Multi-precision computations & high performance A delicate marriage

Joris van der Hoeven CNRS, École polytechnique

Bangalore, 2011 http://www.T_EX_{MACS}.org

"Does the Navier-Stokes equation change when you modify your input data?"

"Does the Navier-Stokes equation change when you modify your input data?"

"Does the nature of a solution to NS change if you (slightly) modify your input data?"

"Does the Navier-Stokes equation change when you modify your input data?"

"Does the nature of a solution to NS change if you (slightly) modify your input data?"

"Why not perform all computations using 8 bits of precision?"

\$

Large condition numbers

Condition number $\kappa \ge 2^{52}$ implies double precision arithmetic makes no sense

Large condition numbers

Condition number $\kappa \ge 2^{52}$ implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

 $\kappa(M) = \|M\| \, \|M^{-1}\| \ge 2^{52}$

Large condition numbers

Condition number $\kappa \ge 2^{52}$ implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

 $\kappa(M) = \|M\| \, \|M^{-1}\| \ge 2^{52}$

Example: integration of a dynamical system $Y' = \Phi(Y), Y(0) = C$ near a singularity σ

$$\kappa\!\left(\frac{\partial Y(\sigma-\varepsilon)}{\partial C}\right)\!\geqslant\!2^{52}$$

When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_{\varepsilon}) = p_{\varepsilon} + \log_2 \kappa$ with $p_{\varepsilon} = \log_2 \frac{1}{\varepsilon}$

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_{\varepsilon}) = p_{\varepsilon} + \log_2 \kappa$ with $p_{\varepsilon} = \log_2 \frac{1}{\varepsilon}$ Non-classical: we need $p \geq c p_{\varepsilon}$ with c > 1 or even $p \geq p_{\varepsilon}^c$ with c > 1

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_{\varepsilon}) = p_{\varepsilon} + \log_2 \kappa$ with $p_{\varepsilon} = \log_2 \frac{1}{\varepsilon}$ Non-classical: we need $p \geq c p_{\varepsilon}$ with c > 1 or even $p \geq p_{\varepsilon}^c$ with c > 1

Asymptotic extrapolation for a favourable sequence f_n with

$$f_n \approx \alpha^n \left(\frac{a_0 \log n + b_0}{n^0} + \frac{a_1 \log n + b_1}{n^1} + \frac{a_2 \log n + b_2}{n^2} + \cdots \right)$$

Problem: cost to determine α with relative error $\varepsilon > 0$?

Compute f_0, \ldots, f_N

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_{\varepsilon}) = p_{\varepsilon} + \log_2 \kappa$ with $p_{\varepsilon} = \log_2 \frac{1}{\varepsilon}$ Non-classical: we need $p \geq c p_{\varepsilon}$ with c > 1 or even $p \geq p_{\varepsilon}^c$ with c > 1

Asymptotic extrapolation for a favourable sequence f_n with

$$f_n \approx \alpha^n \left(\frac{a_0 \log n + b_0}{n^0} + \frac{a_1 \log n + b_1}{n^1} + \frac{a_2 \log n + b_2}{n^2} + \cdots \right)$$

Problem: cost to determine α with relative error $\varepsilon > 0$?

Compute f_0, \ldots, f_N

Analysis: computation of α , a_0 , b_0 ,..., a_{k-1} , b_{k-1} yields α with relative error $\approx N^{-k}$ However: we need a precision p with $2^{-p} \leq N^{-2k}$, i.e. $p \geq 2 p_{\varepsilon} + o(p_{\varepsilon})$ Choice of N: depends and to be analyzed in detail

Remark. Multiple precision computations can be particularly useful in order to "simulate" an equation with simple exact mathematical boundary conditions.

195*, 196*, 197*: software implementation of floating point arithmetic

195*, 196*, 197*: software implementation of floating point arithmetic 198*, 199*: mathematical co-processors, single precision, later double precision

195*, 196*, 197*: software implementation of floating point arithmetic 198*, 199*: mathematical co-processors, single precision, later double precision 200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs

195*, 196*, 197*: software implementation of floating point arithmetic 198*, 199*: mathematical co-processors, single precision, later double precision 200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs 201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

195*, 196*, 197*: software implementation of floating point arithmetic 198*, 199*: mathematical co-processors, single precision, later double precision 200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs 201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Problem: hardware implementation of three sum

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us?

