## Transserial HARDY fields

## Joris van der Hoeven

CNRS, France
(partly joint work with M. ASCHENBRENNER and L. VAN DEN DRIES)


$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

$$
(x \rightarrow \infty)
$$

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

$$
(x \rightarrow \infty)
$$

Tame solutions

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}} \quad(x \rightarrow \infty)
$$



$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}} \quad(x \rightarrow \infty)
$$

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}} \quad(x \rightarrow \infty)
$$

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

$$
(x \rightarrow \infty)
$$

Tame solutions

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

## Transseries

- Formal solutions

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

## Transseries

- Formal solutions
- Algorithm to compute solutions

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

$$
(x \rightarrow \infty)
$$

## Transseries

- Formal solutions


## Hardy fields

- Analytic solutions
- Algorithm to compute solutions

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}}
$$

$$
(x \rightarrow \infty)
$$

## Transseries

- Formal solutions
- Algorithm to compute solutions


## Hardy fields

- Analytic solutions
- Less effective

$$
y(x)^{7}+\mathrm{e}^{\mathrm{e}^{x}} y(x)^{4} y^{\prime}(x) y^{\prime \prime}(x)-\frac{y^{\prime \prime \prime}(x)}{\log x}=\mathrm{e}^{x^{2} \sqrt{\log x}} \quad(x \rightarrow \infty)
$$

## Transseries

- Formal solutions
- Algorithm to compute solutions


## Hardy fields

- Analytic solutions
- Less effective


## Central question

Let $\mathbb{T}^{\text {da( }}(\mathbb{R})$ be the field of differentially algebraic transseries over $\mathbb{R}$. How to "incarnate" $\mathbb{T}^{\mathrm{da}(\mathbb{R})}$ as a Hardy field?

$$
\tilde{f}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(n-1)!}{x^{n}}
$$

$$
\tilde{f}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(n-1)!}{x^{n}}
$$

Formal Borel transform

$$
\hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
$$

$$
\begin{aligned}
& \qquad \tilde{f}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(n-1)!}{x^{n}}-\cdots \rightarrow f(x)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta x}}{1+\zeta} \mathrm{d} \zeta \\
& \text { Formal Borel transform } \\
& \qquad \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{aligned}
$$

## Approach I: Borel summation

$$
\begin{aligned}
& \qquad \tilde{f}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(n-1)!}{x^{n}} \cdots \cdots f(x)=\int_{0}^{\infty} \frac{\mathrm{e}^{-\zeta x}}{1+\zeta} \mathrm{d} \zeta \\
& \text { Formal Borel transform } \\
& \qquad \hat{f}(\zeta)=\sum_{n=1}^{\infty}(-1)^{n-1} \zeta^{n-1}=\frac{1}{1+\zeta}
\end{aligned}
$$

Problem: how to proceed when $\tilde{f}(x) \longrightarrow \tilde{f}(x)+\tilde{f}\left(x^{2}\right) \tilde{f}\left(x^{3}\right)-\tilde{f}\left(x^{x}\right)$ ?

Approach I: accelero-summation (ÉCALLE)
$\tilde{f}(x)$

```
f}(x
    |
\tilde{f}}(\mp@subsup{x}{1}{}
```

$$
\begin{gathered}
\tilde{f}(x) \\
\tilde{f}_{1}\left(x_{1}\right) \\
\tilde{B}_{1} \\
\underset{\hat{f}_{1}\left(\tilde{\zeta}_{1}\right)}{\downarrow}
\end{gathered}
$$

$$
\begin{aligned}
& \tilde{f}(x) \\
& \tilde{f}_{1}\left(x_{1}\right) \\
& \tilde{\mathcal{B}}_{1}{ }_{\downarrow} \\
& \hat{f}_{1}\left(\zeta_{1}\right) \xrightarrow[\hat{\mathcal{A}}_{1,2}]{ } \hat{f}_{2}\left(\zeta_{2}\right)
\end{aligned}
$$

$$
\|_{\tilde{f}_{1}\left(x_{1}\right)}^{\tilde{\mathscr{S}}_{1}(x)} \overbrace{\hat{f}_{1}\left(\zeta_{1}\right)} \xrightarrow[\hat{A}_{1,2}]{\longrightarrow} \hat{f}_{2}\left(\zeta_{2}\right)-\cdots \rightarrow \hat{f}_{n-1}\left(\zeta_{n-1}\right) \xrightarrow[\hat{\mathcal{A}}_{n-1, n}]{\longrightarrow} \hat{f}_{n}\left(\zeta_{n}\right)
$$

$$
\begin{aligned}
& \tilde{f}(x)-------------\rightarrow f(x) \\
& 1 \\
& \tilde{f}_{1}\left(x_{1}\right) \quad f_{n}\left(x_{n}\right) \\
& \tilde{\mathscr{B}}_{1} \downarrow \longrightarrow \mathcal{L}_{n} \\
& \hat{f}_{1}\left(\zeta_{1}\right) \xrightarrow[\hat{A}_{1,2}]{\longrightarrow} \hat{f}_{2}\left(\zeta_{2}\right)-\cdots \rightarrow \hat{f}_{n-1}\left(\zeta_{n-1}\right) \xrightarrow[\hat{A}_{n-1, n}]{\longrightarrow} \hat{f}_{n}\left(\zeta_{n}\right)
\end{aligned}
$$

## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$

## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\text {da( }(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\text {da }(\mathbb{R})}$ do

## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\text {da }(\mathbb{R})}$ do
Pick $y \in \mathbb{T}^{\text {da( }(\mathbb{R})} \backslash \mathbb{K}$ of minimal complexity

## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\mathrm{da}}(\mathbb{R})$ do
Pick $y \in \mathbb{T}^{\mathrm{da}(\mathbb{R})} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- $P$ of minimal degree $e$ in $y, \ldots, y^{(r)}$.


## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\mathrm{da}}(\mathbb{R})$ do
Pick $y \in \mathbb{T}^{\mathrm{da}(\mathbb{R})} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- P of minimal degree $e$ in $y, \ldots, y^{(r)}$.

Construct $\hat{\phi}: \mathbb{K}\left(y, \ldots, y^{(r)}\right) \hookrightarrow \hat{H}$
Set $\mathbb{K}:=\mathbb{K}\left(y, \ldots, y^{(r)}\right), \phi:=\hat{\phi}$

## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\mathrm{da}}(\mathbb{R})$ do
Pick $y \in \mathbb{T}^{\mathrm{da}(\mathbb{R})} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- P of minimal degree $e$ in $y, \ldots, y^{(r)}$.

Construct $\hat{\phi}: \mathbb{K}\left(y, \ldots, y^{(r)}\right) \hookrightarrow \hat{H}$
Set $\mathbb{K}:=\mathbb{K}\left(y, \ldots, y^{(r)}\right), \phi:=\hat{\phi}$

## Approach II: model-theoretic (sketch)

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\mathrm{da}}(\mathbb{R})$ do
Pick $y \in \mathbb{T}^{\mathrm{da}(\mathbb{R})} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- P of minimal degree $e$ in $y, \ldots, y^{(r)}$.

Construct $\hat{\phi}: \mathbb{K}\left(y, \ldots, y^{(r)}\right) \hookrightarrow \hat{H}$
Set $\mathbb{K}:=\mathbb{K}\left(y, \ldots, y^{(r)}\right), \phi:=\hat{\phi}$

Output: $\tilde{\phi}: \mathbb{T}^{\mathrm{da}(\mathbb{R})} \hookrightarrow \tilde{H}$ for HARDY field extension $\tilde{H}$ of original $H$
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of $x$ as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of $x$ as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\mathrm{e}^{x / 3}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of $x$ as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\mathrm{e}^{x / 3}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+24 x^{-4}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of $x$ as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of $x$ as a positive infinite indeterminate.
$\mathbb{T}:=$ closure of $\mathbb{R} \cup\{x\}$ under exp, log and infinite summation

$$
\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}=\mathrm{e}^{\mathrm{e}^{x}+\mathrm{e}^{x / 2}+\cdots}-3 \mathrm{e}^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2 x^{-2}+6 x^{-3}+\cdots+\mathrm{e}^{-x}
$$

Here one should think of $x$ as a positive infinite indeterminate.

$$
\begin{aligned}
\mathbb{T} & =\mathbb{R}[[\mathfrak{M}]] \\
f_{\mathfrak{m}} & \rightarrow \text { coefficient } \\
\mathfrak{m} & \rightarrow \text { monomial } \\
\text { supp } f & =\left\{\mathfrak{m} \in \mathfrak{M}: f_{\mathfrak{m}} \neq 0\right\}
\end{aligned}
$$

## Different types of supports

$$
\begin{aligned}
\mathbb{T}^{\mathrm{wb}} & \ni x+\log x+\log \log x+\cdots \\
& \ni x^{-1}+\mathrm{e}^{-x}+\mathrm{e}^{-\mathrm{e}^{x}}+\cdots
\end{aligned}
$$

## Different types of supports

$$
\begin{aligned}
\mathbb{T}^{\mathrm{wb}} & \ni x+\log x+\log \log x+\cdots \\
& \ni x^{-1}+\mathrm{e}^{-x}+\mathrm{e}^{-\mathrm{e}^{x}}+\cdots \\
\mathbb{T}^{\mathrm{std}} & \ni x^{-1}+\mathrm{e}^{-(\log x)^{2}}+\mathrm{e}^{-(\log x)^{4}}+\cdots
\end{aligned}
$$

## Different types of supports

$$
\begin{aligned}
\mathbb{T}^{\mathrm{wb}} & \ni x+\log x+\log \log x+\cdots \\
& \ni x^{-1}+\mathrm{e}^{-x}+\mathrm{e}^{-\mathrm{e}^{x}}+\cdots \\
\mathbb{T}^{\mathrm{std}} & \ni x^{-1}+\mathrm{e}^{-(\log x)^{2}}+\mathrm{e}^{-(\log x)^{4}}+\cdots
\end{aligned}
$$

(finite exp-log depth)

$$
\begin{aligned}
\mathbb{T}^{\mathrm{gb}} & \ni \frac{1}{\left(1-x^{-1}\right)\left(1-\mathrm{e}^{-x}\right)}=1+x^{-1}+x^{-2}+\cdots+\mathrm{e}^{-x}+\cdots \\
& \ni \Gamma(x)=\sqrt{2 \pi} \sqrt{x} \mathrm{e}^{-x} x^{x}\left(1+1 / 12 x^{-1}+\cdots\right)
\end{aligned}
$$

(grid-based)

$$
\operatorname{supp} f \subseteq \mathfrak{m} \mathfrak{e}_{1}^{\mathbb{N}} \cdots \mathfrak{e}_{k}^{\mathbb{N}}, \quad \mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1
$$

## Different types of supports

$$
\begin{aligned}
\mathbb{T}^{\mathrm{wb}} & \ni x+\log x+\log \log x+\cdots \\
& \ni x^{-1}+\mathrm{e}^{-x}+\mathrm{e}^{-\mathrm{e}^{x}}+\cdots \\
\mathbb{T}^{\mathrm{std}} & \ni x^{-1}+\mathrm{e}^{-(\log x)^{2}}+\mathrm{e}^{-(\log x)^{4}}+\cdots \\
\mathbb{T}^{\mathrm{finr}} & \ni \phi(x)=x+\sqrt{x}+\sqrt{\sqrt{x}}+\cdots \\
& \ni \phi(x)+\phi\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

