Transserial HARDY fields Joris van der Hoeven

CNRS, France

(partly joint work with M. ASCHENBRENNER and L. VAN DEN DRIES)

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}}$$

$$(x \to \infty)$$

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}}$$

Tame solutions

2/28

 $(x \to \infty)$

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}} \qquad (x \to \infty)$$

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}} \qquad (x \to \infty)$$

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}} \qquad (x \to \infty)$$

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}}$$

Tame solutions

2/28

 $(x \to \infty)$

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}}$$

$$(x \to \infty)$$

Transseries

• Formal solutions

$$y(x)^7 + e^{e^x}y(x)^4y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^2\sqrt{\log x}}$$

$$(x \to \infty)$$

Transseries

- Formal solutions
- Algorithm to compute solutions

$$y(x)^7 + e^{e^x}y(x)^4y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^2\sqrt{\log x}}$$

$$(\chi \to \infty)$$

Transseries

Hardy fields

• Formal solutions

- Analytic solutions
- Algorithm to compute solutions

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}}$$

$$\chi \rightarrow \infty$$
)

Transseries

• Formal solutions

• Algorithm to compute solutions • Less effective

Hardy fields

- Analytic solutions

$$y(x)^{7} + e^{e^{x}}y(x)^{4}y'(x)y''(x) - \frac{y'''(x)}{\log x} = e^{x^{2}\sqrt{\log x}}$$

$$x \to \infty$$
)

Transseries

• Formal solutions

Hardy fields

- Analytic solutions
- Algorithm to compute solutions Less effective

Central question

Let $\mathbb{T}^{\operatorname{da}(\mathbb{R})}$ be the field of differentially algebraic transseries over \mathbb{R} . How to "incarnate" $\mathbb{T}^{\operatorname{da}(\mathbb{R})}$ as a Hardy field?

$$\tilde{f}(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(n-1)!}{x^n}$$

Problem: how to proceed when $\tilde{f}(x) \longrightarrow \tilde{f}(x) + \tilde{f}(x^2) \tilde{f}(x^3) - \tilde{f}(x^x)$?

5/28

 $\tilde{f}(x)$

5/28

5/28

5/28

Input: $\mathbb{K} \subseteq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ with $\phi \colon \mathbb{K} \hookrightarrow H$ for HARDY field *H*

Input: $\mathbb{K} \subseteq \mathbb{T}^{da(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field Hwhile $\mathbb{K} \neq \mathbb{T}^{da(\mathbb{R})}$ do

Input: $\mathbb{K} \subseteq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field H **while** $\mathbb{K} \neq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ **do** Pick $y \in \mathbb{T}^{\operatorname{da}(\mathbb{R})} \setminus \mathbb{K}$ of minimal *complexity*

Input: $\mathbb{K} \subseteq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field *H*

while $\mathbb{K} \neq \mathbb{T}^{da(\mathbb{R})}$ do

Pick $y \in \mathbb{T}^{da(\mathbb{R})} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree *e* in $y, ..., y^{(r)}$.

Input: $\mathbb{K} \subseteq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field *H*

while $\mathbb{K} \neq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ do

Pick $y \in \mathbb{T}^{da(\mathbb{R})} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree *e* in $y, ..., y^{(r)}$.

Construct $\hat{\phi}$: $\mathbb{K}(y, ..., y^{(r)}) \hookrightarrow \hat{H}$ Set $\mathbb{K} := \mathbb{K}(y, ..., y^{(r)}), \phi := \hat{\phi}$

Input: $\mathbb{K} \subseteq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field *H*

while $\mathbb{K} \neq \mathbb{T}^{da(\mathbb{R})}$ do

Pick $y \in \mathbb{T}^{da(\mathbb{R})} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree *e* in $y, ..., y^{(r)}$.

Construct $\hat{\phi}$: $\mathbb{K}(y, ..., y^{(r)}) \hookrightarrow \hat{H}$ Set $\mathbb{K} := \mathbb{K}(y, ..., y^{(r)}), \phi := \hat{\phi}$

ZORN

Input: $\mathbb{K} \subseteq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field *H*

while $\mathbb{K} \neq \mathbb{T}^{\operatorname{da}(\mathbb{R})}$ do

Pick $y \in \mathbb{T}^{da(\mathbb{R})} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree *e* in $y, ..., y^{(r)}$.

