DIMENSION IN THE REALM OF TRANSSERIES

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

ABSTRACT. Let \mathbb{T} be the differential field of transseries. We establish some basic properties of the *dimension* of a definable subset of \mathbb{T}^n , also in relation to its *codimension* in the ambient space \mathbb{T}^n . The case of dimension 0 is of special interest, and can be characterized both in topological terms (discreteness) and in terms of the Herwig-Hrushovski-Macpherson notion of co-analyzability.

INTRODUCTION

The field of Laurent series with real coefficients comes with a natural derivation but is too small to be closed under integration and exponentiation. These defects are cured by passing to a certain canonical extension, the ordered differential field \mathbb{T} of transseries. Transseries are formal series in an indeterminate $x > \mathbb{R}$, such as

$$-3e^{e^{x}} + e^{\frac{e^{x}}{\log x}} + \frac{e^{x}}{\log^{2}x} + \frac{e^{x}}{\log^{3}x} + \cdots -x^{11} + 7$$

+ $\frac{\pi}{x} + \frac{1}{x\log x} + \frac{1}{x\log^{2}x} + \frac{1}{x\log^{3}x} + \cdots$
+ $\frac{2}{x^{2}} + \frac{6}{x^{3}} + \frac{24}{x^{4}} + \frac{120}{x^{5}} + \frac{720}{x^{6}} + \cdots$
+ $e^{-x} + 2e^{-x^{2}} + 3e^{-x^{3}} + 4e^{-x^{4}} + \cdots$,

where $\log^2 x := (\log x)^2$, etc. Transseries, that is, elements of \mathbb{T} , are also the *loga-rithmic-exponential series* (LE-series, for short) from [5]; we refer to that paper, or to Appendix A of our book [1], for a detailed construction of \mathbb{T} .

What we need for now is that \mathbb{T} is a real closed field extension of the field \mathbb{R} of real numbers and that \mathbb{T} comes equipped with a distinguished element $x > \mathbb{R}$, an exponential operation exp: $\mathbb{T} \to \mathbb{T}$ and a distinguished derivation $\partial: \mathbb{T} \to \mathbb{T}$. The exponentiation here is an isomorphism of the ordered additive group of \mathbb{T} onto the ordered multiplicative group $\mathbb{T}^>$ of positive elements of \mathbb{T} . The derivation ∂ comes from differentiating a transseries termwise with respect to x, and we set $f' := \partial(f)$, $f'' := \partial^2(f)$, and so on, for $f \in \mathbb{T}$; in particular, x' = 1, and ∂ is compatible with exponentiation: $\exp(f)' = f' \exp(f)$ for $f \in \mathbb{T}$. Moreover, the constant field of \mathbb{T} is \mathbb{R} , that is, $\{f \in \mathbb{T} : f' = 0\} = \mathbb{R}$; see again [1] for details.

In Section 1 we define for any differential field K (of characteristic 0 in this paper) and any set $S \subseteq K^n$ its (differential-algebraic) dimension

$$\dim S \in \{-\infty, 0, 1, \dots, n\} \quad (\text{with } \dim S = -\infty \text{ iff } S = \emptyset).$$

Date: December 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary: 12H05, 12J25; secondary: 03C64, 12J15.

Some dimension properties hold in this generality, but for more substantial results we assume that $K = \mathbb{T}$ and S is *definable* in \mathbb{T} , in which case we have:

 $\dim S = n \iff S$ has nonempty interior in \mathbb{T}^n .

Here \mathbb{T} is equipped with its order topology, and each \mathbb{T}^n with the corresponding product topology. This equivalence is shown in Section 3, where we also prove:

Theorem 0.1. If $S \subseteq \mathbb{T}^m$ and $f: S \to \mathbb{T}^n$ are definable, then dim $S \ge \dim f(S)$, for every $i \in \{0, \ldots, m\}$ the set $B(i) := \{y \in \mathbb{T}^n : \dim f^{-1}(y) = i\}$ is definable, and dim $f^{-1}(B(i)) = i + \dim B(i)$.

In Section 4 we show that for definable nonempty $S \subseteq \mathbb{T}^n$,

$$\dim S = 0 \iff S$$
 is discrete.

For $S \subseteq \mathbb{T}^n$ to be discrete means as usual that every point of S has a neighborhood in \mathbb{T}^n that contains no other point of S. For example, \mathbb{R}^n as a subset of \mathbb{T}^n is discrete! Proving the backwards direction of the equivalence above involves an unusual cardinality argument. Both directions use key results from [1].

The rest of the paper is inspired by [1, Theorem 16.0.3], which suggests that for a definable set $S \subseteq \mathbb{T}^n$ to have dimension 0 amounts to S being controlled in some fashion by the constant field \mathbb{R} . In what fashion? Our first guess was that perhaps every definable subset of \mathbb{T}^n of dimension 0 is the image of some definable map $\mathbb{R}^m \to \mathbb{T}^n$. (Every such image has indeed dimension 0.) It turns out, however, that the solution set of the algebraic differential equation $yy'' = (y')^2$ in \mathbb{T} , which has dimension 0, is *not* such an image: in Section 5 we show how this follows from a fact about automorphisms of \mathbb{T} to be established in [2]. (In that section we call an image as above *parametrizable by constants*; we have since learned that it already has a name in the literature, namely, *internal to the constants*, a special case of a general model-theoretic notion; see [14, Section 7.3].)

The correct way to understand the model-theoretic meaning of dimension 0 is the concept of *co-analyzability* from [8]. This is the topic of Section 6, where we also answer positively a question that partly motivated our paper: given definable $S \subseteq \mathbb{T}^m$ and definable $f: S \to \mathbb{T}^n$, does there always exist an $e \in \mathbb{N}$ such that $|f^{-1}(y)| \leq e$ for all $y \in \mathbb{T}^n$ for which $f^{-1}(y)$ is finite? In other words, is the quantifier "there exist infinitely many" available for free?

We thank James Freitag for pointing us to the notion of co-analyzability.

1. DIFFERENTIAL-ALGEBRAIC DIMENSION

We summarize here parts of subsection 2.25 in [4], referring to that paper for proofs. Throughout this section K is a differential field (of characteristic zero with a single distinguished derivation, in this paper), with constant field $C \neq K$. Also, $Y = (Y_1, \ldots, Y_n)$ is a tuple of distinct differential indeterminates, and $K\{Y\}$ the ring of differential polynomials in Y over K.

Generalities. Let a set $S \subseteq K^n$ be given. Then the differential polynomials $P_1, \ldots, P_m \in K\{Y\}$ are said to be d-algebraically dependent on S if for some nonzero differential polynomial $F \in K\{X_1, \ldots, X_m\}$,

$$F(P_1(y), \ldots, P_m(y)) = 0$$
 for all $y = (y_1, \ldots, y_n) \in S$;

if no such F exists, we say that P_1, \ldots, P_m are d-algebraically independent on S, and in that case we must have $m \leq n$; the prefix d stands for *differential*. For nonempty S we define the (differential-algebraic) dimension dim S of S to be the largest m for which there exist $P_1, \ldots, P_m \in K\{Y\}$ that are d-algebraically independent on S, and if $S = \emptyset$, then we set dim $S := -\infty$.

In particular, for nonempty S, dim S = 0 means that for every $P \in K\{Y\}$ there exists a nonzero $F \in K\{X\}$, $X = X_1$, such that F(P(y)) = 0 for all $y \in S$. As an example, let $a \in K^n$ and consider $S = \{a\}$. For $P \in K\{Y\}$ we have F(P(a)) = 0 for F(X) := X - P(a), so dim $\{a\} = 0$. Also, dim $C^n = 0$ by Lemma 1.1.

Of course, this notion of dimension is relative to K, and if we need to indicate the ambient K we write $\dim_K S$ instead of $\dim S$. But this will hardly be necessary, since $\dim_K S = \dim_L S$ for any differential field extension L of K.

