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A missing subject ?
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� LNM 1888: Transseries and Real Di�erential Algebra

� Other work on http://www.math.u-psud.fr/~vdhoeven
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Examples of transseries
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The �eld T of grid-based transseries

� T=R[[T]], where T is a totally ordered monomial group.

� R[[T]]: series f =
P

m2T fmm2R[[T]] with grid-based support:

supp f �fm1; :::;mmg� n; m1; :::;mm� 1

� T is a totally ordered, real closed �eld.

� T is stable under exp, log, @,
R
, � and inv.



Intermediate value theorem

Theorem. (2000) Given P 2TfF g and f < g 2T with P (f) P (g)< 0. Then there exists
an h2T with f <h< g and P (h)= 0.

� Calculus with cuts f̂ 2 T̂.

� Classi�cation of cuts and behaviour of P (f) near a cut.

� Newton polygon method for shrinking interval on which a sign change occurs and
whose end-points are cuts.
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Intermediate value theorem

Theorem. (2000) Given P 2TfF g and f < g 2T with P (f) P (g)< 0. Then there exists
an h2T with f <h< g and P (h)= 0.

� Calculus with cuts f̂ 2 T̂.

� Classi�cation of cuts and behaviour of P (f) near a cut.

� Newton polygon method for shrinking interval on which a sign change occurs and
whose end-points are cuts.

Corollary. Any monic L2T[@] admits a factorization with factors

@ ¡ a or

@2¡ (2 a+ by) @+(a2+ b2¡ a0+ a by)= (@ ¡ (a¡ b i + by)) (@ ¡ (a+ b i))



Complex transseries

Theorem. (2001) Every asymptotic di�erential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it su�ces to add iterated
logarithms to the asymptotic scale.



Complex transseries

Theorem. (2001) Every asymptotic di�erential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it su�ces to add iterated
logarithms to the asymptotic scale.

Warning. T is not di�erentially algebraically closed

f3+(f 0)2+ f = 0

f3+ f =/ 0

¡! Desingularization of vector �elds (Cano, Panazzolo, ...)



Complex transseries

Theorem. (2001) Every asymptotic di�erential equation over T of Newton degree d admits
at least d solutions (when counting with multiplicities). Moreover, it su�ces to add iterated
logarithms to the asymptotic scale.

Corollary. T is Picard-Vessiot closed.

Remark. 9 algorithm for computing the solutions of a given equation.

Remark. Zero-test algorithm for polynomials in power series solutions to algebraic di�erential
equations.



Real transseries ! analytic germs

1: Accelero-summation

f~ f

B~z1  
¡

¡!L̂zp
�p

f̂1 ¡!
Âz1!z2

�1
f̂2 ¡! ��� ¡! f̂p¡1 ¡!

Âzp¡1!zp

�p¡1
f̂p

2: Transserial Hardy �elds

T � T ,¡!
�
G

� G: ring of in�nitely di�erentiable real germs at +1.



Real transseries ! analytic germs

1: Accelero-summation

Advantages Disadvantages

Canonical after choosing average Requires many di�erent tools
Preserves composition Not yet written down

Classi�cation local vector �elds
Di�erential Galois theory

2: Transserial Hardy �elds

Advantages Disadvantages

Less hypotheses on coe�cients Not canonical
Might generalize to other models No preservation of composition

Written down



Transserial Hardy �elds

A transserial Hardy �eld is a di�erential sub�eld T of T, together with a monomorphism
�: T !G of ordered di�erential R-algebras, such that

TH1. 8f 2T : supp f �T .

TH2. 8f 2T : f�2T . f�=
P

m�1 fmm

TH3. 9d2Z: 8m2T\T : logm2T +R logdx.

TH4. T\T is stable under taking real powers.

TH5. 8f 2T >: log f 2T ) �(log f)= log �(f).

Example. T =Rffx¡Rgg.
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Elementary extensions

De�nitions. T transserial Hardy �eld, f 2T, f̂ 2 G

f � f̂ () (9'2T : f �T ' �G f̂ )

f asympt. equiv. to f̂ over T () (8'2T : f ¡ '� f̂ ¡ ')

f di�. equiv. to f̂ over T () (8P 2T fF g: P (f)= 0,P (f̂)= 0)

Lemma. Let f 2T n T and f̂ 2 G nT be such that

� f is a serial cut over T.

� f and f̂ are asymptotically equivalent over T.

� f and f̂ are di�erentially equivalent over T.

Then 9! transserial Hardy �eld extension �: T hf i!G with �(f)= f̂.
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Basic extension theorems

Theorem. Let T be a transserial Hardy �eld. Then its real closure T rcl admits a unique
transserial Hardy �eld structure which extends the one of T.

Theorem. Let T be a transserial Hardy �eld and let '2T� be such that e'2/ T. Then the set
T (eR') carries the structure of a transserial Hardy �eld for the unique di�erential morphism
�: T (eR')!G over T with �(e�')= e��(') for all �2R.

Theorem. Let T be a transserial Hardy �eld of depth d<1. Then T ((logdx)R) carries the
structure of a transserial Hardy �eld for the unique di�erential morphism �:T ((logdx)R)!G
over T with �((logdx)�)= (logdx)� for all �2R.



Di�erential equations (main ideas)

Step 1. A given algebraic di�erential equation

f2¡ f 0+ x
ex
=0

Step 2. Put equation in integral form

f =

Z �
x
ex
+ f2

�
Step 3. Integral transseries solution



Di�erential equations (main ideas)

Step 1. A given algebraic di�erential equation

f2¡ ex f 0+ e2x

x
=0

Step 2. Put equation in integral form

f =

Z �
ex

x
+
f2

ex

�
Step 3. Integrate from a �xed point x0<1



Di�erential equations (main ideas)

Step 1. A general algebraic di�erential equation

P (f)= 0

Step 2. Equation in split-normal form

(@ ¡ '1) ���(@ ¡ 'r)f =P (f) with P (f) small

Attention: '1; :::; 'r 2T [i], even though (@ ¡ '1) ��� (@ ¡ 'r)2T [@].

