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In this paper, we describe an algorithm for the “uniformization” of a multivariate
power series. Let K[[T]] be the field of “grid-based power series” over a sufficiently
large non archimedean “monomial group” (or value group) T, such as T = {t1

α1
 tn
αn:

α1, 	 , αn ∈ R} with the lexicographical ordering on α1, 	 , αn. We interpret power
series f ∈K[[x1,	 , xn]] as functions K[[T≺]]n→K[[T4]]. On certain “regions” R of
the space K[[T≺]]n, it may happen that the valuation of f can be read off from the
valuations of the xi. In that case, f is said to be “uniform” on R. We will describe
an algorithm for cutting K[[T≺]]n into a finite number of regions, each on which f is
uniform for a suitable change of coordinates, which preserves the elimination ordering
on x1,	 , xn. The algorithm can probably be seen as an effective counterpart of local
uniformization in the sense of Zariski, even though this connection remains to be
established in detail.

1. Introduction

Let K be a field and K̂ an extension field of K. Given a polynomial f =K[x1,	 , xn],

a natural question is to study the behaviour of f as a function f : K̂
n
→ K̂. In order to

capture all relevant properties of f , it is convenient to assume that K̂ is algebraically
closed, or at least contains the algebraic closure Kalg of K. Using quantifier elimination, we
may always cut K̂

n
into a finite number of “regions” (which are constructible subsets of K̂

n

in this case), each on which f has a “uniform behaviour”. For instance, outside a certain
Zariski closed singular locus, the solutions to f(x1,	 , xn)=0 are given by a finite number
of ramified non singular algebraic functions xn(x1,	 , xn−1).

A similar challenge can be stated for many other theories. For instance, if K is a
real field, then we may also want to study the real geometric properties of the function
f : K̂

n
→ K̂, such as those regions where f is positive. In this case, K̂ is rather taken to be

the real closure of K and cylindrical decomposition is a typical technique for studying the
behaviour of the function f .

In this paper, we will consider a power series f ∈K[[x1,	 , xn]] over a field of character-
istic zero, instead of a polynomial. We will see that f can again be regarded as a function
f : K̂[[T̂

≺
]]n → K̂[[T̂

4
]] on a suitable space of grid-based series over a sufficiently large,

non archimedean monomial group T̂. At a first approximation, elements in the field K̂[[T̂]]

might be taken to be series in t1, 	 , tn with real exponents, and with a lexicographical
ordering on t1, 	 , tn. Series in K̂[[T̂

≺
]] and K̂[[T̂

4
]] correspond to infinitesimal resp.

bounded series in K̂[[T̂]]. We refer to section 2 for more precise definitions.
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A suitable language for the study of power series functions f : K̂[[T̂
≻
]]n → K̂[[T̂

<
]]

is the usual language of fields, extended with an asymptotic neglection relation ≺ . In
this language, ϕ ≺ ψ should be interpreted as ϕ = o(ψ), ϕ 4 ψ should be interpreted as
ϕ=O(ψ) and ϕ≍ ψ corresponds to the case when ϕ4 ψ4 ϕ. If ϕ and ψ lie in a valued
field, such as K̂[[T̂]], then we also have ϕ≺ ψ⇔ v(ϕ)> v(ψ), ϕ4 ψ⇔ v(ϕ) > v(ψ) and
ϕ≍ ψ⇔ v(ϕ) = v(ψ). Even though K[[x1,	 , xn]] is not a valued field, it does come with
a partial neglection relation ≺ [vdH06, Chapter 1]. Furthermore, a relation such as x1≺x2

naturally corresponds to a subset {(ξ1, ξ2)∈ K̂[[T̂
≺
]]2: ξ1≺ ξ2} of K̂[[T̂

≺
]]2.

From the asymptotic point of view, the simplest behaviour of a series f ∈K[[x1,	 , xn]]

on a subset R of K̂[[T̂
≺
]]n is when v(f(x̂1, 	 , x̂n)) only depends on v(x̂1), 	 , v(x̂n) for

points (x̂1, 	 , x̂n) ∈ R. If R = K̂[[T̂
≺
]]n, this is the case if and only if f is a uniform

series in the sense that its support supp f ⊆ xN
n
= x1

N
 xn
N admits a unique 4-maximal

element xα = x1
α1 
 xn

αn, called the dominant monomial of f . In other words, we may
write f = xα g, where g is a unit in K[[x1,	 , xn]]. The series f =x1 +x2∈K[[x1, x2]] also
satisfies v(f(x̂1, x̂2)) = v(x̂2) on the region where x1≺x2. Again, it is possible to regard f
as a uniform series, but in a suitable ringK[[x1/x2,x2]] of conical series, which corresponds
precisely to the coordinate ring for the region on which x1≺ x2.

Given an arbitrary series f ∈ K[[x1, 	 , xn]], our main objective is to present an

algorithm which decomposes the space K̂[[T̂
≺
]]n into a finite number of well-described

regions Ri, endowed with suitable local conical coordinates, such that f becomes a uniform
conical series on each of these regions, with respect to the local coordinates. Moreover,
the necessary changes of coordinates will respect the elimination order on x1,	 , xn. More
precisely, if x̃1, 	 , x̃n are the local coordinates on any of the regions Ri, then x̃k only
depends on x1,	 ,xk for each k. In particular, at the end of the algorithm, it will be possible
to read off the solutions xn(x1,	 , xn−1) to the equation f(x1,	 , xn)=0 from the answer.

Resolution of singularities [Hir64], which has recently been made effective [Vil89,
Bod01, FKP06], is one means to solve our problem. However, the resolution process has
to be carefully adapted in order to preserve the elimination ordering, which is non trivial.
Moreover, resolution of singularities is really an overkill for our problem: for many prac-
tical applications, it is not necessary to glue the final regions together using birational
maps. What is worse, insisting on global desingularization can be expected to artificially
blow up the complexity, since the size of a description of the final non singular variety
is usually huge.

In fact, our objective is closer to local uniformization in the sense of Zariski [Zar40].
In the future, we hope to provide a dictionary which will prove both approaches to be
equivalent up to preservation of the elimination order. As we will see, one major advantage
of our approach is that the general case is essentially reduced to the Newton-Puiseux
method in dimension two.

An earlier version of our approach was first described in [vdH97, Chapter 10]. Apart
from some minor changes (notational, terminological and the fact that we will not
assume K to be ordered), several improvements were made. First of all, section 4.2 con-
tains a more geometric description of the uniform Newton degree, thereby simplifying
our previous treatment of parallel descent of the Newton degree. We also corrected some
errors concerning the use of so called pseudo-coefficients (see section 3.5). Finally, we
adapted the method to series with coefficients in a K-vector space V instead of K, where
V is typically of the form V = K[[xi1, 	 , xik]] for i1 < 
 < ik. Although this last
change is not mandatory, it simplifies the overall treatment and also prepares for the
uniformization of local vector fields.
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Let us briefly outline the contents of the paper. In section 2, we introduce conical
varieties and their function rings, whose elements are conical series. In order to deal with
regions where xk≍x1

α1
 xk−1
αk−1 for certain α1,	 , αk−1, we will rewrite

xk = x1
α1
 xk−1

αk−1 (λ+ x̃k)

for a new parameter λ over K and x̃k ≺ 1. For this reason, the coefficients of our conical
series will always live in an algebraic extensionKΛ ofK with a finite number of parameters.
It is also possible, but less convenient, to directly work with serial coordinates xi which are
either infinitesimal xi≺1 or bounded xi41. In section 2.4, we introduce refinements, which
correspond to injective conical morphisms between conical varieties of the same dimension.