Below we also consider the structure (K, S): the differential field K equipped with the *n*-ary relation S. The following is a useful characterization of dimension in terms of *differential transcendence degree* (for which see [1, Section 4.1]):

Lemma 1.1. Let (K^*, S^*) be a $|K|^+$ -saturated elementary extension of (K, S) and assume S is not empty. Then

 $\dim_K S = \max\{ differential \ transcendence \ degree \ of \ K\langle s \rangle \ over \ K : \ s \in S^* \}.$

Here are some easy consequences of the definition of *dimension* and Lemma 1.1:

Lemma 1.2. Let $S, S_1, S_2 \subseteq K^n$. Then:

- (i) if S is finite and nonempty, then dim S = 0; dim $K^n = n$;
- (ii) dim $S < n \iff S \subseteq \{y \in K^n : P(y) = 0\}$ for some nonzero $P \in K\{Y\}$;
- (iii) $\dim(S_1 \cup S_2) = \max(\dim S_1, \dim S_2);$
- (iv) dim S^{σ} = dim S for each permutation σ of $\{1, \ldots, n\}$, where

 $S^{\sigma} := \{ (y_{\sigma(1)}, \dots, y_{\sigma(n)}) : (y_1, \dots, y_n) \in S \};$

- (v) if $m \leq n$ and $\pi: K^n \to K^m$ is given by $\pi(y_1, \ldots, y_n) = (y_1, \ldots, y_m)$, then $\dim \pi(S) \leq \dim S$;
- (vi) if dim S = m, then dim $\pi(S^{\sigma}) = m$ for some σ as in (iv) and π as in (v).

The next two lemmas are not in [4], and are left as easy exercises:

Lemma 1.3. dim $(S_1 \times S_2)$ = dim S_1 + dim S_2 for $S_1 \subseteq K^m$ and $S_2 \subseteq K^n$.

Lemma 1.4. dim_K $S = \dim_{K^*} S^*$ in the situation of Lemma 1.1.

Let now K^* be any elementary extension of K and suppose S is definable in K, say by the formula $\phi(y_1, \ldots, y_n)$ in the language of differential fields with names for the elements of K. Let $S^* \subseteq (K^*)^n$ be defined in K^* by the same formula $\phi(y_1, \ldots, y_n)$. Note that S^* does not depend on the choice of ϕ . We have the following easy consequence of Lemma 1.4:

Corollary 1.5. $\dim_K S = \dim_{K^*} S^*$.

Differential boundedness. For a set $S \subseteq K^{n+1}$ and $y \in K^n$ we define

$$S(y) := \{ z \in K : (y, z) \in S \}$$
 (the section of S above y).

We say that K is d-**bounded** if for every definable set $S \subseteq K^{n+1}$ there exist $P_1, \ldots, P_m \in K\{Y, Z\}$ (with Z an extra indeterminate) such that if $y \in K^n$ and $\dim S(y) = 0$, then $S(y) \subseteq \{z \in K : P_i(y, z) = 0\}$ for some $i \in \{1, \ldots, m\}$

with $P_i(y, Z) \neq 0$. (In view of Lemma 1.2(ii), this is equivalent to the differential field K being *differentially bounded* as defined on p. 203 of [4].) Here is the main consequence of d-boundedness, taken from [4]:

Proposition 1.6. Assume K is d-bounded. Let $S \subseteq K^m$ and $f: S \to K^n$ be definable. Then dim $S \ge \dim f(S)$. Moreover, for every $i \in \{0, \ldots, m\}$ the set $B(i) := \{y \in K^n : \dim f^{-1}(y) = i\}$ is definable, and dim $f^{-1}(B(i)) = i + \dim B(i)$.

As \mathbb{T} is d-bounded (see Section 3), this gives Theorem 0.1. Differentially closed fields are d-bounded, as pointed out in [4]. Guzy and Point [7] (see also [3]) show that existentially closed ordered differential fields, and Scanlon's d-henselian valued differential fields with many constants (see [1, Chapter 8]) are d-bounded.

2. DIMENSION AND CODIMENSION

This section will not be used in the rest of this paper, but is included for its own sake. The main result is Corollary 2.3. A byproduct of the treatment here is a simpler proof of [1, Theorem 5.9.1] that avoids the nontrivial facts about regular local rings used in [1], where we followed closely Johnson's proof in [10] of a more general result.

Let $y = (y_1, \ldots, y_n)$ be a tuple of elements of a differential field extension of K, and let d be the differential transcendence degree of $F := K\langle y \rangle$ over K: there are $i_1 < \cdots < i_d$ in $\{1, \ldots, n\}$ such that y_{i_1}, \ldots, y_{i_d} are d-algebraically independent over K, but there are no $i_1 < \cdots < i_d < i_{d+1}$ in $\{1, \ldots, n\}$ such that $y_{i_1}, \ldots, y_{i_d}, y_{i_{d+1}}$ are d-algebraically independent over K. We wish to characterize d alternatively as follows: there should exist n - d "independent" relations $P_1(y) = \cdots = P_{n-d}(y) = 0$, with all $P_i \in K\{Y\}$, but not more than n - d such relations. The issue here is what "independent" should mean.

We say that a d-polynomial $P \in K\{Y\}$ has order at most $\vec{r} = (r_1, \ldots, r_n) \in \mathbb{N}^n$ if $P \in K[Y_j^{(r)}: 1 \leq j \leq n, 0 \leq r \leq r_j]$. Given $P_1, \ldots, P_m \in K\{Y\}$ of order at most $\vec{r} \in \mathbb{N}^n$, consider the $m \times n$ -matrix over F with i, j-entry

$$\frac{\partial P_i}{\partial Y_j^{(r_j)}}(y) \qquad (i=1,\ldots,m, \ j=1,\ldots,n).$$

This matrix has rank $\leq \min(m, n)$. We say that P_1, \ldots, P_m are **strongly** d-independent at y if for some $\vec{r} \in \mathbb{N}^n$ with P_1, \ldots, P_m of order at most \vec{r} , this matrix has rank m; thus $m \leq n$ in that case.

Set $R := K\{Y\}$ and $\mathfrak{p} := \{P \in R : P(y) = 0\}$, a differential prime ideal of R. With these notations we have:

Lemma 2.1. There are $P_1, \ldots, P_{n-d} \in \mathfrak{p}$ that are strongly d-independent at y.

Proof. Set m := n - d and permute indices such that y_{m+1}, \ldots, y_n is a differential transcendence base of $F = K\langle y \rangle$ over K. For $i = 1, \ldots, m$, pick

$$P_i(Y_i, Y_{m+1}, \dots, Y_n) \in K\{Y_i, Y_{m+1}, \dots, Y_n\} \subseteq K\{Y\}$$

such that $P_i(Y_i, y_{m+1}, \ldots, y_n)$ is a minimal annihilator of y_i over $K\langle y_{m+1}, \ldots, y_n \rangle$. Let P_i have order r_i in Y_i . Then the minimality of P_i gives

0.0

$$\frac{\partial P_i}{\partial Y_i^{(r_i)}}(y_i, y_{m+1}, \dots, y_n) \neq 0, \qquad (i = 1, \dots, m).$$

Next we take $r_{m+1}, \ldots, r_n \in \mathbb{N}$ such that all P_i have order $\leq r_j$ in Y_j for $j = m+1, \ldots, n$. Considering all P_i as elements of $K\{Y\}$ we see that P_1, \ldots, P_m have order $\leq (r_1, \ldots, r_n)$, and that the $m \times m$ matrix

$$\left(\frac{\partial P_i}{\partial Y_j^{(r_j)}}(y)\right) \qquad (1\leqslant i,j\leqslant m)$$

is diagonal, with nonzero determinant.

We refer to [1, Section 5.4] for what it means for $P_1, \ldots, P_m \in R$ to be d-independent at y. By [1, Lemma 5.4.7], if $P_1, \ldots, P_m \in R$ are strongly d-independent at y, then they are d-independent at y (but the converse may fail). Below we show that if $P_1, \ldots, P_m \in \mathfrak{p}$ are d-independent at y, then $m \leq n - d$.

