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< A missing subject?

Real algebraic geometry
Algebraic geometry — +
Valuation theory

! |

Differential algebra — ?

e Hardy fields: Hardy, Rosenlicht, Boshernitzan, Singer, etc.

e Pfaff systems: Khovanskii, Wilkie, van den Dries, Rolin, etc.
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< A missing subject?

Real algebraic geometry
Algebraic geometry — +
Valuation theory
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Real differential algebra
Differential algebra — +
Asymptotic differential algebra

e LNM 1888: Transseries and Real Differential Algebra

e Other work on http://www.math.u-psud.fr/~vdhoeven
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Maximal Hardy field (7)
H +
Asymptotic differential algebra
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What is a transseries?
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What is a transseries?

(x>1)

e Dahn & Goring

e Ecalle
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Examples of transseries » ‘
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Uy The field T of grid-based transseries

e T=RIZTI, where T is a totally ordered monomial group.

o R[IZD: series f=3)" o fum€&RIZI with grid-based support:

supp f C{my, ..., m,, }*n, my,...,m,;, <1

e T is a totally ordered, real closed field.

e T is stable under exp, log, 9, [, o and ™.



& Intermediate value theorem &» ‘

Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.

1. Calculus with cuts fe T.
2. Classification of cuts and behaviour of P(f) near a cut.

3. Newton polygon method for shrinking interval on which a sign change occurs and whose
end-points are cuts.
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Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.
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& Intermediate value theorem &» ‘

Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.

1. Calculus with cuts fe T.
2. Classification of cuts and behaviour of P(f) near a cut.

3. Newton polygon method for shrinking interval on which a sign change occurs and whose
end-points are cuts.

Corollary. Any monic L € T[0] admits a factorization with factors

0—a or

82— (2a+b" 0+ (a®?+b*—a’+abl)=(0—(a—bi+b")) (0 —(a+bi))



L Complex transseries “» ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.



< Complex transseries @ ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Warning. T is not differentially algebraically closed

P+ +f =0
fP+5# 0

— Desingularization of vector fields (Cano, Panazzolo, ...)



< Complex transseries @ ‘

Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits

at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.
Remark. 4 algorithm for computing the solutions of a given equation.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential
equations.



Real transseries solutions — analytic germs

1: Accelero-summation
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2: Transserial Hardy fields

T D> 7T < g

e G: ring of infinitely differentiable real germs at +oc.



U Real transseries solutions — analytic germs

1: Accelero-summation

Advantages

Disadvantages

Canonical after choosing average
Preserves composition
Classification local vector fields
Differential Galois theory

2: Transserial Hardy fields

Advantages

Requires many different tools
Not yet written down

Disadvantages

Less hypotheses on coefficients
Might generalize to other models
Written down

Not canonical
No preservation of composition



< Transserial Hardy fields «» ‘

A transserial Hardy field is a differential subfield 7 of T, together with a monomorphism
p: T — G of ordered differential R-algebras, such that

THI1. VfeT: suppfCT.

TH2. VfeT: fzieT. f<=2 sy Smm
TH3. 3deZ: YmeZINT: logmeT +Rlog;z.

TH4. TN 7T is stable under taking real powers.

TH5. VfeT~: log feT= p(logf)=logp(f).

Example. T=R{z"'}}.
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& Elementary extensions

Definitions. 7 transserial Hardy field, f €T, feg
f~f = (QeeT: f~1 ¢~ f)
f asympt. equiv. to f over T <= NVoeT: f—p~ f— ©)
f diff. equiv. to fover T <= (YPeT{F}: P(f)=0< P(f)=0)
Lemma. Let f €T\ Tand f G\ T be such that

i. fis a serial cut over T.

ii. f and f are asymptotically equivalent over T.

iii. f and f are differentially equivalent over T.
Then 3! transserial Hardy field extension p: T (f) — G with p(f) = f.



< Basic extension theorems “» ‘

Theorem. Let T be a transserial Hardy field. Then its real closure T*! admits a unique
transserial Hardy field structure which extends the one of T.

Theorem. Let T be a transserial Hardy field and let ¢ € T. be such that e¥ ¢ T. Then the set
T (e®*%) carries the structure of a transserial Hardy field for the unique differential morphism

p: T(eB%) = G over T with p(e*?) =e*(¥) for all X € R.

Theorem. Let T be a transserial Hardy field of depth d < co. Then T ((logqx)®) carries the
structure of a transserial Hardy field for the unique differential morphism p: T ((logqx)®) — G
over T with p((loggz)*) = (loggx)* for all A € R..



& Differential equations (main ideas)

Step 1. A given algebraic differential equation
2 €L
ff=r+ Py 0
Step 2. Put equation in integral form
— [ (X 2)
f= [ (Z+1

Step 3. Integral transseries solution



& Differential equations (main ideas)

Step 1. A given algebraic differential equation

f2_e:cf/_|_62_w:0
X

Step 2. Put equation in integral form

[ (5+5)

Step 3. Integrate from a fixed point xy < 0o



Y Differential equations (main ideas) g?‘

Step 1. A general algebraic differential equation

P(f)=0

Step 2. Equation in split-normal form
(0 — 1) (0 —¢r) f=P(f)

Attention: 1, ..., - € T[i], even though (0 — ¢1) - (0 — ¢r) € T[0].

