties of e,n-extensions.

Recall that for all f € T we have defined a truncation t; < f which defines a new monomial
ety € M, 1, if m, 7f = 00. This does not mean, however, that the function e,n» is defined for
fin Te_,. But — as the next lemma shows — using finitely many e_i-extensions with i < n is
a strong enough tool to eventually ensure f € domeyn in a field T>T.

LEMMA 9.1.1 If T is of strength n > 0, then for all f € T4 :

(1) If m,1f = o0, then ﬂ-n,Tewnf < 0.
(2) If tpnf < oo and 11,  (ewn(f —mnrf)) =0, then

TnTe_,_, f=max(0,m,f—1).
(3) If m1f < oo, then Ty 1., f = max(0, 7y 7f —1).

Proof: (1) Let f € TX with 7, 7f = co. Let g < f be the maximal truncation with g € F,, T,
and let € € T with f = g4 ¢. Then g € dome,n in Te, . and

lonllell # g —N.

181



182 CHAPTER 9. EXPONENTIAL CLOSURES OF POSITIVE STRENGTH

The assumption 7, vf = oo implies that (¢ — j, ) is not an e,n»-Taylor couple for j > 0. Assume
for a contradiction that T, Te_n f = oo. Then from g — j € dome,n in Te_, it follows that then
for all j > 0 the sequence

(el (g = 1) - Mo
is not a Noetherian family. Lemma 7.3.3 implies 1 < e;n (g —j)-e for all j > 0. Hence
VjZ0:lell <eunlg—1)

From e, . (h — 1) < e,nh for all series h, we now obtain ||| < e,n(g — j) for all j > 0. Hence
lon el < g — 7 which implies ln|le|| < g — N. This contradiction shows (1).
The assumptions imply e n (f — m,1f) € T and

epn—1(ewn (f = 1 f)) = ewn(f — (mprf — 1)) € Te 1

This proves (2). The part (3) follows from (2) using the fact that for all h € T we have
WO,Texph = 0. d

We will eventually consider chains of extensions. More generally, we will have families of
totally ordered, multiplicative groups (9;);e; which are totally ordered by set-inclusion such
that for all i € I the fields C[[9;]] are of a common strength. Recall from Proposition 2.3.9
that if this common strength is 0, then C[[lJ; 9;]] is a transseries field. We generalize this
proposition to fields of positive strengths.

PROPOSITION 9.1.2 Let v be an ordinal and (MM;)i<q a sequence of totally ordered, multiplica-
tive groups such that for some n > 0
o Vi< j<a:M isasubgroup of M,
o Vi < «: the field T; = C[[]] is of strength n,
o Vi< j<a:T;isan eyn-lyn-substructure of T;.
Let Teq = ;oo Ti and To = C[[U;, Ml]. Then there is a function lyn : TS — Ty such that:
(1) T, is of strength n.
(2) If there is a cofinal set J C « with Vj € J : Mjp1 = (M)e,n, then for all f € (Teo)d:
Tn,Teof < 00.

Proof: (1) First, we have to define a function l,» on TZ. Let f € T2, then there is an i < «
such that the leading term 7 of f is a series in T;. Let R be the remainder of f,ie. f =7+ R.
Then we let 1,n7 as in T;, and (7, R) is a l,»-Taylor couple in T,. We let

lon f =T, (7, R).

This definition is coherent by Chapter 6. This shows T™1 and T™3. Now let f € dome,n in
T, and h € T, such that f =1,~h. Suppose that supp fl <1n1 ewn f. Then for m = 0, there
is an integer k € N such that

n:=0 h = alwn—lkm € doml,» NN,

wn—1.x
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for some ¢ < a. Then for 1 ,n-1.,h = n+ ¢ we have l,nh = 7j_, (n,€), and by Lemma 7.4.7 we
have

supplonn = Ry, (n,¢).

From Fact 7.6.4 it follows that supp f* <l n_1 €wr [ implies € = 0. Hence f = lnn+k € T;.
Condition T™2 for T; then shows e,»f € MM; C M, hence T™2. Condition T™4 follows from
the same condition for T. This shows (1).

(2) Let f € (T<o)L, then f € T; for some ¢ < . Pick j € J with 5 > 4. Then by
Lemma 9.1.1, we have 7Tn’11‘j+1f < 0. O

Finally, we consider questions concerning the size of the support of series in the e,n-extension
of T. Again, our present results will generalize results about the support in exp-extensions Texp.

PRroOPOSITION 9.1.3 Let T = C[[9N]] be of strength n, and let k1, ko be cardinal numbers such
that C and M have cofinal cardinality < k1 and < k2, respectively. Then for every f € Te_, the
support of f has cardinality < max(k1,kK2).

Proof: Let (ag)g<r be well-ordered in 9M,_,,. Then the lemma follows, if we can show that
T < max(x1, k2). For each 3 < 7 there are mg € 9 and ng € M, 1 such that ag = mg-ng. The
sequence (log ag)g<r is strictly decreasing in Te_,,. From the hypothesis about T, we obtain that
the support of each log mg has cardinality < max(k1,#2). Since for every n € 0N, T the support
of logn is countable, we have |supp log ag| < max(k1,k2). We apply Lemma 1.8.5 and conclude
|7| < max(k1, K2). O

ExAMPLE 9.1.4 Let C' =R, i.e. kK1 = Ny. Take the monomial group £, from Section 7.6. We
apply Lemma 2.4.3 and obtain that every series f € R[[£,]] has countable support. Moreover,
we see that applying the extension process (of strength < n) countably many times does not
affect the size of the support of the series. It remains countable.

9.2 Iterating extensions and the closure of admissible fields

We have now all necessary tools to construct a field of generalized power series which has
functions e,» and l,» for some n > 0 which both are total on the set of positive and infinite
elements. As we will see, we can even extend the functions such that they are total on the set
of positive elements.

Section 7.6 provides a transseries field of strength n. Let in the following T be such a field
and let f € TZ. Suppose that f ¢ dome,n in T. Proposition 9.1.1 now suggests how to
construct a field T O T such that f is in the domain of the function e n in T. First, we check
whether m, v f = oo or < oco. If m, 7f = 0o, then we apply an e,n-extension to T, and we obtain
an integer k € N such that f — %k € dome,» in T, ,. More generally, if there is an 7 < n such
that m; 7 f = 0o, then we apply the e_i-extension process to T. We thus find an extension TDOT
such that 7TZ-7:Ef < oo for all i < n. Now Proposition 9.1.1 shows how to choose the extensions
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to reduce all 7, 7 f. Hence after a finite number of extensions, we will obtain a field T O T such
that f is in the domain of e,» in that field.

9.2.1 Cofinal partitions

Throughout this section, let A be a limit ordinal. Recall that the set A is totally ordered by
<=€. Two totally ordered sets S = (5, <), P = (P, <) are isomorphic, in symbols S = P, iff
there is a surjective and strictly increasing mapping ¢ : S — P. Note that ¢ is bijective and
that & is an equivalence relation. We remark that for limit ordinals A1, Ay we have A\; & \g if
and only if A\ = Ao, A set S C A is cofinal in A iff there is no a < A such that S C a. We will
use the following lemma.

LEMMA 9.2.1 Let S C A be totally ordered by <=€. If S = X, then S is cofinal in \.

Proof: Let X < X be the smallest limit ordinal such that S is cofinal in X. If S = )\, then
N =S =)\ hence N =\

Now assume that S 2 ). Let ¢ : S — X be bijective and increasing and ¢ : S — X
injective and increasing. Then ¥ = p o p_1 : A — ) is strictly increasing. We claim that
g1t A\ N) < 9;( A\ XN) for all i > 0. From ranged C X we obtain ¢\ \ N) < A\ N.
Now assume that 9;(A\ \) < ¢i_1(A\ X). Let @ € ¥;41(A\ A'). Then a = ¥(3) for some
B e A\ N) <9_1(A\ X). Since 9 is strictly increasing, this implies o = ¥(8) < 9;(A\ \),
thus the claim.

If X < A, then for a € A\ X the sequence (¥;(«))o<; is strictly decreasing. This contradiction
shows A = \. O

For an ordinal @ and n € N, a function p: @« — n+1={0,... ,n} is called a partition of

a of strength n, or simply a partition, if n is clear from the context. For the limit ordinal A
and a partition p : A — n + 1 we define sets

Sp,i = p_l(’i) Q A (0 < ) < TL)

We say that p is a cofinal partition in X iff S,,; = A for all ¢ < n. By Lemma 9.2.1 the sets
Sp,i are cofinal in A, if p is cofinal in A.

ExAMPLE 9.2.2 Let us give examples in w and w?. We write a partition p: A — n+1 as a
sequence p = (po,p1,-- ). Let n = 2. First let A = w.

pa = (1,2,0,2,0,2,---)
m = (1,0,1,0,1,0,---)
p. = (0,1,2,0,1,2,--)
ra = (1,2,0,1,2,0,0,1,2,0,0,0,1,2,0,0,0,0,1,2,---).
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Then the partitions pg, pp are not cofinal in w, and p., pg are cofinal in w. Let A = w?.
pe = (0,0,...,1,1,...,2,2...,2,2 ..., --)
pr = (0,1,2,0,1,2,...,0,1,0,1,...,0,1,0,1,...,---)
pg = (0,1,2,0,1,2,...,0,1,2,0,1,2,... ,---)
pn = (0,1,0,1,...,0,2,0,2,...,0,1,2,0,1,2,---).

The partitions p., py are not cofinal in w?, but pg and py, are cofinal in w?.

REMARK 9.2.3 Let p: A — n+ 1 be a partition. For a < A\ we let p [4: @« — n+ 1 be the
restriction of p to . Then p [, is a partition of « of strength n. We say that a partition p of A
is strongly cofinal in \ iff for all limit ordinals A’ < A the partition p [y is cofinal in \'. Note
that the partition p; of Example 9.2.2 shows that not every cofinal partition is strongly cofinal.

Every ordinal « is either a limit ordinal, or there are A and n € w such that a = A+ n, where
in the following we allow A\ = 0. (Suppose that this is not the case, then let o be the smallest
ordinal which is neither a limit ordinal nor of the form A 4+ n. Then a must be a successor
ordinal, and o = 3+ 1. But then 8 < « has the same property, contradicting the minimality of
a.)

We let | be the integer such that @« = A + |a| for some limit ordinal A. A partition
p is regular of strength n iff o] = p, (mod n + 1). Hence the regular partition on w is
p = (0,1,...,n,0,1,... ;n,---). Note that regular partitions are uniquely determined and
strongly cofinal.