(finite archimedean rank)

$$
\begin{aligned}
\mathbb{T}^{\mathrm{gb}} & \ni \frac{1}{\left(1-x^{-1}\right)\left(1-\mathrm{e}^{-x}\right)}=1+x^{-1}+x^{-2}+\cdots+\mathrm{e}^{-x}+\cdots \\
& \ni \Gamma(x)=\sqrt{2 \pi} \sqrt{x} \mathrm{e}^{-x} x^{x}\left(1+1 / 12 x^{-1}+\cdots\right)
\end{aligned}
$$

(grid-based)

$$
\operatorname{supp} f \subseteq \mathfrak{m} \mathfrak{e}_{1}^{\mathbb{R}} \cdots \mathfrak{e}_{k}^{\mathbb{R}}, \quad \mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1
$$

## Different types of supports

$$
\begin{array}{rlr}
\mathbb{T}^{\mathrm{wb}} & \ni x+\log x+\log \log x+\cdots \\
& \ni x^{-1}+\mathrm{e}^{-x}+\mathrm{e}^{-\mathrm{e}^{x}}+\cdots \\
\mathbb{T}^{\mathrm{std}} & \ni x^{-1}+\mathrm{e}^{-(\log x)^{2}}+\mathrm{e}^{-(\log x)^{4}}+\cdots & \text { (well-based) } \\
\mathbb{T}^{\text {finr }} & \ni \phi(x)=x+\sqrt{x}+\sqrt{\sqrt{x}}+\cdots & \\
& \ni \phi(x)+\phi\left(\mathrm{e}^{x}\right) & \text { (finite exp-log depth) } \\
\mathbb{T}^{\text {nacc }} & \ni \zeta(x)=1^{-x}+2^{-x}+3^{-x}+\cdots & \\
& \ni \zeta(x)+\zeta\left(\mathrm{e}^{x}\right) \\
\mathbb{T}^{\mathrm{gb}} & \ni \frac{1}{\left(1-x^{-1}\right)\left(1-\mathrm{e}^{-x}\right)}=1+x^{-1}+x^{-2}+\cdots+\mathrm{e}^{-x}+\cdots \\
& \ni \Gamma(x)=\sqrt{2 \pi} \sqrt{x} \mathrm{e}^{-x} x^{x}\left(1+1 / 12 x^{-1}+\cdots\right) & \text { (accumulation-free) } \\
& & \\
& \operatorname{supp} f \subseteq \mathfrak{m} \mathfrak{e}_{1}^{\mathbb{R}} \cdots \mathfrak{e}_{k}^{\mathbb{R}}, \quad \mathfrak{e}_{1}, \ldots, \mathfrak{e}_{k}<1 & \text { (grid-based) }
\end{array}
$$

## Closure properties

## Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of $\mathbb{T}^{\mathrm{wb}}$ is completely axiomatized by:
(1) $\mathbb{T}$ is a LIOUVILLE closed H-field with small derivation;
(2) $\mathbb{T}$ satisfies the intermediate value property for differential polynomials.

## Closure properties

## Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of $\mathbb{T}^{\mathrm{wb}}$ is completely axiomatized by:
(1) $\mathbb{T}$ is a LIOUVILLE closed $H$-field with small derivation;
(2) $\mathbb{T}$ satisfies the intermediate value property for differential polynomials.

## In fact...

$$
\mathbb{T}^{\mathrm{da}(\mathbb{R})} \subsetneq \mathbb{T}^{\mathrm{gb}} \subsetneq \mathbb{T}^{\mathrm{nacc}} \subsetneq \mathbb{T}^{\text {finr }} \subsetneq \mathbb{T}^{\mathrm{std}}
$$

and these fields satisfy the same elementary theory; we call them H-closed.

## Closure properties

## Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of $\mathbb{T}^{\mathrm{wb}}$ is completely axiomatized by:
(1) $\mathbb{T}$ is a LIOUVILLE closed H-field with small derivation;
(2) $\mathbb{T}$ satisfies the intermediate value property for differential polynomials.

## In fact...

$$
\mathbb{T}^{\mathrm{da}(\mathbb{R})} \subsetneq \mathbb{T}^{\mathrm{gb}} \subsetneq \mathbb{T}^{\mathrm{nacc}} \subsetneq \mathbb{T}^{\text {finr }} \subsetneq \mathbb{T}^{\mathrm{std}}
$$

and these fields satisfy the same elementary theory; we call them H-closed.

## Corollary

$$
\mathbb{T}^{\mathrm{da}(\mathbb{R})} \equiv \mathbb{T}^{\mathrm{gb}} \equiv \mathbb{T}^{\text {nacc }} \equiv \mathbb{T}^{\text {finr }} \equiv \mathbb{T}^{\text {std }}
$$

## Closure properties

Let $H$ be an H-closed H-field such as $\mathbb{T}^{\mathrm{gb}}$. Write $H\{F\}=H\left[F, F^{\prime}, F^{\prime \prime}, \ldots\right]$

## Newtonianity

Any quasi-linear equation $L f=E(f), f<1$ (with $L \in H[\partial]$ and $E \in H\{F\}$ sufficiently small) admits a solution in $H$.

## Closure properties

Let $H$ be an H-closed H -field such as $\mathbb{T}^{\mathrm{gb}}$. Write $H\{F\}=H\left[F, F^{\prime}, F^{\prime \prime}, \ldots\right]$

## Newtonianity

Any quasi-linear equation $L f=E(f), f<1$ (with $L \in H[\partial]$ and $E \in H\{F\}$ sufficiently small) admits a solution in $H$.

