The Frobenius FFT

Joris van der Hoeven, Robin Larrieu CNRS, École polytechnique

Kaiserslautern, July 26, 2017 http://www.T_EX_{MACS}.org Theorem. (Harvey-vdH-Lecerf 2014) Two n-bit integers can be multiplied in time

$$I(n) = O(n \log n 8^{\log^* n}).$$

Theorem. (Harvey-vdH-Lecerf 2014) Let q be a prime power. Then two polynomials of degree < n in $\mathbb{F}_q[x]$ can be multiplied in time

$$M_q(n) = O(n \log q \log (n \log q) 8^{\log^*(n \log q)}).$$

This bound is uniform in q.

• Pollard's number theoretic FFTs (1971): $\mathbb{Z} \leadsto (\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \mathbb{F}_{p_3})[x]$

- Pollard's number theoretic FFTs (1971): $\mathbb{Z} \leadsto (\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \mathbb{F}_{p_3})[x]$
- Smoothing jumps in the complexity: mixed radix FFTs or TFTs

- Pollard's number theoretic FFTs (1971): $\mathbb{Z} \rightsquigarrow (\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \mathbb{F}_{p_3})[x]$
- Smoothing jumps in the complexity: mixed radix FFTs or TFTs

Polynomial multiplication in $\mathbb{F}_a[x]$

• Schönhage–Strassen multiplication (1971) and Schönhage's triadic version (1975)

- Pollard's number theoretic FFTs (1971): $\mathbb{Z} \rightsquigarrow (\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \mathbb{F}_{p_3})[x]$
- Smoothing jumps in the complexity: mixed radix FFTs or TFTs

Polynomial multiplication in $\mathbb{F}_a[x]$

- Schönhage-Strassen multiplication (1971) and Schönhage's triadic version (1975)
- Harvey-vdH-Lecerf (ISSAC 2016): better practical algorithms in characteristic 2

- Pollard's number theoretic FFTs (1971): $\mathbb{Z} \rightsquigarrow (\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \mathbb{F}_{p_3})[x]$
- Smoothing jumps in the complexity: mixed radix FFTs or TFTs

Polynomial multiplication in $\mathbb{F}_a[x]$

- Schönhage-Strassen multiplication (1971) and Schönhage's triadic version (1975)
- Harvey-vdH-Lecerf (ISSAC 2016): better practical algorithms in characteristic 2
- Larrieu (ISSAC 2017): generalization of TFTs to mixed radix setting

- Pollard's number theoretic FFTs (1971): $\mathbb{Z} \leadsto (\mathbb{F}_{p_1} \times \mathbb{F}_{p_2} \times \mathbb{F}_{p_3})[x]$
- Smoothing jumps in the complexity: mixed radix FFTs or TFTs

Polynomial multiplication in $\mathbb{F}_q[x]$

- Schönhage-Strassen multiplication (1971) and Schönhage's triadic version (1975)
- Harvey-vdH-Lecerf (ISSAC 2016): better practical algorithms in characteristic 2
- Larrieu (ISSAC 2017): generalization of TFTs to mixed radix setting

Main lesson

- Privilege methods that use few FFT evaluation points \rightsquigarrow use finite fields \mathbb{F}_q with multiplicative groups of smooth order
 - Pollard's method > Schönhage–Strassen
 - Harvey–vdH–Lecerf > Schönhage's triadic FFT
 - Mixed radii and/or TFT whenever possible

1 2 3 <u>4</u> 5 6 7 8 9 10

Rely on the "Babylonian field" $\mathbb{F}_{2^{60}}$, whose multiplicative group has order

```
Pari] factor (2^60 - 1)
```

```
Pari] factor (2<sup>60</sup> - 1)
```

```
\%1 = \begin{pmatrix} 3 & 2 \\ 5 & 2 \\ 7 & 1 \\ 11 & 1 \\ 13 & 1 \\ 31 & 1 \\ 41 & 1 \\ 61 & 1 \\ 151 & 1 \\ 331 & 1 \\ 1321 & 1 \end{pmatrix}
```

```
1 2 3 4 5 6 7 8 9 10
```

