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The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”

“Does the nature of a solution to NS change if you (slightly) modify your input data?”

“Why not perform all computations using 8 bits of precision?”
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When do we need multiple precision arithmetic?

Large condition numbers

Condition number κ> 252 implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

κ(M)= ‖M ‖ ‖M−1‖> 252

Example: integration of a dynamical system Y ′=Φ(Y ), Y (0)=C near a singularity σ

κ

(

∂Y (σ− ε)

∂C

)

> 252
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When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error ε> 0

Classical: pick precision p with κ 2−p6 ε, that is p> φ(pε)= pε+ log2κ with pε= log2
1

ε

Non-classical: we need p> c pε with c> 1 or even p> pε
c with c> 1

Asymptotic extrapolation for a favourable sequence fn with

fn≈αn

(

a0 log n+ b0

n0
+

a1 log n+ b1

n1
+

a2 log n+ b2

n2
+ ···

)

Problem: cost to determine α with relative error ε> 0?

Compute f0, ..., fN

Analysis: computation of α, a0, b0,..., ak−1, bk−1 yields α with relative error ≈N−k

However: we need a precision p with 2−p/N−2k, i.e. p> 2 pε+ o(pε)
Choice of N : depends and to be analyzed in detail



Mathematical simulations

Remark. Multiple precision computations can be particularly useful in order to “simulate” an
equation with simple exact mathematical boundary conditions.
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How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs
Problem 3: overhead for emulation of correct rounding
Problem 4: overhead for emulation of exceptions
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Using built-in floating point arithmetic

Correct rounding

1.01010101101.0101010101

······

4/3

Fused multiply subtract

Problem: exact multiplication of x, y ∈F52 as x y=h+ l∈F104 with h, l∈F52

Solution: h := (x× y)F52
, l := (x× y−h)F52

Three sum (fused add subtract)

Similar operation for addition: h := (x+ y)F52
, l := (x+ y−h)F52

Exercise

Design multiple precision arithmetic using these operations
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Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

X ∈{0, ..., 2p− 1} represents x=X 2−p

Multiplication at precision 2 p:

(X1 2
p+X0) (Y1 2

p+Y0) 2
−4p=X0X1 2

−2p+(X0Y1+X1Y0) 2
−3p+ ···

That is: three integer multiplications and four additions

Signed fixed point arithmetic

X ∈{0, ..., 2p− 1} represents x̃=X 2−p−
1

2

2 x̃ ỹ+
1

2
= 2 x y− (x+ y)+ 1

Multiplication at precision 2 p: six extra additions



Moderate precision arithmetic

Precision Unsigned Signed Multipl.

p 1 2 1

2 p 7 13 3

3 p 12 21 6

4 p 18 30 10

5 p 25 40 15

6 p 33 51 21

7 p 42 63 28

8 p 52 76 36
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Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?

Challenge 5: how to incorporate automatic computation of error bounds?

Challenge 6: how to interface with symbolic computation?
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Fast Fourier transforms

Claim: we can do all our computations using the signed fixed point representation

Indeed:

• Assume that we want to transform a0, ..., an−1 with n=2k

• Write bi=
ai

2n ‖a‖
with ‖a‖=maxi |ai|, so that âi=2n ‖a‖ b̂i

• Then all numbers occurring in the FFT are in
[

−
1

2
,
1

2

]
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Dynamical systems near singularities

The system to integrate

Y ′ = Φ(Y )

Y (0) = C

Power series solution

Y (z) =
∑

k=0

∞

Yk z
k

Preconditioning for signed fixed point arithmetic

Y (z) = Ỹ (̺ z)

Ỹ
′

= ̺Φ(Ỹ )



Blasius equation





Chazy equation
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Matrix multiplication over Z

Problem

Given M,N ∈Z;p
n×n, Z;p= {−2p−1, ..., 0, ..., 2p−1− 1}, compute MN

Chinese remaindering when p≪n

• Pick primes q1, ..., ql with q1 ··· ql>n 2p

• Reduce M and N modulo qi for each i (O(n2 p log p log log p) operations)
• Multiply (MN mod qi)= (M mod qi) (N mod qi) for each i (O(n3 p) operations)
• Reconstruct MN from the MN mod qi (O(n2 p log2 p log log p) operations)

FFT over a finite field Fq when p≪/ n

• Pick q=3× 230+1 and ω= 125 with ω229=−1 in Fq

• Write integers in base 2k with n 22k< q, i.e. as evaluations P (2k), P ∈Z;k[2
k]

• Compute products of polynomials P , Q∈Z;k[2
k]n×n using FFT w.r.t. ω over Fq

• Cost: O(n2 p log p log log p+n3 p)
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Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious
• If you have time and energy
• If you are good at programming
• If you are sufficiently subversive

Then you may try and help developing multiple precision methods

Also: no need for a complete theory or big computers
one can start building useful basic libraries for FFT, linear algebra, ...