Step 3. Solve the split-normal equation using the �xed-point technique.



Continuous right inverses (�rst order)

Lemma. The operator J =(@ ¡ ')x0
¡1, de�ned by

(Jf)(x) =

8<: e�(x)
R
1
x
e¡�(t) f(t) dt (repulsive case)

e�(x)
R
x0

x
e¡�(t) f(t) dt (attractive case)

and

�(x)=

( R
1
x
'(t) dt (repulsive case)R

x0

x
'(t) dt (attractive case)

is a continuous right-inverse of L= @ ¡ ' on Gx0
4 [i], with

9J9x0 6




 1
Re '






x0

:



Continuous right-inverses (higher order)

Lemma. Given a split-normal operator

L=(@ ¡ '1) ��� (@ ¡ 'r); (1)

with a factorwise right-inverse L¡1= Jr ��� J1, the operator

v�Jr ���J1: Gx0
4 [i]!Gx0;r

4 [i]

is a continuous operator for every � > r�L. Here Gx0;r
4 [i] carries the norm

kf kx0;r=max fkf kx0; :::;kf (r)kx0g:

Lemma. If L 2 T [@] and the splitting (1) (formally) preserves realness, then Jr ��� J1
preserves realness in the sense that it maps Gx0

4 into itself.



Non-linear equations

Theorem. Consider a split-monic equation

Lf =P (f); f � 1;

and let � be such that r �L < � < vP. Then for any su�ciently large x0, there exists a
continuous factorwise right-inverse Jr;nv� ���J1;nv� of Lnv�, such that the operator

�: f 7¡! (Jr ��� J1)(P (f))

admits a unique �xed point

f = lim
n!1

�(n)(0) 2 B(Gx0;r
4 ;

1

2
):



Preservation of asymptotics

Theorem. Let T be a transserial Hardy �eld of span v�� ex. Consider a monic split-normal
quasi-linear equation

Lf =P (f); f � 1; (2)

over T without solutions in T. Assume that one of the following holds:

� T is (1; 1; 1)-di�erentially closed in T��v and (2) is �rst order.

i.e. T is closed under the resolution of linear �rst order equations.

� T [i] is (1; 1; 1)-di�erentially closed in T[i]��v.

Then there exist solutions f 2 G and f~ 2 T̂ to (2), such that f and f~ are asymptotically
equivalent over T.



First order extensions

Lemma. Let L= @ ¡ '2T [@] be a normal operator. Let f~2 T̂ 4 and g 2T 4 be such that
f~ is transcendental over T and Lf~= g. Then there exists an f 2 G4 with Lf = g, such that
f and f~ are both di�erentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy �eld. Let T fo�T be the smallest di�erential sub�eld
of T, such that for any P 2T fofF g=/ with rP 6 1 and f 2T we have P (f)= 0) f 2T fo.
Then the transserial Hardy �eld structure of T can be extended to T fo.

Proof. As long as T fo=/ T :

� Close o� under exp, log and algebraic equations.

� Choose P 2 T fF g=/ ; rP = 1; f 2T; P (f) = 0 such that P has minimal �complexity�
(rP ; dP ; tP) and apply the previous results. �



Higher order extensions

Lemma. Let L= @¡ '2T [i][@] be a normal operator. Let f~2 T̂ [i]4 and g 2T [i]4 be such
that Re f~ has order 2 over T and Lf~= g. Then there exists an f 2G4[i] with Lf = g, such
that Re f and Re f~ are both di�erentially and asymptotically equivalent over T.

Theorem. Let T be a transserial Hardy �eld. Let T dalg�T be the smallest di�erential sub�eld
of T, such that for any P 2T dalgfF g=/ and f 2T we have P (f)=0) f 2T dalg. Then the
transserial Hardy �eld structure of T can be extended to T dalg.



Applications

Corollary. There exists a transserial Hardy �eld T, such that for any P 2T fF g and f ; g2T
with f < g and P (f)P (g)< 0, there exists a h2T with f <h< g and P (h)= 0.

Corollary. There exists a transserial Hardy �eld T, such that T [i] is weakly di�erentially
closed.

Corollary. There exists a di�erentially Henselian transserial Hardy �eld T, i.e., such that any
quasi-linear di�erential equation over T admits a solution in T.



A partial inverse

Theorem. Let T be a transserial Hardy �eld and H a di�erentially algebraic Hardy �eld
extension of T, such that H is di�erentially Henselian and stable under exponentiation. Then
there exists a transserial Hardy �eld structure on H which extends the structure on T.

Corollary. Let T be a transserial Hardy �eld and H a di�erentially algebraic Hardy �eld
extension of T, such that H is di�erentially Henselian. Assume that H admits no non-trivial
algebraically di�erential Hardy �eld extensions. Then H satis�es the di�erential intermediate
value property.

Theorem. (Boshernitzan 1987) Any solution of the equation

f 00+ f =ex
2

is contained in a Hardy �eld. However, none of these solutions is contained in the intersection
of all maximal Hardy �elds.



Open problems

� Embeddability of Hardy �elds in di�erentially Henselian Hardy �elds.

� Do maximal Hardy �elds satisfy the intermediate value property?

� Restricted analytic (instead of algebraic) di�erential equations.

� Preservation of composition:

� f(x+ "), small ": expand.

� f(q x+ "): expand, but more intricate.

� f('(x)); '�x: abstract nonsense.