In section 3, we recall some general techniques for machine computations with conical
series. First of all, we present a technique for computations with series with respect to
changing coordinate systems. We next recall the formalism of non deterministic algorithms,
which is suitable for modeling the situation in which a region has to be cut into several
pieces. Finally, we briefly recall the notion of a local community. This concept aims at
modeling certain subclasses of conical series, which are suitable for computations on a
concrete computer. Of course, general power series are not even representable, since they
may involve infinitely many coefficients. All effective computations assume that K is an
effective field . This means that there are algorithms for performing the field operations
and the equality test in K.

In section 4, we turn to algorithms for the uniformization of a conical series. We
first recall the classical Newton polygon method in two dimensions, but for series whose
coefficients lie in a more general field K̂[[T̂]] of generalized power series. We next consider
uniform versions of this method, using evaluations of all but one variable. In particular,
we will define an important invariant, the uniform Newton degree, which will strictly
decrease every two refinements. We finally present our uniformization algorithm. Since
a uniform series remains uniform under refinements, the algorithm can also be used for the
simultaneous uniformization of several series.

Uniformization is a key ingredient for many computations with multivariate power
series. Clearly, we need it in order to describe the asymptotic behaviour of such series.
We typically also need it for the inversion of a power series, for expressing the zeros of
f(x1,	 , xn) as a function xn(x1,	 , xn−1) in the remaining variables, and for many other
problems which can be stated in the first order theory of fields with a neglection relation ≺.
For instance, given two series f , g ∈K[[x1, x2, x3]], it allows us to determine the region of
all x3 for which f ≺ g.

2. Conical varieties

2.1. Grid-based series

In this section, we start by recalling some terminology and basic facts from [vdH06,
Chapter 2]. Let K be a field of characteristic zero and M a monomial monoid , that
is, a commutative multiplicative monoid with a compatible partial ordering 4 . In this
paper, we will always assume that M is torsion free and a lattice for the ordering 4.

A subset G⊆M is said to be grid-based if

G⊆m1
N
 mk

N
n,

for certain monomials m1, 	 , mk, n ∈ M with m1, 	 , mk ≺ 1. Given a formal sum
f =

∑
m∈M

fmm with fm∈K, we call

supp f = {m∈M: fm� 0}
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the support of f . We say that f is a grid-based series if supp f is grid-based. We denote
by K[[M]] the set of all grid-based series.

Let f ∈K[[M]]. The finite set Df of 4-maximal elements in supp f is called the set of
dominant monomials of f . If Df is a singleton, then f is said to be uniform. In that case,
the unique element df of Df is called the dominant monomial of f and the corresponding
coefficient cf = fdf

the dominant coefficient of f . We say that f is infinitesimal (and write
f ≺ 1) if m≺ 1 for all m∈ supp f . Similarly, f is said to be bounded (and we write f 4 1)
if m 4 1 for all m∈ supp f . We write f ≍ 1 if f is uniform and 1 4 df 4 1; this is the case
if and only if f = c+ ε with c∈K� and ε≺ 1.

Proposition 1. The set K[[M]] forms a K-algebra, whose units are those uniform

elements whose dominant monomials are invertible.

The above definitions and results generalize to the case when the coefficient field K

is replaced by a K-vector space V. In fact, this may even be seen as a special case, when
regarding V as a subset of the quotient field of the tensor algebra of V. When working
with coefficients in V, proposition 1 becomes:

Proposition 2. The set V[[M]] forms a K[[M]]-module.

A possibly infinite family (fi)i∈I ∈ V[[M]]I is said to be grid-based if
⋃

i∈I
supp fi

is grid-based and {i ∈ I : m ∈ supp fi} is finite for every m ∈ M. In that case, the sum
S =

∑
i∈I

fi with Sm =
∑

i∈I
fi,m is a well-defined grid-based series in V[[M]]. It is

possible to redevelop basic algebraic notions for this so called strong summation [vdH06,
Chapters 2 and 6]. For instance, a strongly linear map V[[M]] → V[[N]] is a linear
map which preserves infinite summation in a suitable manner. Similarly, a morphism
Φ: K[[x1,	 , xn]] → K[[x̃1, 	 , x̃ñ]] of strong algebras corresponds to the operator which
substitutes Φ(xi) for each xi.

2.2. Grid-based series with parameters

Let K̂ be an algebraic extension of K which contains the algebraic closure Kalg of K.
A system of parametric coordinates Λ is determined by a finite number of parame-
ters λ1,	 , λl, subject to a finite number of polynomial constraints and one polynomial
inequality over K:

Pi(λ1,	 , λl) = 0 (i=1,	 , l)
Q(λ1,	 , λl) � 0

We denote by VΛ ⊆ K̂l the corresponding parametric variety of all points λ̂= (λ̂1,	 , λ̂l)
which satisfy these constraints. We also denote by

KΛ =K[λ1,	 , λl, λ
∗]/(P1,	 , Pp, λ

∗Q− 1).

the corresponding parametric coordinate ring. Given a K-vector space V, we let VΛ =
V⊗KΛ. If K is an effective field, then it is classical that the consistency of a finite system
of polynomial constraints can be checked by algorithm, using Groebner basis techniques
for instance.

It is classical that any point λ̂ ∈VΛ induces a unique morphism

Π:KΛ→ K̂

with Π(λi) = λ̂i for all i, and vice versa. Given f ∈KΛ, we will then write f(λ̂) = Π(f).
Given a second system of parametric coordinates Λ̃, a morphism

Φ:KΛ→KΛ̂
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induces a morphism Φ∗:VΛ̃→VΛ of parametric varieties by asking that f(Φ∗(λ̃
ˆ
))=Φ(f)(λ̃

ˆ
)

for all f ∈KΛ. If Φ∗ is injective, then VΛ̃|Λ =Φ∗(VΛ̃) will be called a subregion of VΛ.

A grid-based series with parameters in Λ is simply a grid-based series f in KΛ[[M]]

(or in VΛ[[M]]). Given a point λ̂ ∈ VΛ, we let f(λ̂) ∈ K̂[[M]] (or f(λ̂) ∈ V̂[[M]] with

V̂=V⊗K̂) be its evaluation at this point. We say that f ∈KΛ[[M]] is uniform if f admits
a unique dominant monomial and an invertible dominant coefficient. This is the case if
and only if f(λ̂) is uniform for all λ̂ ∈ VΛ, since K̂⊇ Kalg. More generally, we therefore
say that f ∈V[[M]] is uniform if and only if f(λ̂) is uniform for all λ̂ ∈VΛ. We say that
f ∈V[[M]] is Λ-uniform if there exists a finite set D⊆M such that D

f(λ̂)=D for all λ̂∈VΛ.

Proposition 3. Let f ∈VΛ[[M]]. Then VΛ can be decomposed

VΛ =VΛ1|Λ∐
 ∐VΛr |Λ

into a finite number of subregions, such that for each i ∈ {1, 	 , r}, there exists a set Di,

such that for each λ̂ ∈VΛi
, we have D

f(λ̂) =Di.

