Équations différentielles algébriques à coefficients dans les transséries

 $\infty \infty \infty$

par Joris van der Hoeven

C.N.R.S., Université Paris-Sud

INRIA Rocquencourt, 27/5/2002

 $\infty \infty \infty$

Partie I

Transséries

Corps \mathbb{T} de transséries réticulées en $x \succ 1$:

- Structure sérielle et ordre total ≼.
- Stable sous exp et log.
- Réel algébriquement clos.
- Stable sous différentiation, intégration.
- Stable sous composition, inversion.

Origines

Théorie des modèles.

- Dahn & Göring, 1984, 1986
- Wilkie, Van den Dries, Ressayre, etc. 199*

Analyse.

• Écalle, 1989, 1992

Calcul formel.

- Shackell, Salvy, etc. 1990-*
- vdH, 1994-*

Exemples

•
$$1+x^{-1}+x^{-2}+x^{-e}+x^{-3}+x^{-e-1}+\cdots$$

•
$$1 + \frac{1}{x} + \frac{1}{x^2} + \dots + e^{-x} + \frac{e^{-x}}{x} + \dots + e^{-2x} + \dots$$

•
$$1+2^{-x}+3^{-x}+4^{-x}+\cdots$$

•
$$x^{-1} + x^{-\pi} + x^{-\pi^2} + x^{-\pi^3} + \cdots$$

•
$$x + \sqrt{x} + \sqrt{\sqrt{x}} + \sqrt{\sqrt{x}} + \cdots$$

•
$$e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + x^{-1} e^{e^x + \frac{e^x}{x} + \frac{e^x}{x^2} + \dots} + \dots$$

•
$$\Gamma(x-\pi) + \log \Gamma(e^{\Gamma(x^2)}) x^{x^{x^x}}$$

•
$$\frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \frac{1}{e^{e^{e^x}}} + \cdots$$

•
$$f(x) = \frac{1}{x} + f(x^2) + f(e^{\log^2 x})$$

•
$$e^{\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x}} + ...}}$$

Séries bien ordonnées

- Corps totalement ordonné de constantes C.
- Groupe de monômes \mathfrak{M} , avec un ordre total \geq .
- [Hahn 1907] Ensemble des séries bien ordonnées

$$C[[\mathfrak{M}]] = \{ f : \mathfrak{M} \to C | \text{supp } f \text{ est bien ordonn\'ee} \}$$

forme un corps totalement ordonné.

- $f = c_f \mathfrak{d}_f (1 + \delta_f)$
- $f \preccurlyeq g \Leftrightarrow \mathfrak{d}_f \preccurlyeq \mathfrak{d}_g$
- Décomposition canonique :

$$f = f^{\uparrow} + f^{=} + f^{\downarrow}$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$\sum_{\mathfrak{m} \succ 1} f_{\mathfrak{m}} \mathfrak{m} \qquad f_{1} \qquad \sum_{\mathfrak{m} \prec 1} f_{\mathfrak{m}} \mathfrak{m}$$

Séries réticulées

f rétuculée $\Longleftrightarrow \exists \ \mathfrak{m}_1,...,\mathfrak{m}_k \prec 1$ et \mathfrak{n} : $\mathrm{supp} \ f \subseteq \{\mathfrak{m}_1,...,\mathfrak{m}_k\}^* \, \mathfrak{n}.$

 $C \llbracket \mathfrak{M} \rrbracket \subseteq C[[\mathfrak{M}]]$: corps de séries réticulées.

Exemple : pour $f = x^2 + x + 1 + x^{-1} + \cdots$ on a $\operatorname{supp} f \subseteq \{x^{-1}\}^* x^2$.

Construction de T

Transséries logarithmiques

Commencer avec le groupe de monômes

$$\mathfrak{L} = \mathfrak{E}_0 = x^{\mathbb{R}} (\log x)^{\mathbb{R}} (\log \log x)^{\mathbb{R}} \cdots$$

et le logarithme sur $\mathbb{R} \, \llbracket \mathfrak{L} \rrbracket_*^+$:

$$\log (c x^{\alpha_0} \cdots \log_l^{\alpha_l} x(1+\delta)) =$$

$$\log c + \alpha_0 \log x + \cdots + \alpha_l \log_{l+1} x + \log (1+\delta).$$

Étape d'induction

Soit \mathfrak{E}_n avec un logarithme sur $\mathbb{R} \llbracket \mathfrak{E}_n \rrbracket_*^+$.

$$\mathfrak{E}_{n+1} = \exp \mathbb{R} \, \llbracket \mathfrak{E}_n \rrbracket^{\uparrow},$$

οù

$$\exp f^{\uparrow} \succcurlyeq \exp g^{\uparrow} \Leftrightarrow f \geqslant g.$$

Prendre

$$\log (c e^{f^{\uparrow}} (1+\delta)) = \log c + f^{\uparrow} + \log (1+\delta).$$

Limite inductive : $\mathbb{T} = C \llbracket \mathfrak{E}_0 \cup \mathfrak{E}_1 \cup \cdots \rrbracket$.

