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e Algorithm to compute solutions e Less effective

Central question
Let T ™) be the field of differentially algebraic transseries over R.

How to “incarnate” T ™) as a Hardy field?
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Problem: how to proceed when f(x) —>f(x) +f(x2) f(x3) —f(xx) ?
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Approach II: model-theoretic (sketch) 6/28

K C T4 with ¢: K «— H for HARDY field H

while K # T%® do
Pick y € T \ K of minimal complexity, i.e. P(y,...,y""”) =0 with

e P of minimal order r;
e P of minimal degree d in y""”;

e P of minimal degree ¢in y,...,y"".

Construct ¢: K (y/,...,y") — H
Set K:=K(y,....y"), ¢p:=¢

¢: T4 < [T for HARDY field extension 1 of original H
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T := closure of R U {x} under exp, log and infinite summation

X x/2 2
Y fam = e te 30X L 5 (log )T+ 42 4+ x4 2x 24 6x 04 e
meMN

Here one should think of x as a positive infinite indeterminate.

T = R[[M]]

m — monomial

supp f = {meM: f, #0}
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® T satisfies the intermediate value property for differential polynomials.
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Theorem (Ann. of Math. Stud. vol. 195)
The elementary theory of T is completely axiomatized by:

©® T is a LIOUVILLE closed H-field with small derivation;

® T satisfies the intermediate value property for differential polynomials.

In fact...

Tda(R) C Tgb C Thacc Tfinr C Tstd

and these fields satisfy the same elementary theory; we call them H-closed.

Corollary

Tda(R) = Tgb — Tnacc — Tﬁnr — Tstd.
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Let H be an H-closed H-field such as T*°. Write H{F}=H[F,F' F",...]

Newtonianity

Any quasi-linear equation Lf =E(f), f <1 (with L& H[J] and E € H{F} suffi-
ciently small) admits a solution in H.
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Let H be an H-closed H-field such as T*°. Write H{F}=H[F,F' F",...]

Newtonianity

Any quasi-linear equation Lf =E(f), f <1 (with L& H[J] and E € H{F} suffi-
ciently small) admits a solution in H.

Splitting of linear differential operators

Any linear differential operator L € H[0J] can be factored into (i) operators of
order one or two in H[0]; (ii) operators of order one in H[i][d].

Weak differential closedness
Given P € K{F}, there exists an f € K[i] with P(f)=0.
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Definition

B={by,...,b,} C (’Jl"gb)>1 with b; < --- <« b, is a transbasis if
TB1. by =log, x;

TB2. log b;e R[[b%;...;6%,118°, fori=2,...,n.

2x . —Xx X, —X X ...
logx, x, exl xx, ex e "+x'e "+e "+

Incomplete transbasis theorem

Let 65 ={by, ..., b,,} be a transbasis and | € T8". Then there exists a transbasis
B ={by,..., 04} DB with f € R[[bF;...; 65118,
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Transserial Hardy fields 12/28

¢ := ring of infinitely differentiable real germs at infinity.

Definition

A transserial Hardy field is a differential subfield .7 of T, together with
a monomorphism p:.77 < % of ordered differential R-algebras, such that
TH1. Vfe#, supp fCZ

TH2. Ve, f.en f<=2 e fmm
TH3. 3de€Z: VYmeMn7Z: logme. 7+ Rlog,x.

TH4. 9)iN .77 is stable under taking real powers.

TH5. Ve Z>: log fe# =p(logf)=Ilogp(f).

Examples
A =R{xRys®,  A=R{xR PP  A=R{x"B;T(x)Rpe°
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7 := transserial Hardy field of depth d < co.

Theorem (real algebraic extensions)

3 unique transserial Hardy field structure on 77" that extends the one of /7.

Theorem (adding logarithms)

3 unique transserial Hardy field structure p: 77 ((log, R 5 & on
A ((logy )R with p((logy )M = (logg x)Afor all A e R.

Theorem (adding exponentials)

Let ¢ € /£ be such that e” & 77. 3 unique transserial Hardy field structure
0: A (R = Gon # (R with p(ew) — P(P) forall A e R.
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Elementary extensions, definitions

Definitions

14/28

?22?  A

7 transserial Hardy field, T>f—— fe¥

Equivalence (over %)

A

frof = Ge€f: frr o~y f)

Asymptotic equivalence (over %)

A

frf = (VeeXf-¢p~f-9)
Differential equivalence (over %)

A

frf < (YPeX{F},P(f)=0sP(f)=0)
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Fundamental Lemma (elementary extensions)

LethT\%ande%\%besuch that
o fisa serial cut over 7.

o fand f are asymptotically equivalent over /7.

o fand f are differentially equivalent over .77 (minimal cuts = OK)

Then 3! transserial Hardy field extension p: 77 (f) — & with p(f) = .
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Differential equations (main ideas) 16/28

Step 1. A given algebraic differential equation
2 _gr X
F-f 4

Step 2. Put equation in integral form

f=[(&+F)

Step 3. Integral transseries solution ... has a natural analytic meaning

NN IR IR
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Differential equations (main ideas)

Step 1. A given algebraic differential equation

er

X

=0

fPeif+

Step 2. Put equation in integral form

=1 (5+5)

Step 3. Integrate from a fixed point xy < oo

f=f S+ =S =D =,

16/28
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Step 1. A general algebraic differential equation
P(f)=0

Step 2. Using minimality, put equation in

(0=@1)--(0—¢,) f = E(f)
Attention: ¢4, ..., ¢, € 7[i], even though (d—¢q) --- (d—¢,) € Z[J].



