On Numbers, Germs, and Transseries

Matthias AschenbrennerLou van den DriesJoris van der HoevenUCLAUIUCCNRS

Introduction

Introduction

HARDY fields

Let \mathscr{C}^1 be the ring of germs at $+\infty$ of continuously differentiable functions $(a, \infty) \to \mathbb{R} \ (a \in \mathbb{R}).$

We denote the germ at $+\infty$ of a function *f* also by *f*, relying on context.

Definition

A **HARDY field** is a subring of \mathscr{C}^1 which is a field that contains with each germ of a function f also the germ of its derivative f' (where f' might be defined on a smaller interval than f).

Examples

$$\mathbb{Q}$$
, \mathbb{R} , $\mathbb{R}(x)$, $\mathbb{R}(x, e^x)$, $\mathbb{R}(x, e^x, \log x)$, $\mathbb{R}(x, e^{x^2}, \operatorname{erf} x)$

HARDY fields

HARDY fields capture the somewhat vague notion of functions with "**regular growth**" at infinity (BOREL, DU BOIS-REYMOND, ...):

Let *H* be a HARDY field and $f \in H$. Then

$$f \neq 0 \implies \frac{1}{f} \in H \implies \begin{cases} f(t) > 0, \text{ eventually, or} \\ f(t) < 0, \text{ eventually.} \end{cases}$$

Consequently,

• *H* carries an ordering making *H* an ordered field:

$$f > 0 \iff f(t) > 0$$
 eventually;

• *f* is **eventually monotonic**, and

 $\lim_{t \to +\infty} f(t) \in \mathbb{R} \cup \{\pm \infty\}.$

Transseries

(surreal) Numbers

Germs (in HARDY fields)

Transseries

Transseries

Transseries

The field ${\mathbb T}$ of transseries

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

$$e^{e^{x}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+\cdots+e^{-x}$$

The field ${\mathbb T}$ of transseries

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

$$e^{e^{x}+e^{x/2}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+\cdots+e^{-x}$$

The field \mathbb{T} of transseries

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

 $e^{e^{x}+e^{x/2}+e^{x/3}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+6x^{-3}+\cdots+e^{-x}$

The field \mathbb{T} of transseries

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

 $e^{e^{x}+e^{x/2}+e^{x/3}+\cdots}-3e^{x^{2}}+5(\log x)^{\pi}+42+x^{-1}+2x^{-2}+6x^{-3}+24x^{-4}+\cdots+e^{-x}$

The field ${\mathbb T}$ of transseries

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

$$\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \dots + e^{-x}$$

x: positive infinite indeterminate

 $f_{\mathfrak{m}}$: coefficent \mathfrak{m} : transmonomial

The field \mathbb{T} of transseries

 \mathbb{T} := closure of $\mathbb{R} \cup \{x\}$ under exp, log and infinite summation

 $\sum_{\mathfrak{m}} f_{\mathfrak{m}} \mathfrak{m} = e^{e^{x} + e^{x/2} + \dots} - 3e^{x^{2}} + 5(\log x)^{\pi} + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \dots + e^{-x}$

x: positive infinite indeterminate $f_{\mathfrak{m}}$: coefficent \mathfrak{m} : transmonomial

The formal definition of \mathbb{T} is inductive and somewhat lengthy. For each transseries there is a finite bound on the "nesting" of exp and log among its transmonomials: the following "transseries" are **not** in \mathbb{T} :

$$\frac{1}{x} + \frac{1}{e^x} + \frac{1}{e^{e^x}} + \frac{1}{e^{e^{e^x}}} + \dots \qquad \frac{1}{x} + \frac{1}{x \log x} + \frac{1}{x \log x \log \log x} + \dots$$

${\mathbb T}$ as an ordered differential field

- With the natural ordering of transseries (via the leading coefficient), \mathbb{T} is a *real closed ordered field* extension of \mathbb{R} .
- Each $f \in \mathbb{T}$ can be *differentiated* term by term (with x' = 1):

$$\left(\sum_{n=0}^{\infty} n! \frac{\mathrm{e}^{x}}{x^{n}}\right)' = \sum_{n=0}^{\infty} n! \left(\frac{\mathrm{e}^{x}}{x^{n}}\right)' = \sum_{n=0}^{\infty} n! \left(\frac{\mathrm{e}^{x}}{x^{n}} - n \frac{\mathrm{e}^{x}}{x^{n+1}}\right) = \frac{\mathrm{e}^{x}}{x}$$

• This yields a *derivation* $f \mapsto f'$ on the field \mathbb{T} :

$$(f+g)' = f'+g', \qquad (f \cdot g)' = f' \cdot g + f \cdot g'$$

Its constant field is $\{f \in \mathbb{T}: f' = 0\} = \mathbb{R}$.