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us? Answer: no, unless turbulence will be interesting for computer games

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us? Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us? Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library Problem 1: overhead for emulation of exponents

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us? Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library Problem 1: overhead for emulation of exponents Problem 2: overhead for emulation of signs

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us? Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library Problem 1: overhead for emulation of exponents Problem 2: overhead for emulation of signs Problem 3: overhead for emulation of correct rounding

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic Question: will CPU manufacturers help us? Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library Problem 1: overhead for emulation of exponents Problem 2: overhead for emulation of signs Problem 3: overhead for emulation of correct rounding Problem 4: overhead for emulation of exceptions

Correct rounding

Correct rounding

Fused multiply subtract

Problem: exact multiplication of $x, y \in \mathbb{F}_{52}$ as $xy = h + l \in \mathbb{F}_{104}$ with $h, l \in \mathbb{F}_{52}$

Correct rounding

Fused multiply subtract

Problem: exact multiplication of $x, y \in \mathbb{F}_{52}$ as $xy = h + l \in \mathbb{F}_{104}$ with $h, l \in \mathbb{F}_{52}$ Solution: $h := (x \times y)_{\mathbb{F}_{52}}$, $l := (x \times y - h)_{\mathbb{F}_{52}}$

Correct rounding

Fused multiply subtract

Problem: exact multiplication of $x, y \in \mathbb{F}_{52}$ as $xy = h + l \in \mathbb{F}_{104}$ with $h, l \in \mathbb{F}_{52}$ Solution: $h := (x \times y)_{\mathbb{F}_{52}}$, $l := (x \times y - h)_{\mathbb{F}_{52}}$

Three sum (fused add subtract)

Similar operation for addition: $h := (x + y)_{\mathbb{F}_{52}}$, $l := (x + y - h)_{\mathbb{F}_{52}}$

Correct rounding

Fused multiply subtract

Problem: exact multiplication of $x, y \in \mathbb{F}_{52}$ as $xy = h + l \in \mathbb{F}_{104}$ with $h, l \in \mathbb{F}_{52}$ Solution: $h := (x \times y)_{\mathbb{F}_{52}}$, $l := (x \times y - h)_{\mathbb{F}_{52}}$

Three sum (fused add subtract)

Similar operation for addition: $h := (x + y)_{\mathbb{F}_{52}}$, $l := (x + y - h)_{\mathbb{F}_{52}}$

Exercise

Design multiple precision arithmetic using these operations

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

 $X \in \{0, ..., 2^p-1\}$ represents $x = X \, 2^{-p}$

Multiplication at precision 2 p:

 $(X_1 2^p + X_0) (Y_1 2^p + Y_0) 2^{-4p} = X_0 X_1 2^{-2p} + (X_0 Y_1 + X_1 Y_0) 2^{-3p} + \cdots$

That is: three integer multiplications and four additions

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

 $X \in \{0, ..., 2^p-1\}$ represents $x \,{=}\, X \, 2^{-p}$

Multiplication at precision 2 p:

 $(X_1 2^p + X_0) (Y_1 2^p + Y_0) 2^{-4p} = X_0 X_1 2^{-2p} + (X_0 Y_1 + X_1 Y_0) 2^{-3p} + \cdots$

That is: three integer multiplications and four additions

Signed fixed point arithmetic

 $X \in \{0, ..., 2^p - 1\}$ represents $\tilde{x} = X 2^{-p} - \frac{1}{2}$

$$2\tilde{x}\tilde{y} + \frac{1}{2} = 2xy - (x+y) + 1$$

Multiplication at precision 2 p: six extra additions

Precision	Unsigned	Signed	Multipl.
p	1	2	1
2 p	7	13	3
3 p	12	21	6
4 p	18	30	10
5 p	25	40	15
6 p	33	51	21
7 p	42	63	28
8 p	52	76	36

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 0: for what kind of problems do we need multiple precision arithmetic? **Challenge 1:** rethink numerical analysis from the multiple precision perspective

Challenge 0: for what kind of problems do we need multiple precision arithmetic?Challenge 1: rethink numerical analysis from the multiple precision perspectiveChallenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 0: for what kind of problems do we need multiple precision arithmetic?
Challenge 1: rethink numerical analysis from the multiple precision perspective
Challenge 2: rethink numerical algorithms together with the underlying arithmetic
Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 0: for what kind of problems do we need multiple precision arithmetic?
Challenge 1: rethink numerical analysis from the multiple precision perspective
Challenge 2: rethink numerical algorithms together with the underlying arithmetic
Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic
Challenge 4: how to benefit from massively parallel architectures?

Challenge 0: for what kind of problems do we need multiple precision arithmetic?
Challenge 1: rethink numerical analysis from the multiple precision perspective
Challenge 2: rethink numerical algorithms together with the underlying arithmetic
Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic
Challenge 4: how to benefit from massively parallel architectures?
Challenge 5: how to incorporate automatic computation of error bounds?

