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Fundamental theoretical complexity bounds 2/10

Theorem. (Harvey—vdH-Lecerf 2014) Two n-bit integers can be multiplied in time

I(n) = O(nlognglos™ ).

Theorem. (Harvey—vdH-Lecerf 2014) Let q be a prime power. Then two polynomials of
degree <n in IF,[x] can be multiplied in time

My(n) = O(nlog qlog(nlog q)8'°e" (n°e )y,

This bound is uniform in q.
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Integer multiplication
e Pollard’'s number theoretic FFTs (1971): Z ~~ (Fp, x F,, x Fp,)[X]

e Smoothing jumps in the complexity: mixed radix FFTs or TFTs

Polynomial multiplication in Fy[x]
e Schonhage—Strassen multiplication (1971) and Schonhage's triadic version (1975)
e Harvey—vdH-Lecerf (ISSAC 2016): better practical algorithms in characteristic 2

e Larrieu (ISSAC 2017): generalization of TFTs to mixed radix setting

Main lesson

e Privilege methods that use few FFT evaluation points ~~
use finite fields I, with multiplicative groups of smooth order

o Pollard’s method > Schénhage—Strassen
o Harvey—vdH-Lecerf > Schonhage's triadic FFT
o Mixed radii and/or TFT whenever possible
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Multiplication in Faeo[x]
Fast native mixed radix FFT-multiplication

Multiplication in [x]

Kronecker segmentation IF5[x] ~ IFa[x] <30[y] ~ Faso[y], y = x>°

Multiplication in Fy«[x]

Various strategies to reduce to multiplication in Fpso[x]
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Question

What if we directly compute products of polynomials in IF;[x]| inside [Fyeo[x]?

A priori

This is 60 times more expensive

But

If PcIF[x] and w € IFas0 primitive root of unity and ¢: a0 — [Fae0; X+ x2, then

P(d(w') = ¢(P(w"))

~ we only to compute P(w') for one element in the orbit w, ¢(w), p?(w), ...
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Given P € R[x]<,, n€ 2™, and w:exp<27m>, compute

RFFT,(P) = (P(w"))kes
S = {kk<n—k}
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Real FFT, first approach

RFFT(P)
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Real FFT, second approach 7/10

Given (P, Q) e R[x]%,, n€ 2, and w:exp(sz>, compute (FFT(P), FFT.(Q))
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Compute FFFT of P € IFy[x]-,, where n is large and 61 | n

First step with radix 61

For 0 < k << and Pi =P+ Piinsory + - + Piieonser ¥,
e Compute Pi(1) e F,

e Compute P/(w"/1) € Fyeo

o Take w"/' =, where Fy0 =TF,[a] and a:__ll =0

Remaining steps
e One FFFT of size n/61
e One full FFT of size n/61 over o

Stay tuned...



