Undecidability versus undecidability

∞

By Joris van der Hoeven

Addr.: Dépt. de Math., Université d'Orsay, France
: LIX, École polytechnique, France
Email: Joris.Vanderhoeven@math.u-psud.fr
: vdhoeven@lix.polytechnique.fr
Web : http://lix.polytechnique.fr:80/~vdhoeven/

Prague, 10-8-1998

Main problems

Analytic continuation

Given an algebraic differential equation with complete initial conditions, how to (efficiently) compute the value of the solution in a point up to any desired precision ?

Asymptotic behaviour

Given an algebraic differential equation in x, compute all possible asymptotic behaviours of solutions for $x \rightarrow \infty$.

The linear case

The equation

$$
L_{r}(z) f^{(r)}(z)+\cdots+L_{0}(z) f(z)=0
$$

with $L_{i}(z) \in \mathbb{Q}[i][z]$ and $L_{0}(z) \neq 0$.
Only singularities: zeros of $L_{r}(z)$.

Analytic continuation

Let $z \rightsquigarrow z^{\prime}$ be a nonsingular path with $z, z^{\prime} \in \mathbb{Q}[i]$.
Transition matrix $M_{z \sim z^{\prime}}$:

$$
\left(\begin{array}{c}
f\left(z^{\prime}\right) \\
\vdots \\
f^{r-1}\left(z^{\prime}\right)
\end{array}\right)=M_{z \rightsquigarrow z^{\prime}}\left(\begin{array}{c}
f(z) \\
\vdots \\
f^{r-1}(z)
\end{array}\right) .
$$

Theorem: $M_{z \rightsquigarrow z^{\prime}}$ can be approximated up to n decimal digits in time $O\left(n \log ^{3} n \log \log n\right)$.

Questions

What if $z \rightsquigarrow z^{\prime}$ passes through singularities?
Complexity if $z \rightsquigarrow z^{\prime}$ approaches a singularity.

Asymptotic expansions in 0

Basis of formal generalized series solutions:

$$
f(z)=\left(f_{0}+\cdots+f_{r-1} \log ^{r-1} z\right) z^{\alpha} e^{P}
$$

where

$$
\left\{\begin{array}{l}
p \in \mathbb{N}^{*} ; \\
\alpha \in \mathbb{C} ; \\
f_{0}, \ldots, f_{r-1} \in \mathbb{C}[[\sqrt[p]{z}]] ; \\
P \in \mathbb{C}\left[\left[\sqrt[p]{z^{-1}}\right]\right]
\end{array}\right.
$$

Regular singular case

If L is a regular singular (\Rightarrow the f_{i} are convergent), then the analytic continuation result generalizes.

General case

Treated via resummation or accelero-summation (Écalle).

Example of resummation

$$
\tilde{f}=\sum_{n \geqslant 1} f_{n} z^{n}=\sum_{n \geqslant 1}(-1)^{n}(n-1)!z^{n} .
$$

Apply the formal Borel transform

$$
\hat{f}=\tilde{\mathcal{B}} \tilde{f}=\sum_{n \geqslant 0} \frac{f_{n+1}}{n!} \zeta^{n}=\frac{1}{1+\zeta} .
$$

Apply the analytical Laplace transform

$$
f(z)=(\mathcal{L} \hat{f})(z)=\int_{0}^{\infty} \hat{f}(\zeta) e^{-\zeta / z} d \zeta=\int_{0}^{\infty} \frac{e^{-\zeta / z}}{1+\zeta} d \zeta .
$$

f defined for all z with $\Re z>0$.
The differential equation
Both \tilde{f} and f satisfy

$$
z^{2} f^{\prime}+f=z .
$$

Transseries

Examples

$$
\begin{aligned}
f & =e^{e^{x}}+2 e^{e^{x}-\log ^{2} x}+6 e^{e^{x}-2 \log ^{2} x}+\cdots \\
g & =1+x^{-1} e^{x}+x^{-2} e^{x}+\cdots+e^{-x}+x^{-1} e^{-x}+\cdots+\cdots \\
h & =e^{e^{x}+x^{-1} e^{x}+\cdots}+x^{-1} e^{e^{x}+x^{-1} e^{x}+\cdots}+\cdots
\end{aligned}
$$

Advantages

- Transseries describe violent singularities.
- Rich algebraic structure.
- Analysis through accelero-summation.