Proof. Let G be the set of monomials m∈ supp f , such that m is a dominant monomial
of f(λ̂) for some λ̂ ∈ VΛ. Assume for contradiction that G is infinite. Since G is grid-
based, there exists an infinite decreasing sequence m1 ≻ m2 ≻ 
 of elements in G. Since
KΛ is Noetherian, the ideal generated by fm1

, fm2
, 	 is generated by fm1

, 	 , fmk
for

some k. Now choose λ̂ ∈ VΛ such that mk+1 is a dominant monomial of f(λ̂). Then
fm1

(λ̂) = 
 = fmk
(λ̂) = 0, whence fmk+1

(λ̂) = 0, a contradiction. This shows that G and

{D
f(λ̂): λ̂ ∈ VΛ} ⊆ P(G) are finite. Given D ∈ P(G), the set {λ̂ ∈ VΛ: D

f(λ̂) = D} is

determined by the polynomial equations fn(λ̂) = 0 for all n such that m� n for all m∈D,

and one polynomial inequation
∏

m∈D
fm(λ̂)� 0. �

2.3. Conical power series

A system of serial coordinates X consists of a finite number of serial coordinates x1,	 , xn,
subject to a finite number of asymptotic constraints

xαi =x1
αi,1
 xn

αi,n ≺ 1 (αi,j ∈Z, i= 1,	 , c).
These constraints can be encoded by the finite set C = {xα1, 	 , xαc}, which is said to be
consistent if

∀k1,	 , kc∈N, k1α1 +
 + kcαc = 0 ⇒ k1 =
 = kc = 0.

In that case, x1
Q
 xn

Q is a monomial group for the partial ordering given by

xβ 4 xγ� (�k1,	 , kc∈Q>, β − γ= k1α1 +
 + kcαc).

The set C generates a monomial submonoid

X = C∗=xα1N+
+αcN,

which is said to be conical . Series in K[[X]], V[[X]], KΛ[[X]] and VΛ[[X]] are also said
to be conical . For what follows, it will be convenient to always assume that

C⊇ In6 {x1,	 , xn}.

The theory of linear programming provides us with efficient algorithms for testing consis-
tency and whether a given constraint xβ 4xγ is implied by the constraints in C.

Joris van der Hoeven 5



A system X of conical coordinates consists of the combination of a system ΛX of
parametric coordinates and a system XX of serial coordinates. In what follows, we will
shortly call such an X a coordinate system. We will denote the corresponding parameters by
λX ,1,	 , λX ,lX, the serial coordinates by xX ,1,	 , xX ,nX

, the asymptotic constraints by CX ,
and XX = CX

∗ . If X is clear from the context, then we will drop all subscripts X . When
working with respect to a coordinate system X̃ or X ′, we will again drop subscripts and
rather use tildas or primes for distinguishing from X . For instance, the serial coordinates
with respect to X̃ will be denoted by x̃1,	 , x̃ñ.

The coordinate ring of X is given by

KX =KΛ[[X]].

Let T̂ be a totally ordered monomial group such that any conical monomial group X can
be embedded in T̂. Given any infinite dimensional totally ordered vector space E over R,
one may take T̂ to be the multiplicative monomial group tE isomorphic to E. A morphism
of strong algebras

Π:KX → K̂[[T̂]]

with Π(KΛ) ⊆ K̂ is entirely determined by the l-tuple λ̂ = Π(λ) = (Π(λ1), 	 ,Π(λl)) ∈ K̂l

and the n-tuple x̂ = Π(x) = (Π(x1), 	 , Π(xn)) ∈ K̂[[T̂]]n. The pair ξ = (λ̂ , x̂) is called a
point and the set VX of all such points the conical variety associated to X . As before, we
will write f(ξ) =Π(f) for all f ∈KX .

Let k ∈ {1, 	 , n} and let X ′ the coordinate system obtained from X by removing xk

and keeping the same parameters (see remark 4 below), so that X′xk
N⊆X. A series f ∈KX

is said to be ordinary in xk if supp f ⊆ X′ xk
N. Then f may also be regarded as a series

in KX ′[[xk]] or as a series in K[[xk]]X ′. If xk is the only element in C which depends on xk

(so that X=X′xk
N), then xk is called an ordinary coordinate of X , and all series in KX are

ordinary in xk.

Remark 4. A more precise construction of the coordinate system X ′ goes as follows. We
take Λ′= Λ. The serial coordinates of X ′ are x1,	 , xk−1, xk+1,	 , xn. We finally enforce

X′=X∩x1
Z
 xk−1

Z xk+1
Z 
 xn

Z,

by taking C′ to be the subset of monomials m∈X′ which admit only trivial factorizations
in X′. This minimal set C′ of generators is finite and can be computed as follows. Using
linear programming, we first compute a minimal set of generators m1, 	 , mr for the

cone (X′)Q
>

. For each i, the minimal αi ∈Q> with mi
α ∈ xZ

n
yields a minimal generator

ni = mi
αi for X′. Then C′ ⊆ V6 {n1

β1 
 nr
βr: βi ∈Q, 0 6 βi 6 1} ∩ xZ

n
, so we conclude by

removing all elements which can be factored from V.

2.4. Refinements

Consider two coordinate systems X and X̃ . A conical morphism is a morphism of strong
algebras

Φ:KX →KX̃ ,

with Φ(KΛ)⊆KΛ̃. Notice that the image of a uniform series f under Φ is again uniform
as soon as Φ(df)� 0 and zero otherwise. The morphism Φ induces a mapping

Φ∗:VX̃ →VX

on the associated varieties by

f(Φ∗(ξ̃ ))= Φ(f)(ξ̃ )
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for all f ∈KX and ξ̃ ∈VX̃ . If Φ∗ is injective, then Φ will be called an immersion. If Φ∗ is
injective and the dimensions n and ñ of X and X̃ coincide, then Φ is called a refinement and

VX̃ |X =Φ∗(VX̃ )

a subregion of VX . A refinement Φ is said to be triangular , if Φ(xk) only depends on
x̃1,	 , x̃k and Φ(xk) is ordinary in x̃k, for k = 1, 	 , n. A k-refinement is a triangular
refinement Φ, such that Φ(xi) = x̃i for i= k+ 1,	 , n. A refinement Φ is said to be strict

in xk if Φ is triangular and Φ(f) is ordinary in x̃k for all f ∈KX . A k-refinement is said
to be strict if it is strict in xk.

The composition of two triangular refinements is again triangular, the composition of
two k-refinements is again a k-refinement, and the composition of a refinement which is
strict in xk and a triangular refinement (or a triangular refinement and a refinement which
is strict in xk) is again strict in xk. We will sometimes say that the coordinate xk is refined ,
when applying a refinement which is strict in xk.

Example 5. Consider a conical morphism Φ:KX→KX̃ with S̃=S and Φ(xi)=xi for all i.
Then Φ is entirely determined by its restriction ΦΛ to KΛ. In particular, Φ is a refinement
if and only if KΛ̃ consists of fractions of elements in ΦΛ(KΛ). Such refinements correspond
to the imposition of constraints on the parameters.

Example 6. Consider a conical morphism Φ: KX → KX̃ such that ΦΛ = Id, ñ = n and
Φ(xi) = x̃i for all i. Then X̃ ⊇ X and Φ is an n-refinement, which corresponds to the
imposition of new asymptotic constraints on serial coordinates.

Example 7. The ramification Rp1,	 ,pn
:KX →KX̃ of orders p1,	 , pn is the n-refinement

defined by ΦΛ = Id and

Rp1,	 ,pn
(xi) = x̃i

pi (i= 1,	 , n).