Construct $\hat{\phi}$: $\mathbb{K}(y, ..., y^{(r)}) \hookrightarrow \hat{H}$ Set $\mathbb{K} := \mathbb{K}(y, ..., y^{(r)}), \phi := \hat{\phi}$

Output: $\tilde{\phi}$: $\mathbb{T}^{\operatorname{da}(\mathbb{R})} \hookrightarrow \tilde{H}$ for HARDY field extension \tilde{H} of original H

6/28

·ZORN

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

$$e^{e^{x}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+\cdots+e^{-x}$$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, } \log \text{ and infinite summation}$

$$e^{e^{x}+e^{x/2}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+\cdots+e^{-x}$$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$

 $e^{e^{x}+e^{x/2}+e^{x/3}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+6x^{-3}+\cdots+e^{-x}$

 $\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under exp, log and infinite summation}$ $e^{e^{x} + e^{x/2} + e^{x/3} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + 24x^{-4} + \dots + e^{-x}$

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

$\sum_{\mathfrak{m}\in\mathfrak{M}} f_{\mathfrak{m}}\mathfrak{m} = e^{e^{x} + e^{x/2} + \cdots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \cdots + e^{-x}$

 $\mathbb{T} \coloneqq$ closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

 $\sum_{\mathfrak{m}\in\mathfrak{M}} f_{\mathfrak{m}}\mathfrak{m} = e^{e^{x} + e^{x/2} + \cdots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \cdots + e^{-x}$

$$\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$$

$$f_{\mathfrak{m}} \rightarrow \text{coefficient}$$

$$\mathfrak{m} \rightarrow \text{monomial}$$

$$\operatorname{supp} f = \{\mathfrak{m} \in \mathfrak{M} : f_{\mathfrak{m}} \neq 0\}$$

Different types of supports

 $\mathbb{T}^{\text{wb}} \ni x + \log x + \log \log x + \cdots$ $\ni x^{-1} + e^{-x} + e^{-e^{x}} + \cdots$

(well-based)

8/28
$$\mathbb{T}^{\text{wb}} \ni x + \log x + \log \log x + \cdots$$

$$\ni x^{-1} + e^{-x} + e^{-e^{x}} + \cdots$$

$$\mathbb{T}^{\text{std}} \ni x^{-1} + e^{-(\log x)^{2}} + e^{-(\log x)^{4}} + \cdots$$

(well-based)

(finite exp-log depth)

8/28

$$\mathbb{T}^{\text{wb}} \ni x + \log x + \log \log x + \cdots$$
$$\ni x^{-1} + e^{-x} + e^{-e^{x}} + \cdots$$
$$\mathbb{T}^{\text{std}} \ni x^{-1} + e^{-(\log x)^{2}} + e^{-(\log x)^{4}} + \cdots$$

(well-based)

8/28

(finite exp-log depth)

$$\mathbb{T}^{\text{gb}} \ni \frac{1}{(1-x^{-1})(1-e^{-x})} = 1 + x^{-1} + x^{-2} + \dots + e^{-x} + \dots$$

$$\ni \Gamma(x) = \sqrt{2\pi} \sqrt{x} e^{-x} x^{x} (1 + \frac{1}{12} x^{-1} + \dots) \qquad \text{(grid-based)}$$

$$\sup p f \subseteq \mathfrak{m} \mathfrak{e}_{1}^{\mathbb{N}} \cdots \mathfrak{e}_{k}^{\mathbb{N}}, \qquad \mathfrak{e}_{1}, \dots, \mathfrak{e}_{k} < 1$$

$$\begin{split} \mathbb{T}^{\text{wb}} & \ni x + \log x + \log \log x + \cdots \qquad \text{(well-based)} \\ & \ni x^{-1} + e^{-x} + e^{-e^{x}} + \cdots \\ \mathbb{T}^{\text{std}} & \ni x^{-1} + e^{-(\log x)^{2}} + e^{-(\log x)^{4}} + \cdots \qquad \text{(finite exp-log depth)} \\ \mathbb{T}^{\text{finr}} & \ni \phi(x) = x + \sqrt{x} + \sqrt{\sqrt{x}} + \cdots \\ & \ni \phi(x) + \phi(e^{x}) \qquad \text{(finite archimedean rank)} \end{split}$$

$$\mathbb{T}^{gb} \ni \frac{1}{(1-x^{-1})(1-e^{-x})} = 1 + x^{-1} + x^{-2} + \dots + e^{-x} + \dots$$

$$\ni \Gamma(x) = \sqrt{2\pi} \sqrt{x} e^{-x} x^{x} (1 + \frac{1}{12} x^{-1} + \dots) \qquad (\text{grid-based})$$

$$\operatorname{supp} f \subseteq \mathfrak{m} \, \mathfrak{e}_1^{\mathbb{R}} \cdots \mathfrak{e}_k^{\mathbb{R}}, \qquad \mathfrak{e}_1, \dots, \mathfrak{e}_k < 1$$