## Splitting of linear differential operators

Any linear differential operator $L \in H[\partial]$ can be factored into (i) operators of order one or two in $H[\partial]$; (ii) operators of order one in $H[i][\partial]$.

## Closure properties

Let $H$ be an H-closed H -field such as $\mathbb{T}^{\mathrm{gb}}$. Write $H\{F\}=H\left[F, F^{\prime}, F^{\prime \prime}, \ldots\right]$

## Newtonianity

Any quasi-linear equation $L f=E(f), f<1$ (with $L \in H[\partial]$ and $E \in H\{F\}$ sufficiently small) admits a solution in $H$.

## Splitting of linear differential operators

Any linear differential operator $L \in H[\partial]$ can be factored into (i) operators of order one or two in $H[\partial]$; (ii) operators of order one in $H[i][\partial]$.

## Weak differential closedness

Given $P \in K\{F\}$, there exists an $f \in K[i]$ with $P(f)=0$.

## The incomplete transbasis theorem

## Definition

$\mathfrak{B}=\left\{\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right\} \subseteq\left(\mathbb{T}^{\mathrm{gb}}\right)^{>1}$ with $\mathfrak{b}_{1} \ll \cdots \nless \mathfrak{b}_{n}$ is a transbasis if TB1. $\mathfrak{b}_{1}=\log _{d} x$;
TB2. $\log \mathfrak{b}_{i} \in \mathbb{R}\left[\left[\mathfrak{b}_{1}^{\mathbb{R}} ; \ldots ; \mathfrak{b}_{i-1}^{\mathbb{R}}\right]\right]^{\mathrm{gb}}$, for $i=2, \ldots, n$.

$$
\log x, \quad x, \quad \mathrm{e}^{x}, \quad x^{x}, \quad \mathrm{e}^{x^{2 x} \mathrm{e}^{-x}+x^{x} \mathrm{e}^{-x}+\mathrm{e}^{-x}+\cdots}
$$

## The incomplete transbasis theorem

## Definition

$\mathfrak{B}=\left\{\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right\} \subseteq\left(\mathbb{T}^{\mathrm{gb}}\right)^{>1}$ with $\mathfrak{b}_{1} \nless \cdots \ll \mathfrak{b}_{n}$ is a transbasis if
TB1. $\mathfrak{b}_{1}=\log _{d} x$;
TB2. $\log \mathfrak{b}_{i} \in \mathbb{R}\left[\left[\mathfrak{b}_{1}^{\mathbb{R}} ; \ldots ; \mathfrak{b}_{i-1}^{\mathbb{R}}\right]\right]^{\mathrm{gb}}$, for $i=2, \ldots, n$.

$$
\log x, \quad x, \quad \mathrm{e}^{x}, \quad x^{x}, \quad \mathrm{e}^{x^{2 x} \mathrm{e}^{-x}+x^{x} \mathrm{e}^{-x}+\mathrm{e}^{-x}+\cdots}
$$

## Incomplete transbasis theorem

Let $\mathfrak{B}=\left\{\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{n}\right\}$ be a transbasis and $f \in \mathbb{T}^{\mathrm{gb}}$. Then there exists a transbasis $\hat{\mathfrak{B}}=\left\{\hat{\mathfrak{b}}_{1}, \ldots, \hat{\mathfrak{b}}_{\hat{n}}\right\} \supseteq \mathfrak{B}$ with $f \in \mathbb{R}\left[\left[\hat{\mathfrak{b}}_{1}^{\mathbb{R}} ; \ldots ; \hat{\mathfrak{b}}_{\hat{\mathrm{R}}}^{\mathbb{R}}\right]\right]^{\mathrm{gb}}$.

## Transserial Hardy fields

$\mathscr{G}$ := ring of infinitely differentiable real germs at infinity.

## Definition

A transserial Hardy field is a differential subfield $\mathscr{H}$ of $\mathbb{T}$, together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential $\mathbb{R}$-algebras, such that TH1. $\forall f \in \mathscr{H}$, $\quad \operatorname{supp} f \subseteq \mathscr{H}$.
TH2. $\forall f \in \mathscr{H}, \quad f_{<} \in \mathscr{H}$.

$$
f_{<}=\sum_{\mathfrak{m}<1} f_{\mathfrak{m}} \mathfrak{m}
$$

## Transserial Hardy fields

$\mathscr{G}$ := ring of infinitely differentiable real germs at infinity.

## Definition

A transserial Hardy field is a differential subfield $\mathscr{H}$ of $\mathbb{T}$, together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential $\mathbb{R}$-algebras, such that TH1. $\forall f \in \mathscr{H}, \quad \operatorname{supp} f \subseteq \mathscr{H}$. TH2. $\forall f \in \mathscr{H}, \quad f_{<} \in \mathscr{H}$.

$$
f_{<}=\sum_{\mathfrak{m}<1} f_{\mathfrak{m}} \mathfrak{m}
$$

$$
\frac{x \mathrm{e}^{x}}{1-x^{-1}-\mathrm{e}^{-x}}
$$

$$
x \mathrm{e}^{x}+\mathrm{e}^{x}+x^{-1} \mathrm{e}^{x}+\cdots+x+1+x^{-1}+\cdots+x \mathrm{e}^{-x}+\mathrm{e}^{-x}+x^{-1} \mathrm{e}^{-x}+\cdots \cdots
$$

## Transserial Hardy fields

$\mathscr{G}$ := ring of infinitely differentiable real germs at infinity.