9.2.2 Closures

Let T = C[[9]] be of strength n. Fix «, an ordinal, and p, a partition of strength n of a. We
define a sequence (’]I‘O”m) B<a of fields of generalized power series over monomial groups M {psB)
with the field of constants C'. Moreover, each T will be of strength n. We let

mPO) .= o, " TP .= C[[mP-0)]]
WP
S TEIY = Cm™ ] (5 <a)
med o= | ) mld TN .= C[[mPN] (A < a, limit ordinal)
B<A

In other words, the field T®A+Y is the e p(s+1-extension of T®A . If T?®PA) is of strength
n, then so is T®A+D), By that we mean that the field T®:A+Y) is equipped with functions
log, ... ,l,n such that <’]I‘<p’ﬂ+1>,log, ..., lyn) is of strength n as done in Section 8.4. I.e. each
step T®8) — TPA+1) requires intermediate steps

T(P:B) Tp.B+1)

TEAHD e (TPAHD Nog oo 1) e oo o (TPBHDe 11 log, ..., lun)
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Similarly, we identify T with its structure of strength n for limit ordinals A\. We use Lemma,
9.1.2 to show that T® is of strength n. Thus T?5) will be an e n-lyn-substructure of TP
for all B < v < a. Therefore, since T is of strength n, so are all T®H) for 8 < a.

We define a set T®<N for every limit ordinal A < a by

T<p7<)‘> = U T<p7ﬂ>
B<A

Note that T®<Y is a proper subset of T®* for every limit ordinal A < a. If p is cofinal in A,
then we call T?<V a closure of T. A closure is regular iff p is regular. Since regular partitions
are unique, we denote the regular closure of T by ’]I‘r<e§, and call it the regular e, n-closure of
length .

PROPOSITION 9.2.4 Let T = C[[9N]] be of strength n > 0. Let p be a cofinal partition of
strength n of the ordinal o . Then

(1) The field TP is of strength n.

(2) If X is a limit ordinal, then functions e,n and lyn are total on (TP<N)*

(3) Suppose that C' and 9 have cofinal cardinality < k1 and < kg, respectively, for some
cardinals k1, ko. If & < max(k1,k2), then for all 6 < « :

|supp f| < max(k1, K2)
for all f € T®A,

Proof: (1) follows from the above considerations. We show (2). Let f € (T®<*)% . Then
there is an ordinal 5 < A such that f € (T@’m);. Since A is a limit ordinal, we have 8+ w < A.
Since p is a cofinal partition, the sets

Sp,i N ()‘ \ ﬁ)

are cofinal as well for all ¢ < n. Thus there is a sequence (7;);jen such that

e << < <A
e for all 0 < j and i < n we have 0 # (741 \ v5) N Sp,i-

Let Tj = T}, From part (1) of Proposition 9.1.1 it follows that we have Ty, S =0 and
k; .= ﬂi’Tlf<OO (0<2'<n).

Let K; = k1 + -+ + k; for all i« < n. Then inductively applying part (2) of Proposition 9.1.1
shows that

iy, | = 0.

Hence f € domeyn in T K, € T{<N . The function l,» is defined as in TN,
(3) follows from Proposition 9.1.3. This proves the proposition. O



9.3. GENERALIZING STRUCTURAL PROPERTIES 187

REMARK 9.2.5 From Proposition 9.2.4 it now follows that the regular e,n-closure of T has
total exponential and logarithmic functions of strength ¢ < n on the set of positive and infinite
elements. Moreover, if for all f € T the support of f is countable (as it is the case in the
admissible field R[[£,]]) and X is a countable limit ordinal, then all series in T.§ have countable
supports.

We can now state

THEOREM 9.2.6 For all n > 0 there are fields of generalized power series ICy, such that there
are functions exp, ... ,eyn and log, ... 1, which are totally defined on (K,)L, with Vi < n :

Vi E (Kn)h: h

eyioeyinf = egin(f+1)
lwi+1 (¢] lwif = lwi+1f -1

Proof: Let C' =R and 9t = £,,. Then the regular e,n-closure C,, of T = R[[91]] (of length
w) has the above properties by Proposition 9.2.4. This shows the theorem. O

REMARK 9.2.7 Note that we can extend Theorem 9.2.6 to all positive elements of K,,. Recall
that R is an exponential field of strength n such that e, » and 1, are totally defined and analytic
on RT. Then for each 0 < f € K] there is a positive real ry and an infinitesimal €¢ such that
f=ry+es Then epnf =7 . (rf,e¢) and ln f =Ty, (rf,€5) are defined.

9.3 Generalizing structural properties

In this section, we generalize results about transseries fields to fields of higher strength. We
work along the same lines as in the case of extensions of strength 0.

9.3.1 Tree-representations in fields of positive strength

We have seen how to define a tree-representation of a series of a transfinite exponential extension
T of a transseries field T (of strength 0). Recall that this only involves exp-extensions.

Let T = C[[9]] be of strength n > 0. Let « be an ordinal and p a partition of « of strength
< n,ie.

p:a—n+1={0,...,n}

Recall that T denotes the field of strength n which results from the extension process deter-
mined by p:

T — T®0) — T Tl T

€.p(0) €.p(1)

For every term ¢cm € CO®™® and every series f € T®® we have already defined maximal
and minimal tree-representations. Moreover, we have introduced relative and relative-minimal
tree-representations with respect to T of terms and series, if p(3) = 0 for all g < a.
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However, if extensions of positive strength are involved in the definition of T then these
tree-representations do not suffice anymore. Moreover, some of the properties do not generalize
to the new setting. Let us explain this with an example.

ExaMPLE 9.3.1 Let T = C[[9N]] be of strength 1 and a = 1. We choose p(0) = 1 as partition.
Note that in this case TP = Tg. From g € Fi 1, we obtain

ni=E(g) E(g— 1) B(g—2)-- € M.

The root of the maximal tree-representation Ty max is labeled by n, and the labels of the succes-
sors of the root are E(g — 1), E(g — 2),.... Now we remark that for every i > 1, the maximal
tree-representation of F(g — 7) has only one successor, which is labeled by E(g —i — 1). Hence,
the paths in T} max are of the form

mE(g—1),E(g—i—1),E(g—1i—2),...],

where ¢ > 1. Thus the minimal tree-representation of n is the tree of height 1 such that the
leaves are labeled by monomials E(g — i) € 9 1.

n=FE(g)E(g—1)E(g—2)---

Note that no label of T}, max is an element of C9t. Moreover, this labeled tree does not provide
any information about the series g. As for the relative and relative-minimal tree-representations,
they do not even exist.

On the other hand, once we know that a monomial is of the form E(h) € 91 r, the maximal
tree-representation of E(h) consists only of the admissible path [E(h), E(h — 1), E(h — 2),...].
The series h € T admits maximal, minimal and relative-minimal tree-representations.

Hence, the notion of tree-representation for transseries fields will usually not be enough, and
we have to extend this notion as follows.

DEFINITION 9.3.2 Let T = C[[9N]] be of strength n and p : & — n + 1 a partition for some
ordinal number . Let t € COMP®) . Then a tree-representation of strength n of t with
respect to T is a labeled tree T = (T,1) such that I(r(T)) = t and such that for the labeling
[:T — CIM, we have
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TRnl. Vn € T \ leaf(T): if I(n) is of the form lg(eymg), then there exists a bijection ¢ :
term g — succ(n) with

(i) Vs,t € termg: s =t < l(p(s)) = l(e(t)) and
(ii) Vt € termg : l(p(t)) = t.

TRn2. Vn € T \ leaf(T): if I(n) is not of the form lg(e,mg), then there exists a bijection
¢ : term log 0;(n) — succ(n) with

(i) ¥s,t € term log 0y : 5 = t < I(¢(s)) = l(¢(t)) and
(ii) Vt € term log 0y : L((t)) = t.

We say that T = (T,1) represents l(r(T")) = t. If for alln € T we have I(n) € CM = n € leaf(T),
then we say that T is a relative tree-representation of strength n with respect to T.

REMARK 9.3.3 We extend the definition of tree-representations to series f € T® as follows.
If f e CMPY then (T,1) is a tree-representation of the series f iff it is a tree-representation
of the term f. If 1 < |[term f|, then a labeled tree T'= (T,1) is a tree-representation of f iff the
restriction of [ to every child K; (where t € term f) is a tree-representation of ¢ and I(r(T")) = f.

REMARK 9.3.4 In the case n = 0, this is exactly the definition of tree-representations in trans-
finite exponential extensions, since the condition TRnl never applies in this case. Moreover,
we remark that this definition is upwards-compatible: if nqy < ng and T is a tree-representation
of strength ni, then T is a tree-representation of strength no.

EXAMPLE 9.3.5 Let f € T, If f € C9N, then T} is the labeled tree with only one element,
the root, which is labeled with f. If f € T \ CO, then T} is the tree of height 1 such that the
label of r(Ty) is f and such that there is a bijection between the leaves of Ty and term f. Note
that this coincides with the construction of T} from Example 3.2.12 in Chapter 3.

Now assume that for all 3 < « and all series from TP there is a representation as a tree
w.r.t. T. In particular, terms from COM®P) have a representation w.r.t. T. If f € T®P) for
some (3 < a, then we let T} be a tree-representation defined in TP:H),

If

feTPey U TPF)

B<a

then we define pre(7) to be the tree of height 1 such that the label of r(T%) is f and such that
there is a bijection between the leaves of Ty and term f.

If o is a limit ordinal, then for all ¢ € term f we already have a representation 7T; w.r.t.
T. If « is a successor ordinal § 4+ 1, then we have to define T} for those ¢ € term f such that
0 ¢ MPA) Fix ¢ € term f. We distinguish three cases.

First, assume that p(a) = 0. Then 9P = Téﬁ@. Hence for every cm € COMP) there is
a purely infinite series logm € (’]I‘<p’ﬁ>)T, which already admits a representation Tj,gm. The root
of Tiogm is labeled with logm, and the successors of the root are labeled with elements from
term logm. We let T} be the labeled tree which we obtain if we replace the root of Tj,go, by t.
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m

Second, assume that 0 < m = p(«) and that 9, = lg(e,mg) for some f < w™ and g €
Frws - Then g € T8 admits a representation as a labeled tree T, w.r.t. T already. We let
T; be the labeled tree which results from replacing the root of T, by t.

Finally, assume that 0 < m = p(a) and that d; is not of the form lg(e,mg). Then for all
n € supp termd; we have either n € MP?) with v < o or n = lg(ewg) for some f < w™ and
9 € Fp,1ws . Hence for all s € term log 0, there are already labeled trees Ty w.r.t. T. As in
the exponential case, we let pre(7}) be the tree of height 1, such that the root is labeled with ¢
and such that there is a bijection between the set of leaves and the term logd,. We let

T, .= pre(Tt)[Ts]seterm log 0 -

We let T be the representation that we obtain by substituting 7} into the leaf of pre(7%)
which is labeled with ¢, i.e.