$%1 = \begin{pmatrix} 3 & 2 \\ 5 & 2 \\ 7 & 1 \\ 11 & 1 \\ 13 & 1 \\ 31 & 1 \\ 41 & 1 \\ 61 & 1 \\ 151 & 1 \\ 331 & 1 \\ 1321 & 1 \end{pmatrix}$

Pari] factor (2^60 - 1)

Multiplication in $\mathbb{F}_{2^{60}}[x]$

Fast native mixed radix FFT-multiplication

Pari] factor (2⁶⁰ - 1)

$$\%1 = \begin{pmatrix} 3 & 2 \\ 5 & 2 \\ 7 & 1 \\ 11 & 1 \\ 13 & 1 \\ 31 & 1 \\ 41 & 1 \\ 61 & 1 \\ 151 & 1 \\ 331 & 1 \\ 1321 & 1 \end{pmatrix}$$

Multiplication in $\mathbb{F}_{2^{60}}[x]$

Fast native mixed radix FFT-multiplication

Multiplication in $\mathbb{F}_2[x]$

Kronecker segmentation $\mathbb{F}_2[x] \rightsquigarrow \mathbb{F}_2[x]_{<30}[y] \rightsquigarrow \mathbb{F}_{2^{60}}[y]$, $y = x^{30}$

Pari] factor (2^60 - 1)

$$\%1 = \begin{pmatrix} 3 & 2 \\ 5 & 2 \\ 7 & 1 \\ 11 & 1 \\ 13 & 1 \\ 31 & 1 \\ 41 & 1 \\ 61 & 1 \\ 151 & 1 \\ 331 & 1 \\ 1321 & 1 \end{pmatrix}$$

Multiplication in $\mathbb{F}_{2^{60}}[x]$

Fast native mixed radix FFT-multiplication

Multiplication in $\mathbb{F}_2[x]$

Kronecker segmentation $\mathbb{F}_2[x] \rightsquigarrow \mathbb{F}_2[x]_{<30}[y] \rightsquigarrow \mathbb{F}_{2^{60}}[y]$, $y = x^{30}$

Multiplication in $\mathbb{F}_{2^k}[x]$

Various strategies to reduce to multiplication in $\mathbb{F}_{2^{60}}[x]$

Question

What if we directly compute products of polynomials in $\mathbb{F}_2[x]$ inside $\mathbb{F}_{2^{60}}[x]$?

Question

What if we directly compute products of polynomials in $\mathbb{F}_2[x]$ inside $\mathbb{F}_{2^{60}}[x]$?

A priori

This is 60 times more expensive

Question

What if we directly compute products of polynomials in $\mathbb{F}_2[x]$ inside $\mathbb{F}_{2^{60}}[x]$?

A priori

This is 60 times more expensive

But

If $P \in \mathbb{F}_2[x]$ and $\omega \in \mathbb{F}_{2^{60}}$ primitive root of unity and $\phi \colon \mathbb{F}_{2^{60}} \to \mathbb{F}_{2^{60}}$; $x \mapsto x^2$, then

$$P(\phi(\omega^i)) = \phi(P(\omega^i))$$

 \rightsquigarrow we only to compute $P(\omega^i)$ for one element in the orbit $\omega, \phi(\omega), \phi^2(\omega), ...$

Given
$$P \in \mathbb{R}[x]_{< n}$$
, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute

$$\mathsf{RFFT}_{\omega}(P) := (P(\omega^k))_{k \in \mathcal{S}}$$

$$\mathcal{S} = \{k : \hat{k} \leqslant \widehat{n-k}\}$$

Given $P \in \mathbb{R}[x]_{< n}$, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute

$$\mathsf{RFFT}_{\omega}(P) := (P(\omega^k))_{k \in \mathcal{S}}$$

$$\mathcal{S} = \{k : \hat{k} \leqslant \widehat{n-k}\}$$

1 2 3 4 5 <u>6</u> 7 8 9 10

Given
$$P \in \mathbb{R}[x]_{< n}$$
, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute

$$\mathsf{RFFT}_{\omega}(P) := (P(\omega^k))_{k \in \mathcal{S}}$$

$$\mathcal{S} = \{k : \hat{k} \leqslant \widehat{n-k}\}$$

Given
$$(P,Q) \in \mathbb{R}[x]_{\leq n}^2$$
, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute $(\mathsf{FFT}_{\omega}(P), \mathsf{FFT}_{\omega}(Q))$

