Multi-precision computations & high performance
A delicate marriage

Joris van der Hoeven
CNRS, École polytechnique

Bangalore, 2011
http://www.TEX-MACS.org
“We already lack precision in our input data. Why use multiple precision?”
“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”
The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”

“Does the nature of a solution to NS change if you (slightly) modify your input data?”
The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”

“Does the nature of a solution to NS change if you (slightly) modify your input data?”

“Why not perform all computations using 8 bits of precision?”
When do we need multiple precision arithmetic?

Large condition numbers

Condition number $\kappa \geq 2^{52}$ implies double precision arithmetic makes no sense
When do we need multiple precision arithmetic?

Large condition numbers

Condition number $\kappa \geq 2^{52}$ implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

$$\kappa(M) = \|M\| \|M^{-1}\| \geq 2^{52}$$
When do we need multiple precision arithmetic?

Large condition numbers

Condition number $\kappa \geq 2^{52}$ implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

$$\kappa(M) = \|M\| \|M^{-1}\| \geq 2^{52}$$

Example: Integration of a dynamical system $Y' = \Phi(Y), Y(0) = C$ near a singularity σ

$$\kappa\left(\frac{\partial Y(\sigma - \varepsilon)}{\partial C}\right) \geq 2^{52}$$
Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$
When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_\varepsilon) = p_\varepsilon + \log_2 \kappa$ with $p_\varepsilon = \log_2 \frac{1}{\varepsilon}$
When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_\varepsilon) = p_\varepsilon + \log_2 \kappa$ with $p_\varepsilon = \log_2 \frac{1}{\varepsilon}$

Non-classical: we need $p \geq c p_\varepsilon$ with $c > 1$ or even $p \geq p_\varepsilon^c$ with $c > 1$
When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_\varepsilon) = p_\varepsilon + \log_2 \kappa$ with $p_\varepsilon = \log_2 \frac{1}{\varepsilon}$

Non-classical: we need $p \geq c p_\varepsilon$ with $c > 1$ or even $p \geq p_\varepsilon^c$ with $c > 1$

Asymptotic extrapolation for a favourable sequence f_n with

$$f_n \approx \alpha^n \left(\frac{a_0 \log n + b_0}{n^0} + \frac{a_1 \log n + b_1}{n^1} + \frac{a_2 \log n + b_2}{n^2} + \ldots \right)$$

Problem: cost to determine α with relative error $\varepsilon > 0$?

Compute f_0, \ldots, f_N
When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error $\varepsilon > 0$

Classical: pick precision p with $\kappa 2^{-p} \leq \varepsilon$, that is $p \geq \phi(p_\varepsilon) = p_\varepsilon + \log_2 \kappa$ with $p_\varepsilon = \log_2 \frac{1}{\varepsilon}$

Non-classical: we need $p \geq c p_\varepsilon$ with $c > 1$ or even $p \geq p_\varepsilon^c$ with $c > 1$

Asymptotic extrapolation for a favourable sequence f_n with

$$f_n \approx \alpha^n \left(\frac{a_0 \log n + b_0}{n^0} + \frac{a_1 \log n + b_1}{n^1} + \frac{a_2 \log n + b_2}{n^2} + \ldots \right)$$

Problem: cost to determine α with relative error $\varepsilon > 0$?

Compute f_0, \ldots, f_N

Analysis: computation of $\alpha, a_0, b_0, \ldots, a_{k-1}, b_{k-1}$ yields α with relative error $\approx N^{-k}$

However: we need a precision p with $2^{-p} \lesssim N^{-2k}$, i.e. $p \geq 2 p_\varepsilon + o(p_\varepsilon)$

Choice of N: depends and to be analyzed in detail
Remark. Multiple precision computations can be particularly useful in order to “simulate” an equation with simple exact mathematical boundary conditions.
log in base 2 of overhead

Overhead of multiple precision arithmetic
Overhead of mantissa arithmetic
MPFR with respect to “double”

log in base 2 of bit precision
What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Problem: hardware implementation of three sum
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs
Problem 3: overhead for emulation of correct rounding
How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs
Problem 3: overhead for emulation of correct rounding
Problem 4: overhead for emulation of exceptions
Correct rounding

\[
\frac{4}{3} \quad \quad \quad 1.01010101011 \quad \quad \quad 1.0101010110
\]
Correct rounding

\[
\frac{4}{3} = 1.01010101101.0101010101 \quad \ldots \quad 1.010101010110 = 1.010101010110
\]

Fused multiply subtract

Problem: exact multiplication of \(x, y \in \mathbb{F}_{52} \) as \(x \cdot y = h + l \in \mathbb{F}_{104} \) with \(h, l \in \mathbb{F}_{52} \)
Correct rounding

\[
\begin{array}{c}
4/3 \\
\ldots \\
1.0101010101101.0101010101 \\
\ldots \\
1.0101010101
\end{array}
\]