## Definition

A transserial Hardy field is a differential subfield $\mathscr{H}$ of $\mathbb{T}$, together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential $\mathbb{R}$-algebras, such that TH1. $\forall f \in \mathscr{H}, \quad \operatorname{supp} f \subseteq \mathscr{H}$. TH2. $\forall f \in \mathscr{H}, \quad f_{<} \in \mathscr{H}$.

$$
f_{<}=\sum_{\mathfrak{m}<1} f_{\mathfrak{m}} \mathfrak{m}
$$

$$
\begin{aligned}
& \left(\frac{x \mathrm{e}^{x}}{1-x^{-1}-\mathrm{e}^{-x}}\right)< \\
& \quad \text { II } \\
& 1+x^{-1}+\cdots+x \mathrm{e}^{-x}+\mathrm{e}^{-x}+x^{-1} \mathrm{e}^{-x}+\cdots \cdots
\end{aligned}
$$

## Transserial Hardy fields

$\mathscr{G}$ := ring of infinitely differentiable real germs at infinity.

## Definition

A transserial Hardy field is a differential subfield $\mathscr{H}$ of $\mathbb{T}$, together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential $\mathbb{R}$-algebras, such that TH1. $\forall f \in \mathscr{H}$, $\quad \operatorname{supp} f \subseteq \mathscr{H}$.
TH2. $\forall f \in \mathscr{H}, \quad f_{<} \in \mathscr{H}$.

$$
f_{<}=\sum_{\mathfrak{m}<1} f_{\mathfrak{m}} \mathfrak{m}
$$

## Transserial Hardy fields

$\mathscr{G}$ := ring of infinitely differentiable real germs at infinity.

## Definition

A transserial Hardy field is a differential subfield $\mathscr{H}$ of $\mathbb{T}$, together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential $\mathbb{R}$-algebras, such that TH1. $\forall f \in \mathscr{H}$, $\quad \operatorname{supp} f \subseteq \mathscr{H}$.
TH2. $\forall f \in \mathscr{H}, \quad f_{<} \in \mathscr{H}$.

$$
f_{<}=\sum_{\mathfrak{m}<1} f_{\mathfrak{m}} \mathfrak{m}
$$

TH3. $\exists d \in \mathbb{Z}: \quad \forall \mathfrak{m} \in \mathfrak{M} \cap \mathscr{H}: \quad \log \mathfrak{m} \in \mathscr{H}+\mathbb{R} \log _{d} x$.
TH4. $\mathfrak{M} \cap \mathscr{H}$ is stable under taking real powers.
TH5. $\forall f \in \mathscr{H}>: \quad \log f \in \mathscr{H} \Rightarrow \rho(\log f)=\log \rho(f)$.

## Transserial Hardy fields

$\mathscr{G}$ := ring of infinitely differentiable real germs at infinity.

## Definition

A transserial Hardy field is a differential subfield $\mathscr{H}$ of $\mathbb{T}$, together with a monomorphism $\rho: \mathscr{H} \hookrightarrow \mathscr{C}$ of ordered differential $\mathbb{R}$-algebras, such that TH1. $\forall f \in \mathscr{H}, \quad \operatorname{supp} f \subseteq \mathscr{H}$.
TH2. $\forall f \in \mathscr{H}, \quad f_{<} \in \mathscr{H}$.

$$
f_{<}=\sum_{\mathfrak{m}<1} f_{\mathfrak{m}} \mathfrak{m}
$$

TH3. $\exists d \in \mathbb{Z}: \quad \forall \mathfrak{m} \in \mathfrak{M} \cap \mathscr{H}: \quad \log \mathfrak{m} \in \mathscr{H}+\mathbb{R} \log _{d} x$.
TH4. $\mathfrak{M} \cap \mathscr{H}$ is stable under taking real powers.
TH5. $\forall f \in \mathscr{H}>: \quad \log f \in \mathscr{H} \Rightarrow \rho(\log f)=\log \rho(f)$.

## Examples

$\mathscr{H}_{1}=\mathbb{R}\left\{\left\{x^{-\mathbb{R}}\right\}\right\}^{\mathrm{gb}}, \quad \mathscr{H}_{2}=\mathbb{R}\left\{\left\{x^{-\mathbb{R}} ; \mathrm{e}^{\mathbb{R} x}\right\}\right\}^{\mathrm{gb}} \quad \mathscr{H}_{3}=\mathbb{R}\left\{\left\{x^{-\mathbb{R}} ; \Gamma(x)^{\mathbb{R}}\right\}\right\}^{\mathrm{gb}}$

## Basic extension theorems

$\mathscr{H}:=$ transserial Hardy field of depth $d<\infty$.

## Theorem (real algebraic extensions)

$\exists$ unique transserial Hardy field structure on $\mathscr{H}^{\mathrm{rcl}}$ that extends the one of

## Theorem (adding logarithms)

$\exists$ unique transserial Hardy field structure $\rho: \mathscr{H}\left(\left(\log _{d} x\right)^{\mathbb{R}}\right) \rightarrow \mathscr{G}$ on $\mathscr{H}\left(\left(\log _{d} x\right)^{\mathbb{R}}\right)$ with $\rho\left(\left(\log _{d} x\right)^{\lambda}\right)=\left(\log _{d} x\right)^{\lambda}$ for all $\lambda \in \mathbb{R}$.

## Theorem (adding exponentials)

Let $\varphi \in \mathscr{H}\rangle$ be such that $\mathrm{e}^{\varphi} \notin \mathscr{H}$. $\exists$ unique transserial Hardy field structure $\rho: \mathscr{H}\left(\mathrm{e}^{\mathbb{R} \varphi}\right) \rightarrow \mathscr{G}$ on $\mathscr{H}\left(\mathrm{e}^{\mathbb{R} \varphi}\right)$ with $\rho\left(\mathrm{e}^{\lambda \varphi}\right)=\mathrm{e}^{\lambda \rho(\varphi)}$ for all $\lambda \in \mathbb{R}$.