Drawback

They only describe strongly monotonic asymptotic behaviour.

Exp-log functions

Constructed from \mathbb{Q} and x by,,$+- \times, /, \exp$ and \log.
Assume a zero test for exp-log constants.
There exists an asymptotic expansion program for exp-log functions.

Exp-log systems
Given an asymptotical exp-log system in several variables, like

$$
\begin{aligned}
e^{x+e^{y}}-e^{y+e^{x}} & =x y+\log ^{y} x ; \\
1 & \nless \\
x & \nless \\
x & e^{y} .
\end{aligned}
$$

There exists a "desingularization" algorithm:
The solution set S in \mathbb{T} is written

$$
S=S_{1} \amalg \cdots \amalg S_{n}
$$

Each S_{i} determined by a formula depending on

- A finite number of infinitesimal transseries parameters.
- A finite number of real parameters.
- Exp-log constraints on the real parameters.
\longrightarrow Generalization to more general transseries systems.

Differential equations

Given an algebraic differential equation.
There exists a generic resolution algorithm in \mathbb{T} :
The solution set S in \mathbb{T} is written

$$
S=S_{1} \amalg \cdots \amalg S_{n} .
$$

Each S_{i} determined by a formula depending on

- A finite number of infinitesimal transseries parameters.
- A finite number of real parameters.
- First order exp-log constraints on the real parameters.

Intermediate value theorem

Let P be a differential polynomial over \mathbb{T}.
Assume $P(f)<0$ and $P(g)>0$ for $f<g \in \mathbb{T}$.
Then there exists a $h \in \mathbb{T}$ with $f<h<g$ and $P(h)=0$.
Consequence:

$$
f^{\prime \prime} f^{1998}+e^{e^{x}} f f^{\prime} f^{\prime \prime \prime}-\Gamma\left(\log ^{10} x\right)=e^{\log ^{8} x}
$$

admits a solution in \mathbb{T}.

Undecidable? I can decide

Grigoriev and Singer

The problem whether a given system of algebraic differential equations admits a power series solution (with generalized exponents) is undecidable.

Idea

Consider the system Σ :

$$
\begin{aligned}
y^{\prime} x & =\beta y \\
\beta^{\prime} & =0 ; \\
z^{\prime} y x+z^{\prime \prime} x^{2} & =x+y .
\end{aligned}
$$

Σ admits a solution iff $n^{-1} \in \mathbb{N}$.

But...

The system admits always a solution if we allow logarithms.
Compare: resolution polynomial equations through radicals.

Undecidlable? II can decide

Simple trigonometric systems

Language: $(\mathbb{Q},+,-, \times)$ and $\varphi_{a, b}(x)=a \sin (x+b)$, for each variable x and $a, b \in \mathbb{Q}$.
Equations in this language are undecidable.

Game

You give a simple trigonometric system and $\varepsilon>0$.
I may change each $\varphi_{a, b}$ in the equations into $\varphi_{a^{\prime}, b^{\prime}}$, with $\left|a^{\prime}-a\right|<\varepsilon$ and $\left|b^{\prime}-b\right|<\varepsilon$.
Equations can be solved with probability 1.

Conclusions

- Ill posed problems are undecidable.
- The undecidable instances of an undecidable problem in real analysis are "singular".

Decidable? Please show me...

Sine-exp bombs

$$
\sin \left(10^{10^{10^{10}}}\right)>0 ?
$$

Limsup

Determine

$$
\limsup _{x \rightarrow \infty} \frac{\sin \left(10^{10^{10}} x\right)-e^{\cos x}}{3+\sin ^{4} x} .
$$

Idea: rewrite $\sin \left(10^{10^{10}} x\right)$ in terms of $\sin x \ldots$

Algebraic systems
Random system of 100 polynomial equations in 100 unknowns.