Tf = pre(Tf)[T’t]tEtermf'
In fact, the labeled tree T is a relative tree-representation of strength n of the series f € TP,

Tree representations in purely exponential extensions (i.e. in the case n = 0) have several
properties shown in Chapter 3. Some of them generalize to the case of positive strength. Large
parts of the proofs are similar to the case n = 0, and we will not repeat those parts. We only
give the information needed to extend the proofs to the situation n > 0.

9.3.2 Properties of tree-representations

The following properties are formulated for the tree-representations of series f. Notice that f
can be a term or monomial.

PROPOSITION 9.3.6 Each series f € T admits a unique relative tree-representation Ty of
strength n > 0 w.r.t. T.

Proof: Assume that there are monomials which admit two different relative tree-represen-
tations T,7". Let m € M) with this property such that ~ is minimal. We only need to
consider the case where m = lg(e,ng). Then the relative tree-representation of g is unique, since
g € T®") for some v < 7. The roots of T and T are labeled with m. But the labelings of T
and T" restricted to T\ r(T) and T" \ r(1”) are the labeling of T} \ r(T}), hence identical. But
then T'= T". Contradiction. The rest follows as in Proposition 3.2.13. O

PROPOSITION 9.3.7 A relative tree-representation of strength n > 0 does not contain infinite
chains for <, the ordering in the underlying tree of T re1.

Proof: We extend the proof of Proposition 3.2.14 by showing that if I(n;) € 9P (where j3;
is minimal) and I(n;) = 15(eymg), then I(n;41) € MPFir1) (where 841 is minimal) and Biy1 < G:.
But I(n;41) € suppg and g € T®F+1) for some f;1 < B; imply this property. ]

REMARK 9.3.8 Proposition 3.2.15 does not generalize. For instance, if ¢ = 2? + z, then it is
not possible to decide whether g contributes to a monomial of the form exp(z? + z) or to some
l5(ew (2% + x)). Nonetheless, the closure properties can be generalized.
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9.3.3 Minimal and maximal tree-representations of higher strength

We now introduce maximal and minimal tree-representations for extensions of positive strength.
Throughout this section, we fix a field T of strength n, an ordinal o > 0 and a partition
p: o — n+1. Recall that for fixed terms or series in T"® there are already maximal and
minimal tree-representations as defined in Chapter 3. We had also defined relative and relative-
minimal tree-representations for transfinite exponential extensions, but these were with respect
to the starting field.

As mentioned above, these representations may be not sufficient to express all information
about the given object. For objects from T maximal and minimal representations will have
to take in account the partition p.

Let t € COMMP® and Ti rel the relative tree-representation of ¢t w.r.t. T with labeling .
For every leaf n, the term [(n) is an element of C9 and admits therefore a maximal tree-
representation Tj) max- We let

Tt max == E,rel[ﬂ(n),max]nEleaf(Tt rel)

be the maximal tree-representation of ¢t with respect to T. Similarly, we define the
maximal tree-representation w.r.t. T of series from T®®.

REMARK 9.3.9 If p(f) = 0 for all 8 < «a, then we have T®® = T,, a transfinite exponential
extension. For terms and series in Ty, we have already defined maximal tree-representations.
We remark, though, that this is coherent with the above definition: both, the maximal tree-
representation and the maximal tree-representation w.r.t. T yield the same tree. Since there is
no danger of confusing the two representations, we use the same symbol for them.

We define the minimal tree-representation of ¢t w.r.t. T as in Chapter 3, i.e. as the
sub-tree (7',1) of the maximal tree-representation of ¢ w.r.t. T such that a node n of T' is a leaf
if and only if there is an admissible path P in T} jax such that

Nnpn = N

tpnti = log;mpy

for some n € N and all ¢ > 0. One shows similarly as Proposition 3.2.9 that every term (or
series) has a unique minimal tree-representation T} min, w.r.t. T. Remark 9.3.9 remains also true
for minimal tree-representations w.r.t. T.

9.3.4 Closure properties

Let £ > Ng be a cardinal number. Proposition 9.2.4 implies that if the support of all series from
T have cardinality < k and if |a| < &, then series from T also have supports of cardinality
less than k. The situation changes in general for « > k.

We will now assume that we add the x-support condition to the definition of generalized
power series, that is, we only allow generalized power series such that the support has a cardi-
nality smaller than «. We will show that in this case the extension process

T — T<p70> RN ’]r(p71> —— e — T(p7ﬁ> _ ..
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is stabilizing.

ProOPOSITION 9.3.10 Assume that generalized power series have k-support. Let p be a partition
of the class of ordinals of strength < n. Then there exists a unique ordinal A such that

1. Yo < A : TP ¢ TN

2. Ya > \: TP = T®N,

Proof: We use the same techniques as in the proof of Proposition 3.3.1, but we have to make
the following adaptations. Every relative tree-representation 7' = Tt admits a function

T\ (r(T)Uleaf(T)) — {0,... ,n} x w"
which is defined by

ot) = (m, 3) if I(t) =13(ewmg)
' (0,0) else.
Then we change condition 73 into
T 3’. the inner nodes are labeled with elements from (n + 1) x w" x C

and we consider the class 7~ of labeled trees T such that 71, 72, 73’ and 74 hold. Paths in
a tree T in the class 7 are represented by tuples from the set

(n+1) x " x C)* x CNM.

This shows that 7 is a set. Consistently replacing T, by T?® shows the existence and unique-
ness of A. O

9.3.5 Strong cofinal partitions

Let T be of strength n and p : A — n 4+ 1 a cofinal partition of the limit ordinal A\. We have
shown that T®<* is a field such that eyn is total on the set of positive and infinite series.

PROPOSITION 9.3.11 Let p,q: A — n+ 1 be strong cofinal partitions. Then T®<N = T(&<N,

Proof: We show that for all limit ordinals X' < A we have MPA) = 9{@A) | This shows the
proposition. Let X' < X be the smallest limit ordinal such that ompA) #* M@,

For every m € 9MM®) there is a limit ordinal x and an integer n € N such that m € MPrt+n)
Since ¢ is strongly cofinal, there are integers 0 < 4; < --- < i, such that ¢(k +i;) = p(k + j) for
1 < 7 < n. But then

m<p7’€+i"> 2 m<Q7F’:+n>.

This shows MM®PA) D 9@, By symmetry, we obtain the equality, which contradicts the
minimality of \. O
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9.4 Concluding remarks

Transseries fields of positive strength share many properties with usual transseries fields. We
have shown how to extend such fields, and we have shown how to construct a field which is
closed under an exponential function of positive strength.

Furthermore, we have seen that we can indeed carry out this process arbitrarily often. In-
troducing a restriction on the size of the supports has also the same stabilizing effect in fields
of positive strength that it already had in transseries fields. And finally, transseries of positive
strength admit a tree-representation, which describes the series in a canonical way.

Of course, all this generates again many questions which we have to leave unanswered in
this thesis. One might for instance be interested in the effects that occur when we replace
exponential extensions by nested extensions. In particular, can the results about derivations
and compositions be generalized to transfinite extensions including nested extensions? The same
question can of course be posed for extension processes which do not allow nested extensions,
but exponential extensions of positive strength. Or what can one say about the set of derivations
in given transseries fields in general, can they be classified?

Let us point out that we provide for at least some of these questions tools. Especially, the
relative tree-representations of fields of positive strength allow to generalize the results about
derivations and compositions. Already, the definition of such functions were in the purely
exponential case defined using purely structural properties of tree-representations: the existence
of paths and tree-embeddings.

Even though we do not give answers to any these questions here, we hope that we have at
least made the point that the end of this thesis is by far not the end of the story of transseries.
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strictly extensive choice operator, 68

strong abelian group, 12
strong algebra, 13
strong linear mapping, 14
strong R-Module, 13
strong ring, 13
strong ring structure
trivial, 13
structure
underlying, 67
X-labeled, 67
sub-tree
faithful M-embedded, 64
proper, 102
subfield
exp-, 28
substructure
eyn-lyn-, 150
successor, 49
super-exponential function, 138
super-logarithmic function, 138
support, 7
countable, 22

Taylor couple, 122
Taylor series, 122
restricted, 122
term, 7
leading, 18
theorem
Higman’s, 4
Kruskal’s, 66
van der Hoeven’s, 70

transfinite exponential extension, 57

transmonomial
nested, 38
transseries, 28
transseries field, 28
tree, 49
finite, 66
labeled, 51
leaf-labeled, 100
M-labeled, 51
uniformly finite, 49
tree of finite height, 50
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tree-embedding, 63
faithful, 63
tree-representation, 52
maximal, 53
minimal, 55
of strength n, 196
relative, 57
of strength n, 197
relative-minimal, 60
trivial strong ring structure, 13
truncation, 21
maximal common, 21
proper, 21

underlying structure, 67
uniformly finite tree, 49

well-order, 2

word, 3
commutative, 4
empty, 3
non-commutative, 3

X-labeled structure, 67
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Appendix A

Exponential fields of positive
strength

C is an exponential field of strength 0 iff it is an exponential field. For n > 0, the field C
is an exponential field of strength n iff there are functions exp,... ,e,n such that

E1l. C is an exponential field of strength n — 1 for the functions exp, ... ,e n-1,
E2. d¢, € C : Ve, <z <y
(i) « € domegyn,
(ii) x+ 1 < eynz and e nx < €yny,
(iii) eynz € domegn-1 and e n-1 0 eynx = eyn (z + 1).

By (ii), the function e,» is unbounded in C. Since e,n is strictly increasing on (¢,00) C C,
its inverse function l,» is uniquely defined on (e, nc,00) C C. Moreover, the function 1 ,n-1 is
defined on (e n(c+ 1),00) and satisfies

lwn o lwnqx = lwnl‘ —1.

If C is an exponential field of strength n, then e,» and l,» are called the exponential and
logarithmic functions of strength n . Note that exponential and logarithmic functions are
of strength 0. Exponential and logarithmic functions £ = e, and L =1,, of strength 1 are also
called super-exponential and super-logarithmic functions, respectively.

REMARK A.0.1 Let C'=R. Recall that the exponential function exp is ultimately faster than
every polynomial function over R, i.e. for every ¢ € N there is a real number d; such that

Vd; <x: 2t <t

The same holds for exponential functions of positive strength. We show inductively that for all
i,n € N there are d,,; € R (for a fixed set of functions exp, e, ,e,z2,...) with

Vdp,; <o : 2t < eyn.

The initial case n = 0 is clear. Now suppose that we have shown that d,, ; exists for a fixed n
and all 7. Let ¢, and ¢,41 as in E2. Then applying e, yields

Vo > max(cp,cnt1): +2 <epn(x+1) <egnt1(x+1).

Al
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Hence for all z > max(dy i, cp + 1, ¢pt1 + 1) we have
xi < eun < €,n+1T.
This finishes the induction.

