
On the complexity of
multivariate polynomial division�

by Joris van der Hoeven

LIX, CNRS
École polytechnique

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.fr
Web: http://lix.polytechnique.fr/~vdhoeven

April 30, 2017

Abstract

In this paper, we present a new algorithm for reducing a multivariate
polynomial with respect to an autoreduced tuple of other polynomials.
In a suitable sparse complexity model, it is shown that the execution
time is essentially the same (up to a logarithmic factor) as the time
needed to verify that the result is correct.

Keywords: sparse reduction, complexity, division, algorithm
A.M.S. subject classi�cation: 68W30, 12Y05, 68W40, 13P10

1 Introduction

Sparse interpolation [1, 5, 2, 13] provides an interesting paradigm for effi-
cient computations with multivariate polynomials. In particular, under suitable
hypothesis, multiplication of sparse polynomials can be carried out in quasi-
linear time, in terms of the expected output size. More recently, other mul-
tiplication algorithms have also been investigated, which outperform naive and
sparse interpolation under special circumstances [14, 12]. An interesting ques-
tion is how to exploit such asymptotically faster multiplication algorithms for the
purpose of polynomial elimination. In this paper, we will focus on the reduction
of a multivariate polynomial with respect to an autoreduced set of other poly-
nomials and show that fast multiplication algorithms can indeed be exploited
in this context in an asymptotically quasi-optimal way.

Consider the polynomial ring K[x] = K[x1; :::; xn] over an effective
�eld K with an e�ective zero test. Given a polynomial P =

P
i2Nn Pi x

i =P
i1;:::;in2N Pi1;:::;in x1

i1 ��� xnin, we call supp P = fi 2 Nn: Pi =/ 0g the sup-
port of P . The naive multiplication of two sparse polynomials P ; Q 2 K[x]
requires a priori O(jsupp P j jsupp Qj) operations in K. This upper bound
is sharp if P and Q are very sparse, but pessimistic if P and Q are dense.

�. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, the
Digiteo 2009-36HD grant and Région Ile-de-France.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=12Y05&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=12Y05&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=12Y05&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=68W40&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=13P10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=13P10&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=13P10&submit=Search

Assuming that K has characteristic zero, a better algorithm was proposed
in [2] (see also [1, 5] for some background). The complexity of this algorithm
can be expressed in the expected size s= jsuppP + suppQj of the output (when
no cancellations occur). It is shown that P and Q can be multiplied using only
O(M(s) log s) operations in K, where M(s) =O(s log s log log s) stands for the
complexity of multiplying two univariate polynomials in K[z] of degrees <s.
Unfortunately, the algorithm in [2] has two drawbacks:

1. The algorithm leads to a big growth for the sizes of the coe�cients,
thereby compromising its bit complexity (which is often worse than the
bit complexity of naive multiplication).

2. It requires supp P Q � supp P + supp Q to be known beforehand.
More precisely, whenever a bound supp P Q � supp P + supp Q � S is
known, then we really obtain a multiplication algorithm of complexity
O(M(jS j) log jS j).

In practice, the second drawback is of less importance. Indeed, especially when
the coe�cients in K can become large, then the computation of suppP + supp Q
is often cheap with respect to the multiplication PQ itself, even if we compute
suppP + suppQ in a naive way.

Recently, several algorithms were proposed for removing the drawbacks of [2].
First of all, in [13] we proposed a practical algorithm with essentially the same
advantages as the original algorithm from [2], but with a good bit complexity
and a variant which also works in positive characterisic. However, it still requires
a bound for suppPQ and it only works for special kinds of �elds K (which nev-
ertheless cover the most important cases such as K=Q and �nite �elds). Even
faster algorithms were proposed in [9, 14], but these algorithms only work for
special supports. Yet another algorithm was proposed in [7, 12]. This algorithm
has none of the drawbacks of [2], but its complexity is suboptimal (although
better than the complexity of naive multiplication).

