The Mathemagix type system

Joris van der Hoeven, ASCM 2012
http://www.TEXMACS.org
Motivation

- Existing computer algebra systems are slow for numerical algorithms
 \Rightarrow we need a compiled language
- Low level systems (GMP, MPFR, FLINT) painful for compound objects
 \Rightarrow we need a mathematically expressive language
- More and more complex architectures (SIMD, multicore, web)
 \Rightarrow general efficient algorithms cannot be designed by hand
- Existing systems lack sound semantics
 \Rightarrow we need mathematically clean interfaces
Motivation

- Existing computer algebra systems are slow for numerical algorithms
 - we need a compiled language

- Low level systems (GMP, MPFR, FLINT) painful for compound objects
 - we need a mathematically expressive language

- More and more complex architectures (SIMD, multicore, web)
 Non standard but efficient numeric types
 - general efficient algorithms cannot be designed by hand

- Existing systems lack sound semantics
 - we need mathematically clean interfaces
Motivation

- Existing computer algebra systems are slow for numerical algorithms
 \(\Rightarrow\) we need a compiled language

- Low level systems (GMP, MPFR, FLINT) painful for compound objects
 \(\Rightarrow\) we need a mathematically expressive language

- More and more complex architectures (SIMD, multicore, web)
 Non standard but efficient numeric types
 \(\Rightarrow\) general efficient algorithms cannot be designed by hand

- Existing computer algebra systems lack sound semantics
 Difficult to connect different systems in a sound way
 \(\Rightarrow\) we need mathematically clean interfaces
Main design goals

- Strongly typed functional language
- Access to low level details and encapsulation
- Inter-operability with C/C++ and other languages
- Large scale programming via intuitive, strongly local writing style

Guiding principle.

Prototype ↔ Mathematical theorem
Implementation ↔ Formal proof
forall (R: Ring) square (x: R) == x * x;
Example

forall (R: Ring) square (x: R) == x * x;

Mathemagix

category Ring == {
 convert: Int -> This;
 prefix -: This -> This;
 infix +: (This, This) -> This;
 infix -: (This, This) -> This;
 infix *: (This, This) -> This;
}
forall (R: Ring) square (x: R) == x * x;

c++

```cpp
template<typename R>
square (const R& x) {
    return x * x;
}
```
forall (R: Ring) square (x: R) == x * x;

C++

```cpp
concept Ring<typename R> {
    R::R (int);
    R::R (const R&);
    R operator - (const R&);
    R operator + (const R&, const R&);
    R operator - (const R&, const R&);
    R operator * (const R&, const R&);
}

template<typename R>
requires Ring<R>
operator * (const R& x) {
    return x * x;
}
```
forall (R: Ring) square (x: R) == x * x;

Axiom, Aldor

define Ring: Category == with {
 0: %;
 1: %;
 -: % -> %;
 +: (%, %) -> %;
 -: (%, %) -> %;
 *: (%, %) -> %;
}

Square (R: Ring): with {
 square: R -> R;
} == add {
 square (x: R): R == x * x;
}

import from Square (Integer);
Example

\[
\forall (R: \text{Ring}) \ square (x: R) = x \ast x;
\]

Ocaml

```ocaml
# let square x = x * x;;
val square : int -> int = <fun>

# let square_float x = x *. x;;
val square_float : float -> float = <fun>
```
forall (R: Ring) square (x: R) == x * x;
module type RING =

 sig

 type t
 val cst : int -> t
 val neg : t -> t
 val add : t -> t -> t
 val sub : t -> t -> t
 val mul : t -> t -> t

 end;;

module Squarer =

 functor (El: RING) ->

 struct

 let square x = El.mul x x

 end;;

module IntRing =

 struct

 type t = int
 let cst x = x
 let neg x = - x
 let add x y = x + y
 let sub x y = x - y
 let mul x y = x * y

 end;;

module IntSquarer = Squarer(IntRing);;
shift (x: Int) (y: Int): Int == x + y;

v: Vector Int == map (shift 123, [1 to 100]);

test (i: Int): (Int -> Int) == {
 f (): (Int -> Int) == g;
 g (j: Int): Int == i * j;
 return f ();
}
class Point == {
 mutable x: Int;
 mutable y: Int;

 constructor point (a: Int, b: Int) == {
 x == a; y == b; }

 mutable method translate (dx: Int, dy: Int): Void == {
 x := x + dx; y := y + dy; }
}

flatten (p: Point): Syntactic ==
 'point (flatten p.x, flatten p.y);

infix + (p: Point, q: Point): Point ==
 point (p.x + q.x, p.y + q.y);
Overloading

category Type == {}

forall (T: Type) f (x: T): T == x;
f (x: Int): Int == x * x;
f (x: Double): Double == x * x * x * x;

mmout << f ("Hallo") << "\n";
mmout << f (11111) << "\n";
mmout << f (1.1) << "\n";