The notion of d-independence at y is more intrinsic and more flexible than that of strong d-independence at y. To discuss the former in more detail, we need some terminology from [1]. Let A be a commutative ring, \mathfrak{p} a prime ideal of A, and Man A-module; then a family (f_i) of elements of M is said to be *independent at* \mathfrak{p} if the family $(f_i + \mathfrak{p}M)$ of elements of the A/\mathfrak{p} -module $M/\mathfrak{p}M$ is linearly independent. Next, let A also be a differential ring extension of K. Then the K-algebra A yields the A-module $\Omega_{A|K}$ of Kähler differentials with the (universal) K-derivation

$$a \mapsto da = d_{A|K}a : A \to \Omega_{A|K}.$$

Following Johnson [10] we make this A-module compatibly into an $A[\partial]$ -module by $\partial(\mathrm{d} a) := \mathrm{d} \partial a$ for $a \in A$; a family of elements of $\Omega_{A|K}$ is said to be d-independent if this family is linearly independent in $\Omega_{A|K}$ viewed as an $A[\partial]$ -module. This means for $a_1, \ldots, a_m \in A$: the differentials $\mathrm{d} a_1, \ldots, \mathrm{d} a_m \in \Omega_{A|K}$ are d-independent iff the family $(\mathrm{d} a_i^{(r)})$ $(i = 1, \ldots, m, r = 0, 1, 2, \ldots)$ is linearly independent in the A-module $\Omega_{A|K}$; given also a prime ideal \mathfrak{p} of A we say that $\mathrm{d} a_1, \ldots, \mathrm{d} a_m$ are d-independent at \mathfrak{p} if the family $(\mathrm{d} a_i^{(r)})$ is independent at \mathfrak{p} in the A-module $\Omega_{A|K}$.

Returning to the differential ring extensions R and $F = K\langle y \rangle$ of K, the $R[\partial]$ module $\Omega_{R|K}$ is free on dY_1, \ldots, dY_n , by [1, Lemma 1.8.11]. The $F[\partial]$ -module $\Omega_{F|K}$ is generated by dy_1, \ldots, dy_n , as shown in [1, Section 5.9]. In [1, Section 5.3] we assign to every finitely generated $F[\partial]$ -module M a number rank $(M) \in \mathbb{N}$, and we have rank $(\Omega_{F|K}) = d$ by [1, Corollary 5.9.3].

The differential ring morphism $P \mapsto P(y): R \to F$ is the identity on K, and makes $F \otimes_R \Omega_{R|K}$ into an $F[\partial]$ -module as explained in [1, Section 5.9]. Note that the kernel of the above differential ring morphism $R \to F$ is the differential prime ideal $\mathfrak{p} = \{P \in R: P(y) = 0\}$ of R.

Lemma 2.2. Suppose $P_1, \ldots, P_m \in \mathfrak{p}$ are d-independent at y. Then $m \leq n - d$.

Proof. We have a surjective $F[\partial]$ -linear map $F \otimes_R \Omega_{R|K} \to \Omega_{F|K}$ sending $1 \otimes dP$ to dP(y) for $P \in R$. Note that $1 \otimes dP_1, \ldots, 1 \otimes dP_m$ are in the kernel of this map. By the equivalence $(1) \Leftrightarrow (5)$ and Lemma 5.9.4 in [1], the d-independence of P_1, \ldots, P_m at y gives that $1 \otimes dP_1, \ldots, 1 \otimes dP_m \in F \otimes_R \Omega_{R|K}$ are $F[\partial]$ -independent (meaning: linearly independent in this $F[\partial]$ -module). Since the $R[\partial]$ -module $\Omega_{R|K}$ is free on dY_1, \ldots, dY_n , the $F[\partial]$ -module $F \otimes_R \Omega_{R|K}$ is free on $1 \otimes dY_1, \ldots, 1 \otimes dY_n$, and so has rank n. To get $m + d \leq n$ it remains to use [1, Corollary 5.9.3] and the fact that $\operatorname{rank}(\Omega_{F|K}) = d$.

Combining the previous two lemmas we conclude:

Corollary 2.3. The codimension n - d can be characterized as follows:

- $n-d = \max\{m : some \ P_1, \dots, P_m \in \mathfrak{p} \text{ are d-independent at } y\}$
 - $= \max\{m : some \ P_1, \ldots, P_m \in \mathfrak{p} \ are \ strongly \ d\text{-independent} \ at \ y\}.$

This yields a strengthening of Theorem 5.9.1 and its Corollary 5.9.6 in [1]:

Corollary 2.4. The following are equivalent:

- (i) y_1, \ldots, y_n are d-algebraic over K;
- (ii) there exist $P_1, \ldots, P_n \in \mathfrak{p}$ that are d-independent at y;
- (iii) there exist $P_1, \ldots, P_n \in \mathfrak{p}$ that are are strongly d-independent at y.

To formulate the above in terms of sets $S \subseteq K^n$ we recall that the Kolchin topology on K^n (called the *differential-Zariski topology on* K^n in [4]) is the topology on K^n whose closed sets are the sets

$$\{y \in K^n : P_1(y) = \dots = P_m(y) = 0\}$$
 $(P_1, \dots, P_m \in K\{Y\}).$

This is a noetherian topology, and so a Kolchin closed subset of K^n is the union of its finitely many irreducible components. For $S \subseteq K^n$ we let S^{Ko} be its Kolchin closure in K^n with respect to the Kolchin topology. Note that dim $S = \dim S^{\text{Ko}}$, since for all $P \in K\{Y\}$ we have: if P = 0 on S (that is, P(y) = 0 for all $y \in S$), then P = 0 on S^{Ko} .

Suppose S^{Ko} is irreducible. A **tuple of** m **independent relations on** S is defined to be a tuple $(P_1, \ldots, P_m) \in K\{Y\}^m$ such that

- (1) $P_1(y) = \cdots = P_m(y) = 0$ for all $y \in S$;
- (2) P_1, \ldots, P_m are d-independent at some $y \in S$.

Similarly we define a **tuple of** m strongly independent relations on S, by replacing "d-independent" in (2) by "strongly d-independent". Every tuple of strongly independent relations on S is a tuple of independent relations on S. Since S^{Ko} is irreducible,

$$\mathfrak{p} := \{ P \in K\{Y\} : P = 0 \text{ on } S \}$$

is a differential prime ideal of $K\{Y\}$. Letting $K\{y\} = K\{Y\}/\mathfrak{p}$ be the corresponding differential K-algebra (an integral domain) with $y = (y_1, \ldots, y_n)$, $y_i = Y_i + \mathfrak{p}$, for $P \in K\{Y\}$ we have P(y) = 0 iff P = 0 on S. So the considerations above applied to y yield for $d := \dim S$ and irreducible S^{K_0} :

Corollary 2.5. There is a tuple of m strongly independent relations on S for m = n - d, but there is no tuple of m independent relations on S for m > n - d.

3. The Case of \mathbb{T}

The paper [4] contains an axiomatic framework for a reasonable notion of dimension for the definable sets in suitable model-theoretic structures with a topology. In this section we show that as a consequence of [1, Chapter 16] the relevant axioms are satisfied for \mathbb{T} with its order topology.

To state the necessary facts about \mathbb{T} from [1] we recall from that book that an *H*-field is an ordered differential field K with constant field C such that:

(H1) $\partial(a) > 0$ for all $a \in K$ with a > C;

(H2) $\mathcal{O} = C + \sigma$, where \mathcal{O} is the convex hull of C in the ordered field K, and σ is the maximal ideal of the valuation ring \mathcal{O} .

Let K be an H-field, and let \mathcal{O} and σ be as in (H2). Thus K is a valued field with valuation ring \mathcal{O} . The valuation topology on K equals its order topology if $C \neq K$. We consider K as an \mathcal{L} -structure, where

$$\mathcal{L} := \{0, 1, +, -, \times, \partial, P, \preccurlyeq\}$$

is the language of ordered valued differential fields. The symbols $0, 1, +, -, \times, \partial$ are interpreted as usual in K, and P and \preccurlyeq encode the ordering and the valuation:

 $P(a) \iff a > 0, \qquad a \preccurlyeq b \iff a \in \mathcal{O}b \qquad (a, b \in K).$

Given $a \in K$ we also write a' instead of $\partial(a)$, and we set $a^{\dagger} := a'/a$ for $a \neq 0$.