At any rate, these recent developments make it possible to rely on fast sparse
polynomial multiplication as a building block, both in theory and in practice.
This makes it natural to study other operations on multivariate polynomials with
this building block at our disposal. One of the most important such operations
is division.

The multivariate analogue of polynomial division is the reduction of a poly-
nomial A2K[x] with respect to an autoreduced tuple B=(B1; :::;Bb)2K[x]b of
other polynomials. This leads to a relation

A = Q1B1+ ���+QbBb+R; (1)

such that none of the terms occurring in R can be further reduced with respect
to B. In this paper, we are interested in the computation of R as well as Q1; :::;
Qb. We will call this the problem of extended reduction , in analogy with the
notion of an �extended g.c.d.�.

2 Section 1

Now in the univariate context, �relaxed power series� provide a convenient
technique for the resolution of implicit equations [6, 7, 8, 10]. One major advan-
tage of this technique is that it tends to respect most sparsity patterns which are
present in the input data and in the equations. The main technical tool in this
paper (see section 3) is to generalize this technique to the setting of multivariate
polynomials, whose terms are ordered according to a speci�c admissible ordering
on the monomials. This will make it possible to rewrite (1) as a so called recursive
equation (see section 4.2), which can be solved in a relaxed manner. Roughly
speaking, the cost of the extended reduction then reduces to the cost of the
relaxed multiplications Q1 B1; :::; Qb Bb. Up to a logarithmic overhead, we
will show (theorem 7) that this cost is the same as the cost of checking the
relation (1).

In order to simplify the exposition, we will adopt a simpli�ed sparse com-
plexity model throughout this paper. In particular, our complexity analysis will
not take into account the computation of support bounds for products or results
of the extended reduction. Bit complexity issues will also be left aside in this
paper. We �nally stress that our results are mainly of theoretical interest since
none of the proposed algorithms have currently been implemented. Nevertheless,
practical gains are not to be excluded, especially in the case of small n, high
degrees and dense supports.

2 Notations

Let K be an e�ective �eld with an e�ective zero test and let x1; :::; xn be
indeterminates. We will denote

K[x] = K[x1; :::; xn]

Pi = Pi1;:::;in
xi = x1

i1 ���xnin

i4 j , i16 j1^ ��� ^ in6 jn;

for any i; j2Nn and P 2K[x]. In particular, i4 j,xi jxj. For any subset E�Nn

we will denote by Fin(E) = fj 2Nn: 9i 2E; i4 jg the �nal segment generated
by E for the partial ordering 4.

Let 6 be a total ordering on Nn which is compatible with addition. Two
particular such orderings are the lexicographical ordering 6lex and the reverse
lexicographical ordering 6rlex:

i <lex j , 9k; i1= j1^ ��� ^ ik¡1= jk¡1^ ik< jk

i <rlex j , 9k; ik< jk^ ik+1= jk+1^ ��� ^ in= jn:

In general, it can be shown [16] that there exist real vectors �1; :::; �n2Rm with
m6n, such that

i6 j , (�1 � i; :::; �m � i)6lex (�1 � j ; :::; �m � j): (2)

Notations 3

In what follows, we will assume that �1; :::; �n2Nn and gcd((�i)1; :::; (�i)n)= 1
for all i. We will also denote

� � i = (�1 � i; :::; �n � i):

For instance, the graded reverse lexicographical ordering 6grlex is obtained by
taking �1=(1; :::; 1), �2=(0; :::; 1), �2=(0; :::; 0; 1; 0), :::, �n=(0; 1; 0; :::; 0).

Given P 2K[x], we de�ne its support by

suppP = fi2Nn:Pi=/ 0g:

If P =/ 0, then we also de�ne its leading exponent lP and coe�cient cP by

lP = max6 suppP
cP = PlP :

Given a �nite set E, we will denote its cardinality by jE j.