## Definitions

$\mathscr{H}$ transserial Hardy field,

$$
\mathbb{T} \ni f \xrightarrow{? ? ?} \hat{f} \in \mathscr{G}
$$

Equivalence (over $\mathscr{H}$ )

$$
f \sim \hat{f} \quad \Longleftrightarrow \quad\left(\exists \varphi \in \mathscr{H}: f \sim_{\mathbb{T}} \varphi \sim_{\mathscr{G}} \hat{f}\right)
$$

## Definitions

$\mathscr{H}$ transserial Hardy field, $\mathbb{T} \ni f \xrightarrow{? ? ?} \hat{f} \in \mathscr{G}$
Equivalence (over $\mathscr{H}$ )

$$
f \sim \hat{f} \quad \Longleftrightarrow \quad\left(\exists \varphi \in \mathscr{H}: f \sim_{\mathbb{T}} \varphi \sim_{\mathscr{G}} \hat{f}\right)
$$

Asymptotic equivalence (over $\mathscr{H}$ )

$$
f \approx \hat{f} \quad \Longleftrightarrow \quad(\forall \varphi \in \mathscr{H}, f-\varphi \sim \hat{f}-\varphi)
$$

## Definitions

$\mathscr{H}$ transserial Hardy field, $\mathbb{T} \ni f \xrightarrow{? ? ?} \hat{f} \in \mathscr{G}$
Equivalence (over $\mathscr{H}$ )

$$
f \sim \hat{f} \quad \Longleftrightarrow \quad\left(\exists \varphi \in \mathscr{H}: f \sim_{\mathbb{T}} \varphi \sim_{\mathscr{G}} \hat{f}\right)
$$

Asymptotic equivalence (over $\mathscr{H}$ )

$$
f \approx \hat{f} \quad \Longleftrightarrow \quad(\forall \varphi \in \mathscr{H}, f-\varphi \sim \hat{f}-\varphi)
$$

Differential equivalence (over $\mathscr{H}$ )

$$
f \approx \hat{f} \quad \Longleftrightarrow \quad(\forall P \in \mathscr{H}\{F\}, P(f)=0 \Leftrightarrow P(\hat{f})=0)
$$

## Fundamental Lemma (elementary extensions)

Let $f \in \mathbb{T} \backslash \mathscr{H}$ and $\hat{f} \in \mathscr{G} \backslash \mathscr{H}$ be such that

- fis a serial cut over $\mathscr{H}$.
- fand $\hat{f}$ are asymptotically equivalent over $\mathscr{H}$.
- fand $\hat{f}$ are differentially equivalent over $\mathscr{H}$. (minimal cuts $\Rightarrow O K$ ) Then $\exists$ ! transserial Hardy field extension $\rho: \mathscr{H}\langle f\rangle \rightarrow \mathscr{G}$ with $\rho(f)=\hat{f}$.


## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-f^{\prime}+\frac{x}{\mathrm{e}^{x}}=0
$$

## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-f^{\prime}+\frac{x}{\mathrm{e}^{x}}=0
$$

Step 2. Put equation in integral form

$$
f=\int\left(\frac{x}{\mathrm{e}^{x}}+f^{2}\right)
$$

## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-f^{\prime}+\frac{x}{\mathrm{e}^{x}}=0
$$

Step 2. Put equation in integral form

$$
f=\int\left(\frac{x}{\mathrm{e}^{x}}+f^{2}\right)
$$

Step 3. Integral transseries solution

$$
f=\int \frac{x}{\mathrm{e}^{x}}+\int\left(\int \frac{x}{\mathrm{e}^{x}}\right)^{2}+2 \int\left(\int \frac{x}{\mathrm{e}^{x}}\right)\left(\int\left(\int \frac{x}{\mathrm{e}^{x}}\right)^{2}\right)+\cdots
$$

## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-f^{\prime}+\frac{x}{\mathrm{e}^{x}}=0
$$

Step 2. Put equation in integral form

$$
f=\int\left(\frac{x}{\mathrm{e}^{x}}+f^{2}\right)
$$

Step 3. Integral transseries solution ... has a natural analytic meaning

$$
f=\int_{\infty} \frac{x}{\mathrm{e}^{x}}+\int_{\infty}\left(\int_{\infty} \frac{x}{\mathrm{e}^{x}}\right)^{2}+2 \int_{\infty}\left(\int_{\infty} \frac{x}{\mathrm{e}^{x}}\right)\left(\int_{\infty}\left(\int_{\infty} \frac{x}{\mathrm{e}^{x}}\right)^{2}\right)+\cdots
$$

## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-\mathrm{e}^{x} f^{\prime}+\frac{\mathrm{e}^{2 x}}{x}=0
$$

## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-\mathrm{e}^{x} f^{\prime}+\frac{\mathrm{e}^{2 x}}{x}=0
$$

Step 2. Put equation in integral form

$$
f=\int\left(\frac{\mathrm{e}^{x}}{x}+\frac{f^{2}}{\mathrm{e}^{x}}\right)
$$

## Differential equations (main ideas)

Step 1. A given algebraic differential equation

$$
f^{2}-\mathrm{e}^{x} f^{\prime}+\frac{\mathrm{e}^{2 x}}{x}=0
$$

Step 2. Put equation in integral form

$$
f=\int\left(\frac{\mathrm{e}^{x}}{x}+\frac{f^{2}}{\mathrm{e}^{x}}\right)
$$

Step 3. Integrate from a fixed point $x_{0}<\infty$

$$
f=\int_{x_{0}} \frac{\mathrm{e}^{x}}{x}+\int_{x_{0}} \frac{1}{\mathrm{e}^{x}}\left(\int_{x_{0}} \frac{\mathrm{e}^{x}}{x}\right)^{2}+2 \int_{x_{0}} \frac{1}{\mathrm{e}^{2 x}}\left(\int_{x_{0}} \frac{\mathrm{e}^{x}}{x}\right)\left(\int_{x_{0}} \frac{1}{\mathrm{e}^{x}}\left(\int_{x_{0}} \frac{\mathrm{e}^{x}}{x}\right)^{2}\right)+\cdots
$$

