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e T=RI[I%I, where T is a totally ordered monomial group.
o RI%D: series f=) .~ fmm€&RIZTI with grid-based support:

supp f C{my, ..., m;, }*n, my,...,m,;, <1

e T is a totally ordered, real closed field.

o T is stable under exp, log, 9, [, o and g



Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.

e Calculus with cuts feT.
e C(Classification of cuts and behaviour of P(f) near a cut.

e Newton polygon method for shrinking interval on which a sign change occurs and
whose end-points are cuts.
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Corollary. Any P € T{F'} of odd degree admits a root in T .
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whose end-points are cuts.

Example. The following equation admits a solution in T
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Theorem. (2000) Given P € T{F'} and f < g€ T with P(f) P(g) <0. Then there exists
an heT with f <h< g and P(h)=0.

e Calculus with cuts feT.
e C(Classification of cuts and behaviour of P(f) near a cut.

e Newton polygon method for shrinking interval on which a sign change occurs and
whose end-points are cuts.

Corollary. Any monic L € T[0] admits a factorization with factors

0—a or

02— (2a+b") 0+ (a®+b*—a'+ab)=(0— (a—bi+b")) (8 — (a+bi))



Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.



Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits

at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Warning. T is not differentially algebraically closed

P+ f=0
fP+f#0

— Desingularization of vector fields (Cano, Panazzolo, ...)



Theorem. (2001) Every asymptotic differential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it suffices to add iterated
logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.
Remark. 3 algorithm for computing the solutions of a given equation.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic differential
equations.
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2: Transserial Hardy fields
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e G: ring of infinitely differentiable real germs at +o0.



1: Accelero-summation

Advantages

Disadvantages

Canonical after choosing average
Preserves composition
Classification local vector fields
Differential Galois theory

2: Transserial Hardy fields

Advantages

Requires many different tools
Not yet written down

Disadvantages

Less hypotheses on coefficients
Might generalize to other models
Written down

Not canonical
No preservation of composition



A transserial Hardy field is a differential subfield 7 of T, together with a monomorphism
p: T — G of ordered differential R-algebras, such that

TH1. VfeT: suppfCT.
TH2. VfeT: fzeT.
TH3. ddeZ: YmeZINT: logmeT +Rloggz.

TH4. TN T is stable under taking real powers.
THS5. VfeT~: log feT= p(ogf)=logp(f).

Example. 7=R{z"}}}.
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Definitions. 7 transserial Hardy field, f€T, feg

frof = (@eeT: fr o~ f)
f asympt. equiv. to f over T <= Vo eT: f—gpwf—gp)

f diff. equiv. to fover T <« (VPeT{F}: P(f)=0< P(f)=0)

Lemma. Let f €T\ Tand feG\T be such that
e [ s a serial cut over T.
e [ and f are asymptotically equivalent over T.

e [ and f are differentially equivalent over T.
Then 3! transserial Hardy field extension p: T (f)— G with p(f) = f.



Definitions. 7 transserial Hardy field, f€T, feg

f~f = (QpeT: f~r9~gf)
f asympt. equiv. to f over T <= NVoeT: f—p~ f— ©)
f diff. equiv. to fover T <« (VPeT{F}: P(f)=0< P(f)=0)
Lemma. Let f €T\ Tand feG\T be such that

e [ s a serial cut over T.

e [ and f are asymptotically equivalent over T.

Then 3! transserial Hardy field extension p: T (f)— G with p(f) = f.



Theorem. Let T be a transserial Hardy field. Then its real closure T*° admits a unique
transserial Hardy field structure which extends the one of T.

Theorem. Let T be a transserial Hardy field and let ¢ € T. be such that e¥ ¢ T. Then the set
T (e®*%) carries the structure of a transserial Hardy field for the unique differential morphism

p: T (eB%?) —= G over T with p(e*¥) =e**(®) for all A e R.

Theorem. Let T be a transserial Hardy field of depth d < co. Then T ((logqx)®) carries the
structure of a transserial Hardy field for the unique differential morphism p: T ((logqx)®) — G
over T with p((loggz)*) = (loggx)* for all A € R..



Step 3. Integral transseries solution



Step 1. A given algebraic differential equation

fQ—fo/—I—eQ—w:O
X

Step 2. Put equation in integral form

[

Step 3. Integrate from a fixed point g < 0o



Step 2. Equation in split-normal form

(0—¢1)(0 =) f=P(f)
Attention: 1, ..., p,. € T[i], even though (0 — ¢1) -+ (0 — ;) € T[D].