$$\begin{split} \mathbb{T}^{\text{wb}} & \ni x + \log x + \log \log x + \cdots \qquad (\text{well-based}) \\ & \ni x^{-1} + e^{-x} + e^{-e^{x}} + \cdots \\ \mathbb{T}^{\text{std}} & \ni x^{-1} + e^{-(\log x)^{2}} + e^{-(\log x)^{4}} + \cdots \qquad (\text{finite exp-log depth}) \\ \mathbb{T}^{\text{finr}} & \ni \phi(x) = x + \sqrt{x} + \sqrt{\sqrt{x}} + \cdots \\ & \ni \phi(x) + \phi(e^{x}) \qquad (\text{finite archimedean rank}) \\ \mathbb{T}^{\text{nacc}} & \ni \zeta(x) = 1^{-x} + 2^{-x} + 3^{-x} + \cdots \\ & \ni \zeta(x) + \zeta(e^{x}) \qquad (\text{accumulation-free}) \\ \mathbb{T}^{\text{gb}} & \ni \frac{1}{(1 - x^{-1})(1 - e^{-x})} = 1 + x^{-1} + x^{-2} + \cdots + e^{-x} + \cdots \\ & \ni \Gamma(x) = \sqrt{2\pi} \sqrt{x} e^{-x} x^{x} (1 + \frac{1}{12} x^{-1} + \cdots) \qquad (\text{grid-based}) \\ & \text{supp } f \subseteq \mathfrak{m} \mathfrak{e}_{1}^{\mathbb{R}} \cdots \mathfrak{e}_{k}^{\mathbb{R}}, \qquad \mathfrak{e}_{1}, \dots, \mathfrak{e}_{k} < 1 \end{split}$$

Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of \mathbb{T}^{wb} *is completely axiomatized by:*

- **1** \mathbb{T} *is a* LIOUVILLE *closed H*-*field with small derivation;*
- **2** \mathbb{T} satisfies the intermediate value property for differential polynomials.

Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of \mathbb{T}^{wb} *is completely axiomatized by:*

1 \mathbb{T} *is a* LIOUVILLE *closed H*-*field with small derivation;*

2 \mathbb{T} satisfies the intermediate value property for differential polynomials.

In fact...

$$\mathbb{T}^{da(\mathbb{R})} \subsetneq \mathbb{T}^{gb} \subsetneq \mathbb{T}^{nacc} \subsetneq \mathbb{T}^{finr} \subsetneq \mathbb{T}^{std}$$

and these fields satisfy the same elementary theory; we call them **H-closed**.

Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of \mathbb{T}^{wb} *is completely axiomatized by:*

- **1** \mathbb{T} *is a* LIOUVILLE *closed H*-*field with small derivation;*
- **2** \mathbb{T} satisfies the intermediate value property for differential polynomials.

In fact...

$$\mathbb{T}^{da(\mathbb{R})} \subsetneq \mathbb{T}^{gb} \subsetneq \mathbb{T}^{nacc} \subsetneq \mathbb{T}^{finr} \subsetneq \mathbb{T}^{std}$$

and these fields satisfy the same elementary theory; we call them *H-closed*.

Corollary $\mathbb{T}^{da(\mathbb{R})} \equiv \mathbb{T}^{gb} \equiv \mathbb{T}^{nacc} \equiv \mathbb{T}^{finr} \equiv \mathbb{T}^{std}.$

10/28

Let *H* be an H-closed H-field such as \mathbb{T}^{gb} . Write $H\{F\} = H[F, F', F'', ...]$

Newtonianity

Any quasi-linear equation Lf = E(f), f < 1 (with $L \in H[\partial]$ and $E \in H\{F\}$ sufficiently small) admits a solution in H.

Let *H* be an H-closed H-field such as \mathbb{T}^{gb} . Write $H\{F\} = H[F, F', F'', ...]$

Newtonianity

Any quasi-linear equation Lf = E(f), f < 1 (with $L \in H[\partial]$ and $E \in H\{F\}$ sufficiently small) admits a solution in H.

Splitting of linear differential operators

Any linear differential operator $L \in H[\partial]$ can be factored into (i) operators of order one or two in $H[\partial]$; (ii) operators of order one in $H[i][\partial]$.

10/28

Let *H* be an H-closed H-field such as \mathbb{T}^{gb} . Write $H\{F\} = H[F, F', F'', ...]$

Newtonianity

Any quasi-linear equation Lf = E(f), f < 1 (with $L \in H[\partial]$ and $E \in H\{F\}$ sufficiently small) admits a solution in H.