Exemple.
$$e^{e^x(1+\frac{1}{x}+\frac{1}{x^2}+\cdots)} \in \mathfrak{E}_2$$
.

Transbases

Une transbase est un tuplet $\mathfrak{B} = (\mathfrak{b}_1, ..., \mathfrak{b}_n)$ avec

TB0. $1 \prec \mathfrak{b}_1 \prec \cdots \prec \mathfrak{b}_n$ transmonômes.

TB1. $\mathfrak{b}_1 = \exp_l x$, avec $l \in \mathbb{Z}$.

TB2. $\mathfrak{b}_i \in \exp \mathbb{R} \llbracket \mathfrak{b}_1; ...; \mathfrak{b}_{i-1} \rrbracket$ pour i > 1.

Expansion récursive de $f \in C \llbracket \mathfrak{b}_1; ...; \mathfrak{b}_n \rrbracket$:

$$f = \sum_{\alpha_n} f_{\alpha_n} \mathfrak{b}_n^{\alpha_n};$$

$$f_{\alpha_n} = \sum_{\alpha_{n-1}} f_{\alpha_n, \alpha_{n-1}} \mathfrak{b}_{n-1}^{\alpha_{n-1}};$$

$$\vdots$$

$$f_{\alpha_n, \dots, \alpha_2} = \sum_{\alpha_1} f_{\alpha_n, \dots, \alpha_1} \mathfrak{b}_1^{\alpha_1}.$$

Théorèmes des transbases incomplètes

Théorème 1. Soit \mathfrak{B}_0 une transbase et $f \in \mathbb{T}$ une transsérie. Alors il existe un supertransbase $\mathfrak{B} \supseteq \mathfrak{B}_0$ avec $f \in \mathbb{R} \llbracket \mathfrak{B}^C \rrbracket$.

Exemple.
$$\log (x + e^{\frac{-x^2}{1-x^{-1}}}) \in \mathbb{R} [[\log x; x; e^{x^2+x}]].$$

Différentiation

Différentiation sur L

Pour $\mathfrak{m} = x^{\alpha_0} \cdots (\log_l x)^{\alpha_l} \in \mathfrak{L}$:

$$\mathfrak{m}' = \mathfrak{m} \left(\frac{\alpha_0}{x} + \dots + \frac{\alpha_l}{x \cdots \log_l x} \right).$$

« Extension par linéarité forte » à $\mathbb{L} = \mathbb{R} \llbracket \mathfrak{L} \rrbracket$.

Différentiation sur ${\mathbb T}$

Pour $\mathfrak{m} = e^{f^{\uparrow}} \in \exp \mathbb{R} \llbracket \mathfrak{E}_n \rrbracket^{\uparrow}$:

$$\mathfrak{m}' = (f^{\uparrow})' \mathfrak{m}$$

« Extension par linéarité forte » à $\mathbb{R} \llbracket \mathfrak{E}_{n+1} \rrbracket$.

Mouvements supérieur et inférieur

- $f \uparrow = f \circ \exp$.
- $f \downarrow = f \circ \log$.

Partie II

Polynômes différentiels algébriques

$$P = \sum_{d} P_{d}$$

$$P_{d} = \sum_{i_{0}+\dots+i_{r}=d} P_{i_{0},\dots,i_{r}} f^{i_{0}} \dots (f^{(r)})^{i_{r}}$$

$$\deg P = \max \{i_{0}+\dots+i_{r}|P_{i_{0},\dots,i_{r}} \neq 0\}$$

$$\|P\| = \max \{i_{1}+\dots+r i_{r}|P_{i_{0},\dots,i_{r}} \neq 0\}$$

$$P_{+h}(f) = P(f+h)$$

$$P_{\times h}(f) = P(fh)$$

$$P\uparrow(f\uparrow) = P(f)\uparrow$$

Parties dominantes

$$\mathfrak{d}_{P} = \max_{\preceq} \{ \mathfrak{d}_{P_{i_{0},...,i_{r}}} | P_{i_{0},...,i_{r}} \neq 0 \}$$

$$D_{P} = \sum_{i_{0},...,i_{r}} P_{i_{0},...,i_{r},\mathfrak{d}_{P}} c^{i_{0}} \cdots (c^{(r)})^{i_{r}}$$

Théorème 2. Pour un $k \leq ||P||$, il existe un $N_P = N \in \mathbb{R}[c]$ $(c')^{\mathbb{N}}$, tel que pour tout $l \geqslant k$:

$$D_{P\uparrow_l} = N_P$$
.

