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1. Introduction

It is classical that the product of two integers, or two univariate polynomials over any
ring, can be performed in softly linear time for the usual dense representations [SS71,
Sch77, CK91, Für07]. More precisely, two integers of bit-size at most n can be

multiplied in time Õ(n)=n (logn)O(1) on a Turing machine, and the product of two

univariate polynomials can be done with Õ(n) arithmetic operations in the coeffi-
cient ring. These algorithms are widely implemented in computer algebra systems
and turn out to perform well even for problems of medium sizes.

Concerning multivariate polynomials and series less effort has been dedicated
towards such fast algorithms and implementations. One of the difficulties is that the
polynomials and series behave differently according to their support. In this paper
we propose several algorithms that cover a wide range of situations.

1.1. Related works

Representations of multivariate polynomials and series with their respective effi-
ciencies have been discussed since the early ages of computer algebra; for historical
references we refer the reader to [Joh74, Sto84, DST87, CGL92]. The representation
is an important issue which conditions the performance in an intrinsic way. It is
customary to distinguish three main types of representations: dense, sparse, and
functional.

A dense representation is made of a compact description of the support of the
polynomial and the sequence of its coefficients. The main example concerns block
supports – it suffices to store the coordinates of two opposite vertices. In a dense
representation all the coefficients of the considered support are stored, even if they
are zero. In fact, if a polynomial has only a few of non-zero terms in its bounding
block, we shall prefer to use a sparse representation which stores only the sequence
of the non-zero terms as pairs of monomials and coefficients. Finally, a functional
representation stores a function that can produce values of the polynomials at any
given points. This can be a pure blackbox (which means that its internal structure is
not supposed to be known) or a specific data structure such as straight-line programs
(see Chapter 4 of [BCS97] for instance).

For dense representations with block supports, it is classical that the algorithms
used for the univariate case can be naturally extended: the naive algorithm, Karat-
suba’s algorithm, and even fast Fourier transforms [CT65, SS71, CK91, Hoe04] can
be applied recursively in each variable, with good performance. Another classical
approach is the Kronecker substitution which reduces the multivariate product to
one variable only. We refer the reader to classical books such as [BP94, GG02].
When the number of the variables is fixed and the partial degrees tend to infinity,
these techniques lead to softly linear costs.

For sparse representations, the naive school book algorithm, that performs all
the pairwise term products, is implemented in all the computer algebra systems and
several other dedicated libraries. It is a matter of constant improvements in terms
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of data structures, memory management, vectorization and parallelization [Yan98,
GL06, MP07, MP09a, MP09b] (see [Fat03] for some comparisons between several
implementations available in 2003).

Multivariate dichotomic approaches have not been discussed much in the liter-
ature. Let us for instance consider Karatsuba’s algorithm (see [GG02, Chapter 8] for
details). With one variable z only, the usual way the product is performed begins
with splitting P and Q into P0(z)+zkP1(z) and Q0(z)+zlQ1(z), respectively, where
k and l are half of the degrees of P and Q. Then we compute recursively P0Q0,
P1Q1, and (P0 +P1) (Q0 + Q1), and perform suitable linear combinations to recover
the result. This approach is efficient in the dense block case because the sizes of the
input are correctly divided in each recursive call of the product. In the sparse case
this phenomenon hardly occurs, and it is commonly admitted that this approach is
useless (see for instance [Fat03, Section 3] or [MS04] for a cost analysis). Nevertheless
block versions have been suggested to be useful with several variables in [Hoe02,
Section 6.3.3], and refined in [Hoe06, Section 6], but never tested in practice. Further
improvements are under progress in [HL10].

In the sparse case, the product can be decomposed into two subproblems: (1)
determine the support of R from those of P and Q, (2) compute the coefficients of R.
These are independent in terms of complexity and applications. The computation of
the support is the most expensive part, that can be seen as a special case of an even
more difficult problem called sparse interpolation. This is a cornerstone in higher
level routines such as the greatest common divisor: to compute the g.c.d. of two
polynomials in the sparse representation it is interesting to specialize all the variables
but one at several points, compute as many univariate g.c.d.s, and interpolate the
result without a precise idea of the support (see for instance [KT90]). We are not
dealing with this problem in this paper, but most of the literature in this topic hides
fast algorithms for the sparse product of polynomials as soon as the destination
support is known, as explained in the next paragraphs.

For coefficient fields of characteristic zero, it is proved in [CKL89] that the
product of two polynomials in sparse representation can be computed in softly linear
time in terms of operations over the ground field, once the destination support is
known. This algorithm uses fast evaluation and interpolation at suitable points
built from prime numbers. Unfortunately, the method hides an expensive growth
of intermediate integers involved in the linear transformations, which prevents the
algorithm from being softly linear in terms of bit-complexity. Indeed this algorithm
was essentially a subroutine of the sparse interpolation algorithm of [BT88], with
the suitable set of evaluation points borrowed from [GK87]. For more references
on sparse interpolation in characteristic zero we refer the reader to [KL88, KLW90,
KLL00, GS09].

For coefficients in a finite field, Grigoriev, Karpinski and Singer designed a spe-
cific sparse interpolation algorithm in [GKS90], which was then improved in [Wer94,
GKS94]. These algorithms are based on special point-sets for evaluation and inter-
polation, built from a primitive element of the multiplicative subgroup of the ground
field. As in [CKL89] a fast product might have been be deduced from this work, but
to the best of our knowledge this has never been done until now.
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1.2. Our contributions

The main contributions of this paper are practical algorithms for faster compu-
tations with multivariate polynomials and series. In Sections 2 and 3 we describe
naive algorithms for the dense and sparse representations of polynomials, we recall
the Kronecker substitution technique, and discuss bit-complexities with regards to
practical performances. We show that our implementations are competitive with the
best other software, and we discuss thresholds between sparse and dense represent-
ations. Section 4 is devoted to naive algorithms for power series.

In Section 5, we turn to the sparse case. Assuming the destination support to
be known, we will focus on the computation of the coefficients. Our approach is
similar to [CKL89], but relies on a different kind of evaluation points, which first
appeared in [GKS90]. The fast product from [CKL89], which only applies in char-
acteristic zero, suffers from the swell of the intermediate integers. In contrast, our
method is primarily designed for finite fields. For integer coefficients we either rely
on large primes or the multi-modular methods to deduce new bit-complexity bounds.
Section 5 is devoted to the bit-complexity for the most frequently encountered coef-
ficient rings.

Of course, our assumption that the support of the product is known is very
strong: in many cases, it can be feared that the computation of this support is actu-
ally the hardest part of the multiplication problem. Nevertheless, the computation
of the support is negligible in many cases:

1. The coefficients of the polynomials are very large: the support can be com-
puted with the naive algorithms, whereas the coefficients are deduced with
the fast ones. A variant is when we need to compute the products of many
pairs of polynomials with the same supports.

2. The destination support can be deduced by a simple geometric argument.
A major example concerns dense formal power series, truncated by total
degree. In Section 6 we adapt the method of [LS03] to our new evaluation-
interpolation scheme. The series product of [LS03] applies in characteristic
zero only and behaves badly in terms of bit-complexity. Our approach again
starts with coefficient fields of positive characteristic and leads to much better
bit-costs and useful implementations.

3. When searching for factors of a multivariate polynomial P , the destination
support is precisely the support of P . In Section 7 we present a new algorithm
for counting the number of absolutely irreducible factors of P . We will prove
a new complexity bound in terms of the size of the integral hull of the support
of P , and report on examples that were previously out of reach. In a future
work, we hope to extend our method into a full algorithm for factoring P .

Our fast product can be expected to admit several other applications, such as poly-
nomial system solving, following [CKL89], but we have not tried.

Most of the algorithms presented in this paper have been implemented in the
C++ library multimix of the free computer algebra system Mathemagix [H+02]
(revision 4741, available from http://gforge.inria.fr/projects/mmx/). Up to
our knowledge, this is the first implementation of a sparse multivariate multiplica-
tion algorithm with a softly linear asymptotic time complexity.
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2. Multiplication of block polynomials

In this section we recall several classical algorithms for computations with dense
multivariate polynomials, using the so called “block representation”. We will also
analyze the additional bit-complexity due to operations on the exponents.

The algorithms of this section do not depend on the type of the coefficients. We
let A be an effective ring, which means that all ring operations can be performed by
algorithm. We will denote by M(n) the cost for multiplying two univariate polyno-
mials of degree n, in terms of the number of arithmetic operations in A. Similarly,
we denote by I(n) the time needed to multiply two integers of bit-size at most n. One
can take M(n)=O(n logn log logn) [CK91] and I(n)=O(n logn2log

∗ n) [Für07], where
log∗ represents the iterated logarithm of n. Throughout the paper, we will assume
that M(n)/n and I(n)/n are increasing. We also assume that M(O(n)) ⊆ O(M(n))
and I(O(n))⊆O(I(n)).