Splitting of linear differential operators

Any linear differential operator $L \in H[\partial]$ can be factored into (i) operators of order one or two in $H[\partial]$; (ii) operators of order one in $H[i][\partial]$.

Weak differential closedness

Given $P \in K{F}$ *, there exists an* $f \in K[i]$ *with* P(f) = 0*.*

The incomplete transbasis theorem

11/28

Definition

$\mathfrak{B} = \{\mathfrak{b}_1, \dots, \mathfrak{b}_n\} \subseteq (\mathbb{T}^{\mathrm{gb}})^{>1} \text{ with } \mathfrak{b}_1 \ll \dots \ll \mathfrak{b}_n \text{ is a transbasis if } \mathbf{TB1.} \ \mathfrak{b}_1 = \log_d x; \\ \mathbf{TB2.} \ \log \mathfrak{b}_i \in \mathbb{R}[[\mathfrak{b}_1^{\mathbb{R}}; \dots; \mathfrak{b}_{i-1}^{\mathbb{R}}]]^{\mathrm{gb}}, \text{ for } i = 2, \dots, n.$

$$\log x$$
, x , e^x , x^x , $e^{x^{2x}e^{-x}+x^xe^{-x}+e^{-x}+\cdots}$

The incomplete transbasis theorem

11/28

Definition

$\mathfrak{B} = \{\mathfrak{b}_1, ..., \mathfrak{b}_n\} \subseteq (\mathbb{T}^{gb})^{>1}$ with $\mathfrak{b}_1 \ll \cdots \ll \mathfrak{b}_n$ is a **transbasis** if **TB1.** $\mathfrak{b}_1 = \log_d x$; **TB2.** $\log \mathfrak{b}_i \in \mathbb{R}[[\mathfrak{b}_1^{\mathbb{R}}; ...; \mathfrak{b}_{i-1}^{\mathbb{R}}]]^{gb}$, for i = 2, ..., n.

$$\log x$$
, x , e^x , x^x , $e^{x^{2x}e^{-x}+x^xe^{-x}+e^{-x}+\cdots}$

Incomplete transbasis theorem

Let $\mathfrak{B} = \{\mathfrak{b}_1, ..., \mathfrak{b}_n\}$ be a transbasis and $f \in \mathbb{T}^{gb}$. Then there exists a transbasis $\hat{\mathfrak{B}} = \{\hat{\mathfrak{b}}_1, ..., \hat{\mathfrak{b}}_n\} \supseteq \mathfrak{B}$ with $f \in \mathbb{R}[[\hat{\mathfrak{b}}_1^{\mathbb{R}}; ...; \hat{\mathfrak{b}}_n^{\mathbb{R}}]]^{gb}$.

$\mathscr{G} :=$ ring of infinitely differentiable real germs at infinity.

Definition

$\mathscr{G} :=$ ring of infinitely differentiable real germs at infinity.

Definition

$$\frac{x e^{x}}{1 - x^{-1} - e^{-x}}$$

$$||$$

$$x e^{x} + e^{x} + x^{-1} e^{x} + \dots + x + 1 + x^{-1} + \dots + x e^{-x} + e^{-x} + x^{-1} e^{-x} + \dots$$

$\mathscr{G} :=$ ring of infinitely differentiable real germs at infinity.

Definition

$$\left(\frac{xe^{x}}{1-x^{-1}-e^{-x}}\right)_{\prec}$$

$$= e^{x} + x^{-1}e^{x} + \dots + x + 1 + x^{-1} + \dots + xe^{-x} + e^{-x} + x^{-1}e^{-x} + \dots$$

$\mathscr{G} :=$ ring of infinitely differentiable real germs at infinity.

Definition

$\mathscr{G} :=$ ring of infinitely differentiable real germs at infinity.

Definition

A transserial Hardy field is a differential subfield \mathscr{H} of \mathbb{T} , together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential \mathbb{R} -algebras, such that TH1. $\forall f \in \mathscr{H}$, $\sup p f \subseteq \mathscr{H}$. TH2. $\forall f \in \mathscr{H}$, $f_{\prec} \in \mathscr{H}$. TH2. $\forall f \in \mathscr{H}$, $f_{\prec} \in \mathscr{H}$. TH3. $\exists d \in \mathbb{Z}$: $\forall \mathfrak{m} \in \mathfrak{M} \cap \mathscr{H}$: $\log \mathfrak{m} \in \mathscr{H} + \mathbb{R} \log_d x$. TH4. $\mathfrak{M} \cap \mathscr{H}$ is stable under taking real powers. TH5. $\forall f \in \mathscr{H} >$: $\log f \in \mathscr{H} \Rightarrow \rho(\log f) = \log \rho(f)$.