EXAMPLE A.0.2 Let C = R and expz = ) £, Then (R,exp) is an exponential field of
strength 0. Suppose that for some integer n > 0 we have functions exp,... ,e,n defined on
[0,00) such that (R,exp,...,e,n) is an exponential field of strength n. Let ¢, € RT be such
that for all real numbers x > ¢, we have e nx > x + 1.

Let f:[0,1] — R be strictly increasing with f(0) = ¢, +1 and f(1) = eyn(c, +1). We define
a function e n+1 on [0,00) as follows. Let z > 0 and n, € N such that r, = z —n, € [0,1).
Then we let

e 1 = eyn.p, f(ry).

For all x > 0 we have n,4+1 = n,+1, which shows the functional equation for e,» and e n+1. Since
eon and f are strictly increasing, so is e n+1. We have to show that there is a ¢, +1 > 0 such that
e n+1z > x+1 for all x > ¢,41. From e n+10 = ¢, + 1 we obtain e nt1l = eyn(c, + 1) > ¢ + 2.
Let us assume that for all integers £ > 0

ewn+lk > CTL + ]. +k

Then e n+1(k + 1) > egn(c, + 1+ k) > ¢, + 2 + k. Choosing ¢, large enough, we may let
Cn+1 = ¢p + 1. This shows the existence of ¢ 41.

The function e, n+1 defined as in Example A.0.2 is continuous. We remark that it is possible
to construct CO- and even Ck-solutions (for k € NU {oc}). Results by Ecalle (see [Eca92])
imply that there are always quasi-analytic functions e,n. In [Kne50], Kneser has constructed an
analytic super-exponential function. Using his result, we prove:

PROPOSITION A.0.3 For all n = 0, there are analytic exponential functions e, of strength
i < n such that (R,exp, ... ,e,n) is an exponential field of strength n.

Proof: The case n = 0 is clear; and the case n = 1 has been shown by Kneser. In fact,
Kneser’s proof can be applied to e,» and e, n+1, if there is an analytic expansion of e,n into C
such that there is a z € C and an open neighbourhood U of z such that e,n is holomorph on U,
and such that z is a fixed point of ey n.

First remark that for all 1-periodic, analytic functions g : R — R the function

ednx = eyn(z + g(x))

again defines an analytic exponential function of strength n. In particular, for constant functions
g(x) = —b € R, we obtain that

e iz = eyn(z — b)
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Figure A.1: Translation of e~z by b.

is the translation of e,» in direction 1 by b. Since lim, ., e,nx = oo, there must be a real
number b such that e;ff admits a fixed point z € R (i.e. the graph of e;ff eventually cuts the line
x =y, see Figure A.1). Hence there is an open neighbourhood U, C C such that e;ff extends
holomorphically to U,. Now apply Kneser’s proof. O

In [Bos86], Boshernitzan considers super-exponential functions £ on R in order to construct
Hardy-fields containing functions of ultimately faster growth than exp, (i € N). For C!-functions
E he shows that E’ is ultimately bounded by E3, i.e. there is some xo € R such that

Vg < x: Fz < E3x.

In the following, we will strengthen this bound and generalize the result to exponential functions
of arbitrary positive strength. The case of strength 1 will be treated separately since the proof
is simpler here.

PROPOSITION A.0.4 Let e > 0 be a real number and E be a C'-super-exponential function on
R. Then there is a real number x. € dom E such that

Ve, <x: E'r < Bz (A.1)

Proof: First, we remark that we only need to show the proposition for e = 1/m with m € N*.
For the rest of the proof, we fix m. Furthermore, we may assume [0, 1) C dom E and that E'r > 0
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for all » € [0,1) (by a translation of E if necessary). Let C be such that |log E'r| < C for all
r €[0,1). Let a = E(0).

Claim 1: Ve € R:Vk e N:x + -+ + expp x < expg, T.

We show the claim inductively. The case k = 0 follows from 14+ x < e®. As for the inductive
step, we remark that for all y € R we have 0 < 1+ (y —1)2, thus 2y < e¥ for all y > 0. Applying
this to y = expy 1 > 0 yields

k+1

Z exp; T < 2expp T < eXPgio T,
1=0

whence the claim 1.
Claim 2: Fix D € R. Then there is an integer Np € N such that
Vn>= Np:Vye€la,e’l: m-(y+- - +exp,y) +D < exp, .

For large enough n we have D < m - (y + --- + exp,, ¥). Thus claim 2 holds if we can show
that there is an Np such that for all n > Np and all y € [a, e?] the inequality

2m - (y+ - +exp,y) < exp, 1y (A.2)
holds. By claim 1, we have for all n and y
2m - (y+ -+ exp, y) < 4m-exp, y.

Let z,, € R be such that 4m - z < e® for all z > z,,. Then there is an integer Np € N such that
Zm < exp, y for all y € [a,e?] and all n > Np. Thus

2m- (y+ - +texp,y) <4m-exp,y < exp, 1 Y.
This shows inequality (A.2) and therefore claim 2.

Let for the rest of the proof D = m-C and Np as in claim 2. Then for all z > Np-+1 there are
n > Np+1andr € [0,1) such that z = n+r. From the functional equation Ex = exp E(x — 1)
we obtain

E'r = Ex-E'(x-1)
Ex---E(1+7r)-E'r
= exp(Er)---exp,(Er) - E'r.

Let y = Er, then y € [a,e"] and
logE'z =y+ - +exp, 1y+logEr<y+--+exp, 1y+C.
Since n — 1 > Np, claim 2 now implies

mlog E'x <m-(y+ -+ +exp,_1y)+ D < exp,y = Ex,
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hence E'z < E(z + 1)m. Multiplying with E(z + 1) yields
E'(z+1) < BE(z + 1),

This proves the proposition for z1 = Np + 2. O

REMARK A.0.5 Fix 0 < . Let z. be minimal such that for all x > z. the inequality (A.1)
holds on (z.,00). Then the function € — x. is decreasing. In other words, the stronger we want
inequality (A.1) to be, the bigger we have to choose z.. The same remains true for the general
case.

PROPOSITION A.0.6 Let e,n be a C-exponential function of strength n on R. For each € > 0
there is an x. € domeyn such that

Vi, < x: elnr < elffr.

Proof: Let ¥ = e,n and ¢, the constant from E2 for W. Let ) be the exponential function
of strength n — 1 such that for all ¢, < x € R with Y2 € dom Y the functional equation

W(Tz) = T(z + 1) (A.3)

holds. The constant from E2 for Y is denoted by ¢,—1. By applying a translation ¥ (z + b) if
necessary, we may assume that W satisfies the following conditions.

¥1. [0,1] € dom VU,
¥2. ¢, <0,
3. 1< cp_1 < V(0).

Note that by ¥3 we have Ya € dom Y for all x > 0. Hence equation (A.3) holds for all = > 0.
Let a = ¥(0). Then Y(a) = ¥(1), and for all y € [a, P(a)] we have ¢,—; < y. Condition E2 for
W implies y < Y(y), and using a simple induction shows y + i < P;(y) for all i. Whence

e low(@]s I Ge(y) = +oc (A4)

Claim 1: Let D € R. Then there is an integer Np € N such that

k—1
Vk > Np :Vy € [a,P(a)): D < Zlog Wi (y).
i=1

To show claim 1, we remark first that from (A.4) it follows that
vy € [a,W(a)] - lim logWy(y) = +oo.

Since | is continuous on [a,P(a)], there is an integer Np such that for all & > Np and all
y € [a,P(a)] the inequality D < logYx_1(y) holds. But then the same inequality is true on
[a,P(a)). From ¥3 we now obtain 0 < log Y;(y). Thus

Vk > Np : Yy € [a,P(a)) : D <logP(y) + - +log Wr_1(y).
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This shows claim 1.
k—1
Claim 2: AN, :Vk > N, : Vy € [a,Y(a)) : Zlog Wi (y) < log We(y).
i=1

Recall from Remark A.0.1 that d,,—; 3 is the real number with
Vo >d, 13: 20 <(z).

Choose M € Nsuch that d,,—13 < W (y) for all y € [a, P(a)). Such an integer exists for the same
reason as Np exists in claim 1. We assume that M is sufficiently large such that ¢,—1 < Was(y)
for all y € [a,Y(a)). Consequently, log Wrs(y) < log War+1(y). We show by induction that

Viz0: Y logWare;(y) + D logWari(y) < logWarvit(y)
j=1 J=0

whenever y € [a,P(a)). For i = 0 there is nothing to show. Assume that the inequality holds
up to ¢. Then

i+1 i+1
> logWary;(y) + > log Warr;(y) < 3log Warrisa(y). (A.5)
=1 =0

From dy,—1 3 < War+ti+1(y) we obtain w?\4+i+1(?/) < Wartit2(y). Applying this to inequality (A.5)
yields the inductive step. Now choose i large enough such that

M-1 i+1
D " logW;(y) < > logWari;(y).
j=0 Jj=1

Then claim 2 holds for N, = M + ¢+ 1.

Claim 3: Let K € NT. Then there is an integer Nx € N such that
k-1
Vk > Ni :Vy € [a,0(a)) : K- logPi(y) < log We(y).
i=0

Let again d,—12x € R be such that 22K < (z) for all 2 > dn—12K. Let Nog € N be such
that for all £ > Nog and all y € [a,P(a)) the inequality d,—1 2K < Wr—1(y) holds. Then

Vk > Nog - Vy € [a,0(a)) W75, (y) < Wi(y)- (A.6)
On the other hand, by claim 2 we have for Nx > max(N,, Nox)
Vk > Nk :Vy € [a,P(a)) :  logQ(y) + - - - log Yr—2(y) < log Pr—1(y). (A7)

Adding log Yx—1(y) and multiplying by K, we see that (A.7) is equivalent to

k—1
Vk > Nk : ¥y € [a,P(a)) ;K-> logWi(y) < 2K -log Yr_1(y).
1=0
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Invoking (A.6) proves claim 3.

We now show the proposition. First, we remark that we can restrict ourselves to ¢ =
where m € N*. Fix m. The function ¥’ is continuous on [a, Y(a)], hence there is a real numb
C with

e 3=

Vy € [a,Y(a)) = [log W'(y)| < C.

Let D =m-C and N = max(N,,+1, Np) (where Np and N,,,11 are the integers from claim 1
and claim 3 respectively). Then since logy > 0:

k—1
Vk > N : Yy € [a,P(a)) : (m—l—l)-Zloquz‘ +D<ZlogljJ <ZlogljJZ
i=0

=1

Hence
1
Vk > N :Vy € [a,W(a Zlong ) +C < — log Wi (y),
m

which is equivalent to
k
Vk >N :Vy€la,W(a): Y logWi(y) +C < (1 +¢) log Wi(y). (A8)
For x > N, we have k > N and r € [0,1) such that z = k + 7. Then (A.8) and y = ¥(r) imply
Vo> N: log((Ux)-- Qp(Vz) - U'r) < (14 ¢) log U ¥ (r) = log(Vz)'+e.
Hence

Vg = Vg P (V) - O'r < (Uz)Fe,

The proposition holds thus for z. = N. O






Appendix B

Introduction (English Version)

In this thesis, we present the construction of fields with functions which are faster than every iterated
exponential function. This introduction will describe what we mean by “construction”, “faster than” and
“exponential function”. By doing this, we hope to give the reader a good idea of what he can expect from
this thesis, and we hope to provide a motivation for the presented work. Moreover, this introduction will
serve as a guide to help the reader through the different parts of the thesis.