The real closed (and thus ordered) differential field \mathbb{T} is an *H*-field, and in [1] we showed that it is a model of a model-complete \mathcal{L} -theory T^{nl} . The models of the latter are exactly the *H*-fields *K* satisfying the following (first-order) conditions:

(1) K is Liouville closed;

(2) K is ω -free;

(3) K is newtonian.

(An *H*-field *K* is said to be *Liouville closed* if it is real closed and for all $a \in K$ there exists $b \in K$ with a = b' and also a $b \in K^{\times}$ such that $a = b^{\dagger}$; for the definition of " $\boldsymbol{\omega}$ -free" and "newtonian" we refer to the Introduction of [1].) Since "Liouville closed" includes "real closed", the ordering (and thus the valuation ring) of any model of T^{nl} is definable in the underlying differential field of the model. We shall prove the dimension results in this paper for all models of T^{nl} : working in this section we fix an arbitrary model *K* of T^{nl} , that is, *K* is a Liouville closed $\boldsymbol{\omega}$ -free newtonian *H*-field. Lemma 1.2(ii) and [1, Corollary 16.6.4] yield:

Corollary 3.1. For definable $S \subseteq K^n$,

 $\dim S = n \iff S$ has nonempty interior in K^n .

To avoid confusion with the Kolchin topology, we consider K here and below as equipped with its order topology, and K^n with the corresponding product topology. Combining the previous corollary with (iv)–(vi) in Lemma 1.2 yields a topological characterization of dimension:

Corollary 3.2. For nonempty definable $S \subseteq K^n$, dim S is the largest $m \leq n$ such that for some permutation σ of $\{1, \ldots, n\}$, the subset $\pi_m(S^{\sigma})$ of K^m has nonempty interior; here $\pi_m(x_1, \ldots, x_n) := (x_1, \ldots, x_m)$ for $(x_1, \ldots, x_n) \in K^n$.

In particular, if $S \subseteq K^n$ is semialgebraic in the sense of the real closed field K, then dim S agrees with the usual semialgebraic dimension of S over K.

To get that K is d-bounded, we introduce two key subsets of K, namely $\Lambda(K)$ and $\Omega(K)$. They are defined by the following equivalences, for $a \in K$:

$$a \in \Lambda(K) \iff a = -y^{\dagger\dagger}$$
 for some $y \succ 1$ in K ,
 $a \in \Omega(K) \iff 4y'' + ay = 0$ for some $y \in K^{\times}$.

To describe these sets more concretely for $K = \mathbb{T}$, set $\ell_0 := x$ and $\ell_{n+1} := \log \ell_n$, so ℓ_n is the *n*th iterated logarithm of x in \mathbb{T} . Then for $f \in \mathbb{T}$,

$$\begin{split} f \in \Lambda(\mathbb{T}) &\iff f < \frac{1}{\ell_0} + \frac{1}{\ell_0 \ell_1} + \dots + \frac{1}{\ell_0 \ell_1 \dots \ell_n} \quad \text{for some } n, \\ f \in \Omega(\mathbb{T}) &\iff f < \frac{1}{\ell_0^2} + \frac{1}{\ell_0^2 \ell_1^2} + \dots + \frac{1}{\ell_0^2 \ell_1^2 \dots \ell_n^2} \quad \text{for some } n, \end{split}$$

by [1, Example after 11.8.19; Proposition 11.8.20 and Corollary 11.8.21]. The set $\Lambda(K)$ is closed downward in K: if $a \in K$ and $a < b \in \Lambda(K)$, then $a \in \Lambda(K)$; and $\Lambda(K)$ has an upper bound in K but no least upper bound; these properties also hold for $\Omega(K)$ instead of $\Lambda(K)$. From Chapter 16 of [1] we need that T^{nl} has a certain extension by definitions $T^{nl}_{\Lambda\Omega}$ that has QE: the language of $T^{nl}_{\Lambda\Omega}$ is \mathcal{L} augmented by two extra binary relation symbols R_{Λ} and R_{Ω} , to be interpreted in Kaccording to

$$aR_{\Lambda}b \iff a \in \Lambda(K)b, \qquad aR_{\Omega}b \iff a \in \Omega(K)b.$$

(The language of $T_{\Lambda\Omega}^{nl}$ in [1, Chapter 16] is slightly different, but yields the same notion of what is quantifier-free definable. The version here is more convenient for our purpose.) Using that $\Lambda(K)$ and $\Omega(K)$ are open-and-closed in K, it is routine (but tedious) to check that K satisfies the differential analogue of [4, 2.15] that is discussed on p. 203 of that paper in a general setting. Thus:

Corollary 3.3. K is d-bounded; in particular, \mathbb{T} is d-bounded.

Moreover, [4, p. 203] points out the following consequence (extending Corollary 3.1):

Corollary 3.4. Every nonempty definable set $S \subseteq K^n$ has nonempty interior in the Kolchin closure S^{K_0} of S in K^n .

(By our earlier convention, the *interior* here refers to the topology on S^{Ko} induced by the product topology on K^n that comes from the order topology on K.) For nonempty definable $S \subseteq K^n$ with closure cl(S) in K^n we have

$$\dim(\operatorname{cl}(S) \setminus S) < \dim S.$$

This is analogous to [4, 2.23], but the proof there doesn't go through. We intend to show this dimension decrease in a follow-up paper.

4. Dimension 0 = Discrete

Let K be a Liouville closed $\boldsymbol{\omega}$ -free newtonian H-field, with the order topology on K and the corresponding product topology on each K^n . Corollary 16.6.11 in [1] and its proof yields the following equivalences for definable $S \subseteq K$:

 $\dim S = 0 \iff S$ has empty interior $\iff S$ is discrete.

We now extend part of this to definable subsets of K^n . The proof of one of the directions is rather curious and makes full use of the resources of [1].

Proposition 4.1. For definable nonempty $S \subseteq K^n$:

$$\dim S = 0 \iff S \text{ is discrete.}$$

Proof. For i = 1, ..., n we let $\pi_i \colon K^n \to K$ be given by $\pi_i(a_1, ..., a_n) = a_i$. If dim S = 0, then dim $\pi_i(S) = 0$ for all i, so $\pi_i(S)$ is discrete for all i, hence the cartesian product $\pi_1(S) \times \cdots \times \pi_n(S) \subseteq K^n$ is discrete, and so is its subset S.

Now for the converse. Assume $S \subseteq K^n$ is discrete. We first replace K by a suitable countable elementary substructure over which S is defined and S by its corresponding trace. Now that K is countable we next pass to its completion K^c as defined in [1, Section 4.4], which by [1, 14.1.6] is an elementary extension of K. Replacing K by K^c and S by the corresponding extension, the overall effect is that we have arranged K to be *uncountable*, but with a *countable* base for its topology. Then the discrete set S is countable, so $\pi_i(S) \subseteq K$ is countable for each i, hence with empty interior, so $\dim \pi_i(S) = 0$ for all i, and thus $\dim S = 0$.

Corollary 4.2. If $S \subseteq K^n$ is definable and discrete, then there is a neighborhood U of $0 \in K^n$ such that $(s_1 + U) \cap (s_2 + U) = \emptyset$ for all distinct $s_1, s_2 \in S$.

Proof. Let $S \subseteq K^n$ $(n \ge 1)$ be nonempty, definable, and discrete. For $y \in K^n$ we set $|y| := \max_i |y_i|$. The set $D := \{|a - b| : a, b \in S\}$ is the image of a definable map $S^2 \to K$, so D is definable with dim D = 0 and $0 \in D$. Thus D is discrete, so $(-\varepsilon, \varepsilon) \cap D = \{0\}$ for some $\varepsilon \in K^>$, which gives the desired conclusion. \Box

In particular, any definable discrete subset of K^n is closed in K^n .

5. PARAMETRIZABILITY BY CONSTANTS

Let K be a Liouville closed ω -free newtonian H-field. Then K induces on its constant field C just C's structure as a real closed field, by [1, 16.0.2(ii)], that is, a set $X \subseteq C^m$ is definable in K iff X is semialgebraic in the sense of C.