$\mathscr{G} :=$ ring of infinitely differentiable real germs at infinity.

Definition

A transserial Hardy field is a differential subfield \mathscr{H} of \mathbb{T} , together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential \mathbb{R} -algebras, such that TH1. $\forall f \in \mathscr{H}$, $\sup p f \subseteq \mathscr{H}$. TH2. $\forall f \in \mathscr{H}$, $f_{\prec} \in \mathscr{H}$. TH2. $\forall f \in \mathscr{H}$, $f_{\prec} \in \mathscr{H}$. TH3. $\exists d \in \mathbb{Z}$: $\forall \mathfrak{m} \in \mathfrak{M} \cap \mathscr{H}$: $\log \mathfrak{m} \in \mathscr{H} + \mathbb{R} \log_d x$. TH4. $\mathfrak{M} \cap \mathscr{H}$ is stable under taking real powers. TH5. $\forall f \in \mathscr{H} >$: $\log f \in \mathscr{H} \Rightarrow \rho(\log f) = \log \rho(f)$.

Examples

 $\mathscr{H}_1 = \mathbb{R}\{\{x^{-\mathbb{R}}\}\}^{\mathrm{gb}}, \qquad \mathscr{H}_2 = \mathbb{R}\{\{x^{-\mathbb{R}}; e^{\mathbb{R}x}\}\}^{\mathrm{gb}} \qquad \mathscr{H}_3 = \mathbb{R}\{\{x^{-\mathbb{R}}; \Gamma(x)^{\mathbb{R}}\}\}^{\mathrm{gb}}$

Basic extension theorems

13/28

$\mathscr{H} :=$ transserial Hardy field of depth $d < \infty$.

Theorem (real algebraic extensions)

 \exists unique transserial Hardy field structure on $\mathscr{H}^{\mathrm{rcl}}$ that extends the one of \mathscr{H} .

Theorem (adding logarithms)

 $\exists unique transserial Hardy field structure \rho: \mathscr{H}((\log_d x)^{\mathbb{R}}) \to \mathscr{G} on \\ \mathscr{H}((\log_d x)^{\mathbb{R}}) with \rho((\log_d x)^{\lambda}) = (\log_d x)^{\lambda} for all \lambda \in \mathbb{R}.$

Theorem (adding exponentials)

Let $\varphi \in \mathscr{H}_{\succ}$ *be such that* $e^{\varphi} \notin \mathscr{H}$ *.* \exists *unique transserial Hardy field structure* $\rho: \mathscr{H}(e^{\mathbb{R}\varphi}) \to \mathscr{G}on \ \mathscr{H}(e^{\mathbb{R}\varphi}) \text{ with } \rho(e^{\lambda\varphi}) = e^{\lambda\rho(\varphi)} \text{ for all } \lambda \in \mathbb{R}.$

Elementary extensions, definitions

Definitions

$$\mathscr{H}$$
 transserial Hardy field, $\mathbb{T} \ni f \xrightarrow{???} \hat{f} \in \mathscr{G}$

Equivalence (over *X*)

$$f \sim \hat{f} \quad \Longleftrightarrow \quad (\exists \varphi \in \mathscr{H} \colon f \sim_{\mathbb{T}} \varphi \sim_{\mathscr{G}} \hat{f})$$

Elementary extensions, definitions

Definitions

$$\mathscr{H}$$
 transserial Hardy field, $\mathbb{T} \ni f \xrightarrow{???} \hat{f} \in \mathscr{G}$

Equivalence (over *H*)

$$f \sim \hat{f} \quad \Longleftrightarrow \quad (\exists \varphi \in \mathscr{H} \colon f \sim_{\mathbb{T}} \varphi \sim_{\mathscr{G}} \hat{f})$$

Asymptotic equivalence (over *H*)

$$f \approx \hat{f} \quad \Longleftrightarrow \quad (\forall \varphi \in \mathcal{H}, f - \varphi \sim \hat{f} - \varphi)$$

Elementary extensions, definitions

Definitions

$$\mathscr{H}$$
 transserial Hardy field, $\mathbb{T} \ni f \xrightarrow{???} \hat{f} \in \mathscr{G}$

Equivalence (over *H*)

$$f \sim \hat{f} \quad \Longleftrightarrow \quad (\exists \varphi \in \mathscr{H} \colon f \sim_{\mathbb{T}} \varphi \sim_{\mathscr{G}} \hat{f})$$