We start by explaining some basic concepts and by presenting the main results. We go on to summa-
rize what is known about super-exponential functions. The third part of this introduction will motivate
the given construction. Then we will come to the “road map” of the thesis: we give a short summary of
each of the forthcoming chapters, thus equipping a possible reader with an orientation guide. This will
be of particular interest since some chapters are rather technical, and there is a real danger of losing the
overview when working through the unavoidable details. Finally, we list some of the notations used.

B.1 Main results

The main objective of the presented thesis is to study the possibility of the existence of fast-growing
functions on fields of generalized power series.

For a totally ordered field C' and a totally ordered multiplicative group 9, a function
f:Mm—C

is a generalized power series, if the set of m € 9 with f(m) # 0 (called the support of f) is well-ordered
in M. For fixed C, M the set S = C[[9M]] of generalized power series f : M — C' admits a multiplication
and an addition which provide S with a field structure. Thus every polynomial P € S[X] with coefficients
in S corresponds canonically to a function fp:S — S.

Moreover, since C' and 91 are totally ordered, it is possible to introduce a total ordering on S. Hence,
there is a natural interpretation of “growth” in S. Indeed, for two polynomials P, Q € S[X], we say that
P is faster than @, if there is some s € S such that

[fo®)] < |fr(t)]

for all series t > s. Classical results about generalized power series fields imply that distinct polynomials
can be compared in this sense. In analogy with functions over the real line, the question arises whether
there are functions on S or at least on some interval (f, +o0o) which are faster than every polynomial in

B1



B2 APPENDIX

S[X]. Taking this analogy further, one might even be interested in the existence of exponential functions
on S.!

The field S = C[[9M]] has a priori no reason to provide more structure than the one described above.
So, admitting exponential and logarithmic functions requires extra assumptions on the basic objects C
and 91. Without listing these assumptions here, let us remark that so called transseries fields yield the
right setting for introducing exponential and logarithmic functions.? Transseries fields will be denoted
by T rather than by S.

An important feature of transseries fields T is that on the one hand the logarithm is totally defined on
the set of positive series, but that on the other hand the exponential function is not total. To overcome
this problem, Dahn introduced a process which extends T to a transseries field Texp, thus building towers
of transseries fields

U
Texp,exp
U
Texp
U
T

such that the logarithm and the exponential function can be totally defined on the positive subset of their
union. We will show how to continue this construction beyond the union of this tower, thus constructing
transseries fields T, for every ordinal number «. Moreover, the ordering on the extended field is such
that for sufficiently large series f, the exponential of f is larger than every f¢ (i € N).

Again, in view of the field of real numbers, it is natural to ask whether fields of generalized power
series possess more structural properties than the field structure or — as in the case of transseries fields
— logarithmic functions. In particular, can we introduce infinite sums, derivations and compositions in

such fields?

As for the exponential function, it is necessary to give those notions a meaning for generalized power
series. Let S = C[[9M]] and F = (fi)icr € S. Any notion of infinite sums should coincide with the
field operations, if I is a finite set. This is satisfied if F is a Noetherian family, i.e. if the union of the
supports of all f; is well-ordered in 9 and if for every m € 9, there are only finitely many ¢ € I such
that fi(m) # 0. If this is the case, then we let > F be the series in S with )~ F(m) =", fi(m).

The canonical notion of a derivation 0 on S should have the following properties:

e 0 is constantly 0 on C'
e forall f,g €S we have O(fg) =0(f) g+ f-0(g)
o if F = (fi)icr is a Noetherian family, then so is O(F) = (9(f:))ier and 0>_F) = > O(F).

Moreover, if S is a transseries field, then the condition

1One has, of course, to specify what an exponential function is. To serve the purpose of this section, namely to
present the main results, we will assume that exponential functions F' are non-constant functions with F(z+y) =
F(z) - F(y) whenever both sides are defined.

2There are, however, approaches alternative to the one presented in this thesis. All these approaches are
similar in that they have to overcome the same problem: the exponential and logarithmic functions are not
simultaneously totally defined on the set of all positive series. This fact has been independently shown by S. and
F.-V. Kuhlmann and S. Shelah [KKS97] and J. van der Hoeven [vdH97].
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e if 0 < f, then O(f) = f-9d(log f)
should hold. We state our first result.

RESULT 1 If 9 is a derivation on T, then for every ordinal number « there is a unique derivation Oy
on T, which extends O.

Similarly, one can define a notion of composition. Let T; and Ty be transseries fields, then a function
A : Ty — Ty is a right-composition if the following conditions hold:
e A is injective and Ve € C' : aA(c) = ¢
e A is multiplicative
o if F = (f;)icr is a Noetherian family (in Ty), then so is a(F) = (a(fi))ier (in T2) and a(>_F) =
> A(F)

e for all f € dom exp in Ty: a(exp f) = exp a(f).

RESULT 2 If A : Ty — Ts is a right-composition, then for every ordinal number « there is a unique
right-composition Aq : T1,o — T2,o which extends A.

An immediate question arising from the above is whether there is a link between derivations and
right-compositions. In particular, can Taylor-series developments be generalized to transseries fields?
This question is not only interesting in its own right. If we want to study structural properties of
transseries fields, in particular the existence of super-exponential functions, then we have to answer this
question affirmatively.

The first step is to extend the notion of right-compositions to compositions in general. Fix transseries
fields T; (i = 1,2,3) with derivations 9*,0% on T; and T, respectively.® A partially defined function
0:T; x T3 — Ty is a compatible composition if it satisfies the following conditions:

e T3 C Ty, and the restriction of 9 to T is a derivation

o for every series g € T3 with C' < g, the function A, : Ty — Ty with Ay(f) = f o g is a right-
composition

e for every m € 9 larger than 1, the function mo-: {f € T3|C < f} — Ty is strictly increasing

e o satisfies the chain rule for compositions, i.e. for all f € Ty and all g € T3 with g € dom (f o),
we have g € dom (f' o-) and (fog) = (f'og) g

o let f €Ty, g€ Ty and (¢;)ier be a Noetherian family in To such that

mog
mog-g;

)

ViEI:VmEsuppf:C<‘

then g + Z[ g; € dom f o -, (f(") ©g-€i)ogn,icin is a Noetherian family and

folg+ e =Y m/Mog 3 =

o<n i€ln

where €; = ¢;, ---¢g;, for i = (i1,... ,i,) € I™.

RESULT 3 Ifo: Ty x T3 — Ty is a compatible composition, then for every ordinal number « there is a
unique compatible composition oy : T1 o X T3 — To o which extends o.

3We abbreviate both 9'(f) and 92(f) by f’ for better readability. The n-th derivation of f will in both cases
be denoted by f™.
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A natural follow-up question to the above results about transseries fields concerns the existence of
generalized power series fields admitting not only exponential functions, but also functions with faster
growth than every iteration of the exponential function. For instance, a function F satisfying the func-
tional equation E(x + 1) = exp oFE(x) has this property. Note that once we have a function E, a function
E with E(x + 1) = E o E(x) will also be faster than every exp,. We let e, be an exponential function of
strength ¢ > 0, if e o = exp and

e i(z+1) = eyooe,i(x)
e2(z+1) = e,io0e,z(x)
es(x+1) = e, zoes(x)

Exponential functions of strength 1 are also called super-exponential functions. As there is no reason
for generalized power series fields to admit an exponential function, transseries fields do not necessarily
have exponential functions of positive strength. However, one can again choose a set of additional
conditions which provide the right framework for the definition of exponential functions of strength
n 2 0. Those fields will be called transseries fields of strength n.

RESULT 4 For all n € N, there are transseries fields of strength n.

Generalizing Dahn’s exp-extension process, we introduce e,n-extensions which extend transseries
fields T of strength n to fields T.,_, which are again of strength n. Using these extensions we show

RESULT 5 Let n > 0. There are fields KC,, of generalized power series with exponential functions of
strength n such that both e,n and the inverse function l,» are total on {f € K,,|C < f}.

B.2 Super-exponential functions — a short history

Super-exponential functions and related problems have already been studied occasionally. In this section
we highlight some results; by no means, however, do we claim completeness.

In contrast to our construction, super-exponential functions have either been used to construct other
classes of functions (in particular, fractional iterates of some given function) and therefore rather been a
tool, or else the main attention has been given to super-exponential functions (or at least germs of such
functions) over the real line. To our knowledge, exponential functions of strength higher than 1 have not
yet been investigated.

First steps towards super-exponential functions can be traced back to the 19th century, when P. du
Bois-Raymond showed that there is no limit to growth for real functions. More precisely, let f; < fo < ---
be functions? defined on some interval (a,00) C R. Then there exists a function F : (a,00) — R such
that f; < F for all i. G. H. Hardy [Harl0] gives two proofs of this fact. Applied to the set of functions
exp, = expo---oexp (the i-fold iteration of the exponential function), this fact yields the existence of a
function F' which is faster than every iteration of exp.

The mere existence of such a function F', though, says nothing about the actual behaviour of F'. In
order to at least give a restriction on the growth of such functions, we have introduced the notion of
super-exponential functions as solutions to the functional equation

exp E(z) = E(x +1). (B.1)

4The symbol < denotes Hardy’s relation of domination between real functions which is defined by f < g iff
lim_f(z)/g(x) = 0.
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Now, if E is a solution to equation (B.1) and g a 1-periodic function, then E*(z) = E(z + g(x)) is also
a solution. Hence, super-exponential functions are far from being uniquely defined by the functional
equation which determines their growth.

