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Abstract

Conway's field No of surreal numbers comes both with a natural total order and
an additional “simplicity relation” which is also a partial order. Considering No as
a doubly ordered structure for these two orderings, an isomorphic copy of No into
itself is called a surreal substructure. It turns out that many natural subclasses of No
are actually of this type. In this paper, we study various constructions that give rise
to surreal substructures and analyze important examples in greater detail.

1 Introduction

1.1 Surreal numbers
The class No of surreal numbers was discovered by Conway and studied in his well-
known monograph On Numbers and Games [11]. Conway's original definition is some-
what informal and goes at follows:

“If L and R are any two sets of (surreal) numbers, and no member of L is⩾
any member of R, then there is a (surreal) number {L |R}. All (surreal)
numbers are constructed in this way.”

Themagic of surreal numbers lies in the fact that many traditional operations on integers
and real numbers can be defined in a very simple way on surreal numbers. Yet, the class
No turns out to admit a surprisingly rich algebraic structure under these operations. For
instance, the sum of two surreal numbers x={xL | xR} and y={yL | yR} is defined recur-
sively by

x+y = {xL+y,x+yL |xR+y,x+yR}. (1.1)

In section 3 below,we recall similar definitions for subtraction andmultiplication. Despite
the fact that the basic arithmetic operations can be defined in such an “effortless” way,
Conway showed that No actually forms a real-closed field that contains ℝ. Strictly
speaking, some care is required here, since the surreal numbers No form a proper class.
In particular, it contains all ordinal numbers 𝛼={𝛼L |∅}. We refer to appendix B for ways
to deal with this kind of set-theoretic issues.

1



One convenient way to rigourously introduce surreal numbers x is to regard them as
“sign sequences” x=(x[𝛽])𝛽<𝛼∈{−1,+1}𝛼 indexed by the elements 𝛽<𝛼 of an ordinal
number 𝛼= ℓ(x), called the length of x: see section 2.1 below for details. Every ordinal 𝛼
itself is represented as 𝛼=(𝛼[𝛽])𝛽<𝛼 with 𝛼[𝛽]=1 for all 𝛽<𝛼. The number 1/2 is repre-
sented by the sign sequence+1,−1 of length 2. The ordering⩽ onNo corresponds to the
lexicographical ordering on sign sequences, modulo zero padding when comparing two
surreal numbers of different lengths. The sign sequence representation also induces the
important notion of simplicity: given x,y∈No, we say that x is simpler as y, andwrite x⊑y,
if the sign sequence of x is a truncation of the sign sequence of y. The simplicity relation
is denoted by ≤s in some previous works [8, 27, 3].

The sign sequence representation was introduced and studied systematically in Gon-
shor's book [21]. As we will see in section 3, it also allows for a natural extension of
ordinal arithmetic to the surreal numbers. In order to avoid confusion, we will systemat-
ically use the notations 𝛼∔𝛽 and 𝛼×. 𝛽 for ordinal sums and products and �̇�𝛽 for ordinal
exponentiation. For instance, in No, we have 𝜔∔1=𝜔+1=1+𝜔≠1∔𝜔=𝜔. Given
an ordinal 𝛼, it is also natural to define the set No(𝛼) of all surreal numbers x of length
ℓ(x)<𝛼. It turns out that No(𝛼) is a real-closed subfield of No if and only if 𝛼 is an
𝜀-number, i.e. �̇�𝛼=𝛼 [12, Proposition 4.7 and Corollary 4.9].

1.2 Exponentiation, derivation, and hyperseries
Quite somework has been dedicated to the extension of basic calculus to the surreal num-
bers and to the study of various operations in terms of sign sequences. In his book [21],
Gonshor shows how to extend the real exponential function to No. This exponential
function actually admits the same first order properties as the usual exponential func-
tion: the classNo is elementarily equivalent toℝ as an exponential field. In fact, they are
even elementarily equivalent as real exponential ordered fields equipped with restricted
analytic functions [12, Theorem 2.1]. Here we recall that a restricted real analytic func-
tion is a power series f ∈ℝ[[x]] at the origin that converges on a small closed ball [−r, r]
with r>0. Then it can be shown that the definition of f (x) extends to surreal numbers x
with −r⩽x⩽ r.

Another important question concerns the possibility to define a natural derivation ∂
on the surreal numbers, which is non-trivial in the sense that ∂𝜔= 1. Such a deriva-
tion was first constructed by Berarducci and Mantova [8], while making use of earlier
work by van der Hoeven and his student Schmeling [35]. It was shown in [3] that this
“Italian” derivation ∂BM has “similarly good properties” as the exponential function in
the sense that No is elementary equivalent to the field of transseries as an H-field. Here
transseries are a generalization of formal power series. They form an ordered exponen-
tial field𝕋 that comes with a derivation. The notion of an H-field captures the algebraic
properties of this field 𝕋 as well as those of so-called Hardy fields. We refer to [1] for
more details.

The above results on the exponential function and the Italian derivation ∂BM on No
rely on yet another representation of surreal numbers as generalized power series x=
∑𝔪∈Mo x𝔪𝔪 with real coefficients and monomials 𝔪∈Mo such that 𝔪 is simpler than
any other 0< x∈No with the same valuation as 𝔪: see section 2.3 for details. Indeed,
ordinary power series and Laurent series in 𝜔−1 can be regarded as functions in 𝜔, so
they come with a natural derivation. More generally, the exponential function on No
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makes it possible to interpret any transseries in 𝜔 as a surreal number, which makes it
again possible to derive such surreal numbers in a natural way.

Unfortunately, not all surreal numbers are transseries in 𝜔. For instance, the surreal
number {𝜔,e𝜔,ee𝜔,…|∅} is larger than any transseries in𝜔. In order to be able to intepret
all surreal numbers as functions in 𝜔, two ingredients are missing: on the one hand, we
need to introduce ordinal “iterators” E𝛼 of the exponential function that grow faster than
finite iterates. For instance, we have E𝜔(𝜔)= {𝜔, e𝜔, ee

𝜔,… | ∅}. On the other hand, we
need to be able to represent so-called nested transseries such as

𝜔√ +e log𝜔� +e loglog𝜔� +e⋰

. (1.2)

The present paper is part of an ongoing project to represent any surreal number as a gen-
eralized “hyperseries” in 𝜔, which takes these observations into account. This project
was first mentioned in [26] and further detailed in [2]. For progress on the “series side”,
we refer to [23, 35, 26, 13]. The derivation ∂BM cannot be compatible with a composi-
tion law on No [9, Theorem 8.4]. More specifically, it was noted in [2] that the Italian
derivation fails to satisfy ∂BM(E𝜔(x))=(∂BM x)E𝜔′ (x) for all x. Ultimately, the ability to
represent surreal numbers as hyperseries evaluated at 𝜔 should lead to compatible def-
initions of a derivation and a composition onNo.

1.3 Surreal substructures
In the course of the above project to construct an isomorphism between No and a suit-
able class of hyperseries, one frequently encounters subclasses 𝐒 ofNo that are naturally
parameterized by No itself. For instance, Conway's generalized ordinal exponentiation
x∈No⟼�̇�x∈Mo is bijective, which leads to a natural parameterization of the classMo
of monomials by No (see Theorems 5.2 and 5.11). Similarly, nested expressions such
as (1.2) do not give rise to a single surreal number, but rather to a class Ne of surreal
numbers that is naturally parameterized byNo (see Theorem 8.8). Yet another example
is the class La=⋂n∈ℕ {(exp∘…

n×∘exp)(𝔪) :𝔪∈Mo,𝔪>ℝ} of log-atomic surreal numbers
that occurs crucially in the construction of derivations onNo [8, Section 5.2].

In these three examples, the parameterizations turn out to be more than mere bijec-
tive maps: they actually preserve both the ordering⩽ and the simplicity relation⊑. This
leads to the definition of a surreal substructure of No as being an isomorphic copy of
(No,⩽,⊑) inside itself. Surreal substructures such asMo,Ne, and La behave similarly as
the surreal numbers themselves No in many regards. In our project, we have started to
exploit this property for the definition and study of new functions onNo such as hyper-
logarithms and nested transseries.

The main goal of the present paper is to develop the basic theory of surreal substruc-
tures for its own sake and as a new tool to study surreal numbers. We hope to convey
the sense that surreal substructures are at the same time very general and very rigid
subclasses ofNo and that several problems regarding the enriched structure ofNo (high-
lighted in particular in the work of Gonshor [21], Lemire [28, 29, 30], Ehrlich [16, 15, 17],
Kuhlmann–Matusinski [27], Berarducci–Mantova [8], and Aschenbrenner–van den
Dries–van der Hoeven [3]) crucially involve surreal substructures. Even for very basic
subclasses of No, such as No>={x∈No : x>0}, we suggest that it deserves our atten-
tion when they form surreal substructures.
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A substantial part of our paper (namely, sections 4, 5, and 6) is therefore devoted to
basic but fundamental results. Some of these general facts were known and rediscovered
in different contexts [31, 16]. However, they mainly appeared as auxiliary tools in these
works. In this paper, we aim at covering the most noteworthy facts in a self-contained
and organized way. In the course of our exposition, we identify which properties of
surreal substructures are systematic andwhich ones are proper to specific structures. We
also include a wide range of examples. This effort culminates in the last two sections 7
and 8, where we present the examples that motivated our paper and that are important
for our program to construct an isomorphism between No and the class of hyperseries.
We refer to [5] for some first applications in this direction. In Appendix A, we also com-
piled a small atlas for the most prominent examples of surreal substructures.

1.4 Summary of our contributions
Let us briefly outline the structure of the paper. In section 2, we recall the threemain rep-
resentations of surreal numbers. In section 3, we recall the definitions of basic arithmetic
operations on surreal numbers. We also show how to extend the ordinal sum ∔ and the
ordinal product ×. to No.

In section 4, we introduce surreal substructures, our main object of study, as isomor-
phic copies of (No,⩽,⊑) inside itself. Any surreal substructure 𝐒 comes with a defining
isomorphismΞ𝐒:(No,⩽,⊑)⟶(𝐒,⩽,⊑) that is unique and that we consider as a parameter-
ization of the elements in𝐒 byNo. Defining isomorphismsΞ𝐒 andΞ𝐓 can be composed to
form the defining isomorphism ΞU=Ξ𝐒∘Ξ𝐓 of a new surreal structure U=𝐒�𝐓 that we
call the imbrication of 𝐓 inside 𝐒. More generally, we will often switch between the study
of surreal substructures and that of their parameterizations. A consequent part of sec-
tion 4.1 is a reformulation of notions and arguments found in [31, 16, 17]; see Remark 4.8.

In section 5, we investigate the existence of fixed points for the defining isomorphismΞ𝐒
of a given surreal substructure 𝐒. More precisely, we give conditions on 𝐒 under which
the class Fix𝐒 of such fixed points is itself a surreal substructure. Determining the class
Fix𝐒 allows us in some cases to compare the defining isomorphisms of two surreal sub-
structures. This task leads us to study surreal substructures 𝐒 which are closed under
non-empty, set-sized suprema in (No, ⊑) of chains in (𝐒,⊑). Such a surreal substruc-
ture 𝐒 is said No-closed, and has the following properties:

• Corollary 5.14: for an No-closed surreal substructure S, the class Fix𝐒 is a surreal
substructure, and it coincides with ⋂n∈ℕ Ξ𝐒

n(No), where Ξ𝐒n denotes the n-fold
composition of Ξ𝐒 with itself. A similar result was first proved by Lurie [31, The-
orem 8.2]; see Remark 5.15.

• Proposition 5.18: for an No-closed surreal substructure S, there is a decreasing
sequence (𝐒�𝛼)𝛼∈On of surreal substructures such that for ordinals 𝛼,𝛽, we have

a) 𝐒�0=No and 𝐒�1=𝐒,

b) 𝐒�(𝛼∔𝛽)=𝐒�𝛼�𝐒�𝛽,
c) 𝐒�(𝛼×

. 𝛽)=(𝐒�𝛼)�𝛽,

d) 𝐒�𝛼=⋂𝛾<𝛼 𝐒
�𝛾 if 0<𝛼 is limit,
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In fact any well-ordered sequence of No-closed surreal substructures can be similarly
“imbricated”, and thus No-closed surreal substructures can be seen as words in a rich
language that captures at the same time the notions of fixed points, imbrications and
intersections of surreal substructures. One direct application is a new proof of a theorem
by Lemire [29]; see Remark 5.17.

In section 6, we study subclasses Smp𝚷 whose elements are the simplest represen-
tatives of members in a convex partition 𝚷 of a surreal substructure 𝐒. Under a set-
theoretic condition on𝚷, we prove that this class forms a surreal substructure of 𝐒 (The-
orem 6.7) whose parameterization admits a short recursive definition. A weaker version
of this theorem was first proved by Lurie [31]; see Remark 6.8. A particularly important
special case is when the convex partition is induced by a group action (see section 6.3).
We also introduce the notion of a sharp convex partition 𝚷 of a surreal substructure 𝐒
which makes Smp𝚷 closed within 𝐒 (Theorem 6.14).

Our final sections 7 and 8 concern the application of our results to some prominent
examples of specific surreal substructures. This includes the structure No≻ of purely
infinite surreal numbers of [21], the structure Mo of monomials of [11], the structure La
of log-atomic numbers of [8], the structure 𝐊 of 𝜅-numbers of [27], and various structures
of nested monomials, including Ne. Our results about nested monomials in section 8 are
analogous to Lemire's work on continued exponential expressions [30], when replacing
ordinal exponentiation by traditional exponentiation. The appendix A contains a short
overview of the surreal substructures encountered in this paper.

1.5 Notations
We will systematically use a bold type face to denote classes such as No that may
not be sets. Given a partially ordered class (𝐗,<𝐗) and subclasses 𝐀,𝐁 of 𝐗, we write
𝐀<𝐗𝐁 if a<Xb for all a∈A and b∈B. This holds in particular whenever 𝐀=∅ or 𝐁=∅.
For elements x1, …, xn, y1, …, yn of 𝐗, we write x1, …, xm<𝐗𝐁 and 𝐀<𝐗 y1, …, yn instead
of {x1,…,xm}<𝐗𝐁 and 𝐀<𝐗 {y1,…,yn}. Given more than two subclasses 𝐀1,…,An of 𝐗,
we also write A1<X⋯<XAn whenever Ai<XAj for all i< j.

If x∈𝐗, we let 𝐗>x denote the class of elements y∈𝐗 with y>x. In the special case
when (𝐗, e, ⋅,<𝐗) is an ordered monoid, we simply write 𝐗>=𝐗>e and X<=X<e.

We use similar notations for non-strict orders ⩽X.

2 Different presentations of surreal numbers
Surreal numbers can be represented in three main ways: as sign sequences, as general-
ized Dedekind cuts, and as generalized power series over ℝ. In this section, we briefly
recall how this works, and review the specific advantages of each representation. We
refer to [11, 21, 16, 15, 32] for more details.

2.1 Surreal numbers as sign sequences
The sign sequence representation is most convenient for the rigourous development of
the basic theory of surreal numbers. It was introduced by Gonshor [21, page 3] and we
will actually use it to formally define surreal numbers as follows:
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Definition 2.1. A surreal number is a map x:ℓ(x)⟶{−1,1};𝛼⟼x[𝛼], where ℓ(x)∈On is an
ordinal number. We call ℓ(x) the length of x and the map x:ℓ(x)⟶{−1,1} the sign sequence
of x. We write No for the class of surreal numbers.

It follows from this definition that No is a proper class. Given a surreal number
x∈No, it is convenient to extend its sign sequence with zeros to a map On⟶{−1, 0, 1}
and still denote this extension by x. In otherwords, we take x[𝛼]=0 for all 𝛼⩾ℓ(x). Given
x∈No and 𝛼∈On, we also introduce its restriction y= x ↿𝛼∈No to 𝛼 as being the zero
padded restriction of the map x to 𝛼: we set y[𝛽]=x[𝛽] for 𝛽<𝛼 and y[𝛽]=0 for 𝛽⩾𝛼.

The first main relation onNo is its ordering ⩽. We define it to be the restriction of the
lexicographical ordering on the set of all maps from On to {−1, 0, 1}. More precisely,
given distinct elements x,y∈No, there exists a smallest ordinal 𝛼with x[𝛼]≠y[𝛼]. Then
we define x<y if and only if x[𝛼]<y[𝛼].

The second main relation onNo is the simplicity relation⊑: given numbers x,y∈No,
we say that x is simpler than y, and write x⊑y, if x=y ↿ ℓ(x). We write x⊏={a∈No :a⊏x}
for the set of surreal numbers that are strictly simpler than x. The partially ordered class
(No,⊑) is well-founded, and (x⊏,⊑) is well-ordered with order type ot(x⊏,⊑)= ℓ(x).

Every linearly ordered—and thus well-ordered—subsetX of (No,⊑) has a supremum
s=sup⊑X in (No,⊑): for any x∈X and 𝛼< ℓ(x), one has s[𝛼]=x[𝛼]; for any 𝛼∈Onwith
𝛼⩾ ℓ(x) all x∈X, one has s[𝛼]=0. We will only consider suprema in (No,⊑) and never
in (No,⩽). Numbers x that are equal to sup⊑ x⊏ are called limit numbers; other numbers
are called successor numbers. Limit numbers are exactly the numbers whose length is
a limit ordinal.

2.2 Surreal numbers as simplest elements in cuts
If L,R are sets of surreal numbers satisfying L<R, then there is a simplest surreal number,
written {L|R}, which satisfies L<{L |R} <R [21, Theorem 2.1]. We call {} the Conway
bracket. Notice that {L |R} is the simplest such number in the strong sense that for all
x∈Nowith L<x<R, we have {L |R}⊑x. The converse implication∀x∈No, {L |R}⊑x⟹
L<x<Rmay fail: see Remark 4.21 below.

Now consider two more sets L′,R′ of surreal numbers with L′<R′. If L has no strict
upper bound in L′ and R has no strict lower bound in R′, then we say that (L,R) is cofinal
with respect to (L′,R′). We say that (L,R) and (L′,R′) are mutually cofinal if they are
cofinal with respect to one another, in which case it follows that {L |R}={L′ |R′}. These
definitions naturally extend to pairs (𝐋,𝐑) of classes with 𝐋<𝐑. Note however that {𝐋|𝐑}
is not necessarily defined for such classes. Indeed, there may be no number x with L<
x<R (e.g. for L=No and R=∅).

We call a pair (L,R) of sets with L<R a cut representation of {L |R}. Such repre-
sentations are not unique; in particular, we may replace (L,R) by any mutually cofinal
pair (L′,R′). For every surreal number x, we denote

xL = {a∈No :a<x,a⊑x}
xR = {a∈No :a>x,a⊑x},

which are sets of surreal numbers. We call xL and xR the sets of left and right options for x.
By [21, Theorem 2.8], one has x= {xL | xR} and the pair (xL, xR) is called the canonical
representation of x.
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This identity x={xL |xR} is the fundamental intuition behind Conway's definition of
surreal numbers precisely as the simplest numbers lying in the “cut” defined by sets
L<R of simpler and previously defined surreal numbers. Of course, this is a highly
recursive representation that implicitly relies on transfinite induction.

Conway's cut representation is attractive because it allows for the recursive definition
of functions using by well-founded induction on (No, ⊑) or its powers. For instance,
there is a unique bivariate function f such that for all x, y∈No, we have

f (x,y)={ f (xL,y), f (x,yL) | f (xR,y), f (x,yR)}. (2.1)

Here we understand that f (xL, y), f (x, yL) denotes the set { f (x′, y) : x′ ∈ xL}∪ {f (x,y′) :
y′∈yL} and similarly for f (xR,y), f (x,yR). This recursive definition is justified by the fact
that the elements of the sets xL×{y}, {x}×yL, xR×{y}, and {x}×yR are all strictly simpler
than (x,y) for the product order on (No,⊑)×(No,⊑). This precise equation is actually
the one that Conway used to define the addition += f on No. We will recall similar
definitions of a few other arithmetic operations in section 3 below.

2.3 Surreal numbers as well-based series
Let C be a field and let 𝔐 be a totally ordered multiplicative group for the ordering ≼.
A subset𝔖⊆𝔐 is said to be well-based if it is well-ordered for the opposite ordering of≼
(i.e. there are no infinite chains 𝔪1≺𝔪2≺⋯ in𝔐). A well-based series in𝔐 and over C is
a map f :𝔐⟶C whose support supp f ≔{𝔪∈𝔐: f (𝔪)≠0} is a well-based subset of𝔐.
Such a series is usually written as f =∑𝔪∈𝔐 f𝔪𝔪, where f𝔪= f (𝔪) and the set of all
such series is denoted by C[[𝔐]]. Elements in C and𝔐 are respectively called coefficients
and monomials. We call 𝔐 the monomial group. The support of any non-zero element
f ∈C[[𝔐]] admits a largest element for ≼, which is called the dominant monomial of f
and denoted by 𝔡f .

It was shown by Hahn [22] that C[[𝔐]] forms a field for the natural sum and the
usual Cauchy convolution product

f + g≔ �
𝔪∈𝔐

( f𝔪+ g𝔪)𝔪, f g≔ �
𝔪∈𝔐 (((((((((((( �

𝔳𝔴=𝔪
f𝔳 g𝔴))))))))))))𝔪.

In C[[𝔐]], there is also a natural notion of infinite sums: if I is a set and ( fi)i∈I is a family
of well-based series in C[[𝔐]], then we say that it is summable if ⋃i∈I supp fi is well-
based and {i∈ I : fi,𝔪≠ 0} is finite for every 𝔪∈𝔐. In that case, we define the sum
f =∑i∈I fi∈C[[𝔐]] of this family by

f ≔ �
𝔪∈𝔐 ((((((((((((�i∈I

fi,𝔪))))))))))))𝔪.
Consider a second monomial group 𝔑 and a map 𝜑:C[[𝔐]]⟶C[[𝔑]]. We say that

𝜑 is strongly linear if it is C-linear and for every summable family ( fi)i∈I in C[[𝔐]], the
family (𝜑( fi))i∈I is summable in C[[𝔑]]𝜆 with 𝜑(∑i∈I fi)=∑i∈I 𝜑( fi). By [25, Proposi-
tion 10], in order to show that a linear map 𝜑 is strongly linear, it suffices to prove that
the above condition holds for families of scalar multiples of monomials. So 𝜑 is strongly
linear if and only if for all f ∈C[[𝔐]], the family ( f𝔪𝜑(𝔪))𝔪∈supp f is summable, with

𝜑( f )= �
𝔪∈supp f

f𝔪𝜑(𝔪).
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Since the support of any f ∈C[[𝔐]] is well-based, the order type ot( f )=ot(supp f )
of supp f for the opposite order of ≼ is an ordinal. Now consider an 𝜀-number 𝜆. We
recall that this means that �̇�𝜆=𝜆, where �̇�𝜆 stands for Cantor's 𝜆-th ordinal power of 𝜔.
It is known [20, Corollary 6.4] that the series f ∈C[[𝔐]] with ot( f )<𝜆 form a subfield
C[[𝔐]]𝜆 of C[[𝔐]].

The ordering on No induces a natural valuation v on No whose residue field is ℝ.
The Archimedean class of a non-zero surreal number x is the class Ax of all y∈No with
the same valuation as x. One of the discoveries of Conway was that Ax∩No> admits a
simplest element that we will denote by 𝔡x. Let Mo≔{𝔡x :x∈No≠} be the class of all 𝔡x
that we may obtain in this way. Conway also constructed an order preserving bijection
�̇�:No⟶Mo;x⟼�̇�x that extends Cantor's ordinal exponentiation.

Through this �̇�-map and the so-called Conway normal form [11, Chapter 5], it
turns out that the field No is naturally isomorphic to a field of well-based series
ℝ[[Mo]]On, for whichMo becomes the monomial group. For this series representation,
any number x∈No has a set-sized support supp x. The Conway normal form of x coin-
cides with its expression as a series x=∑𝔪∈Mo x𝔪𝔪. For x,y∈No we sometimes write
x++ y instead of x+ y in order to indicate that we have supp y≺supp x, and thus that
x is a truncation of x+y as a series.

3 Arithmetic on surreal numbers
In the sequel of this paper, by “number”, we will always mean “surreal number”.

3.1 Surreal arithmetic
We already explained the usefulness of Conway's cut representation for the recursive
definition of functions on No and mentioned the addition (2.1) as an example. In fact,
one may define all basic ring operations in a similar way:

0 = { | } (3.1)
1 = {0 | } (3.2)

−x = {−xR |−xL} (3.3)
x+y = {xL+y,x+yL |xR+y,x+yR} (3.4)
xy = {x′y+xy′−x′y′,x′′y+xy′′−x′′y′′ |x′y+xy′′−x ′y′′,x′′y+xy′−x′′y′}

(x′∈xL, x′′∈xR, y′∈yL, y′′∈yR). (3.5)

Onemajor discovery of Conwaywas that the surreal numbersNo actually form a real
closed field for these operations and the ordering ⩽. As an ordered field, it naturally
contains the dyadic numbers, which are the numbers with finite length, and the real
numbers, which are the numbers of length ℓ(r)⩽𝜔 whose sign sequence does not end
with infinitely many consecutive identical signs.

The class On of ordinals is also naturally embedded into (No, ⩽) by identifying an
ordinal 𝛼 with the constant sequence of length 𝛼 with 𝛼[𝛽]=1 for all 𝛽<𝛼. Thus, in No,
expressions such as

π 𝜔1√ − /2 𝜔,
𝜔 /3 4+1
1−𝜔2 ,…
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make sense and are amenable to various computations and comparisons. See [11,
Chapter 1] for more details on the field operations on No. See [21, Chapters 1, 2 and 3]
for more details on those operation in the framework of sign sequences and on the cor-
respondence between cuts and sign sequences.

Using hints fromKruskal, Gonshor also defined an exponential function onNo, which
we denote by exp [21, Page 145]. This function extends the usual exponential function
on ℝ. In fact, it turns out that No is an elementary extension of ℝ as an ordered expo-
nential field [12, Corollary 5.5]. In other words, the usual exponential function and its
extended version to No satisfy the same first order properties overℝ.

In order to define exp x for x∈No using a recursive equation, one needs to find an
appropriate characterization of the cut formed by exp x inside the field generated by
x, x⊏, and exp x⊏. In exponential fields, the natural inequalities satisfied by such cuts
involve truncated Taylor series expansions. Given n∈ℕ and a∈No, let

[a]n=�
k⩽n

ak
k! .