Asymptotic equivalence (over *H*)

$$f \approx \hat{f} \quad \Longleftrightarrow \quad (\forall \varphi \in \mathcal{H}, f - \varphi \sim \hat{f} - \varphi)$$

Differential equivalence (over *H*)

$$f \approx \hat{f} \quad \Longleftrightarrow \quad (\forall P \in \mathcal{H} \{F\}, P(f) = 0 \Leftrightarrow P(\hat{f}) = 0)$$

14/28

Elementary extensions, fundamental lemma

15/28

Fundamental Lemma (elementary extensions)

Let $f \in \mathbb{T} \setminus \mathscr{H}$ *and* $\hat{f} \in \mathscr{G} \setminus \mathscr{H}$ *be such that*

- f is a serial cut over \mathcal{H} .
- f and \hat{f} are asymptotically equivalent over \mathscr{H} .
- f and \hat{f} are differentially equivalent over \mathscr{H} . (minimal cuts $\Rightarrow OK$)

Then \exists *! transserial Hardy field extension* ρ *:* $\mathscr{H}\langle f \rangle \rightarrow \mathscr{G}$ *with* $\rho(f) = \hat{f}$ *.*

Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{e^x} = 0$$

Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{\mathrm{e}^x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{x}{\mathrm{e}^x} + f^2\right)$$

Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{\mathrm{e}^x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{x}{\mathrm{e}^x} + f^2\right)$$

Step 3. Integral transseries solution

$$f = \int \frac{x}{e^x} + \int \left(\int \frac{x}{e^x}\right)^2 + 2\int \left(\int \frac{x}{e^x}\right) \left(\int \left(\int \frac{x}{e^x}\right)^2\right) + \cdots$$

16/28

Step 1. A given algebraic differential equation

$$f^2 - f' + \frac{x}{\mathrm{e}^x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{x}{\mathrm{e}^x} + f^2\right)$$

Step 3. Integral transseries solution ... has a natural analytic meaning

$$f = \int_{\infty} \frac{x}{e^x} + \int_{\infty} \left(\int_{\infty} \frac{x}{e^x} \right)^2 + 2 \int_{\infty} \left(\int_{\infty} \frac{x}{e^x} \right) \left(\int_{\infty} \left(\int_{\infty} \frac{x}{e^x} \right)^2 \right) + \cdots$$

Step 1. A given algebraic differential equation

$$f^2 - \mathrm{e}^x f' + \frac{\mathrm{e}^{2x}}{x} = 0$$

Step 1. A given algebraic differential equation

$$f^2 - \mathrm{e}^x f' + \frac{\mathrm{e}^{2x}}{x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{\mathrm{e}^x}{x} + \frac{f^2}{\mathrm{e}^x}\right)$$

Step 1. A given algebraic differential equation

$$f^2 - \mathrm{e}^x f' + \frac{\mathrm{e}^{2x}}{x} = 0$$

Step 2. Put equation in integral form

$$f = \int \left(\frac{\mathrm{e}^x}{x} + \frac{f^2}{\mathrm{e}^x}\right)$$

Step 3. Integrate from a fixed point $x_0 < \infty$

$$f = \int_{x_0} \frac{e^x}{x} + \int_{x_0} \frac{1}{e^x} \left(\int_{x_0} \frac{e^x}{x} \right)^2 + 2 \int_{x_0} \frac{1}{e^{2x}} \left(\int_{x_0} \frac{e^x}{x} \right) \left(\int_{x_0} \frac{1}{e^x} \left(\int_{x_0} \frac{e^x}{x} \right)^2 \right) + \cdots$$

Step 1. A general algebraic differential equation

P(f) = 0

Step 1. A general algebraic differential equation

P(f) = 0

Step 2. Using minimality, put equation in split-normal form

$$(\partial - \varphi_1) \cdots (\partial - \varphi_r) f = E(f)$$
 (with $E(f)$ small)

Attention: $\varphi_1, ..., \varphi_r \in \mathscr{H}[i]$, even though $(\partial - \varphi_1) \cdots (\partial - \varphi_r) \in \mathscr{H}[\partial]$.

Step 1. A general algebraic differential equation

P(f) = 0

Step 2. Using minimality, put equation in split-normal form

$$(\partial - \varphi_1) \cdots (\partial - \varphi_r) f = E(f)$$
 (with $E(f)$ small)

Attention: $\varphi_1, ..., \varphi_r \in \mathcal{H}[i]$, even though $(\partial - \varphi_1) \cdots (\partial - \varphi_r) \in \mathcal{H}[\partial]$.

Step 3. Solve the split-normal equation using the fixed-point technique.