• Given $f, g \in \mathbb{T}$, the equation y' + fy = g admits a solution $y \neq 0$ in \mathbb{T} .

Surreal numbers

(surreal) Numbers

Germs (in HARDY fields) **Transseries**

Surreal numbers

Surreal numbers

These are simply strings of +, - of arbitrary ordinal length. CONWAY turned the class **No** of surreals into a real closed field extension of \mathbb{R} .

Addition of surreal numbers

- $x \in No$ is simpler than $y \in No$: \iff x is a prefix of y
- For sub<u>sets</u> L < R of **No**, let $\{L|R\}$ be the simplest $x \in No$ with L < x < R.
- Any $x \in No$ is of the form $x = \{L|R\}$ for suitable subsets L < R of No.

Example

$$0 = \{|\}, 1 = \{0|\}, 2 = \{0, 1|\}, \frac{1}{2} = \{0|1\}, \omega = \{0, 1, ...|\}$$

Definition

If $x = \{x^{L} | x^{R}\}$ *and* $y = \{y^{L} | y^{R}\}$ *, then*

$$x + y := \{x^{L} + y, x + y^{L} | x^{R} + y, x + y^{R}\}.$$

(*Idea: we want* $x^{L} + y < x + y < x^{R} + y$, ...)

Exponentiation and differentiation

- In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an exponential function exp: $No \rightarrow No^{>0}$ that extends $x \mapsto e^x$ on \mathbb{R} .
- In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and SCHMELING) defined a derivation ∂_{BM} on **No** with

ker $\partial_{BM} = \mathbb{R}$, $\partial_{BM}(\omega) = 1$, $\partial_{BM}(\exp(f)) = \partial_{BM}(f) \cdot \exp(f)$ for $f \in \mathbf{No}$.

In a certain technical sense, it is the simplest such derivation that satisfies some natural further conditions.

• The BM-derivation on **No** behaves in many ways like the derivation on \mathbb{T} , with $\omega > \mathbb{R}$ in the role of $x > \mathbb{R}$. For instance, $\partial_{BM}(\log \omega) = \frac{1}{\omega}$.

(surreal) Numbers

Germs (in HARDY fields)

Transseries

12/28

(surreal) Numbers

H-fields Transseries

Germs (in HARDY fields) 12/28

Asymptotic relations

Let *K* be an ordered differential field with constant field

 $C = \{f \in K : f' = 0\}.$

We define

 $\begin{array}{ll} f \leqslant g : \iff |f| \leqslant c |g| \text{ for some } c \in C^{>0} & (f \text{ is dominated by } g) \\ f \prec g : \iff |f| \leqslant c |g| \text{ for all } c \in C^{>0} & (f \text{ is negligible w.r.t. } g) \\ f \approx g : \iff f \leqslant g \leqslant f & (f \text{ is asymptotic to } g) \\ f \sim g : \iff f - g \prec g & (f \text{ is equivalent to } g) \\ \end{array}$

Example

In T: $0 < e^{-x} < x^{-10} < 1 \approx 100 < \log x < x^{1/10} < e^x \sim e^x + x < e^{e^x}$

H-fields

Definition

We call K an **H-field** if **H1.** $f > C \implies f' > 0;$ **H2.** $f \approx 1 \implies f \sim c$ for some $c \in C$.

Examples

HARDY fields containing \mathbb{R} ; ordered differential subfields of \mathbb{T} or **No** that contain \mathbb{R} .

- ${\mathbb T}$ admits further elementary properties in addition to being an H-field. It
 - has **small derivation**, that is, $f < 1 \Longrightarrow f' < 1$; and
 - is **LIOUVILLE closed**, that is, it is real closed and for all f, g, there is some $y \neq 0$ with y' + fy = g.

One of our main results

15/28

We view \mathbb{T} model-theoretically as a structure with the primitives

0, 1, +, ×, ∂ (derivation), \leq (ordering).

Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of \mathbb{T} *is completely axiomatized by:*

- **1** \mathbb{T} *is a* LIOUVILLE *closed H*-*field with small derivation;*
- **2** \mathbb{T} satisfies the intermediate value property for differential polynomials.

Actually **2** is a bit of an afterthought.

A corollary of the theorem: the theory of \mathbb{T} is decidable.

We also prove a quantifier elimination result for \mathbb{T} in a natural expansion of the above language.

H-field elements as germs

(surreal) Numbers

H-fields Transseries

Germs (in HARDY fields) 16/28

H-field elements as germs

(surreal) Numbers

Transseries

Closure properties of HARDY fields

17/28

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Closure properties of HARDY fields

17/28

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Theorem (SINGER 1975)

Let H be a HARDY *field and* $\Phi \in H(Y)$ *be a rational function. If* $y \in \mathscr{C}^1$ *satisfies the differential equation* $y' = \Phi(y)$ *, then* $H\langle y \rangle = H(y, y')$ *is a* HARDY *field.*

Closure properties of HARDY fields

17/28

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Theorem (SINGER 1975)

Let H be a HARDY *field and* $\Phi \in H(Y)$ *be a rational function. If* $y \in \mathscr{C}^1$ *satisfies the differential equation* $y' = \Phi(y)$ *, then* $H\langle y \rangle = H(y, y')$ *is a* HARDY *field.*

Remark (BOSHERNITZAN 1987)

Any solution $y \in \mathscr{C}^1$ to

$$y^{\prime\prime} + y = \mathrm{e}^{x^2}$$

lies in a HARDY field, but any HARDY field contains at most one solution.

Conjectural closure properties

Conjecture

Let H be a maximal HARDY field. Then

- *H* satisfies the differential intermediate value property.
- **B** For countable subsets A < B of H, there exists an $h \in H$ with A < h < B.

Conjectural closure properties

18/28

Conjecture

Let H be a maximal HARDY field. Then

- *▲ H* satisfies the differential intermediate value property.
- **B** For countable subsets A < B of H, there exists an $h \in H$ with A < h < B.

Corollary

H is elementarily equivalent to T as an ordered differential field. *Under CH, all maximal HARDY fields are isomorphic.*

Theorem (VAN DER HOEVEN 2009)

The subfield \mathbb{T}^{da} of transseries that satisfy an algebraic differential equation over \mathbb{R} can be embedded (as an ordered differential field) in a HARDY field.

Theorem (VAN DER HOEVEN 2009)

The subfield \mathbb{T}^{da} of transseries that satisfy an algebraic differential equation over \mathbb{R} can be embedded (as an ordered differential field) in a HARDY field.

$$y^{\prime\prime} = e^{-e^x} + y^2$$

Theorem (VAN DER HOEVEN 2009)

The subfield \mathbb{T}^{da} of transseries that satisfy an algebraic differential equation over \mathbb{R} can be embedded (as an ordered differential field) in a HARDY field.

$$y = \iint (e^{-e^{x}} + y^{2})$$

= $\iint e^{-e^{x}} + \iint (\iint e^{-e^{x}})^{2} + 2 \iint (\iint e^{-e^{x}})^{3} + \cdots$
19/28

Theorem (VAN DER HOEVEN 2009)

The subfield \mathbb{T}^{da} of transseries that satisfy an algebraic differential equation over \mathbb{R} can be embedded (as an ordered differential field) in a HARDY field.

$$y = \iint (e^{-e^{x}} + y^{2})$$

=
$$\iint e^{-e^{x}} + \iint \left(\iint e^{-e^{x}} \right)^{2} + 2 \iint \left(\iint e^{-e^{x}} \right)^{3} + \cdots$$

Theorem in progress

✓ Any HARDY field has an ω-free HARDY field extension.
… Any ω-free HARDY field has a newtonian differentially algebraic HARDY field extension.

Work in progress on Conjecture B

20/28

Theorem (BOREL 1895)

Any $y \in \mathbb{R}[[x^{-1}]]$ is the asymptotic expansion of a germ \tilde{y} in \mathscr{C}^{∞} .

Work in progress on Conjecture B

20/28

Theorem (BOREL 1895)

Any $y \in \mathbb{R}[[x^{-1}]]$ is the asymptotic expansion of a germ \tilde{y} in \mathscr{C}^{∞} .