Let $S \subseteq K^n$ be definable. We say that S is **parametrizable by constants** if $S \subseteq f(C^m)$ for some m and some definable map $f: C^m \to K^n$; equivalently, S = f(X) for some injective definable map $f: X \to K^n$ with semialgebraic $X \subseteq C^m$ for some m. (The reduction to injective f uses the fact mentioned above about the induced structure on C.) For example, if $P \in K\{Y\}$ is a differential polynomial of degree 1 in a single indeterminate Y, then the set $\{y \in K : P(y) = 0\}$ is either empty or a translate of a finite-dimensional C-linear subspace of K, and so this set is parametrizable by constants. The definable sets in K^n for n = 0, 1, 2, ... that are parametrizable by constants make up a very robust class: it is closed under taking definable subsets, and under some basic logical operations: taking finite unions (in the same K^n), cartesian products, and images under definable maps. Moreover:

Lemma 5.1. Let $S \subseteq K^n$ and $f: S \to C^m$ be definable, and let $e \in \mathbb{N}$ be such that $|f^{-1}(c)| \leq e$ for all $c \in C^m$. Then S is parametrizable by constants.

Proof. By partitioning S appropriately we reduce to the case that for all $c \in f(S)$ we have $|f^{-1}(c)| = e$. Using the lexicographic ordering on K^n this yields definable injective $g_1, \ldots, g_e \colon f(S) \to K^n$ such that $f^{-1}(c) = \{g_1(c), \ldots, g_e(c)\}$ for all $c \in f(S)$. Thus $S = g_1(f(S)) \cup \cdots \cup g_e(f(S))$ is parametrizable by constants. \Box

Suppose $S \subseteq K^n$ be definable. Note that if S is parametrizable by constants, then $\dim S \leq 0$. The question arises if the converse holds: does it follow from $\dim S = 0$ that S is parametrizable by constants? We show that the answer is negative for $K = \mathbb{T}$ and the set

$$\{y \in \mathbb{T} : yy'' = (y')^2\} = \{a e^{bx} : a, b \in \mathbb{R}\}.$$

This set has dimension 0 and we claim that it is not parametrizable by constants. (The map $(a, b) \mapsto a e^{bx} : \mathbb{R}^2 \to \mathbb{T}$ would be a parametrization of this set by constants if exp were definable in \mathbb{T} ; we return to this issue at the end of this section.) To justify this claim we appeal to a special case of results from [2]:

For any finite set $A \subseteq \mathbb{T}$ there exists an automorphism of the differential field \mathbb{T} over A that is not the identity on $\{e^{bx} : b \in \mathbb{R}\}$.

The claimed nonparametrizability by constants follows when we combine this fact with the observation that if $f: \mathbb{R}^m \to \mathbb{T}$ is definable in \mathbb{T} , say over the finite set $A \subseteq \mathbb{T}$, then any automorphism of the differential field \mathbb{T} over A fixes each real number, and so it fixes each value of the function f.

Below Y is a single indeterminate, and for $P \in K\{Y\}$ we let

$$Z(P) := \{ y \in K : P(y) = 0 \}.$$

Thus $Z(YY'' - (Y')^2) = \{a e^{bx} : a, b \in \mathbb{R}\}$ for $K = \mathbb{T}$ and $YY'' - (Y')^2$ has order 2. What about the parametrizability of Z(P) for P of order 1? In the next two lemmas we consider the special case P(Y) = F(Y)Y' - G(Y) where $F, G \in C[Y]^{\neq}$ have no common factor of positive degree.

Lemma 5.2. If $\frac{F}{G} = c \frac{\partial R}{\partial Y} / R$ for some $c \in C^{\times}$, $R \in C(Y)^{\times}$, or $\frac{F}{G} = \frac{\partial R}{\partial Y}$ for some $R \in C(Y)^{\times}$, then Z(P) is parametrizable by constants.

Proof. Suppose $\frac{F}{G} = c \frac{\partial R}{\partial Y} / R$ where $c \in C^{\times}$, $R \in C(Y)^{\times}$. Since K is Liouville closed we can take $b \in K^{\times}$ with $b^{\dagger} = 1/c$. Set $S := \{y \in \mathbb{Z}(P) : G(y) \neq 0, R(y) \neq 0, \infty\}$. Then for $y \in S$ we have

$$0 = G(y) \left(\frac{F(y)}{G(y)} y' - 1 \right) = G(y) \left(c \left(\frac{\partial R}{\partial Y} / R \right) (y) y' - 1 \right) = G(y) \left(c R(y)^{\dagger} - 1 \right)$$

and so $R(y) \in C^{\times}b$. It is clear that we can take $e \in \mathbb{N}$ such that the definable map $f: S \to C$ given by f(y) := R(y)/b for $y \in S$ satisfies $|f^{-1}(c)| \leq e$ for all $c \in C$. Hence S, and thus Z(P), is parametrizable by constants by Lemma 5.1. Next, suppose that $\frac{F}{G} = \frac{\partial R}{\partial Y}$ where $R \in C(Y)$. Take $x \in K$ with x' = 1 and set $S := \{y \in Z(P) : G(y) \neq 0, R(y) \neq \infty\}$. As before we obtain for $y \in S$ that $R(y) \in x + C$, and so Z(P) is parametrizable by constants.

Let $Q \in K\{Y\}$ be irreducible and let a be an element of a differential field extension of K with minimal annihilator Q over K. We say that Q creates a constant if $C_{K\langle a \rangle} \neq C$. (This is related to the concept of "nonorthogonality to the constants" in the model theory of differential fields; see [12, Proposition 2.6].) Note that our P = F(Y)Y' - G(Y) is irreducible in $K\{Y\}$.

Lemma 5.3. P creates a constant iff $\frac{F}{G} = c \frac{\partial R}{\partial Y} / R$ for some $c \in C^{\times}$, $R \in C(Y)^{\times}$, or $\frac{F}{G} = \frac{\partial R}{\partial Y}$ for some $R \in C(Y)^{\times}$.

Proof. The forward direction holds by Rosenlicht [15, Proposition 2]. For the backward direction, take an element a of a differential field extension of K with minimal annihilator P over K. Consider first the case $\frac{F}{G} = c \frac{\partial R}{\partial Y}/R$ where $c \in C^{\times}$ and $R \in C(Y)^{\times}$. Take $b \in K^{\times}$ with $b^{\dagger} = 1/c$. As in the proof of Lemma 5.2 we obtain $0 = P(a) = G(a)(cR(a)^{\dagger} - 1)$ with $G(a) \neq 0$, and thus $R(a)/b \in C_{K\langle a \rangle}$ and $R(a)/b \notin K$. The case $\frac{F}{G} = \frac{\partial R}{\partial Y}$ with $R \in C(Y)^{\times}$ is handled likewise.

The following proposition therefore generalizes Lemma 5.2:

10

Proposition 5.4. If $P \in K\{Y\}$ is irreducible of order 1 and creates a constant, then Z(P) is parametrizable by constants.

Before we give the proof of this proposition, we prove two lemmas, in both of which we let $P \in K\{Y\}$ be irreducible of order 1 such that Z(P) is infinite.

Lemma 5.5. Let $Q \in K[Y, Y'] \subseteq K\{Y\}$. Then $Z(P) \subseteq Z(Q)$ iff $Q \in PK[Y, Y']$.

Proof. Suppose $Z(P) \subseteq Z(Q)$ but $Q \notin PK[Y,Y']$. Put F := K(Y). By Gauss' Lemma, P viewed as element of F[Y'] is irreducible and $Q \notin PF[Y']$. Thus there are $A, B \in K[Y,Y'], D \in K[Y]^{\neq}$ with D = AP + BQ. Then $Z(P) \subseteq Z(D)$ is finite, a contradiction.

Lemma 5.6. There is an element a in an elementary extension of K with minimal annihilator P over K.