3 Relaxed multiplication

3.1 Relaxed power series

Let us brie�y recall the technique of relaxed power series computations, which
is explained in more detail in [7]. In this computational model, a univariate
power series f 2K[[z]] is regarded as a stream of coe�cients f0; f1; :::. When
performing an operation g=�(f1; :::; fk) on power series it is required that the
coe�cient gn of the result is output as soon as su�ciently many coe�cients of the
inputs are known, so that the computation of gn does not depend on the further
coe�cients. For instance, in the case of a multiplication h= f g, we require that
hn is output as soon as f0; :::; fn and g0; :::; gn are known. In particular, we may
use the naive formula hn=

P
i=0
n

fi gn¡i for the computation of hn.
The additional constraint on the time when coe�cients should be output

admits the important advantage that the inputs may depend on the output,
provided that we add a small delay. For instance, the exponential g= exp f of
a power series f 2 zK[[z]] may be computed in a relaxed way using the formula

g =

Z
f 0 g:

Indeed, when using the naive formula for products, the coe�cient gn is given by

gn =
1

n
(f1 gn¡1+2 f2 gn¡2+ ���+nfn g0);

and the right-hand side only depends on the previously computed coe�cients
g0; :::; gn¡1. More generally, equations of the form g = �(g) which have this
property are called recursive equations and we refer to [11] for a mechanism to
transform fairly general implicit equations into recursive equations.

4 Section 3

The main drawback of the relaxed approach is that we cannot directly use
fast algorithms on polynomials for computations with power series. For instance,
assuming that K has su�ciently many 2p-th roots of unity and that �eld oper-
ations in K can be done in time O(1), two polynomials of degrees < n can be
multiplied in time M(n) = O(n log n), using FFT multiplication [3]. Given the
truncations f;n = f0 + ��� + fn¡1 z

n¡1 and g;n = g0 + ��� + gn¡1 z
n¡1 at order

n of power series f ; g 2 K[[z]], we may thus compute the truncated product
(f g);n in time M(n) as well. This is much faster than the naive O(n2) relaxed
multiplication algorithm for the computation of (f g);n. However, the formula
for (f g)0 when using FFT multiplication depends on all input coe�cients f0; :::;
fn¡1 and g0; :::; gn¡1, so the fast algorithm is not relaxed (we will say that FFT
multiplication is a zealous algorithm). Fortunately, e�cient relaxed multiplica-
tion algorithms do exist:

Theorem 1. [6, 7, 4] Let M(n) be the time complexity for the multiplication
of polynomials of degrees <n in K[z]. Then there exists a relaxed multiplication
algorithm for series in K[[z]] at order n of time complexity R(n)=O(M(n) logn).

Remark 2. In fact, the algorithm from theorem 1 generalizes to the case when
the multiplication on K is replaced by an arbitrary bilinear �multiplication�
M1�M2!M3, where M1;M2 and M3 are e�ective modules over an e�ective
ringA. If M(n) denotes the time complexity for multiplying two polynomials P 2
M1[z] and Q2M2[z] of degrees<n, then we again obtain a relaxed multiplication
for series f 2M1[[z]] and g2M2[[z]] at order n of time complexity O(M(n) logn).

Theorem 3. [10] If K admits a primitive 2p-th root of unity for all p,
then there exists a relaxed multiplication algorithm of time complexity R(n) =
O(n log n e2 log 2log log n

p
). In practice, the existence of a 2p+1-th root of unity

with 2p>n su�ces for multiplication up to order n.

