Effective Analytic Functions

 $\infty \infty \infty$

BY JORIS VAN DER HOEVEN

C.N.R.S., Université Paris-Sud

MEGA' 03, Kaiserslautern, 14/6/2003

 $\infty \infty \infty$

Written using GNU $T_{EX_{MACS}}$ (www.texmacs.org)

Functions of interest

- "Simple functions" and closure under $+, \times, \partial, \int$, \circ , etc.
- Solutions to algebraic differential equations.

Testing functional identities

- $\bullet \quad \sin^2 x + \cos^2 x = 1$
- $\log(x^{x^x} + e^{x\log x}) x^x\log x = \log(1 + x^{x(1-x^{x-1})})$

•
$$\sqrt[3]{\frac{5}{\sqrt{32/5}} - \frac{5}{\sqrt{27/5}}} = (1 + \sqrt[5]{3} - \sqrt[5]{9})/\sqrt[5]{25}}$$

functional identities = constant identities + power series identities

Evaluating functions whereever they are defined

- Fast algorithms for safe numerical evaluation (relaxed power series).
- Analytic continuation.

Theorem 1. [DL] Given a power series $f = \sum f_n z^n$ with rational coefficients, which is the unique solution of an algebraic differential equation

 $P(z, f, ..., f^{(l)}) = 0,$

with rational coefficients and rational initial conditions, one cannot in general decide whether the radius of convergence $\rho(f)$ of f is <1 or ≥ 1 .

Columbus

Effective complex number

Instance z of abstract data type Complex, with method

• approximate: $\mathbb{Z} \to (\mathbb{Z} + i \mathbb{Z}) 2^{\mathbb{Z}}; k \mapsto \tilde{z}$, with $|\tilde{z} - z| < 2^k$.

Effective series

Instance f of abstract data type Series(R), with method

• expand: $\mathbb{N} \to \mathbb{R}[z]; n \mapsto f_0 + \dots + f_{n-1} z^{n-1}$.

Effective germ (at the origin)

Instance f of abstract data type Germ which extends Series(Complex) with the following additional methods:

- radius: () \rightarrow Real \cup {+ ∞ } returns a lower bound $\rho(f) > 0$ for $\rho(\overline{f})$. This bound is called the *effective radius of convergence* of f.
- norm: Real \rightarrow Real, which, given $0 < r < \rho(f)$, returns an upper bound $|f|_r$ for $|\bar{f}|_r$. We assume that $|f|_r$ is increasing in r.

Algorithm evaluate-approx(f, z, ε)

Input $f \in \text{Germ}$ and $z \in \text{Complex}$ with $|z| < \rho(f)$, and $\varepsilon \in 2^{\mathbb{Z}}$

Output an approximation \tilde{f} for f(z) with $|\tilde{f} - f(z)| < \varepsilon$

 $Step \ 1 \ [Compute expansion order]$

Let $r\!=\!(\rho(f)\!+\!|z|)/2$ and $M\!=\!|f|_r$

Let $n \in \mathbb{N}$ be smallest such that

$$\frac{Mr}{r-|z|} \left(\frac{|z|}{r}\right)^n < \frac{\varepsilon}{2}$$

Step 2 [Approximate the series expansion] Compute $\hat{f} = f_0 + f_1 z + \dots + f_{n-1} z^{n-1} \in \text{Complex}$ Return $\hat{f}_{<\varepsilon/2}$

Proof

$$\left|\hat{f} - f(z)\right| \leqslant \frac{|z|^n}{2\pi} \left| \oint_{|w|=r} \frac{M}{(r-|z|)r^n} \,\mathrm{d}w \right| = \frac{Mr}{r-|z|} \left(\frac{|z|}{r}\right)^n < \frac{\varepsilon}{2}.$$

Quasi-effective analytic function

Instance f of the abstract data type AnFunc, which extends Germ with

• continue: Complex \rightarrow AnFunc computes $f_{+\delta}$ for all δ with $|\delta| < \rho(f)$.

Effective domain of f: effective paths $\gamma = [\delta_1, ..., \delta_l] \in Path$ with

 $|\delta_i| < \rho(f_{+\delta_1,\dots,+\delta_{i-1}}).$

Homotopy condition

If $\gamma, \gamma + [\delta_1], \gamma + [\delta_1, \delta_2], \gamma + [\delta_1 + \delta_2] \in \text{Dom } f$, then

 $f_{+\gamma,+(\delta_1+\delta_2)} \equiv f_{+\gamma,+\delta_1,+\delta_2}.$

Continuity condition

Locally: $\delta \mapsto \rho(f_{+\delta})$ and $(\delta, r) \mapsto |f_{+\delta}|_r$ extend by continuity.