If x∈No and x′∈xL is such that exp(x′) is already defined, then for n∈ℕ, we should
have

exp(x)=exp(x′) exp(x−x′)>exp(x′) [x−x′]n

and one expects that such inequalities give sharp approximations of exp x. Following this
line of thought, Gonshor defined

exp x = {{{{{{{{{{{{{{{{{{{{{{{{0, [x−x′]ℕexp x′, [x−x′′]2ℕ+1exp x′′ � exp x′′
[x−x′′]2ℕ+1

, exp x′
[x′−x]ℕ}}}}}}}}}}}}}}}}}}}}}}}}

(x′∈xL, x′′∈xR). (3.6)

The reciprocal of exp, defined on No>, is denoted log. This also leads to a natural pow-
ering operation: given x∈No> and y∈No, we define xy=exp(y log(x)). Given r∈ℝ, we
have �̇�r=𝜔r, but formore general elements x∈No, one does not necessarily have �̇�x=𝜔x.
(see [6] for more details).

3.2 Extending ordinal arithmetic
We write On> and Onlim for the classes of non-zero and limit ordinal numbers, respec-
tively. The class of ordinal numbers is equipped with two distinct sets of operations:
Cantor's (non-commutative) ordinal arithmetic and Hessenberg's (commutative) arith-
metic. For ordinals 𝛼,𝛽, wewill denote their ordinal sum, product, and exponentiation by
𝛼∔𝛽, 𝛼×. 𝛽 and �̇�𝛽. Their Hessenberg sum and product coincide with their sum and pro-
duct when seen as surreal numbers [21, Theorems 4.5 and 4.6]; accordingly, we denote
them by 𝛼+𝛽 and 𝛼𝛽. We assume that the reader is familiar with elementary compu-
tations in ordinal arithmetic. In this section, we define operations on surreal numbers
which extend ordinal arithmetic.

For numbers x, y, we let x∔ y denote the number, called the concatenation sum of x
and y, whose sign sequence is the concatenation of that of y at the end of that of x. So
x∔y is the number of length ℓ(x∔y)= ℓ(x)∔ ℓ(y), which satisfies

(x∔y)[𝛼] = x[𝛼] (𝛼< ℓ(x))
(x∔y)[ℓ(x)∔𝛽] = y[𝛽] (𝛽< ℓ(y))
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It is easy to check that this extends the definition of ordinal sums. Moreover, the concate-
nation sum is associative and satisfies sup⊑ (x∔y⊏)=x∔y whenever x∈No and y∈No
is a limit number.

We let x×. y denote the number of length ℓ(x)×. ℓ(y), called the concatenation product
of x and y, whose sign sequence is defined by

(x×. y)[ℓ(x)×. 𝛼∔𝛽] = y[𝛼]x[𝛽] (𝛼< ℓ(y),𝛽< ℓ(x)).

Here we consider y[𝛼]x[𝛽] as a product in {−1,+1}. Informally speaking, given x∈No
and 𝛼∈On, the number x×. 𝛼 is the 𝛼-fold right-concatenation of x with itself, whereas
𝛼×. x is the number obtained from x by replacing each sign 𝛼 times by itself. We note
that ×̇ extends Cantor's ordinal product.

The operations ∔ and ×. will be useful in what follows for the construction of simple
yet interesting examples of surreal substructures. The remainder of this section is devoted
to the collection of basic properties of these operations. The proofs can be skipped at
a first reading, but we included them here for completeness and because we could not
find them in the literature. We refer to [11, First Part] for a different extension of the
ordinal product to the class of games (which properly contains No).

Lemma 3.1. For x,y,z∈No, we have

a) x×. (y×. z)=(x×. y)×. z.

b) x×. 1=x and x×. (−1)=−x.

c) x×. (y∔z)=(x×. y)∔(x×. z).

d) x×. y=sup⊑ (x×
. y⊏) if y is limit.

Proof. a) Both x×. (y×. z) and (x×. y)×. z have length ℓ(x)×. ℓ(y)×. ℓ(z). Let 𝛼< ℓ(y×. z) and
𝛿< ℓ(x). Write 𝛼= ℓ(y)×. 𝛽∔𝛾 where 𝛽< ℓ(z) and 𝛾< ℓ(y). Then

(x×. (y×. z))[ℓ(x)×. 𝛼∔𝛿] = (y×. z) [𝛼]x[𝛿]
= z[𝛽]y[𝛾]x[𝛿]
= z[𝛽](x×. y)[ℓ(x)×. 𝛾∔𝛿]
= ((x×. y)×. z)[ℓ(x)×. ℓ(y)×. 𝛽∔ ℓ(x)×. 𝛾∔𝛿]
= ((x×. y)×. z)[ℓ(x)×. 𝛼∔𝛿].

b) The numbers x×. 1 and x×. (−1) have length ℓ(x)×. 1= ℓ(x). For 𝛽< ℓ(x), we have
(x×. 1)[𝛽]=1[0]x[𝛽]=x[𝛽] and (x×. (−1))[𝛽]=(−1)[0]x[𝛽]=−x[𝛽].

c) The number x×. (y∔z) has length

ℓ(x)×. ℓ(y∔z) = ℓ(x)×. (ℓ(y)∔ ℓ(z))
= ℓ(x)×. ℓ(y)∔ ℓ(x)×. ℓ(z)
= ℓ(x×. y)∔ ℓ(x×. z)
= ℓ((x×. y)∔(x×. z)).

Let 𝛽< ℓ(x) and 𝛼< ℓ(y∔z). If 𝛼< ℓ(y), then

(x×. (y∔z))(ℓ(x)×. 𝛼∔𝛽) = (y∔z)[𝛼]x[𝛽]
= y[𝛼]x[𝛽]
= (x×. y)[ℓ(x)×. 𝛼∔𝛽]
= ((x×. y)∔(x×. z))[ℓ(x)×. 𝛼∔𝛽].
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Otherwise, there is 𝜂< ℓ(z) such that 𝛼= ℓ(y)∔𝜂 and then

x×. (y∔z)[ℓ(x)×. 𝛼∔𝛽] = (y∔z)[𝛼]x[𝛽]
= z[𝜂]x[𝛽]
= (x×. z)[ℓ(x)×. 𝜂∔𝛽]
= ((x×. y)∔(x×. z))[ℓ(x)×. 𝛼∔𝛽].

d) The previous identities imply in particular that x×. y⊏ is linearly ordered by sim-
plicity, whichmeans that the supremum sup⊑ (x×

. y⊏) is well defined in (No,⊑). Assume
y is limit. If y=0, then we have x×. y=0=sup⊑ x×

. 0⊏. Assume y≠0. Notice that we have
ℓ(y)=sup⊑ ℓ(y⊏), so

ℓ(x×. y)= ℓ(x)×. sup⊑ ℓ(y⊏)=sup⊑ (ℓ(x)×
. ℓ(y⊏))= sup⊑ ℓ(x×. y⊏).

Let 𝛽<ℓ(x) and 𝛼<ℓ(y). Since y is a limit number, there is u∈y⊏ such that 𝛼<ℓ(u). Then

(x×. y)[ℓ(x)×. 𝛼∔𝛽]=y[𝛼]x[𝛽]=u[𝛼]x[𝛽]=(x×. u)[ℓ(x)×. 𝛼∔𝛽]. □

Remark 3.2. The previous lemma can be regarded as an alternative way to define the
concatenation product. Yet another way is through the equation

∀x>0,∀y, x×. y = {x×. yL∔xL,x×
. yR∔(−xR) |x×

. yL∔xR,x×
. yR∔(−xL)}. (3.7)

Likewise, the contatenation sum has the following equation [15, Proposition 2]:

∀x,∀y, x∔y = {xL,x∔yL |x∔yR,xR}. (3.8)

Note that these two equations are not uniform in the sense of Definition 4.29 below.

Proposition 3.3. Let x,y,z∈No.
a) If x≠0, then y⊑z if and only if x×. y⊑x×. z.
b) If 0<x, then y<z if and only if x×. y<x×. z.

Proof. a) If y⊑z, then for a∈No with z=y∔a, Lemma 3.1(c) implies that

x×. y⊑(x×. y)∔(x×. a)=x×. z.

Conversely, if x ×. y⊑ x ×. z, then since x≠ 0, we may compute, for 𝛼< ℓ(y), the sign
y[𝛼] x[0]= (x×. y)[ℓ(x)×. 𝛼]= (x×. z)[ℓ(x)×. 𝛼]= z[𝛼] x[0]. We deduce that y[𝛼]= z[𝛼], so
y⊑z.

b) If y< z, then given the maximal common initial segment u of y and z, we have
(x×. u)⊑(x×. y),(x×. z), with ℓ(x×. u)= ℓ(x)×. ℓ(u). Thus (x×. y)[ℓ(x)×. ℓ(u)]=y[ℓ(u)]x[0]=
y[ℓ(u)] is strictly smaller than z[ℓ(u)]= z[ℓ(u)] x[0]= (x×. z)[ℓ(x)×. ℓ(u)], which means
that x×. y<x×. z. Since the order ⩽ is linear, this suffices to prove the result. □

4 Surreal substructures

4.1 Surreal substructures and their parameterizations
Let X be a subclass of No and let ℛ=(≼i)i∈I be a family of ordering relations on No.
Then we say that a function f :X⟶No isℛ-increasing if f is increasing for each ≼i with
i∈ I. If f is also injective, then we say that it is strictlyℛ-increasing. If we have x≼iy⟺
f (x)≼i f (y) for all x, y∈X and i∈ I, then we call f an ℛ-embedding of (X, (≼i)i∈I) into
(No, (≼i)i∈I). We simply say that f is an embedding if f is a (⩽,⊑)-embedding.
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Definition 4.1. A surreal substructure is the image of an embedding of No into itself.

Example 4.2. Given a∈No, the map x⟼ a∔x is an embedding of (No,⩽,⊑) into itself.
If a>0, then so is the map x⟼a×. x, by Proposition 3.3. Consequently:

• For a∈No, the map x⟼a∔x gives rise to the surreal substructure a∔No of num-
bers whose sign sequences begin with the sign sequence of a.

• For 0<a∈No, the map x⟼a×. x induces the surreal substructure a×. No of num-
bers whose sign sequences are (possibly empty or transfinite) concatenations of
the sign sequences of a and −a.

Example 4.3. Let 𝜑 be an embedding of No into itself with image 𝐒. Then the map
𝜓:x⟼−𝜑(−x) defines another embedding of No into itself with image −𝐒= {−x : x∈
𝐒}. In other words, if 𝐒 is a surreal substructure, then so is −𝐒.

We claim that any strictly (⩽, ⊑)-increasing map f :No⟶No is automatically an
embedding. We first need a lemma.

Lemma 4.4. If x, y, z are numbers such that x⊑ y and x⋢ z, then we have x< z if and only if
y<z, and z<x if and only if z<y.

Proof. Since x⋢ z, we have x< z if and only if there is 𝜂x< ℓ(x) with x ↿ 𝜂x= z ↿ 𝜂x and
x[𝜂x]<z[𝜂x]. Now x⊑y so y⋢ z and likewise y< z holds if and only if there is 𝜂y< ℓ(y)
with y ↿ 𝜂y= z ↿ 𝜂y and y[𝜂y] < z[𝜂y]. Notice that y ↿ 𝜂y= z ↿ 𝜂y and y⊒ x⋢ z imply that
𝜂y< ℓ(x). In both cases, since x⊑ y, we have x[𝜂x]= y[𝜂x] and x[𝜂y]= y[𝜂y]. Therefore
the existence of 𝜂x yields that of 𝜂y=𝜂x and vice versa. The other equivalence follows by
symmetry. □

Lemma 4.5. Assume that 𝐗 is a convex subclass of (No, ⩽). Then every strictly (⩽, ⊑)-
increasing function 𝜑:𝐗⟶No is an embedding (𝐗,⩽,⊑)⟶(No,⩽,⊑).

Proof. Since (No,⩽) is a linear order, the function𝜑 is automatically an embedding for⩽,
so we need only prove that it is an embedding for⊑. Assume for contradiction that there
are elements x<y of 𝐗 such that x⋢y and 𝜑(x)⊑𝜑(y). Let z be the ⊑-maximal common
initial segment of x and y. We have x<z⩽y, so z∈𝐗. Since 𝜑 is strictly (⩽,⊑)-increasing,
we have 𝜑(x)<𝜑(z)⩽𝜑(y) and 𝜑(x)⋢𝜑(z), which given our assumption 𝜑(x)⊑𝜑(y)
contradicts the previous lemma. Hence 𝜑(x)⋢𝜑(y), which concludes the proof. □

Since a surreal substructure 𝐒 is an isomorphic copy ofNo into itself, it should induce
a natural Conway bracket {}𝐒 on 𝐒. This actually leads to an equivalent definition of
surreal substructures. Let us investigate this in more detail.

Let 𝐒 be an arbitrary subclass of No. We say that 𝐒 is rooted if it admits a simplest
element, called its root, and which we denote by 𝐒•. Given subclasses 𝐋<𝐑 of 𝐒, we let
(𝐋 |𝐑)𝐒 denote the class of elements x∈𝐒 such that 𝐋<x<𝐑. If (𝐋 |𝐑)𝐒 is rooted, then
we let {𝐋 |𝐑}𝐒 denote its root. If L=𝐋 and R=𝐑 are sets, then we call (L |R)𝐒 the cut in 𝐒
defined by L and R. If for any subsets L<R of 𝐒 the class (L |R)𝐒 is rooted, then we say
that 𝐒 admits an induced Conway bracket.
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Proposition 4.6. Let 𝐒 admit an induced Conway bracket. Then the mapΞ𝐒:No⟶𝐒 defined by

∀x∈No,Ξ𝐒 x={Ξ𝐒 xL |Ξ𝐒 xR}𝐒

is an isomorphism (No,⩽,⊑)⟶(𝐒,⩽,⊑).

Proof. We first justify that Ξ𝐒 is well defined. Let x∈No be such that Ξ𝐒 is well-defined
and strictly⩽-increasing on x⊏, with values in 𝐒. We have Ξ𝐒 xL<Ξ𝐒 xR where those sets
are in 𝐒 soΞ𝐒 x is a well-defined element of (Ξ𝐒 xL |Ξ𝐒 xR)𝐒, andΞ𝐒 is strictly⩽-increasing
on {x}∪ xL∪xR. By induction, Ξ𝐒 is a strictly increasing map No⟶𝐒. Let y∈No with
x⊑y, so that xL<y<xR. By definition, the number Ξ𝐒 x is the simplest element u∈𝐒with
Ξ𝐒 xL<u<Ξ𝐒 xR. Since Ξ𝐒 y∈𝐒 and Ξ𝐒 xL<Ξ𝐒 y<Ξ𝐒 yL, it follows that Ξ𝐒 x⊑Ξ𝐒 y. We
deduce from Lemma 4.5 that Ξ𝐒 is an embedding of (No,⩽,⊑) into itself.

We now prove that 𝐒=Ξ𝐒 No by induction on y∈𝐒 for ⊑. Let y∈𝐒 be such that
y⊏∩𝐒 is a subset of Ξ𝐒No. Let Ξ𝐒 L′=L=yL∩𝐒 and R=yR∩𝐒=Ξ𝐒 R′ where since Ξ𝐒
is strictly ⩽-increasing and thus injective, the sets L′,R′ are uniquely determined and
satisfy L′<R′. Since 𝐒 admits an induced Conway bracket, the cut (L |R)𝐒 is rooted and
contains y, so {L |R}𝐒⊑y. Since {L |R}𝐒∉L∪R, we necessarily have y={L |R}𝐒=Ξ𝐒 {L′ |R′}.
By induction, we conclude that 𝐒=Ξ𝐒No. □

Proposition 4.7. Let 𝐒 be a subclass of No. Then 𝐒 is a surreal substructure if and only if it
admits an induced Conway bracket.

Proof. Assume that 𝐒 admits an induced Conway bracket. By the previous proposition,
𝐒 is the range of the strictly (⩽,⊑)-increasing function Ξ𝐒:No⟶No, whence 𝐒 is a sur-
real substructure. Conversely, consider an embedding 𝜑 of No into itself with image 𝐒.
Let L<R be subsets of 𝐒 and define (L′,R′)=(𝜑−1(L),𝜑−1(R)). The function 𝜑 is strictly
⩽-increasing so L′<R′, andwemay consider the number x={L′ |R′}. Now let y∈(L |R)𝐒.
We have 𝜑−1(y)∈(L′ |R′), so x⊑𝜑−1(y). Since 𝜑 is ⊑-increasing, this implies 𝜑(x)⊑ y,
which proves that 𝜑(x)={L |R}𝐒, so 𝐒 admits an induced Conway bracket. □

Remark 4.8. More generally, one may discard the existence condition for the Conway
bracket and consider subclasses X of No that satisfy the following condition:

IN. For all subsets L,R of Xwith L<R, the class (L |R)X is either empty or rooted.

A subclass X⊆No satisfies IN if and only if there is a (unique)⊑-initial subclass I𝐒 ofNo
and a (unique) isomorphism (𝐈𝐒,⩽,⊑)⟶(𝐒,⩽,⊑). This is in particular the case for the
classes Smp𝚷 described in Section 6 below. For more details on this more general kind
of subclasses, we refer to [16].

In this paper, we focus on surreal substructures. The characterizations given in Propo-
sition 4.7 and Proposition 4.13 are known results. The second one was first proved (for
more general types of ordinal sequences) by Lurie [31, Theorem 8.3], and both of them
were proved by Ehrlich [16, Theorems 1 and 4].

Proposition 4.9. Let 𝐒 be a surreal substructure. The function Ξ𝐒 is the unique surjective
strictly (⩽,⊑)-increasing function No⟶𝐒.
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Proof. Let𝜑 be a strictly (⩽,⊑)-increasing functionNo⟶Swith image 𝐒. By Lemma 4.5,
it is an embedding. Given x∈No such that 𝜑 and Ξ𝐒 coincide on x⊏, the numbers 𝜑(x)
and Ξ𝐒 x of 𝐒 are both the simplest element of (Ξ𝐒 xL | Ξ𝐒 xR)𝐒 and are thus equal. It
follows by induction that 𝜑=Ξ𝐒. □

Lemma 4.10. Let 𝐒 be a surreal substructure. For x∈No, we have ℓ(x)⩽ ℓ(Ξ𝐒 x).

Proof. By Proposition 4.6, the mapΞ𝐒 realizes an embedding of (x⊏,⊑) into ((Ξ𝐒 x)⊏,⊑),
so the order type ℓ(x) of the former is smaller than that of the latter, namely ℓ(Ξ𝐒 x). □

Given a surreal substructure 𝐒, we call Ξ𝐒 the defining surreal isomorphism of parame-
trization of 𝐒. The above uniqueness property is fundamental; it allows us in particular to
perform constructions on surreal substructures via their defining surreal isomorphisms
and vice versa.

4.2 Cut representations
Let 𝐒 be a surreal substructure. Given an element x∈𝐒 and subsets L,R of 𝐒 with L<R,
we say that (L,R) is a cut representation of x in 𝐒 if x={L |R}𝐒. We refer to elements in L
and R as left and right options of the representation. For x∈𝐒, we write

(xL𝐒,xR𝐒)≔(xL∩𝐒,xR∩𝐒)

and call this pair the canonical representation of x in 𝐒. We also write x⊏𝐒 for the set x⊏∩𝐒.
A ⊑-final substructure of 𝐒 is a rooted final segment 𝐓 of 𝐒 for ⊑ (and thereby neces-

sarily a substructure). It is easy to see that this is the case if and only if 𝐓 is rooted and 𝐓
is the class 𝐒⊒𝐓• of elements x∈𝐒 such that 𝐓•⊑x.

Proposition 4.11. Let 𝐒 be a surreal substructure and let (L,R) and (L′,R′) be cut representa-
tions in 𝐒. For x∈𝐒, we have

a) {L |R}𝐒⩽{L′ |R′}𝐒 if and only if {L |R}𝐒<R′ and L<{L′ |R′}𝐒.

b) (xL𝐒,xR𝐒) is a cut representation of x in 𝐒with respect to which any other cut representation
of x in 𝐒 is cofinal.

c) 𝐒⊒x=(xL𝐒 |xR𝐒)𝐒.

Proof. The assertions a) and b) are true when 𝐒=No by [21, Theorems 2.5 and 2.9]. By
Proposition 4.6, the function Ξ𝐒 is an isomorphism (No,⩽,⊑)⟶(𝐒,⩽,⊑), satisfying the
relation∀a∈No, (Ξ𝐒 aL,Ξ𝐒 aR)=((Ξ𝐒 a)L𝐒, (Ξ𝐒 a)R𝐒), so a) and b) hold in general. We have
𝐒⊒x⊇(xL𝐒 |xR𝐒)𝐒, since x=(xL𝐒 |xR𝐒)𝐒•. Conversely, for y∈𝐒⊒x and x′∈x⊏𝐒 , we have x′⊏y and
y[ℓ(x′)]= x[ℓ(x′)]∈ {−1, 1}, so y− x′ and x− x′ have the same sign. We conclude that
xL𝐒<y<xR𝐒, which completes the proof of c). □

4.3 Imbrications
Let 𝐒, 𝐓 be two surreal substructures. Then there is a unique (⩽,⊑)-isomorphism Ξ𝐓

𝐒≔
Ξ𝐓 Ξ𝐒−1: 𝐒⟶𝐓 that we call the surreal isomorphism between 𝐒 and 𝐓. The composition
Ξ𝐒∘Ξ𝐓 is also an embedding, so its image 𝐒�𝐓≔Ξ𝐒𝐓 is again a surreal substructure that
we call the imbrication of 𝐓 into 𝐒. We say that 𝐓 is a left factor (resp. right factor) of 𝐒 if
there is a surreal substructure 𝐔 such that 𝐒=𝐓�𝐔 (resp. 𝐒=𝐔�𝐓).
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Figure 4.1. The class of positive surreal numbers as a tree. For clarity, only a few numbers up to the
length 𝜔2 are represented. Negative numbers are obtained through symmetry w.r.t. the y-axis.

By the associativity of the composition of functions, the imbrication of surreal sub-
structures is associative. Right factors are determined by the two other substructures.
More precisely, since Ξ𝐓 is injective, the relation 𝐒=𝐓�𝐔=Ξ𝐓𝐔 yields𝐔=Ξ𝐓

−1(𝐒). The
same does not hold for left factors:

(1∔No)∔(𝜔∔No)=No� (𝜔∔No)=𝜔∔No.

Proposition 4.12. If 𝐒,𝐓 are surreal substructures, then 𝐓 is a left factor of 𝐒 if and only if
𝐒⊆𝐓.

Proof. If 𝐒=𝐓�𝐔, then 𝐒=Ξ𝐓𝐒⊆𝐓. Assume that 𝐒⊆𝐓 and let𝐔=Ξ𝐓
−1(𝐒). We have𝐔=

(Ξ𝐓−1↿𝐒)Ξ𝐒NowhereΞ𝐓
−1↿𝐒 andΞ𝐒, are respectively embeddings (𝐒,⩽,⊑)⟶(No,⩽,⊑)

and (No, ⩽, ⊑)⟶(𝐒,⩽, ⊑) so (Ξ𝐓−1 ↿ 𝐒) Ξ𝐒 is an embedding (No, ⩽, ⊑)⟶(No, ⩽, ⊑).
Hence 𝐔 is a surreal substructure with Ξ𝐓𝐔=𝐒, which means that 𝐓�𝐔=𝐒. □

4.4 Surreal substructures as trees
Through the identificationNo≈{−1,1}<On, the class of surreal numbers can naturally be
represented by a full binary tree of uniform depthOn, as illustrated in Figure 4.1.

For each ordinal 𝛼, we let No(𝛼) denote the subtree of No of nodes of depth <𝛼, that
is, the set of numbers xwith ℓ(x)<𝛼. This can be represented as the subtree obtained by
cropping the picture at depth 𝛼. In order to characterize surreal substructures in tree-
theoretic terms, we need to investigate chains for ⊑: given a subclass X⊆No, a ⊑-chain
in 𝐗 is a linearly ordered (and thus well-ordered) subset C of (𝐗, ⊑). If a ⊑-chain C
in (𝐗,⊑) admits a supremum in (𝐗,⊑), we denote it sup𝐗,⊑C. Note that the empty set
has a supremum in (X, ⊑) if and only if X has a root, in which case supX,⊑ ∅=X•. We
say that y∈X is the left successor of x∈X if y< x and z⊒ y for every z< x in X. Right
successors are defined similarly.
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Proposition 4.13. Let 𝐒 be a class of surreal numbers. Then the following assertions are equiv-
alent:

a) 𝐒 is a surreal substructure.

b) Every element of 𝐒 has a left and a right successor in 𝐒 and every ⊑-chain in 𝐒 has
a supremum in (𝐒,⊑).

Proof. Let 𝐒 be a surreal substructure. In No, any element x clearly admits a left suc-
cessor {xL |x} and a right successor {x |xR}, and every⊑-chain clearly admits a supremum.
Since these properties are preserved by the isomorphism Ξ𝐒, we deduce b).

Assume now that b) holds. We derive a) by inductively defining an isomorphism
Ξ:(No,⊑,⩽)⟶(𝐒,⊑,⩽). Applying b) to the empty chain, we note that the supremum
of ∅ in (𝐒,⊑) is the minimum of 𝐒 for ⊑. So 𝐒 is rooted and we may define Ξ0=𝐒•. Let
0<𝛼 be an ordinal such that Ξ is defined and strictly (⩽,⊑)-increasing on No(𝛼). We
distinguish two cases:

• If 𝛼 is limit, then let x be a surreal number with length 𝛼. Thus x is a limit number
and Ξx⊏ is a ⊑-chain in 𝐒. We define Ξx=sup𝐗,⊑Ξx⊏.

• Assume now that 𝛼 is successor, let x be a number with length 𝛼, and write x=
u∔𝜎 where 𝜎∈{−1,1}. Let u−1 and u1 be the left and right successors of Ξu. Then
we define Ξx=u𝜎.

In both cases, this definesΞ onNo(𝛼+1) and the extension is clearly strictly⊑-increasing
and strictly ⩽-increasing on every set x⊑≔{x}∪x⊏ for x∈No(𝛼+1).

It remains to be shown that Ξ is strictly ⩽-increasing on No(𝛼+ 1). Given a< b in
No(𝛼+1), let c∈No(𝛼) be their ⊑-maximal common initial segment. We either have
a⩽ c<b and thus Ξa⩽Ξc<Ξb, or a< c⩽ b and thus Ξa<Ξc⩽Ξb. So Ξ is strictly
⩽-increasing onNo(𝛼+1).