Differential equations (main ideas) 16/28

Step 1. A general algebraic differential equation
P(f)=0

Step 2. Using minimality, put equation in
(0=@1)- (=@, f = E(f)
Attention: ¢4, ..., ¢, € 7[i], even though (d—¢q) --- (d—¢,) € Z[J].

Step 3. Solve the split-normal equation using the fixed-point technique.
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Lemma

The operator | = (0— @), defined by

e®™ [Te=®® f(t)dt (repulsive case)
e®®) fxxoe_cp(”f(t) dt (attractive case)

(Jf)(x) = {

and
[Z o) dt (repulsive case)

CI)(X> — [ fngo(t) dt ((Zttr(lCtiUB C(ZSB)

. . . . < . .
is a continuous right-inverse of L =d — ¢ on 4 ~[i], with

1
Re ¢

Wil < ‘

X0



Continuous right-inverses (higher order)

Lemma

18/28

Given a split-normal operator
L=(0—¢@1)--(d-9¢y),
with a factorwise right-inverse =" = |, --- |,, the operator
. 7<Mi] > 25
Jooe Ji: 43T - 43, 1]
is a continuous operator . Here %jr[i] carries the norm

1 F1lxer=m0aX {|| fllcgs « oL f o}



Preservation of realness 19/28

Lemma
Assume that L € 77'[d] admits a splitting

L=(0—-¢1)(0—¢,)

that formally preserves realness in the sense that it induces a factorization of L as
a product of real differential operators of order one or two.

Then |, --- |1 preserves realness in the sense that it maps %f into itself.



Non-linear equations
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Then for any sufficiently large x., there exists

Theorem
Consider a split-monic equation
Lf =E(f),
a continuous factorwise right-inverse [, ---J;  of L

E: f— Jr-JO(E))

admits a unique fixed point

f=1mE™0) € 2(43,5).

n— oo

, such that the operator



Preservation of asymptotics 21/28

Theorem

Let 77 be a transserial Hardy field Consider a monic split-normal
quasi-linear equation

Lf =E(f), (1)

over .77 without solutions in .77.

Then there exist solutions f € & and f € .77 to (1), such that f and f are asymp-
totically equivalent over 7.
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Theorem (vdH 2009)

Given a transserial Hardy field /7, the set T of differentially algebraic
transseries over .77 can be given the structure of a transserial Hardy field (that
extends the structure of 7).

Corollary

The subfield T ™) of transseries that satisfy an algebraic differential equation
over R can be embedded (as an ordered differential field) in a HARDY field.

Corollary
There exists an H-closed Hardy field.



Applications 23/28

Corollary

There exists a transserial Hardy field .77, such that forany P € 77 {F}and f,g € .77
with f <gand P(f) P(g) <0, there exists a h€ 77 with f <h< g and P(h)=0.

Corollary

There exists a transserial Hardy field .77, such that .77'|i] is weakly differentially
closed.

Corollary

There exists a newtonian transserial Hardy field .77, i.e., such that any quasi-
linear differential equation over .77 admits a solution in 7.



Back to our algorithm 24/28

K C T4 with ¢: K «— H for HARDY field H
while K # T%® do
Pick y € T \ K of minimal complexity, i.e. P(y,...,y""”) =0 with

e P of minimal order 7;
e P of minimal degree d in y'"”;

e P of minimal degree¢iny,...,y"".

Construct ¢: K (y/,...,y") — H
Set K := K(y,...,y(”), gb::giA)

¢: T4 < [ for HARDY field extension [ of original H



More exactly 25/28

transserial Hardy field H with ¢: H < ¢
Set K :=H
while K # H do
Pick y € H%\ K of minimal complexity, i.e. P(y,...,y"”) =0 with

e P of minimal order 7;
e P of minimal degree d in y'";

e P of minimal degree ¢iny,...,y"".

Construct ¢: K (y/,...,y") «— &
Set K:=K(y,...,y"), ¢p:=¢

transserial Hardy field K on H with ¢: H% < ¢



Ongoing work 26/28

w-free H-field H with embedding ¢: H «— ¢
Set K :=H
while K # H do
Pick y € H%\ K of minimal complexity, i.e. P(y,...,y"”) =0 with

e P of minimal order 7;
e P of minimal degree d in y'";

e P of minimal degree ¢iny,...,y"".

Construct ¢: K (y/,...,y") «— &
Set K:=K(y,...,y"), ¢p:=¢

w-free H-field H9* with embedding ¢: H%* < &
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Theorem
Any HARDY field has an w-free HARDY field extension.

Theorem in progress

The H-closure H of a HARDY field can be given the structure of a HARDY field.

Corollary
Maximal HARDY fields are H-closed.

Theorem in progress by other means

For countable A < B in a maximal HARDY field H, we can find A <y <B in H.
Under CH, all maximal HARDY fields are isomorphic.
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