## Differential equations (main ideas)

Step 1. A general algebraic differential equation

$$
P(f)=0
$$

## Differential equations (main ideas)

Step 1. A general algebraic differential equation

$$
P(f)=0
$$

Step 2. Using minimality, put equation in split-normal form

$$
\left(\partial-\varphi_{1}\right) \cdots\left(\partial-\varphi_{r}\right) f=E(f)
$$

Attention: $\varphi_{1}, \ldots, \varphi_{r} \in \mathscr{H}[\mathrm{i}]$, even though $\left(\partial-\varphi_{1}\right) \cdots\left(\partial-\varphi_{r}\right) \in \mathscr{H}[\partial]$.

## Differential equations (main ideas)

Step 1. A general algebraic differential equation

$$
P(f)=0
$$

Step 2. Using minimality, put equation in split-normal form

$$
\left(\partial-\varphi_{1}\right) \cdots\left(\partial-\varphi_{r}\right) f=E(f)
$$

Attention: $\varphi_{1}, \ldots, \varphi_{r} \in \mathscr{H}[\mathrm{i}]$, even though $\left(\partial-\varphi_{1}\right) \cdots\left(\partial-\varphi_{r}\right) \in \mathscr{H}[\partial]$.
Step 3. Solve the split-normal equation using the fixed-point technique.

## Continuous right inverses (first order)

## Lemma

The operator $J=(\partial-\varphi)_{x_{0}}^{-1}$, defined by
and

$$
(J f)(x)= \begin{cases}\mathrm{e}^{\Phi(x)} \int_{\infty}^{x} \mathrm{e}^{-\Phi(t)} f(t) \mathrm{d} t & \text { (repulsive case) } \\ \mathrm{e}^{\Phi(x)} \int_{x_{0}}^{x} \mathrm{e}^{-\Phi(t)} f(t) \mathrm{d} t & \text { (attractive case) }\end{cases}
$$

$$
\Phi(x)= \begin{cases}\int_{\infty}^{x} \varphi(t) \mathrm{d} t & \text { (repulsive case) } \\ \int_{x_{0}}^{x} \varphi(t) \mathrm{d} t & \text { (attractive case) }\end{cases}
$$

is a continuous right-inverse of $L=\partial-\varphi$ on $\mathscr{G}_{x_{0}}^{\leqslant}[i]$, with

$$
\left\|\|J\|_{x_{0}} \leqslant\right\| \frac{1}{\operatorname{Re} \varphi} \|_{x_{0}}
$$

## Continuous right-inverses (higher order)

## Lemma

Given a split-normal operator

$$
L=\left(\partial-\varphi_{1}\right) \cdots\left(\partial-\varphi_{r}\right),
$$

with a factorwise right-inverse $L^{-1}=J_{r} \cdots J_{1}$, the operator

$$
J_{r} \cdots J_{1}: \mathscr{G}_{x_{0}}^{\leqslant}[\mathrm{i}] \rightarrow \mathscr{G}_{x_{0} ; r}^{\leqslant}[\mathrm{i}]
$$

is a continuous operator for every $v>{ }^{\circ}$. Here $\mathscr{G}_{x_{0} ; r}[\mathrm{i}]$ carries the norm

$$
\|f\|_{x_{0} ; r}=\max \left\{\|f\|_{x_{0}}, \ldots,\left\|f^{(r)}\right\|_{x_{0}}\right\} .
$$

## Preservation of realness

## Lemma

Assume that $\mathrm{L} \in \mathscr{H}$ [ว] admits a splitting

$$
L=\left(\partial-\varphi_{1}\right) \cdots\left(\partial-\varphi_{r}\right)
$$

that formally preserves realness in the sense that it induces a factorization of $L$ as a product of real differential operators of order one or two.

Then $J_{r} \cdots J_{1}$ preserves realness in the sense that it maps $\mathscr{G}_{x_{0}} \leqslant$ into itself.

## Theorem

Consider a split-monic equation

$$
L f=E(f),
$$

Then for any sufficiently large $x_{0}$, there exists a continuous factorwise right-inverse $J_{r} \quad \cdots J_{1}$ of $L$, such that the operator

$$
\Xi: f \longmapsto\left(J_{r} \cdots J_{1}\right)(E(f))
$$

admits a unique fixed point

$$
f=\lim _{n \rightarrow \infty} \Xi^{(n)}(0) \in \mathscr{B}\left(\mathscr{G}_{x_{0} ; r,}^{\lessgtr} \frac{1}{2}\right) .
$$

## Preservation of asymptotics

## Theorem

Let $\mathscr{H}$ be a transserial Hardy field
Consider a monic split-normal quasi-linear equation

$$
\begin{equation*}
L f=E(f) \tag{1}
\end{equation*}
$$

over $\mathscr{H}$ without solutions in $\mathscr{H}$.

- J is $(1,1,1)$-differentially closed in $\mathbb{T}$
- J [i] is $(1,1,1)$-differentially closed in

Then there exist solutions $f \in \mathscr{G}$ and $\tilde{f} \in \hat{\mathscr{H}}$ to (1), such that $f$ and $\tilde{f}$ are asymptotically equivalent over $\mathscr{H}$.

## Theorem (vdH 2009)

Given a transserial Hardy field $\mathscr{H}$, the set $\mathbb{T}^{\mathrm{da}(\mathscr{H})}$ of differentially algebraic transseries over $\mathscr{H}$ can be given the structure of a transserial Hardy field (that extends the structure of $\mathscr{H}$ ).