By induction, the function Ξ is defined and (⩽,⊑)-increasing on No=⋃𝛼∈OnNo(𝛼).
Note that (S,⊑) is well-founded since (No,⊑) is well-founded and S⊆No. By induction
over y∈𝐒, let us show that y lies in the range of Ξ. If y is the left or right successor of
an element v∈𝐒, then the induction hypothesis implies the existence of some u∈No
with v=Ξu, and we get y=Ξ(u ±̇ 1). Otherwise, we have y=sup⊑ y⊏𝐒=Ξ sup⊑C where
C={x∈No :Ξx⊏y}. We conclude that Ξ is an isomorphism. □

Example 4.14. Consider the class Inc defined by ΞInc 0≔1, ΞInc (u∔𝜎)=(ΞInc u)∔𝜎∔1,
for all u∈No and 𝜎 ∈{−1, 1} and ΞInc sup⊑ C=(sup⊑ ΞInc C)∔1 for every non-empty
⊑-chain Cwithout maximum in (No,⊑). It is easy to check that we have ℓ(ΞInc x)> ℓ(x)
for every surreal number x.

Example 4.15. Let 𝐒=No⩾ \ {1}. Then (𝐒, ⊑) is isomorphic to (No,⊑), but 𝐒 is not
a surreal structure. In other words, the condition b) cannot be replaced by the weaker
condition that (𝐒,⊑) and (No,⊑) be isomorphic.

The characterization b) gives us some freedom in constructing a surreal substruc-
ture: one only has to provide a mechanism for chosing left and right successors of
already constructed elements, as well as least upper bounds for already constructed
branches (i.e. ⊑-chains). Intuitively speaking, this corresponds to a way to “draw” 𝐒
as a full binary tree inside the binary tree that represents No: see Figure 4.2.

16 SECTION 4



1 (0)
/3 4 (−1)

5 (2)
3 (1)

/11 16(−2)

1− 𝜔−1

2 (−𝜔−1)

/63 64 ( /−1 4)

𝜔+1 (𝜔)

7 (3)

𝜔+3 (𝜔+1)

2𝜔+1 (2𝜔)

𝜔2+1 (𝜔2)

𝜔+ /3 4 (𝜔−1)

/15 16 ( /−1 2)

/2 3+𝜔−1 (−𝜔)

/11 4 ( /1 2)

Figure 4.2. The (sub)tree representation of the surreal substructure Inc (purple) from Example 4.14
within No (grey). The labels have the form ΞInc x (x). For instance ΞInc(−2)= /11 16.

4.5 Convex subclasses
If 𝐗⊆𝐘 are subclasses of No, recall that 𝐗 is convex in 𝐘 if

∀x,z∈𝐗,∀y∈𝐘,(x⩽y⩽z⟹y∈𝐗),
and 𝐗 is ⊑-convex in 𝐘 if

∀x,z∈𝐗,∀y∈𝐘,(x⊑y⊑z⟹y∈𝐗).

We simply say that 𝐗 is convex (resp. ⊑-convex) if it is convex (resp. ⊑-convex) inNo.
We let Hull𝐘(𝐗) denote the convex hull of 𝐗 in 𝐘, that is, for every number y, we have
y∈Hull𝐘(𝐗) if and only if y∈𝐘 and there are elements x, z of 𝐗 such that x⩽y⩽z. The
convex hull of 𝐗 in 𝐘 is the smallest convex subclass of 𝐘 containing 𝐗.

Lemma 4.16. Assume that S is a surreal substructure. Then every non-empty convex subclass
of 𝐒 is rooted.

Proof. In view of Propositions 4.6 and 4.7, it suffices to prove the lemma for 𝐒=No. Let𝐂
be a non-empty convex subclass of No. Assume for contradiction that u,v∈C are two
simplest elements with u<v. Let 𝛼 be the smallest ordinal such that u[𝛼]<v[𝛼]. Since
u⋢v and v⋢u, we must have u[𝛼]=−1 and v[𝛼]=1. Now consider the numberwwhose
sign sequence is u ↿ 𝛼= v ↿ 𝛼. Then u<w< v, whence w∈C, but also w⊑u; a contradic-
tion. □

Lemma 4.17. If 𝐂 is a non-empty final segment of No, then 𝐂• is the smallest ordinal in 𝐂.

Proof. Given x∈𝐂, we have x⩽ ℓ(x) ∈𝐂, so C contains an ordinal. Let 𝜄 denote the
smallest ordinal in 𝐂. Given another ordinal 𝜂< 𝜄, we have 𝜂∉𝐂 by minimality of 𝜄.
Since C is a final segment ofNo, it follows that 𝜂<𝐂. For any x∈𝐂, we deduce that x lies
in the cut (𝜄L |∅), whence 𝜄={𝜄L |∅}⊑x. This shows that 𝜄=𝐂•. □

Proposition 4.18. Let 𝐒 be a surreal substructure.
a) A convex subclass 𝐂 of 𝐒 is a surreal substructure if and only if it has no cofinal or

coinitial subset.
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b) For subsets L<R of 𝐒, the cut (L |R)𝐒 is a surreal substructure.
c) If 𝐓⊆𝐒 is a surreal substructure, then Hull𝐒(𝐓) is a surreal substructure.
d) If 𝐓 is a surreal substructure, (L|R)𝐒 is a cut in 𝐒 and f :𝐓⟶𝐒 is strictly monotonic and

surjective, then f −1((L |R)𝐒) is a surreal substructure.
e) The intersection of any set-sized decreasing family of surreal substructures that are convex

in 𝐒 is a surreal substructure.

Proof. a) Assume that 𝐂 has no cofinal or coinitial subset and let L<R be subsets of 𝐂.
• If both L and R are empty, then L<c<R for any c∈𝐂. Notice that 𝐂≠∅, since ∅ is

not cofinal in 𝐂.
• If L=∅ and R≠∅, then there exists an x∈𝐂with x<R, since R is not coinitial in𝐂.

Let y={x |R}𝐒 and r∈R. Then x<y< r, so y∈𝐂, and y∈(L |R)𝐂.
• Similarly, if L≠∅ and R=∅, then {L |y}𝐒∈(L |R)𝐂 for some y>L in 𝐂.
• If L≠∅ and R≠∅, then {L |R}𝐒∈𝐂, by convexity.

In each of the above cases, we have shown that (L |R)𝐂 is a non-empty convex subclass
of 𝐒. By Lemma 4.16, it is rooted. By Proposition 4.7, it follows that 𝐂 is a surreal sub-
structure. Conversely, if 𝐂 is a surreal substructure, then given a subset X of 𝐂, we have

𝐂∋{∅ |X}𝐂<X<{X |∅}𝐂∈𝐂,
so X is neither cofinal nor coinitial in 𝐂.

b) This is a direct consequence of the previous point: the cut (L |R)𝐒 is by definition
a convex subclass of 𝐒, and given a subset X of (L |R)𝐒 we have

(L |R)𝐒∋{L |X}𝐒<X<{X |R}𝐒∈(L |R)𝐒.
By Proposition 4.7, it follows that (L |R)𝐒 is a surreal substructure.

c) Since 𝐓 is a surreal substructure, it has no cofinal or coinitial subset. It follows that
the same holds forHull𝐒(𝐓), which is thus a surreal substructure.

d) We have f −1((L |R)𝐒) = ( f −1(L) | f −1(R))𝐓 is f is increasing and f −1((L |R)𝐒) =
( f −1(R) | f −1(L))𝐓 if f is decreasing. In both cases, f −1((L |R)𝐒) is a cut in 𝐓, hence a
surreal substructure by c).

e) Let (I, <) be a linearly ordered set and let (𝐂i)i∈I be decreasing for ⊆. Its inter-
section 𝐂≔⋂i∈I 𝐂i is convex. Let X be a subset of 𝐂. For i∈ I, we have X⊆𝐂i whence
li<X<ri where li=(∅|X)𝐂i

• . and ri=(X |∅)𝐂i
• . Writing l={li : i∈ I |X}𝐒 and r={X |ri : i∈ I}𝐒,

we have l<X< r. Moreover, for i∈ I, we have li< l< r< ri so l, r∈𝐂i by convexity. This
proves that l,r∈𝐂 and consequently that X is neither cofinal nor coinitial in𝐂. Therefore
𝐂 is a surreal substucture by a). □

Example 4.19. Cuts (L |R)𝐒where L<R are subsets of 𝐒 include⊑-final substructures of 𝐒
and non-empty open intervals of 𝐒, which are therefore convex surreal substructures.
Note that non-empty convex classes of No which are open in the order topology may
fail to be surreal substructures. One counterexample is the classNo≼≔Hull(ℤ) of finite
surreal numbers, since it admits the cofinal subsetℕ.

Example 4.20. Here are some further examples and counterexamples of convex surreal
substructures that we will consider later on.

• The class No>≔({0} | ∅) of strictly positive surreal numbers is a convex surreal
substructure, and it is in fact the ⊑-final substructure No⊒1 of No.
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• Likewise, the class No>,≻≔(ℕ | ∅)=No⊒𝜔 of positive infinite surreal numbers is
a convex surreal substructure.

• The classNo≺≔(ℝ<0 |ℝ>0) of infinitesimals forms a surreal substructurewhich can
be split as the union of {0} and the two ⊑-final substructures No⊒−𝜔−1, No⊒𝜔−1.

• Although every interval (−n−1,n+1) for n∈ℕ is a convex surreal substructure,
their increasing unionNo≼ is not a surreal substructure.

Remark 4.21. For subsets L<R of 𝐒, the cut (L |R)𝐒 may fail to be a ⊑-final substructure
of 𝐒. In fact, by Proposition 4.11(c), it is a ⊑-final substructure of 𝐒 if and only if the
canonical representation of {L |R}𝐒 in 𝐒 is cofinal with respect to (L,R), in which case we
have (L |R)𝐒=𝐒⊒{L|R}𝐒.

Any convex subclass 𝐂 of 𝐒 is a generalized cut 𝐂=(𝐋 |𝐑)𝐒 in 𝐒 where 𝐋 is the class
of strict lower bounds of 𝐂 in 𝐒 and 𝐑 is the class of its strict upper bounds. However,
those classes may not always be replaced by sets. In fact, the class 𝐂 is a cut 𝐂=(L |R)𝐒
with subsets L<R of 𝐒 if and only if such sets can be found that are mutually cofinal
with (𝐋,𝐑). The existence thus amounts to cof(𝐋,<), cof(𝐁,>)∈On since cofinality is
invariant under mutual cofinality (see the end of Appendix B for notes about cofinal
well-ordered subsets).

Example 4.22. Recall that /𝜔 2=𝜔∔(−𝜔). Let x𝛼= /𝜔 2×
. 𝛼 for each 𝛼∈On and consider the

class𝐂={y∈No :∀𝛼∈On,y>x𝛼}. Then𝐂 is a convex surreal substructure ofNo. Indeed,
the sequence (y𝛼)𝛼∈On with y𝛼=𝜔∔( /𝜔 2×

. (−𝛼)) is strictly decreasing and coinitial in 𝐂.
This shows that𝐂 does not admit a coinitial subset. As a non-empty final segment ofNo,
the class 𝐂 also admits no cofinal subset. Proposition 4.18 thus implies that 𝐂 is a surreal
substructure. We have cof({x𝛼 : 𝛼∈On},<)=On, so 𝐂 is not a cut inNo.

4.6 Cut equations
We already noted that the Conway bracket allows for elegant recursive definitions of
functions onNo. Let us now study such definitions inmore detail and examine how they
generalize to arbitrary surreal substructures.

Definition 4.23. Let 𝐒,𝐓 be surreal substructures. Let 𝜆,𝜌 be functions defined for cut represen-
tations in 𝐒 and such that 𝜆(L,R),𝜌(L,R) are subsets of 𝐓whenever (L,R) is a cut representation
in 𝐒. We say that a function F:𝐒⟶𝐓 has cut equation {𝜆 |𝜌}𝐓 if for all x∈𝐒, we have

𝜆(xL𝐒,xR𝐒) < 𝜌(xL𝐒,xR𝐒) and
F(x) = {𝜆(xL𝐒,xR𝐒) |𝜌(xL𝐒,xR𝐒)}𝐓.

We say that the cut equation is extensive if it satisfies

∀x,y∈𝐒,(x⊑y⟹(𝜆(xL𝐒,xR𝐒)⊆𝜆(yL𝐒,yR𝐒)∧𝜌(xL𝐒,xR𝐒)⊆𝜌(yL𝐒,yR𝐒))).

Note. We will see in the proof of Proposition 4.27 below that extensive cut equations
preserve simplicity.

Example 4.24. A simple example of a cut equation is (3.3): ∀x∈No,−x={−xR |−xL}.
Here we have S=T=No and we can take 𝜆(xL,xR)=−xR and 𝜌(xL,xR)≔−xL. Note that
this cut equation is extensive.
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Taking S=No and T=No>, 𝜆(xL,xR)=xL∩No> and 𝜌(xL,xR)=xR∩No>, we obtain
the function F with F(x)=0 for all x⩽0 and F(x)=x for all x>0.

See Example 4.32 below for more examples.

Remark 4.25. Our notion of cut equation is not restrictive on the function, since any func-
tion F:𝐒⟶𝐓 has cut equation (𝜆,𝜌)with 𝜆(L,R):=F({L |R}𝐒)L𝐓 and 𝜌(L,R):=F({L |R}𝐒)R𝐓.
Thus it should not be confused with the notions of recursive definition in [19] and genetic
definition in [34].

Example 4.26. Given sets Λ,Ρ of functions 𝐒⟶𝐓, cut equations of the form (𝜆,𝜌) with

𝜆(xL𝐒,xR𝐒) = {𝜉(l) : 𝜉 ∈Λ, l∈xL𝐒}
𝜌(xL𝐒,xR𝐒) = {𝜓(r) :𝜓∈Ρ, r∈xR𝐒}

are extensive. We will write {𝜆(xL𝐒, xR𝐒) | 𝜌(xL𝐒, xR𝐒)}𝐓={Λ(xL𝐒) | Ρ(xR𝐒)}𝐓 in this case. Note
that it is common to consider well-defined cut equations of the form

F(x)={Λ(xL𝐒) |Ρ(xR𝐒)}𝐓,
where F itself belongs to Λ and Ρ.

Proposition 4.27. Let 𝐒,𝐓 be surreal substructures. Let F:𝐒⟶𝐓 be strictly⩽-increasing with
extensive cut equation {𝜆 |𝜌}𝐓. Then F(𝐒) is a surreal substructure, and we have F=ΞF(𝐒)

𝐒 .

Proof. We claim that F is ⊑-increasing. Indeed, let x, y∈𝐒 with x⊑ y. We have xL𝐒<
y< xR𝐒, so xL𝐒⊆ yL𝐒 and xR𝐒⊆ yR𝐒. We deduce by extensivity of (𝜆, 𝜌) that 𝜆(xL𝐒, xR𝐒)⊆𝜆(yL𝐒,
yR𝐒) and 𝜌(xL𝐒, xR𝐒)⊆𝜌(yL𝐒, yR𝐒), and thus 𝜆(xL𝐒, xR𝐒)< F(y)< 𝜌(xL𝐒, xR𝐒). This implies that
F(x)⊑F(y). Thus F is strictly (⩽,⊑)-increasing. So the composition F ∘Ξ𝐒:No⟶F(𝐒)
is strictly (⩽,⊑)-increasing. The function Ξ𝐒: (No, ⩽, ⊑)⟶(𝐒,⩽,⊑) is an embedding
by Proposition 4.6, so F embeds 𝐒 into 𝐓. In particular, F(𝐒) is a surreal substructure.
By Proposition 4.9, we conclude that F=ΞF(𝐒)

𝐒 . □

As an application, we get the followingwell-known result (see [8, Proposition 4.22]).

Proposition 4.28. Let 𝜑 be a number, and let No≺supp𝜑 denote the class of numbers x with
x≺supp𝜑. Then No≺supp𝜑 and 𝜑++No≺supp𝜑 are surreal substructures with

∀x∈No,Ξ𝜑++No≺supp𝜑 x=𝜑++ΞNo≺supp𝜑 x.

Proof. We have No≺supp𝜑=(−ℝ> supp 𝜑 |ℝ> supp 𝜑). By Proposition 4.18(b), this is a
surreal substructure. Recall that for x∈No, we have 𝜑+x={𝜑L+x,𝜑+xL |𝜑+xR,𝜑R+x}.
If x∈No≺supp𝜑, then we have 𝜑L+x<𝜑++No≺supp𝜑<𝜑R+x so we may write

𝜑++x = {𝜑+xL |𝜑+xR}𝜑++No≺supp𝜑

= �𝜑+xLNo≺supp𝜑 |𝜑+xRNo≺supp𝜑�𝜑++No≺supp𝜑.

Seen as a cut equation in x, this is an extensive cut equation, so by Proposition 4.27, we
see that 𝜑++No≺supp𝜑 is a surreal substructure and that x⟼𝜑+ x realizes the isomor-
phism No≺supp𝜑⟶𝜑++No≺supp𝜑. □

Definition 4.29. Let F be a function 𝐒⟶𝐓 with cut equation (𝜆, 𝜌). We say that (𝜆, 𝜌) is
uniform at x∈𝐒 if we have

𝜆(L,R) < 𝜌(L,R) and
F(x) = {𝜆(L,R) |𝜌(L,R)}
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whenever (L,R) is a cut representation of x in 𝐒. We say that (𝜆,𝜌) is uniform if it is uniform
at every x∈𝐒.

Example 4.30. Let a∈No. The following cut equation for the function y⟼ a∔y:No⟶
1∔No obtained from (3.8)

∀x∈No,a∔y={aL,a∔yL |a∔yR,aR},

is uniform. On the contrary, the following cut equation for x⟼x∔1 is not uniform:

∀x∈No,x∔1={x,xL |xR}.

Indeed, we have 0={∅ |1} and 0∔1=1, but {0,∅ |1}={0 |1}= /1 2.

Example 4.31. Let b∈No>. By (3.7), the function y⟼ b×. y:No⟶ b×. No has the fol-
lowing cut equation

∀y∈No,b×. y={b×. yL∔bL,b×
. yR∔(−bR) |b×

. yL∔bR,b×
. yR∔(−bL)},

which is uniform. On the contrary, the cut equation for x⟼x×. /1 2 is not uniform:

∀x∈No,x×. /1 2={xL,x∔(−xR) |xR,x∔(−xL)}.

Indeed, if we were to apply this cut equation to the cut presentation ({ /1 2},∅) of 1, then
we would have /1 2 as a left option and 1∔(− /1 2)⩽ /1 2 as a right option, which cannot be.

Example 4.32. Most common definitions of unary functionsNo⟶No have known simple
cut equations, and many of them are uniform, in particular throughout the work of H.
Gonshor in [21]. For instance, the classical cut equations (3.3) and (3.6) for the func-
tions x⟼−x and x⟼exp x are uniform, so for x∈No and for any cut representation
(Lx,Rx) of x inNo, we have

−x = {−Rx |−Lx}, and

exp x = {{{{{{{{{{{{{{{{{{{{0, [x− l]ℕexp l, [x− r]2ℕ+1exp r � exp r
[x− r]2ℕ+1

, exp l
[l−x]ℕ}}}}}}}}}}}}}}}}}}}} (l∈Lx, r∈Rx).

Example 4.33. We will also need an extension of the notion of uniform cut equation to
functions f :No×No⟶No. Specifically, by [21, Theorem 3.2], the classical cut equa-
tion (3.4) for the sum of two numbers x,y is uniform in the sense that, given cut represen-
tations (Lx,Rx) and (Ly,Ry) of x,y inNo, we have

x+y={Lx+y,x+Ly |x+Ry,Ry+y}. (4.1)

Similarily for the multiplication, we have

x+y={x′y+xy′−x′y′,x′′y+xy′′−x′′y′′ |x′y+xy′′−x ′y′′,x′′y+xy′−x′′y′},

where x′, x′′, y′ and y′′ range in Lx, Rx, Ly and Ry respectively.

Uniform cut equations have the interesting property that they can be composed.

Lemma 4.34. Let 𝐒0,𝐒1,𝐒2 be surreal substructures. Let F1:𝐒0⟶𝐒1 and F2:𝐒1⟶𝐒2 be func-
tions with uniform cut equations

F1 ≡ {𝜆1 | 𝜌1�𝐒1
F2 ≡ {𝜆2 | 𝜌2}𝐒2.
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Then F2∘F1 has the uniform cut equation (𝜆12, 𝜌12) where for every cut representation (L,R) in
𝐒0, we have 𝜆12(L,R)=𝜆2(𝜆1(L,R),𝜌1(L,R)) and 𝜌12(L,R)=𝜌2(𝜆1(L,R),𝜌1(L,R)).

Proof. Let x∈𝐒0, let (L,R) be a cut representation of x in 𝐒0. By uniformity of the cut
equation of F1 at x, we have

F1(x)={𝜆1(L,R) |𝜌1(L,R)}𝐒1.

By uniformity of the cut equation of F2 at F1(x), we have

F2(F1(x)) = {𝜆2(𝜆1(L,R),𝜌1(L,R)) |𝜌2(𝜆1(L,R),𝜌1(L,R))},

whence the result. □

Recall that a class X⊆No is cofinal (resp. coinitial)with respect to a classY⊆No if every
element of Y has an upper bound (resp. lower bound) in X. If X⊆Y, then we simply say
that X is cofinal (resp. coinitial) in Y.

Lemma 4.35. When 𝐒,𝐓 are surreal substructures, the cut equation Ξ𝐓𝐒 x≡{Ξ𝐓
𝐒 xL𝐒 |Ξ𝐓𝐒 xR𝐒}𝐓 is

uniform and extensive.

Proof. Let us first prove uniformity in the case when 𝐒=No. Let L<R be sets of surreal
numbers and let x={L |R}. Since Ξ𝐓 is strictly increasing and ranges in 𝐓, the number
y={Ξ𝐓 L |Ξ𝐓R}𝐓 is well defined and Ξ𝐓 L<Ξ𝐓 x<Ξ𝐓R, which yields y⊑Ξ𝐓 x. Moreover,
the set L is cofinal in xL whereas R is coinitial in xR, so Ξ𝐓 xL<y<Ξ𝐓 xR. Hence Ξ𝐓 x⊑y
and Ξ𝐓 x=y, which shows that the cut equation Ξ𝐓 x≡{Ξ𝐓 xL |Ξ𝐓 xR}𝐓 is uniform.

Now consider the general case and let Ξ𝐒 A= L<R=Ξ𝐒 B be subsets of 𝐒. Setting
z≔{A |B} and x≔{L |R}𝐒, we have x=Ξ𝐒 z by uniformity of the cut equation for Ξ𝐒.
Furthermore,

{Ξ𝐓
𝐒 L |Ξ𝐓

𝐒 R}𝐓 = {Ξ𝐓A |Ξ𝐓 B}𝐓
= Ξ𝐓 z,

by uniformity of the cut equation for Ξ𝐓. Hence {Ξ𝐓
𝐒 L | Ξ𝐓

𝐒 R}𝐓=Ξ𝐓Ξ𝐒
−1 x=Ξ𝐓𝐒 z, which

proves that Ξ𝐓
𝐒≡ {Ξ𝐓

𝐒 L | Ξ𝐓
𝐒 R}𝐓 is uniform. This cut equation has the form Ξ𝐓

𝐒 z=
{Λ(zL𝐒) |Ρ(zR𝐒)}𝐓 where Λ=Ρ={Ξ𝐓

𝐒} are sets of functions, so it is extensive. □

The above proposition shows that surreal isomorphisms satisfy natural extensive cut
equations. Inversily, Proposition 4.27 shows that extensive cut equations give rise to sur-
real isomorphisms. As an application, if we admit that the operation

∀x∈No, �̇�x≔{0,ℕ�̇�xL | 2−ℕ �̇�xR}

is well defined, then we see that it defines a surreal isomorphism. This is the parame-
trization of the classMo of monomials, that is, Conway's𝜔-map. This cut equation is also
uniform (see [21, corollary of Theorem 5.2]), and we can for instance compute, for every
number x, the number

�̇��̇�x = �̇�{0,ℕ�̇�xL|2−ℕ�̇�xR}

= �0,ℕ �̇�0,ℕ𝜔ℕ�̇�xL | 2−ℕ �̇�2−ℕ�̇�xR�
= �ℕ,𝜔ℕ�̇�xL | �̇�2−ℕ�̇�xR�.
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Whenever they exist, this shows the usefulness of extensive cut equations. Unfortu-
nately, many common surreal functions such as the exponential do not admit extensive
cut equations. The next proposition describes a more general type of cut equation that
is sometimes useful.

Proposition 4.36. Let 𝐒,𝐓 be surreal substructures. Let Λ be a function from 𝐒 to the class of
subsets of 𝐓 such that for x,y∈𝐒 with x<y, the set Λ(y) is cofinal with respect to Λ(x). For
x∈𝐒, let 𝚲[x] denote the class of elements u of 𝐒 such that Λ(x) and Λ(u) are mutually cofinal.
Let {𝜆 | 𝜌}𝐓 be an extensive cut equation on 𝐒. Let F: 𝐒⟶𝐓 be strictly increasing with cut
equation

∀x∈𝐒,F(x)={Λ(x),𝜆(xLS,xRS) |𝜌(xLS,xRS)}𝐓
Then F induces an embedding (𝚲[x],⩽,⊑)⟶(𝐓,⩽,⊑) for each element x of 𝐒.

Proof. Let x∈𝐒. If u,w∈𝚲[x] and v∈𝐒 satisfies u⩽ v⩽w, then Λ(v) is cofinal with
respect to Λ(u) and hence to Λ(x), and Λ(x) is cofinal with respect to Λ(w) and hence
to Λ(v), so v∈𝚲[x]. Therefore 𝚲[x] is a non-empty convex subclass of 𝐒. Note that for
u∈𝚲[x], we have

F(u)={Λ(x),𝜆(uLS,uRS) |𝜌(uLS,uRS)}𝐓.