2.1. Dense polynomials using the block representation

Any polynomial P in A[z1, 	 , zn] is made of a sum of terms, with each term
composed of a coefficient and an exponent seen as a vector in Nn. For an exponent
e = (e1,	 , en) ∈Nn, the monomial z1

e1 
 zn
en will be written ze. For any e ∈Nn, we

let Pe denote the coefficient of ze in P . The support of P is defined by supp P =
{e∈Nn:Pe� 0}.

A block is a subset of Nn of the form
∏

j=1

n {0, 1,	 , dj − 1}, with d1,	 , dn∈N.

Given a polynomial P ∈A[z1,	 , zn], its block support is the smallest block of the form

dsupp(P ) =
∏

j=1

n

{0, 1,	 , dP ,j − 1}

with supp(P ) ⊆ dsupp(P ). In other words, assuming dP � 0, we have dP ,j =
degzj

P +1 for j = 1, 	 , n. We will denote by dP = dP ,1 
 dP ,n the cardin-
ality of dsupp(P ). In the dense block representation of P , we store the dP ,i and
all the coefficients corresponding to the monomials of dsupp(P ).

We order the exponents in the reverse lexicographic order , so that

x1
e1
 xn

en <x1
f1
 xn

fn � ∃j , (en = fn∧
 ∧ ej+1 = fj+1∧ ej < fj).

In this way, the i-th exponent e =(e1,	 , en)= exponent(i, P ) of P is defined by

i = e1 + e2 dP ,1 + e3 dP ,1 dP ,2 +
 + en dP ,1 dP ,2
 dP ,n−1.

Conversely, we will write i= index(e, P ) and call i the index of e in P . Notice that
the index has values from 0 to dP − 1. The coefficient of the exponent e of index i

will be written coefficient(e, P ) or coefficient(i, P ), according to the context.

In the cost analysis of the algorithms below, we shall take into account the
number of operations inA but also the bit-cost involved by the arithmetic operations
with the exponents.
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2.2. Naive product

Let P and Q be the two polynomials that we want to multiply. Their product
R=PQ can be computed naively by performing the pairwise products of the terms
of P and Q as follows:

Algorithm 1. Naive product for block polynomials.
Set R6 0
For i from 0 to dP − 1 do:

For j from 0 to dQ − 1 do:

i. l6 index(exponent(i, P )+ exponent(j , Q), R);

ii. Add coefficient(i, P ) coefficient(j , Q) to coefficient(l, R);

Proposition 2. Assuming the block representation, the product R of P and Q can
be computed using O(dP dQ) operations in A plus O(n I(log dR) + dP dQ log dR) bit-
operations.

Proof. Before entering Algorithm 1 we compute all the dR,i and discard all the
variables zi such that dR,i =1. This takes no more that O(n I(log dR)) bit-operations.
Then we compute dR,1dR,2, dR,1dR,2dR,3, 	 , dR,1dR,2
 dR,n−1, as well as dR,1 (dQ,2−
1), dR,1 dR,2 (dQ,3 − 1), 	 , dR,1 dR,2 
 dR,n−2 (dQ,n−1 − 1), and dR,1 (dP ,2 − 1),
dR,1dR,2 (dP ,3−1), 	 , dR,1dR,2
 dR,n−2 (dP ,n−1−1) in O(n I(logdR)) bit-operations.

For computing efficiently the index l at step (i) we make use of the enu-
meration strategy presented in Lemma 4 below. In fact, for each i, we compute
index(exponent(i, P ), R) incrementally in the outer loop. Then for each j we also
obtain l6 index(exponent(i, P ) exponent(j , Q), R) incrementally during the inner
loop. The conclusion again follows from Lemma 4. �

Notice that for small coefficients (in the field with two elements for instance), the
bit-cost caused by the manipulation of the exponents is not negligible. This naive
algorithm must thus be programmed carefully to be efficient with many variables in
small degree.

For running efficiently over all the monomials of the source and the destination
supports we use the following subroutine:

Algorithm 3. Next index.
Input: e∈ supp(P ), f ∈ supp(Q), and the index k of e+ f in R = PQ.
Output: f ′= exponent(index(f , Q) + 1, Q), and index(e + f ′, R).

1. Let f ′6 f; Let i6 1;

2. For i from 1 to n do:

a. if dQ,i = 1 then continue;

b. if fi
′ � dQ,i − 1 then return (f1

′, 	 , fi−1
′ , fi

′ + 1, fi+1
′ , 	 , fn

′) and
k + dR,1
 dR,i−1;

c. fi
′6 0; k: = k − dR,1
 dR,i−1 (dQ,i − 1);

6 Polynomial and Series Multiplications



3. Return an error.

The algorithm raises an error if, and only if, f is the last exponent of Q. The proof
of correctness is straightforward, hence is left to the reader. In fact, we are interested
in the total cost spent in the successive calls of this routine to enumerate the indices
of all the exponents of e+ dsupp(Q) in R, for any fixed exponent e of P :

Lemma 4. Assume that dR,i >2 for all i, and let e be an exponent of P. If dR,1 dR,2,
dR,1 dR,2 dR,3,..., dR,1 dR,2 
 dR,n−1 and dR,1 (dQ,2 − 1), dR,1 dR,2 (dQ,3 − 1), 	 ,
dR,1 dR,2 
 dR,n−2 (dQ,n−1 − 1) are given, and if index(e, R) is known, then the
indices in R of the exponents of e+dsupp(Q) can be enumerated in increasing order
with O(dQ log dR) bit-operations.

Proof. Let m be the number of the dQ,i equal to 1. Each step of the loop of
Algorithm 3 takes O(1) if dQ,i = 1 or O(log dR) bit-operations otherwise. Let
dQ,i1,	 , dQ,in−m

be the subsequence of (dQ,i)i which are not 1.

When running over all the successive exponents of dsupp(Q), this loop takes
O(m + log dR) bit-operations for at most dQ exponents, and O(m + 2 log dR) bit-
operations for at most dQ/dQ,i1 exponents, and O(m + 3 log dR) bit-operations for
at most dQ/(dQ,i1 dQ,i2) exponents, etc. Since the dQ,ij

> 2 for all j, this amounts
to O((m + log dR) dQ) operations. Since the dR,i > 2 for all i, the conclusion follows
from m = O(log dR). �

2.3. Kronecker substitution

Let us briefly recall the Kronecker substitution. For computing R = P Q, the Kro-
necker substitution we need is defined as follows:

KdR
:A[z1,	 , zn] � A[x]

P � P (x, xdR,1, xdR,1dR,2,	 , xdR,1
 dR,n−1).

It suffices to compute KdR
(P ) and KdR

(Q), perform their product, and recover R by

R =KdR

−1(KdR
(P )KdR

(Q)).

Proposition 5. Assuming the block representation, the product R = P Q can be
computed using M(dR) operations in A plus O(n I(log dR) + (dP + dQ) log dR) bit-
operations.

Proof. As for the naive approach we start with computing all the dR,i and
we discard all the variables zi such that dR,i = 1. Then we compute dR,1 dR,2,
dR,1 dR,2 dR,3, 	 , dR,1 dR,2 
 dR,n−1 and dR,1 (dQ,2 − 1), dR,1 dR,2 (dQ,3 − 1), 	 ,
dR,1 dR,2 
 dR,n−2 (dQ,n−1 − 1) and dR,1 (dP ,2 − 1), dR,1 dR,2 (dP ,3 − 1), 	 ,
dR,1 dR,2 
 dR,n−2 (dP ,n−1 − 1). This takes O(n I(log dR)) bit-operations. Thanks
to Lemma 4, this allows to deduce KdR

(P ) and KdR
(Q) with O((dP + dQ)log dR)

bit-operations. Thanks to the reverse lexicographic ordering, the inverse KdR

−1 is
for free. �
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Remark 6. A similar complexity can be obtained using evaluation-interpola-
tion methods, such as the fast Fourier transform [CT65] or Schönhage-Strassen’s
variant [SS71, CK91]. For instance, assuming that A has sufficiently many 2p-th
roots of unity, we have M(n) = O(n log n) using FFT-multiplication. In the mul-
tivariate case, the multiplication of P and Q essentially reduces to 3 dR/dR,j fast
Fourier transforms of size dR,j with respect to each of the variables zj. This amounts
to a total number of O(log dR,1 +
 + log dR,n) dR = O(dR log dR) operations in A.

Over the integers, namely when A = Z, one can further apply the Kronecker
substitution to reduce to the multiplication of two large integers. For any integer a

we write la=⌈log2 (|a|+1)⌉ for its bit-size, and denote by hP =maxe lPe
the maximal

bit-length of the coefficients of P (and similarly for Q and R). Since

max
e

|Re|6min (dP , dQ)max
e

|Pe|max
e

|Qe|,
we have

hR 6h6 hP +hQ + lmin(dP ,dQ).

