Undecidability versus undecidability

By JORIS VAN DER HOEVEN

Addr.: Dépt. de Math., Université d’Orsay, France
: LIX, Fcole polytechnique, France
Email: Joris.Vanderhoeven@math.u-psud.fr

: vdhoeven@lix.polytechnique.fr
Web : http://lix.polytechnique.fr:80 /~vdhoeven /

Prague, 10-8-1998



Main problems

Analytic continuation
Given an algebraic differential equation with complete initial con-
ditions, how to (efficiently) compute the value of the solution in

a point up to any desired precision 7

Asymptotic behaviour
Given an algebraic differential equation in x, compute all possible

asymptotic behaviours of solutions for z — oo.



The linear case

The equation

Lu(2)f)(2) + -+ Lo()f(2) =0,
with L;(z) € Q[¢][z] and Lg(z) # 0.

Only singularities: zeros of L,.(z).

Analytic continuation
Let z ~» 2z’ be a nonsingular path with z, 2" € Q[i].

Transition matrix M,.. .

f(2) f(2)

fr—l(zl) fr—l(z)

Theorem: M,.., can be approximated up to n decimal digits in

time O(nlog® nloglogn).

Questions
What if z ~ 2’ passes through singularities?

Complexity if z ~» 2’ approaches a singularity.



Asymptotic expansions in 0

Basis of formal generalized series solutions:

f(z)=(fo+ -+ frorlog™ ' 2)z%",

where
)

p € N¥;
a € C;

an- . °7f7“—1 S C[[@]?
P € C[[¥/=71]).

\

Regular singular case
If L is a regular singular (= the f; are convergent),

then the analytic continuation result generalizes.

(General case

Treated via resummation or accelero-summation (Ecalle).



Example of resummation

Apply the formal Borel transform

A > fn-l—l 1
— Bf = n_
/ / T%% n! ¢ 14+¢

Apply the analytical Laplace transform

o—C/%
1+ ¢

1(z) = (Lf)(z) = /0 Qe - /ooo

f defined for all z with ®z > 0.

dc.

The differential equation
Both f and f satisfy

zzf'—l—f:z.



Transseries

Examples
f _ eem _|_266m—10g2x_|_6eem—2log2x_|_.” :
g = l4+ale"+a 2"+ +e " le T+t
h = 6egﬁ—|—513_1egﬁ—|—--- 4+ x—leex—kx_lex—l—--- 4.
Advantages

— Transseries describe violent singularities.
— Rich algebraic structure.

— Analysis through accelero-summation.

Drawback

They only describe strongly monotonic asymptotic behaviour.



Exp-log functions

Constructed from Q and z by +, —, X, /,exp and log.

Assume a zero test for exp-log constants.

There exists an asymptotic expansion program for exp-log func-

tions.

Exp-log systems

Given an asymptotical exp-log system in several variables, like

Y x

el Te — e¥te = zy+ log¥ x;
1 <<
z =X €Y.

There exists a “desingularization” algorithm:

The solution set S in T is written
S=51---115,.
Each S; determined by a formula depending on

— A finite number of infinitesimal transseries parameters.
— A finite number of real parameters.

— Exp-log constraints on the real parameters.

— Generalization to more general transseries systems.



Differential equations
Given an algebraic differential equation.
There exists a generic resolution algorithm in T:

The solution set S in T i1s written
S=501---1I5,,.

Each S; determined by a formula depending on

— A finite number of infinitesimal transseries parameters.
— A finite number of real parameters.

— First order exp-log constraints on the real parameters.

Intermediate value theorem

Let P be a differential polynomial over T.

Assume P(f) <0 and P(g) >0 for f < g€ T.

Then there exists a h € T with f < h < g and P(h) = 0.

Consequence:
1M £1998 e g gl ol 10 .\ _ logt«x
ot e fI T —T(logz) = e

admits a solution in T.