For numbers u,v lying in 𝚲[x] with u⊑v, we have

Λ(x)∪𝜆(uLS,uRS)⊆Λ(x)∪𝜆(vLS,vRS)<F(v)<𝜌(vLS,vRS)⊇𝜌(uLS,uRS),

which implies that F(u) ⊑ F(v). Since 𝚲[x] is a non-empty convex subclass of 𝐒 and
Ξ𝐒:No⟶𝐒 is increasing and bijective, the class 𝐂≔Ξ𝐒−1(𝚲[x]) is a non-empty convex
subclass of No on which F ∘ Ξ𝐒 is strictly (⩽, ⊑)-increasing. By Lemma 4.5, the func-
tion F∘Ξ𝐒 induces an embedding (𝐂,⩽,⊑)⟶(𝐓,⩽,⊑) and thus F induces an embedding
(𝚲[x],⩽,⊑)⟶(𝐓,⩽,⊑). □

Example 4.37. A typical example is the following cut equation of [8, Theorem 3.8(1)] for
the exponential function on the class Mo≻≔{𝔪∈Mo :ℝ<𝔪} of infinite monomials:

∀𝔪∈Mo, exp𝔪={𝔪ℕ, (exp𝔪L
Mo)ℕ | (exp𝔪R

Mo)ℕ}.

Here we have Λ(𝔪)=𝔪ℕ and 𝚲[𝔪]=�𝔫∈Mo≻ :∃p,q∈ℕ,𝔪 /1 p≺𝔫≺𝔪p�.

5 Fixed points
After introducing the 𝜔-map as a way to parameterize the class Mo of monomials,
Conway remarks that for any ordinal 𝛼, the number �̇�𝛼 coincides with Cantor's 𝛼-th
ordinal power of 𝜔. He then goes on with the definition of generalized 𝜀-numbers as sur-
real numbers a such that �̇�a=a. It turns out that the class of generalized 𝜀-numbers can be
parameterized as well and actually forms a surreal substructure: see Conway's informal
discussion [11, p 34–35] andGonshor's formal proof [21, Theorem 9.1 and Corollary 9.2].
Gonshor gives further conditions for the class of fixed points of a surreal function to
be a surreal substructure [21, Theorem 9.4].

In this section, we consider themore general problem of deciding, given a surreal sub-
structure 𝐒, whether Ξ𝐒 admits fixed points, and possibly a whole surreal substructure
of fixed points. A related fixed point theorem was obtained by Lurie [31, Theorem 8.2]
in a somewhat different context.
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5.1 Fixed points and iterations of defining isomorphisms
For operatorsΩ:𝐗⟶𝐘where 𝐘⊆𝐗 are subclasses ofNo and n∈ℕ, it will be convenient
to write Ωn for the n-fold composition of Ω with itself. In particular, Ω0=id𝐗.

Definition 5.1. Let 𝐒 be a surreal substructure. We say that a number x is 𝐒-fixed if Ξ𝐒 x=x.
We let Fix𝐒 denote the class of 𝐒-fixed numbers. Notice that Fix𝐒 is a subclass of 𝐒.

If𝐔,𝐕,𝐖 are surreal substructures with𝐔=𝐕�𝐖, then for every number x, we have
Ξ𝐔 x⩾Ξ𝐕 x if and only if Ξ𝐖 x⩾x, and Ξ𝐔 x⊒Ξ𝐕 x if and only if Ξ𝐖 x⊒x. In particular,
the parametrizations of 𝐔 and 𝐕 coincide exactly on Fix𝐖.

Proposition 5.2. If 𝐒 is a surreal substructure, then Fix𝐒=⋂n∈ℕΞ𝐒
nNo.

Proof. Let 𝐒�𝜔=⋂n∈ℕΞ𝐒
nNo. For n∈ℕ, we have Fix𝐒=Ξ𝐒n Fix𝐒⊆Ξ𝐒

nNo, so Fix𝐒⊆𝐒�𝜔.
Assume for contradiction that Fix𝐒 is a proper subclass of 𝐒�𝜔, and consider x∈𝐒�𝜔\Fix𝐒
with minimal length. For n∈ℕ>, let xn∈No with x=Ξ𝐒n xn. For all n∈ℕ>, we have
xn∈𝐒�𝜔, so by ourminimality assumption and Lemma 4.10, we have∀n∈ℕ,ℓ(x)=ℓ(xn).

Recall that x is not 𝐒-fixed, so x0≠ x1. By symmetry, we may assume without loss
of generality that x0<x1, which implies that xn<xn+1 for all n∈ℕ. For n∈ℕ, let un be
the ⊑-maximal element of 𝐒 with un⊑ xn, xn+1. This element is well-defined since 𝐒 is
a surreal substructure and xn, xn+1∈𝐒. The number Ξ𝐒−1 un is ⊑-maximal in No with
Ξ𝐒−1 un⊑xn+1,xn+2, whence un+1⊑Ξ𝐒−1 un, so Ξ𝐒 un+1⊑un.

Since ℓ(xn)= ℓ(xn+1) and xn+1≠xn, we have xn⋢xn+1 and xn+1⋢xn. We deduce that
un⊏ xn, xn+1 and that xn< un< xn+1. In particular, we have xn+1=Ξ𝐒

−1 xn<Ξ𝐒−1 un so
un<Ξ𝐒

−1 un, so un is not 𝐒-fixed, and we have ℓ(un)< ℓ(xn)= ℓ(x).
Since Ξ𝐒 un+1⊑un for each n∈ℕ, Lemma 4.10 implies ℓ(u0)⩾ ℓ(u1)⩾⋯. The latter

decreasing sequence of ordinals is necessarily stationary; let n0∈ℕ be such that ℓ(un)=
ℓ(un0) for all n⩾n0. By Lemma 4.10, it follows thatΞ𝐒un+1=un for all n⩾n0, whence un0∈
𝐒�𝜔∖ Fix𝐒. But ℓ(un0)< ℓ(x), which contradicts the minimality of ℓ(x). This absurdity
completes our proof. □

Example 5.3. Here are some examples of structures of fixed points where⋂n∈ℕΞ𝐒
nNo is

a surreal substructure:

• If 𝐒 is the ⊑-final substructure a∔No=No⊒a, then for any surreal number x,
the sign sequence of Ξ𝐒 x= a∔ x is obtained through concatenation of the sign
sequences of a and x. Thus 𝐒-fixed numbers are numbers whose sign sequences
start with 𝜔 copies of the sign sequence of a, that is FixNo⊒a=No⊒a×

. 𝜔.

• Consider 𝐒=a×. Nowhere a is a strictly positive number. Let a0=1 and an=a×. an
for n∈ℕ. We claim that Fix𝐒=a𝜔×

. No where a𝜔=sup⊑ {an :n∈ℕ}.
Indeed, since 1⊑ a1 and a×. ⋅ is a surreal isomorphism, we have an⊑ an+1 for

every n∈ℕ, so a𝜔 is well defined. We have a×. a𝜔=sup⊑ a×. aℕ=sup⊑ aℕ+1= a𝜔.
For every number x=a𝜔×

. x′where x′∈No, we have a×. x=(a×. a𝜔)×
. x′=a𝜔×

. x′=x,
so a𝜔×

. No⊆Fix𝐒. Conversely if x∈Fixa×.No, then a×. x⊑x so ℓ(a)×. ℓ(x)⩽ ℓ(x), so
ℓ(x) is equal to ℓ(a)˙ 𝜔×. 𝛼 for some ordinal 𝛼. For n∈ℕ, ℓ(an)= ℓ(a)˙ n, so ℓ(a𝜔)=
supn∈ℕ ℓ(an)= ℓ(a)˙ 𝜔. Let x′ denote the number of length 𝛼 defined at the level of
sign sequences by

∀𝛽<𝛼,x′[𝛽]=x[ℓ(a)˙ 𝜔×. 𝛽].
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We claim that x= a𝜔×
. x′. Indeed, for 𝛽<𝛼 and 𝛾< ℓ(a)˙ 𝜔, there is n∈ℕ such that

𝛾< ℓ(a)˙ n, and we have

(a𝜔×
. x′)[ℓ(a)˙ 𝜔×. 𝛽∔𝛾] = x′[𝛽]a𝜔[𝛾]

= x[ℓ(a)˙ 𝜔×. 𝛽]an[𝛾]
= (an×

. x)[ℓ(a)˙ n×. (ℓ(a)˙ 𝜔×. 𝛽)∔𝛾]
= (an×

. x)[(ℓ(a)˙ 𝜔×. 𝛽)∔𝛾]
= x[ℓ(a)˙ 𝜔×. 𝛽∔𝛾].

Thus a𝜔×
. x′=x, so Fix𝐒=a𝜔×

. No.
We letNo≻ denote the surreal substructure Fix2×.No=𝜔×

. Nowhich is the class
of surreal numbers, whose sign sequence contains no consecutive distinct signs.
Elements in f ∈No≻ are called purely infinite numbers, since their supports supp f
as series f =∑𝔪∈Mo f𝔪𝔪 contains only infinitely large monomials: see Proposi-
tion 7.4 below.

• As mentioned at the beginning of this section, if 𝐒=Mo is the class of monomials,
then Ξ𝐒 is the 𝜔-map x⟼�̇�x, and its fixed points are called generalized 𝜀-num-
bers. For x∈No, the number ΞFixMo x is usually denoted 𝜀x, and the 𝜀-map x⟼𝜀x
extends the parametrization of 𝜀-numbers in On. We refer to [21, Chapter 9] for
a detailed study.

• If 𝐒=1++Mo≺ (where Mo≺=Mo∩No≺), then for x∈No, we have

Ξ𝐒 x=1+�̇�(−1)∔x.

Consider the function Φ: x⟼1+ �̇� /x−3 2:No⟶No. For all y∈No≺ and r∈ℝ,
we have r+ y= r∔ y by [21, Theorem 5.12]. Recall that /−1 2=(−1)∔1. Thus for
x∈1+No≺, we have

x− /3 2=(x−1)− /1 2=((−1)∔1)+(x−1)=(−1)∔(1∔(x−1))=(−1)∔x.

So ΞS and Φ coincide on 1+No≺. Since S and the class of fixed points of Φ are
contained in 1+No≺, we deduce that Fix𝐒 is the class of fixed points of Φ.

Now, informally speaking, we would like to consider the expression

1++�̇� /−1 2++�̇�
/−1 2++�̇�

⋰

as a notation for “the” fixed point of Φ. However, this expression is inherently
ambiguous, since Fix𝐒 actually contains many elements. The map ΞFix𝐒 can be
regarded as a notation to provide an unambiguous expression for each fixed
point x, using a single surreal parameter u with x=ΞFix𝐒(u). In a similar manner,
one may regard the notation 𝜀u as a way to disambiguate

�̇��̇��̇� ⋰

.

• If 𝐒 is the interval (−𝜔,𝜔), then we can see that Ξ𝐒 fixes No≼ pointwise and
replaces the initial segment 𝜔 (resp. −𝜔) in the sign sequence of a positive (resp.
negative) infinite numberwith𝜔−1 (resp. 1−𝜔). Since /𝜔 2=𝜔∔(−𝜔), we deduce
that the defining isomorphism Ξ𝐒 fixes No≼, No⊒ /−𝜔 2, and No⊒ /𝜔 2 pointwise. One
can check that the class

Fix𝐒 = No⊒ /−𝜔 2⊔No≼⊔No⊒ /𝜔 2

is a surreal substructure.
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In general, the class Fix𝐒may not be a surreal substructure. For instance, the class Inc
defined in Example-4.14 satisfies∀x∈No,ℓ(ΞInc x)>ℓ(x), and consequently has no fixed
point. This raises the question of finding a condition on 𝐒 that will ensure Fix𝐒 to be a sur-
real substructure. One obvious first idea is to investigate when decreasing intersections
of surreal substructures are surreal substructures.

5.2 Closed subclasses
We introduce a notion of closed subclasses X of an ambient surreal substructure S⊇X.
In the case when X is a surreal substructure, we characterize its closedness in terms of its
defining surreal isomorphism.

Definition 5.4. Let 𝐒 be a surreal substructure. Let 𝐗 be a subclass of 𝐒. We say that 𝐗 is
𝐒-closed, if the supremum in (𝐒,⊑) of any non-empty ⊑-chain in 𝐗 lies in 𝐗.

Example 5.5.

• The intervals (−𝜔− 1, 𝜔+ 1), (0, 7) and (0, 𝜔2+ 1) are No-closed convex sur-
real substructures. The interval (−𝜔,𝜔) is a surreal substructure which is not
No-closed, since sup⊑ℕ=𝜔∉(−𝜔,𝜔).

• The structure No≻ introduced in Example 5.3 is a non-convex No-closed surreal
substructure since having no different consecutive signs in one's sign sequence is
preserved by taking suprema inNo.

• Likewise, the structure 2×. No is No-closed.
• If𝐓 is a surreal substructure defined by the tree construction (see Proposition 4.13),

then it isNo-closed if and only if for each non-empty ⊑-chain X in 𝐓, the element
Ξ𝐓 sup⊑X of 𝐓 is defined as sup⊑Ξ𝐓X. In particular, the surreal substructure Inc
from Example 4.14 is not No-closed.

• The class ⨆𝛼∈On No⊒𝛼−1 is No-closed but has a proper class of ⊑-minimal ele-
ments {𝛼−1 :𝛼∈Onlim} (in particular, it has no root).

The term “closed” suggests the existence of a topology. Indeed, we have:

Proposition 5.6. Let 𝐒 be a surreal substructure. Arbitrary intersections and finite unions of
𝐒-closed subclasses of 𝐒 are 𝐒-closed.

Proof. It is clear that ∅ and 𝐒 are 𝐒-closed. Let 𝐗𝐈 be the intersection of a (possibly proper
class-sized) non-empty family (𝐗i)i∈𝐈 of 𝐒-closed subclasses of 𝐒. Let C be a non-empty
⊑-chain in 𝐗𝐈. We have sup𝐒,⊑C∈𝐗i for all i∈𝐈, whence sup𝐒,⊑C∈𝐗𝐈 and 𝐗𝐈 is 𝐒-closed.

Let 𝐗1, 𝐗2 be 𝐒-closed subclasses of 𝐒 and let C be a non-empty ⊑-chain in 𝐗1∪𝐗2.
If C admits a ⊑-maximum, then sup𝐒,⊑ C=max C∈𝐗1∪𝐗2. Otherwise, let i∈{1, 2} be
such that C∩𝐗i is ⊑-cofinal in C. Then sup𝐒,⊑C=sup𝐒,⊑C∩𝐗i∈𝐗i⊆𝐗1∪𝐗2, so 𝐗1∪𝐗2
is 𝐒-closed. □

Lemma 5.7. If 𝐒 is a surreal substructure and 𝐓 is a ⊑-final substructure of 𝐒, then 𝐓 is 𝐒-
closed.

Proof. The class 𝐓 is ⊑-final in 𝐒, thus suprema of non-empty ⊑-chains in 𝐓 lie in 𝐓. □

It will sometimes be useful to comprehend closure in terms of projections.
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Proposition 5.8. Let 𝐒 be a surreal substructure. A rooted subclass 𝐗 of 𝐒 is 𝐒-closed if and only
if every element x of 𝐒⊒𝐗• has a ⊑-maximal initial segment 𝜇𝐗𝐒(x) lying in 𝐗.

Proof. Assume that 𝐗 is 𝐒-closed. Consider x∈𝐒 with 𝐗•⊑ x. Then the set of initial
segments of x lying in 𝐗 is non-empty and closed under taking suprema in 𝐒. Conse-
quently, x indeed admits a⊑-maximal initial segment 𝜇𝐗𝐒(x) in 𝐗. Inversely, assume that
𝜇𝐗𝐒 is well defined on 𝐒⊒𝐗• and let C be a non-empty ⊑-chain in 𝐗. If C has a ⊑-max-
imum, then sup𝐒,⊑C=max⊑C∈𝐗. Otherwise, 𝜇𝐗𝐒(sup𝐒,⊑C)⊏/ sup𝐒,⊑C, so 𝜇𝐗𝐒(sup𝐒,⊑C)=
sup𝐒,⊑C∈𝐗. This shows that 𝐗 is 𝐒-closed. □

Definition 5.9. If 𝐗⊆𝐒 is rooted and 𝐒-closed, then we define 𝜇𝐗𝐒 to be the function 𝐒⊒𝐗•→←↠𝐗
that sends each element x of 𝐒⊒𝐗• to the ⊑-maximal initial segment of x that lies in 𝐗. It is by
definition surjective, ⊑-increasing, and satisfies the relation 𝜇𝐗𝐒 ∘𝜇𝐗𝐒 =𝜇𝐗𝐒 . We call it the topo-
logical projection 𝐒⊒𝐗•⟶𝐗.

Since 𝜇𝐒𝐗 is ⊑-increasing when it exists, its fibers are ⊑-convex in 𝐒⊒𝐗•.

Lemma 5.10. Let 𝐓⊆𝐒 be surreal substructures and let 𝐗⊆𝐓 be rooted. If 𝐗 is 𝐓-closed and 𝐓
is 𝐒-closed, then 𝐗 is 𝐒-closed, and we have 𝜇𝐗𝐒≡𝜇𝐗𝐓 ∘𝜇𝐓𝐒 on 𝐒0⊒𝐗

•
.

Proof. Let x∈𝐒⊒𝐗•. Since 𝐓•⊑𝐓⊇𝐗, we have 𝐓•⊑𝐗•, whence x∈𝐒⊒𝐓•. The class 𝐓 is
𝐒-closed so x has amaximal initial segment 𝜇𝐓𝐒(x) lying in𝐓. Now𝐗• is an initial segment
of x lying in 𝐓, whence 𝐗•⊑𝜇𝐓𝐒(x). We may thus consider the maximal initial segment
𝜇𝐗𝐓(𝜇𝐓𝐒(x)) of 𝜇𝐓𝐒(x) that lies in 𝐗. If z∈𝐗 is simpler than x, then z⊑𝜇𝐓𝐒(x), since z∈𝐓.
Similarly, z⊑𝜇𝐗𝐓(𝜇𝐓𝐒(x)), since z∈𝐗. This proves that 𝜇𝐗𝐓(𝜇𝐓𝐒(x)) is the maximal initial
segment of x lying in 𝐗. □

We will mostly consider closures of surreal substructures in other ones. In this situ-
ation, closure can be regarded as a property of the defining surreal isomorphism:

Lemma 5.11. If 𝐓⊆𝐒 are surreal substructures, then 𝐓 is 𝐒-closed if and only if for any non-
empty ⊑-chain X of No, we have Ξ𝐓 sup⊑X=sup𝐒,⊑Ξ𝐓X.

Proof. Assume that the relation holds. Let Y be a non-empty ⊑-chain in 𝐓 and con-
sider the set X=Ξ𝐓

−1(Y). Since Ξ𝐓 is an ⊑-embedding, the set X is a non-empty ⊑-chain
in No, whence Ξ𝐓 sup⊑X=sup𝐓,⊑Ξ𝐓X=sup𝐓,⊑Y (see Proposition 4.13). Our assump-
tion on Ξ𝐓 gives Ξ𝐓 sup⊑ X= sup𝐒,⊑ Ξ𝐓 X= sup𝐒,⊑ Y, so sup𝐒,⊑ Y= sup𝐓,⊑ Y∈𝐓, and
𝐓 is 𝐒-closed. Conversely, assume 𝐓 is 𝐒-closed. Let X⊂No be a non-empty ⊑-chain.
Since Ξ𝐓 is ⊑-increasing, the set Ξ𝐓 X is a non-empty ⊑-chain in 𝐓, so sup𝐒,⊑ Ξ𝐓 X∈𝐓,
whence sup𝐒,⊑Ξ𝐓X=sup𝐓,⊑Ξ𝐓X=Ξ𝐓 sup⊑X, which is the desired equality. □

Lemma 5.12. Let 𝐔,𝐕,𝐖 be surreal substructures.
a) If 𝐕⊆𝐔, then 𝐕 is 𝐔-closed if and only if Ξ𝐕 sends No-closed subclasses of No onto

𝐔-closed subclasses of 𝐔.
b) If 𝐕 and𝐖 are No-closed, then so is 𝐕�𝐖.
c) If 𝐕 and 𝐕�𝐖 are No-closed, then so is𝐖.

Proof. a) Assume 𝐕 is 𝐔-closed and 𝐗 is a closed subclass of No. Let Y be a non-empty
⊑-chain in Ξ𝐕𝐗. The set Ξ𝐕

−1 (Y) is a non-empty ⊑-chain in 𝐗 so its supremum lies in 𝐗,
and Ξ𝐕 𝐗∋Ξ𝐕 sup⊑ Ξ𝐕−1 Y= sup𝐔,⊑ Ξ𝐕 Ξ𝐕

−1(Y) = sup𝐔,⊑ Y, so Ξ𝐕 𝐗 is 𝐔-closed. Con-
versely, ifΞ𝐕 sends closed classes of surreal numbers onto𝐔-closed subclasses of𝐔, then
in particular 𝐕=Ξ𝐕No is 𝐔-closed.
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b) This is a direct consequence of a).
c) Assume that 𝐕�𝐖 and 𝐕 are No-closed. Let X be a non-empty ⊑-chain in No.

Then Ξ𝐕 Ξ𝐖 sup⊑X=sup⊑ Ξ𝐕 Ξ𝐖 X=Ξ𝐕 sup⊑ Ξ𝐖 X, and since Ξ𝐕 is injective, we get
Ξ𝐖 sup⊑X=sup⊑Ξ𝐖X, so𝐖 is No-closed. □

We now come to the main interest of the notion of closure.

Proposition 5.13. Let 0<𝛼 be a limit ordinal. Let 𝐒 be a surreal substructure and let (𝐒𝛽)𝛽<𝛼
be a decreasing sequence of 𝐒-closed surreal substructures of 𝐒. Then its intersection⋂𝛽<𝛼 𝐒𝛽 is
an 𝐒-closed surreal substructure.

Proof. We use the characterization of surreal substructures given in Proposition 4.13. By
Proposition 5.6, the class 𝐒𝛼≔⋂𝛽<𝛼𝐒𝛽 is 𝐒-closed. In particular, the class 𝐒𝛼 has suprema
of non-empty ⊑-chains. We also have sup⊑,𝐒𝛼 ∅=𝐒𝛼•=sup⊑,𝐒 {𝐒𝛽• : 𝛽<𝛼} which lies in 𝐒𝛼
by the 𝐒-closure of each structure 𝐒𝛽 for 𝛽<𝛼, so the empty ⊑-chain has a supremum
as well.

Let us now treat the case of left and right successors. Given u∈𝐒𝛼, let u𝛽,−1<u and
u𝛽,1>u be the left and right successors of u in 𝐒𝛽, for each ordinal 𝛽<𝛼. For 𝛽<𝛾<𝛼, we
have u𝛾,−1∈S𝛽 and u𝛾,−1<u, so u𝛽,−1⊑u𝛾,−1 by the definition of left successors. Similarly,
we get u𝛽,1⊑u𝛾,1. Thus the sets {u𝛽,−1 :𝛽<𝛼} and {u𝛽,1 :𝛽<𝛼} are⊑-chainswhose suprema
u−1,u1 in 𝐒 satisfy u−1<u<u1. For v∈𝐒𝛼with u<v and 𝛽<𝛼, we have u,v∈𝐒𝛽 so u𝛽,1⊑v,
whence u1⊑ v. This means that u1 is the right successor of u in 𝐒𝛼. Likewise, u−1 is the
left successor of u in 𝐒𝛼. We conclude that 𝐒𝛼 is a surreal subtructure. □

Corollary 5.14. If the surreal substructure 𝐒 is No-closed, then Fix𝐒 is an No-closed surreal
substructure.

Proof. This is a direct consequence of Lemma 5.12, Proposition 5.13 and Proposition 5.2. □

Remark 5.15. Corollary 5.14 is similar to [31, Theorem 8.2]. Lurie's result is more gen-
eral, but when applied to anNo-closed surreal substructure 𝐒, it only concludes that Fix𝐒
is a “good tree”. Good trees need not be surreal substructures. For instance,

No⊒−2⊔No⊒ /−1 2{0}⊔No⊒ /1 2⊔No⊒2

is a good tree, but not a surreal substructure, since 0 has two right successors and two
left successors.

5.3 Transfinite right-imbrications of surreal substructures
The class ofNo-closed surreal substructures being closed under decreasing intersections,
we are now in a position to define a notion of transfinite right-imbrications ofNo-closed
surreal substructures.

Theorem 5.16. Let 𝛼 be an ordinal. Let𝐔=(𝐔𝛽)𝛽<𝛼 be a sequence of No-closed surreal substruc-
tures. We define a sequence (−�𝛾<𝛽𝐔𝛾)𝛽⩽𝛼 of No-closed surreal substructures by the following
rules:

• −�𝛾<0𝐔𝛾=No.
• −�𝛾<𝛽+1𝐔𝛾=�−�𝛾<𝛽𝐔𝛾��𝐔𝛽 if 𝛽<𝛼,
• −�𝛾<𝛽𝐔𝛾=⋂𝛽′<𝛽−�𝛾<𝛽′𝐔𝛾 if 0<𝛽⩽𝛼 is limit.
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Then each class −�𝛾<𝛽𝐔𝛾 for 𝛽⩽𝛼 is an No-closed surreal substructure, and if 𝛽∔𝛿⩽𝛼, then
we have

−�
𝛾<𝛽∔𝛿

𝐔𝛾 = −�
𝛾<𝛽

𝐔𝛾 � −�
𝛽⩽𝛾<𝛽∔𝛿

𝐔𝛾. (5.1)

Proof. We first need to prove that the definition is warranted. We do this by transfinite
induction, while proving at the same time that the sequence (−�𝛾<𝛽𝐔𝛾)𝛽⩽𝛼 is decreasing,
and that each term is an No-closed surreal substructure. Let 𝛽⩽𝛼 be such that these
assumptions hold strictly below 𝛽. If 𝛽=𝛽′+ 1 is a successor ordinal, then −�𝛾<𝛽′𝐔𝛾
and𝐔𝛽′ areNo-closed surreal substructures, whence −�𝛾<𝛽𝐔𝛾≔�−�𝛾<𝛽′𝐔𝛾��𝐔𝛽′ is well
defined and No-closed (by Lemma 5.12). The surreal substructure −�𝛾<𝛽′𝐔𝛾 is a left
factor of −�𝛾<𝛽𝐔𝛾, which implies that −�𝛾<𝛽𝐔𝛾⊆−�𝛾<𝛽′𝐔𝛾. If 𝛽 is limit, the intersec-
tion that defines −�𝛾<𝛽𝐔𝛾 is an No-closed surreal substructure by Proposition 5.13, and
(−�𝛾<𝛽′𝐔𝛾)𝛽′⩽𝛽 is clearly decreasing.