Example

 $y = x^{-1} + 2!! x^{-2} + 3!! x^{-3} + \cdots$ is differentially transcendental over \mathbb{R} \implies the differential field $\mathbb{R}\langle \tilde{y} \rangle = \mathbb{R}(\tilde{y}, \tilde{y}', \tilde{y}'', \ldots)$ is a HARDY field.

Work in progress on Conjecture B

20/28

Theorem (BOREL 1895)

Any $y \in \mathbb{R}[[x^{-1}]]$ is the asymptotic expansion of a germ \tilde{y} in \mathscr{C}^{∞} .

Example

 $y = x^{-1} + 2!! x^{-2} + 3!! x^{-3} + \cdots$ is differentially transcendental over \mathbb{R} \implies the differential field $\mathbb{R}\langle \tilde{y} \rangle = \mathbb{R}(\tilde{y}, \tilde{y}', \tilde{y}'', \ldots)$ is a HARDY field.

Theorem in progress

- ✓ Every pseudocauchy sequence (y_n) in a HARDY field H has a pseudolimit in some HARDY field extension of H.
- ✓ Conjecture **B** for countable A and $B = \emptyset$ (SJÖDIN 1970). ... General case.

H-field elements as surreal numbers

(surreal) Numbers

H-fields Transseries

Germs (in HARDY fields) 21/28

H-field elements as surreal numbers

Embedding H-fields into the surreals

22/28

Theorem (to appear in JEMS)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into **No**.

22/28

Theorem (to appear in JEMS)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into **No**.

Theorem (to appear in JEMS)

Let κ *be an uncountable cardinal. The field* **No**(κ) *of surreal numbers of length* $<\kappa$ *is an elementary submodel of* **No***.*

22/28

Theorem (to appear in JEMS)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into **No**.

Theorem (to appear in JEMS)

Let κ *be an uncountable cardinal. The field* **No**(κ) *of surreal numbers of length* $<\kappa$ *is an elementary submodel of* **No**.

Corollary in progress

Under CH all maximal HARDY *fields are isomorphic to* $No(\omega_1)$ *.*

H-field elements as transseries

(surreal) Numbers

H-fields Transseries

Germs (in HARDY fields) 23/28

H-field elements as transseries

(surreal) Numbers

H-fields

Germs (in HARDY fields)

Transseries

H-field elements as transseries

23/28

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

- A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with partial $\log: \mathbf{T} \rightarrow \mathbf{T}$ is a field of transseries if
- **T1.** The domain of log is $T^{>0}$;
- **T2.** *for each* $\mathfrak{m} \in \mathfrak{M}$ *and* $\mathfrak{n} \in \operatorname{supp} \log \mathfrak{m}$ *, we have* $\mathfrak{n} > 1$ *;*
- **T3.** $\log(1+\varepsilon) = \varepsilon \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots$, for all $\varepsilon \in \mathbf{T}$ with $\varepsilon < 1$;

T4. for every sequence $(\mathfrak{m}_n) \in \mathfrak{M}^{\mathbb{N}}$ with $\mathfrak{m}_{n+1} \in \operatorname{supp} \log \mathfrak{m}_n$ for all n, there exists an index n_0 such that for all $n > n_0$ and all $\mathfrak{n} \in \operatorname{supp} \log \mathfrak{m}_n$, we have $\mathfrak{n} \ge \mathfrak{m}_{n+1}$ and $(\log \mathfrak{m}_n)_{\mathfrak{m}_{n+1}} = \pm 1$.

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

- A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with partial log: $\mathbf{T} \rightarrow \mathbf{T}$ is a field of transseries if
- **T1.** The domain of log is $\mathbf{T}^{>0}$;
- **T2.** *for each* $\mathfrak{m} \in \mathfrak{M}$ *and* $\mathfrak{n} \in \operatorname{supp} \log \mathfrak{m}$ *, we have* $\mathfrak{n} > 1$ *;*
- **T3.** $\log(1+\varepsilon) = \varepsilon \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots$, for all $\varepsilon \in \mathbf{T}$ with $\varepsilon < 1$;
- **T4.** for every sequence $(\mathfrak{m}_n) \in \mathfrak{M}^{\mathbb{N}}$ with $\mathfrak{m}_{n+1} \in \operatorname{supp} \log \mathfrak{m}_n$ for all n, there exists an index n_0 such that for all $n > n_0$ and all $\mathfrak{n} \in \operatorname{supp} \log \mathfrak{m}_n$, we have $\mathfrak{n} \ge \mathfrak{m}_{n+1}$ and $(\log \mathfrak{m}_n)_{\mathfrak{m}_{n+1}} = \pm 1$.