Step 3. Solve the split-normal equation using the fixed-point technique.



Lemma. The operator J = (0 — )., defined by

e?(@) [ e~ W f(t)dt  (repulsive case)
e2(@) f;o e~ ®® f(t)dt  (attractive case)

(JF)(z) =
and

B(z) = [ 2 e(t)dt (repulsive case)
f * p(t)dt (attractive case)

is a continuous right-inverse of L =0 — o on Qfo ], with

1
Re ¢,

171es < H




Lemma. Given a split-normal operator

L=(0— 1) (0—pr), (1)

with a factorwise right-inverse L' = J,.--- J, the operator
% c % o
Jr o Jl: gQZO[I] — ga;o;r[l]

is a continuous operator . Here G, .|i] carries the norm

1 f o r=1m8 ]| f [0y --ll £ 10}

Lemma. If L € T[J] and the splitting (1) (formally) preserves realness, then J, --- J;
preserves realness in the sense that it maps Qfo into itself.



Theorem. Consider a split-monic equation

Lf=P(f),

Then for any sufficiently large x(, there exists a
continuous factorwise right-inverse J,. e Jq of L. .., such that the operator

admits a unique fixed point

f = lim 2™(0) € B(G. ., 5).

x0;T? 9
n— 00 2



Theorem. Let T be a transserial Hardy field > Consider a monic split-normal
quasi-linear equation

Lf=P(f), (2)

over T without solutions in T. Assume that one of the following holds:

e Tis (1,1,1)-differentially closed in T -, and (2) is first order.

e TIli| is (1,1, 1)-differentially closed in Tli

Then there exist solutions f € G and f € T to (2), such that f and f are asymptotically
equivalent over T.



Lemma. Let L=0 — o€ T[0] be a normal operator. Let f €T~ and g T= be such that

fis transcendental over T and L f=g. Then there exists an f € G with L f = g, such that
f and f are both differentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy field. Let T DT be the smallest differential subfield

of T, such that for any P € T®{F}* with rp<1 and f €T we have P(f)=0= feTT.
Then the transserial Hardy field structure of T can be extended to T'°.

Proof. As long as T T

e Close off under exp, log and algebraic equations.

o Choose PcT{F}7,rp=1, f €T, P(f)=0 such that P has minimal “complexity”
(rp,dp,tp) and apply the previous results. O]



Lemma. Let L=0— p€TIi|[0] be a normal operator. Let feTl]~ and g€ T[i|]S be such
that Re f has order 2 over T and L f = g. Then there exists an f € GS[i] with L f = g, such
that Re f and Re f are both differentially and asymptotically equivalent over 7.

Theorem. Let T be a transserial Hardy field. Let T8 D T be the smallest differential subfield
of T, such that for any P € T98{F17 and f € T we have P(f)=0= f € T8 Then the
transserial Hardy field structure of T can be extended to T !5,



Corollary. There exists a transserial Hardy field T, such that forany P T{F} and f,geT
with f < g and P(f) P(g) <0, there exists a h € T with f <h < g and P(h)=0.

Corollary. There exists a transserial Hardy field T, such that T[i] is weakly differentially
closed.

Corollary. There exists a differentially Henselian transserial Hardy field T, i.e., such that any
quasi-linear differential equation over T admits a solution in T.



Theorem. Let T be a transserial Hardy field and H a differentially algebraic Hardy field
extension of T, such that H is differentially Henselian and stable under exponentiation. Then
there exists a transserial Hardy field structure on H which extends the structure on T.

Corollary. Let T be a transserial Hardy field and H a differentially algebraic Hardy field
extension of T, such that ‘H is differentially Henselian. Assume that H admits no non-trivial
algebraically differential Hardy field extensions. Then H satisfies the differential intermediate
value property.

Theorem. (Boshernitzan 1987) Any solution of the equation
'+ f= o’

is contained in a Hardy field. However, none of these solutions is contained in the intersection
of all maximal Hardy fields.



e Embeddability of Hardy fields in differentially Henselian Hardy fields.

e Do maximal Hardy fields satisfy the intermediate value property?
e Restricted analytic (instead of algebraic) differential equations.
e Preservation of composition:

o f(x+e), small e: expand.

o f(qx+e): expand, but more intricate.

o f(p(x)),p > ax: abstract nonsense.