The next significant progress in the study of solutions £ was made by H. Kneser in the 1940s. In
[Kne50], he constructs an analytic super-exponential function by using a complex fixed point of e” and
conformal transformations. In fact, he uses his solution to define an analytic half-iterate of the exponential
function, i.e. an analytic function ¢ with

pop(x) =e".
More generally, he defines a set of analytic functions exp, (where r € R), called the fractional iterates of
exp, with the properties

expy(z) = e

exp, ¢ (z) = exp,oexp,(r)

for all 7, s € R. By constructing F and its unique inverse function L, he obtains the desired functions by
letting exp,.(v) = E(L(z) +1r).5

Kneser’s article led to more study of fractional iterates, where e®* was occasionally replaced by other
functions. Most notably, work by G. Szekeres and K. W. Morris [Szeb8],[Sze62],[SM62] considers functions
of exponential growth, that is, functions f such that

expy_1(7) < fr < expy ()

for all k € NT. Examples are e® and e® — 1. Fractional iterates® of f can now be constructed by solving
the functional equation

B(f(x)) = B(z) + 1,

which is also called the Abel equation, and then letting f,.(z) = B_1(B(z) + ). Note that for f(x) = e*,
a solution B is a super-logarithmic function. An interesting result of Szekeres concerns the uniqueness
of B for a large class of functions f. As mentioned above, super-exponential and -logarithmic functions
are far from being uniquely determined. The situation changes, if we consider functions f which are real
analytic for x > 0, which satisfy = < f(z) and 0 < f/(z) for > 0 and which allow a development

flx)=z+az®+--- where a > 0.

This is the case for f(x) =e* — 1 and a = 1/2. Then there is only one function b such that

lim 2%b(z) = E
z—07t a
with b = B’ for a solution B of the Abel equation. In other words, B is uniquely determined up to a
constant.
Finally, super-exponential functions appear in M. Boshernitzan’s work about trans-exponential func-
tions. In [Bos86], he considers solutions E of the functional equation

W(E(2)) = B +1),

SEven though his article was published in 1950, Kneser mentions that the question of the existence of analytic
functions exp1 was discussed during the 1941 meeting of the German Mathematical Association and that these

discussions were sparked by a need for a “reasonable” solution in industry. Considering the time and place as well
as the political situation in Germany, one might with hindsight wonder what interest German industrials had in
analytic half-iterates of e® or what caused Kneser to mention this fact at all.

Si.e. a set of functions f, such that fi = f and frys = fro fs for all r,s € R
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where h(x) is either e® or e — 1. Due to their growth properties, he calls solutions F trans-exponentials,
and he shows that there are germs of solutions which belong to Hardy fields. As an intermediate result,
he shows that for C''-solutions E, the inequality E’ < E? yields. We will come back to this observation
later.

B.3 Motivations

Having given a short review on the historical developments concerning super-exponential functions, we
will now devote a few remarks to our motivations for our construction. As mentioned above, super-
exponential functions have until now mainly served as a tool to obtain sets of fractional iterates. There
are, however, other reasons to pursue the construction. We will mention two of them here.

The first motivation lies in the model-theoretic study of the field of real numbers. Let R denote
the reals with their field structure and £ the language of ordered rings. A well known observation by
A. Tarski [Tar51] states that every definable subset of R is the finite union of intervals in R U {4-cc0}. In
other words, definable sets can already be expressed using the relation < and parameters from RU{+o00}.
Tarski’s result led to the question of how to add functions to R (and likewise function symbols to £)
without losing this property for definable sets (see for instance [vdD84]). More precisely, if F is a set of
functions over the reals and Lz is the language of ordered rings augmented by a functional symbol for
every function in F, is every definable subset of (R, F) then a finite union of intervals?

For F with this property, one says that (R, F) is o-minimal. During the 1980s and 1990s, o-minimal
structures have been intensively studied.” Furthermore, o-minimal structures admit many interesting
topological properties (cell-decomposition, stratification, triangularisation, etc.), which have been studied
in great detail by L. van den Dries [vdD98].

More important to us are the sets F, which can be added to R such that the resulting structure
remains o-minimal. We are especially interested in possible growth properties of definable functions. A
first important result states that one can add restricted analytic functions to R (see [vdD86]). Here, the
growth of definable functions is ultimately polynomially bounded. In his paper [Wil96], A. Wilkie then
shows that one can add the exponential function to R and still retain the o-minimality property. This
result has been generalized [vdDMM94], [Res93] to a great extend, but one always obtains structures
with exponential bounds for all definable functions. Hence, a natural question is whether or not there
are o-minimal structures (R, F) with definable functions which are not bound by some exp,,. Certainly,
(R, E) is a candidate.

In view of J.P. Ressayre’s proof of Wilkie’s theorem it is interesting to have a non-archimedean model
of Th(R, exp, E). We do not know whether our construction really contributes to a concluding solution
to this question, but recent results by Ressayre [Res99] suggest that our model is at least a tool to gain
more insight into the behaviour of super-exponential functions in non-standard models. Moreover, once
the o-minimality of the reals with super-exponential functions is shown, the question of the limits of
growth of definable functions arises anew. Hence, it makes sense to treat the construction for arbitrary
strength rather than just for strength 1.8

Our second motivation is J. van der Hoeven’s programme to construct a field of transseries in which
every algebraic, functional or differential equation with parameters in this field has a solution within the
field itself, if it admits solutions at all. In this context, adding a super-exponential function (or exponential

"For introductory articles see [PS86], [KPS86]. B
8In this context, we remark that an affirmative answer to the question of o-minimality of the structure (R, F)
also addresses the question of leveled o-minimal structures studied by D. Marker and Ch. Miller [MM97].
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functions of arbitrary strength for that matter) can be seen as closing the field under solutions of the
functional equation E(z + 1) = exp FE(z).

Let us in connection with this mention that Section 2.5 about nested transmonomials and -series is
also part of this programme. In fact, we do not need nested objects for the construction of E or L (and
their higher-strength versions), but they yield solutions to functional equations. Work by van der Hoeven
is currently still in progress, and we hope that our present work is a helpful contribution towards the
conclusion of his programme.

B.4 The structure of the thesis

We now outline the structure of the thesis chapter by chapter.

Chapter 1: The first chapter introduces the very basics. Although it is not our aim to make the
thesis a completely self-contained exposition, we start by recalling some well-known concepts and results.

We begin with the definition of an ordering being a binary anti-symmetric, reflexive and transitive
relation over some set P. In connection with orders, we introduce the notions of comparability, total
orders, anti-chains, decreasing chains and well-founded orders. We repeat that these objects are math-
ematical folklore, and that we do not claim any originality in introducing them. The same is true for
the generalization of the concept of well-ordered sets in total orderings to general orderings: an order is
Noetherian if it has no strictly decreasing chains and no infinite anti-chains.

The theory of Noetherian orders is well-studied, and we give some equivalent formulations, which we
will freely use throughout the rest of the thesis. Next, we introduce words over a given set P, where we
make a distinction between commutative and non-commutative words, P® and P* respectively. Moreover,
if there is an ordering < defined on P, then we introduce orderings < po and <p+ on the sets P% and P*
respectively. We recall Higman’s result that if (P, <) is Noetherian, then so are (P9, <po) and (P*, <p+).

After a short reminder of what an archimedean field is and how to generalize this notion to modules,
we finally introduce the main object of our study, the generalized power series. In fact, at this stage, we
define the set S = C[[M]] of generalized power series over M with coefficients in C rather generally by
allowing 9 to be any ordered semi-group and C a ring. Then f € C[[9]] if f : M — C is a function
with Noetherian support in 9. In general, however, we will let 9T be an ordered, multiplicative abelian
group. At this point it is important to introduce a whole set of notations. We start with sub-sets of 91.
Let 3= be the ordering of 9, then

Mm = {meM|m> 1},
M = {meM|m:= 1},
Mm = {meMm|1>m},
M = {meM|1%=mh

Moreover, we let ST = C[[]], and define the sets SL, S, ST accordingly. We also use the arrow-notation
as an operator on the set of series by letting f! € S with

£(m) = { f(m) ifmem,

0 otherwise.

Similarly, we can define series fI, f!, fI, which are elements of SI,S!,S!, respectively. We write fu
instead of f(m) to express the idea that f should be seen as a series (hence the name) rather than as a
function, thus fy, acting as the coefficient belonging to the monomial m. Using this convention, we write

f = Zmé‘)ﬁ fmm'
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We introduce an addition and a multiplication on S by letting

f+g = Z(fm+gm)ma

meMm

S fage)m.

meM ab=m

f-g

These operations equip S with a natural ring structure. There are also canonical embeddings of both C'
and 9 into S. Moreover, it is shown that S is a field if and only C' is a field.

In order to show the latter property, it is necessary to introduce a notion of addition which extends
the sum of finitely many series. Sure enough, one may not find a reasonable expression f; + fo + -+ for
every arbitrarily given sequence (f1, fa,...) of series in S. However, if the sequence F' = (fi)ic; € S is
such that (J;.; supp f; is Noetherian in 9t and that for all m € 9t there are only finitely many i € I such
that m € supp f;, then we may let

ZF:ZIfi: Z Zfi,mm-

meM i€l

Sequences F' with the above properties are called Noetherian families, and it is shown that Noetherian
families admit good algebraic properties.

The summation of Noetherian families can be seen in the more general context of strong algebras.
Without going into details here, we only mention that generalized power series fields C[[91]] are strong
C-algebras with respect to the above summations ) ;. A key property, which will be used throughout
the construction process in this thesis, is the following. Let C[[9]], C[[N]] be rings of generalized power
series. Let ¢ : M — C[[MN]] be a mapping such that the image of every Noetherian set in 9 is a
Noetherian family in C[[9]]. Then ¢ extends to a unique mapping ¢ : C[[9N]] — C[[MN]] such that for
any Noetherian family (f;)ier in C[[90]] we have

Yo efi) =002 fi)

Moreover, if ¢ preserves multiplication, then so does ¢. Also, if for m,n € 9, the mapping ¢ satisfies
p(mn) = m- p(n) + ¢(m) - n, then ¢ inherits this property as well, i.e. for all f,g € C[[9]] we have
¢(fg) =[f-¢(9)+&(f) g

The rest of the first chapter is devoted to generalized power series fields C[[9]] where both C' and 9
are totally ordered. One effect is that we have several canonical ways of representing series f € S. First,
we notice that since now MM = M! U {1} U M, there is a unique constant f= = f; € C such that

fo= 1T+
i+ 1
Moreover, the support of f is well-ordered in (91, =) and admits thus a minimal element, called the
leading monomial of f, denoted by ;. The value which f takes in ¢ is cy, the leading coefficient. Let
Tf = cy05 be the leading term of f, then there are series Ry, d; with
fo= 1+ERy
= (14 05).
Also, the total orderings of C' and 90t induce a total ordering on S defined by

0<f & 0<ecy
g<f & 0< f—g.
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We finish the first chapter with some general considerations about truncations and the behaviour of
supports for sequences of series. For a given f € S, a series g is a truncation of f if the support of g is
an initial segment of the support of f and if the two series coincide on the support of g. In other terms,
there is a monomial m, such that

We will sometimes use truncations and their properties in proofs. Similarly, we introduce cofinal cardi-
nalities as a tool. For a total order P = (P, <) we say that P has cofinal cardinality < x (where & is a
cardinal number), if every well-ordered set in P has cardinality less than k. The real numbers with their
natural ordering have, for instance, cofinal cardinality < N;. However, we show that if C' and 9t have
cofinal cardinalities < k1 and < kg respectively, then for every strictly decreasing sequence (fo)a<r in S
we must have |7| < max(k1, k2).