More precisely, C̃ consists of Ĩn = {x̃1,	 , x̃n}, together with a constraint x̃1
p1α1
 x̃n

pnαn for
every constraint xα∈C \ In.

Example 8. Given a coordinate system X , we will denote by Xk the k-dimensional coor-
dinate system formed by the parameters and the first k serial coordinates x1,	 , xk of X .
We denote by Xk the corresponding conical monomial group. Given a new invertible param-
eter λ̃ and an infinitesimal monomial m ≺ 1 in Xk−1 which is incomparable to xk, let us
show that the asymptotic change of variables

xk6 m (λ̃+ x̃k) (x̃k ≺ 1) (1)

gives rise to a strict k-refinement. Indeed, the parametric coordinate ring of the new
coordinate system X̃ is given by KΛ̃ =KΛ[λ̃ , λ̃−1]. The new serial coordinates are x̃i =xi

for i � k and a new coordinate x̃k. The monomial group X̃ is generated by x̃k and the
monomials xα (m/xk)

αk with xα∈C. We take Φ(xi) =xi for i� k and Φ(xk) = m (λ̃+ x̃k).

Given a point ξ= Φ∗(ξ̃ )∈VX̃ |X , we have

λ̃(ξ̃ ) = cxk(ξ)/m(ξ)

x̃k(ξ̃ ) = xk(ξ)/m(ξ)− cxk(ξ)/m(ξ),

so Φ is indeed a k-refinement. Since x̃k is an ordinary coordinate of X̃ , the refinement is
strict in xk.

Example 9. Let ϕ∈KXk−1
be a uniform series with an invertible dominant coefficient c

and infinitesimal dominant monomial m∈Xk−1. If m is incomparable to xk, then it can be
shown as above that the asymptotic change of coordinates

xk6 ϕ+m x̃k (x̃k ≺ 1) (2)

Joris van der Hoeven 7



gives rise to a strict k-refinement Φ.

3. Machine computations with conical series

3.1. Computations with respect to changing coordinates

One technical difficulty concerning the upcoming algorithms is that we frequently have
to change our coordinates. From a notational point of view, it would be cumbersome to
explicitly rewrite all our objects with respect to the new coordinates after every change.
Instead, we will rather assume that our coordinate system with the corresponding con-
straints is stored in a global variable and that our objects are automatically rewritten with
respect to the most recent coordinate system when necessary.

More precisely, starting with the coordinate ring KX0
, the execution of an algorithm

up to a given “current execution point”, gives rise to a sequence of refinements:

Φ1:KX0
→ KX1

Φ2:KX1
→ KX2�

Φr:KXr−1
→ KXr

The “current coordinates” X6 Xr at that point are encoded by the finite sets of parameters
and serial coordinates, together with the constraints imposed upon them.

Now consider a series f ∈KXi
introduced between the i-th and the (i+1)-th refinement.

We will encode such a series by the pair (Xf , f) with Xf =Xi. Whenever an operation needs
to be performed on f at the current execution point, we automatically replace this encoding
by (Xf̃ , f̃ ), where Xf̃ =Xr and f̃ =(Φr ◦
 ◦Φi+1)(f). Similarly, a monomial m∈XXi

will
be encoded by the pair (Xm, m), where Xm = Xi. When necessary, this encoding will be
replaced by (Xm̃, m̃), where Xm̃=Xr and m̃ is the dominant monomial of (Φr◦
 ◦Φi+1)(m);
this will ensure that monomials remain monomials of the same asymptotic magnitude at
any stage, even though their values as series may change.

Sometimes, we will also work with a system X ′ of “subcoordinates” of the current
coordinate system X . This means that the serial coordinates of X ′ are a subset {xi1,	 ,xin′}

of {x1, 	 , xn}, with the constraints induced from X . The parametric coordinates of X ′

and X are assumed to be identical. When working with respect to such a system X ′ of
subcoordinates, any change of coordinates for X ′ lifts to a change of coordinates for X . In
particular, all changes of coordinates can always be performed on X , even when we need
to work with respect to subcoordinates.

Remark 10. Various variants of the above strategy are possible. For instance, whenever an
operation on two series takes place, then we may rewrite them with respect to the simplest
common coordinate system. Instead of using a global variable for the current coordinate
system, operations on the coordinate system (such as the imposition of constraints) may
also be done on the series which are intended to use the new coordinates, thereby allowing
for a more functional programming style.

3.2. Non deterministic algorithms

Another frequently occurring difficulty is that certain relations may not be satisfied uni-
formly on the current region VX . For instance, a polynomial relation P (λ) = 0 for the
parameters may be satisfied on a certain subregion, whereas the opposite relation P (λ)� 0
is satisfied on another subregion. If, at a certain point during the execution of an algorithm,
we need to decide whether P (λ) = 0 or P (λ) � 0, we may thus have to decompose the
current region into these two subregions and continue the execution on each of them.
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A classical computer science approach to this situation is to allow for so called non

deterministic algorithms. This non deterministic setting features an additional program-
ming construct called case separation, which consists of selecting the way to continue the
algorithm non deterministically, among a finite number of cases. For instance, when testing
whether P (λ) vanishes, one branch would correspond to the subregion of λ for which
P (λ)=0 and the other branch would correspond to the subregion of λ for which P (λ)� 0.

It is classical that a non deterministic computation can be represented by a tree: each
inner node ν of the tree corresponds to a non deterministic choice in the algorithm and
the children ν1, 	 , νs of the node to the possible continuations of the algorithm. König’s
lemma implies that this computation tree is finite if and only it contains no infinite chains.
In other words, if the non deterministic algorithm terminates for all possible sequences
of choices, then we obtain a deterministic algorithm by running the non deterministic
algorithm several times, for each possible sequence of choices.

In our setting, each node of the computation tree also corresponds to a coordinate
system Xν and the case separation induces a partition

VXν
=VXν1

|Xν
∐
 ∐VXνs|Xν

.

In particular, the root of the tree corresponds to the original coordinates X and the leafs
of the tree correspond to the final coordinates X1,	 ,Xr for which the algorithm provides
uniform results. At the end, it will then be guaranteed that

VX =VX1|X ∐
 ∐VXr|X .

Throughout our algorithms, we will assume that branches which correspond to empty
regions are automatically eliminated. In other words, a non deterministic process is killed
as soon as contradictory constraints are imposed.

Remark 11. The approach of non deterministic algorithms is known under various other
names, depending on the area. In computer algebra, it is sometimes referred to as dynamic

evaluation. In basic programming languages, non deterministic algorithms are best imple-
mented simply by rerunning the algorithm several times from its start and exhausting all
sequences of non deterministic choices. In high order programming which support so called
continuations, this rerunning can be avoided.

3.3. Local communities

Assume now that K is an effective field. Since power series in K[[x]] and more general grid-
based power series in K[[M]] may contain infinitely many coefficients, we need to restrict
our attention to suitable subclasses of series in order to compute with them. In this section,
we recall the concept of a “local community”, which axiomatizes such computationally
interesting classes of series. In fact, it also models other interesting classes of series, such
as the class of convergent multivariate power series over C.

We will only recall the main definitions and facts about local communities and similarly
for Cartesian representations in the next subsection. More details can be found in [vdH06,
Sections 3.4 and 3.5] and [vdH97].

A local community over an effective K-algebra A is a family L=(Ln)n∈N of A-subal-
gebras Ln ⊆A[[z1,	 , zn]], which satisfies the following properties:

LC1. For all 16 k6n, we have zk ∈Ln.