Other classical example
Factor $11^{1000}+2$.

Must we decide?

A Diophantine problem

Asymptotic expansion of

$$
\exp \exp \left[\left(\sin (x)+\sin \left(e^{\pi} x\right)+e^{-x}-2\right) x\right] ?
$$

Note

The expansion of $e^{e^{\lambda x}}$ (λ parameter) is

$$
\begin{cases}e^{e^{\lambda x}}, & \text { if } \lambda>0 \\ e, & \text { if } \lambda=0 \\ 1+e^{\lambda x}+\frac{1}{2} e^{2 \lambda x}+\cdots, & \text { otherwise }\end{cases}
$$

Approach

Distinguish three cases depending on sign of

$$
\sin (x)+\sin \left(e^{\pi} x\right)+e^{-x}-2
$$

Substitute value for $x \longrightarrow$ we know in which case we are.

Finiteness of number of cases?
Reduction: weakly oscillatory \longrightarrow strongly monotonic.

Decidable? Undecidable?

Constant problems

Test whether an exp-log constant vanishes.
Test whether an algebraic differential constant vanishes.

Richardson's theorem

If Schanuel's conjecture holds, then there exists a zero test for exp-log constants.

Conjecture. (Schanuel) Let $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$ be \mathbb{Q}-linearly independent. Then

$$
\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} \mathbb{Q}\left[\alpha_{1}, \cdots, \alpha_{n}, e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}\right] \geqslant n .
$$

Consequence

If Schanuel's conjecture holds, then many strongly monotonic asymptotical problems can be solved effectively.

Some conjectures

Exp-log conjecture

N : be some large number ($N>10$).
\mathfrak{E}_{N} : the set of exp-log constants constructed as follows:
$-1 \in \mathfrak{E}_{N}$.
$-\mathfrak{E}_{N}$ stable under,,$+- \times, /, \log$.

- If $c \in \mathfrak{E}_{N}$ with $N^{-1}<c<N$, then $\exp c \in \mathfrak{E}_{N}$.

Conjecture: Let $c \in \mathfrak{E}_{N}$ be of size s as a tree.
Then $\exists K_{N}$, such that $c=0$ iff $|c|<e^{-e^{K_{N} s}}$.
Fine tuning: $e^{-\varphi_{N}(s)}$ instead of $e^{-e^{K_{N} s}}$.

Power series analogue

Consider the following class \mathfrak{S} of power series:
$-K \subseteq \mathfrak{S}, z \in \mathfrak{S}$.
$-\mathfrak{S}$ stable under,,$+- \times$.

- \mathfrak{S} stable under zinv, zlog, exp:

$$
\operatorname{zinv}(z)=(1+z)^{-1}, z \log (z)=\log (1+z) .
$$

Question: How many terms of $f \in \mathfrak{S} \backslash\{0\}$ can vanish as a function of the size f.

Algebraic differential analogue

Non standard size function for constant expressions:
$-\operatorname{size}(1)=1$.
$-\operatorname{size}(x+y)=\operatorname{size}(x-y)=\operatorname{size}(x y)=\operatorname{size}(x / y)=$ $\operatorname{size}(x)+\operatorname{size}(y)+1$.

- f : differential algebraic function near 0 . size (f) : size of equation+ initial coefficients.

$$
\operatorname{size}(f(x))=\operatorname{size}(f)+\operatorname{size}(x)+\max \left(0,\left\lceil\log \sup _{|u| \leqslant|z|}|f(u)|\right\rceil\right) .
$$

Conjecture: as above with non standard size function.

Final approach

- Find the right problem in the right context.
- Theoretically decidable cases?
- Theoretically undecidable cases are singular?
- Theoretically decidable cases modulo oracles?
- Decidability via a finite number of possible cases?
- Complexities of phenomena involved?
- Better complexities using plausible heuristics?
- Practically decidable cases?
- Decidability via a finite number of possible cases?