Undecidable? I can decide

Grigoriev and Singer
The problem whether a given system of algebraic differential
equations admits a power series solution (with generalized ex-

ponents) is undecidable.

Idea
Consider the system ::
yr = Py;
g o= 0
z'yaz—l—z”azz = x+v.

> admits a solution iff n=! € N.

But...

The system admits always a solution if we allow logarithms.

Compare: resolution polynomial equations through radicals.



Undecidable? II can decide

Simple trigonometric systems
Language: (Q,+,—, x) and ¢, .(z) = asin(z + b),
for each variable x and a,b € Q.

Equations in this language are undecidable.

Game

You give a simple trigonometric system and ¢ > 0.
I may change each ¢, ; in the equations into ¢,y
with |’ —a| < ¢ and |b' — b] < ¢.

Equations can be solved with probability 1.

Conclusions
— Ill posed problems are undecidable.

— The undecidable instances of an undecidable problem in real

analysis are “singular”.
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Decidable? Please show me...

Sine-exp bombs

sin(101°" ) > 07

Limsup

Determine Ny
¥ sin(lOlO x) — €75
im sup

€T — 00 3 —|— SiH4ZIZ

. . 0 . .
Idea: rewrite sm(lOlO z) in terms of sin x...

Algebraic systems

Random system of 100 polynomial equations in 100 unknowns.

Other classical example
Factor 111990 4+ 2,
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Must we decide?

A Diophantine problem

Asymptotic expansion of

exp exp[(sin(z) + sin(e"z) + ™% — 2)z|?

Note
The expansion of e (A parameter) is
( eem, if A > 0;
§ e, if A = 0;
1+ e + %e”‘” + .-+, otherwise.

\

Approach

Distinguish three cases depending on sign of
sin(x) + sin(e"x) + e~ ¥ — 2;

Substitute value for x — we know in which case we are.

Finiteness of number of cases?

Reduction: weakly oscillatory — strongly monotonic.
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Decidable? Undecidable?

Constant problems
Test whether an exp-log constant vanishes.

Test whether an algebraic differential constant vanishes.

Richardson’s theorem
If Schanuel’s conjecture holds,

then there exists a zero test for exp-log constants.

Conjecture. (Schanuel) Let ay,---,a, € C be Q-linearly
independent. Then

1 (04

trdegg Qlay, -+, ap, e, -+ €] > n.

Consequence
If Schanuel’s conjecture holds, then many strongly monotonic

asymptotical problems can be solved effectively.
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Some conjectures

Exp-log conjecture
N: be some large number (N > 10).

¢ : the set of exp-log constants constructed as follows:

— 1€ ¢&y.
— €y stable under +, —, X, /, log.

— If c€ ¢y with N7! < ¢ < N, then expc € Ey.

Conjecture: Let ¢ € €n be of size s as a tree.
Then Ky, such that ¢ = 0 iff |¢| < e=" N7

Fine tuning: e~ #~() instead of e=e" N

Power series analogue

Consider the following class & of power series:

— KCG6G,ze6.
— G stable under +, —, X.

— G stable under zinv, zlog, exp:
zinv(z) = (1 + 2)71, zlog(z) = log(1 + 2).

Question: How many terms of f € G\{0} can vanish as a function
of the size f.
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Algebraic differential analogue

Non standard size function for constant expressions:

— size(1) = 1.

— size(x + y) = size(x — y) = size(zy) = size(x/y) =
size(z) + size(y) + 1.

— f: differential algebraic function near 0.

size( f): size of equation+ initial coefficients.

size( f(x)) = size(f) + size(z) + max(0, [log |uS|1iI|)z| | f(u)]])-

Conjecture: as above with non standard size function.
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Final approach

Find the right problem in the right context.

Theoretically decidable cases?
Theoretically undecidable cases are singular?
Theoretically decidable cases modulo oracles?

Decidability via a finite number of possible cases?

Complexities of phenomena involved?
Better complexities using plausible heuristics?
Practically decidable cases?

Decidability via a finite number of possible cases?
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