Chapter 2: Fields of generalized power series — up to this point — provide little structure. However,
by demanding some well-chosen properties, we single out classes of generalized power series fields which
have at least logarithmic and exponential functions. To this end, we start the second chapter by fixing
the conditions of a function to be called an exponential function.

In fact, a function exp which is partially defined on a totally ordered field C', is an exponential function
if it is strictly increasing, if a + 1 < expa for all @ € C' in the domain of exp, and if

exp(a+b) = (expa)(expb),

whenever both sides are defined. The field C is called an exp-log field in this case.
If C is an exp-log field such that C' = dom exp, then one can define a function exp on C[[9]]! by

exp f = exp(f~) - e(f1),

where e(z) = ) %x” The range of exp is the set sh+ of positive non-infinite series. Hence every S
provides a basic exp-log field structure. The inverse function of exp is denoted by log and satisfies

log f =logcy + l(fl)

for all 0 < f € ST, where I(z) = > <n (_17):L+1x". Additional properties are, however, required in order
for a field S to allow a logarithm to be defined on the set of all positive elements. A field C[[9]] is said to
be a transseries field, if C' is an exp-log field with C' = dom exp and if log extends partially to T = C[[90]]

such that

T1. dom log =TT

T2. logM C T!

T3. log(1+ f) =I(f), for all f € T!

T4. for every sequence (m;)og; € M such that m; 41 € supp logm; for all 0 < ¢, there is an integer
no € N such that

Vng < n:Vnesupp logm, :n=m,1 A (logmy)m,,, = £1.

Conditions T1 — T3 allow Dahn’s extension process [Dah84], whereas condition T4 is essential for nested
extensions. Both the exponential and the nested extensions are the focus of this chapter.

In order to distinguish transseries fields from usual generalized power series fields, we will use T
instead of S. Elements of transseries fields are called transseries. A simple example of a transseries field
is L = R[[log” z]], where

logZ z = {log® 2 = 2% log™ - - -log?" z | a € Z*}.
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Now, since there are no transseries fields T such that both exp and log are total on T and T respectively,
there is a need to enlarge T. This is where Dahn’s extension process comes into play. One lets Teyxp, =
C[lexp T']], the exponential extension of T. For an ordinal number « one defines the field T, = C[[90,]]
by

T ifa=0
T,@ exp lf o = /8 + 1
Ty = i . . .. .
ol U Mp]] if a is a limit ordinal.
<o

Fields of the form T, are also called transfinite exponential extensions of T. There are two different ways
to obtain fields of generalized power series fields for which exp and log are total. First, if A is a limit
ordinal, then (J,_, Ts has this property; but it is no longer of the form C[[N]]. The second possibility is
to only allow transseries such that the cardinality of the support does not exceed a fixed cardinal number.
In the latter case, the extension process is stabilizing. One reason why we treat the case of exponential
extensions in great detail is that many of the underlying principles will re-occur in a similar shape in the
construction of exponential extensions of positive strength. In fact, the plan we have to follow is to

extend the monomial group to a set M D m,

define a multiplicative group structure on m,

define an ordering on M which is compatible with the multiplication,
define a logarithm on 9 and T = C[[9M]] such that T is a transseries field.

Let us mention a general result about transseries fields. Suppose that C' and 99t have cofinal cardinality
< k1 and < kg respectively. Then we show that

|supp f| < max(r1, K2)

for all series f € Texp.
The second part of the chapter demonstrates the possibility of introducing nested monomial expres-
sions. By that we mean transmonomials like

5 .
2 log4 r+e
224 elogs ote

(B.2)
The expression (B.2) provides a canonical solution to the functional equation

f(z) = exp(a® + f(log, ).

Expressions of this kind also occur naturally in the characterization of intervals of transseries. For more
on this see [vdH97].

Monomials like (B.2) have a priori no reason to belong to a given transseries field. One can easily
check that it is not in L, for instance, nor in any transfinite exponential extension IL,. We provide a tool
for extending transseries fields T by nested monomials, thus giving us a means to close such fields under
functional equations which lead to such expressions. More precisely, for sequences ¢ = (o, 1, ...) and
o= (0g,01,...) € {—1,+1} with

° Vi}O:(pieTT/\O<g07;+1,

e Vi>0:Vmesuppy; :3j >i:Vy €Tl
pjt+y

L9j—1¢€

supp @; = ¥ = m > o; ePit1toitie ’
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we show how to construct an transseries field Tyest containing T and the expression

p1toye '
e‘POJon e

Chapter 3: This and the next two chapters pursue a structural study of transseries fields. This study
is motivated by the necessity for a Taylor-series-like development in the construction of super-exponential
functions. More precisely, we need notions of derivations and compositions for both transseries fields and
their transfinite exponential extensions. Chapter 3 prepares the ground by introducing the representation
of terms and series as trees.

We start by a general review of trees. Historically, there are many different approaches to this topic,
depending on the purpose of the particular problem at hand. It seems therefore reasonable to define
exactly the set of objects (tree, node, height, path) which we will need. Also, we define labeled trees
and embeddings between trees. We show properties which are relevant to our later work. Moreover, we
introduce a generalization of labeled trees, the labeled structures. Readers familiar with those objects
and their properties may of course skip the technicalities of these sections.

We then apply the thus developed toolbox to series in fields T = C[[M]]. The idea is indeed quite
simple. Firstly, let em € C9. Then logm is a series in T. Hence, we have the set term logm = {t5 | § <
a} for some ordinal « such that

to =t1 = -+ =l =tgrr = -

We represent cm as a tree with a root which is labeled with ¢m such that from this root a branch leads
to a leaf labeled by tg for every 8 < a. A tree thus constructed is unique for cm.

em = cefottit

Clearly, to every tg we can define a similar tree, and what is more, we can insert that tree into the
leaf of the first tree labeled by tg. Inductively continuing this process, we obtain the representation of
the term cm as a labeled tree of infinite height. Let us call this tree Tem max-

Secondly, it is possible to extend the concept from mere terms to series f. Note that the first step
in the construction of the tree Tem max can be imitated. We replace the term cm by f as the label of the
root, and we replace the set of terms in logm by the set of terms of f. Then we continue as above.’

The representation thus obtained will be called the maximal tree-representation of the given term
or series. In fact, we first formalize the notion of a tree-representation, and then show the existence
and uniqueness of maximal tree-representations. From the maximal tree-representation we derive several
other tree-representations of terms or series. First, we observe that — by the properties of transseries
fields — a path P in T} max either admits an integer ¢ such that the label ¢p; of the node of height ¢ in P
is log-confluent of order 0, or for every i € N there is some j > i such that

term logtp; \ {tpj+1} # 0.

9We remark that in practice, if the given series is already a term, then we leave out the first step.




B12 APPENDIX

In the former case, we say that P is convergent. It is shown that T} max is completely determined by the
set of its convergent paths. The minimal tree-representation of the term ¢, symbolized by T} min is the
sub-tree of T} max such that a node is a leaf if and only if its label is log-confluent at order 0. One defines
T'f,min of series f in a similar way.

The tree-representations Ty max and Ty min exist uniquely for all terms (or series) in transseries fields
T. For terms from transfinite exponential extensions T = T, we define two more tree-representations
with respect to the field T. The relative tree-representation 73 1 of ¢ with respect to T is the sub-tree
of T} max Where a node is a leaf if and only if its label is an element from C9. The relative-minimal
tree-representation w.r.t. T is the sub-tree of T} max such that a node is a leaf if and only if the label of the
node is log-confluent at order 0 and an element from C9R. The latter representation will be symbolized
by T} rm,r. We remark that all these trees are uniquely determined. Moreover, we show further properties
and give an application of the use of these trees.

Chapter 4: We turn to derivations and the possibility of the existence of derivations for transfinite
exponential extensions. We assume that there is a derivation 0 on T. Recall from above that by that we
mean that 0 is a strongly linear mapping which sends elements from C' to 0, which satisfies the functional
equation

o(fg)=0(f)-g+f-9(g)

for all series f,g and such that 0(f) = f - 9(log f) for all 0 < f. We fix an ordinal number o > 0 and
show that there is at most one derivation 9, : T, — T, which extends the given derivation 0.

There are two ways of defining J,, and we mention here only the definition which uses a transfinite
induction. Under the assumption that there are already derivations dg for all 8 < «, we define a function

p: My, — Ty
using the fact that for every m € 9, the series logm is contained in a field Tg with 8 < a. We let
p(m) :=m- dz(logm).

This definition does not depend on the choice of the ordinal 8. Moreover, we show that if ¢ is a Noetherian
mapping, then its unique strongly linear extension ¢ : T, — T, is the derivation d,. The problem thus
reduced, it remains to show that ¢ is Noetherian. We invoke the Noetherian-like property concerning
paths by associating in a canonical way a path to every element of supp d(m) for some m € 9M,. The
claimed Noetherianity can then be shown. We thus extend derivations from a given transseries field to
all transfinite exponential extensions.

Chapter 5: Similar to derivations, we can introduce a notion of compositions between transseries
fields as done in the introduction. In fact, one shows that for every transseries field T there are right-
compositions A : . — T which are defined as follows. Let g € T, (the set of positive elements such that
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2, € M'). Then we can replace x by g. More precisely, we show that the mapping ¢ : 1ogZ*x — T
defined by

m=log"z ——mog=g"log" g---logy" g
is Noetherian and extends thus uniquely to ¢ : L. — T with fog=>"_ famog.
Next, we consider extensions of right-compositions. More precisely, let Ty, T2 be transseries fields
with monomial groups I, N, respectively. We suppose the A : T; — Ty is a right-composition, i.e. a
multiplicative, strongly linear mapping such that for all f € T; we have

a(f)=0 = f=0,
f€domexp = Aa(expf)=-expa(f).

Again, we show that there is at most one extension of A, to Ty . As for the derivation, we show its
existence by using a transfinite induction. Assuming the existence of ag for all § < «a, we define a

mapping

p: My — Taq

m +— expag(logm)

if logm € T; g C T1,,. We establish a link between right-compositions and tree-representations, and we
can use this connection to show that ¢ is a Noetherian mapping. This implies that ¢ = A,. On the other
hand, the correspondence will open a combinatorial way of defining extensions of right-compositions.

The third part of the chapter considers Taylor-series developments, which can be seen as the canonical
link between derivations and compositions. Therefore, it is natural to ask whether we have something
similar for those operators in transseries fields. In fact, we first formalize the concept by introducing
the notion of compatible compositions. If T; = C[[9;]] (¢ = 1,2,3) are transseries fields, then we call
a function o : Ty x T3 — Ts a compatible composition, if it satisfies a number of conditions. First,
we assume that there are derivations on Ty and Ts. Moreover, we demand that Tg C Ty and that the
restriction of the derivation of Ty to T3 is an derivation. Secondly, if we fix a series g € (T3)Z,, then the
function

Ag Tl — TQ
[ — foyg
is a right-composition. The third point that we need is
VmES)ﬁI:an,ngeimgz ny > Ng = Mony; > Mo ny.