## Theorem (vdH 2009)

Given a transserial Hardy field $\mathscr{H}$, the set $\mathbb{T}^{\text {da }(\mathscr{H})}$ of differentially algebraic transseries over $\mathscr{H}$ can be given the structure of a transserial Hardy field (that extends the structure of $\mathscr{H}$ ).

## Corollary

The subfield $\mathbb{T}^{\text {da( }}{ }^{(\mathbb{R})}$ of transseries that satisfy an algebraic differential equation over $\mathbb{R}$ can be embedded (as an ordered differential field) in a HARDY field.

## Theorem (vdH 2009)

Given a transserial Hardy field $\mathscr{H}$, the set $\mathbb{T}^{\mathrm{da}(\mathscr{H})}$ of differentially algebraic transseries over $\mathscr{H}$ can be given the structure of a transserial Hardy field (that extends the structure of $\mathscr{H}$ ).

## Corollary

The subfield $\mathbb{T}^{\text {da }(\mathbb{R})}$ of transseries that satisfy an algebraic differential equation over $\mathbb{R}$ can be embedded (as an ordered differential field) in a HARDY field.

## Corollary

There exists an H-closed Hardy field.

## Corollary

There exists a transserial Hardy field $\mathscr{H}$, such that for any $P \in \mathscr{H}\{F\}$ and $f, g \in \mathscr{H}$ with $f<g$ and $P(f) P(g)<0$, there exists a $h \in \mathscr{H}$ with $f<h<g$ and $P(h)=0$.

## Corollary

There exists a transserial Hardy field $\mathscr{H}$, such that $\mathscr{H}$ [i] is weakly differentially closed.

## Corollary

There exists a newtonian transserial Hardy field $\mathscr{H}$, i.e., such that any quasilinear differential equation over $\mathscr{H}$ admits a solution in $\mathscr{H}$.

Input: $\mathbb{K} \subseteq \mathbb{T}^{\mathrm{da}(\mathbb{R})}$ with $\phi: \mathbb{K} \hookrightarrow H$ for HARDY field $H$
while $\mathbb{K} \neq \mathbb{T}^{\text {da }(\mathbb{R})}$ do
Pick $y \in \mathbb{T}^{\mathrm{da}(\mathbb{R})} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- P of minimal degree $e$ in $y, \ldots, y^{(r)}$.

Construct $\hat{\phi}: \mathbb{K}\left(y, \ldots, y^{(r)}\right) \hookrightarrow \hat{H}$
Set $\mathbb{K}:=\mathbb{K}\left(y, \ldots, y^{(r)}\right), \phi:=\hat{\phi}$

Output: $\tilde{\phi}: \mathbb{T}^{\text {da }(\mathbb{R})} \hookrightarrow \tilde{H}$ for HARDY field extension $\tilde{H}$ of original $H$

## More exactly

Input: transserial Hardy field $H$ with $\phi: H \hookrightarrow \mathscr{G}$
Set $\mathbb{K}:=H$
while $\mathbb{K} \neq H^{\text {da }}$ do
Pick $y \in H^{\text {da }} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- P of minimal degree $e$ in $y, \ldots, y^{(r)}$.

Construct $\hat{\phi}: \mathbb{K}\left(y, \ldots, y^{(r)}\right) \hookrightarrow \mathscr{G}$
Set $\mathbb{K}:=\mathbb{K}\left(y, \ldots, y^{(r)}\right), \phi:=\hat{\phi}$
Output: transserial Hardy field $\mathbb{K}$ on $H^{\text {da }}$ with $\tilde{\phi}: H^{\text {da }} \hookrightarrow \mathscr{G}$

## Ongoing work

Input: $\omega$-free H -field $H$ with embedding $\phi: H \hookrightarrow \mathscr{G}$
Set $\mathbb{K}:=H$
while $\mathbb{K} \neq H^{\text {da }}$ do
Pick $y \in H^{\text {da }} \backslash \mathbb{K}$ of minimal complexity, i.e. $P\left(y, \ldots, y^{(r)}\right)=0$ with

- $P$ of minimal order $r$;
- $P$ of minimal degree $d$ in $y^{(r)}$;
- P of minimal degree $e$ in $y, \ldots, y^{(r)}$.

Construct $\hat{\phi}: \mathbb{K}\left(y, \ldots, y^{(r)}\right) \hookrightarrow \mathscr{G}$
Set $\mathbb{K}:=\mathbb{K}\left(y, \ldots, y^{(r)}\right), \phi:=\hat{\phi}$
Output: $\omega$-free H-field $H^{\text {da }}$ with embedding $\tilde{\phi}: H^{\text {da }} \hookrightarrow \mathscr{G}$

## Theorem

Any HARDY field has an $\omega$-free HARDY field extension.

## Work in progress

## Theorem

Any HARDY field has an $\omega$-free HARDY field extension.

## Theorem in progress

The H-closure $H^{\text {da }}$ of a HARDY field can be given the structure of a HARDY field.

## Work in progress

## Theorem

Any HARDY field has an $\omega$-free HARDY field extension.

## Theorem in progress

The H-closure $H^{\text {da }}$ of a HARDY field can be given the structure of a HARDY field.

## Corollary

Maximal HARDY fields are H-closed.

## Work in progress

## Theorem

Any HARDY field has an $\omega$-free HARDY field extension.

## Theorem in progress

The H-closure $H^{\text {da }}$ of a HARDY field can be given the structure of a HARDY field.

## Corollary

Maximal Hardy fields are H-closed.

## Theorem in progress by other means

For countable $A<B$ in a maximal HARDY field $H$, we can find $A<y<B$ in $H$. Under CH, all maximal HARDY fields are isomorphic.

## Thank you!


http://www. $\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\mathrm{MACS}} . \mathrm{org}$