Fused multiply subtract

Problem: exact multiplication of \(x, y \in \mathbb{F}_{52} \) as \(xy = h + l \in \mathbb{F}_{104} \) with \(h, l \in \mathbb{F}_{52} \)

Solution: \(h := (x \times y)_{\mathbb{F}_{52}}, \; l := (x \times y - h)_{\mathbb{F}_{52}} \)
Using built-in floating point arithmetic

Correct rounding

\[
\begin{align*}
4/3 & \quad \quad \quad \quad \quad \\
\ldots & \quad \quad \quad \quad \quad \\
1.01010101011 & \quad 1.01010101010
\end{align*}
\]

Fused multiply subtract

Problem: exact multiplication of \(x, y \in \mathbb{F}_{52} \) as \(xy = h + l \in \mathbb{F}_{104} \) with \(h, l \in \mathbb{F}_{52} \)
Solution: \(h := (x \times y)_{\mathbb{F}_{52}}, \quad l := (x \times y - h)_{\mathbb{F}_{52}} \)

Three sum (fused add subtract)

Similar operation for addition: \(h := (x + y)_{\mathbb{F}_{52}}, \quad l := (x + y - h)_{\mathbb{F}_{52}} \)
Correct rounding

\[
\begin{array}{c}
4/3 \\
\cdots \bullet \bullet \\
1.0101010101 \\
\end{array}
\]

Fused multiply subtract

Problem: exact multiplication of \(x, y \in \mathbb{F}_{52} \) as \(xy = h + l \in \mathbb{F}_{104} \) with \(h, l \in \mathbb{F}_{52} \)
Solution: \(h := (x \times y)_{\mathbb{F}_{52}}, l := (x \times y - h)_{\mathbb{F}_{52}} \)

Three sum (fused add subtract)

Similar operation for addition: \(h := (x + y)_{\mathbb{F}_{52}}, l := (x + y - h)_{\mathbb{F}_{52}} \)

Exercise

Design multiple precision arithmetic using these operations
Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)
Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

\(x \in \{0, \ldots, 2^p - 1\} \) represents \(x = X 2^{-p} \)

Multiplication at precision \(2^p \):

\[
(X_1 2^p + X_0) (Y_1 2^p + Y_0) 2^{-4p} = X_0 X_1 2^{-2p} + (X_0 Y_1 + X_1 Y_0) 2^{-3p} + \ldots
\]

That is: three integer multiplications and four additions
Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

\[X \in \{0, \ldots, 2^p - 1\} \text{ represents } x = X \cdot 2^{-p} \]

Multiplication at precision \(2^p\):

\[
(X_1 2^p + X_0) (Y_1 2^p + Y_0) 2^{-4p} = X_0 X_1 2^{-2p} + (X_0 Y_1 + X_1 Y_0) 2^{-3p} + \ldots
\]

That is: three integer multiplications and four additions

Signed fixed point arithmetic

\[X \in \{0, \ldots, 2^p - 1\} \text{ represents } \tilde{x} = X \cdot 2^{-p} - \frac{1}{2} \]

\[
2 \tilde{x} \tilde{y} + \frac{1}{2} = 2 x y - (x + y) + 1
\]

Multiplication at precision \(2^p\): six extra additions
Moderate precision arithmetic

<table>
<thead>
<tr>
<th>Precision</th>
<th>Unsigned</th>
<th>Signed</th>
<th>Multipl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$2p$</td>
<td>7</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>$3p$</td>
<td>12</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>$4p$</td>
<td>18</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>$5p$</td>
<td>25</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>$6p$</td>
<td>33</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>$7p$</td>
<td>42</td>
<td>63</td>
<td>28</td>
</tr>
<tr>
<td>$8p$</td>
<td>52</td>
<td>76</td>
<td>36</td>
</tr>
</tbody>
</table>
log in base 2 of bit precision

log in base 2 of overhead

- Overhead of MPFR arithmetic
- Overhead of MPFR mantissa arithmetic
- Overhead of signed fixed point arithmetic
Challenge 0: for what kind of problems do we need multiple precision arithmetic?
Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective
Challenge 0: for what kind of problems do we need multiple precision arithmetic?
Challenge 1: rethink numerical analysis from the multiple precision perspective
Challenge 2: rethink numerical algorithms together with the underlying arithmetic
Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic
Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?
Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?

Challenge 5: how to incorporate automatic computation of error bounds?
Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?

Challenge 5: how to incorporate automatic computation of error bounds?