Given $(P,Q) \in \mathbb{R}[x]_{\leq n}^2$, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute $(\mathsf{FFT}_{\omega}(P), \mathsf{FFT}_{\omega}(Q))$

Given $(P,Q) \in \mathbb{R}[x]_{\leq n}^2$, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute $(\mathsf{FFT}_{\omega}(P), \mathsf{FFT}_{\omega}(Q))$

Given $(P, Q) \in \mathbb{R}[x]_{\leq n}^2$, $n \in 2^{\mathbb{N}}$, and $\omega = \exp\left(\frac{2\pi i}{n}\right)$, compute $(\mathsf{FFT}_{\omega}(P), \mathsf{FFT}_{\omega}(Q))$

$$R = P + Q i$$

$$P(\omega^{k}) = \frac{1}{2} (R(\omega^{k}) + \overline{R(\omega^{k})})$$

$$Q(\omega^{k}) = \frac{1}{2i} (R(\omega^{k}) - \overline{R(\omega^{k})})$$

Compute FFFT of $P \in \mathbb{F}_2[x]_{< n}$, where n is large and $61 \mid n$

Compute FFFT of $P \in \mathbb{F}_2[x]_{< n}$, where n is large and $61 \mid n$

First step with radix 61

For
$$0 \le k < \frac{n}{61}$$
 and $P_k^{\sharp} = P_k + P_{k+n/61} y + \dots + P_{k+60n/61} y^{60}$,

- Compute $P_k^{\sharp}(1) \in \mathbb{F}_2$
- Compute $P_k^\sharp(\omega^{n/61}) \in \mathbb{F}_{2^{60}}$
- Take $\omega^{n/61} = \alpha$, where $\mathbb{F}_{2^{60}} = \mathbb{F}_2[\alpha]$ and $\frac{\alpha^{61} 1}{\alpha 1} = 0$

Compute FFFT of $P \in \mathbb{F}_2[x]_{< n}$, where n is large and $61 \mid n$

First step with radix 61

For
$$0 \le k < \frac{n}{61}$$
 and $P_k^{\sharp} = P_k + P_{k+n/61} y + \dots + P_{k+60n/61} y^{60}$,

- Compute $P_k^{\sharp}(1) \in \mathbb{F}_2$
- Compute $P_k^{\sharp}(\omega^{n/61}) \in \mathbb{F}_{2^{60}}$
- Take $\omega^{n/61} = \alpha$, where $\mathbb{F}_{2^{60}} = \mathbb{F}_2[\alpha]$ and $\frac{\alpha^{61} 1}{\alpha 1} = 0$

Remaining steps

- One FFFT of size n/61
- One full FFT of size n/61 over $\mathbb{F}_{2^{60}}$

Compute FFFT of $P \in \mathbb{F}_2[x]_{< n}$, where n is large and $61 \mid n$

First step with radix 61

For
$$0 \le k < \frac{n}{61}$$
 and $P_k^{\sharp} = P_k + P_{k+n/61} y + \dots + P_{k+60n/61} y^{60}$,

- Compute $P_k^{\sharp}(1) \in \mathbb{F}_2$
- Compute $P_k^{\sharp}(\omega^{n/61}) \in \mathbb{F}_{2^{60}}$
- Take $\omega^{n/61} = \alpha$, where $\mathbb{F}_{2^{60}} = \mathbb{F}_2[\alpha]$ and $\frac{\alpha^{61} 1}{\alpha 1} = 0$

Remaining steps

- One FFFT of size n/61
- One full FFT of size n/61 over $\mathbb{F}_{2^{60}}$

Stay tuned...