The coefficients of R thus have bit-length at most h. We will be able to recover them
(with their signs) from an approximation modulo 2h+1. The substitution works as
follows:

KdR,h:Z[z1,	 , zn] � Z

P � KdR
(P )(2h+1).

One thus computes KdR,h(P ) and KdR,h(Q), does the integer product, and recovers

R =KdR,h
−1 (KdR,h(P )KdR,h(Q)).

Corollary 7. With the above dense representation, the product R of P times Q

in Z[z1,	 , zn] takes O(I(hdR)+ n I(log dR)+ (dP + dQ) log dR) bit-operations.

Proof. The evaluation at 2h+1 takes linear time thanks to the binary representation
of the integers being used. The result thus follows from the previous proposition. �

Remark 8. In a similar way, we may use Kronecker substitution for the multiplica-
tion of polynomials with modular coefficients inA=Z/pZ, p∈{2, 3,	 }. Indeed, we
first map P , Q ∈A[z1,	 zn] to polynomials in {0,	 , p− 1}[z1,	 , zn]⊆Z[z1,	 , zn],
multiply them as integer polynomials, and finally reduce modulo p.

2.4. Timings

In this paper we will often illustrate the performances of our implementation for
A = Z/pZ, with p = 268435459 < 229. Timings are measured in seconds or milli-
seconds, using one core of an Intel Xeon X5450 at 3.0GHz running Linux and
Gmp 5.0.0 [Gra91]. The symbol ∞ in the timing tables means that the time needed
is very high, and not relevant.

In Tables 1 and 2 we multiply dense polynomials P and Q with dP ,i = dQ,i = di,
for i=1,2,	 We observe that the Kronecker substitution is a very good strategy: it
involves less operations on the exponents, and fully benefits from the performances
of Gmp.
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d1, d2 10 20 40 80 160

naive 0.23 3.4 54 855 13616

Kronecker 0.05 0.28 1.7 8.7 42

dP , dQ 100 400 1600 64000 25600

dR 361 1521 6241 25281 101761

Table 1. Block polynomial product with 2 variables (in milliseconds)

d1, d2, d3 10 20 40 80 160

naive 23 1390 88643 ∞ ∞
Kronecker 1.9 25 303 3208 33983

dP , dQ 1000 8000 64000 512000 4096000

dR 6859 59319 493039 4019679 32461759

Table 2. Block polynomial product with 3 variables (in milliseconds)

3. Naive multiplication of sparse polynomials

In this section, we will study the naive multiplication of multivariate polynomials
using a sparse representation. Our naive implementation involves an additional
dichotomy for increasing its cache efficiency.

3.1. Naive dichotomic multiplication

In this paper, the sparse representation of a polynomial P ∈A[z1,	 , zn] consists of
a sequence of exponent-coefficient pairs (e, Pe) ∈ Nn × A. This sequence is sorted
according to the reverse lexicographic order on the exponents, already used for the
block representation.

Natural numbers in the exponents are represented by their sequences of binary
digits. The total size of an exponent e ∈ Nn is written le = n +

∑

j=1

n
lej
. We let

lP =maxe∈suppP le for the maximum size of the exponents of P , and sP = |supp P |
for the number of non-zero terms of P .

Comparing or adding two exponents e and f takes O(le + lf) bit-operations.
Therefore reading the coefficient of a given exponent e in P costs O((le + lP) log sP)
bit-operations by a dichotomic search. Adding P and Q can be done with O(sP +sQ)
additions and copies inA plus O((lP + lQ)max (sP , sQ)) bit-operations. Now consider
the following algorithm for the computation of R = PQ:

Algorithm 9. Naive product for sparse polynomials.

1. If sP =0 then return 0.

2. If sP =1 then return (e+ f ,PeQf)f∈suppQ, where e is the only exponent of P.

3. Split P into P1 and P2 with respective sizes h = ⌈sP/2⌉ and sP −h.

4. Compute R1 = P1 Q and R2 = P2 Q recursively.

5. Return R1 +R2.

Joris van der Hoeven, Grégoire Lecerf 9



Proposition 10. Assuming the sparse representation of polynomials, the product
R = P Q can be computed using O(sP sQ log min (sP , sQ)) operations in A, plus
O((lP + lQ)sP sQ logmin (sP , sQ)) bit-operations.

Proof. We can assume that sP 6 sQ from the outset. The number of operations
in A is clear because the depth of the recurrence is O(log sP). Addition of exponents
only appears in the leaves of the recurrence. The total cost of step 2 amounts to
O((lP + lQ)sP sQ). The maximum bit-size of the exponents of the polynomials in R1

and R2 in step 4 never exceeds O(lP + lQ), which yields the claimed bound. �

Remark 11. The logarithmic factor logmin (sP , sQ) tends to be quite pessimistic in
practice. Especially in the case when sR≪ sP sQ, the observed complexity is rather
O(sP sQ). Moreover, the constant corresponding to this complexity is quite small,
due to the cache efficiency of the dichotomic approach.

Remark 12. For very large input polynomials it is useful to implemented an addi-
tional dichotomy on Q in order to ensure that Q fits in the cache, most of the time.

3.2. Timings

In the next tables we provide timings forA=Z/pZ, with p=268435459. For Table 3
we pick up sP = sQ random monomials in the block {0, 	 , 10000}n, with random
coefficients. Here the exponents are “packed” into a single machine word if possible.
This is a classical useful trick for when the coefficients are small that was already
used in [Joh74]. For n = 2 and n = 3 the exponents are packed into a 64 bits word.
But for n=6, the packing requires 90 bits, and thus we operate directly on the vector
representation.

sP , sQ 10 20 40 80 160 320 640 1280

n = 2 0.012 0.046 0.176 0.691 2.72 13.8 59.2 263

n = 3 0.013 0.051 0.191 0.736 3.23 15.7 81.3 372

n = 6 0.022 0.105 0.472 2.14 12.4 85.4 366 1500

Table 3. Sparse polynomial product (packed exponents, in milliseconds)

In the following table we give the timings of same computations with Maple 13:

sP , sQ 10 20 40 80 160 320 640 1280

n =2 0.172 0.321 0.927 3.22 14.9 62.5 312 1208

n =3 0.205 0.389 1.13 4.15 19.2 82.2 345 1258

n =6 0.261 0.502 1.58 6.07 27.4 127 511 1636

Table 4. Sparse polynomial product with Maple 13 (in milliseconds)

These timings confirm that our implementation of the naive algorithms is already
competitive. In the next table we consider polynomials with increasing size in a fixed
bounding hypercube {0, 	 , d − 1}n. The row “density” indicates the ratio of non-
zero terms with exponent in {0,	 , d− 1}n.

10 Polynomial and Series Multiplications



density n = 2, d = 80 n =3, d= 40

1% 0.428 60.9

2% 1.67 289.4

3% 4.17 675

4% 6.95 1244

5% 12.5 2037

6% 20.5 2980

Kronecker 8.7 303

Table 5. Sparse polynomial product (in milliseconds) and comparison with Kronecker
multiplication from Tables 1 and 2.

In Table 5, we see that the Kronecker substitution is faster from 5 % of density
in the first case and 3 % in the second case. Roughly speaking, in order to determine
which algorithm is faster one needs to compare sPsQ to M(dR). The efficiency of the
Kronecker substitution relies on the underlying univariate arithmetic.

Let us also consider the following example with A=Z, borrowed from [Fat03]:

P = (1+ z1 + z2 + z3 + z4)
20

Q = (1+ z1 + z2 + z3 + z4)
20+ 1.

This example has been very recently used in [MP09b] as a benchmark to compare
the new implementation that will be available in Maple 14 to other software: in
their Table 1, we see that Maple 14 takes 2.26 s, which is faster than Trip, Pari-
Gp, Magma, and Singular. We could not reproduce their computation, because
Maple 14 is not available yet, but the platform we use is essentially the same, so
that we could compare to our timings.

Firstly the Kronecker substitution takes 3.5 s, which is already faster than all
other software they tested. The drawback of the Kronecker substitution is the
memory consumption, but the direct call of the naive product takes 377 s: the
coefficients of the product have at most 83 bits, and the overhead involved by
Gmp is important. Yet with Chinese remaindering this time drops to 16 s (see
for instance Section 5 of [GG02] for a general description of this classical tech-
nique). In this situation we can chose the moduli for the Chinese remaindering such
that we can add several products of the preimage in one 64 bit-word before reduction.
This classical trick leads to 8 s when using primes of 27 bits. Finally the gap can be
further lowered: by taking only two numbers that are coprime such as 264 and 232− 1,
for which the remainders are very cheap, the multiplication time is reduced to 4 s.