Exemple.

$$P = ff'' - (f')^{2}$$

$$P \uparrow = e^{-x} (ff'' - ff' - (f')^{2})$$

$$P \uparrow \uparrow = -e^{-e^{x} - x} ff' + e^{-e^{x} - 2x} (ff'' - (f')^{2})$$

$$N_{P} = -ff'$$

 N_P : polynôme de Newton associé à 1.

Polygone de Newton

$$P(f) = 0 \qquad (f \prec \mathfrak{v}) \tag{*}$$

Degré de Newton

- $\mathfrak{m} \prec \mathfrak{v}$ monôme dom. pot. si $N_{P_{\times \mathfrak{m}}} \notin C$.
- $\tau = c \mathfrak{m} \prec \mathfrak{v}$ terme dom. pot. si $N_{P_{\times \mathfrak{m}}}(c) = 0$.
- Multiplicité de τ : mult. de c comme racine de $N_{P_{\times \mathfrak{m}}}$.
- Degré de Newton: deg. max. de $N_{P_{\times \mathfrak{m}}}(\mathfrak{m} \prec \mathfrak{v})$.

Types de monômes dom. pot.

Algébrique. $N_{P_{\times \mathfrak{m}}} \in \mathbb{R}[c] \backslash C$.

Différentiel. $N_{P_{\times \mathfrak{m}}} \in \mathbb{R}\left(c'\right)^{\mathbb{N}^*}$.

Mixte. $N_{P_{\times \mathfrak{m}}} \in (\mathbb{R}[c] \backslash \mathbb{R}) (c')^{\mathbb{N}^*}$.

M.d.p.s Algébriques et mixtes

Proposition 3. Supposons $P_i \neq 0$ et $P_j \neq 0$. Alors il existe un égalisateur unique $\mathfrak{m} = \mathfrak{e}_{i,j}$, tel que $N_{(P_i + P_j)_{\times \mathfrak{m}}}$ ne soit pas homogène.

M.d.p.s différentiels

Polynômes de Riccati :

$$P_i(f) = R_{P,i}(f^{\dagger}) f^i$$

Proposition 4. Le monôme $\mathfrak{m} \prec \mathfrak{v}$ est un monôme dominant potentiel par rapport à

$$P_i(f) = 0$$

si et seulement si

$$R_{P,i,\mathfrak{m}^{\dagger}}(f^{\dagger}) = 0 \qquad (f^{\dagger} \prec \frac{1}{x \log x \log \log x \dots})$$

à un degré de Newton strictement positif.

Raffinements

Changement de variables + contrainte asymptotique

$$f = \varphi + \tilde{f} \qquad (\tilde{f} \prec \tilde{\mathfrak{v}}) \tag{1}$$

transforme (*) dans

$$P_{+\varphi}(\tilde{f}) = 0 \qquad (\tilde{f} \prec \tilde{\mathfrak{v}}) \tag{2}$$

Théorème 5. Soit τ le terme dominant de φ . Alors le degré de Newton de (2) vaut la multiplicité de τ comme terme dominant potentiel pour (*).

Équations quasi-linéaires

Quasi-linéaire : de degré de Newton 1.

Théorème 6. Toute équation quasi-linéaire admet une « solution distinguée ».

Dénouements

Degré de Newton d n'augmente pas pour le raffinement

$$f = \tau + \tilde{f}$$
 $(\tilde{f} \prec \tilde{\mathfrak{v}})$

---- considérer raffinements comme

$$f = \psi + \tilde{f}$$
 $(\tilde{f} \prec \tilde{\mathfrak{v}}),$

avec

$$\frac{\partial P}{\partial f}(\psi) = 0 \qquad (\psi \prec \mathfrak{v}).$$

- \longrightarrow dénouement : raffinement (1) avec
- **U1.** Le degré de Newton degré de (2) est d.
- **U2.** Pour tout $\tilde{\varphi} \prec \tilde{\mathfrak{v}}$, le degré de Newton de

$$P_{\varphi + \tilde{\varphi}}(\tilde{\tilde{f}}) = 0 \qquad (\tilde{\tilde{f}} \prec \mathfrak{d}(\tilde{\varphi}))$$

 $\operatorname{est} < d$.

