
Multi-precision computations & high performance
A delicate marriage

Joris van der Hoeven
CNRS, École polytechnique

Bangalore, 2011
http://www.TeXmacs.org

The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”

The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”

“Does the nature of a solution to NS change if you (slightly) modify your input data?”

The silly remark not to make

“We already lack precision in our input data. Why use multiple precision?”

“Does the Navier-Stokes equation change when you modify your input data?”

“Does the nature of a solution to NS change if you (slightly) modify your input data?”

“Why not perform all computations using 8 bits of precision?”

When do we need multiple precision arithmetic?

Large condition numbers

Condition number κ> 252 implies double precision arithmetic makes no sense

When do we need multiple precision arithmetic?

Large condition numbers

Condition number κ> 252 implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

κ(M)= ‖M ‖ ‖M−1‖> 252

When do we need multiple precision arithmetic?

Large condition numbers

Condition number κ> 252 implies double precision arithmetic makes no sense

Example: Inversion of a matrix M with

κ(M)= ‖M ‖ ‖M−1‖> 252

Example: integration of a dynamical system Y ′=Φ(Y), Y (0)=C near a singularity σ

κ

(

∂Y (σ− ε)

∂C

)

> 252

When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error ε> 0

When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error ε> 0

Classical: pick precision p with κ 2−p6 ε, that is p> φ(pε)= pε+ log2κ with pε= log2
1

ε

When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error ε> 0

Classical: pick precision p with κ 2−p6 ε, that is p> φ(pε)= pε+ log2κ with pε= log2
1

ε

Non-classical: we need p> c pε with c> 1 or even p> pε
c with c> 1

When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error ε> 0

Classical: pick precision p with κ 2−p6 ε, that is p> φ(pε)= pε+ log2κ with pε= log2
1

ε

Non-classical: we need p> c pε with c> 1 or even p> pε
c with c> 1

Asymptotic extrapolation for a favourable sequence fn with

fn≈αn

(

a0 log n+ b0

n0
+

a1 log n+ b1

n1
+

a2 log n+ b2

n2
+ ···

)

Problem: cost to determine α with relative error ε> 0?

Compute f0, ..., fN

When do we need multiple precision arithmetic?

Beyond condition numbers

Problem: compute some real number with a relative error ε> 0

Classical: pick precision p with κ 2−p6 ε, that is p> φ(pε)= pε+ log2κ with pε= log2
1

ε

Non-classical: we need p> c pε with c> 1 or even p> pε
c with c> 1

Asymptotic extrapolation for a favourable sequence fn with

fn≈αn

(

a0 log n+ b0

n0
+

a1 log n+ b1

n1
+

a2 log n+ b2

n2
+ ···

)

Problem: cost to determine α with relative error ε> 0?

Compute f0, ..., fN

Analysis: computation of α, a0, b0,..., ak−1, bk−1 yields α with relative error ≈N−k

However: we need a precision p with 2−p/N−2k, i.e. p> 2 pε+ o(pε)
Choice of N : depends and to be analyzed in detail

Mathematical simulations

Remark. Multiple precision computations can be particularly useful in order to “simulate” an
equation with simple exact mathematical boundary conditions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

log in base 2 of bit precision

log in base 2 of overhead

Overhead of multiple precision arithmetic

Overhead of mantissa arithmetic

MPFR with respect to “double”

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Problem: hardware implementation of three sum

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs
Problem 3: overhead for emulation of correct rounding

How to implement multiple precision arithmetic?

What the hardware provides

195*, 196*, 197*: software implementation of floating point arithmetic
198*, 199*: mathematical co-processors, single precision, later double precision
200*: single and double precision IEEE arithmetic, integer arithmetic, GPUs
201*: single, double, quadruple precision FP and integer arithmetic, wide SIMD, GPUs

Software implementation, strategy I

Use built-in floating point arithmetic
Question: will CPU manufacturers help us?
Answer: no, unless turbulence will be interesting for computer games

Software implementation, strategy II

Use built-in integer arithmetic as in MPFR library
Problem 1: overhead for emulation of exponents
Problem 2: overhead for emulation of signs
Problem 3: overhead for emulation of correct rounding
Problem 4: overhead for emulation of exceptions

Using built-in floating point arithmetic

Correct rounding

1.01010101101.0101010101

······

4/3

Using built-in floating point arithmetic

Correct rounding

1.01010101101.0101010101

······

4/3

Fused multiply subtract

Problem: exact multiplication of x, y ∈F52 as x y=h+ l∈F104 with h, l∈F52

Using built-in floating point arithmetic

Correct rounding

1.01010101101.0101010101

······

4/3

Fused multiply subtract

Problem: exact multiplication of x, y ∈F52 as x y=h+ l∈F104 with h, l∈F52

Solution: h := (x× y)F52
, l := (x× y−h)F52

Using built-in floating point arithmetic

Correct rounding

1.01010101101.0101010101

······

4/3

Fused multiply subtract

Problem: exact multiplication of x, y ∈F52 as x y=h+ l∈F104 with h, l∈F52

Solution: h := (x× y)F52
, l := (x× y−h)F52

Three sum (fused add subtract)

Similar operation for addition: h := (x+ y)F52
, l := (x+ y−h)F52

Using built-in floating point arithmetic

Correct rounding

1.01010101101.0101010101

······

4/3

Fused multiply subtract

Problem: exact multiplication of x, y ∈F52 as x y=h+ l∈F104 with h, l∈F52

Solution: h := (x× y)F52
, l := (x× y−h)F52

Three sum (fused add subtract)