4. Naive multiplication of power series

We shall consider multivariate series truncated in total degree. Such a series to
order δ is represented by the sequence of its homogeneous components up to degree
δ − 1. For each component we use a sparse representation. Let F and G be two
series to order δ. The homogeneous component of degree i in F is written Fi.

4.1. Naive product

The naive algorithm for computing their product H =F G works as follows:
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Algorithm 13. Naive product for series.

1. Initialize H06 
 6 Hδ−16 0.

2. For i from 0 to δ − 1 do

For j from 0 to δ − 1− i do

Hi+j6 Hi+j + Fi Gj.

The number of non-zero terms in F is denoted by sF =sF1
+
 +sFδ−1

. The maximum
size of the exponents of sF is represented by lF =maxi∈{0,	 ,δ−1} lFi

.

Proposition 14. With the above sparse representation, the product H =FG can be
done with O(sFsG logmin (sF , sG)) operations in A, plus O((lF + lG)sFsG logmin (sF ,

sG)) bit-operations.

Proof. By Proposition 10, the total number of operations in A is in

O

(

∑

d=0

δ−1
∑

i+j=d

sFi
sGj

logmin (sFi
, sGj

)

)

= O(sF sG logmin (sF , sG)),

and the total bit-cost follows in the same way. �

Remark 15. Proposition 14 is pessimistic in many cases: this cost bound is merely
the one of the corresponding polynomial product discarding truncation. In the next
subsection we are to take care of the truncation in terms of the dense size.

4.2. Analysis for dense series

Let hi,n =
(

n− 1+ i

n − 1

)

represent the number of the monomials of degree i with n

variables, and let sδ,n=h0,n+
 +hδ−1,n=
(

n + δ − 1
n

)

be the number of the monomials

of degree at most δ−1. We shall consider the product in the densest situation, when
sFi

= sGi
= hi,n for all i.

Proposition 16. Assuming the sparse representation of polynomials, the pro-
duct H = F G up till order δ takes O(sδ,2n log sδ,n) operations in A, plus
O(n lδ sδ,2n log sδ,n) bit-operations.

Proof. The result follows as in proposition 14 thanks to the following identity:

∑

d=0

δ−1
∑

i+j=d

hi,n hj,n = sδ,2n. (1)

This identity is already given in [Hoe06, Section 6] for a similar purpose. We briefly
recall its proof for completeness. Let cd,n =

∑

i+j=d
hi,n hj,n, let Cn(t)=

∑

d>0
cd,n tn

for the generating series, and let also Hn(t) =
∑

i>0
hi,n ti. On one hand, we have

Cn(t)=Hn(t)
2. On the other hand, Hn(t)=(1− t)−n. It follows that Cn(t)=H2n(t),

and that cd,n =hd,2n, whence (1). Finally the bit-cost follows in the same way with
lF and lG being bounded by O(n lδ). �
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If δ =2, then s2,n =n+1 and s2,2n =2n+1, so the naive sparse product is softly
optimal when n grows to infinity. If δ = n and n is large, then

log sδ,n = log
(

2n− 1
n

)

∼ (log 4)n

log sδ,2n = log
(

3n− 1
n

)

∼ (log
27

4
)n.

In particular, we observe that the naive algorithm has a subquadratic complexity in
this case. In general, for fixed n and for when δ tends to infinity, the cost is quadratic
since the ratio

sδ,2n

sδ,n
2 =

(2n + δ − 1)
 δ

(n + δ − 1)2
 δ2

n!2

(2n)!

tends to π n
√

/4n.

4.3. Timings

Remark that we do not propose a specific dense representation for the series. This
could be possible as we did for polynomials and gain in memory space (but not so
much with respect to the “packed exponent” technique). However one can not expect
more because there is no straightforward generalization of the fast algorithms for
series to several variables such as the Kronecker substitution.

In Table 6 we report on timings for A = Z/pZ, with p = 268435459. Com-
paring with Tables 1 and 2, we observe that, for small n, Kronecker substitution
quickly becomes the most efficient strategy. However, it computes much more and
its memory consumption is much higher. For small n, one could also benefit from
the truncated Fourier transform, as explained in Section 6 of [Hoe06]. In higher
dimensions, say n = 6 and order δ = 20, the Kronecker substitution is hopeless: the
size of the univariate polynomials to be multiplied is 406≈ 4.1 · 109.

δ 10 20 40 80 160

n =2 0.05 0.4 4.8 65 926

sδ,2 55 210 820 3240 12880

n =3 0.28 7.0 272 13775 ∞
sδ,n 220 1540 11480 88560 ∞

n =6 13 9772 ∞ ∞ ∞
sδ,6 5005 177100 ∞ ∞ ∞

Table 6. Dense series product (with packed exponents, in milliseconds)

5. Fast multiplication of sparse polynomials

Let A be an effective algebra over an effective field K, i.e. all algebra and field
operations can be performed by algorithm. Let P and Q still be two multivariate
polynomials in A[z1,	 , zn] we want to multiply, and let R =P Q be their product.

We assume we are given a subset X ⊆Nn of size sX that contains the support of
R. We let dX,1,	 , dX,n∈N be the minimal numbers with X ⊆∏

j=1

n {0,	 , dX,j−1}.
With no loss of generality we can assume that dX,j > 2 for all j.
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To analyze the algorithms of this section we shall use the quantities eP =
∑

i∈suppP
li, eQ =

∑

i∈suppQ
li and eX =

∑

i∈X
li. We also introduce σ = sP +

sQ + sX and ǫ= eP + eQ + eX, and dX = dX,1
 dX,n.

Since the support of the product is now given, we will neglect the bit-cost due
to computations on the exponents.

5.1. Evaluation, interpolation and transposition

Given t pairwise distinct points ω0, 	 , ωt−1 ∈ K∗ and s ∈ N, let E: As → At be
the linear map which sends (a0, 	 , as−1) to (A(ω0), 	 , A(ωt−1)), with A(u) =
as−1u

s−1+
 +a0. In the canonical basis, this map corresponds to left multiplication
by the generalized Vandermonde matrix

Vs,ω0,	 ,ωt−1
=











1 ω0 
 ω0
s−1

1 ω1 
 ω1
s−1� � �

1 ωt−1 
 ωt−1
s−1











.

The computation of E and its inverse E−1 (if t = s) correspond to the problems
of multi-point evaluation and interpolation of a polynomial. Using binary split-
ting, it is classical [BM72, Str73, BM74] that both problems can be solved in time
O(⌈t/s⌉M(s) log s); see also [GG02, Chapter 10] for a complete description. Notice
that the algorithms only require vectorial operations in A (additions, subtractions
and multiplications with elements in K).

The algorithms of this section rely on the efficient computations of the trans-
positions E⊤, (E−1)⊤: (At)∗→ (As)∗ of E and E−1. The map E⊤ corresponds to left
multiplication by

Vs,ω0,	 ,ωt−1

⊤ =











1 1 
 1
ω0 ω1 
 ωt−1� � �

ω0
s−1 ω1

s−1 
 ωt−1
s−1











.

By the transposition principle [Bor56, Ber], the operations E⊤ and (E−1)⊤ can again
be computed in time O(⌈t/s⌉M(s) log s).

There is an efficient direct approach for the computation of E⊤ [BLS03]. Given a

vector a∈ (At)∗ with entries a0,	 , at−1, the entries b0,	 , bs−1 of E⊤(a) are identical
to the first s coefficients of the power series

∑

i<t

ai

1−ωi u
.

The numerator and denominator of this rational function can be computed using
the classical divide and conquer technique, as described in [GG02, Algorithm 10.9].
If t6 s, then this requires O(M(s) log s) vectorial operations in A [GG02, Theorem
10.10]. The truncated division of the numerator and denominator at order s requires
O(M(s)) vectorial operations in A. If t>s, then we cut the sum into ⌈t/s⌉ parts of
size 6 s, and obtain the complexity bound O(⌈t/s⌉M(s) log s).
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Inversely, assume that we wish to recover a0, 	 , as−1 from b0, 	 , bs−1, when
t = s. For simplicity, we assume that the ωi are non-zero (this will be the case in
the sequel). Setting B(u)= bs−1 us−1 +
 + b0, D(u)= (1−ω0 u)
 (1−ωs−1 u) and

S =BD, we notice that S(ωi
−1)=−ai (uD ′)(ωi

−1) for all i. Hence, the computation
of the ai reduces to two multi-point evaluations of S and −uD ′ at ω0

−1,	 , ωs−1
−1 and

s divisions. This amounts to a total of O(M(s) log s) vectorial operations in A and
O(s) divisions in K.