3.2 Relaxed multivariate Laurent series

Let A be an e�ective ring. A power series f 2A[[z]] is said to be computable if
there is an algorithm which takes n 2N on input and produces the coe�cient
fn on output. We will denote by A[[z]]com the set of such series. Then A[[z]]com

is an e�ective ring for relaxed addition, subtraction and multiplication.
A computable Laurent series is a formal product f zk with f 2A[[z]]com and

k 2Z. The set A((z))com of such series forms an e�ective ring for the addition,
subtraction and multiplication de�ned by

f zk+ g zl = (f zk¡min(k;l)+ g zl¡min(k;l)) zmin(k;l)

f zk¡ g zl = (f zk¡min(k;l)¡ g zl¡min(k;l)) zmin(k;l)

(f zk) (g zl) = (f g) zk+l:

If A is an e�ective �eld with an e�ective zero test, then we may also de�ne an
e�ective division on A((z))com, but this operation will not be needed in what
follows.

Relaxed multiplication 5

Assume now that z is replaced by a �nite number of variables z=(z1; :::; zn).
Then an element of

A((z))com := A((zn))com���((z1))com

will also be called a �computable lexicographical Laurent series�. Any non zero
f 2A((z)) has a natural valuation vf = (v1; :::; vn)2Zn, by setting v1= valz1 f ,
v2= valz2 ([z1

v1] f), etc. The concept of recursive equations naturally generalizes
to the multivariate context. For instance, for an in�nitesimal Laurent series
"2A((z))com (that is, "= f zk, where vf >lex¡k), the formula

g = 1+ " g

allows us to compute g = (1 ¡ ")¡1 using a single relaxed multiplication in
A((z))com.

Now take A=K[x] and consider a polynomial P 2 A. Then we de�ne the
Laurent polynomial P̂ 2K[x z¡�]�A((z))com by

P̂ =
X
i2Nn

Pi xi z¡��i:

Conversely, given f 2 K[x z¡�], we de�ne f� 2 K[x] by substituting z1 = ��� =
zn = 1 in f . We will call the transformations P 7! P̂ and P̂ 7! P = P̂

� tagging
resp. untagging; they provide us with a relaxed mechanism to compute with
multivariate polynomials in K[x], such that the admissible ordering 6 on Nn is
respected. For instance, we may compute the relaxed product of two polynomials
P ; Q 2K[x] by computing the relaxed product P̂ Q̂ and substituting z1= ���=
zn = 1 in the result. We notice that tagging is an injective operation which
preserves the size of the support.

3.3 Complexity analysis

Assume now that we are given P ; Q 2 K[x] and a set R � Nn such that
supp (P Q) � R. We assume that SM(s) is a function such that the (zealous)
product PQ can be computed in time SM(jRj). We will also assume that SM(s)/
s is an increasing function of s. In [2, 15], it is shown that we may take SM(s)=
O(M(s) log s).

Let us now study the complexity of sparse relaxed multiplication of P and
Q. We will use the classical algorithm for fast univariate relaxed multiplication
from [6, 7], of time complexity R(s)=O(M(s) log s). We will also consider semi-
relaxed multiplication as in [8], where one of the arguments P̂ or Q̂ is completely
known in advance and only the other one is computed in a relaxed manner.

Given X �Nn and i2f1; :::; ng, we will denote

�i(X) = max f�i � k: k 2Xg+1
�(X) = �1(X) ��� �n(X):

We now have the following:

6 Section 3

Theorem 4. With the above notations, the relaxed product of P and Q can be
computed in time

O(SM(jRj) log �(R)):

Proof. In order to simplify our exposition, we will rather prove the theorem for a
semi-relaxed product of P̂ (relaxed) and Q̂ (known in advance). As shown in [8],
the general case reduces to this special case. We will prove by induction over n
that the semi-relaxed product can be computed using at most 3 SM(jRj) log �(R)
operations in K if R is su�ciently large. For n= 0, we have nothing to do, so
assume that n> 0.

Let us �rst consider the semi-relaxed product of P̂ and Q̂ with respect to
z1. Setting l = dlog2 �1(R)e, the computation of this product corresponds (see
the right-hand side of �gure 1) to the computation of 62 zealous 2l¡1 � 2l¡1

products (i.e. 2 products of polynomials of degrees <2l¡1 in z1), 64 zealous
2l¡2�2l¡2 products, and so on until 62l zealous 1�1 products. We �nally need
to perform 2l semi-relaxed 1� 1 products of series in z2; :::; zn only.