We prove the identity (5.1) by induction on 𝛽∔𝛿. Let 𝜎 be an ordinal such that (5.1)
holds for any sequence𝐔 and 𝛽,𝛿with 𝛽∔𝛿<𝜎. Let 𝛽,𝛿 be such that 𝛽∔𝛿=𝜎. If 𝛿=𝜂+1
for some ordinal 𝜂, then

−�
𝛾<𝛽∔𝛿

𝐔𝛾 = −�
𝛾<𝛽∔𝜂∔1

𝐔𝛾

= −�
𝛾<𝛽∔𝜂

𝐔𝛾 � 𝐔𝛽∔𝜂

= −�
𝛾<𝛽

𝐔𝛾 � −�
𝛽⩽𝛾<𝛽∔𝜂

𝐔𝛾 � 𝐔𝛽∔𝜂

= −�
𝛾<𝛽

𝐔𝛾 � −�
𝛽⩽𝛾<𝛽∔𝜂∔1

𝐔𝛾

= −�
𝛾<𝛽

𝐔𝛾 � −�
𝛽⩽𝛾<𝛽∔𝛿

𝐔𝛾.

If 𝛿 is limit, then we have

−�
𝛾<𝛽∔𝛿

𝐔𝛾 = �
𝜂<𝛿

−�
𝛾<𝛽∔𝜂

𝐔𝛾

= �
𝜂<𝛿 ((((((((((((((−�𝛾<𝛽

𝐔𝛾 � −�
𝛽⩽𝛾<𝛽∔𝜂

𝐔𝛾))))))))))))))
= �

𝜂<𝛿
Ξ−�𝛾<𝛽𝐔𝛾(((((((((((((( −�

𝛽⩽𝛾<𝛽∔𝜂
𝐔𝛾))))))))))))))

= Ξ−�𝛾<𝛽𝐔𝛾((((((((((((((�𝜂<𝛿 −�
𝛽⩽𝛾<𝛽∔𝜂

𝐔𝛾))))))))))))))
= Ξ−�𝛾<𝛽𝐔𝛾(((((((((((((( −�

𝛽⩽𝛾<𝛽∔𝛿
𝐔𝛾))))))))))))))

= −�
𝛾<𝛽

𝐔𝛾 � −�
𝛽⩽𝛾<𝛽∔𝛿

𝐔𝛾.

(The injectivity of Ξ−�𝛾<𝛽𝐔𝛾 allowed us to move it through intersections). □

Example 5.17. In [11, p 34–35], Conway informally discussed continued exponential
expressions of the form

x=u0±𝜔u1±𝜔u2±𝜔⋰.
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He outlined an approach for proving that the class of numbers that can be expressed
in this way is order isomorphic to No. Conway's ideas were rigorously worked out by
Lemire [28, 29, 30]. He first proved the following result in the case when u0=u1=⋯=0:
given (zi)i∈ℕ∈{−1,1}ℕ, let Ez be the class of numbers x such that there exists a sequence
(xi)i∈ℕ∈Noℕ with

x=z0𝜔z1𝜔⋰zixi

for all i∈ℕ. Then 𝐄z is order isomorphic to No. Moreover, writing 𝜑z:No⟶Ez for the
isomorphism, 𝜑z has fixed points of any order 𝛼∈On, and the class Ez

𝛼 of such fixed
points is also order isomorphic to No. This result follows from Theorem 5.16 by taking
U𝜔𝛼+i=ziMo for all 𝛼∈On and i<𝜔. Then Ez

𝛼= −�
𝛽<𝜔1+𝛼

U𝛽 for all 𝛼∈On.

A similar result was proved by Lemire formore general continued exponential expres-
sions [29, Theorem 4]. This result is more involved and presents similarities with our
results about nested expansions in section 8 below.

Proposition 5.18. Let 𝐒 be an No-closed surreal substructure. For each ordinal 𝛼, let
𝐒�𝛼 ≔ −�

𝛽<𝛼
𝐒.

Each 𝐒�𝛼 is an No-closed surreal substructure, and for 𝛼,𝛽∈On, we have:

𝐒�(𝛼∔𝛽) = 𝐒�𝛼�𝐒�𝛽. (5.2)
𝐒�(𝛼×

. 𝛽) = (𝐒�𝛼)�𝛽. (5.3)

Proof. Most of this is a direct consequence of Theorem 5.16; we only need to prove the
identity (5.3). Let 𝜋∈On be such that this identity holds for 𝛼×. 𝛽<𝜋. Let 𝛼,𝛽 be ordinal
numbers with 𝛼×. 𝛽=𝜋. Corollary 5.14 justifies that the same construction can be applied
to the structure 𝐒�𝛼. If 𝛽=𝜂+1 for 𝜂∈On, then we have

(𝐒�𝛼)�𝛽 = (𝐒�𝛼)�𝜂�𝐒�𝛼
= 𝐒�(𝛼×

. 𝜂)�𝐒�𝛼
= 𝐒�(𝛼×

. 𝜂∔𝛼)

= 𝐒�(𝛼×
. 𝛽),

where we used (5.2) as well as the inductive hypothesis. If 𝛽 is limit, then

(𝐒�𝛼)�𝛽 = �
𝜂<𝛽

(𝐒�𝛼)�𝜂

= �
𝜂<𝛽

𝐒�(𝛼×
. 𝜂)

= �
𝛾<𝛼×. 𝛽

𝐒�𝛾

= 𝐒�(𝛼×
. 𝛽). □

Note that for n∈ℕ, the structure 𝐒�n is the n-fold imbrication of 𝐒 into itself, and we
have Ξ𝐒�n=(Ξ𝐒)n. For 𝛼∈On, we have 𝐒�(𝜔×

. 𝛼)=Fix𝐒�𝛼, by Proposition 5.2 and the iden-
tity (5.3). Thus transfinite right-imbrications of 𝐒 with itself allow us to define higher
order fixed points of Ξ𝐒 as being elements of the 𝐒��̇�𝛼

with 0<𝛼∈On. As we have seen,
imbrication is left-distributive on decreasing intersections that form a surreal substruc-
ture. It is not right-distributive in general. For instance if 𝐒 is a properNo-closed surreal
substructure of No, then 𝐒�𝜔�𝐒 is a proper subclass of 𝐒�𝜔=⋂n∈ℕ (𝐒

�n�𝐒).
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Example 5.19. We will see in section 7.2 that the class No≻�𝛼 coincides with �̇�𝛼×. No.

Example 5.20. The class Mo�𝜔 of fixed points of the 𝜔-map was studied before in [11,
21, 31]; numbers inMo�𝜔 are called generalized 𝜀-numbers. It also comes up in the study
of the exponential function and the length of sign sequences [12, 27]. The class Mo��̇�𝛼

corresponds to a higher order fixed points of the𝜔-map andwe expect it to play a similar
role as Mo�𝜔 for the study of the 𝛼-th hyperexponential function.

6 Convex partitions
Throughout this section, 𝐒 stands for a surreal substructure.

6.1 Convex partitions

Definition 6.1. Let 𝚷 be a partition of 𝐒 into convex subclasses. We say that 𝚷 is a convex
partition of 𝐒. For x∈𝐒 we let 𝚷[x] denote the member of 𝚷 containing x and recall that this
class is rooted (by Lemma 4.16). We say that x∈𝐒 is𝚷-simple if x=𝚷[x]•, and we let Smp𝚷
denote the class of 𝚷-simple elements of 𝐒. For x,y∈𝐒 we write:

x=𝚷y if 𝚷[x]=𝚷[y],
x<𝚷y if 𝚷[x]<𝚷[y],
x⩽𝚷y if 𝚷[x]=𝚷[y] or𝚷[x]<𝚷[y].

Remark 6.2. Convex partitions are sometime called condensations [33, Definition 4.1].

We can obtain 𝐒 as Smp𝚷disc through the discrete partition 𝚷disc with 𝚷disc[x] = {x}
for all x∈𝐒. Let 𝜋𝚷(x)≔𝚷[x]•∈𝐒 for all x∈𝐒. The map 𝜋𝚷: 𝐒⟶Smp𝚷 is a surjective,
increasing projection. We refer to it as the 𝚷-simple projection.

For the remainder of this subsection, let𝚷 be a convex partition of 𝐒. A quasi-order (or
preorder) is a binary relation that is reflexive and transitive. The following lemma states
basic facts on partitions of a linear order into convex subclasses.

Lemma 6.3. The relation⩽𝚷 is a linear quasi-order and restricts to a linear order on Smp𝚷. For
x,y∈𝐒, we have x⩽𝚷y if and only if 𝜋𝚷(x)⩽𝜋𝚷(y).

Proof. It is well known that the partition 𝚷 corresponds to the equivalence relation =𝚷
on 𝐒. The transitivity and irreflexivity of <𝚷 follow from that of < on subclasses of No.
That its restriction to Smp𝚷 is a linear order is a direct consequence of the definition
of Smp𝚷 and the equivalence stated above, which we now prove. If 𝚷 has only one
member, then the result is trivial. Else let x,y∈𝐒 with x<𝚷y. We have 𝜋𝚷(x)∈𝚷[x]<
𝚷[y]∋𝜋𝚷(y) so 𝜋𝚷(x)<𝜋𝚷(y). Conversely, assume that 𝜋𝚷(x)<𝜋𝚷(y). Then 𝚷[x]≠
𝚷[y] which since 𝚷 is a partition implies that 𝚷[x]∩𝚷[y]=∅. For x′∈𝚷[x], there may
be no element z of𝚷[y] such that z⩽x for this would imply z⩽x⩽𝜋𝚷(y)whence x∈𝚷[y]
by convexity of this class: a contradiction. We thus have 𝚷[x]<𝚷[y], that is, x<𝚷y. By
definition of 𝜋𝚷, the relation x=𝚷y implies that 𝜋𝚷(x)=𝜋𝚷(y), whereas 𝜋𝚷(x)=𝜋𝚷(y)
implies that 𝚷[x]∩𝚷[y]≠∅, so 𝚷[x]=𝚷[y], so x=𝚷y. □
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For any subclass 𝐗 of 𝐒, we let 𝚷[𝐗] denote the class⋃x∈𝐗𝚷[x].

Lemma 6.4. Let 𝐀,𝐁 be subclasses of 𝐒. Then the following statements are equivalent:

a) 𝐀<𝚷[𝐁].

b) 𝚷[𝐀]<𝐁.

c) 𝚷[𝐀]<𝚷[𝐁].

Proof. All inequalities are vacuously true if𝐀=∅ or𝐁=∅. Assume that𝐀 and𝐁 are non-
empty and let a∈𝐀 and b∈𝐁. Assume for contradiction that𝐀<𝚷[𝐁], but𝚷[𝐀]≮𝚷[𝐁].
Then there exist a′∈𝚷[a] and b′∈𝚷[b]with a<b′⩽a′. By convexity of𝚷[a], this yields
b′∈𝚷[a], whence a∈𝚷[b]. This contradiction shows that𝐀<𝚷[𝐁]⟹𝚷[𝐀]<𝚷[𝐁]. The
inverse implication clearly holds. The equivalence 𝚷[𝐀]<𝐁⟺𝚷[𝐀]<𝚷[𝐁] holds for
similar reasons. □

Lemma 6.5. For x∈𝐒, the three following statements are equivalent:

a) x is 𝚷-simple.

b) There is a cut representation (L,R) of x in 𝐒 such that 𝚷[L]<x<𝚷[R].

c) 𝚷[xL𝐒]<x<𝚷[xR𝐒].

Proof. Since (xL𝐒,xR𝐒) is a cut representation of x in 𝐒, the assertion c) implies b).
Conversely, if (L,R) is a cut representation of x in 𝐒 with 𝚷[L]<x<𝚷[R], then we

have L<𝚷[x]<R by the previous lemma. By Proposition 4.11(b), the cut representation
(L,R) is cofinal with respect to (xL𝐒,xR𝐒), so xL𝐒<𝚷[x]<xR𝐒. Hence𝚷[xL𝐒]<x<𝚷[xR𝐒], again
by Lemma 6.4. This shows that b) implies c).

Assume now that x is 𝚷-simple and let us prove c). For u∈ xL𝐒, we have u⊏ x, so
u∉𝚷[x], whence u≠𝚷x. We do not have 𝚷[x]<𝚷[u] since x≮u, so Lemma 6.3 yields
𝚷[u]<𝚷[x], and in particular 𝚷[u]< x. This proves that 𝚷[xL𝐒]< x, and similar argu-
ments yield x<𝚷[xR𝐒].

Assume finally that c) holds and let us prove a). We have 𝚷[x]•⊑ x so 𝚷[x]•∈
xL𝐒∪{x}∪xR𝐒. Now the class 𝚷[𝚷[x]•]=𝚷[x] is neither strictly greater nor strictly lower
than x, so our assumption imposes 𝚷[x]•=x. We conclude that x is 𝚷-simple. □

An order⩽ on a set S is said to be dense if for any a,b∈Swith a<b, there exists a c∈S
with a<c<b.

Proposition 6.6. Assume that Smp𝚷 is dense. Then𝚷 is the unique convex partition of 𝐒 such
that Smp𝚷 is the class of 𝚷-simple elements of 𝐒.

Proof. For a∈Smp𝚷, let𝐀a denote the class of elements x of 𝐒 such that no𝚷-simple ele-
ment lies strictly between a and x. The definition of the family (𝐀b)b∈Smp𝚷 only depends
on the class Smp𝚷, and not specifically on 𝚷. For a∈Smp𝚷, we have 𝚷[a]⊆𝐀a.

Conversely, let x∈𝐀a, and assume for contradiction that x lies outside of 𝚷[a], say
a<𝚷x. Then a<𝚷𝜋𝚷(x) and, Smp𝚷 being dense, there exists a𝚷-simple element b between
a and 𝜋𝚷(x). But a<𝚷 b<𝚷𝜋𝚷(x) implies a< b< x, which contradicts the assumption
that there is no simple element between a and x. We conclude that 𝚷[a] =𝐀a, which
entails in particular that the partition 𝚷 is uniquely determined by Smp𝚷. □
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If Smp𝚷 is dense, then we call 𝚷 the defining partition of Smp𝚷. Notice that this is in
particular the case when Smp𝚷 is a surreal substructure. We next consider a set-theoretic
condition under which Smp𝚷 is always a surreal substructure.

We say that 𝚷 is thin if each member of 𝚷 has a cofinal and coinitial subset. For
instance, the convex partition 𝚷 of No where

𝚷[x]≔{y∈No :∃n∈ℕ,−n<x−y<n},

is thin. Indeed each class 𝚷[x] for x∈No admits the cofinal and coinitial subset x+ℤ.
See Example 6.15 below for more (counter)examples of thin convex partitions. If 𝚷 is
thin, then we may pick a distinguished family (Π[x])x∈𝐒 such that each Π[x] for x∈𝐒
is a cofinal and coinitial subset of 𝚷[x], with Π[x]=Π[y]⟺ x=𝚷 y. We write Π[𝐗]=
⋃x∈𝐗Π[x] for any subclass 𝐗 of 𝐒.

Theorem 6.7. If 𝚷 is thin, then Smp𝚷 is a surreal substructure. If (L,R) is a cut representation
in Smp𝚷, then we have

{L |R}Smp𝚷={Π[L] |Π[R]}𝐒.

Proof. Let L<R be subsets of Smp𝚷. For l∈ L and r∈R, we have 𝚷[l]<𝚷[r] by
Lemma 6.3. Therefore Π[l]<Π[r] holds as well, which means that x≔{Π[L] |Π[R]}𝐒
is well defined. Given l∈L and l′∈𝚷[l], there exists an l′′∈Π[l] with l′′> l′, since Π[l]
is cofinal in 𝚷[l]. It follows that l′< l′′<x, whence 𝚷[l]<x. A similar reasoning shows
that x<𝚷[r] for any r∈R. By Lemma 6.5, it follows that x is𝚷-simple. Let y∈(L |R)𝐒 be
𝚷-simple. Given l∈L and r∈R, the𝚷-simplicity of l, r, and y implies that𝚷[l]<y<𝚷[r],
and in particular thatΠ[l]<y<Π[r]. We deduce that x⊑y, so x={L |R}Smp𝚷. By Propo-
sition 4.7, we conclude that the class Smp𝚷 is a surreal substructure. □

Remark 6.8. The above theorem can be regarded as a strengthening of [31, Theorem 8.4]
in a different framework. Indeed, Lurie's result is restricted to the case when 𝐒=No and
requires the additional assumption that

∀a,b, c∈𝐒,((a⊑b⊑ c∧𝚷[a]=𝚷[c])⟹(𝚷[a]=𝚷[b]=𝚷[c])).

This condition is equivalent to the condition that 𝚷 be sharp in our terminology (see
below); it fails for the partition 𝚷 of No>,≻ such that

∀a∈No>,≻,𝚷[a]≔{b∈No>,≻ :∃n∈ℕ, logn(b)≍logn(a)},

which is the defining convex partition of the set La of log-atomic numbers. Indeed, we
have 𝜔⊑𝜔𝜔⊑𝜔𝜔𝜔−1

, where 𝜔𝜔=𝜆1>𝚷[𝜆0]=𝚷[𝜔], but

𝜔𝜔𝜔−1
=exp�𝜔

2
𝜔�=exp2(2 log2𝜔)∈𝚷[𝜔].

Still, La is a surreal substructure and even anNo-closed one.

When 𝚷 is thin, the structure Smp𝚷 is in addition cofinal and coinitial in 𝐒, since for
x∈𝐒, we have Smp𝚷∋{∅|Π[x]}𝐒⩽x⩽{Π[x] |∅}𝐒∈Smp𝚷. By the previous proposition,
wemay say that Smp𝚷 is thin if its defining partition𝚷 is thin. If𝚷 is not thin, then Smp𝚷
may fail to be a surreal substructure, but one can prove that there exists a unique⊑-initial
subclass 𝐈 of No and a unique isomorphism between Smp𝚷 and 𝐈.
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For instance, we can obtain the ringOz≔No≻++ℤ of omnific integers of [11, Chapter 5]
as Smp𝚷Oz

where for each number z∈Oz, we set 𝚷Oz[z]≔[z, z+1). This is not a sur-
real substructure since the cut (0|1)𝐎𝐳 is empty. Nevertheless,Oz is⊑-initial inNo. Note
that different partitions may yield the same classOz (for instance replacing 𝚷Oz[0] and
𝚷Oz[1] with [0, /1 2) and [ /1 2, 2) respectively and leaving the other classes unchanged),
in contrast to the case of dense partitions from Proposition 6.6. The partition 𝚷2 in
Example 6.15 below is not thin and yet Smp𝚷2

is a surreal substructure.

Proposition 6.9. Assume that 𝚷 is thin. Then we have the following uniform cut equation
for ΞSmp𝚷 and x∈No:

ΞSmp𝚷 x={Π[ΞSmp𝚷 xL] |Π[ΞSmp𝚷 xR]}𝐒.

Proof. The cut equation follows from Theorem 6.7 and the relation
ΞSmp𝚷 x={ΞSmp𝚷 xL |ΞSmp𝚷 xR}Smp𝚷.

Now towards uniformity, consider a cut representation (L,R) of a number y. We have
ΞSmp𝚷 L<𝚷ΞSmp𝚷 R so the number {Π[ΞSmp𝚷 L] | Π[ΞSmp𝚷 R]}𝐒 is well defined. Since
(L,R) is cofinal with respect to (yL, yR) and ΞSmp𝚷 is strictly increasing, the number
{Π[ΞSmp𝚷 L] | Π[ΞSmp𝚷 R]}𝐒 lies in the cut (Π[ΞSmp𝚷 yL] | Π[ΞSmp𝚷 yR])𝐒, so ΞSmp𝚷 y⊑
{Π[ΞSmp𝚷 L] | Π[ΞSmp𝚷 R]}𝐒. Conversely, we have L< y<R, so ΞSmp𝚷 L<ΞSmp𝚷 y<
ΞSmp𝚷R. Since ΞSmp𝚷 L∪{ΞSmp𝚷 y}∪ΞSmp𝚷R⊆Smp𝚷, we haveΠ[ΞSmp𝚷 L]<ΞSmp𝚷 y<
Π[ΞSmp𝚷R], whence {Π[ΞSmp𝚷 L] |Π[ΞSmp𝚷R]}𝐒⊑ΞSmp𝚷 y. We conclude that ΞSmp𝚷 y=
{Π[ΞSmp𝚷 L] |Π[ΞSmp𝚷R]}𝐒. □

Corollary 6.10. If 𝚷 is thin and 𝐒 is a final segment of No, then ΞSmp𝚷 preserves ordinals.

Proof. If 𝜇 is an ordinal, then (Π[ΞSmp𝚷 𝜇L] |∅)𝐒 is a non-empty final segment of 𝐒 and
thus of No, so by Lemma 4.17, its simplest element ΞSmp𝚷 𝜇 is an ordinal. □

For convex partitions 𝚷,𝚷′ of 𝐒, we write 𝚷∠−𝚷′ if we have 𝚷[x]⊆𝚷′[x] for every
x∈𝐒, and say that 𝚷 is finer than 𝚷′. If 𝚷∠−𝚷′, then Smp𝚷′⊆Smp𝚷.

Recall that a directed set is a partial order (J, ⩽) such that for all j, j′∈ J, there exists
a j′′∈ J with j, j′⩽ j′′.

Proposition 6.11. Let 𝐒 be a surreal substructure. Let (J, <) be a non-empty directed set. If
(𝚷j)j∈J is a∠−-increasing family of thin convex partitions of 𝐒, then the intersection⋂j∈J Smp𝚷j
is a surreal substructure with defining thin partition 𝚷J given by

∀x∈𝐒, 𝚷J[x] = �
j∈J

𝚷j[x].

Proof. Given x∈𝐒, the class 𝚷J[x]≔⋃j∈J 𝚷j[x] is a non-empty convex subclass of 𝐒
and ⋃x∈𝐒 𝚷J[x]=𝐒. Let x, y∈𝐒 be such that 𝚷J[x]∩𝚷J[y]≠∅ and let i∈ J. Since J is
directed, there exists a j⩾ i in J such that 𝚷j[x] ∩𝚷j[y] ≠∅, whence 𝚷j[x]=𝚷j[y]. In
particular, 𝚷i[x]⊆𝚷J[y] and 𝚷i[y]⊆𝚷J[x]. Since this is true for any i∈ J, it follows that
𝚷J[x]=𝚷J[y], so 𝚷J defines a convex partition of 𝐒.

For x∈𝐒, we have 𝚷J[xL𝐒] < x<𝚷J[xR𝐒] if and only if 𝚷j[xL𝐒] < x<𝚷j[xR𝐒] holds for
all j∈ J, so Lemma 6.5 implies ⋂j∈J Smp𝚷j=Smp𝚷J. Now for x∈𝐒, the set ⋃j∈J Πj x is
cofinal and coinitial in 𝚷J[x], so 𝚷J is thin. Theorem 6.7 therefore implies that the class
⋂j∈J Smp𝚷j is a surreal substructure. □
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Proposition 6.12. Assume that 𝐒 is a final segment of No and that 𝚷∠−𝚷′ are thin convex
partitions of 𝐒. Then for 𝜆∈On, we have ΞSmp𝚷 𝜆⩽ΞSmp𝚷′ 𝜆, and in particular 𝜆⩽ΞSmp𝚷 𝜆.

Proof. Weprove the first inequality by induction on 𝜆∈On. Assuming that the inequality
holds strictly below 𝜆, we have

ΞSmp𝚷 𝜆 = {Π[ΞSmp𝚷 𝜆L] |∅}𝐒
ΞSmp𝚷′ 𝜆 = {Π′[ΞSmp𝚷′ 𝜆L] |∅}𝐒.

For 𝛾 ∈ 𝜆L, we have ΞSmp𝚷 𝛾 ⩽ΞSmp𝚷′ 𝛾 <ΞSmp𝚷′ 𝜆 where ΞSmp𝚷′ 𝜆∈ Smp𝚷′⊆ Smp𝚷,
so 𝚷[ΞSmp𝚷 𝛾]<ΞSmp𝚷′ 𝜆, whence in particular Π[ΞSmp𝚷 𝜆L]<ΞSmp𝚷′ 𝜆. By Proposi-
tion 4.11(a), we have ΞSmp𝚷 𝜆⩽ΞSmp𝚷′ 𝜆, whence the result by induction.

The second inequality is a consequence of the first one in the case when 𝚷 is the
discrete partition of 𝐒, which is ∠−-minimal and for which ΞSmp𝚷=Ξ𝐒. Since 𝐒 is a final
segment of No, Proposition 4.17 gives Ξ𝐒 0=min(𝐒∩On)⩾0. Moreover, for all 𝜆∈On
with 𝜆>0, we have Ξ𝐒 𝜆={Ξ𝐒 𝜆L |∅}𝐒={Ξ𝐒 𝜆L |∅}, which yields Ξ𝐒 𝜆⩾𝜆 by induction. □

6.2 Sharp convex partitions
We have encountered two different types of projections for surreal substructures. Given
an𝐒-closed rooted subclass𝐗 of a surreal substructure 𝐒, the topological projection sends
every element x∈𝐒⊒𝐗• to the ⊑-maximal initial segment 𝜇𝐗𝐒(x) of x lying in 𝐗. Given
a convex partition 𝚷 of the surreal substructure 𝐒, the 𝚷-simple projection sends x∈𝐒
to the unique 𝚷-simple element 𝜋𝚷(x) lying in 𝚷[x]. It is natural to ask whether both
types of projections relate to each other.

Given a surreal substructure 𝐒 and an 𝐒-closed rooted subclass 𝐗 with 𝐗•=𝐒•, the
topological projection 𝜇≔𝜇𝐗𝐒 is defined everywhere on 𝐒. For each x∈𝐒, we define
𝐌𝐗[x]≔𝜇−1({𝜇(x)}). It is easy to see that 𝐌𝐗 defines a partition of 𝐒 into non-empty
rooted ⊑-convex subclasses, and that 𝐗 is the class of roots 𝐌𝐗[x]• where x ranges in
𝐒. The members of 𝐌𝐗 are not necessarily ⩽-convex in 𝐒. For instance, one can prove
that the structure 𝐒=Mo≻+No≺ is a No>,≻-closed surreal substructure, with No>,≻=
Hull(𝐒), for which𝐌𝐒[𝜔] contains 𝜔 and 𝜔+1 but not 𝜔+𝜔−1.

Conversely, given a convex partition𝚷 of 𝐒, the class Smp𝐒may not be 𝐒-closed, and
when it is, it may be that 𝜇Smp𝐒

𝐒 and 𝜋𝚷 disagree. In some interesting cases, the projec-
tions 𝜇Smp𝚷

𝐒 and 𝜋𝚷 do coincide, and (Smp𝚷,⊑,⩽) has additional properties, as we shall
see now.