5.2. General multiplication algorithm

The Kronecker substitution KdX
, introduced in Section 2.3, sends any monomial

z1
i1
 zn

in to xindex(i,X), where index(i,X)= i1+ i2dX,1+
 + indX,1
 dX,n−1. It defines
an isomorphism between polynomials with supports in X and univariate polynomials
of degrees at most dX − 1, so that KdX

(R)= KdX
(P ) KdX

(Q).
Assume now that we are given an element ω∈K of multiplicative order at least

dX and consider the following evaluation map

E:A[z] � AsX

A � (KdX
(A)(1), KdX

(A)(ω),	 , KdX
(A)(ωsX−1)).

We propose to compute R though the equality E(R) =E(P ) E(Q).
Given Y = {i1,	 , it} ⊆ ∏

j=1

n {0, 	 , dX,j − 1}, let VsX ,Y ,ω be the matrix

of E restricted to the space of polynomials with support included in Y . Setting
kj = index(ij ,X), we have

VsX ,Y ,ω6 V
sX ,ωk1,	 ,ωkt

⊤ =











1 1 
 1

ωk1 ωk2 
 ωkt� � �
ω(sX−1)k1 ω(sX−1)k2 
 ω(sX−1)kt











.

Taking Y =suppP , resp. Y =suppQ, this allows us to compute E(P ) and E(Q) using
our algorithm for transposed multi-point evaluation from the preceding subsection.
We obtain E(R) using one Hadamard product E(P ) E(Q). Taking Y = X, the

points ωk1,	 , ωkt are pairwise distinct, since the kj are smaller than the order of
ω. Hence VsX ,X,ω is invertible and we recover R from E(R) using transposed multi-
point interpolation.

Proposition 17. Given two polynomials P and Q in A[z1,	 , zn] and an element
ω ∈K of order at least dX, then the product PQ can be computed using:

• O(ǫ) products in K that only depend on suppP, supp Q and X;

• O(sX) inversions in K, O(sX) products in A, and O
( σ

sX
M(sX) log sX

)

vectorial operations in A.

Proof. By classical binary powering, the computation of the sequence ωdX,1, 	 ,

ωdX,1
 dX,n−1 takes O(eX) operations in K because each dX,j − 1 does appear in the

entries of X. Then the computation of all the ωindex(i,P ) for i∈ suppP (resp. suppQ

and X) requires O(eP) (resp. O(eQ) and O(eX)) products in K.
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Using the complexity results from Section 5.1, we may compute E(P ) and E(Q)
using O((⌈sP/sX⌉ + ⌈sQ/sX⌉) M(sX) log sX) vectorial operations in A. We deduce
E(R) using O(sX) more multiplications in A. Again using the results from Sec-
tion 5.1, we retrieve the coefficients Ri after O(M(sX) log sX) further vectorial
operations in A and O(sX) divisions in K. Adding up the various contributions, we
obtain the theorem. �

For when the supports of P and Q and also X are fixed all the necessary powers
of ω can be shared and seen as a pretreatment, so that each product can be done in
softly linear time. This situation occurs in the algorithm for counting the number
of absolutely irreducible factors of a given polynomial, that we study in Section 7.

Similar to FFT multiplication, our algorithm falls into the general category of
multiplication algorithms by evaluation and interpolation. This makes it possible
to work in the so-called “transformed model” for several other operations besides
multiplication.

In the rest of this section we describe how to implement the present algorithm
for the usual coefficient rings and fields. We analyze the bit-cost in each case.

5.3. Finite fields

If A = K is the finite field Fpk with pk elements, then its multiplicative group is

cyclic of order pk−1. Whenever pk−1>dX, Proposition 17 applies for any primitive
element ω of this group. We assume that Fpk is given as the quotient Fp[u]/G(u)
for some monic and irreducible polynomial G of degree k.

Corollary 18. Assume pk − 1 > dX, and assume given a primitive element ω

of Fpk
∗ . Given P , Q∈Fpk[z1,	 , zn], the product PQ can be computed using

• O(ǫM(k)) ring operations in Fp that only depend on suppP, suppQ and X;

• O
(

σ

sX
M(sX k) log sX + sX M(k) log k

)

ring operations in Fp and O(sX)

inversions in Fp.

Proof. A multiplication in Fpk amounts to O(M(k)) ring operations in Fp. An
inversion in Fpk requires an extended g.c.d. computation in Fp[u] and gives rise to

O(M(k) log k) ring operations in Fp and one inversion: this can be achieved with the
fast Euclidean algorithm [GG02, Chapter 11], with using pseudo-divisions instead
of divisions. Using the Kronecker substitution, one product in Fpk[u] in size n takes
O(M(n k)) operations in Fp. The conclusion thus follows from Proposition 17. �

Applying the general purpose algorithm from [CK91], two polynomials of
degree n over Fp can be multiplied in time O(I(log p)n logn log logn). Alternatively,
we may lift the multiplicands to polynomials in Z[u], use Kronecker multiplica-
tion and reduce modulo p. As long as log n = O(log p), this yields the better
complexity bound O(I(n log p)). Corollary 18 therefore further implies:

Corollary 19. Assume pk −1> dX and log (sX k)=O(log p), and assume given a
primitive element ω of Fpk

∗ . Given two polynomials P and Q in Fpk[z1,	 , zn], the
product P Q can be computed using

• O(ǫ I(k log p)) bit-operations that only depend on suppP, supp Q and X;
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• O
(

σ

sX
I(sX k log p) log sX + sX I(k log p) log k + sX I(log p) log log p

)

bit-

operations.

If pk − 1 < dX then it is always possible to build an algebraic extension of suitable
degree l in order to apply the corollary. Such constructions are classical, see for
instance [GG02, Chapter 14]. We need to have pkl− 1> dX, so l should be taken of
the order logpk dX, which also corresponds to the additional overhead induced by
this method. If logpk dX exceeds O(log σ) and O(log (k log p)), then we notice that
the softly linear cost is lost. This situation may occur for instance for polynomials
over F2.

In practice, the determination of the primitive element ω is a precomputation
that can be done fast with randomized algorithms. Theoretically speaking, assuming
the generalized Riemann hypothesis, and given the prime factorization of pk − 1,
a primitive element in Fpk

∗ can be constructed in polynomial time [BS91, Section 1,
Applications ].

5.4. Integer coefficients

Let hP =maxi l|Pe| denote the maximal bit-size of the coefficients of P and similarly
for Q and R. Since

max
e

|Re|6min (sP , sQ)max
e

|Pe|max
e

|Qe|,
we have

hR 6h6 hP + hQ + lmin(sP ,sQ).

5.4.1. Big prime algorithm

One approach for the multiplication R=PQ of polynomials with integer coefficients
is to reduce the problem modulo a suitable prime number p. This prime number
should be sufficiently large such that R can be read off from R mod p and such
that Fp admits elements of order at least dX. It suffices to take p >max (2h+1, dX),
so Corollary 19 now implies:

Corollary 20. Given P , Q∈Z[z1,	 , zn], a prime number p>max (2h+1, dX) and
a primitive element ω of Fp

∗, we can compute P Q with

• O(ǫ I(log p)) bit-operations that only depend on suppP, supp Q, and X;

• O
(

σ

sX
I(sX log p) log sX + sX I(log p) log log p

)

bit-operations.

Let pn denote the n-th prime number. The prime number theorem implies that
pn≍n logn. Cramér’s conjecture [Cra36, Sha64] states that

limsup
n→∞

pn+1− pn

(log pn)2
= 1.

This conjecture is supported by numerical evidence, which is sufficient for our prac-
tical purposes. Setting N =max (2h+1, dX), the conjecture implies that the smallest
prime number p with p > N satisfies p = N + O(log2 N). Using a polynomial time
primality test [AKS04], it follows that this number can be computed by brute force

in time (logN)O(1). In practice, in order to satisfy the complexity bound it suffices
to tabulate prime numbers of sizes 2, 4, 8, 16, etc.
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5.4.2. Chinese remaindering

In our algorithm and Corollary 20, we regard the computation of a prime number
p>N =max (2h+1, dX) as a precomputation. This is reasonable if N is not too large.
Now the quantity log dX usually remains reasonably small. Hence, our assumption
that N is not too large only gets violated if hP + hQ becomes large. In that case,
we will rather use Chinese remaindering. We first compute r =O(⌈h/log dX⌉) prime
numbers p1 <
 < pr with

p1 > dX ,

p1
 pr > 2h+1.

Such a sequence is said to be a reduced sequence of prime moduli with order dX and
capacity 2h+1, if, in addition, we have that log p =O(h+ log dX), where p= p1
 pr.

In fact Bertrand’s postulate [HW79, Chapter 12, Theorem 1.3] ensures us that
there exists p1 between dX +1 and 2dX, then one can take p2 between p1+1 and 2 p1,
etc, so that log pr = O(log dX + r). We stop this construction with p1
 pr−1 6 2h+1

and p1
 pr > 2h+1, hence with log p = O(h + log dX). This proves that such
reduced sequences actually exist. Of course Bertrand’s postulate is pessimistic, and
in practice all the pk are very close to dX.