More precisely, assume that P̂ and Q̂ have valuations p resp. q in z1 and let
P̂i stand for the coe�cient of z1i in P . We also de�ne

R̂ = f(a1; :::; an; b1; :::; bn)2Nn�Zn: (a1; :::; an)2R^ (8i; bi=¡�i � a)g:

Now consider a block size 2k. For each i, we de�ne

P̂[i] = P̂p+2ki z1
p+2ki+ ���+ P̂p+2k(i+1)¡1 z1

p+2k(i+1)¡1

Q̂[i] = Q̂q+2ki z1
q+2ki+ ���+ Q̂q+2k(i+1)¡1 z1

q+2k(i+1)¡1

R̂[i] = f(a1; :::; an; b1; :::; bn)2R̂:
2k i6 a1¡ p¡ q6 2k (i+1)¡ 1g;

and notice that the R̂[i] are pairwise disjoint. In the semi-relaxed multiplication,
we have to compute the zealous 2k� 2k products P̂[i] Q̂[1] for all i 6 b(�1(R) +
1)/2kc. Since

supp P̂[i] Q̂[1] � R̂[i+1]qR̂[i+2];

we may compute all these products in time

SM
¡��R̂[1]qR̂[2]

���+ ���+SM
¡��R̂[2l¡k]qR̂[2l¡k+1]

���
=

¡��R̂[1]qR̂[2]

��� SM
¡��R̂[1]qR̂[2]

�����R̂[1]q R̂[2]

�� + ���+¡��R̂[2l¡k]qR̂[2l¡k+1]

��� SM
¡��R̂

[2l¡k]qR̂[2l¡k+1]

�����R̂
[2l¡k]qR̂[2l¡k+1]

��
6

¡��R̂[1]qR̂[2]

��+ ���+ ��R̂[2l¡k]qR̂[2l¡k+1]

��� SM(jR̂j)
jR̂j

6 2SM(jR̂j) = 2 SM(jRj):

The total time spent in performing all zealous 2k�2k block multiplications with
2k< 2l is therefore bounded by 2SM(jRj) log �1(R).

Relaxed multiplication 7

Let us next consider the remaining 1 � 1 semi-relaxed products. If n = 1,
then these are really scalar products, whence the remaining work can clearly be
performed in time SM(jRj) log �1(R) if R is su�ciently large. If n> 1, then for
each i, we have

supp P̂[i] Q̂[0] � R̂[i]:

By the induction hypothesis, we may therefore perform this semi-relaxed product
in time 3 SM

¡��R̂[i]

��� (log �(R) ¡ log �1(R)). A similar argument as above now
yields the bound 3 SM(jRj) (log �(R)¡ log �1(R)) for performing all 1� 1 semi-
relaxed block products. The total execution time (which also takes into account
the �nal additions) is therefore bounded by 3 SM(jRj) log �(R). This completes
the induction. �
Remark 5. In practice, the computation of zealous products of the form P̂[i] Q̂[j]

is best done in the untagged model, i.e. using the formula

P̂[i] Q̂[j] = P̂[i] Q̂[j]:

Proceeding this way allows us to use any of our preferred algorithms for sparse
polynomial multiplication. In particular, we may use [14] or [12].

Q̂q+2

���

Q̂q+1

Q̂q

���P̂p+2P̂p+1P̂p P̂p P̂p+1 P̂p+2 ���

Q̂q

Q̂q+1

Q̂q+2

���

Figure 1. Illustration of a fast relaxed product and a fast semi-relaxed product.