Step 3. Solve the split-normal equation using the fixed-point technique.



& Continuous right-inverses (first order)

Lemma. The operator J = (0 — ), ", defined by

Zo

e®@) [T e=®M) f(1)dt (repulsive case)

(Jf)(@) = o & (@) fo‘; e~ ®W f(t)dt (attractive case)

Zo

and

O(z) = f; o(t)dt (repulsive case)
f ;0 @(t)dt (attractive case)

is a continuous right-inverse of L =0 — ¢ on G3[i], with

1
Re ¢

171, < H

Zo



& Continuous right-inverses (higher order) %ﬁ‘

Lemma. Given a split-normal operator
L=(0— 1) (0—or), (1)

with a factorwise right-inverse L' = J,.--- J;, the operator
Sy Jr gmo[l] — gxo;r[l]
is a continuous operator . Here G, .|i] carries the norm

1 f llzosr=max {|| f lzgs s/l Fllao)-

Lemma. If L € T[0] and the splitting (1) (formally) preserves realness, then J,. --- J;
preserves realness in the sense that it maps Qfo into itself.



‘ Non-linear equations Qﬁ‘

Theorem. Consider a split-monic equation

Lf=P(f),

Then for any sufficiently large x(, there exists a
continuous factorwise right-inverse .J, e Jq of L. .., such that the operator

8: fr— (Jp - )(P(SF))
admits a unique fixed point

f = lim 2™(0) € B(G. ).

AR
n— 0o 2



& Preservation of asymptotics &» ‘

Theorem. Let T be a transserial Hardy field > Consider a monic split-normal
quasi-linear equation

Lf:P(f)7 (2)

over T without solutions in J. Assume that one of the following holds:

a) Tis (1,1, 1)-differentially closed in T -, and (2) is first order.

b) Ti] is (1,1, 1)-differentially closed in Ti] -
Then there exist solutions f € G and f € T to (2), such that f and f are asymptotically
equivalent over T.



< First order extensions “» ‘

Lemma. Let L =0 — o€ T|[0] be a normal operator. Let f € T~ and g€ TS be such that

fis transcendental over T and L f=g. Then there exists an f € G= with L f = g, such that
f and f are both differentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy field. Let T DT be the smallest differential subfield

of T, such that for any P € T*{F}* withrp<1 and f € T we have P(f)=0= fe T,
Then the transserial Hardy field structure of T can be extended to T°.

Proof. As long as T £ T

e Close off under exp, log and algebraic equations.

o Choose PeT{F}7,rp=1, fe€T,P(f)=0 such that P has minimal “complexity” (7 p,
dp,tp) and apply the lemma. O]



& Higher order extensions “» ‘

Lemma. Let L=0— ¢ €Tli][0] be a normal operator. Let feTl]~ and g€ T[i|]S be such
that Re f has order 2 over T and L f = g. Then there exists an f € G=[i] with L f = g, such
that Re f and Re f are both differentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy field. Let T 928 D T be the smallest differential subfield
of T, such that for any P € T92{F}7# and f € T we have P(f)=0= f € T2 Then the
transserial Hardy field structure of T can be extended to T 428,



@ Applications ® ‘

Corollary. There exists a transserial Hardy field T, such that forany P€T{F} and f,g€T
with f < g and P(f) P(g) <0, there exists a h € T with f <h < g and P(h)=0.

Corollary. There exists a transserial Hardy field T, such that T|i] is weakly differentially
closed.

Corollary. There exists a differentially Henselian transserial Hardy field T, i.e., such that any
quasi-linear differential equation over T admits a solution in T.



L A partial inverse &

Theorem. Let T be a transserial Hardy field and H a differentially algebraic Hardy field
extension of T, such that H is differentially Henselian and stable under exponentiation. Then
there exists a transserial Hardy field structure on H which extends the structure on T.

Corollary. Let T be a transserial Hardy field and H a differentially algebraic Hardy field
extension of T, such that H is differentially Henselian. Assume that H admits no non-trivial
algebraically differential Hardy field extensions. Then 1 satisfies the differential intermediate
value property.

Theorem. (Boshernitzan 1987) Any solution of the equation
4 f= o’

is contained in a Hardy field. However, none of these solutions is contained in the intersection
of all maximal Hardy fields.



U Open questions

1. Embeddability of Hardy fields in differentially Henselian Hardy fields.
2. Do maximal Hardy fields satisfy the intermediate value property?
3. Restricted analytic (instead of algebraic) differential equations.
4. Preservation of composition:
a. f(z+¢), small e: expand.
b. f(qx +¢): expand, but more intricate.
c. f(p(x)), p = x: abstract nonsense.