Each Fpk
contains a primitive root of unity ωk of order at least dX. We next

proceed as before, but with p = p1
 pr and ω ∈Z/pZ such that ω mod pk = ωk for
each k. Indeed, even though Z/pZ is not a field, the fact that each VsX ,X,ωmod pk =
VsX ,X,ωk

is invertible implies that VsX ,X ,ω is invertible, which is sufficient for our
purposes.

Corollary 21. Given P , Q∈Z[z1,	 , zn], a reduced sequence p1 <
 < pr of prime

moduli with order dX and capacity 2h+1 and an element ω∈Z/p1
 prZ of order at
least dX, we can compute P Q with

• O(ǫ I(log p)) bit-operations that only depend on suppP, supp Q, and X;

• O
(

σ

sX
I(sX log p) log sX + sX I(log p) log log p

)

bit-operations.

Proof. This follows from Proposition 17, following the proofs of Corollaries 18
and 19, mutatis mutandis . �

Whenever log dX =O(h) we have that log p=O(h). Therefore, for fixed supports
of P and Q, and fixed X , this method allows us to compute several products in
softly linear time. Remark that for moderate sizes of the coefficients it is even more
interesting to compute the products modulo each pk in parallel, and then use Chinese
remaindering to reconstruct the result.

5.5. Floating point coefficients

An important kind of sparse polynomials are power series in several variables,
truncated by total degree. Such series are often used in long term integration of
dynamical systems [MB96, MB04], in which case their coefficients are floating point
numbers rather than integers. Assume therefore that P and Q are polynomials
with floating coefficients with a precision of ℓ bits.
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Let ξP be the maximal exponent of the coefficients of P . For a so called discrep-
ancy ηP ∈N, fixed by the user, we let P̂ be the integer polynomial with

P̂i = ⌊Pi 2
ℓ+ηP−ξP ⌉

for all i. We have lP̂ 6 ℓ+ ηP and

|P − P̂ 2ξP −ℓ−ηP |6 2ξP−ℓ−ηP −1

for the sup-norm on the coefficients. If all coefficients of P have a similar order of
magnitude, in the sense that the minimal exponent of the coefficients is at least
ξP − ηP , then we actually have P = P̂ 2ξP−ℓ−ηP . Applying a similar decomposition
to Q, we may compute the product

P Q = P̂ Q̂ 2ξP +ξQ−2ℓ−ηP −ηQ

using the preceding algorithms and convert the resulting coefficients back into
floating point format.

Usually, the coefficients fi of a univariate power series f(z) are approximately
in a geometric progression log fi ∼ α i. In that case, the coefficients of the power
series f(λ z) with λ = e−α are approximately of the same order of magnitude. In
the multivariate case, the coefficients still have a geometric increase on diagonals
log f⌊k1i⌋,	 ,⌊kni⌋ ∼ αk1,	 ,kn

i, but the parameter αk1,	 ,kn
depends on the diagonal.

After a suitable change of variables zi� λi zi, the coefficients in a big zone near the
main diagonal become of approximately the same order of magnitude. However, the
discrepancy usually needs to be chosen proportional to the total truncation degree
in order to ensure sufficient accuracy elsewhere.

5.6. Rational coefficients

Let us now consider the case when K=Q. Let qP and qQ denote the least common
multiples of the denominators of the coefficients of P resp. Q. One obvious way

to compute P Q is to set P̂ 6 P qP , Q̂ 6 Q qQ, and compute P̂ Q̂ using one of the
methods from Section 5.4. This approach works well in many cases (e.g. when P and
Q are truncations of exponential generating series). Unfortunately, this approach is
deemed to be very slow if the size of qP or qQ is much larger than the size of any of
the coefficients of PQ.

An alternative, more heuristic approach is the following. Let p1 < p2 <
 be an
increasing sequence of prime numbers with p1 >d and such that each pi is relatively
prime to the denominators of each of the coefficients of P and Q. For each i, we
may then multiply P mod pi and Q mod pi using the algorithm from Section 4.
For i = 1, 2, 4, 8, 	 , we may recover P Q mod p1 
 pi using Chinese remaindering
and attempt to reconstruct P Q from P Q mod p1 
 pi using rational number
reconstruction [GG02, Chapter 5]. If this yields the same result for a given i and 2 i,
then the reconstructed P Q is likely to be correct at those stages. This strategy
is well-suited to probabilistic algorithms, for polynomial factorization, polynomial
system solving, etc.
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Of course, if we have an a priori bound on the bit sizes of the coefficients of R,
then we may directly take a sufficient number of primes p1<
 < pr such that R can
be reconstructed from its reduction modulo p1
 pr.

5.7. Timings

We illustrate the performances of the algorithms of this section for a prime finite
field, which is the central case to optimize. We take A=Z/pZ, with p= 23058430\
09213693967< 262. If the size of the product is of the order of sP sQ then the naive
algorithm is already softly optimal. If the polynomials are close to being dense then
the Kronecker substitution is the most efficient in practice. Here we consider a case
which lies in between these two extremes.

More precisely, we pick polynomials with terms of total degree at most δ and
at least δ − 4 with random coefficients in Fp. The subset X can be easily taken as
the set of the monomials of degree at most 2 δ and at least 2 δ − 8. In Table 7 we
compare the fast algorithm of Section 5.3 to the naive one of Section 3 and the direct
use of the Kronecker substitution.

δ 20 40 80 160 320 640 1280 2560 5120

naive 0.34 1.2 5.0 20 81 326 1317 5457 22855

Kronecker 0.60 3.5 17 85 456 2408 10664 48765 ∞
fast 31 60 123 267 597 1352 3064 6918 15615

sX 266 546 1106 2226 4466 8946 17906 35826 71666

Table 7. Polynomial product with 2 variables of two strips from δ−3 to δ (in milliseconds)

With 2 (and also with 3 variables) the theoretical asymptotic behaviours are
already well reflected. But the fast algorithm only gains for very large sizes. When
sharing the same supports in several product the benefit of the fast product can be
observed earlier. We shall illustrate this situation in Section 7, for a similar family
of examples.

6. Fast multiplication of power series

In this section, we show how to build a multiplication algorithm for formal power
series on top of the fast polynomial product from the previous section. We will only
consider power series which are truncated with respect to the total degree.

6.1. Total degree

Given i ∈Nn, we let |i|= i1 +
 + in. The total degree of a polynomial P ∈A[z] is
defined by degP =max{|i|:Pi� 0}. Given a subset I ⊆Nn, we define the restriction
PI of P to I by

PI =
∑

i∈I

Pi z
i.

For δ ∈N, we define the initial segments Iδ of N
n by Iδ = {i∈Nn: |i|< δ}. Then

A[z]Iδ
= A[[z]]Iδ

= {P ∈A[z]: suppP ⊆ Iδ} = {PIδ
:P ∈A[z]}
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is the set of polynomials of total degree < δ. Given P , Q ∈A[z]Iδ
, the aim of this

section is to describe efficient algorithms for the computation of R = (P Q)Iδ
. We

will follow and extend the strategy described in [LS03].

Remark 22. The results of this section could be generalized in the same way as
in [Hoe02] to so called weighted total degrees |i|=λ1 i1+
 +λn in with λ1,	 , λn>0,
but for the sake of simplicity, we will stick to ordinary total degrees.

6.2. Projective coordinates

Given a polynomial P ∈A[z], we define its projective transform T(P )∈A[z] by

T(P )(z1,	 , zn) =P (z1 zn,	 , zn−1 zn, zn).

If suppP ⊆ Iδ, then suppT(P )⊆ Jδ, where

Jδ = {(i1 + iδ,	 , iδ−1 + iδ, iδ): i∈ Iδ}.

Inversely, for any P ∈ A[z]Jδ
, there exists a unique T−1(P ) ∈ A[z]Iδ

with P =
T(T−1(P )). The transformation T is an injective morphism of A-algebras. Con-
sequently, given P , Q∈A[z]Iδ

, we will compute the truncated product (PQ)Iδ
using

(P Q)Iδ
= T−1((T(P )T(Q))Jδ

).

Given a polynomial P ∈A[z] and j ∈N, let

Pj =
∑

i1,	 ,in−1

Pi1,	 ,in−1,j z1
i1
 zn−1

in−1 zn
j ∈Z[z1,	 , zn−1].

If suppP ⊆ Jδ, then suppPj ⊆X, with

X = {i∈Nn−1: i1 +
 + in−1 < δ}.

6.3. Multiplication by evaluation and interpolation

Let ω be an element of K of order at least δn−1. Taking X as above, the construction
in Section 5.2 yields a K-linear and invertible evaluation mapping

E:A[z]X� AX ,

such that for all P , Q∈A[z]X with PQ∈A[z]X, we have

E(PQ)=E(P ) E(Q). (2)

This map extends to A[z]X[zn] using

E(P0 +
 + Pk zn
k) = E(P0)+
 +E(Pk) zn

k ∈AX[zn].