4 Polynomial reduction

4.1 Naive extended reduction

Consider a tuple B=(B1; :::;Bb)2K[x]b. We say that B is autoreduced if Bi=/ 0
for all i and lBi 4/ lBj and lBj 4/ lBi for all i =/ j. Given such a tuple B and an
arbitrary polynomial A 2 K[x], we say that A is reduced with respect to B if
lBi4/ k for all i and k 2 suppA. An extended reduction of A with respect to B
is a tuple (Q1; :::; Qb; R) with

A = Q1B1+ ���+QbBb+R; (3)

8 Section 4

such that R is reduced with respect to B. The naive algorithm extended-reduce
below computes an extended reduction of A.

Algorithm extended-reduce
Input: A2K[x] and an autoreduced tuple B 2K[x]b

Output: an extended reduction of A with respect to B

Start with Q := (0; :::; 0) and R :=A
While R is not reduced with respect to B do

Let i be minimal and such that lBi4 k for some k 2 suppR
Let k 2 suppR be maximal with lBi4 k
Set Qi :=Qi+(Rk/cBi)x

k¡lBi and R :=R¡ (Rk/cBi) x
k¡lBiBi

Return (Q1; :::; Qb; R)

Remark 6. Although an extended reduction is usually not unique, the one
computed by extended-reduce is uniquely determined by the fact that, in our
main loop, we take i minimal with lBi4 k for some k 2 suppR. This particular
extended reduction is also characterized by the fact that

suppQi+ lBi � Fin(flBig) nFin(flB1; :::; lBi¡1g)

for each i.

In order to compute Q1; :::; Qb and R in a relaxed manner, upper bounds

suppQi � Qi

suppQiBi � Qi+ suppBi
suppR � R

need to be known beforehand. These upper bounds are easily computed as
a function of A = supp A; B1 = supp B1; :::; Bb = supp Bb by the variant
supp-extended-reduce of extended-reduce below. We recall from the end of the
introduction that we do not take into account the cost of this computation in
our complexity analysis. In reality, the execution time of supp-extended-reduce
is similar to the one of extended-reduce, except that potentially expensive oper-
ations in K are replaced by boolean operations of unit cost. We also recall that
support bounds can often be obtained by other means for speci�c problems.

Algorithm supp-extended-reduce
Input: subsets A and B1; :::;Bb of Nn as above
Output: subsets Q1; :::;Qb and R of Nn as above

Start with Q := (?; :::;?) and R :=A
While R\Fin(fmaxB1; :::;maxBbg)=/ ? do

Let i be minimal with lmaxBi4 k for some k 2R
Let k 2R be maximal with lmaxBi4 k
Set Qi :=Qi[fk¡maxBig and

R :=R[(Bi+(k¡maxBi)) n fkg
Return (Q1; :::;Qb;R)

Polynomial reduction 9

4.2 Relaxed extended reduction

Using the relaxed multiplication from section 3, we are now in a position to
replace the algorithm extended-reduce by a new algorithm, which directly com-
putes Q1; :::; Qb; R using the equation (3). In order to do this, we still have to
put it in a recursive form which is suitable for relaxed resolution.

Denoting by ei the i-th canonical basis vector of K[x]b+1, we �rst de�ne an
operator �:x1N ���xnN!K[x]b+1 by

�(xk) =

8><>:
cBi
¡1xk¡lBi ei if k 2Fin(flBi; :::; lBbg) and

i is minimal with lBi4 k
eb+1x

k otherwise

By linearity, this operator extends to K[x]

�(P) =
X

i2suppP
Pi�(xi):

In particular, �(cA xlA) yields the �leading term� of the extended reduction
(Q1; :::; Qb; R). We also denote by �̂ the corresponding operator from K[x z¡�]

to K[x z¡�]b+1 which sends P̂ to �(P).
Now let Bi�=Bi¡ cBix

lBi for each i. Then

(QiBi)k = (QiBi
�)k+(Qi)k¡lBi cBi

for each i2f1; :::; bg and k 2Nn. The equation

(Q1B1+ ���+QbBb+R)k = Ak

can thus be rewritten as

(Q1)k¡lB1 cB1+ :::+(Qi)k¡lBb cBb
= (A¡Q1B1

�¡ ���¡QbBb
�)k

Using the operator � this equation can be rewritten in a more compact form as

(Q1; :::; Qb; R) = �(A¡Q1B1
�¡ ���¡QbBb

�):