Proof. Given $Q_1, \ldots, Q_n \in K[Y, Y']^{\neq}$ with $\deg_{Y'} Q_i < \deg_{Y'} P$ for $i = 1, \ldots, n$, the previous lemma applied to $Q := Q_1 \cdots Q_n$ yields some $y \in K$ with P(y) = 0 and $Q_i(y) \neq 0$ for all $i = 1, \ldots, n$. Now use compactness. \Box

Proof of Proposition 5.4. We can assume that S := Z(P) is infinite. The preceding lemma yields an element a in an elementary extension of K with P(a) = 0 and $Q(a) \neq 0$ for all $Q \in K[Y, Y']^{\neq}$ with $\deg_{Y'} Q < d := \deg_{Y'} P$. In particular, ais transcendental over K. Since P creates a constant, $K\langle a \rangle = K(a, a')$ has a constant $c \notin C$. We have c = A(a)/B(a) with $A \in K[Y, Y']$, $\deg_{Y'} A < d$, $B \in K[Y]^{\neq}$. From c' = 0 we get A'(a)B(a) - A(a)B'(a) = 0, so

$$A'(Y)B(Y) - A(Y)B'(Y) = D(Y)P(Y) \text{ in } K\{Y\} \text{ with } D \in K[Y].$$

Hence for $y \in S$ with $B(y) \neq 0$ we have (A(y)/B(y))' = 0, that is, $A(y)/B(y) \in C$. Thus for $S_B := \{y \in S : B(y) \neq 0\}$ we have a definable map

$$f: S_B \to C, \qquad f(y) := A(y)/B(y).$$

Since c is transcendental over K, a is algebraic over K(c), say

$$F_0(c)a^e + F_1(c)a^{e-1} + \dots + F_e(c) = 0,$$

where $F_0, F_1, \ldots, F_e \in K[Z]$ have no common divisor of positive degree in K[Z]. Let $G := \partial P / \partial Y'$ be the separant of P. Then $G(a) \neq 0$, K[a, a', 1/B(a), 1/G(a)] is a differential subring of K(a, a'), and every $y \in S_B$ with $G(y) \neq 0$ yields a differential ring morphism

$$\phi_y : K[a, a', 1/B(a), 1/G(a)] \rightarrow K$$

that is the identity on K with $\phi_y(a) = y$; see the subsection on minimal annihilators in [1, Section 4.1]. Moreover, $c = A(a)/B(a) \in K[a, a', 1/B(a), 1/G(a)]$, and so for $y \in S_B$ with $G(y) \neq 0$ we have $\phi_y(c) = A(y)/B(y) = f(y)$, so

$$F_0(f(y))y^e + F_1(f(y))y^{e-1} + \dots + F_e(f(y)) = 0.$$

Set $S_{B,G} := \{ y \in S_B : G(y) \neq 0 \}$. Then $S \setminus S_{B,G}$ is finite, and the above shows that for all $z \in f(S_{B,G})$ we have $|f^{-1}(z) \cap S_{B,G}| \leq e$. Now use Lemma 5.1. \Box

Freitag [6] proves a generalization of Lemma 5.3. Nishioka ([13], see also [11, p. 90]) gives sufficient conditions on irreducible differential polynomials of order 1 to create a constant, involving the concept of "having no movable singularities"; this can be used to give further examples of $P \in K\{Y\}$ of order 1 whose zero set is

parametrizable by constants. But we do not know whether Z(P) is parametrizable by constants for every $P \in K\{Y\}$ of order 1.

Open problems. The definable set

$$\{y \in \mathbb{T} : yy'' = (y')^2\} = \{a e^{bx} : a, b \in \mathbb{R}\} \subseteq \mathbb{T}^2$$

is the image of the map $(a, b) \mapsto a e^{bx}$: $\mathbb{R}^2 \to \mathbb{T}^2$, and so by the above negative result this map is not definable in the differential field \mathbb{T} . But it is definable in the *exponential* differential field (\mathbb{T}, \exp) , where exponentiation on \mathbb{T} is taken as an extra primitive. This raises the question whether parametrizability by constants holds in an extended sense where the parametrizing maps are allowed to be definable in (\mathbb{T}, \exp) . More precisely, if $S \subseteq \mathbb{T}^n$ is definable in \mathbb{T} with dim S = 0, does there always exist an m and a map $f: \mathbb{R}^m \to \mathbb{T}^n$, definable in (\mathbb{T}, \exp) , with $S \subseteq f(\mathbb{R}^n)$? (It is enough to have this for n = 1 and $S = \{y \in \mathbb{T} : P(y) = 0\}$, $P \in \mathbb{T}\{Y\}^{\neq}$.)

This is of course related to the issue whether the results in [1, Chapter 16] about \mathbb{T} generalize to its expansion (\mathbb{T} , exp). In particular, is the structure induced on \mathbb{R} by (\mathbb{T} , exp) just the exponential field structure of \mathbb{R} ?

It would be good to know more about the order types of discrete definable subsets of Liouville closed $\boldsymbol{\omega}$ -free newtonian *H*-fields *K*. For example, can any such set have order type ω , or more generally, have an initial segment of order type ω ?

6. Dimension 0 = Co-Analyzable Relative to the Constant Field

Parametrizability by constants was our first guess of the model-theoretic significance of [1, Theorem 16.0.3] which says that a Liouville closed $\boldsymbol{\omega}$ -free newtonian *H*-field has no proper differentially-algebraic *H*-field extension with the same constants. As we saw, this guess failed on the set of zeros of $YY'' - (Y')^2$. We subsequently realized that the notion of *co-analyzability* from [8] fits exactly our situation. Below we expose what we need from that paper, and next we apply it to \mathbb{T} .

Co-analyzability. We adopt here the model-theory notations of [1, Appendix B]. Let \mathcal{L} be a first-order language with a distinguished unary relation symbol C. For convenience we assume \mathcal{L} is *one-sorted*. Let $\mathbf{M} = (M; ...)$ be an \mathcal{L} -structure and let $C^{\mathbf{M}} \subseteq M$ (or just C if \mathbf{M} is clear from the context) be the interpretation of the symbol C in \mathbf{M} ; we assume $C \neq \emptyset$.

Assume M is ω -saturated. Let $S \subseteq M^n$ be definable. By recursion on $r \in \mathbb{N}$ we define what makes S co-analyzable in r steps (tacitly: relative to M and C):

(C₀) S is co-analyzable in 0 steps iff S is finite;

 (C_{r+1}) S is co-analyzable in r+1 steps iff for some definable set $R \subseteq C \times M^n$,

- (a) the natural projection $C \times M^n \to M^n$ maps R onto S;
- (b) for each $c \in C$, the section $R(c) := \{s \in M^n : (c, s) \in R\}$ above c is co-analyzable in r steps.

We call S co-analyzable if S is co-analyzable in r steps for some r.

Thus in (C_{r+1}) the set R gives rise to a covering $S = \bigcup_{c \in C} R(c)$ of S by definable sets R(c) that are co-analyzable in r steps. Of course, the definable set $C^r \subseteq M^r$ is the archetype of a definable set that is co-analyzable in r steps. Note that if Sis co-analyzable in 1 step, then the ω -saturation of M yields for R as in (C_1) a uniform bound $e \in \mathbb{N}$ such that $|R(c)| \leq e$ for all $c \in C$. This ω -saturation gives likewise an automatic uniformity in (C_{r+1}) that enables us to extend the notion of co-analyzability appropriately to arbitrary M (not necessarily ω -saturated). Before doing this, we mention some easy consequences of the definition above where we do assume M is ω -saturated. First, if the definable set $S \subseteq M^n$ is co-analyzable in r steps, then S is co-analyzable in r + 1 steps: use induction on r. Second, if the definable set $S \subseteq M^n$ is co-analyzable in r steps, then so is any definable subset of S, and the image f(S) under any definable map $f: S \to M^m$. Third, if the definable sets $S_1, S_2 \subseteq M^n$ are co-analyzable in r_1 and r_2 steps, respectively, then $S_1 \cup S_2$ is co-analyzable in $\max(r_1, r_2)$ steps. Finally, if the definable sets $S_1 \subseteq M^{n_1}$ and $S_2 \subseteq M^{n_2}$ are co-analyzable in r_1 steps and r_2 steps, respectively, then $S_1 \times S_2 \subseteq M^{n_1+n_2}$ is co-analyzable in $r_1 + r_2$ steps. In any case, the class of co-analyzable definable sets is clearly very robust.