Challenge 0: for what kind of problems do we need multiple precision arithmetic?
Challenge 1: rethink numerical analysis from the multiple precision perspective
Challenge 2: rethink numerical algorithms together with the underlying arithmetic
Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic
Challenge 4: how to benefit from massively parallel architectures?
Challenge 5: how to incorporate automatic computation of error bounds?
Challenge 6: how to interface with symbolic computation?

Claim: we can do all our computations using the signed fixed point representation

Claim: we can do all our computations using the signed fixed point representation

Indeed:

- Assume that we want to transform a_0, \ldots, a_{n-1} with $n = 2^k$
- Write $b_i = \frac{a_i}{2 n \|a\|}$ with $\|a\| = \max_i |a_i|$, so that $\hat{a}_i = 2 n \|a\| \hat{b}_i$
- Then all numbers occurring in the FFT are in $\left[-\frac{1}{2},\frac{1}{2}\right]$

The system to integrate

 $Y' = \Phi(Y)$ Y(0) = C

The system to integrate

 $\begin{array}{rcl} Y' &=& \Phi(Y) \\ Y(0) &=& C \end{array}$

Power series solution

 $Y(z) = \sum_{k=0}^{\infty} Y_k z^k$

The system to integrate

 $Y' = \Phi(Y)$ Y(0) = C

Power series solution

$$Y(z) = \sum_{k=0}^{\infty} Y_k z^k$$

Preconditioning for signed fixed point arithmetic

 $\begin{array}{rcl} Y(z) &=& \tilde{Y}(\varrho \, z) \\ \tilde{Y'} &=& \varrho \, \Phi(\tilde{Y}) \end{array}$

Blasius equation

Chazy equation

Matrix multiplication over $\ensuremath{\mathbb{Z}}$

Problem

Given $M, N \in \mathbb{Z}_{;p}^{n \times n}$, $\mathbb{Z}_{;p} = \{-2^{p-1}, ..., 0, ..., 2^{p-1} - 1\}$, compute MN

Problem

Given
$$M, N \in \mathbb{Z}_{;p}^{n \times n}$$
, $\mathbb{Z}_{;p} = \{-2^{p-1}, ..., 0, ..., 2^{p-1} - 1\}$, compute MN

Chinese remaindering when $p \ll n$

- Pick primes $q_1, ..., q_l$ with $q_1 \cdots q_l > n 2^p$
- Reduce M and N modulo q_i for each i ($O(n^2 p \log p \log \log p)$ operations)
- Multiply $(MN \mod q_i) = (M \mod q_i) (N \mod q_i)$ for each i $(O(n^3 p) \text{ operations})$
- Reconstruct MN from the $MN \mod q_i$ ($O(n^2 p \log^2 p \log \log p)$ operations)

Problem

Given
$$M, N \in \mathbb{Z}_{;p}^{n \times n}$$
, $\mathbb{Z}_{;p} = \{-2^{p-1}, ..., 0, ..., 2^{p-1} - 1\}$, compute MN

Chinese remaindering when $p \ll n$

- Pick primes q_1, \ldots, q_l with $q_1 \cdots q_l > n \ 2^p$
- Reduce M and N modulo q_i for each i $(O(n^2 p \log p \log \log p)$ operations)
- Multiply $(MN \mod q_i) = (M \mod q_i) (N \mod q_i)$ for each i $(O(n^3 p) \text{ operations})$
- Reconstruct MN from the $MN \mod q_i (O(n^2 p \log^2 p \log \log p) \text{ operations})$

FFT over a finite field \mathbb{F}_q when $p \ll n$

- Pick $q = 3 \times 2^{30} + 1$ and $\omega = 125$ with $\omega^{2^{29}} = -1$ in \mathbb{F}_q
- Write integers in base 2^k with $n 2^{2k} < q$, i.e. as evaluations $P(2^k)$, $P \in \mathbb{Z}_{;k}[2^k]$
- Compute products of polynomials $P, Q \in \mathbb{Z}_{k}[2^{k}]^{n \times n}$ using FFT w.r.t. ω over \mathbb{F}_{q}
- Cost: $O(n^2 p \log p \log \log p + n^3 p)$

But

• If you are curious

- If you are curious
- If you have time and energy

- If you are curious
- If you have time and energy
- If you are good at programming

- If you are curious
- If you have time and energy
- If you are good at programming
- If you are sufficiently subversive

But

- If you are curious
- If you have time and energy
- If you are good at programming
- If you are sufficiently subversive

Then you may try and help developing multiple precision methods

But

- If you are curious
- If you have time and energy
- If you are good at programming
- If you are sufficiently subversive

Then you may try and help developing multiple precision methods

Also: no need for a complete theory or big computers one can start building useful basic libraries for FFT, linear algebra, ...