Globally: this is the case for all $f_{+\gamma}$ with $\gamma \in \text{Dom } f$.

Extended effective domain

Dom[#] $f = \{\gamma: \gamma' \in \text{Dom } f \text{ for some subdivision } \gamma' \text{ of } \gamma \}.$ f faithful if Dom[#] $f = \text{Dom } \overline{f} \cap \text{Path.}$

Evaluation on extended domain

 $0<\lambda<1$

```
Algorithm evaluate-subdiv(f, \gamma)
Input f \in AnFunc and \gamma \in Path, such that \gamma \in Dom^{\sharp} f
Output f(\gamma)
```

```
Step 1 [Handle trivial cases]
If \gamma = \epsilon, then return f(0)
Write \gamma = [\delta] + \gamma'
```

If $\delta < \rho(f)$ then return evaluate-subdiv $(f_{+\delta}, \gamma')$

Step 2 [Subdivide path]

Let $\delta_1 = \lambda \left| \rho(f) \left| \delta \right/ \left| \delta \right|$

Return evaluate-subdiv $(f_{+\delta'}, [\delta - \delta'] + \gamma')$

Class IdentityAnFunc >AnFunc

- $z \in \text{Complex}$
- new: () $\mapsto z := 0$
- new: $\tilde{z} \in \text{Complex} \mapsto z := \tilde{z}$
- radius: () $\mapsto \infty$
- norm: $r \mapsto |z| + r$
- continue: $\delta \mapsto \text{IdentityAnFunc}(z + \delta)$

Class IntAnFunc >AnFunc

- $f \in AnFunc$
- $c \in \text{Complex}$
- $\bullet \quad \mathsf{new}{:}\; \tilde{f} \mapsto f {:=}\; \tilde{f} \text{, } c {:=}\; 0$
- new: $(\tilde{f} \in AnFunc, \tilde{c} \in Complex) \mapsto f := \tilde{f}, c := \tilde{c}$
- radius: () $\mapsto \rho(f)$
- norm: $r \mapsto |c| + r |f|_r$
- continue: $\delta \mapsto \operatorname{IntAnFunc}(f_{+\delta}, \operatorname{this}(\delta))$

$0<\lambda<1$

$\textbf{Class} \ InvAnFunc {\vartriangleright} AnFunc$

- $f \in AnFunc$
- new: $\tilde{f} \in AnFunc \mapsto f := \tilde{f}$
- radius: () $\mapsto \min\left(\lambda \rho(f), \frac{|f(0)|}{|f'|_{\lambda \rho(f)}}\right)$
- norm: $r \mapsto \frac{1}{|f(0)| |f'|_r r}$
- continue: $\delta \mapsto \operatorname{InvAnFunc}(f_{+\delta})$

Consider the linear differential equation

$$f^{(l)} = L_{l-1} f^{(l-1)} + \dots + L_0 f.$$
(1)

with initial conditions $f(0) = \nu_0, ..., f^{(l-1)}(0) = \nu_{l-1}$.

Theorem 2. Let $L_0, ..., L_{l-1} \in AnFunc$ and let $\nu_0, ..., \nu_{l-1} \in Complex$. Then there exists an effective analytic solution f to (1) with

 $Dom f = Dom (L_1, ..., L_l).$

In particular, if $Dom(L_1, ..., L_l)$ is effective, then so is Dom f.

Proof. Uses very sharp version of the majorant method.

Consider the system of algebraic differential equations

$$\frac{\mathrm{d}}{\mathrm{d}z} \begin{pmatrix} f_1 \\ \vdots \\ f_l \end{pmatrix} = \begin{pmatrix} P_1(f_1, \dots, f_l) \\ \vdots \\ P_l(f_1, \dots, f_l) \end{pmatrix}$$
(2)

with initial conditions $f_1(0) = \nu_1, ..., f_l(0) = \nu_l$.

Theorem 3. Let $P_1, ..., P_l$ be polynomials with coefficients in Complex and let $\nu_1, ..., \nu_l \in \text{Complex}$. Then the system (2) admits a faithful effective analytic solution $(f_1, ..., f_l)$.

Proof.

- Majorant method.
- Continuity condition + compactness of path \longrightarrow faithfulness.