Definition 6.13. Let 𝐒 be a surreal substructure. We say that a convex partition 𝚷 of 𝐒 is
sharp, if the canonical representation in 𝐒 of every 𝚷-simple element x is cofinal with respect to
(𝚷[xL∩Smp𝚷],𝚷[xR∩Smp𝚷]).

Assume that 𝚷 is thin and sharp. Then each element x∈Smp𝚷 admits the cut rep-
resentation �Π�xL

Smp𝚷�,Π�xR
Smp𝚷�� in 𝐒. By Proposition 4.11(b), this cut respresentation

is mutually cofinal with (xL𝐒,xR𝐒). In view of Remark 4.21, we thus see that the sharpness
is equivalent to the fact that the cut �Π�xL

Smp𝚷� |Π�xR
Smp𝚷��𝐒 coincides with the ⊑-final

substructure 𝐒⊒x of 𝐒 for every x∈Smp𝚷. This corresponds to the notion of simple rep-
resentation of [8, Definition 2.2]. We say that Smp𝚷 is sharp in 𝐒 if its defining partition
is sharp.

The main interest of sharpness lies in the following equivalences:

CONVEX PARTITIONS 35



Theorem 6.14. Let 𝚷 be a convex partition of the surreal substructure 𝐒 such that Smp𝚷 is
a surreal substructure. The following statements are equivalent:

a) 𝚷 is sharp.
b) Smp𝚷 is 𝐒-closed and 𝜋𝚷=𝜇Smp𝚷

𝐒 .
c) 𝜋𝚷 is ⊑-increasing.
d) Smp𝚷 is 𝐒-closed and 𝜇Smp𝚷

𝐒 is ⩽-increasing.

Proof. Assume that 𝚷 is sharp. Let us prove b), c) and d). Note that 𝐒• is 𝚷-simple,
whence 𝐒•=(Smp𝚷)•. We know that 𝜇Smp𝚷

𝐒 when it exists is ⊑-increasing, and that 𝜋𝚷
is ⩽-increasing, so we need only prove that Smp𝚷 is 𝐒-closed and 𝜇Smp𝚷

𝐒 =𝜋𝚷.
Let a,b∈Smp𝚷 be such that a⊏b. We claim that b is simpler than no element of𝚷[a].

By symmetry, we may assume without loss of generality that a< b. Since a∈ bL and 𝚷
is sharp, the set bL𝐒 is cofinal with respect to 𝚷[a]. Assume for contradiction that we
have b⊑ x for some x∈𝚷[a]. Let y∈𝚷[a] be such that x< y and y⊑ b. Then y⊑ x. By
Lemma 6.3, we also have b>𝚷[a], whence y< b. It follows that x[ℓ(y)] = b[ℓ(y)] = 1,
whence y<x: a contradiction.

Since a=𝚷[a]•, our claim implies that a is the maximal initial segment of any ele-
ment of 𝚷[a]=𝜋𝚷−1({a}) lying in Smp𝚷, i.e. that 𝜇Smp𝚷

𝐒 is defined on 𝚷[a] and coincides
with 𝜋𝚷 on this class. Since the classes 𝚷[a] cover 𝐒, we see that 𝜇Smp𝚷

𝐒 is defined on 𝐒,
and 𝜋𝚷=𝜇Smp𝚷

𝐒 . By Proposition 5.8, the structure Smp𝚷 is 𝐒-closed.
We next prove that a) is a consequence of b). Assume for contradiction that Smp𝚷

is 𝐒-closed with 𝜋𝚷=𝜇Smp𝚷 and that 𝚷 is not sharp. We treat the case when there are
a,b∈Smp𝚷 such that a∈bL but bL𝐒 has a strict upper bound a′′ in𝚷[a]. Then bL𝐒<a′′<bR𝐒,
so b⊑ a′′, and b⊑𝜇Smp𝚷

𝐒 (a′′). In particular, 𝜋𝚷(a′′)= a⊏𝜇Smp𝚷
𝐒 (a′′), whence 𝜋𝚷≠𝜇Smp𝚷

𝐒 :
a contradiction. The other case is similar.

Assume next that 𝜋𝚷 is⊑-increasing. For x∈𝐒 and a∈Smp𝚷 such that a⊑x, we have
a=𝜋𝚷(a)⊑𝜋𝚷(x), so 𝜋𝚷(x) is the ⊑-maximal 𝚷-simple initial segment of x. This means
that Smp𝚷 is 𝐒-closed with topological projection 𝜋𝚷. So c) implies b).

Assume Smp𝚷 is 𝐒-closed and 𝜇Smp𝚷
S is ⩽-increasing. It follows that each fiber

(𝜇Smp𝚷
𝐒 )−1({𝜇Smp𝚷

𝐒 (x)}) of 𝜇Smp𝚷
𝐒 where x∈S is convex for⩽. Aswe have seen in the intro-

duction of this section, we can construe Smp𝚷 as Smp𝚳where for x∈𝐒, we have𝐌[x]=
𝜇Smp𝚷
𝐒 −1({𝜇Smp𝚷

𝐒 (x)}). By Proposition 6.6, we have 𝜇Smp𝚷
𝐒 =𝜋𝐌=𝜋𝚷, so d) implies b).

This concludes the proof. □

Example 6.15. Convex partitions of a surreal substructure may or may not be sharp:
• Let 𝚷≻ denote the partition of No where for x∈No, we have

𝚷≻[x]=Hull(x+ℤ).
This is actually the defining partition of the class No≻=𝜔×

. No=(2×. No)�𝜔 of
purely infinite surreal numbers, which is sharp, since for x∈No≻, we have xL=
xL
No≻+ℕ and xR=xR

No≻−ℕ.
• Let 𝚷1 denote the partition of No where for x∈No, we have

𝚷1[x]=Hull�x+ℤ�̇�𝜔−1�.

This is a thin convex partition of No whose class of 𝚷2-simple elements con-
tains �̇�2−ℕ. However, the number �̇�𝜔−1=sup⊑ �̇�2−ℕ is not 𝚷1-simple since it lies
in 𝚷1[0]. Thus Smp𝚷1 is not No-closed; a fortiori𝚷1 is not sharp.
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• Let 𝐂 denote the class Hull( /1 2×
. No). This is a surreal substructure by Proposi-

tion 4.18. Let 𝚷2 denote the convex partition of 𝐂where for a∈ /1 2×
. No, we have

𝚷2[a]=No⊒a∔(− /1 4)⊔{a}⊔No⊒a∔ /1 4⊆C.

One can check that each 𝚷2[a] is a convex subclass of 𝐂 and that for x∈𝐂, we
have 𝚷2[𝜇(x)]=𝜇−1({𝜇(x)}), where 𝜇 is the topological projection 𝐂⟶ /1 2×

. No.
By Theorem 6.14, 𝚷2 is sharp, but not thin.

We end this subsection with two further properties of sharpness.

Proposition 6.16. Let (J,<) be a non-empty directed set. Let (𝚷j)j∈J be a∠−-increasing family of
thin convex partitions of a surreal substructure 𝐒. If every𝚷jwith j∈ J is sharp, then the defining
thin partition 𝚷J of ⋂j∈J Smp𝚷j (defined in Proposition 6.11) is sharp.

Proof. We know by Proposition 6.11 that𝚷J is a thin convex partition of 𝐒with Smp𝚷J
=

⋂j∈J Smp𝚷j
. Let x∈Smp𝚷J

. For l∈xLSmp𝚷J and a∈𝚷J[l], there is j∈ J such that a∈𝚷j[l]
where x∈Smp𝚷j

and l∈xLSmp𝚷j. Since𝚷j is sharp, there exists an x′∈xL𝐒with a⩽x′, so xL𝐒

is cofinal with respect to𝚷J[xLSmp𝚷]. Likewise xR𝐒 is coinitial with respect to𝚷J[xRSmp𝚷], so
𝚷J is sharp. □

Proposition 6.17. Let 𝐅 be a surreal substructure of No that is also a final segment. Given a thin
and sharp convex partition 𝚷 of 𝐅, we have ΞSmp𝚷(On)=Smp𝚷∩On.

Proof. We already know from Corollary 6.10 that ΞSmp𝚷(On)⊆On. Let a∈No be such
that ΞSmp𝚷 a is an ordinal. The set (ΞSmp𝚷 a)R

𝐅 is both empty and coinitial with respect to
𝚷[ΞSmp𝚷 aR], which implies that aR=∅ and thus that a is an ordinal. □

6.3 Group actions
In this subsection, we study one particularly important way in which convex partitions
of surreal substructures arise, namely as convex hulls of orbits under a group action.

Let 𝐒 be a fixed surreal substructure. We define 𝓕𝐒 to be the (class-sized) group
of strictly increasing bijections g: 𝐒⟶𝐒, with functional composition as the group law.
Consider any set-sized subgroup 𝒢 of 𝓕𝐒. Then 𝒢 naturally acts on 𝐒 through function
application; we call 𝒢 a function group acting on 𝐒.

Definition 6.18. We define the halo 𝒢[x] of an element x∈𝐒 under the action of 𝒢 by

𝒢[x] = �y∈𝐒:∃g,h∈𝒢,(gx⩽y⩽hx)�=Hull𝐒�𝒢x�.

Proposition 6.19. The classes 𝒢[x] for x∈𝐒 form a thin convex partition of 𝐒 .

Proof. Let x∈𝐒. For any y∈𝒢[x], we have 𝒢[y]=𝒢[x]. Indeed, we have gx⩽y⩽hx for
certain g,h∈𝒢. Given z∈𝒢[y], we also have g′ y⩽z⩽h′ y for certain g′,h′∈𝒢, whence
(g′ g) x⩽ g′ y⩽z⩽h′ y⩽(h′ h) x, so that z∈𝒢[x]. We also have h−1 y⩽x⩽ g−1 y, whence
x∈𝒢[y] and z∈𝒢[y] for any z∈𝒢[x]. The class 𝒢[x] is convex by definition. For a∈𝐒,
we know that 𝒢[a] contains a, so the 𝒢[a] for a∈𝐒 form a convex partition of 𝐒. For x∈𝐒,
the set 𝒢x is cofinal and coinitial in 𝒢[x], so this partition is thin. □
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We write 𝚷𝒢 for the partition from Proposition 6.19 and say that an element of 𝐒 is
𝒢-simple if it is 𝚷𝒢-simple. We let Smp𝒢 denote the class of 𝒢-simple elements. Propo-
sition 6.19 implies that every property from Lemmas 6.3, 6.5 and 6.4 applies to the class
of 𝒢-simple elements. We call 𝜋𝒢≔𝜋𝚷𝒢 the 𝒢-simple projection and write<𝒢, =𝒢, and ⩽𝒢
instead of <𝚷𝒢,=𝚷𝒢, and ⩽𝚷𝒢.

Proposition 6.20. Smp𝒢 is a surreal substructure with the following uniform cut equation in
No:

∀x∈No,ΞSmp𝒢 x=�𝒢ΞSmp𝒢 xL |𝒢ΞSmp𝒢 xR�𝐒

Proof. This is a direct consequence of Proposition 6.19, Theorem 6.7 and Proposition 6.9,
where we take 𝒢 �𝒢[x]•� to be the required cofinal and coinitial subset of 𝒢[x] for
each x∈𝐒. □

Remark 6.21. If X is a set of strictly increasing bijective functions 𝐒⟶𝐒, we define ⟨X⟩
to be the subgroup of 𝓕𝐒 generated by X, i.e. the smallest subgroup of 𝓕𝐒 that contains
X. We say that X is pointwise cofinal with respect to Y and we write Y∠−X if

∀x∈𝐒,∀ f ∈⟨Y⟩,∃g∈⟨X⟩, ( fx⩽gx).

This relation is transitive and reflexive. If Y∠−X, then𝚷⟨X⟩∠−𝚷⟨Y⟩, so Smp⟨Y⟩⊆Smp⟨X⟩. If
X∠−Y andY∠−X, thenwe say thatX andY aremutually pointwise cofinal andwewriteX≶Y.
In that case, we have Smp⟨X⟩=Smp⟨Y⟩.

Let us now specialize Proposition 6.11 to group-induced convex partitions.

Proposition 6.22. Let (J, <) be a non-empty directed set. If (𝒢 j)j∈J is a ∠−-increasing family
of function groups acting on 𝐒, then the function group 𝒢 J=�𝒢 j : j∈ J� generated by (𝒢 j)j∈J
satisfies

Smp𝒢 J
=�

j∈J
Smp𝒢 j

.

Proof. If x∈𝐒 is 𝒢 J-simple, then for j∈ J, we have 𝒢 j xL𝐒⊆𝒢 J xL𝐒<x<𝒢 J xR𝐒⊇𝒢 j xR𝐒 so x is
𝒢 j-simple. Conversely, assume x∈𝐒 is 𝒢 j-simple for all j∈ J. Then let g= gj1⋯ gjk∈𝒢 J
where for 1⩽k⩽n, we have gjk∈𝒢 jk. Since (J,<) is directed and (𝒢 j)j∈J is ∠−-increasing,
there exists an index j∈ Jwith j1,…, jn⩽ j and an element gj∈𝒢 j such that for all u∈𝐒we
have gj−1 u⩽gji u⩽gj u for all i∈{1,…,n}, and thus gj−n u⩽gu⩽gjn u. Since x is 𝒢 j-simple,
we have gjn xL𝐒<x< gj−n xR𝐒. This yields gxL𝐒<x< gxR𝐒, so x is 𝒢 J-simple. This proves that
⋂j∈J Smp𝒢 j=Smp𝒢 J. □

Proposition 6.23. Let I be a non-empty set, and let (𝒢 i)i∈I be a family of function groups acting
on 𝐒 such that each Smp𝒢 i is sharp in 𝐒. Then⋂i∈I Smp𝒢 i=Smp𝒢 I where 𝒢 I=�𝒢 i : i∈ I�.

Proof. We have⋂i∈I Smp𝒢 i⊇Smp𝒢 I for the same reasons as above. Let x∈⋂i∈I Smp𝒢 i.
Let us prove by induction on n∈ℕ> that for g= gi1⋯ gin∈𝒢 I, we have gxL𝐒<x<gxR𝐒. By
Lemma 6.5, this will prove that x∈Smp𝒢 I. For n=1, the assertion is immediate. Assume
therefore that n⩾2 and decompose g= g′ gin, where g′= gi1⋯ gin−1. For every l∈xL𝐒, we
have gin l∈𝒢 in[l]. Since x is 𝒢 in-simple, the sharpness of Smp𝒢 in

implies that there exists
an l′∈xL𝐒 such that gin l⩽ l′. By our inductive hypothesis, we have g′ l′<x, so gl<x. The
inequality x<gxR𝐒 is proved similarly. □
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Remark 6.24. The notions of thin convex partitions and function group actions are almost
equivalent in the following sense. Let𝚷 be a thin convex partition𝚷 of 𝐒, none of whose
members has an extremum, and which satisfies the additional condition that there is
a regular ordinal 𝜅with cof(𝚷[x],<),cof(𝚷[x],>)<𝜅 for all x∈𝐒. Then it can be shown
that there is a group 𝒢 acting without global fixed points on 𝐒 such that 𝚷=𝚷𝒢. The
converse also holds: for any function group 𝒢 acting without global fixed points on 𝐒,
we have cof(𝚷𝒢[x],<), cof(𝚷𝒢[x],>)<�𝒢�+ for all x∈𝐒.

7 Common group actions

7.1 Overview of known group actions
We conclude our study of surreal substructures with a closer examination of the action
of various common types of function groups. We intentionally introduce these function
groups without assigning specific domains; this will allow us to let them act on various
surreal substructures.

Translations

Given c∈No, we define the translation by c to be the map

Tc:x⟼x+ c.

The group 𝒯 ≔{Tr : r∈ℝ} acts in particular on No and No>,≻. More generally, if A is
a set-sized subgroup of (No,+), then 𝒯A≔{Ta :a∈A} acts onNo and (A |∅).

Halos for the action of 𝒯 on No are called finite halos 𝒯 [x] and 𝒯 -simple elements
correspond to purely infinite numbers. The classNo≻ of purely infinite numbers is some-
times denoted 𝕁; see [11, 21].

Homotheties

Given s∈No>, we define the homothety by the factor s to be the map

Hs:x⟼ sx.

The groupℋ≔{Hr :r∈ℝ>} acts in particular onNo,No>, andNo>,≻. More generally, ifM
is a set-sized subgroup of (No>,×), thenℋM≔{Hm :m∈M} acts onNo,No>, and (M |∅).

Halos for the action of ℋ on No> are called archimedean classes ℋ[x] and ℋ-simple
elements are called monomials. The class of monomials Mo=�̇�No is parameterized by
the 𝜔-map ΞMo and forms a multiplicative cross section that is isomorphic to the value
group of No as a valued field (the valuation being induced by the ordering). The rela-
tions<ℋ,⩽ℋ,=ℋ correspond to the asymptotic relations≺,≼, and≍ from [26, 1]. Given
x∈No≠, the projection 𝜋ℋ(x) coincides with the dominant monomial 𝔡x, when considering
x as a generalized series inℝ[[Mo]]On.

Powers

Given s∈No>, we define the s-th power map by

Ps:x⟼xs=exp(s log x).
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Here exp and log are the exponential and logarithm functions from section 3.1. The
group𝒫≔{Pr :r∈ℝ>} acts in particular onNo> andNo>,≻. More generally, ifΜ is a set-
sized subgroup of (No>,×), then the group 𝒫Μ≔{Pm :m∈Μ} acts onNo> and (Μ|∅).

Halos𝒫[x] for the action of𝒫 onNo>,≻ are sometimes calledmultiplicative classes and
𝒫-simple elements fundamental monomials. The class Smp𝒫=exp(Mo≻)=�̇��̇�No=Mo�2
of fundamental monomials is parameterized by the 𝜔𝜔-map: see [27, Proposition 2.5].

Exponentials

Writing

expn ≔ exp∘…n×∘exp
logn ≔ log∘…n×∘ log

for all n∈ℕ, we define

ℰ∗ ≔ ⟨exp⟩
ℰ ≔ ⟨expn∘Hr∘ logn : r∈ℝ>,n∈ℕ⟩.

Both ℰ∗ and ℰ act in particular onNo>,≻.
Halos ℰ[x] and ℰ∗[x] for the actions of ℰ and ℰ∗ on No>,≻ are sometimes called

levels and logarithmic-exponential classes respectively. The ℰ-simple elements are called
log-atomic numbers and the class La of such numbers is parameterized by the 𝜆-map: see
[8, Section 5]. The class of ℰ∗-simple elements is denoted by𝐊 and parameterized by the
𝜅-map: see [27, Section 3].

We notice that each of the above function groups is linearly ordered by

f ⩽g ⟺ ∃x0∈No,∀x>x0, f (x)⩽g(x).

With the exception of ℰ, all these groups are also abelian. These are both strong proper-
ties which need not be imposed for the material of Section 6.3 to apply.

7.2 Actions by translations
Throughout this subsection, let A be a fixed set-sized subgroup of (No, +) and let
ΞA≔ΞSmp𝒯A

. If A⊆No≺, then 𝒯A∠−𝒯 so No≻=Smp𝒯 ⊆Smp𝒯A. If A⊈No≺, then given
a∈A∖No≺, the set ℤa is cofinal with respect toℝ, so 𝒯 ∠−𝒯A, whence Smp𝒯A⊆No≻.

Proposition 7.1. If 𝒯A acts on No, then ΞA: (No,+,⩽,⊑)⟶(Smp𝒯A,+,⩽,⊑) is an isomor-
phism.

Proof. We already know that ΞA is a (⩽,⊑)-isomorphism so we only need to prove that
it preserves sums. Let a,b∈No be such that ΞA preserves sums of elements lexicograph-
ically strictly simpler than (a,b). Recall that the addition is uniform in the sense that

a={La |Ra}, b={Lb |Rb} ⟹ a+b={a+Lb,La+b |a+Rb,Ra+b}

Applying this to the cut equations given by Proposition 6.9 for ΞA, we obtain

ΞA a+ΞA b = �𝒯AΞA aL | 𝒯AΞA aR�+�𝒯AΞA bL | 𝒯AΞA bR�
= �ΞA a+𝒯AΞA bL, 𝒯AΞA aL+ΞA b |ΞA a+𝒯AΞA bR, 𝒯AΞA aR+ΞA b�,
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and by uniformity of the cut equation for ΞA, we get

ΞA(a+b) = �𝒯AΞA(a+bL),𝒯AΞA(aL+b) |𝒯AΞA(a+bR),𝒯AΞA(aR+b)�
= �ΞA a+𝒯AΞA bL, 𝒯AΞA aL+ΞA b |ΞA a+𝒯AΞA bR, 𝒯AΞA aR+ΞA b�.

ThusΞA(a+b)=ΞA a+ΞA b. By induction, this proves thatΞA preserves sums of surreals
and consequently that Smp𝒯A is an additive subgroup of No. □

Let us now focus on 𝒯 . By induction on 𝛼∈On, it is easy to see that No≻�𝛼=�̇�𝛼×. No
and ΞNo≻

𝛼 x= �̇�𝛼 ×. x for all x∈No. In particular, this gives a description of FixNo≻=
�̇�𝜔×. No in terms of sign sequences.

Let us next describe the structuresNo≻�𝛼 for 𝛼∈On in terms of Conway normal forms
and of 𝒢-simplicity for some group 𝒢 acting on No. By [12, Corollary 3.1], if 𝛼 is an
ordinal, then the setNo(�̇�𝛼) is a subgroup of (No,+), which acts by translations onNo.
If 𝛼=1, then the sets {k �̇�𝛽 : 𝛽<𝛼, k∈ℤ} and No(�̇�𝛼) are mutually cofinal and coinitial,
and No≻=Smp𝒯No(𝜔)

, since No(𝜔)=ℝ. We claim that this generalizes to every ordinal.

Proposition 7.2. For 𝛼∈On, we have No≻�𝛼=�̇�𝛼×. No=Smp𝒯No(�̇�𝛼)
.

Proof. We proceed by induction on 𝛼∈On. The result obviously holds for 𝛼=0. We saw
that it holds for 𝛼=1 in Example 5.3. Assume that 𝛼=𝛽+1 is a successor ordinal. Then
the function ΞNo≻

�𝛽 is additive by Proposition 7.1, so ΞNo≻
�𝛽ℤ=ℤΞNo≻

�𝛽 1=ℤ�̇�𝛽 is mutu-
ally cofinal and coinitial withNo(�̇�𝛼). Let 𝜃 be 𝒯No(�̇�𝛼)-simple. Then 𝜃 is 𝒯No��̇�𝛽�-simple,
so the inductive hypothesis yields 𝜃=ΞNo≻

�𝛽 x for a certain number x. Since 𝜃⊑𝜃+ℤ�̇�𝛽=
ΞNo≻

�𝛽(x+ℤ), we deduce that x⊑ x+ℤ. Now for z∈𝒯ℤ[x], there is n∈ℕ with x−n<
z<x+n. We cannot have both x<z and x>z, so the contrapositive of Lemma 4.4 yields
x⊑z. Thus x is 𝒯ℤ-simple, so 𝜃∈No≻

�𝛽�No≻=No≻�𝛼. Conversely, for 𝜃∈No≻�𝛼, we have
𝜃=ΞNo≻

�𝛽 x for a certain x∈No≻. We have x⊑x+ℤ, so 𝜃⊑𝜃+ℤ𝜔˙ 𝛽. Similar arguments
as above yield 𝜃⊑𝒯No(�̇�𝛼)[𝜃], whence 𝜃∈Smp𝒯No(�̇�𝛼)

. This proves that Smp𝒯No(�̇�𝛼)
=No≻�𝛼.

If 𝛼 is a limit ordinal, then Proposition 6.11 yields

No≻�𝛼 = �
𝛽<𝛼

No≻
�𝛽

= �
𝛽<𝛼

Smp𝒯
No��̇�𝛽�

= Smp𝒯⋃𝛽<𝛼No��̇�𝛽�

= Smp𝒯No(�̇�𝛼)
. □

A consequence of Propositions 7.1 and 7.2 is that ΞNo≻
𝛼 is additive for all 𝛼∈On. In

fact, we even have the following:

Proposition 7.3. For 𝛼∈On, the functionΞNo≻
𝛼 :ℝ[[Mo]]On⟶ℝ[[Mo]]On is strongly linear,

with No≻�𝛼�Mo=Mo�No⊒𝛼.

Proof. Let 𝛼∈On> and Φ≔ΞNo≻
𝛼 . Let us first show that Φ(rx)= rΦx for all r∈ℝ

and x∈No. By Proposition 7.2, the function Φ is additive, so this holds for any dyadic
number r. In particular we have Φ(0)=𝜔𝛼×. 0=0. Let r be a non-dyadic real number.
Let x∈No be such that Φ(r y)= rΦy for all y∈ x⊏. It is well known that r⊏ contains
only dyadic numbers. By Proposition 7.2 and (3.5), we have

Φ(rx) = {L1,L2 |R1,R2}
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where

L1 = Φ(rLx+ rxL− rLxL)+No(�̇�𝛼),
L2 = Φ(rRx+ rxR− rRxR)+No(�̇�𝛼),
R1 = Φ(rLx+ rxR− rLxR)+No(�̇�𝛼), and
R2 = Φ(rRx+ rxL− rRxL)+No(�̇�𝛼).

The cut equation (3.5) for the surreal product by r is uniform [21, Theorem 3.5], so

rΦx = {A1,A2 |B1,B2},

where

A1 = {r′Φx+ r (Φx′+No(�̇�𝛼))− r′ (Φx′+No(�̇�𝛼))},
A2 = {r′′Φx+ r (Φx′′+No(�̇�𝛼))− r′′ (Φx′′+No(�̇�𝛼))},
B1 = {r′Φx+ r (Φx′′+No(�̇�𝛼))− r′ (Φx′′+No(�̇�𝛼))}, and
B2 = {r′′Φx+ r (Φx′+No(�̇�𝛼))− r′′ (Φx′+No(�̇�𝛼))},

where r′, r′′, x′, x′′ respectively range in rL, rR, xL, xR. Let us prove that L1 and A1 are
mutually cofinal. Analog relations hold for the other sets so this will yield rΦx=Φ(rx).
SinceΦ is additive, for r′∈ rL and x′∈xL, we have

Φ(r′x+ rx′− r′x′)+No(�̇�𝛼) = Φ(r′x)+Φ(rx′)−Φ(r′x′)+No(�̇�𝛼).