LC2. Given n> 1 and f ∈Ln, such that f is divisible by z1, we have f/z1∈Ln.

LC3. Given a strong algebra morphism Φ:A[[z1,	 , zn]]→A[[z̃1,	 , z̃ñ]] with Φ(z1),	 ,
Φ(zn)∈Lñ, we have Φ(Ln)⊆Lñ.
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LC4. Given n> 1 and f ∈ Ln, such that fz1
0
 zn

0 = 0 and fz1
0
 zn−1

0 zn
1 = 1, let g be the

unique power series g ∈A[[z1,	 , zn−1]] such that the substitution of g for zn in f

vanishes. Then g ∈Ln−1.

Given f ∈Ln and k6n, we notice that

∂f

∂zk
(z1,	 , zn) = lim

zn+1→0

f(z1,	 , zk + zn+1,	 , zn)− f(z1,	 , zn)
zn+1

∈Ln,

since computing the limit for zn+1→0 reduces to substituting zn+1 by zero. In particular,
when expanding f as a series in zk, then each of its coefficients is again in Ln.

Example 12. Let Ln be the set of all algebraic power series in z1,	 , zn over K for each n.
Then L = (Ln)n∈N is a local community over K, which is actually the smallest local
community over K.

Example 13. Assuming K=R or K=C, let Ln be the set of all convergent power series
in z1,	 , zn over K. Then L= (Ln)n∈N is a local community.

The local community L is said to be effective if there are algorithms for carrying out the
A-algebra operations in Ln, for performing the division by z1 in LC2, for the substitution Φ
in LC3, and for computing g as a function of f in LC4. For instance, the local community
of all algebraic power series over K is effective.

Given a local community L over K and a system Λ of parametric coordinates over K,
we denote by LΛ the smallest local community over KΛ which contains L. Given another
system Λ̃ of parametric coordinates, any morphism Φ:KΛ→KΛ̃ induces a natural compo-
nentwise morphism ΦL:LΛ→LΛ̃. We say that L is parametrically effective if LΛ is effective
for each system of parametric coordinates over K and if ΦL is computable whenever Φ:
KΛ → KΛ̃ is computable. The local community of all algebraic power series over K is
parametrically effective.

Remark 14. It can be shown that L is parametrically effective as soon as L is effective.
The idea is first to represent elements in KΛ by algebraic series in K[[z1, 	 , zd]] after
substitutions λi→ci+zi for a suitable point c∈VΛ and transcendence basis λ1,	 ,λd ofKΛ.
Then elements in KΛ⊗Ln can be regarded as elements in Ld+n.

3.4. Cartesian representations

Amultivariate Laurent series in z1,	 , zk overA is an element f ∈A((z1,	 , zk))6 A[[zZ
k
]]

with the componentwise partial ordering on zZ
k
. We may always rewrite f = zα g with

α∈Zk and g ∈A[[z1,	 , zk]].
Let M be an arbitrary monomial monoid and consider a grid-based series f ∈A[[M]].

A Cartesian representation for f is a series f̌ ∈A((z1,	 , zk)) with f = f̌̂ for some strong
algebra morphism ˆ: A((z1, 	 , zk)) →A[[M]] with zi ∈ M≺ for all i. A family (f̌i)i∈I of
Cartesian representations is said to be compatible if the strong morphism ˆ is the same for
all its components f̌i. It can be shown that any finite family of grid-based series admits
a family of compatible Cartesian representations.

Let L be a local community over A. A Cartesian representation f̌ ∈ zZ
k
Lk of f is

called an L-representation of f . The set A[[M]]L of all series with an L-representation
is clearly an A-subalgebra of A[[M]]. A Cartesian representation f̌ of f is said to be
faithful if for every dominant monomial m̌ of f̌ , there exists a dominant monomial m of f
with m̌ 4 m. Any f ∈A[[M]]L can be shown to admit a faithful L-representation. Every
uniform f ∈A[[M]]L also admits a uniform L-representation. Moreover, if L is effective,
then there are algorithms for computing faithful and uniform L-representations.
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The above definitions and properties extend to the case when we take our coefficients in
a strongA-moduleV of the formV=A[[t1,	 , tr]]s. In that case, a Cartesian representation
f̌ ∈V((z1,	 , zk)) can be rewritten as an s-tuple of series

f̌ =(f̌1,	 , f̌s)∈ z
Zk

A[[z1,	 , zk]][[t1,	 , tr]]s.
Under the identifications ti=zk+i, we then say that f̌ is an L-representation if f̌i∈z

Zk
Lk+r

for all i. The corresponding subspace V[[M]]L of V[[M]] is an A[[M]]L-module and the
results about faithful and uniform representations extend.

Given a faithful Cartesian representation f̌ of a conical series f ∈VX ,L, the dominant

monomials of f can be read off from the dominant monomials of f̌ . In particular, if L
is effective, then we have an algorithm for the computation of Df. In general, f is not
Λ-uniform, so case separations may be necessary in order to enforce this property. As long
as f is not uniform, it suffices to pick a non uniform dominant coefficient c of f , distinguish
the two cases when c = 0 and c � 0, and keep computing the dominant monomials of f
in both cases. In a similar way as in proposition 3, it can be shown that this algorithm
terminates.

Given a finite subset D ⊆ X of monomials, the associated Newton polytope is the
subset N of all monomials n∈D for which there exists a strong morphism Φ:KX → K̂[[T̂]]

such that Φ(n)<Φ(m) for all m∈D. The computation of N as a function of D is classical
and corresponds to the computation of a convex hull. If D=Df , then we call N=Nf the
Newton polytope of f . If f is Λ-uniform, then we call Nf the Λ-uniform Newton polytope
of f . By what precedes, and modulo case separations, we have an algorithm for the
computation of the Λ-uniform Newton polytope of f . In the sequel, this algorithm will be
called polytopeV.

3.5. Diagonal communities and how to avoid them

Let us consider a conical series f in x1, 	 , xn which admits an L-representation f̌ with
respect to a fixed local community L. Given αk, 	 , αn ∈ Q, it is natural to ask for an
L-representation of the coefficient g = [xk

αk 
 xn
αn] f of xk

αk 
 xn
αn in f . Unfortunately,

such an L-representation does not always exist. For instance, assume that f admits an
L-representation of the form

f̌ =
∑

α1,α2∈N

f̌α1,α2
z1

α1 z2
α2,

where x1 ≺ x2, z1 = x1/x2 and z2 = x2. Then the coefficient g = [x2
0]f admits a Cartesian

representation

ǧ =
∑

α∈N

f̌α,α z1
α z2

α. (3)

However, there is no reason for this diagonal to be in L. A local community L is said to
be a diagonal community if it satisfies

DC. For any λ=(λ1,	 , λd)∈Zd, the set Ld is closed under taking diagonals

f̌� ∆λ f̌ =
∑

α∈Nd

λ·α=0

fα z1
α1
 zn

αn.

The ring of conical series with L-representations in a diagonal community is closed under
the extraction of coefficients with respect to x1,	 , xn.
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Many classical local communities, such as the communities of algebraic or convergent
power series, are actually diagonal. However, local communities are not always diagonal,
and even if they are, then proving this fact may be non trivial. Fortunately, for our
purpose of uniformization, we can do with a suitable approximate version of the extraction
of coefficients with respect to x1, 	 , xn: given αk,	 , αn ∈Q, we say that g∗ is a pseudo-

coefficient of xk
αk
 xn

αn in f , if the set of dominant monomials of f − g∗xk
αk
 xn

αn contains
no monomial of the form xβ with βk =αk,	 , βn =αn. In [vdH97, Section 9.4.4], we have
given an algorithm for the computation of such a pseudo-coefficient g∗.