Also, if o is defined for (f, g) € Ty x T3, then f’og is defined as well and the chain rule (fog) = f'og-g¢’
holds. The last condition, that we demand, requires the most attention. Suppose that o is defined for
the couple (f,g) € T1 x Ts. Fix a Noetherian family (g;);cs in To. We can certainly not expect that o is
defined for the couple (f,g+ >, ;). If, on the other hand, for all i € I we have

mo
g > Ei,

Vm € supp f 1 —;
m o

then we demand that (f,g+ > ;€;) € domo and that (f(") ©g-€i)ogn,icrn is a Noetherian family with

folg+X) =Y f™Mog-Y e,

0<N ien
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where €; = g;, ---€;,,. Note that this is a very strong Taylor-property which allows a great freedom in
the manipulation of series.

If we have a compatible composition o : Ty x T3 — Ty, then for every fixed series g € (T3)%, the
right-composition

Ag: Ty — To

fo— foyg
extends uniquely to a right-composition
Aga T — Toq.
It is therefore natural to ask whether the function

O + Tl,a X (T3);ro — T?,a

(f,9) = 2agalf)

is a compatible composition. In fact, it is the last condition, which is the hardest to prove. Using the
facts about labeled structures as shown in Chapter 3, we can show this property, too.

Chapter 6: Until now, we were mainly concerned with functions of at most exponentially growth.
From now on, our interest will be on functions which are faster. We start with some general considera-
tions. The main question remains of how to define super-exponential and super-logarithmic functions in
generalized power series fields. Since we will eventually broaden that question to exponential functions
of arbitrary positive strength, we will first focus on properties originating from the defining functional
equation. In fact, it is one of the purposes of chapter 5 to settle some technical questions once and for
all.

Fix an transseries field T and assume that we have defined a function @ at least partially on that field.
A special case would be @ = log, but actually we have @ = 1,» in mind. At any rate, we are interested to
know how to define a function ® on T such that the functional equation

P@(g) =P(g) -1 (geT)

holds whenever both sides make sense. We employ two ideas. First, if g = f 4 ¢ such that the sequence
((f), ®'(f) -, 2"(f) - €%,...)
is a Noetherian family, then we will let
Pg) =0(f +2) = (/) + () e+ "(f) - e®+ -+

In other words, we define ®(g) using the Taylor-development of ® in f. There are, however, some
problems to consider.

e We already need a partial function ® in order to let f € dom ®.
e What if there is no derivation defined on T?
e What if there are g = f + & which also allow the Taylor-series development?

In fact, the first problem does not concern us here; we will simply work under the assumption that there is
already a partially defined function ® on T. The second problem is in theory more serious. Even though
we will always have a derivation in our applications, we address this problem because of its generality.
In fact, we show a way to define ®'(f), ®”(f),... by imitating a derivation. The third problem then
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disappears completely, for we then have only to apply the last point of the definition of a compatible
composition.

So, let us dwell on the second point a little more. We will show that ®’(f) is uniquely determined
by the functional equation in transseries fields, if there is an derivation. But then, we can express ®'(f)
without even mentioning a derivation at all. The same principle will hold for higher derivations. For
instance, if we want to determine the first derivative of a super-logarithmic function, we will find that

, 1 1
L xr = = .
xzlogx loggx--- exp(logz +logyx+---)
We remark that in this example, we have L'z € Leyp. The same will be true for Lz, Lz, .. .. In fact,

derivatives of higher degrees can be recursively defined.

Now, there can be series g such that a decomposition into a sum f + ¢ as above is not possible. To
overcome those situations, we use the function @ to reduce the series g. Even though the above process
may fail on g, there could be some n € N such that @,(g) can be decomposed into such a sum enabling
a definition of ®(@,(g)) in the above sense. But then, we may let

®(g) = ©(@.(g)) +n.

Again, we have to tackle one problem. There could be more than one integer allowing that definition. In
other words, we have to show that ®(@,(g)) + n = ®(@,.(g9)) +m, whenever both sides make sense. This
property, which we will call the vertical coherence of the definition of ®, will be shown.

Finally, we add some remarks about possible inverse functions ), ¥ of @, ®. It should be noticed that
for these functions the functional equation Y(¥(f)) = U(f + 1) holds, whenever both sides are defined.

Chapter 7: We are now well-equipped to extend Dahn’s construction to exponential functions of
higher strength. To do so, we use the same method as in the exponential extension process, only, due to
the amount of technical work involved, we have decided to split the process into two chapters. Actually,
the difficulties arise from the fact that we want to treat all possible positive strength at a time. We could,
of course, first construct fields with super-exponential and -logarithmic functions and then generalize the
construction to general positive strength. But this would mean repeating the same definitions, lemmas
and properties, thus lengthening the exposition unnecessarily.

First, we introduce some notations which will be helpful for keeping the formulas short. Also, we
introduce the convention that if we speak of an exponential or logarithmic function of strength 0, then we
mean the usual exponential and logarithmic functions. We fix a positive integer n. A totally ordered field
C'is an exponential field of strength n if there are functions exp, ... ,e,»—1 such that C' is an exponential
field of strength n — 1 for these functions and if there is a constant ¢,, € C' and a function e, partially
defined on C such that for all ¢, < z < y we have

e 1 € domeyn,
o 41 <eynxand e,nt < eyny,
e ¢,nx € domegn-1 and e yn—1e,nT = eyn(x + 1).

We show that R is an exponential field of strength n and that — by generalizing Kneser’s proof — we can
also assume that e, is analytic. Moreover, we strengthen a result by Boshernitzan. Assume that e,n is
a C'-function on R and € > 0. Then there is a real number z. such that el nx < ei}?ex for all z > z..
The next step is to define transseries fields of strength n. Recall that we had a specific composition
result for transseries fields. This composition result can indeed be generalized to positive strength.
Similarly, we need to extend the definition of log-confluence to a confluence property for logarithmic

functions of any non-negative strength.!® We then say that T = C[[90]] is of strength n if it is of strength

19The only difficulty in this approach of treating all positive strength at once is in keeping track of the depen-
dencies.
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n — 1, if C' is an exponential field of strength n and if there is a partially defined function 1,» with
T C domly,n such that

L] lf f, lwn—lf S domlwn, then 10.}" O 1wn—1f = lwnf - ].

e if f € T, then there is some k € N such that f is 1,»-1-confluent at order k, such that

lyn-1.,f=m+4e

with m € doml,», and I/, m € T and

1
1w"f=k+1wnm+lfunm-5+glgnm.52+...

e for all f € dome,n with
VEeN:Vmesupp fl:1 <m-eun(f —k)

we have e,n f € M

e TZ is l,n-confluent.

This definition provides the right framework for both the generalized Dahn-process and the extension of
the definition of transseries fields of strength n — 1 to strength n.

The rest of this chapter consists of three different parts. First, we show some properties of transseries
fields, which will have applications later. Secondly, we show that the partial composition result of
strength n holds for transseries fields of strength n, thus making way for the definition of transseries
fields of strength n 4+ 1. Finally, we give an example of an transseries field of strength n.

Chapter 8: This chapter extends Dahn’s process to positive strength..

Fix integers 0 < ¢ < n and assume that T is of strength n. Note that T is also of strength ¢, hence that
there are functions e,: and 1,:. Now, as in the exponential case, the function e, is not totally defined
on the set T . Again, we will define a field T D T, which is of strength n and such that Tjo C domey;.
Obtaining such a field is an iterative process.

In a first instance, we construct an extension T, , = C[[MMe_,]] of T. In fact, we start by defining a
set of new monomials, M; 1, as follows. Let F;r C T be the set of series f such that f — k & dome,:
for all k. Since we want to add e, f as a monomial, we let 9; v be the multiplicative closure of the set

{U(ewnf) | a <w' A f€Finh

We then let smewi =M -9 r. We now have to work through the following programme:
e define a multiplicative group structure on Me_,,

e define an ordering on M., which is compatible with the multiplication,
e for j =0,...,n, define functions 1,; on M. _, and T, , = C[[M,_,]] such that

(Te_,,log, ... ,lus)

is of strength j.
Note that the extension step T — T , does not only generate an transseries field of strength 4, but that
Te_, is even of strength n. Also, we remark that the extension step involves numerous intermediate steps,
namely the construction of transseries fields (Te_,,log, ... ,l,:) of strength j < n.
Chapter 9: In the last chapter we show how to apply those processes in order to define exponential
closures of positive strength
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We use the extension process to construct the exponential closure of strength n. Let T be a transseries
field'! of strength n. Then we let

To = T
Trt1 = (Th)exprew,... eun
Tew = |J T
m<w
In other words, we apply iteratively the extensions for exp,... ,e,» and then take the inductive limit of

the resulting chain of transseries fields. Now, the field T, although not a transseries field itself, is a
field of generalized power series with functions e,» and l,» which are total on the set ’]I‘iw,oo.

Moreover, we show that we have a certain degree of freedom in the choice of the order of the iterative
process. We also reconsider the behaviour of the supports of series under the extension processes. Finally,
we generalize the results about tree-representations.

B.5 Remarks on the notations

We introduce various notations for objects defined in the thesis. There are, however, some general
notations which will be employed throughout the following chapters.

Integer numbers will in general be denoted by k, m,n and occasionally by ¢, 7, where the latter two
usually stand for non-negative integers. For tuples of integers, we will often write a, b, K, L.

We reserve a, 3,7, ... for ordinal numbers. In particular, A will generally stand for a limit ordinal.
Cardinal numbers will be denoted by x and indexed versions thereof.

Unless otherwise stated, I and J will stand for index sets and 4, j for elements of I and J. It will be
clear from the context whether ¢ and j stand for integers or indices.

Let f and R be a n-ary function and relation respectively. For sets Aj,..., A, we let

f(Al,...,An) = {f(a)|a€A1><---><An}
R(Al,...,An) = RﬂAlx---xAn.

In other words, they denote the restriction of f and R to the sets Ay,...,A,. For integers n, we let f,
be the n-th iteration of the function f. Note that with this notation f_; denotes the inverse function of
f. Where an exponentiation is defined, fPz9 stands for the term (f(x?))P. All the above conventions are
understood in cases where the terms are well-defined.

Finally, we remark that we use “iff” for definitions and “if and only if” for equivalent statements.
Similarly, we use t :< s to define the term ¢ by s, and we use t < s to express the equivalence of ¢ and s.

Further notations are introduced when they occur in the text. We add a glossary and an index at
the end of the thesis for further orientation.

"This always suggests the existence of appropriate functions 1_: for all i < n.