Next we extend the notion above to arbitrary M, not necessarily ω -saturated. Let $S \subseteq M^n$ be definable. Define an *r*-step co-analysis of S by recursion on $r \in \mathbb{N}$ as follows: for r = 0 it is an $e \in \mathbb{N}$ with $|S| \leq e$. For r = 1 it is a tuple (e, R) with $e \in \mathbb{N}$ and definable $R \subseteq C \times M^n$ such that the natural projection $C \times M^n \to M^n$ maps R onto S, and $|R(c)| \leq e$ for all $c \in C$. Given $r \geq 1$, an (r + 1)-step co-analysis of S is a tuple $(e, R_1, \ldots, R_{r+1})$ with $e \in \mathbb{N}$ and definable sets

$$R_i \subseteq C \times M^n \times M^{d_i} \times \dots \times M^{d_r} \quad (i = 1, \dots, r+1, \ d_1, \dots, d_r \in \mathbb{N}),$$

(so $R_{r+1} \subseteq C \times M^n$), such that the natural projection $C \times M^n \to M^n$ maps R_{r+1} onto S, and for each $c \in C$ there exists $b \in M^{d_r}$ for which the tuple $(e, R_1^b, \ldots, R_r^b)$ is an r-step co-analysis of $R_{r+1}(c) \subseteq S$. (Here we use the following notation for a relation $R \subseteq P \times Q$: for $q \in Q$ we set $R^q := \{p \in P : (p,q) \in R\}$.)

For model-theoretic use the reader should note the following uniformity with respect to parameters from M^m : let $e, R_1, \ldots, R_{r+1}, S$ be given with $e \in \mathbb{N}$, 0definable $R_i \subseteq M^m \times C \times M^{d_i} \times \cdots \times M^{d_r}$ for $i = 1, \ldots, r+1$, and 0-definable $S \subseteq M^m \times M^n$. Then the set of $a \in M^m$ such that $(e, R_1(a), \ldots, R_{r+1}(a))$ is an (r+1)-step co-analysis of S(a) is 0-definable. Moreover, one can take a defining \mathcal{L} formula for this subset of M^m that depends only on e and given defining \mathcal{L} -formulas for R_1, \ldots, R_{r+1}, S , not on M.

If M is ω -saturated, then a definable set $S \subseteq M^n$ can be shown to be co-analyzable in r steps iff there exists an r-step co-analysis of S. (To go from co-analyzable in r steps to an r-step co-analysis requires the uniformity noted above.) Thus for arbitrary M and definable $S \subseteq M^n$ we can define without ambiguity S to be coanalyzable in r steps if there exists an r-step co-analysis of S; likewise, S is defined to be co-analyzable if S is co-analyzable in r steps for some r. After the proof of Lemma 6.3 we give an example of a definable $S \subseteq \mathbb{T}$ that is co-analyzable in 2 steps but not in 1 step (relative to \mathbb{T} and \mathbb{R}).

Let $S \subseteq M^n$ be definable and M^* an elementary extension of M. We denote by $S^* \subseteq (M^*)^n$ the extension of S to M^* : choose an \mathcal{L}_M -formula $\varphi(x)$, where $x = (x_1, \ldots, x_n)$, with $S = \varphi^M$, and set $S^* := \varphi^{M^*}$. Then for a tuple $(e, R_1, \ldots, R_{r+1})$ with $e, r \in \mathbb{N}$ and definable $R_i \subseteq C \times M^n \times M^{d_i} \times \cdots \times M^{d_r}$ for $i = 1, \ldots, r+1$ we have: $(e, R_1, \ldots, R_{r+1})$ is an (r+1)-step co-analysis of S iff $(e, R_1^*, \ldots, R_{r+1})$ is an (r+1)-step co-analysis of S^* . Here is [8, Proposition 2.4]:

Proposition 6.1. Let the language \mathcal{L} be countable and let T be a complete \mathcal{L} -theory such that $T \vdash \exists x C(x)$. Then the following conditions on an \mathcal{L} -formula $\varphi(x)$ with $x = (x_1, \ldots, x_n)$ are equivalent:

- (i) for some model M of T, φ^M is co-analyzable;

- (i) for some model M of T, φ^{M} is co-analyzable; (ii) for every model M of T, $if C^{M}$ is co-analyzable; (iii) for every model M of T, if C^{M} is countable, then so is φ^{M} ; (iv) for all models $M \preccurlyeq M^{*}$ of T, if $C^{M} = C^{M^{*}}$, then $\varphi^{M} = \varphi^{M^{*}}$.

The equivalence (i) \Leftrightarrow (ii) and the implication (ii) \Rightarrow (iii) are clear from the above, and (iii) \Rightarrow (iv) holds by Vaught's two-cardinal theorem [9, Theorem 12.1.1]. The contrapositive of (iv) \Rightarrow (i) is obtained in [8] by an omitting types argument.

Application to \mathbb{T} . Let \mathcal{L} be the language of ordered valued differential fields from Section 3, except that we consider it as having in addition a distinguished unary relation symbol C; an H-field is construed as an \mathcal{L} -structure as before, with C in addition interpreted as its constant field.

Let K be a Liouville closed ω -free newtonian H-field and $P \in K\{Y\}^{\neq}$. If $K \preccurlyeq K^*$ and K and K^* have the same constants, then P has the same zeros in K and K^* , by [1, Theorem 16.0.3]. Thus the zero set $Z(P) \subseteq K$ is co-analyzable by Proposition 6.1 applied to the \mathcal{L}_A -theory $T := \operatorname{Th}(K_A)$ where A is the finite set of nonzero coefficients of P. In fact:

Proposition 6.2. Let $S \subseteq K^n$ be definable, $S \neq \emptyset$. Then

S is co-analyzable $\iff \dim S = 0.$

Proof. Suppose dim S = 0. Then for i = 1, ..., n and the *i*th coordinate projection $\pi_i \colon K^n \to K$ we have dim $\pi_i(S) = 0$, and thus $\pi_i(S) \subseteq \mathbb{Z}(P_i)$ with $P_i \in K\{Y\}^{\neq}$. Since each $Z(P_i)$ is co-analyzable and $S \subseteq Z(P_1) \times \cdots \times Z(P_n)$, we conclude that S is co-analyzable. Conversely, assume that S is co-analyzable, say in r steps. To get dim S = 0 we can arrange that K is ω -saturated. Using dim C = 0 and induction on r it follows easily from the behavior of dimension in definable families (Theorem 0.1) that $\dim S = 0$.

Let $\dim_C S$ be the least $r \in \mathbb{N}$ such that S is co-analyzable in r steps, for nonempty definable $S \subseteq K^n$ with dim S = 0 (and dim_C $\emptyset := -\infty$). It is easy to show that $\dim_C S$ coincides with the usual semialgebraic dimension of S (with respect to the real closed field C) when $S \subseteq C^n$ is semialgebraic. In general, $\dim_C S$ behaves much like a dimension function, and it would be good to confirm this by showing for example that for definable $S_i \subseteq K^{n_i}$ with dim $S_i = 0$ for i = 1, 2 we have

$$\dim_C S_1 \times S_2 = \dim_C S_1 + \dim_C S_2.$$

(We do know that the quantity on the left is at most that on the right.) Another question is whether $\dim_C Z(P) \leq \operatorname{order}(P)$ for $P \in K\{Y\}^{\neq}$.

Towards the uniform finiteness property mentioned at the end of the introduction, we introduce a condition that is equivalent to co-analyzability.

Let K be ω -saturated and $S \subseteq K^n$ be definable. By recursion on $r \in \mathbb{N}$ we define what makes S fiberable by C in r steps: for r = 0 it means that S is finite; S is fiberable by C in (r+1) steps iff there is a definable map $f: S \to C$ such that $f^{-1}(c)$ is fiberable by C in r steps for every $c \in C$.

Lemma 6.3. S is co-analyzable in r steps iff S is fiberable by C in r steps.