Challenge 6: how to interface with symbolic computation?
Claim: we can do all our computations using the signed fixed point representation
Claim: we can do all our computations using the signed fixed point representation

Indeed:

- Assume that we want to transform a_0, \ldots, a_{n-1} with $n = 2^k$
- Write $b_i = \frac{a_i}{2^k \|a\|}$ with $\|a\| = \max_i |a_i|$, so that $\hat{a}_i = 2^k \|a\| \hat{b}_i$
- Then all numbers occurring in the FFT are in $\left[-\frac{1}{2}, \frac{1}{2}\right]$
The system to integrate

\[Y' = \Phi(Y) \]

\[Y(0) = C \]
Dynamical systems near singularities

The system to integrate

\[Y' = \Phi(Y) \]
\[Y(0) = C \]

Power series solution

\[Y(z) = \sum_{k=0}^{\infty} Y_k z^k \]
Dynamical systems near singularities

The system to integrate

\[Y' = \Phi(Y) \]
\[Y(0) = C \]

Power series solution

\[Y(z) = \sum_{k=0}^{\infty} Y_k z^k \]

Preconditioning for signed fixed point arithmetic

\[Y(z) = \tilde{Y}(\varrho z) \]
\[\tilde{Y}' = \varrho \Phi(\tilde{Y}) \]
Blasius equation
Chazy equation
Matrix multiplication over \mathbb{Z}

Problem

Given $M, N \in \mathbb{Z}_{p}^{n \times n}$, $\mathbb{Z}_{p} = \{-2^{p-1}, \ldots, 0, \ldots, 2^{p-1} - 1\}$, compute $M N$
Problem

Given $M, N \in \mathbb{Z}_{p}^{n \times n}$, $\mathbb{Z}_{p} = \{-2^{p-1}, ..., 0, ..., 2^{p-1} - 1\}$, compute MN

Chinese remaindering when $p \ll n$

- Pick primes $q_1, ..., q_l$ with $q_1 \cdot \cdots \cdot q_l > n \cdot 2^p$
- Reduce M and N modulo q_i for each i ($O(n^2 p \log p \log \log p)$ operations)
- Multiply $(MN \mod q_i) = (M \mod q_i) (N \mod q_i)$ for each i ($O(n^3 p)$ operations)
- Reconstruct MN from the $MN \mod q_i$ ($O(n^2 p \log^2 p \log \log p)$ operations)
Problem

Given $M, N \in \mathbb{Z}_p^{n \times n}$, $\mathbb{Z}_p = \{-2^{p-1}, ..., 0, ..., 2^{p-1} - 1\}$, compute MN

Chinese remaindering when $p \ll n$

- Pick primes q_1, \ldots, q_l with $q_1 \cdots q_l > n 2^p$
- Reduce M and N modulo q_i for each i ($O(n^2 p \log p \log \log p)$ operations)
- Multiply $(MN \mod q_i) = (M \mod q_i) (N \mod q_i)$ for each i ($O(n^3 p)$ operations)
- Reconstruct MN from the $MN \mod q_i$ ($O(n^2 p \log^2 p \log \log p)$ operations)

FFT over a finite field \mathbb{F}_q when $p \ll n$

- Pick $q = 3 \times 2^{30} + 1$ and $\omega = 125$ with $\omega^{2^{29}} = -1$ in \mathbb{F}_q
- Write integers in base 2^k with $n 2^{2^k} < q$, i.e. as evaluations $P(2^k)$, $P \in \mathbb{Z}^*_k[2^k]$
- Compute products of polynomials $P, Q \in \mathbb{Z}^*_k[2^k]^{n \times n}$ using FFT w.r.t. ω over \mathbb{F}_q
- Cost: $O(n^2 p \log p \log \log p + n^3 p)$
Classical double precision methods are and will continue to be a powerful workhorse
Classical double precision methods are and will continue to be a powerful workhorse.

But
Classical double precision methods are and will continue to be a powerful workhorse.

But

- If you are curious
Classical double precision methods are and will continue to be a powerful workhorse

But

- If you are curious
- If you have time and energy
Classical double precision methods are and will continue to be a powerful workhorse.

But

- If you are curious
- If you have time and energy
- If you are good at programming
Classical double precision methods are and will continue to be a powerful workhorse.

But

- If you are curious
- If you have time and energy
- If you are good at programming
- If you are sufficiently subversive
Conclusion

Classical double precision methods are and will continue to be a powerful workhorse.

But

- If you are curious
- If you have time and energy
- If you are good at programming
- If you are sufficiently subversive

Then you may try and help developing multiple precision methods.
Classical double precision methods are and will continue to be a powerful workhorse.

But

- If you are curious
- If you have time and energy
- If you are good at programming
- If you are sufficiently subversive

Then you may try and help developing multiple precision methods.

Also: no need for a complete theory or big computers. One can start building useful basic libraries for FFT, linear algebra, ...