Continuous right inverses (first order)

Lemma

The operator $J = (\partial - \varphi)_{x_0}^{-1}$, defined by $(Jf)(x) = \begin{cases} e^{\Phi(x)} \int_{\infty}^{x} e^{-\Phi(t)} f(t) dt & (repulsive \ case) \\ e^{\Phi(x)} \int_{x_0}^{x} e^{-\Phi(t)} f(t) dt & (attractive \ case) \end{cases}$ and $\Phi(x) = \begin{cases} \int_{\infty}^{x} \varphi(t) dt & (repulsive \ case) \\ \int_{x_0}^{x} \varphi(t) dt & (attractive \ case) \end{cases}$

is a continuous right-inverse of $L = \partial - \varphi$ on $\mathscr{G}_{x_0}^{\leq}[i]$, with

$$\|\|J\|\|_{x_0} \leq \left\|\frac{1}{\operatorname{Re}\varphi}\right\|_{x_0}$$

Continuous right-inverses (higher order)

18/28

Lemma

Given a split-normal operator

$$L = (\partial - \varphi_1) \cdots (\partial - \varphi_r),$$

with a factorwise right-inverse $L^{-1} = J_r \cdots J_1$, the operator

$$\mathcal{I}^{\nu}J_{r}\cdots J_{1}:\mathscr{G}_{x_{0}}^{\leq}[i] \to \mathscr{G}_{x_{0};r}^{\leq}[i]$$

is a continuous operator for every $v > r \sigma_L$. Here $\mathscr{G}_{x_{o:r}}^{\leq}[i]$ carries the norm

 $||f||_{x_0;r} = \max \{||f||_{x_0, \dots, ||f^{(r)}||_{x_0}\}.$

Preservation of realness

19/28

Lemma

Assume that $L \in \mathscr{H}[\partial]$ admits a splitting

 $L = (\partial - \varphi_1) \cdots (\partial - \varphi_r)$

that formally preserves realness in the sense that it induces a factorization of L as a product of real differential operators of order one or two.

Then $J_r \cdots J_1$ preserves realness in the sense that it maps $\mathscr{G}_{x_0}^{\leq}$ into itself.
Non-linear equations

Theorem

Consider a split-monic equation

$$Lf = E(f), \quad f < 1,$$

and let v be such that $r_0 < v < v_p$. Then for any sufficiently large x_0 , there exists a continuous factorwise right-inverse $J_{r,v_0} \cdots J_{1,v_p}$ of L_{v_0} , such that the operator

$$\Xi: f \longmapsto (J_r \cdots J_1)(E(f))$$

admits a unique fixed point

$$f = \lim_{n \to \infty} \Xi^{(n)}(0) \in \mathscr{B}\left(\mathscr{G}_{x_0;r'}^{\leq} \frac{1}{2}\right).$$

Theorem

Let \mathscr{H} *be a transserial Hardy field of span* $v \ge e^{x}$. Consider a monic split-normal quasi-linear equation

$$Lf = E(f), \quad f < 1, \tag{1}$$

over H without solutions in H. *Assume that one of the following holds:*

• *T* is (1,1,1)-differentially closed in $\mathbb{T}_{\leq v}$ and (1) is first order.

• $\mathcal{T}[i]$ *is* (1,1,1)-*differentially closed in* $\mathbb{T}[i]_{\ll v}$

Then there exist solutions $f \in \mathscr{G}$ *and* $\tilde{f} \in \hat{\mathscr{H}}$ *to* (1)*, such that* f *and* \tilde{f} *are asymptotically equivalent over* \mathscr{H} *.*

Main theorem

Theorem (vdH 2009)

Given a transserial Hardy field \mathscr{H} , the set $\mathbb{T}^{\operatorname{da}(\mathscr{H})}$ of differentially algebraic transseries over \mathscr{H} can be given the structure of a transserial Hardy field (that extends the structure of \mathscr{H}).

Main theorem

Theorem (vdH 2009)

Given a transserial Hardy field \mathscr{H} , the set $\mathbb{T}^{\operatorname{da}(\mathscr{H})}$ of differentially algebraic transseries over \mathscr{H} can be given the structure of a transserial Hardy field (that extends the structure of \mathscr{H}).

Corollary

The subfield $\mathbb{T}^{\operatorname{da}(\mathbb{R})}$ of transseries that satisfy an algebraic differential equation over \mathbb{R} can be embedded (as an ordered differential field) in a HARDY field.

Main theorem

Theorem (vdH 2009)

Given a transserial Hardy field \mathscr{H} , the set $\mathbb{T}^{\operatorname{da}(\mathscr{H})}$ of differentially algebraic transseries over \mathscr{H} can be given the structure of a transserial Hardy field (that extends the structure of \mathscr{H}).