Similar operation for addition: h := (x+ y)F52
, l := (x+ y−h)F52

Exercise

Design multiple precision arithmetic using these operations

Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

X ∈{0, ..., 2p− 1} represents x=X 2−p

Multiplication at precision 2 p:

(X1 2
p+X0) (Y1 2

p+Y0) 2
−4p=X0X1 2

−2p+(X0Y1+X1Y0) 2
−3p+ ···

That is: three integer multiplications and four additions

Using built-in integer arithmetic

MPFR library

Represent mantissas by GMP integers (with separate field for signs)

Unsigned fixed point arithmetic

X ∈{0, ..., 2p− 1} represents x=X 2−p

Multiplication at precision 2 p:

(X1 2
p+X0) (Y1 2

p+Y0) 2
−4p=X0X1 2

−2p+(X0Y1+X1Y0) 2
−3p+ ···

That is: three integer multiplications and four additions

Signed fixed point arithmetic

X ∈{0, ..., 2p− 1} represents x̃=X 2−p−
1

2

2 x̃ ỹ+
1

2
= 2 x y− (x+ y)+ 1

Multiplication at precision 2 p: six extra additions

Moderate precision arithmetic

Precision Unsigned Signed Multipl.

p 1 2 1

2 p 7 13 3

3 p 12 21 6

4 p 18 30 10

5 p 25 40 15

6 p 33 51 21

7 p 42 63 28

8 p 52 76 36

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

log in base 2 of bit precision

log in base 2 of overhead

Overhead of MPFR arithmetic

Overhead of MPFR mantissa arithmetic

Overhead of signed fixed point arithmetic

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?

Challenge 5: how to incorporate automatic computation of error bounds?

Rethinking scientific computation

Challenge 0: for what kind of problems do we need multiple precision arithmetic?

Challenge 1: rethink numerical analysis from the multiple precision perspective

Challenge 2: rethink numerical algorithms together with the underlying arithmetic

Challenge 3: rethink compilers for automatic code generation of non trivial arithmetic

Challenge 4: how to benefit from massively parallel architectures?

Challenge 5: how to incorporate automatic computation of error bounds?

Challenge 6: how to interface with symbolic computation?

Fast Fourier transforms

Claim: we can do all our computations using the signed fixed point representation

Fast Fourier transforms

Claim: we can do all our computations using the signed fixed point representation

Indeed:

• Assume that we want to transform a0, ..., an−1 with n=2k

• Write bi=
ai

2n ‖a‖
with ‖a‖=maxi |ai|, so that âi=2n ‖a‖ b̂i

• Then all numbers occurring in the FFT are in
[

−
1

2
,
1

2

]

Dynamical systems near singularities

The system to integrate

Y ′ = Φ(Y)

Y (0) = C

Dynamical systems near singularities

The system to integrate

Y ′ = Φ(Y)

Y (0) = C

Power series solution

Y (z) =
∑

k=0

∞

Yk z
k

Dynamical systems near singularities

The system to integrate

Y ′ = Φ(Y)

Y (0) = C

Power series solution

Y (z) =
∑

k=0

∞

Yk z
k

Preconditioning for signed fixed point arithmetic

Y (z) = Ỹ (̺ z)

Ỹ
′

= ̺Φ(Ỹ)

Blasius equation

Chazy equation

Matrix multiplication over Z

Problem

Given M,N ∈Z;p
n×n, Z;p= {−2p−1, ..., 0, ..., 2p−1− 1}, compute MN

Matrix multiplication over Z

Problem

Given M,N ∈Z;p
n×n, Z;p= {−2p−1, ..., 0, ..., 2p−1− 1}, compute MN

Chinese remaindering when p≪n

• Pick primes q1, ..., ql with q1 ··· ql>n 2p

• Reduce M and N modulo qi for each i (O(n2 p log p log log p) operations)
• Multiply (MN mod qi)= (M mod qi) (N mod qi) for each i (O(n3 p) operations)
• Reconstruct MN from the MN mod qi (O(n2 p log2 p log log p) operations)

Matrix multiplication over Z

Problem

Given M,N ∈Z;p
n×n, Z;p= {−2p−1, ..., 0, ..., 2p−1− 1}, compute MN

Chinese remaindering when p≪n

• Pick primes q1, ..., ql with q1 ··· ql>n 2p

• Reduce M and N modulo qi for each i (O(n2 p log p log log p) operations)
• Multiply (MN mod qi)= (M mod qi) (N mod qi) for each i (O(n3 p) operations)
• Reconstruct MN from the MN mod qi (O(n2 p log2 p log log p) operations)

FFT over a finite field Fq when p≪/ n

• Pick q=3× 230+1 and ω= 125 with ω229=−1 in Fq

• Write integers in base 2k with n 22k< q, i.e. as evaluations P (2k), P ∈Z;k[2
k]

• Compute products of polynomials P , Q∈Z;k[2
k]n×n using FFT w.r.t. ω over Fq

• Cost: O(n2 p log p log log p+n3 p)

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious
• If you have time and energy

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious
• If you have time and energy
• If you are good at programming

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious
• If you have time and energy
• If you are good at programming
• If you are sufficiently subversive

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious
• If you have time and energy
• If you are good at programming
• If you are sufficiently subversive

Then you may try and help developing multiple precision methods

Conclusion

Classical double precision methods are and will continue to be a powerful workhorse

But

• If you are curious
• If you have time and energy
• If you are good at programming
• If you are sufficiently subversive

Then you may try and help developing multiple precision methods

Also: no need for a complete theory or big computers
one can start building useful basic libraries for FFT, linear algebra, ...