Given P , Q∈A[z]Jδ
and j < δ, the relation (2) yields

E((PQ)j) =E(Pj) E(Q0)+
 +E(P0) E(Qj).

In particular, if R = (PQ)Jδ
, then

E(R)= E(P ) E(Q)mod zn
δ.
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Since E is invertible, this yields an efficient way to compute R.

6.4. Complexity analysis

The number of coefficients of a truncated series in A[[z]]Iδ
is given by

|Iδ |= sδ,n =
(

n + δ − 1
n

)

.

The size sX = |X | of X is smaller by a factor between 1 and δ:

sX =
(

n + δ − 2
n− 1

)

=
n

n+ δ − 1
|Iδ |.

Proposition 23. Given P , Q∈A[[z]]Iδ
and an element ω∈K of order at least δn−1,

we can compute (PQ)Iδ
using O(sX δ) inversions in K, O(sX M(δ)) ring operations

in A, and O(δ M(sX) log sX) vectorial operations in A.

Proof. We apply the algorithm described in the previous subsection. The trans-
forms T and T−1 require a negligible amount of time. The computation of the
evaluation points ωki only involves O(sX) products in K, when exploiting the fact
that X is an initial segment. The computation of E(T(P )) and E(T(Q)) requires
O(δ M(sX) log sX) vectorial operations in A, as recalled in Section 5.1. The compu-

tation of E(T(P )) E(T(Q)) mod zn
δ can be done using O(sX M(δ)) ring operations

in A. Recovering R again requires O(δ M(sX) log sX) vectorial operations in A, as
well as O(sX δ) inversions in K. �

Remark 24. Since sX δ = Õ(sδ,n) by [LS03, Lemma 3], Proposition 23 ensures that
power series can be multiplied in softly linear time, when truncating with respect
to the total degree.

6.5. Finite fields

In the finite field case when P , Q ∈Fpk[[z]]Iδ
, the techniques from Section 5.3 lead

to the following consequence of Proposition 23.

Corollary 25. Assume n>2, pk−1> δn−1 and log (sX k)=O(log p), and assume
given a primitive element ω of Fpk

∗ . Given P , Q∈Fpk[[z]]Iδ
, we can compute (PQ)Iδ

using

O(δ I(sX k log p) log sX + sX δ (I(k log p) log k + I(log p) log log p))

bit-operations.

Proof. The sX δ inversions in Fpk take O(sX δ (I(k log p) log k + I(log p) log log p))
bit-operations, when using Kronecker substitution. The O(δ M(sX) log sX) ring
operations in Fpk amount to O(δ I(sXk log p) log sX) more bit-operations. Since n>2

we have δ =O(sX), which implies sX M(δ)=O(δM(sX)). The conclusion thus follows
from Proposition 23. �
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If pk − 1 > δn−1 does not hold, then it is possible to perform the product in an
extension of degree r = 1+ ⌊log δn−1/log pk⌋ of Fpk, so that (pk)r − 1> δn−1. Doing

so, the cost of the product requires Õ(sX δ) operations in F(pk)r, which further
reduces to Õ(sδ,n) by [LS03, Lemma 3]. The field extension and the construction
of the needed ω can be seen as precomputations for they only depend on n, δ, p

and k. Since r = O(n log sδ,n), we have therefore obtained a softly optimal uniform
complexity bound in the finite field case.

Notice that the direct use of Kronecker substitution for multiplying P and Q

yields Õ(k (2 δ − 1)n) operations in Fp. In terms of the dense size of P and Q, the

latter bound becomes of order Õ(2n n! k sδ,n), which is more expensive than the
present algorithm.

6.6. Integer coefficients

If P , Q∈Z[[z]]Iδ
, then the assumption p> 2h+1, with h=hP +hQ + lsδ,n

, guarantees
that the coefficients of the result P Q can be reconstructed from their reductions
modulo p. If 2h+1 < δn−1, and if we are given a prime number p ∈ [2h+1, 2h+2) and
a primitive element ω of Fpr

∗ , where r = 1 + ⌊log δn−1/log pk⌋, then (P Q)Iδ
can be

computed using Õ(nh sδ,n) bit-operations, by Corollary 25. Otherwise, in the same
way we did for polynomials in Section 5.4, Chinese remaindering leads to:

Corollary 26. Assume that n > 2, that 2h+1 > δn−1, and that we are given
a reduced sequence p1 <
 < pr of prime moduli with order δn−1 and capacity 2h+1,
and an element ω∈Z/p1
 prZ of order at least δn−1. Given P , Q∈Z[[z]]Iδ

, we can
compute (PQ)Iδ

using

O(δ I(sX h) log sX + sX δ I(h) log h)

bit-operations.

Proof. Let p= p1
 pr. Since logsX =O(log p), we can use the Kronecker substitution
with the algorithm underlying Proposition 23 over Z/pZ to perform the truncated
product of P and Q with O(δ I(sX log p) log sX +sXδ I(log p) log log p) bit-operations.
The conclusion thus follows from log p=O(h). �

Remark that the bound in Corollary 26 is softly optimal, namely Õ(hsδ,n), which
is much better than a direct use of Kronecker substitution when n becomes large.

6.7. Timings

We take A=Z/pZ, with p= 268435459. The following tables demonstrate that the
the theoretical softly linear asymptotic costs can really be observed.

δ 10 20 40 80 160

n =2 1.5 8.1 53 232 1151

n =3 13 118 1121 12248 173122

Table 8. Fast series product (in milliseconds)
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When comparing Tables 8 and 6, we see that our fast product does not compete
with the naive algorithm up to order 160 in the bivariate case. For three variables
we observe that it outperforms the naive approach at large orders, but that it is still
slower than Kronecker substitution (see Table 2).

δ 10 20 40 60

naive 0.002 0.11 14 184

Kronecker 0.6 1.7 40 ∞
fast 0.05 0.8 15 94

Table 9. Series products with 4 variables (in seconds)

For 4 variables we see in Table 9 that the Kronecker product is slower than the
naive approach (it also consumes a huge quantity of memory). The naive algorithm
is fastest for small orders, but our fast algorithm wins for large orders.

For 5 and more variables the truncation order can not grow very large, and the
naive algorithm becomes subquadratic, so that the threshold for the fast algorithm
is much higher:

δ 5 10 15 20 25 30

naive 0.0001 0.004 0.09 0.9 5.6 26

Kronecker 0.05 3.7 36 ∞ ∞ ∞
fast 0.06 0.4 2.4 10 32 85

Table 10. Series products with 5 variables (in seconds)

7. Absolute factorization

Let K be a field, and let F ∈ K[x1, 	 , xn, y] = K[x, y]. In this section we are
interested to count the number of the absolutely irreducible factors of F , i.e. number
of irreducible factors of F over the algebraic closure K̄ of K.

7.1. Reduction to linear algebra

Let dx =degx F denote the total degree in the variables x, and let dy =degy F . The

integral hull of supp F , which we will denote by S, is the intersection of Zn+1 and
the convex hull of suppF as a subset of Rn+1. The method we are to use is not new,
but combined with our fast algorithms of Section 5, we obtain a new complexity
bound, essentially (for fixed values of n) quadratic in terms of the size of S .

Besides the support of F , we need to introduce

Sx = S ∩ ((Nn \ {(0,	 , 0)})×N)

Sy = S ∩ (Nn ×N\ {0})
Sx,y = Sx∩Sy

T = (Sx,y + S)∪ (Sx +Sy).

Notice that Sy consists of the elements e∈S with en+1 > 0. The set Sx contains the
support of

θx F =
∑

(e,f)∈suppF

(e1 +
 + en)Fe,f xe yf ,
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the set Sy contains the support of

θy F = y
∂F

∂y
=

∑

(e,f)∈suppF

fFe,f xe yf ,

and Sx,y contains supp θx θy F .

The absolute factorization of F mainly reduces to linear algebra by considering
the following map:

DF :K[x, y]Sy
×K [x, y]Sx

� K[x, y]T

(G, H) � G θxF −HθyF − (θxG− θyH)F ,

where K[x, y]Sy
represents the subset of the polynomials with support in Sy (and

similarly for Sx, Sx,y, and T ).

Proposition 27. Assume that K has characteristic 0 or at least dx (2 dy − 1)+ 1,
that F is primitive in y, and that the discriminant of F in y is non-zero. Then the
number of the absolutely irreducible factors of F equals the dimension of the kernel
of DF.