The tagged counterpart¡
Q̂1; :::; Q̂b; R̂

�
= �̂

¡
Â¡ Q̂1 B̂1

�¡ ���¡ Q̂b B̂b
��

is recursive, whence the extended reduction can be computed using b multi-
variate relaxed multiplications Q̂1 B̂1

�
; :::; Q̂b B̂b

�
. With A;Bi;Qi and R as in the

previous section, theorem 4 therefore implies:

Theorem 7. We may compute the extended reduction of A with respect to B in
time

O(SM(jB1+Q1j) log �(B1+Q1)+ ���+
SM(jBb+Qbj) log �(Bb+Qb)+ jRj):

10 Section 4

Remark 8. Following remark 2, we also notice that A, the Qi and R may
be replaced by vectors of polynomials in K[x]m (regarded as polynomials with
coe�cients in Km), in the case that several polynomials need to be reduced
simultaneously.

Bibliography

[1] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolation. In STOC '88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 301�309, New York, NY, USA, 1988. ACM Press.

[2] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equa-
tions faster. In Proc. ISSAC '89, pages 121�128, Portland, Oregon, A.C.M., New York,
1989. ACM Press.

[3] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Math. Computat., 19:297�301, 1965.

[4] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer multiplication. Proc. 5th ACM
Symposium on Theory of Computing, 9:67�72, 1974.

[5] D. Y. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with
polynomially bounded permanents is in NC. In Proceedings of the 28th IEEE Symposium
on the Foundations of Computer Science, pages 166�172, 1987.

[6] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor,
Proc. ISSAC '97, pages 17�20, Maui, Hawaii, July 1997.

[7] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479�542, 2002.
[8] J. van derHoeven. Relaxedmultiplication using themiddle product. InManuel Bronstein,

editor, Proc. ISSAC '03, pages 143�147, Philadelphia, USA, August 2003.
[9] J. van der Hoeven. The truncated Fourier transform and applications. In J. Gutierrez,

editor, Proc. ISSAC 2004, pages 290�296, Univ. of Cantabria, Santander, Spain, July
4�7 2004.

[10] J. van der Hoeven. New algorithms for relaxedmultiplication. JSC, 42(8):792�802, 2007.
[11] J. van der Hoeven. From implicit to recursive equations. Technical report, HAL, 2011.

http://hal.archives-ouvertes.fr/hal-00583125.
[12] J. van der Hoeven and G. Lecerf. On the complexity of blockwise polynomial multipli-

cation. In Proc. ISSAC '12, pages 211�218, Grenoble, France, July 2012.
[13] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multipli-

cation. JSC, 50:227�254, 2013.
[14] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. AAECC,

24(1):37�52, 2013.
[15] E. Kaltofen andY. N. Lakshman. Improved sparse multivariate polynomial interpolation

algorithms. In ISSAC '88: Proceedings of the international symposium on Symbolic and
algebraic computation, pages 467�474. Springer Verlag, 1988.

[16] L. Robbiano. Term orderings on the polynominal ring. In European Conference on
Computer Algebra (2), pages 513�517, 1985.

Bibliography 11

http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125
http://hal.archives-ouvertes.fr/hal-00583125

	1 Introduction
	2 Notations
	3 Relaxed multiplication
	3.1 Relaxed power series
	3.2 Relaxed multivariate Laurent series
	3.3 Complexity analysis

	4 Polynomial reduction
	4.1 Naive extended reduction
	4.2 Relaxed extended reduction

	Bibliography