Remark 15. The main idea behind the computation of g∗ is to hack the algorithm
for the computation of a faithful L-representation of f by replacing all zero tests by so
called diagonal tests. This idea is based on the observation that, even though we cannot
compute ǧ in (3), we can check whether f̌ − ǧ =0:

f̌ = ǧ� f̌ (z1 z2, z1 z2)= f̌ (z1
2, z2

2).

In general, denoting by g the genuine coefficient of xk
αk 
 xn

αn in f , a similar trick may
be used to test whether f = g xk

αk
 xn
αn [vdH06, Section 9.4.2]. Using such diagonal tests

for f and truncations of f , it then becomes possible to compute the set of dominant
monomials D of f − g xk

αk 
 xn
αn. The truncation g∗ = f�D yields the desired pseudo-

coefficient.

4. Uniformization of conical series

In this section, we will assume that we have fixed a local community L and that all conical
series to be considered admit L-representations. In particular, the set VX will correspond
to VΛ[[X]]L instead of VΛ[[X]]. All our algorithms on conical series will only rely on
operations that can be performed from within the local community L. Therefore, if L is
parametrically effective, then our algorithms also become fully effective.

The only K-vector spaces V over which we will work are strong vector spaces of the
form V = K[[t1, 	 , tr]]s. If e1, 	 , es is the canonical basis of such a vector space V over
K[[t1,	 , tr]], then the vectors t1

α1 
 tr
αr ei with α1, 	 , αr ∈ N form a strong basis for V.

Given such a basis element b and a vector c∈V, we denote by cb the coefficient of b in c.
Similarly, if f ∈V[[M]] is a grid-based series, then we denote fb=

∑
m∈M

fm,bm∈K[[M]].

4.1. The Newton polygon method in dimension two

Let M be a totally ordered monomial group with Q-powers (i.e. for any m∈M and k∈N>,
there exists an n∈M with nk=m). Given a series f ∈K[[x]][[M]]

� , the solutions inK[[M]]

to the equation

f(x) = 0 (x≺ 1) (4)

can be computed using the Newton polygon method. This method is explained in detail
in [vdH06, Chapter 3] in the case when f is a polynomial in x and readily adapts to the
case when f is a power series (see [vdH06, Exercises 3.1 and 3.7]). Let us briefly recall the
main definitions and results.

The series f may also be regarded as a series inK[[x]][[M]] and its dominant coefficient
Nf = cf ∈ K[[x]] in this representation is called the Newton series of f . If Nf is a
polynomial, then we rather call it the Newton polynomial of f . The valuation of Nf in x
is called the Newton degree and we denote it by deg≺1 f . If ϕ∈K[[M]]≺ is infinitesimal,
then the additive and multiplicative conjugates f+ϕ, f×m∈K[[M]][[x]]� are defined by

f+ϕ(x) = f(ϕ+x)

f×ϕ(x) = f(ϕx).
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For m ∈ M≺, this allows us to define the Newton degree associated to the “slope” m by
deg≺m f =deg≺1 f×m. The following properties are easy or proved in [vdH06, Chapter 3]:

Proposition 16. Given f , g ∈K[[M]][[x]]� , m, n ∈ M4 with n≺m, ϕ ∈K[[M]]≺ with

ϕ≺m and l < deg≺mf, we have

deg≺mf g = deg≺m f +deg≺m g

deg≺n f 6 deg≺m f

deg≺m f+ϕ = deg≺m f

deg≺m

∂l f

∂xl
= deg≺m f − l

Proposition 17. If deg≺1 f = 1, then (4) admits a unique solution in K[[M]]≺.

Proposition 18. Let ϕ∈K[[M]]
≺,� , c= cϕ, m= dϕ, N =Nf×m

∈K[x] and µ= valN+c.

Then

deg≺m f+ϕ = µ6deg≺1 f.

Moreover, if µ= d=deg≺1 f and ϕ is the unique solution to the equation

∂d−1 f

∂xd−1
(ϕ) = 0 (ϕ≺ 1), (5)

then for any non zero ϕ̃ ∈K[[M]]≺ with dominant monomial m̃, we have

deg≺m̃ f+ϕ+ ϕ̃<deg≺1 f.

The theory adapts with minor modifications to the case when f ∈V[[M]][[x]] admits its
coefficients in a K-vector space V. In that case, we are still looking for solutions of (4) in
K[[M]]. However, in proposition 17 it is only guaranteed that (4) admits at most solution.
In particular, the equation (5) cannot necessarily be solved in proposition 18. Nevertheless,
there exists a strong basis element b ofV such that the coefficientNb∈K[x] of b inN ∈V[x]
has Newton degree d. Then proposition 18 still holds if we take ϕ to be the solution of
(∂d−1 fb/∂x

d−1)(ϕ)=0. Indeed, if m̃=dϕ̃ and Ñ =Nf+ϕ,×m̃
, then Ñ has the property that

Ñb,d−1 =0. Consequently, Ñb does not admit a root of multiplicity d and neither does Ñ .

4.2. Uniform aspects of the Newton polygon method

Let us now return to the case of a multivariate series f ∈VX . We will assume that xk is
an ordinary coordinate in X and let X ′ be the coordinates in X except xk. In particular,
X = X′ xk

N and VX =VX ′[[xk]]. Considering f = f0 + f1xk +
 as a power series in xk, we
may then evaluate f at a point ξ ′∈X ′ using

f(ξ ′)= f0(ξ
′) + f1(ξ

′)xk +
 ∈ V̂[[xk]][[T̂]].

Now the uniform Newton degree of f in xk is defined by

degxk≺1 f = sup
ξ ′∈VX ′

f(ξ ′)� 0

deg≺1 f(ξ ′)∈N∪{+∞}.

This definition extends to the case when the coordinate xk is just ordinary in f : it suffices
to replace X by X ′ and an infinitesimal coordinate xk which satisfies no constraints. The
non trivial fact that degxk≺1 f is actually finite will follow later from the possibility to
uniformize f . Nevertheless, the finiteness is trivially guaranteed in one particular case:

Joris van der Hoeven 13



Proposition 19. Let V′ = V[[xk]] and assume that f is uniform as a series in VX ′
′ .

Denoting by N ∈VΛ
′ D VΛ[[xk]] the dominant coefficient of f, we have

degxk≺1 f = valxk
N.

In fact, Nf(ξ ′) =N (ξ ′) and deg≺1 f(ξ ′) = valxk
N (ξ ′) for all ξ ′∈VX ′ with f(ξ ′)� 0.

The properties stated in proposition 16 admit natural uniform analogues:

Proposition 20. Given f , g ∈ VX
�
, m, n ∈ X′ with n ≺ m, ϕ ∈ VX ′ with ϕ ≺ m and

l < degxk≺mf, we have

degxk≺mf g = degxk≺m f +degxk≺m g

degxk≺n f 6 degxk≺m f

degxk≺m fxk+ϕ = degxk≺m f

degxk≺m

∂l f

∂xk
l

= degxk≺m f − l,

where fxk+ϕ(x1,	 , xn) = f(x1,	 , xk−1, xk + ϕ, xk+1,	 , xn).