Corollary

The subfield $\mathbb{T}^{\operatorname{da}(\mathbb{R})}$ of transseries that satisfy an algebraic differential equation over \mathbb{R} can be embedded (as an ordered differential field) in a HARDY field.

Corollary

There exists an H-closed Hardy field.

Applications

Corollary

There exists a transserial Hardy field \mathscr{H} *, such that for any* $P \in \mathscr{H} \{F\}$ *and* $f, g \in \mathscr{H}$ *with* f < g *and* P(f) P(g) < 0*, there exists a* $h \in \mathscr{H}$ *with* f < h < g *and* P(h) = 0*.*

Corollary

There exists a transserial Hardy field \mathscr{H} , such that $\mathscr{H}[i]$ is weakly differentially closed.

Corollary

There exists a newtonian transserial Hardy field \mathscr{H} , i.e., such that any quasilinear differential equation over \mathscr{H} admits a solution in \mathscr{H} .

Back to our algorithm

Input: $\mathbb{K} \subseteq \mathbb{T}^{da(\mathbb{R})}$ with $\phi : \mathbb{K} \hookrightarrow H$ for HARDY field Hwhile $\mathbb{K} \neq \mathbb{T}^{da(\mathbb{R})}$ do

Pick $y \in \mathbb{T}^{da(\mathbb{R})} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree e in $y, ..., y^{(r)}$.

Construct $\hat{\phi}$: $\mathbb{K}(y, ..., y^{(r)}) \hookrightarrow \hat{H}$ Set $\mathbb{K} := \mathbb{K}(y, ..., y^{(r)}), \phi := \hat{\phi}$

Output: $\tilde{\phi}$: $\mathbb{T}^{\operatorname{da}(\mathbb{R})} \hookrightarrow \tilde{H}$ for HARDY field extension \tilde{H} of original H

24/28

·ZORN

More exactly

Input: transserial Hardy field *H* with $\phi: H \hookrightarrow \mathscr{G}$ Set $\mathbb{K} := H$

while $\mathbb{K} \neq H^{da} \mathbf{do}$

Pick $y \in H^{da} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree e in $y, ..., y^{(r)}$.

Construct $\hat{\phi}$: $\mathbb{K}(y, ..., y^{(r)}) \hookrightarrow \mathscr{G}$ Set $\mathbb{K} := \mathbb{K}(y, ..., y^{(r)}), \phi := \hat{\phi}$

Output: transserial Hardy field \mathbb{K} on H^{da} with $\tilde{\phi}: H^{da} \hookrightarrow \mathscr{G}$

·ZORN

Ongoing work

Input: ω -free H-field *H* with embedding $\phi: H \hookrightarrow \mathscr{G}$ Set $\mathbb{K} := H$

while $\mathbb{K} \neq H^{da} \mathbf{do}$

Pick $y \in H^{da} \setminus \mathbb{K}$ of minimal *complexity*, i.e. $P(y, ..., y^{(r)}) = 0$ with

- *P* of minimal order *r*;
- *P* of minimal degree d in $y^{(r)}$;
- *P* of minimal degree e in $y, ..., y^{(r)}$.

Construct $\hat{\phi}$: $\mathbb{K}(y, ..., y^{(r)}) \hookrightarrow \mathscr{G}$ Set $\mathbb{K} := \mathbb{K}(y, ..., y^{(r)}), \phi := \hat{\phi}$

Output: ω -free H-field H^{da} with embedding $\tilde{\phi}$: $H^{da} \hookrightarrow \mathscr{G}$

·ZORN

Theorem

Any HARDY field has an ω -free HARDY field extension.

Theorem

Any HARDY field has an ω -free HARDY field extension.

Theorem in progress

The H-closure *H*^{da} of a HARDY field can be given the structure of a HARDY field.

Theorem

Any HARDY field has an ω -free HARDY field extension.

Theorem in progress

The H-closure *H*^{da} of a HARDY field can be given the structure of a HARDY field.

Corollary

Maximal HARDY fields are H-closed.

Theorem

Any HARDY field has an ω -free HARDY field extension.

Theorem in progress

The H-closure *H*^{da} of a HARDY field can be given the structure of a HARDY field.

Corollary

Maximal HARDY fields are H-closed.

Theorem in progress by other means

For countable A < B in a maximal HARDY field H, we can find A < y < B in H. Under CH, all maximal HARDY fields are isomorphic.

Thank you!

http://www.T_EX_{MACS}.org