Proof. This result is not original, but for a lack of an exact reference in the liter-
ature, we provide the reader with a sketch of the proof adapted from the bivariate

case. Let ϕ1,	 , ϕdy
represent the distinct roots of F in K(x). The assumption on

the discriminant of F ensures that all are simple. Now consider the partial fraction
decompositions of G/F and H/F :

G

F
= y

∑

i=1

dy
ρi

y − ϕi

,
H

F
= c(x) +

∑

i=1

dy
σi

y − ϕi

,

where ρi and σi belong to K(x) and c(x) ∈ K(x). The fact that DF(G, H) = 0 is
equivalent to

θx

(

G(x, y)

F (x, y)

)

= θy

(

H(x, y)

F (x, y)

)

,

which rewrites into:

y
∑

i=1

dy (

θx(ρi)

y − ϕi

+
ρi θx(ϕi)

(y − ϕi)2

)

=− y
∑

i=1

dy
σi

(y − ϕi)2
.

Therefore θx(ρi) must vanish for all i. In characteristic 0, this implies that the ρi

actually belong to K̄. If the characteristic is least dx (2dy − 1)+1 this still holds by
the same arguments as in Lemma 2.4 of [Gao03]. Let F1,	 ,Fr denote the absolutely
irreducible factors of F , and let Fî = F/Fi. By applying classical facts on partial
fraction decomposition, such as [GG02, Theorem 22.8] or [CL07, Appendix A] for

instance, we deduce that G is a linear combination of the F̂i θy Fi, hence that (G,

H) belongs to the space spanned by the (F̂i θy Fi, F̂i θx Fi) over K̄, for i∈{1,	 , r}.
Since supp(F̂i θx Fi) ⊆ Sx and supp(F̂i θy Fi) ⊆ Sy, the couples (F̂i θy Fi, F̂i θx Fi)

form a basis of the kernel of DF over K̄, which concludes the proof. �
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Proposition 27 was first stated in [Gao03] in the bivariate case for the dense
representation of the polynomials, and then in terms of the actual support of F

in [GR03] but still for two variables. For several variables and block supports, gener-
alizations have been proposed in [GKM+04, Remark 2.3] but they require computing
the partial derivatives in all the variables separately, which yields more linear equa-
tions to be solved than with the present approach. Let us recall that the kernel of DF

is nothing else than the first De Rham cohomology group of the complementary of
the hypersurface defined by F (this was pointed out in [Lec07], we refer the reader
to [Sha09] for the details).

For a complete history of the algorithms designed for the absolute factorization
we refer the reader to the introduction of [CL07]. In fact, the straightforward resol-
ution of the linear system defined by DF(G,H)=0 by Gaussian elimination requires
O(sω−1 t) operations in K, where s= |Sx|+ |Sy | is the number of the unknowns and
t = |T | > s is the number of equations [Sto00, Proposition 2.11]. Here ω is a real
number at most 3 such that the product of two matrices of size s × s can be done
with O(sω) operations in K. In practice ω is close to 3, so that Gaussian elimination
leads to a cost more than quadratic.

In [Gao03], Gao suggested to compute the kernel of DF using Wiedemann’s
algorithm: roughly speaking this reduces to compute the image by DF of at most
2 |2 S | vectors. With a block support, and for when the dimension is fixed, the
Kronecker substitution can be used so that a softly quadratic cost can be achieved
in this way. In the next subsection we extend this idea for general supports by using
the fast polynomial product of Section 5.

7.2. Algorithm

The algorithm we propose for computing the number of the absolutely irreducible
factors of F summarizes as follows:

Algorithm 28. Probable number of absolutely irreducible factors of F.

1. Compute the integral hull S of the support of F. Deduce Sx, Sy, Sx,y, and T.

2. Pre-compute all the intermediate data necessary to the evaluation of DF by
means of the fast polynomial product of Section 5.

3. Compute the dimension of the kernel of DF with the randomized algorithm
of [ KS91, Section 4], all the necessary random values being taken in a given
subset S of K.

For simplicity, the following complexity analysis will not take into account the bit-
cost involved by operations with the exponents and the supports.

Proposition 29. Assume that K has characteristic 0 or at least dx (2 dy − 1)+ 1,
that F is primitive in y, that the discriminant of F in y is non-zero, that we are
given an element ω in K of order at least (2 dy + 1)

∏

i=1

n
(2degxi

F + 1), and that
the given set S contains at least 5 |2 S | − 2 elements.

Then Algorithm 28 performs the computation of the integral hull S of |suppF |
points of bit-size at most lF, plus the computation of T, plus Õ(|2 S |2 ) operations

in K. It returns a correct answer with a probability at least 1− 3

2
|2S |(|2S |+1)/|S |.
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Proof. Since T is included in 2 S, the assumption on the order of ω allows us to
apply Proposition 17. In the second step, we thus compute all the necessary powers
of ω to evaluate DF : because the supports are convex, this only amounts to O(|2S |)
operations in K. Then for any couple (G, H) ∈ K[x, y]Sy

× K [x, y]Sx
, the vector

DF(G, H) can be computed with Õ(|2S |) operations.
Now, by Theorem 3 of [KS91], we can chose 5 |2 S | − 2 elements at random

in S and compute the dimension of the kernel of DF with O(|2 S |) evaluations of

DF and Õ(|2 S |2) more operations in K. The probability of success being at least

1− 3

2
|2S |(|2S |+1)/|S |, this concludes the proof. �

Once S is known, the set T can be obtained by means of the naive polynomial
product with Õ(lF |S |2) bit-operations by Proposition 10. When the dimension is
fixed and S is non-degenerated then |2 S| grows linearly with |S |, whence our
algorithm becomes softly quadratic in |S |, in terms of the number of operations inK.
This new complexity bound is to be compared to a recent algorithm by Weimann
that computes the irreducible factorization of a bivariate polynomial within a cost
that grows with |S |3 [Wei09a, Wei09b].

In practice, the computation of the integral hull is not negligible when the dimen-
sion becomes large. The known algorithms for computing the integral hull of suppF

start by computing the convex hull. The latter problem is classical and can be
solved in softly linear time in dimensions 2 and 3 (see for instance [PS85]). In higher
dimensions, the size of the convex hull grows exponentially in the worst case and
it can be the bottleneck of our algorithm. With the fastest known algorithms, the
convex hull can be computed in time O(sF

2 + f log sF) where f is the number of faces
of the hull [Sei86] (improvements are to be found in [MS92]). In our implementation,
we programmed the naive “gift-wrapping” method, which turned out to be sufficient
for the examples below.

In order to enumerate the points with integer coordinates in the convex hull, we
implemented a classical subdivision method. This turned out to be sufficient for our
purposes. But let us mention that there exist specific and faster algorithms for this
task such as in [Bar94b, Bar94a, LZ05] for instance. Discussing these aspects longer
would lead us too far from the purposes of the present paper.

7.3. Timings

We chose the following family of examples in two variables, which depends on a para-
meter α:

Fα =
[

xα+1+
∑

i=0

α

aix
iyα−i

][

yα+1+
∑

i=0

α

bix
iyα−i

][

x⌊α/2⌋−1y⌊α/2⌋−1+
∑

i=0

α

cix
iyα−i

]

.

Here ai, bi, ci∈K=Z/pZ are taken at random, with p=268435459<229. In Table 11
below, we indicate the size sF of F , the size of the matrix DF , and the time spent
for computing the integral hull. Then we compare the time taken by the Wiedemann
method with the naive and the fast polynomial products. As expected we observe
a softly cubic cost with the naive product, and a softly quadratic cost with the fast
product. Notice that the supports are rather sparse, so that Kronecker substitution
does not compete here.
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α 40 80 160 320

integral hull 4 17 66 270

Wiedemann naive 53 411 3096 24425

Wiedemann fast 63 293 1282 5745

sFα
447 887 1767 3527

size DFα
1725× 926 3445× 1846 6885× 3686 13765× 7366

Table 11. Counting the number of absolutely irreducible factors of Fα (in seconds).

The goal of these examples is less the absolute factorization problem itself than
the demonstration of the usefulness of the fast polynomial product on a real applic-
ation. Let us finally mention that the algorithm with the smallest asymptotic cost,
given in [CL07], will not gain on our family Fα, because it starts with performing
a random linear change of the variables. To the best of our knowledge, no other
software is able to run the present examples faster.

Conclusion

We have presented classical and new algorithms for multiplying polynomials and
series in several variables with a special focus on asymptotic complexity. It turns
out that the new algorithms lead to substantial speed-ups in specific situations,
but are not competitive in a general manner. Of course, the fast algorithms involve
many subalgorithms, which make them harder to optimize. With an additional
implementation effort, some of the thresholds in our tables might become more
favourable for the new algorithms.

In our implementation, all the variants are available independently from one to
another, but they can also be combined with given thresholds. This allows the user
to finetune the software whenever it is known whether the polynomials are rather
dense (which occur if a random change of the variables is done for instance), strictly
sparse, etc. In the near future, we hope to extend the present techniques to the
division and higher level operations such as the g.c.d. and polynomial factorization.
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