For the remaining propositions 17 and 18, it is useful to define an additional concept:
we say that f ∈ V[[X]] is Newton prepared if there exist two monomials m, n ∈ X, such
that f admits a Λ-uniform Newton polytope Nf, which is contained in (m/n)Q n. If Nf

contains at least two elements, then there exist unique k∈N, m∈x1
Q
 xk−1

Q and n∈X with
Nf ⊆ (xk/m)Zn. We will call xk the principal coordinate for f and m its associated slope.
If, moreover, we have Nf ⊆ (xk/m)N n, then we say that f is k-Newton prepared, with
associated Newton polynomial N =

∑
i
f(xk/m)iwxk

i ∈VΛ[xk]. Notice that proposition 19
applies as soon as m≺ 1.

Proposition 21. Assume that f ∈KX is k-Newton prepared, with principal coordinate xk

and degxn≺1 f =1. Then f(xk) = 0 admits a unique infinitesimal solution in KX ′.

Proof. This is a direct application of [vdH06, Theorem 3.3 and Exercise 3.1]. �

Proposition 21 is not good enough though, since the unique solution ϕ may depend on
xk+1,	 ,xn. Consequently, we will have to replace ϕ by the coefficient ϕ<xk

=[xk+1
0 
 xn

0 ]ϕ

of xk+1
0 
 xn

0 in ϕ. Unless L is a diagonal community, we have no means to compute this
coefficient. In practice, we therefore rather compute a pseudo-coefficient xk+1

0 
 xn
0 in ϕ,

which we will denote by ϕ<xk

∗ .

Proposition 22. Assume that f ∈VX is k-Newton prepared, with slope m≺1 and Newton

polynomial N. Let ϕ∈KXk−1
be uniform with dominant term cm. Then

degxk≺mfxk+ϕ = µ= max
λ̂∈VΛ

valN+c(λ̂).

Moreover, in the case when µ= d= degxk≺1 f, let b be a strong basis element for V such

that Nb� 0, and assume that ϕ= ψ<xk

∗ , where ψ satisfies

∂d−1 fb

∂xk
d−1

(ψ) = 0 (ψ≺ 1).

Assume that fxk+ϕ is k-Newton prepared, with slope m̃≺m, and let ϕ̃ ∈KX ′ be uniform,

with dominant monomial m̃. If fxk+ϕ+ϕ̃ is k-Newton prepared, then

degxk≺m̃ fxk+ϕ+ϕ̃< degxk≺1 f.
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Proof. The first assertion follows directly from the first assertion of proposition 18. As to
the second assertion, let n be the monomial, such that the dominant monomials of fb are
(xk/m)i n with i=0,	 , d. Then the dominant monomials of fb,xk+ϕ are (xk/m̃)i n (m̃/m)d

with i= 0,	 , d. Writing ϕ= ψ + η, the definition of pseudo-coefficients states that each
dominant monomial of η depends on at least one of the coordinates xk+1,	 , xn. Now

[xk
d−1]fb,xk+ϕ =

∂d−1 fb

∂xk
d−1

(ψ+ η)

=
∂d fb

∂xk
d

(ψ) η+
 .
Since

∂d fb

∂xk
d

(ψ)≍ n/md,

it follows that the unique dominant monomial n m̃/md of [xk
d−1] fb,xk+ϕ is a dominant

monomial of (n/md) η. In other words, m̃ must be a dominant monomial of η, even
though m̃ is free from xk+1,	 , xn. This contradiction completes the proof. �

4.3. Polarization

A first useful subalgorithm which we will need is polarization. Given an arbitrary monomial
m∈x1

Q
 xn
Q, we will frequently have to decide whether m≻ 1, m≍ 1 or m≺ 1. In general,

it may happen that none of these conditions are satisfied globally on VX . In such cases, we
will use polarization in order to decompose VX into at most three subregions, such that on
each subregion we have either m≻ 1, m≍ 1 or m≺ 1.

Now the subregions where m ≺ 1 and m ≻ 1 simply correspond to the imposition of
the corresponding asymptotic constraints. In the remaining case, we write m = (xk/n)α

with α ∈Q and n∈ x1
Q
 xk−1

Q . For a new invertible parameter λ, and modulo a suitable
ramification, it then suffices to perform the refinement xk6 n (λ+ x̃k) with x̃k ≺ 1.

Algorithm polarize(m)
Input: a monomial m=x1

α1
 xk
αk with α1,	 , αk ∈Q and αk� 0

Action: refine the coordinates such that we either get m≻ 1, m≍ 1 or m≺ 1

Ramify the coordinates, such that α1,	 , αk, α1/αk,	 , αk−1/αk ∈Z

If neither m≻ 1, m =1, nor m≺ 1, then separate the following cases:

1. Impose the constraint m≻ 1

2. Introduce an invertible parameter λ.

Refine xk =x1
−α1/αk
 xk−1

−αk−1/αk (λ+ x̃k) with x̃k ≺ 1.

3. Impose the constraint m≺ 1

4.4. Newton preparation

In section 4.2, we have seen the usefulness of Newton prepared series. Assuming that
we have an algorithm uniformize for the uniformization of series in at most n − 1 vari-
ables, we will now present an algorithm for the Newton preparation of a series. Our
algorithm assumes given an ordinary coordinate xk and will only use refinements in the
remaining coordinates X ′. Hence, the refinements never involve xk, although they may
involve xk+1,	 , xn. If f does not become uniform after the preparation, then it should be
noticed that the principal coordinate xl of f may satisfy l > k.
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Algorithm prepareV(f , xk)
Input: a non zero series f ∈VX and an ordinary coordinate xk for f
Action: refine the coordinates other than xk such that f becomes Newton prepared

Let X ′ the coordinates other than xk and V′=V[[xk]], so that f ∈VX ′
′

uniformizeV′(f)
Let c be the dominant monomial of f ∈VX ′

′

uniformizeV(c) and let d be the valuation in xk of c
Expand f = f0 + f1xk +
 as a series in xk

For i∈ {0,	 , d− 1} do uniformizeV′(fk)
Let {d1 xk

α1,	 , drxk
αr}6 polytopeV(f), with α1<
 <αr = d and d1,	 , dr ∈X′

For all i < j < r do polarize((dr/di)
1/(αr−αi)/(dr/dj)

1/(αr−αj))

The algorithm for performing the Newton preparation is quite straightforward. We
first uniformize f as a series in VX ′

′ and let d6 degxk≺1 f . Writing f = f0 + f1 xk +
 as
a series in xk, the tail fd xk

d + fd+1 xk
d+1 +
 will then be uniform. After uniformizing the

remaining coefficients f0,	 , fd−1, it follows that the Newton polytope of f has the form
Nf ={d1xk

α1,	 ,drxk
αr}, with α1<
 <αr =d and d1,	 ,dr∈X′. Now a sufficient condition

for f to be Newton prepared is that all the slopes (dr/di)
1/(αr−αi) are pairwise comparable

for 4. This is forced using polarization, where we notice that only refinements which do
not involve xk are needed.

4.5. Blowing up edges

Assume now that f is Newton prepared, but not uniform, and let xk be its principal
coordinate with slope m. At this point, we might in principle proceed by polarizing xk/m.
However, in order to force a strict decrease of the Newton degree (using proposition 22), we
have to slightly modify the procedure for polarization and introduce a new case for handling
the situation when the Newton polynomial has non zero roots of maximal multiplicity d.
In this new case, which will only be needed if xk is an ordinary coordinate in f (see also
remark 23 below), we apply a Tschirnhausen transformation.