Structure des solutions

Théorème 7. Si les coefficients de P sont tous purement exponentiels, alors il existe un entier $U_{d,r,w}$, tel que la profondeur logarithmique de chaque racine de P est bornée par $U_{d,r,w}$.

Exemple

$$P = f + f f'' - (f')^2$$
.

Terme dominant potentiel algébrique :

$$\tau = \frac{1}{2} x^2$$
.

Terme dominant potentiel différentiel :

$$\mu e^{\lambda x}$$

avec $\lambda > 0$.

Exercice

Autres termes du développement...

Partie III

Théorème des valeurs intermédiaires

Théorème 8. Soit P un polynôme différentielle algébrique à coefficients dans \mathbb{T} . Si $\varphi < \psi$ sont tels que $P(\varphi) \, P(\psi) < 0$, alors il existe un $f \in (\varphi, \psi)$ avec P(f) = 0.

Exemple:
$$P = f^7 + e^{e^x} f^3 f''' + \Gamma(\log \Gamma(x) + 1) = 0.$$

Stratégie de preuve

Généraliser le théorème à des φ et ψ du type

- $\varphi = \xi \pm \partial_{\mathbb{T}}$.
- $\varphi = \xi \pm m_{\mathbb{T}}$.
- $\varphi = \xi \pm \mathfrak{m}$
- $\varphi = \xi \pm m \mathfrak{m}$.
- $\varphi = \xi \pm \gamma$, où $\gamma = \frac{1}{x \log x \log \log x \cdots}$.

Comportement autour de zéro et l'infini

Lemme 9. Le signe de $P(\pm f)$ est constant pour $f \in \mathbb{T}$ suffisamment grand.

Démonstration. Réécrire P en $f, f^{\dagger}, f^{\dagger\dagger}, \dots$

Lemme 10. Le signe de $P(\pm \varepsilon)$ est constant pour $f \in \mathbb{T}$ suffisamment petit.

Comportement autour des constantes

- $\sigma_P(f) = \operatorname{sign} P(f)$.
- $f \ll g \Leftrightarrow \log |f| < \log |g|$.
- $N_P = Q(c) (c')^{\nu}$ et P purement exponentiels.
- μ multiplicité de c en comme racine de Q.

Lemme 11. Pour tout $0 < \varepsilon \prec 1$ avec $\varepsilon \prec e^x$, les signes de $P(c - \varepsilon)$ et $P(c + \varepsilon)$ sont indépendants de ε et donnés par

$$(-1)^{\mu} \sigma_P(c-\theta) = (-1)^{\nu} \sigma_P(c+\theta) = \sigma_{O(\mu)}(c).$$

Lemme 12. *Pour P homogène de degré i*:

$$\sigma_P(\vartheta) = \sigma_P(\varepsilon) = \sigma_{R_{P,i}(\varepsilon^{\dagger})} = \sigma_{R_{P,i}(-\gamma)}$$

pour tout $0 < \varepsilon \prec 1$ avec $\varepsilon \prec\!\!\prec e^x$.

Comportement avant et après les constantes

Lemme 13. Pour tout $0 < f \succ 1$ avec $f \prec\!\!\!\prec e^x$, les signes de P(-f) et P(f) sont indépendants de f et donnés par

$$(-1)^{\deg Q+\nu}\sigma_P(-m) = \sigma_P(m) = \operatorname{sign} Q_{\deg Q}.$$

Lemme 14. *Pour P homogène de degré i*:

$$\sigma_P(\alpha) = \sigma_P(f) = \sigma_{R_{P,i}}(f^{\dagger}) = \sigma_{R_{P,i}(\gamma)},$$

pour tout 0 < f > 1 avec $f \ll e^x$.

Démonstration finale

- Réduction à des intervalles de la forme $(\xi, \xi + \mathfrak{pv})$ ou $(\xi + \gamma, \xi + \mathfrak{pv})$.
- Triple induction sur l'ordre de P, le degré de Newton de (*) et la longueur maximale d'une chaîne de « raffinements privilégiés ».
- Réduire l'intervalle utilisant les lemmes et en surveillant l'endroit où s'opère le changement de signe.

Et après ?

- Transséries complexes
 - Au moins d solutions dans les transséries complexes. \square
 - Opérateurs différentiels linéaires se factorisent.
 - Séparations de cas & régions correspondantes. (...)
 - Fonctions analysables. (...)
- Équations différentielles aux différences
 - OK pour des postcompositions avec exponentialité 0 (comme $z+1, qz, z^N$).
 - Transséries de force supérieure (thèse de MICHAEL SCHMELING).
 - Transséries imbriquées.
- Théorie de modèles.
- Algorithmes.
- Etc.