Now Φ(r x′) = rΦx′ and Φ(r′ x′) = r′Φx′ by our inductive hypothesis. Moreover, we
haveΦ(r′x)= r′Φx, since r′ is dyadic. It follows that

Φ(r′x+ rx′− r′x′)+No(�̇�𝛼)= r′Φx+ rΦx′− r′Φx′+No(�̇�𝛼).

Since r is non-zero, we have {r′, r}No(�̇�𝛼)=No(�̇�𝛼), so this set is mutually cofinal with
the set r′Φx+ r (Φx′+No(�̇�𝛼))− r′ (Φx′+No(�̇�𝛼)). ThereforeΦ isℝ-linear.

Let us next prove by induction that No≻�𝛼�Mo=Mo�No⊒𝛼. Let x∈No be such that
ΦΞMo y=ΞMoΞNo⊒𝛼 y for all y∈x⊏. Let (L,R) be an arbitrary cut representation in No
such that L (resp. R) has no maximum (resp. minimum), so that ΦL (resp ΦR) has no
minimum (resp. maximum). Then we note that the cut equation

Φ{L |R}=�𝒯No(�̇�𝛼)ΦL | 𝒯No(�̇�𝛼)ΦR�

simplifies as

Φ {L |R}={ΦL |ΦR}.

Considering the cut representation ({0}∪ℝ>�̇�xL,ℝ>�̇�xR) of �̇�x, we deduce that we have

Φ �̇�x={No(�̇�𝛼)+Φ(0),Φ(ℝ>)ΞMo xL |Φ(ℝ>)ΞMo xR}

We have seen thatΦ isℝ-linear, so the induction hypothesis yields

Φ �̇�x = {No(�̇�𝛼),ℝ>Φ �̇�xL |ℝ>Φ �̇�xR}
= {No(�̇�𝛼),ℝ> �̇�𝛼∔xL |ℝ> �̇�𝛼∔xR}
= {ℝ> �̇�𝛼L,ℝ> �̇�𝛼∔xL |ℝ> �̇�𝛼∔xR} sinceℝ>𝜔𝛼L and No(�̇�𝛼) are mutually cofinal
= {ℝ> �̇�(𝛼∔x)L |ℝ> �̇�(𝛼∔x)R}
= �̇�𝛼∔x.
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We thus have:

No≻�𝛼�Mo=Mo�No⊒𝛼.

In particularΦ preserves monomials.
Let x=∑ x𝔪𝔪 be a number considered as a series in ℝ[[Mo]]On. By our previous

arguments, the number y=∑x𝔪Φ𝔪 is well defined. For all 𝔫∈Mo, we will write x≻𝔫=
∑𝔪≻𝔫 x𝔪𝔪 and y≻Φ𝔫=∑𝔪≻𝔫 x𝔪Φ𝔪. Let us prove by induction on the order type ℓMo(x)
of (supp x,≻) that y=Φx; this will conclude the proof. The additivity and ℝ-linearity
of Φ yield the result for ℓMo(x)<𝜔. If ℓMo(x) is successor and infinite, then supp x has a
minimum 𝔪x and x=x≻𝔪x+x𝔪x𝔪x, so

Φx = Φx≻𝔪x+Φ(x𝔪x𝔪x)

= (((((((((((( �𝔪≻𝔪x

x𝔪Φ𝔪))))))))))))+x𝔪xΦ𝔪x

= y.

Assume now that ℓMo(x) is an infinite limit. SinceΦ is strictly increasing and monomial
preserving, [21, Lemma 5.3] yields

x = {x≻𝔫+(x𝔫−2−ℕ)𝔫 |x≻𝔫+(x𝔫+2−ℕ)𝔫},
y = {y≻Φ𝔫+(x𝔫−2−ℕ)Φ𝔫 |y≻Φ𝔫+(x𝔫+2−ℕ)Φ𝔫},

where 𝔫 ranges over supp x. Notice that the left (resp. right) options in the above repre-
sentation of x have no maximum (resp. minimum), so

Φx={Φx≻𝔫+Φ((x𝔫−2−ℕ)𝔫) |Φx≻𝔫+Φ((x𝔫+2−ℕ)𝔫)}.

Our inductive hypothesis yields

Φx = {y≻Φ𝔫+(x𝔫−2−ℕ)Φ𝔫 |y≻Φ𝔫+(x𝔫+2−ℕ)Φ𝔫}
= y.

This concludes the proof. □

Proposition 7.4. For 𝛼∈On, we have

No≻�𝛼=ℝ���̇�No⊒𝛼��On.

In particular No≻�𝛼 is a non-unitary subring of No, and

FixNo≻=ℝ[[�̇�No>,≻]]On.

Proof. The strong linearity of ΞNo≻�𝛼 and the relationNo≻�𝛼�Mo=Mo�No⊒𝛼 give

No≻�𝛼 = ΞNo≻�𝛼ℝ[[Mo]]On

= ℝ[[ΞNo≻�𝛼Mo]]On

= ℝ[[Mo�No⊒𝛼]]On

= ℝ���̇�No⊒𝛼��On.

That this forms a (non-unitary) subring follows from the fact thatNo≻⊒𝛼=(𝛼L |∅) is closed
under addition, whence �̇�No⊒𝛼 is closed under multiplication. □
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7.3 Actions by homotheties
In this subsection, Μ is a set-sized subgroup of (No>, ×) and ΞΜ the defining isomor-
phism of SmpℋΜ

. We will distinguish between confined and ample subgroups. We say
thatΜ is confined if it is a subgroup of 1+No≺ and ample if not. IfΜ is ample, then given
m∈Μ∖(1+No≺), the maximum a=max(m,m−1)>1 satisfies a− 1≽1, which implies
that aℕ is cofinal with respect to ℝ. Thus ℋ ∠−ℋΜ on No>, so SmpℋΜ

⊆Mo. If Μ is
confined, then ℋΜ∠−ℋ, so Mo⊆SmpℋΜ. For 𝛼∈On, natural examples of ample multi-
plicative subgroups include No(𝜀𝛼)> for 𝛼∈On, whereas natural examples of confined
multiplicative subgroups include 1+No(𝜀𝛼)≺.

Remark 7.5. IfΜ is confined, then /1 2∉2×
. No isℋΜ-simple but ( /1 2)R>={1} is not coinitial

with respect to ℋΜ[1] which contains elements strictly below 1. So SmpℋΜ is not sharp
in No>. The standard monomial group Mo is sharp both in No> and in No>,≻ by [8,
Corollary 4.17], but this observation does not generalize to arbitrary ample multiplica-
tive subgroupsΜ of No>,≻. For instance, ifΜ=ℚ> �̇�ℤ𝜔1/3, then �̇�𝜔1/2 is ℋΜ-simple and
1∈��̇�𝜔1/2�LSmpℋΜ but the number �̇�𝜔1/3∈ℋΜ[1] lies strictly above ��̇�𝜔1/2�LNo>.

Proposition 7.6. Assume that Μ is ample and let ℋΜ act on No>. Then the parameteriza-
tion ΞΜ of SmpℋΜ is an isomorphism (No>,+,⩽,⊑)⟶(SmpℋΜ,×,⩽,⊑).

Proof. We only need to prove that ΞΜ is a morphism (No,+)⟶(SmpℋΜ, ×). Consider
monomials 𝔪, 𝔫∈Mo with cut representations (L𝔪,R𝔪) and (L𝔫,R𝔫) such that ℝ L𝔪⊆
Hull(L𝔪),ℝRm⊆Hull(R𝔪), and likewise for 𝔫. Then [8, Proposition 4.19] yields

𝔪𝔫={L𝔪𝔫+𝔪L𝔫 |R𝔪𝔫,𝔪R𝔫}.

Given x,y∈No, this applies in particular to the cut representation ({0}∪ΜΞΜ xL,ΜΞΜ xR)
of ΞΜ x (and likewise for ΞΜ y) sinceΜ is ample. We thus have

ΞΜ xΞΜ y = {0,ΜΞΜ xLΞΜ y+ΞΜ xΜΞΜ yL |ΜΞΜ xRΞΜ y,ΞΜ xΜΞΜ yR}
= {0,ΜΞΜ xLΞΜ y+ΜΞΜ xΞΜ yL |ΜΞΜ xRΞΜ y,ΜΞΜ xΞΜ yR}

Note that ΞΜ xΞΜ y>ΜΞΜ xLΞΜ y,ΜΞΜ xΞΜ yL. Assume xL≠∅ and yL≠∅. Since Μ
is ample, there exists a c∈Μ such that c⩾2. For lx∈xL, ly∈yL, and m,m′∈Μ, we have
mΞΜ lxΞΜ y+m′ΞΜ xΞΜ ly⩽max(cm,cm′)max(ΞΜ lxΞΜ y,ΞΜ xΞΜ ly). This proves the
following relation (which also holds when xL=∅ or yL=∅, by what precedes):

ΞΜ xΞΜ y={0,ΜΞΜ xLΞΜ y,ΜΞΜ xΞΜ yL |ΜΞΜ xRΞΜ y,ΜΞΜ xΞΜ yR}.

Now let x,y be numbers such that for any a,b∈Nowith a⊑x, b⊑y, and (a,b)≠(x,y), we
have ΞΜ(a+b)=ΞΜ aΞΜ b. Then

ΞΜ(x+y) = {0,ΜΞΜ(xL+y),ΜΞΜ(x+yL) |ΜΞΜ(xR+y),ΜΞΜ(x+yR)}
= {0,ΜΞΜ xLΞΜ y,ΜΞΜ xΞΜ yL |ΜΞΜ xRΞΜ y,ΜΞΜ xΞΜ yR}
= ΞΜ xΞΜ y.

We conclude by induction. □

The above proof fails ifΜ is confined, since then ΞΜ 1=2 and ΞΜ 2=3≠2×2.

Corollary 7.7. If Μ is ample, then the ℋΜ-simple projection 𝜋ℋΜ is a surjective morphism
(No>,×,⩽)⟶(SmpℋΜ,×,⩽).
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Proof. We only need to prove that𝜋ℋΜ preserves products. Given x,y∈No>, the relation
Μxy=xΜy implies xy=ℋΜ𝜋ℋΜ(x)𝜋ℋΜ(y). Proposition 7.6 implies that 𝜋ℋΜ(x)𝜋ℋΜ(y)
is ℋΜ-simple, whence 𝜋ℋΜ(xy)=𝜋ℋΜ(x)𝜋ℋΜ(y). □

Proposition 7.8. Let R⊇ℝ be a proper convex subring of (No,+,×,⩽) with a cofinal subset.
Let 𝐌=(𝐑×)> and write 𝔐𝐑 for the convex subgroup M∩Mo of Mo. Define 𝔑R to be the
group Smpℋ𝐌

. Then there is a canonical strongly linear isomorphism of ordered valued fields

No⟶ℝ[[𝔐𝐑]]On[[𝔑𝐑]]On.

Proof. By [1, Page 713], we only need to prove that𝔐𝐑 is a convex subgroup ofMowith
𝔐𝐑∩𝔑𝐑={1} andMo=𝔐𝐑𝔑𝐑. Since 𝐑 has a cofinal subset, the group𝐌 has an ample
cofinal and coinitial subgroupΜ and we may apply the two previous results to𝐌.

Intersections and convex hulls of subgroups are again subgroups, so𝔐𝐑 is a convex
subgroup of Mo. We claim that for 𝔞∈Mo, we have 𝔞=𝔪𝔫 where 𝔫≔𝜋ℋΜ(𝔞)∈𝔑𝐑
and 𝔪≔ 𝔞

𝔫 ∈𝔐𝐑. Indeed, as a product of monomials, 𝔪 is a monomial. Furthermore,
Corollary 7.7 yields

𝜋ℋΜ(𝔪)=
𝜋ℋΜ(𝔞)
𝜋ℋΜ(𝔫)

= 𝜋ℋΜ(𝔞)
𝜋ℋΜ(𝔞)

=1

whence 𝔪∈ℋ𝐌[1]. This means that there exist r⩽ r′∈ (𝐑×)> with r⩽𝔪⩽ r′. In other
words, we have 𝔪∈𝔐𝐑. This concludes the proof. □

Remark 7.9. Assume now that Hull(Μ) is closed under exp. In [7], an alternative
to Gonshor's definition of the exponential function has been proposed in terms of
Conway's 𝜔-map. This definition can be generalized [7, Proposition 2.12] by replacing
the 𝜔-map by ΞΜ. This yields an alternative exponential function expΜ onNo for which
(No,+,×, expΜ) is an elementary extension of (ℝ,+,×, exp). The exponentials exp and
expΜ coincide on ℝΜ≔ℝ[[𝔐𝐑]]On, but expΜ grows faster than exp on ℝΜ[[𝔑𝐑]]On.
It would be interesting to see if the properties of No as the exponential field of gen-
eralized series (ℝΜ[[𝔑𝐑]]On, +, ×, expΜ) over ℝΜ are similar to those of (ℝ[[Mo]]On,
+,×,exp) overℝ.

7.4 Exponential groups
Let us now study the action of ℰ and ℰ∗ onNo>,≻. Given x∈No, recall that one tradition-
ally writes 𝜆x≔Ξℰ x and 𝜅x≔Ξℰ∗ x.

The parameterization 𝜆=Ξℰ of the class La≔ Smpℰ was first given in [8]. It was
also shown there that La coincides with the class of log-atomic surreal numbers, which
consists of those numbers x∈No>,≻ such that logn x∈Mo for all n∈ℕ. Such numbers
were essential for the definition of well-behaved formal derivations onNo. This was first
achieved in [8], while building on analogue results in the context of transseries [35, 23].

The structure𝐊≔Smpℰ ∗ of 𝜅-numberswas introduced and studied in detail in [27], as
an intermediate subclass between fundamental monomials and the log-atomic numbers.
It turns out that the structure 𝐊 is not big enough to describe all log-atomic numbers.
Indeed, it was noticed in [32] that 𝐊=La�No≻, as a corollary of [3, Proposition 2.5].

Proposition 7.10. [3, Proposition 2.5] For all x∈No, we have

exp(𝜆x) = 𝜆x+1
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Proof. We rely on the following uniform version of [8, Theorem 3.8(1)] from [3,
Lemma 2.4]: if 𝔪={L |R} is a monomial, whereℝL⊆Hull(L) andℝR⊆Hull(R), then

exp(𝔪)={𝔪ℕ, exp(L) | exp(R)}.

In fact, we have 𝒫⊆ℰ<{exp} onNo>,≻, so exp(𝔪)>ℰ𝔪⊇𝔪ℕ, and

exp(𝔪)={ℰ𝔪,exp(L) | exp(R)}. (7.1)

Now let x be a number with 𝜆u+1=exp(𝜆u) for all u∈x⊏. Then x+1={x,xL+1 |xR+1}.
The uniformity of the cut equation for the 𝜆-map thus yields

𝜆x+1 = {ℰ𝜆x, ℰ 𝜆xL+1 | ℰ 𝜆xR+1}
= {ℰ𝜆x, ℰ exp(𝜆xL) |ℰ exp(𝜆xR)}
= {ℰ𝜆x, exp∘ℰ𝜆xL | exp∘ℰ𝜆xR} (since exp∘ℰ=ℰ ∘exp)
= exp 𝜆x (by (7.1))

The result follows by induction. □

Corollary 7.11. [8] Smpℰ coincides with the class of log-atomic surreal numbers.

Proof. We have logn 𝜆x=𝜆x−n∈La for all n∈ℕ, whence logn La⊆La⊆Mo. This shows
that every element of La is log-atomic.

Conversely, let 𝜆 be a log-atomic number and assume 𝜆∉La. Note that 𝜋ℰ(𝜆) is log-
atomic by our previous argument. Assume for instance that 𝜋ℰ(𝜆)<𝜆. For n∈ℕ, we
have logn𝜋ℰ(𝜆)≠logn 𝜆. Since both logn 𝜆 and logn𝜋ℰ(𝜆) are monomials, it follows that
logn 𝜋ℰ(𝜆)≺ logn 𝜆. We deduce that (expn ∘ℋ ∘ logn)(𝜋ℰ(𝜆))<𝜆, whence ℰ𝜋ℰ(𝜆)<𝜆,
which contradicts the defining relation𝜋ℰ(𝜆)=ℰ 𝜆. Likewise,𝜋ℰ(𝜆)>𝜆 is impossible. We
conclude that 𝜆=𝜋ℰ(𝜆)∈Smpℰ. □

Proposition 7.12. [32]We have 𝐊=La�No≻.

Proof. Following Mantova-Matusinski, we have the following equivalences for any
number x∈No:

x∈No≻ ⟺ xL+ℕ<x<xR−ℕ
⟺ expℕ(𝜆xL)<𝜆x<logℕ(𝜆xR)
⟺ expℕ(ℰ𝜆xL)<𝜆x<logℕ(ℰ𝜆xR)
⟺ ℰ∗(𝜆xL)<𝜆x<ℰ∗(𝜆xR)
⟺ 𝜆x∈𝐊. □

Corollary 7.13. 𝐊 is sharp in No>,≻.

Proof. Let 𝜅∈K, 𝜅′∈𝜅LK, and 𝜅′′∈𝜅RK. There are unique numbers 𝜃,𝜃′,𝜃′′∈No≻with 𝜅=
𝜆𝜃, 𝜅′=𝜆𝜃′, and 𝜅′′=𝜆𝜃′′. Let n∈ℕ. We have 𝜃>𝜃′+ℕ and 𝜃′+n={𝜃L′+n,𝜃′+nL |𝜃R′ +n},
where

𝜃R+n>𝜃>𝜃′+n>𝜃L′ +n∪𝜃′+nL,

so 𝜃⊒𝜃′+n. We deduce that expℕ(𝜅′)=𝜆𝜃′+ℕ⊑𝜅. Symmetric arguments yield logℕ(𝜅′′)=
𝜆𝜃′′−ℕ⊑𝜅. Since expℕ(𝜅′) is cofinal in ℰ∗[𝜅′] and logℕ(𝜅′′) is coinitial in ℰ∗[𝜅′′], this
proves that K=Smpℰ∗ is sharp. □
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On the other hand, the class La is not sharp:

Proposition 7.14. The structure La is not sharp in No>,≻.

Proof. Given r∈ℝ> and x∈No>,≻, we have

xe
r = (exp2∘Tr∘ log2)(x) < (exp3∘T2∘ log3)(x).

We deduce that the element (exp3∘T2∘ log3)(𝜔) of ℰ[𝜔] is a strict upper bound for �̇�eℝ
>

and hence for �̇�ℕ. Note that 𝜆1=�̇�𝜔, so �̇�ℕ is cofinal in (𝜆1)L. We have (𝜆1)LLa={𝜆0}=
{𝜔}, so (𝜆1)L is not cofinal in ℰ[(𝜆1)LLa]. This means that the defining partition of La is not
sharp. □

8 Nested surreal numbers

8.1 Nested transseries and surreal numbers
The study of generalized transseries solutions to functional equations was started
in [14, 23]. It is well known that non-trivial solutions of the functional equationE(x+1)=
exp E(x) grow faster than any iterated exponential. This motivates the introduction
of “hyperseries” [14, 35, 2, 13] as a generalization of transseries that allows for trans-
finite iterates of exponentiation and logarithm. In [23, section 2.7.1], it was pointed out
that functional equations of the kind

f (x) = x√ +e f (logx) (8.1)

admit natural symbolic solutions of the form

f (x) = x√ +e logx� +e loglogx� +e⋰

. (8.2)

The formal calculus with this kind of expressions requires a second extension of Écalle's
original theory from [14] with so-called “nested transseries”. In our context, it is also
natural to study those surreal numbers

y = f (𝜔) = 𝜔√ +e log𝜔� +e loglog𝜔� +e⋰

(8.3)

that are obtained by substituting 𝜔 for x in such a generalized transseries. More specifi-
cally, one may wonder whether there exist sequences (yi)i∈ℕ∈No≻ℕ with

yi = log i𝜔� +eyi+1,

for all i∈ℕ. In this section, we will show that the class of such numbers actually forms a
surreal substructure. This shows in particular that expressions of the form (8.2) or (8.3)
are highly ambiguous and therefore somewhat misleading.

In order to develop a sound calculus for nested transseries and surreal numbers such
as (8.2) and (8.3) it is crucial to decide which expressions of the form (8.2) should be
considered to be well-formed. For instance, the functional equation

g(x) = x√ +eg(logx)+log x (8.4)

admits a “natural” solution

g(x) = x√ +e logx� +e log2x� +e⋰⋱+log3x+log2x+log x. (8.5)
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However, such expressions do not behavewell for basic calculus operations. For instance,
the syntactic derivative of (8.5) is given by

g′(x) = 1
2 x√ + 1

x+(((((((((((((((((
1

2x log x�
+ 1
x log x)))))))))))))))))eg(logx)+

(((((((((((((((((
1

2x log x log2 x�
+ 1
x log x log2 x)))))))))))))))))eg(logx)eg(log2x)+⋯.

However, the sum
1
x+

1
x log x e

g(logx)+ 1
x log x log2 x

eg(logx)eg(log2x)+⋯

does not converge in the sense of section 2.3. Fortunately, as pointed out in [23, sec-
tion 2.7.1], the equation (8.4) is a perturbation of (8.1) and its solutions can naturally be
expressed in terms of f .

The above counterexample led the second author to introduce the abstract notion
of so-called fields of transseries [24] which excludes transseries such as (8.5). General-
izing the combinatorial ideas from [23], this enabled him and his student Schmeling to
construct derivations and right compositions on fields of transseries [35]. This theory
reappeared crucially in Berarducci andMantova's construction of awell-behaved deriva-
tion ∂BM on No [8]. Indeed, one of the main ingredients of their construction is the
proof [8, Theorem 8.10] that No is a field of transseries in the sense of [24, 35]. In par-
ticular, it satisfies the following condition:

T4. Let (𝔪i)i∈ℕ∈Moℕ be a sequence of monomials with 𝔪i+1∈supp log 𝔪i for all i.
Then there exists an i0∈ℕwith

∀i⩾ i0, 𝔪i+1≼supp log𝔪i ∧ (log𝔪i)𝔪i+1∈{−1,1}.

This condition can be regarded as a formal translation of the idea that all surreal numbers
should be “well nested”. In particular, it rules out the existence of surreal numbers of the
form

𝜔√ +e log𝜔� +e log2𝜔� +e⋰⋱+log3𝜔+log2𝜔+log𝜔.

8.2 Admissible sequences
Given sequences (𝜑i)i∈ℕ∈Noℕ and (𝜖i)i∈ℕ∈{−1,1}ℕ, let us study how to give ameaning
to expressions of the type

𝜑0+𝜖0e𝜑1+𝜖1e
𝜑2+𝜖2e⋰. (8.6)

In this subsection, we start with the determination of lower and upper bounds for (8.6).
We say that (𝜑,𝜖) is a signed sequence if

SS1. 𝜑i⩾0 for all i⩾2.

SS2. 𝜑i=0⟹𝜖i=1 for all i⩾2.

SS3. 𝜑i>0 for infinitely many i.

SS4. 𝜑i∈No≻ for all i⩾1.

In that case, wemay define a signed sequence (𝜑↗k,𝜖↗k) for every k∈ℕ by taking (𝜑↗k)i≔
𝜑k+i and (𝜖↗k)i≔𝜖k+i for all i∈ℕ.
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Assume that (𝜑, 𝜖) is a fixed signed sequence. For all i, j∈ℕ with i⩽ j, we define
functionsΦi,Φi;,Φj;i:No⟶No by

Φi(x) ≔ 𝜑i+𝜖iex.

Φi;(x) ≔ (Φ0∘⋯∘Φi−1)(x) = 𝜑0+𝜖0e𝜑1+𝜖1e
𝜑2+𝜖2e⋰

𝜑i−1+𝜖i−1e
x

Φj;i(x) ≔ (Φi∘⋯∘Φj−1)(x) = 𝜑i+𝜖ie𝜑i+1+𝜖i+1e𝜑i+2+𝜖i+2e
⋰
𝜑j−1+𝜖j−1e

x

.

By convention, we understand thatΦ0;(x)=x andΦj;i(x)=x whenever i= j.
Writing 𝜖i;≔𝜖;i≔𝜖0⋯𝜖i−1 and 𝜖j;i≔𝜖i; j≔𝜖i⋯𝜖j−1, we notice thatΦi,Φi;, andΦj;i are

strictly increasing if 𝜖i=1, 𝜖i;=1, and 𝜖j;i=1, respectively, and strictly decreasing in the
contrary case. We will write Φ;i and Φi; j for the partial inverses of Φi; and Φj;i. We will
also use the abbreviations

xi; ≔ Φi;(x)
x;i ≔ Φ;i(x)

xj;i ≔ Φj;i(x)
xi; j ≔ Φi; j(x).

For instance, we have

x1;3 = 𝜑1+𝜖1e𝜑2+𝜖2e
x

for all x and

x;1 = log x−𝜑0
𝜖0

,

whenever x−𝜑0
𝜖0

>0. For all i∈ℕ, we next define

Li; ≔ (𝜑i−𝜖;iℝ>supp 𝜑i)i; L ≔ ⋃i∈ℕ Li;
Ri; ≔ (𝜑i+𝜖;iℝ>supp 𝜑i)i; R ≔ ⋃i∈ℕ Ri;

We finally define

𝐒 ≔ {x∈No :∀i∈ℕ,x;i−𝜑i≺supp 𝜑i}.

In the remainder of this section, the signed sequence (𝜑, 𝜖) will mostly remain fixed. In
the rare cases when (𝜑,𝜖) needs to be varied, we will use subscripts, e.g. by writing 𝐒𝜑,𝜖
instead of 𝐒. For each k∈ℕwe also write 𝐒↗k≔𝐒𝜑↗k,𝜖↗k.

Lemma 8.1. If x∈𝐒 or x∈(L |R), then x;i is well defined for all i∈ℕ.