Algorithm blowupV(f)
Input: a non uniform Newton prepared series f ∈VX

Action: refine the coordinates such that f becomes “more uniform”

Let N6 polytopeV(f)

Let xk, m∈x1
Q
 xk−1

Q and n∈X be such that N⊆ (xk/m)Zn

polarize(m) and return whenever m < 1
Ramify the coordinates, such that m∈Xk−1

Let N6 ∑
α∈Z

f(xk/m)αnxk
α∈KΛ[xk

Z] and let d∈Z be largest with Nd� 0

If xk is ordinary in f then separate the following cases

1. Impose the constraint xk ≻m

2. Impose the constraint xk ≺m

3. Introduce an invertible parameter λ with N � Nd (xk −λ)d

Refine xk6 m (λ+ x̃k) with x̃k ≺ 1

4. Introduce an invertible parameter λ with N =Nd (xk −λ)d

Let b be a strong basis element for V such that Nb� 0
Let X ′ be the coordinates in X except xk

Let ϕ∈KX ′ be the unique solution to (∂d−1 fb/∂xk
d−1)(ϕ) = 0

Refine xk6 pseudo(ϕ, k) + mxk̃ with x̃k ≺ 1

Else polarize(xk/m)
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In the last step of 4, the subalgorithm pseudo(ϕ, k) computes a pseudo-coefficient
ϕ<xk

∗ of xk+1
0 
 xn

0 in ϕ. In addition, modulo additional refinements and recursive calls
of uniformize, we enforce the difference ϕ− ϕ<xk

∗ to be uniform. This will ensure that the
ϕ<xk

∗ keeps its status of being a pseudo-coefficient, even after subsequent refinements of
x1,	 ,xk−1. In the exceptional case that one of the coordinates xk+1,	 ,xn is refined during
the uniformization of ϕ− ϕ<xk

∗ , we do not require ϕ− ϕ<xk

∗ to be uniform on exit. Let us
finally notice that, in the case when L is an effective diagonal community, we may simply
take pseudo(ϕ, k)6 ϕ<xk

to be the genuine coefficient of xk+1
0 
 xn

0 in ϕ.

Algorithm pseudo(f , k)
Input: a series f ∈KX ′, where X ′ are the coordinates in Xk except xk

Output: a pseudo-coefficient f<xk

∗ of xk+1
0 
 xn

0 in f . Moreover, if no refinement on
xk+1,	 ,xn occurs during the execution, then f − f<xk

∗ is guaranteed to be uniform on exit.

Repeat
Let ϕ be a pseudo-coefficient of xk+1

0 
 xn
0 in f .

If f − ϕ is regular or a refinement on xk+1,	 , xn has occurred, then return ϕ
uniformizeK(f − ϕ)

4.6. Uniformization

We are now in a position to state the main algorithm for the uniformization of f . As long
as f is not uniform, we keep Newton preparing f and blowing up the resulting edge until f
becomes uniform. If no ordinary coordinate exists, then we perform a sequence of suitable
polarizations which will either make f uniform or induce a refinement which makes one of
the coordinates ordinary.

Algorithm uniformizeV(f)
Input: a series f ∈VX

Action: refine the coordinates such that f becomes uniform

While f is not uniform do
If there exists an ordinary coordinate xk in f then take k maximal and

prepareV(f , xk)
If f is not uniform, then blowupV(f)

Else
N6 polytopeV(f)
Let k be minimal such that |N∩Xkxk+1

αk+1
 xn
αn|> 2 for some αk+1,	 , αn

For all m1, n1,m2, n2∈N with mi/ni =x1
αi,1
 xk

αi,k and αi,k� 0 do

polarize((x1
α1,1
 xk−1

α1,k−1)1/α1,k/(x1
α2,1
 xk−1

α2,k−1)1/α2,k)

Pick m, n∈N with m/n= x1
α1
 xk

αi and αi� 0 and
polarize(x1

α1
 xk
αk)

Remark 23. We do not know of any effective test whether a given coordinate xk is ordinary
in f . For this reason, we will use a slightly weaker test. For every series f , we maintain a
set Of of coordinates which are ensured to be ordinary for f , and simply check whether
xk is in this set. Whenever xk is refined, we add xk to Of. The coordinate xk is removed
from Of, whenever an l-refinement xl 6 m (λ̃ + x̃l) or xl6 ϕ+ m x̃l occurs, where l > k

and m or ϕ is not ordinary in xk. Our slightly weaker test is still sufficient for making the
termination proof below work.

Theorem 24. The algorithm uniformize is correct and terminates.
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Proof. The algorithm is clearly correct. Let us first prove the termination modulo the
termination of the subalgorithm pseudo. Assume for contradiction that it does not termi-
nate on a given input f , but that each of its recursive invocations for lower dimensional
series terminates.

We observe that all coordinates cannot indefinitely remain non ordinary. Indeed, the
polarizations in the second part either strictly reduce the number of elements in Nf or end
up by refining one of the coordinates, thereby making it ordinary in f .

Let k be maximal such that the coordinate xk is refined infinitely many times. Modulo
picking up the computation at a later point, we may assume without loss of generality that
the coordinates xk+1, 	 , xn are never refined (although new asymptotic constraints may
be imposed upon them). After one refinement of xk, the coordinate xk will then remain
ordinary in f .

Consider the series expansion f= f0+ f1xk+
 of f in xk after a call of prepareV(f , xk).
Then each of the coefficients fi for which Nf ∩ x1

Z
 zk−1
Z xk

i xk+1
Z 
 xn

Z� ∅ is uniform. In
particular, if f is not uniform, then Nf contains at least two elements whose exponents
in xk differ. Consequently, the principal coordinate xl for f satisfies l> k. We claim that
we cannot have l > k. Otherwise, blowupV(f) necessarily falls in a case which results in
the uniformization of f , since the coordinate xl is never refined. After return, the main
algorithm then terminates.

Consequently, we are infinitely often in the situation that blowupV(f) is called with xk

as the principal coordinate of f . By proposition 22, the Newton degree degxk≺1 f at
least decreases by one for every two such calls. Since degxk≺1 f ∈N, this cannot happen
infinitely many times. This contradiction proves the termination of uniformize modulo the
termination of pseudo.

To complete the proof, let us consider one of the recursive calls pseudo(f , k) and prove
its termination. Without loss of generality, we may assume that none of the coordinates
xk+1,	 , xn is refined during the recursive calls of uniformizeK(f −ϕ). Intuitively speaking,
the termination of pseudo(f , k) is equivalent to the termination of uniformizeK(f − f<xk

),
interspersed with a sequence of additional refinements.

More precisely, assume that the loop does not terminate. In a similar way as above,
let k ′ < k be maximal such that xk ′ is refined infinitely many times. Without loss of
generality, we may assume that xk ′ remains ordinary in f − f<xk

. At each recursive call
of uniformizeK(f − ϕ), each of the dominant monomials of f − ϕ involves one of the
coordinates xk+1,	 , xn. At the first subsequent call of blowupK(f − ϕ), it follows that the
dominant edge of f − ϕ is actually a dominant edge of f − f<xk

. Now in a similar way as
above, it occurs infinitely often that xk ′ is the principal coordinate of f − ϕ (and thus of
f − f<xk

) for this call. But then degxk ′≺1 (f − f<xk
) decreases every two such calls, which

leads to the desired contradiction. �
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