Castafiore:basic vdhoeven$./overload_test
Hallo
123454321
1.4641
Castafiore:basic vdhoeven$
category Ring == {
 convert: Int -> This;
 prefix -: This -> This;
 infix +: (This, This) -> This;
 infix -: (This, This) -> This;
 infix *: (This, This) -> This;
}

category Module (R: Ring) == {
 prefix -: This -> This;
 infix +: (This, This) -> This;
 infix -: (This, This) -> This;
 infix *: (R, This) -> This;
}

forall (R: Ring, M: Module R)
square_multiply (x: R, y: M): M == (x * x) * y;

mmout << square_multiply (3, 4) << "\n";
Implicit conversions

convert (x: Double): Floating == mpfr_as_floating x;

forall (R: Ring) {
 infix * (v: Vector R, w: Vector R): Vector R == [...];
 forall (K: To R)
 infix * (c : K, v: Vector R): Vector R ==
 [(c :> R) * x | x: R in v];
 infix * (v: Vector R, c :> R): Vector R ==
 [x*c | x: R in v];
}

forall (R: Ring)
convert (x :> R): Complex R == complex (x, 0);
// allows for conversion Double --> Complex Floating

convert (p: Point): Vector Int == [p.x, p.y];
downgrade (p: Colored_Point): Point == point (p.x, p.y);
// allows for conversion Colored_Point --> Vector Int
// abstract way to implement class inheritance
class Vec (R: Ring, n: Int) == {
 private mutable rep: Vector R;

 constructor vec (v: Vector R) == {
 rep == v; }

 constructor vec (c: R) == {
 rep == [c | i: Int in 0..n]; }
}

forall (R: Ring, n: Int) {
 flatten (v: Vec (R, n)): Syntactic == flatten v.rep;
 postfix [] (v: Vec (R, n), i: Int): R == v.rep[i];
 postfix [] (v: Alias Vec (R, n), i: Int): Alias R == v.rep[i];
 infix + (v1: Vec (R, n), v2: Vec (R, n)): Vec (R, n) ==
 vec ([v1[i] + v2[i] | i: Int in 0..n]);}

assume (R: Ordered)
 infix <= (v1: Vec (R, n), v2: Vec (R, n)): Boolean ==
 big_and (v1[i] <= v2[i] | i: Int in 0..n);
Abstract data types

structure List (T: Type) == {
 null ();
 cons (head: T, tail: List T);
}

l1: List Int == cons (1, cons (2, null ()));
l2: List Int == cons (1, cons (2, cons (3, null ())));

forall (T: Type)
prefix # (l: List T): Int ==
 if null? l then 0 else #l.tail + 1;
structure List (T: Type) == {
 null ();
 cons (head: T, tail: List T);
}

l1: List Int == cons (1, cons (2, null ()));
l2: List Int == cons (1, cons (2, cons (3, null ())));

forall (T: Type)
prefix # (l: List T): Int ==
 match l with {
 case null () do return 0;
 case cons (_, l: List T) do return #l + 1;
 }
Abstract data types

structure List (T: Type) == {
 null ();
 cons (head: T, tail: List T);
}

l1: List Int == cons (1, cons (2, null ()));
l2: List Int == cons (1, cons (2, cons (3, null ())));

forall (T: Type) {
 prefix # (l: List T): Int := 0;
 prefix # (cons (_, t: List T)): Int := #t + 1;
}
Symbolic types

```plaintext
structure Symbolic := {
  sym_literal (literal: Literal);
  sym_compound (compound: Compound);
}

infix + (x: Symbolic, y: Symbolic): Symbolic :=
  sym_compound ('+ (x :> Generic, y :> Generic));
```
Symbolic types

```plaintext
structure Symbolic := {
  sym_literal (literal: Literal);
  sym_compound (compound: Compound);
}

infix + (x: Symbolic, y: Symbolic): Symbolic :=
  sym_compound ('+ (x :> Generic, y :> Generic));

structure Symbolic += {
  sym_int (int: Int);
  sym_double (double: Double);
}

infix + (sym_double (x: Double),
  sym_double (y: Double)): Symbolic :=
  sym_double (x + y);
```
Symbolic types

```
structure Symbolic := {
  sym_literal (literal: Literal);
  sym_compound (compound: Compound);
}

infix + (x: Symbolic, y: Symbolic): Symbolic :=
  sym_compound ('+ (x :> Generic, y :> Generic));

structure Symbolic += {
  sym_int (int: Int);
  sym_double (double: Double);
}

pattern sym_as_double (as_double: Double): Symbolic := {
  case sym_double (x: Double) do as_double == x;
  case sym_int (i: Int) do as_double == i;
}

infix + (sym_as_double (x: Double),
  sym_as_double (y: Double)): Symbolic :=
  sym_double (x + y);
```
Overloading. Explicit types for overloaded objects

```plaintext
forall (T: Type) f (x: T): T == x;
f (x: Int): Int == x * x;
```

Type of \(f \): \(\text{And} (\text{Forall} (T: \text{Type}, T \to T), \text{Int} \to \text{Int}) \)

Logical types: \(f : \text{And}(T, U) \iff f : T \land f : U \)

Preferences in case of ambiguities.

```
infix +: (Int, Int): Int;
infix +: (Int, Integer): Integer;
infix +: (Integer, Integer): Integer;

prefer infix + :> (Int, Int) -> Int
to infix + :> (Int, Integer) -> Integer;
```
Formal theory and compilation

Level 1. Source language with syntax constructs for ambiguous notations

\[
\text{square}: (\forall T^\text{Ring} \to T) \land \text{String} \to \text{String}
\]

Level 2. Intermediate unambiguous language with additional constructs for disambiguating the ambiguous notations

\[\text{square} \xrightarrow{\text{valid interpretation}} \pi_1(\text{square}) \#\text{Int}: \text{Int} \to \text{Int}\]

Compilation: transform source program in intermediate program.

Level 3. Interpretation in traditional λ-calculus

\[
\text{square} \equiv \text{pair}(\lambda T.\lambda x.\text{get}_x(T)(x, x), \lambda x.\text{concat}(x, x))
\]

Backend: transform intermediate program in object program.