Proof. If x∈𝐒, then the definition of 𝐒 implicitly assumes that x;i is well defined for all
i∈ℕ. If x∈(L |R), so in particular L<R, then let us prove the lemma by induction on i.
The result clearly holds for i=0. Assuming that x;i is well defined, let j> i be minimal
such that 𝜑j≠0. ApplyingΦ;i to the inequality

Lj;<x<Rj; ,
we obtain

𝜖;i (Lj;);i<𝜖;ix;i<𝜖;i (Rj;);i .
By definition, we have

(Lj;);i = 𝜑i+𝜖iexpj−i(𝜑j−𝜖; jℝ>supp 𝜑j)
(Rj;);i = 𝜑i+𝜖iexpj−i(𝜑j+𝜖; jℝ>supp 𝜑j),

whence

𝜖;i+1expj−i(𝜑j−𝜖; jℝ>supp 𝜑j)<𝜖;i+1
x;i−𝜑i
𝜖i

<𝜖;i+1expj−i(𝜑j+𝜖; jℝ>supp 𝜑j).
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Both in the caseswhen 𝜖;i+1=1 andwhen 𝜖;i+1=−1, it follows that (x;i−𝜑i)/𝜖i is bounded
from below by the exponential of a surreal number, whence (x;i−𝜑i)/𝜖i>0. In par-
ticular, x;i+1=log((x;i−𝜑i)/𝜖i) is well defined. This completes the induction. □

Proposition 8.2. We have 𝐒=(L |R).

Proof. Let x∈𝐒 and i∈ℕ. If 𝜖;i=1, thenΦi; is strictly increasing, whence

Li;<x<Ri; ⟺ 𝜑i−ℝ>supp 𝜑i<x;i<𝜑i+ℝ>supp 𝜑i

⟺ −ℝ>supp 𝜑i<x;i−𝜑i<ℝ>supp 𝜑i

⟺ x;i−𝜑i≺supp 𝜑i.

OtherwiseΦi; is strictly decreasing, whence

Li;<x<Ri; ⟺ 𝜑i+ℝ>supp 𝜑i>x;i>𝜑i−ℝ>supp 𝜑i

⟺ ℝ>supp 𝜑i>x;i−𝜑i>−ℝ>supp 𝜑i

⟺ x;i−𝜑i≺supp 𝜑i.

In both cases, we conclude that Li;< x<Ri; if and only if x;i−𝜑i≺supp 𝜑i. Since this
equivalence holds for all i∈ℕ, the result follows. □

We say that the signed sequence (𝜑,𝜖) is admissible if
AS. L<R.

Proposition 8.3. The following statements are equivalent.
a) (𝜑,𝜖) is admissible.
b) 𝐒 is a surreal substructure.
c) ∀i∈ℕ,∀𝔪∈supp𝜑i,∀j> i,∃𝜓∈No≺supp𝜑j,𝔪≻(𝜑j++𝜓)j;i−𝜑i.

Proof. We have b) ⟹ a) by the previous proposition. If (𝜑, 𝜖) is admissible, then 𝐒=
(L |R) is a surreal substructure by Proposition 4.18(b). We also obtain c) by taking 𝜓∈
𝐒↗j−𝜑j. Indeed, we have (𝜑j++𝜓)j;i−𝜑i∈(S↗j)j;i−𝜑i⊆S;i−𝜑i, whence (𝜑j++𝜓)j;i−𝜑i≺
supp𝜑i, by the definition of S. The definition of 𝐒 also yields 𝜓≺supp𝜑j. Assume finally
that c) is satisfied and let us prove a).

Let i, j∈ℕ. If i= j, then Li;<Ri; follows by definition and strictmonotonicity of the func-
tionΦi;. Assume that i< j. Let𝔪∈supp𝜑i and consider a 𝜓∈No≺supp𝜑j with (𝜑j++𝜓)j;i−
𝜑i≺𝔪. Such a 𝜓 exists by c) and the class 𝐂𝔪 of such numbers 𝜓 is a convex surreal
substructure by Proposition 4.18(d). Moreover the family (𝐂𝔪)𝔪∈supp𝜑i is decreasing on
(supp𝜑i,≽) so by Proposition 4.18(e), its intersection is non-empty. Given y in this inter-
section, we have Li;<((𝜑j++ y)j;i)i;=(𝜑j++ y)j;, since (𝜑j++ y)j;i−𝜑i≺supp 𝜑i. Similarly,
((𝜑j++y)j;i)i;=(𝜑j++y)j;<Rj, since y=(𝜑j++y)−𝜑j≺supp 𝜑j. This shows that Li;<(𝜑j++
y)j;<Rj;. By symmetry, we obtain the same conclusion if i> j, i.e. (𝜑,𝜖) is admissible. □

8.3 Nested sequences
Let (𝜑,𝜖) be a fixed admissible sequence. Now that we have described lower and upper
bounds L and R for expressions of the form (8.6), our next goal is to determine those
elements y∈𝐒=(L |R) such that

supp 𝜑i≻
y;i−𝜑i
𝜖i

∈Mo
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for all i∈ℕ. Such elements are called nested surreal numbers andwe denote byNe=Ne𝜑,𝜖
the class of nested surreal numbers with respect to our fixed admissible sequence (𝜑,𝜖).

It turns out that not all admissible sequences (𝜑, 𝜖) give rise to nested surreal num-
bers (see Example 8.14 below). We say that (𝜑,𝜖) is nested if
NS. supp 𝜑i≻e𝐒↗(i+1), for all i∈ℕ.

The main objective of this subsection is to show that Ne is a surreal substructure when-
ever (𝜑,𝜖) is nested (in particular,Ne is non-empty). In the next subsection, we will give
various examples and sufficient conditions forNS to be satisfied.

We will say that (𝜑, 𝜖) is large if we have 𝜑1>0 or (𝜑1, 𝜖1)= (0, 1). Notice that the
admissible sequences (𝜑↗i,𝜖↗i) for i>0 are always large. Let us first show how to reduce
the general case to the case when (𝜑, 𝜖) is large. Assuming that (𝜑, 𝜖) is not large, let
(𝜑′,𝜖′) be the large nested sequence with (𝜑0′,𝜖0′)=(0,1), (𝜑1′,𝜖1′)=(−𝜑1,−𝜖1), and 𝜑i′=𝜑i
for i⩾2. Assume that we know how to show thatNe𝜑′,𝜖′is a surreal substructure of Mo.
Writing S(a)≔−a and I(a)= a−1, we have ΞMo ∘S= I ∘ΞMo, whence I induces a strictly
decreases self-⊑-embedding on Mo. It follows that the function x⟼ I ∘ΞNe𝜑′,𝜖′(−x) is
an embedding of Mo into itself. Hence the range (Ne𝜑′,𝜖′)−1 of this mapping is a surreal
substructure, and so is Ne=𝜑0++𝜖0(Ne𝜑′,𝜖′)−1.

In the remainder of this section, let (𝜑,𝜖) be a fixed large nested sequence.

Lemma 8.4. For x,y∈𝐒, we have
(x;1−𝜑1)/𝜖1 =ℰ (y;1−𝜑1)/𝜖1.

Proof. Choose i∈ℕ> minimal with 𝜑i≠0. We have x;i−𝜑i,y;i−𝜑i≺supp𝜑i, whence

/1 2y;i<x;i<2y;i
and

expi−1 y;i =ℰ expi( /1 2y;i) < expi x;i < expi(2y;i) =ℰ expi y;i

We observe that (x;1−𝜑1)/𝜖1=expi−1 x;i and (y;1−𝜑1)/𝜖1= expi y;i. By convexity of
ℰ[(y;1−𝜑1)/𝜖1], we have (x;1−𝜑1)/𝜖1∈ℰ[(y;1−𝜑1)/𝜖1], whence the result. □

Lemma 8.5. We have a ⊑-embedding

Φ1; : 𝐒↗1∩(𝜑1+𝜖1Mo)⟶𝐒.

Proof. Recall that Φ1;(x) = 𝜑0+ 𝜀0 ex for all x∈No. Let us first show that 𝐔≔ 𝐒↗1∩
(𝜑1+𝜖1Mo) is a surreal substructure. By NS, we have 𝐒↗1=𝜑1++𝜖1e𝐒↗2. Writing 𝐒↗2 ≔
(L↗2 |R↗2), as for 𝐒, we observe that L↗2 and R↗2 are sets of purely infinite numbers,
respectively without maximum and minimum. By Proposition 4.18(b), it follows that
𝐒↗2∩No≻=(L↗2 |R↗2)No≻ is a convex surreal substructure ofNo≻. By Proposition 4.18(d),
we deduce that𝐔=𝜑1++𝜖1e𝐒↗2∩No≻ is a convex surreal substructure of 𝜑1++𝜖1Mo≺supp𝜑1 .

By Proposition 4.28 and NS, the function x⟼𝜑0+𝜖0x is a ⊑-embedding on e𝐔, so it
remains to be shown that exp is a ⊑-embedding on 𝐔. Towards this, consider numbers
u,v∈𝐔with u⊑v. Since u,v∈𝜑1++𝜖1Mo≺supp𝜑1, Proposition 4.28 implies that u=𝜑1++𝜖1𝔲
and v=𝜑1++𝜖1𝔳 for certain infinite monomials 𝔲 and 𝔳 with 𝔲⊑𝔳.

Consider 𝔪∈Mo≻. The cuts (ℝ>𝔪L
Mo |ℝ>𝔪R

Mo) and (𝔪L | 𝔪R) are mutually cofinal.
Given (7.1), it follows that

∀𝔪∈Mo≻, e𝔪=�ℰ𝔪,𝒫e𝔪L
Mo
�𝒫e𝔪R

Mo
�.
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Proposition 4.36 therefore implies that exp is a ⊑-embedding on 𝓔[𝔪]∩Mo≻ for every
𝔪∈Mo≻. Using Lemma 8.4, we deduce that e𝔲⊑e𝔳.

Just before Lemma 8.4, we already noticed that I:Mo⟶Mo;𝔪⟼𝔪−1 is a ⊑-embed-
ding. Since 𝔲 and 𝔳 aremonomials, it follows that e𝜖1𝔲=(e𝔲)𝜖1⊑(e𝔳)𝜖1=e𝜖1𝔳. By [8, Propo-
sition 4.23], we conclude that eu=e𝜑1++𝜖1𝔲⊑e𝜑1++𝜖1𝔳=ev. □

In order to show that Ne is a surreal substructure, let us now introduce a suitable
function group 𝒢 acting on 𝐒. At a second stage, we will show that Ne=Smp𝒢. The-
orem 6.20 then implies that Ne is a surreal substructure.

Lemma 8.6. Given x∈𝐒 and r∈ℝ>, we have 𝜑0+ r (x−𝜑0)∈𝐒.

Proof. Let y=𝜑0+ r (x−𝜑0). Let us show by induction on i∈ℕ that
Li;<y<Ri;

and y;i−x;i≼1whenever i⩾1. This is clear for i=0, so assume i>0. If i=1, then y;i−x;i=
log r≼1. If i>1, then the induction hypothesis yields

y;i−x;i=log
y;i−1−𝜑i−1
x;i−1−𝜑i−1

=log((((((((((1+ y;i−1−x;i−1
x;i−1−𝜑i−1))))))))))=log(1+o(1))=o(1)≼1.

By NS, we also have supp 𝜑i≻ex;i+1, whence

𝜑i−ℝ>supp 𝜑i<𝜑i+𝜖iex;i+1<𝜑i+ℝ>supp 𝜑i.

We have supp 𝜑i≻1 by SS4. Since y;i=x;i+O(1)=𝜑i+𝜖iex;i+1+O(1), this yields

𝜑i−ℝ>supp 𝜑i<y;i<𝜑i+ℝ>supp 𝜑i.

ApplyingΦi;, we conclude that Li;<y<Ri;, which completes our proof by induction. □

The lemma implies that 𝐒↗i−𝜑i is closed under the action of ℋ for all i∈ℕ. This
allows us to define a strictly increasing bijection

Ψi,r:𝐒⟶𝐒;x⟼(𝜑i+ r (x;i−𝜑i))i;
for all i∈ℕand r∈ℝ>. We take

𝒢≔⟨Ψi,r : r∈ℝ>, i∈ℕ⟩

to be the function group generated by these functions. As usual, we will write 𝒢↗i for the
function group obtained by applying this definition for (𝜑↗i, 𝜖↗i) instead of (𝜑,𝜖).

Lemma 8.7. Given x∈𝐒, we have:
a) For each i>0, the set Ψi,ℝ>(x) contains strict upper and lower bounds for Ψi−1,ℝ>(x).
b) The set {Ψi,r(x): r∈ℝ>, i∈ℕ, i> j} is cofinal and coinitial in 𝒢[x] for all j∈ℕ.
c) For y∈𝒢[x], we have 𝜑0++𝜖0𝔡y−𝜑0∈𝒢[x], whence 𝒢[x]•∈𝜑0++𝜖0Mo.
d) (𝒢↗1[x;1])1;=𝒢[x].
e) 𝒢[x];1• =𝒢↗1[x;1]•.

Proof.
a) The number x;i+1 is positive infinite, so we have

𝜑i+2−𝜖i(x;i−𝜑i)+ℤ<x;i<𝜑i+2𝜖i(x;i−𝜑i)+ℤ,
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whence
e𝜑i+2−𝜖i(x;i−𝜑i)≺ex;i≺e𝜑i+2𝜖i(x;i−𝜑i).

If 𝜖i−1=1, then it follows that

𝜑i−1+e𝜑i+2−𝜖i(x;i−𝜑i)<𝜑i−1+ℝ>ex;i<𝜑i−1+e𝜑i+2𝜖i(x;i−𝜑i).

ApplyingΦi−1;, we obtain
Ψi,2−𝜖i(x)<Ψi−1,ℝ>(x)<Ψi,2𝜖i(x).

If 𝜖i−1=1, then a similar reasoning yields

Ψi,2𝜖i(x)<Ψi−1,ℝ>(x)<Ψi,2−𝜖i(x).

In both cases, this shows that Ψi,ℝ>(x) contains strict upper and lower bounds
for Ψi,ℝ>(x).

b) By induction on j∈ℕ, let us show that Ψj,ℝ> is strictly cofinal and coinitial with
respect to 𝒢<j≔⟨Ψi,r : i< j, r∈ℝ>⟩⊆𝒢. Note that 𝒢<0={idS}. In view of a), this
clearly holds for j=0.

Assuming that this assertion holds for a given j∈ℕ, let us first show thatΨj,ℝ>

is cofinal with respect to 𝒢⩽j≔𝒢<j+1. Given x′= (Ψj,r1 ∘𝛾1∘⋯∘Ψj,rl ∘𝛾l)(x) with
𝛾1, …, 𝛾l∈𝒢<j, we must show that x′ <Ψj,s(x) for some s∈ℝ>. Using a second
induction on l, wemay find an s′∈ℝ>with y≔(Ψj,r2∘𝛾2∘⋯∘Ψj,rl∘𝛾l)(x)<Ψj,s′(x).
Using the induction hypothesis on j, it follows that 𝛾1(y)<Ψj,t(y)<Ψj,s′t(x) for
some t∈ℝ>, whence x′=Ψj,r1(𝛾1(y))<Ψj,r1s′t(x).

In a similar way, one shows that Ψj,ℝ> is strictly coinitial with respect to 𝒢⩽j.
Applying a) for i= j+1, it also follows thatΨj+1,ℝ> is strictly coinitial with respect
to 𝒢<j+1. We conclude by induction.

c) We have 𝜑0+ℝ> (y−𝜑0)⊆𝒢[x], whence 𝜑0+𝜖0𝔡y−𝜑0∈Hull(𝜑0+ℝ> (y−𝜑0))⊆
𝒢[x].

d) Applying b) to j=0 yields 𝒢[x]≔Hull(Ψi,ℝ>(x) : i⩾1). Consequently,

(𝒢↗1[x;1])1; = Hull(((𝜑i+1+ℝ>(x;(i+1)−𝜑i+1))i+1;1)1; : i⩾0)
= Hull(Ψi,ℝ>(x) : i⩾1)
= 𝒢[x].

e) Let a=𝒢[x]• and b=𝒢↗1[x;1]•. By d), we have b⊑a;1, whence Lemma 8.5 implies
b1;⊑(a;1)1;=a. Since b1;∈𝒢[x], it follows that a⊑b1;⊑a, whence a=b1;. □

Theorem 8.8. The class Ne is a surreal substructure.

Proof. Let us first show that the root a=𝒢[x]• of each halo with x∈𝐒 is a nested mono-
mial. Indeed, Lemma 8.7(e) implies that a;i=𝒢↗i[x;i]• for all i∈ℕ, by induction on i. In
combination with Lemma 8.7(c), this yields (a;i−𝜑i)/𝜖i∈Mo for all i∈ℕ, as required.

In order to conclude thatNe coincides with the surreal substructure Smp𝒢, it remains
to be shown that each halo contains atmost one nestedmonomial. Given a<b inNe, it suf-
fices to show that 𝒢[a]<b. Let i∈ℕ and r∈ℝ>. If 𝜖;i+1=1, then 𝜖;i=𝜖i and (a;i−𝜑i)/𝜖i<
(b;i−𝜑i)/𝜖i. Those are monomials, soℝ>(a;i−𝜑i)/𝜖i<(b;i−𝜑i)/𝜖i, whence Ψi,ℝ>(a)<b.
Similarly, if 𝜖;i+1=−1, then (b;i− 𝜑i)/𝜖i<ℝ> (a;i− 𝜑i)/𝜖i, whence again Ψi,ℝ>(a) < b.
Using Lemma 8.7(b), we conclude that 𝒢[a]<b. □
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8.4 Sufficient conditions for nestedness
Let (𝜑,𝜖) be a signed sequence. The conditions AS and NS may not be so easy to check
for (𝜑,𝜖). Let us mention a few stronger sufficient conditions that imply AS and NS.

Proposition 8.9. Let (𝜑,𝜖) be a signed sequence such that

∀i>0,∀j> i,∀𝜓∈No≺supp𝜑j, (𝜑j++𝜓)j;i−𝜑i≺supp 𝜑i.
Then (𝜑,𝜖) is a nested sequence.

Proof. The condition clearly implies the one from Proposition 8.3(c), which is equivalent
to AS. Given i∈ℕ, let us next show that supp 𝜑i≻e𝐒↗(i+1). Let j> i be minimal with
𝜑j≠0. Given 𝜉 ∈𝐒↗(i+1) and 𝜓≔log j−(i+1) 𝜉 ∈𝐒↗j, we obtain 𝜓≺supp 𝜑j, whence e𝜉=
(𝜓j;i−𝜑i)/𝜖i≺supp𝜑i. □

Example 8.10. This proposition is in particular satisfied for the signed sequence (𝜑, 𝜖)
from the introduction with 𝜑i= log i𝜔� and 𝜖i=1 for all i∈ℕ.

Example 8.11. The proposition is also satisfied for any signed sequence (𝜑,𝜖)with 𝜑2i=0
and 𝜖2i=1 for i∈ℕ and 𝜑2i−1=log3i𝜔 for i>0.

Given a signed sequence (𝜑, 𝜖) that satisfies a suitable condition NS∗ (see below),
Schmeling constructs a field of transseries that contains the corresponding nested
transseries [35, Section 2.5]. Following [26, p. 6] and [9, p. 14], we conjecture that every
field of transseries embeds into No. As part of our program to prove this conjecture,
let us mention two more specific conjectures that concern nested transseries.

Conjecture 8.12. Let (𝜑,𝜖) be a signed sequence such that the following holds:

NS∗. ∀i>0, ∀𝔪∈supp 𝜑i, ∃j> i, ∀𝜓∈No≻
≺supp𝜑j, (𝜑j++𝜓)j;i−𝜑i≺𝔪.

Then (𝜑,𝜖) is a nested sequence.

Example 8.13. The conditionNS∗ is satisfied for the sequence ((log i𝜔)i∈ℕ>,((−1)i)i∈ℕ>),
which does not satisfy the condition from Proposition 8.9. It is also satisfied for

𝜑0=�
k∈ℕ

e 𝜔√ −e log𝜔� +e
⋰

logk𝜔�

,

𝜖0=−1 and 𝜖i=1, 𝜑i= log i𝜔� for all i>0. This sequence also does not satisfy the require-
ment of Proposition 8.9.

Let us finish with a counterexample of a signed sequence (𝜑, 𝜖) that satisfies AS
but not NS.

Example 8.14. Consider the nested sequence (( log i𝜔� )i∈ℕ, (1)i∈ℕ) that gives rise to
nested numbers of the form

x= 𝜔√ ++e log𝜔� ++e log2𝜔� ++e⋰

.

Given such a number x, we define (𝜑0,𝜖0):=(x− 𝜔√ ,1) as well as (𝜑i,1)≔( log i𝜔� ,1) for
all i∈ℕ. By definition, (𝜑↗1, 𝜖↗1) is nested so there is u∈Ne↗1with u<log(x− 𝜔√ ). The
number 𝜑0+eu lies inNe, so the sequence (𝜑,𝜖) is admissible. However we have ev=𝜑0,
so ev⊀supp𝜑0. This means that 𝜑0+ev does not lie in 𝐒 and thus that (𝜑,𝜖) is not nested.
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Figure A.1. A tiny glimpse of the landscape of surreal substructures.

There even exist admissible sequences (𝜑,𝜖)withNe=∅. However, we conjecture that

Conjecture 8.15. For every admissible sequence (𝜑,𝜖), there exists a k∈ℕ such that (𝜑↗k, 𝜖↗k)
is nested.

Wehavemade good progress onConjectures 8.12 and 8.15 in themore general setting
of hyperseries. We plan to report on this in a forthcoming paper.

Appendix A An atlas of surreal substructures
Wehave encountered several types of surreal substructures: intervals and convex surreal
substructures, ⊑-final substructures, structures of fixed points, and structures obtained
through convex partitions or group actions. Those different families of surreal substruc-
tures have non-trivial intersections. Figure A.1 gives a glimpse of the resulting landscape.
We have used the following criteria for our classification:

• Surreal substructures lie in the great circle.

• No-closed surreal substructures lie in the rightmost smaller circle (CLO).

• Structures obtained through convex partitions of convex subclasses of No lie in
the middle-upper smaller circle (CON).

• Structures of fixed points lie in the leftmost smaller circle (FIX).

All the represented classes in Figure A.1 satisfy the property that their non-empty
cuts are rooted, which is not the case for other simple classes such as No∔1. Equiva-
lently, they are uniquely (⩽,⊑)-isomorphic to a ⊑-initial subclass of No.
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𝐒 No No> No>,≻ 𝐒𝜑,𝜖
𝚷[x],x∈𝐒 Hull(x+ℤ) Hull(ℝ>x) Hull(expℤ(x)) Hull((ℝ>x;i)i; : i∈ℕ>)
Smp𝚷 No≻ Mo 𝐊 Ne𝜑,𝜖

Table A.1. Examples of surreal substructures that correspond to classes of 𝚷-simplest elements.

𝐒 No a∔No a×. No,a>0 Mo No≻ Mo�No⊒𝜔−1

Fix𝐒 No (a×. 𝜔)∔No (sup⊑ a×
. a×. ⋯)×. No 𝜀No ℝ[[�̇�No>,≻]]On La∩��̇�𝜔−1,𝜔�

Table A.2. Examples of surreal substructures obtained as classes of fixed points.

𝐔�𝐕 No⊒𝛽 No> No≻ Mo La 𝜀No

No⊒x No⊒x∔𝛽 No⊒x∔1 x∔No≻ x∔Mo x∔La x∔𝜀No

No≻ (𝜔×. 𝛽)∔No≻ No≻>0 ℝ���̇�No>1��On �̇�No> ? 𝜀No

Mo �̇�𝛽×. Mo Mo>𝜔 ? Smp𝒫 ? 𝜀No
La ? La>𝜔 K ? ? ?

Table A.3. Imbrications of various common surreal substructures. The symbols ? signify that we
were unable so far to determine an intelligible description of the corresponding imbrication.

Question marks indicate that we do not know whether La and 𝐊 may be construed
as structures of fixed points. The nature of Ne𝜑,𝜖 may change as a function of (𝜑, 𝜖);
we assume that (𝜑, 𝜖) is nested. The class La is No-closed, but this result is not entirely
trivial. We derived it from a computation of sign sequences of log-atomic numberswhich
is too long to produce here.

Next we give a few examples of surreal substructures that were obtained as 𝚷-sim-
plest elements for convex partitions, through fixed points, and as imbrications of other
surreal substructures.

Remark A.1. The identity La∩��̇�𝜔−1,𝜔�=�Mo�No⊒𝜔−1��𝜔 is given as an illustration;
we refer to [4] for a proof. This is also an intermediate step in our computation of sign
sequences of log-atomic numbers. There is, for every purely infinite number 𝜃 and integer
n∈ℤ, a similar description of La∩ (𝜆𝜃+n, 𝜆𝜃+n+1) in terms of fixed points of certains
simple surreal substructures.

Appendix B Set-theoretic issues

Proper classes as sets

Strictly speaking, statements such as “No forms a real closed field” de facto do not make
sense. Indeed, No is a proper class and not a set, whereas the definition of real closed
fields relies on set theory. The most common standard for set theory is ZFC, i.e. Zer-
melo–Fraenkel's axioms with the axiom of choice. From a foundational point of view, it
is more convenient to base the theory of surreal numbers on Neumann-Bernays-Gödel's
set theory with the axiom of global choice (NBG set theory for short), which is a conser-
vative extension of ZFC [10, 18].
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Set-sized relativations

In the other direction,many of the results from this paper that were derived for class-sized
surreal substructures admit set-sized analogues. More precisely, given a regular infinite
ordinal 𝜅, then many statements about (No, ⩽, ⊑) can be relativized to (No(𝜅), ⩽, ⊑),
in which case “sets of cardinality <𝜅” play a similar role with respect to “sets of car-
dinality 𝜅” as general “sets” with respect to “proper classes”.

For instance, a surreal substructure of No(𝜅) is a subset S⊆No(𝜅) such that the set
(L |R)∩No(𝜅) is rooted for any two subsets L<R in Swith |L|, |R|<𝜅. In other words, the
surreal substructures of No(𝜅) are the isomorphic copies of (No(𝜅),⩽,⊑) inside itself,
and they behave similarly to usual surreal substructures in many respects. In particular,
if 𝜅 is the cardinality of No in ZFC𝜅′ with 𝜅′>𝜅 as above, then surreal substructures can
actually be considered as set-sized relativations of this kind.

Cofinality

In ZFC, the cofinality cof(X,⩽) of a linearly ordered set (X,⩽) is equivalently

• the least order type of a cofinal well-ordered subset of (X,⩽),

• the least cardinal of a cofinal subset of (X,⩽),

• the unique regular ordinal which embeds in a cofinal way in (X,⩽).

Assuming NBG set theory and regardingOn as an initial, regular ordinal, this definition
naturally extends to proper classes. In particular, every convex subclass 𝐗 of a surreal
substructure 𝐒 has a cofinality cof(𝐗,⩽) inOn∪{On}, and elementary properties of the
cofinality apply in our case. For instance, mutually cofinal convex subclasses ofNo have
the same cofinality.
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