Proof. By induction on r. The case r = 0 is trivial. Assume S is co-analyzable in (r+1) steps, so we have a definable $R \subseteq C \times K^n$ that is mapped onto S under the natural projection $C \times K^n \to K^n$ and such that R(c) is co-analyzable in r steps for all r. For $s \in S$ the definable nonempty set $R^s \subseteq C$ is a finite union of intervals and points, and so we can pick a point $f(s) \in R^s$ such that the resulting function $f: S \to C$ is definable. Then $f^{-1}(c) \subseteq R(c)$ is co-analyzable in r steps for all $c \in C$, and so fiberable by C in r steps by the inductive assumption. Thus f witnesses that S is fiberable by C in (r+1) steps. The other direction is clear. \Box

As an example, consider $S = Z(YY'' - (Y')^2)$. Then we have a definable (surjective) function $f: S \to C$ given by $f(y) = y^{\dagger}$ for nonzero $y \in S$, and f(0) = 0. For $c \in C^{\times}$ we take any $y \in S$ with f(y) = c, and then $f^{-1}(c) = C^{\times}y$; also $f^{-1}(0) = C$. Thus fwitnesses that S is fiberable by C in two steps. Moreover, S is not fiberable by C in one step: if it were, Lemma 5.1 would make S parametrizable by constants, which we know is not the case.

An advantage of fiberability by C over co-analyzability is that for $f: S \to C$ and $R \subseteq C \times S$ witnessing these notions the fibers $f^{-1}(c)$ in $S = \bigcup_c f^{-1}(c)$ are pairwise disjoint, which is not necessarily the case for the sections R(c) in $S = \bigcup_c R(c)$. Below we use the equivalence

S is finite $\iff f(S)$ is finite and every fiber $f^{-1}(c)$ is finite.

to obtain the uniform finiteness property mentioned at the end of the introduction. We state this property here again in a slightly different form, with K any Liouville closed ω -free newtonian H-field:

Proposition 6.4. Let $D \subseteq K^m$ and $S \subseteq D \times K^n$ be definable. Then there exists an $e \in \mathbb{N}$ such that $|S(a)| \leq e$ whenever $a \in D$ and S(a) is finite.

Proof. We first consider the special case that n = 1 and $S(a) \subseteq C$ for all $a \in D$. By [1, 16.0.2(ii)] a subset of C is definable in K iff it is semialgebraic in the sense of C. Thus S(a) is finite iff it doesn't contain any interval (b, c) in C with b < cin C; the uniform bound then follows by a routine compactness argument. Next we reduce the general case to this special case.

First, using Proposition 1.6 we shrink D to arrange that dim S(a) = 0 for all $a \in D$. Next, we arrange that K is ω -saturated, so S(a) is fiberable by Cfor every $a \in D$. Saturation allows us to reduce further to the case that for a fixed $r \in \mathbb{N}$ every section S(a) is fiberable by C in (r+1) steps. We now proceed by induction on r. Model-theoretic compactness yields a definable function $f: S \to C$ such that for every $a \in D$ the function $f_a: S(a) \to C$ given by $f_a(s) = f(a, s)$ witnesses that S(a) is fiberable by C in (r+1) steps, that is, $f_a^{-1}(c)$ is fiberable by C in r steps for all $c \in C$.

Inductively we have $e \in \mathbb{N}$ such that $|f_a^{-1}(c)| \leq e$ whenever $a \in D, c \in C$, and $f_a^{-1}(c)$ is finite. The special case we did in the beginning of the proof gives $d \in \mathbb{N}$ such that $|f_a(S(a))| \leq d$ whenever $a \in D$ and $f_a(S(a))$ is finite. For $a \in D$ we have $S(a) = \bigcup_c f_a^{-1}(c)$, so if S(a) is finite, then $|S(a)| \leq de$.

To fully justify the use of saturation/model-theoretic compactness in the proof above requires an explicit notion of "*r*-step fibration by *C*" (analogous to that of "*r*-step co-analysis") that makes sense for any *K*, not necessarily ω -saturated. We leave this to the reader, and just note a nice consequence: if $S \subseteq K^n$ is definable, infinite, and dim S = 0, then *S* has the same cardinality as *C*. (This reduces to the fact that any infinite semialgebraic subset of *C* has the same cardinality as *C*.) In particular, there is no countably infinite definable set $S \subseteq \mathbb{T}$. As an application of the material above we show that the differential field K does not eliminate imaginaries. More precisely:

Corollary 6.5. No definable map $f: K^{\times} \to K^n$ is such that for all $a, b \in K^{\times}$,

$$a \asymp b \iff f(a) = f(b).$$

Proof. By [1, Lemmas 16.6.10, 14.5.10] there exists an elementary extension of K with the same constant field C as K and whose value group has greater cardinality than C. Suppose $f: K^{\times} \to K^n$ is definable such that for all $a, b \in K^{\times}$ we have: $a \simeq b \Leftrightarrow f(a) = f(b)$. We can arrange that the value group of K has greater cardinality than C, and so $f(K^{\times}) \subseteq K^n$ has dimension > 0. Every fiber $f^{-1}(p)$ with $p \in f(K^{\times})$ is a nonempty open subset of K^{\times} , so has dimension 1, and thus dim $K^{\times} > 1$ by d-boundedness of K, a contradiction.

References

- M. Aschenbrenner, L. van den Dries, J. van der Hoeven, Asymptotic Differential Algebra and Model Theory of Transseries, Ann. of Math. Stud., to appear, arXiv:1509.02588.
- [2] M. Aschenbrenner, L. van den Dries, J. van der Hoeven, The group of strong automorphisms of the differential field of transseries, in preparation.
- [3] T. Brihaye, C. Michaux, C. Rivière, Cell decomposition and dimension function in the theory of closed ordered differential fields, Ann. Pure Appl. Logic 159 (2009), no. 1-2, 111–128.
- [4] L. van den Dries, Dimension of definable sets, algebraic boundedness and Henselian fields, Ann. Pure Appl. Logic 45 (1989), no. 2, 189–209.
- [5] L. van den Dries, A. Macintyre, D. Marker, *Logarithmic-exponential series*, Ann. Pure Appl. Logic 111 (2001), 61–113.
- [6] J. Freitag, Disintegrated order one differential equations and algebraic general solutions, preprint, 2016, arXiv:1607.04387.
- [7] N. Guzy, F. Point, Topological differential fields and dimension functions, J. Symbolic Logic 77 (2012), no. 4, 1147–1164.
- [8] B. Herwig, E. Hrushovski, D. Macpherson, Interpretable groups, stably embedded sets, and Vaughtian pairs, J. London Math. Soc. (2003) 68, no. 1, 1–11.
- [9] W. Hodges, *Model Theory*, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993.
- [10] J. Johnson, Systems of n partial differential equations in n unknown functions: the conjecture of M. Janet, Trans. Amer. Math. Soc. 242 (1977), 329–334.
- [11] M. Matsuda, First Order Algebraic Differential Equations: A Differential Algebraic Approach, Lecture Notes in Math., vol. 804, Springer-Verlag, Berlin-Heidelberg, 1980.
- [12] T. McGrail, The search for trivial types, Illinois J. Math. 44 (2000), no. 2, 263–271.
- [13] K. Nishioka, Algebraic differential equations of Clairaut type from the differential-algebraic standpoint, J. Math. Soc. Japan **31** (1979), 191–197.
- [14] A. Pillay, Around differential Galois theory, in: M. A. H. MacCallum, A. V. Mikhailov (eds.), Algebraic Theory of Differential Equations, pp. 232–240, London Mathematical Society Lecture Note Series, vol. 357, Cambridge University Press, Cambridge, 2009.
- [15] M. Rosenlicht, The nonminimality of the differential closure, Pacific J. Math. 52 (1974), 529–537.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, LOS ANGELES, CA 90095, U.S.A.

 $Email \ address: \verb+mathias@math.ucla.edu$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801, U.S.A.

 $Email \ address: \ \tt vddries@math.uiuc.edu$

ÉCOLE POLYTECHNIQUE, 91128 PALAISEAU CEDEX, FRANCE Email address: vdhoeven@lix.polytechnique.fr