$$\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + e^{x}}} \sqrt{x} + e^{\sqrt{\log \log x} + e^{\sqrt{\log \log x} + \log \log x}} + \log x$$

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

- A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with partial $\log: \mathbf{T} \to \mathbf{T}$ is a field of transseries if
- **T1.** The domain of $\log is T^{>0}$;
- **T2.** *for each* $m \in \mathfrak{M}$ *and* $n \in \operatorname{supp} \log m$ *, we have* n > 1*;*
- **T3.** $\log(1+\varepsilon) = \varepsilon \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots$, for all $\varepsilon \in \mathbf{T}$ with $\varepsilon < 1$;
- **T4.** for every sequence $(\mathfrak{m}_n) \in \mathfrak{M}^{\mathbb{N}}$ with $\mathfrak{m}_{n+1} \in \operatorname{supp} \log \mathfrak{m}_n$ for all n, there exists an index n_0 such that for all $n > n_0$ and all $\mathfrak{n} \in \operatorname{supp} \log \mathfrak{m}_n$, we have $\mathfrak{n} \ge \mathfrak{m}_{n+1}$ and $(\log \mathfrak{m}_n)_{\mathfrak{m}_{n+1}} = \pm 1$.

$$\sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log \log x} + e^{\frac{1}{x}}}} \sqrt{x} + e^{\sqrt{\log \log x} + e^{\sqrt{\log \log x} + \log \log x}} + \log x$$

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

- A field $\mathbf{T} = \mathbb{R}[[\mathfrak{M}]]$ with partial $\log: \mathbf{T} \to \mathbf{T}$ is a field of transseries if
- **T1.** The domain of $\log is T^{>0}$;
- **T2.** for each $m \in \mathfrak{M}$ and $n \in \operatorname{supp} \log m$, we have n > 1;
- **T3.** $\log(1+\varepsilon) = \varepsilon \frac{1}{2}\varepsilon^2 + \frac{1}{3}\varepsilon^3 + \cdots$, for all $\varepsilon \in \mathbf{T}$ with $\varepsilon < 1$;
- **T4.** for every sequence $(\mathfrak{m}_n) \in \mathfrak{M}^{\mathbb{N}}$ with $\mathfrak{m}_{n+1} \in \operatorname{supp} \log \mathfrak{m}_n$ for all n, there exists an index n_0 such that for all $n > n_0$ and all $\mathfrak{n} \in \operatorname{supp} \log \mathfrak{m}_n$, we have $\mathfrak{n} \ge \mathfrak{m}_{n+1}$ and $(\log \mathfrak{m}_n)_{\mathfrak{m}_{n+1}} = \pm 1$.

Definition

A transserial derivation on **T** is a derivation $\partial: \mathbf{T} \to \mathbf{T}$ such that **TD1.** ∂ is strong (i.e., it preserves infinite summation); **TD2.** $\partial \log f = \partial f / f$ for all $f \in \mathbf{T}^{>0}$; **TD3.** nested transseries are differentiated in the "natural" way.

Definition

A transserial derivation on **T** is a derivation $\partial: \mathbf{T} \to \mathbf{T}$ such that **TD1.** ∂ is strong (i.e., it preserves infinite summation); **TD2.** $\partial \log f = \partial f / f$ for all $f \in \mathbf{T}^{>0}$; **TD3.** nested transseries are differentiated in the "natural" way.

Theorem (BERARDUCCI–MANTOVA, 2015)

No *is a field of transseries and* ∂_{BM} *is a transserial derivation.*

Definition

A transserial derivation on **T** is a derivation $\partial: \mathbf{T} \to \mathbf{T}$ such that **TD1.** ∂ is strong (i.e., it preserves infinite summation); **TD2.** $\partial \log f = \partial f / f$ for all $f \in \mathbf{T}^{>0}$; **TD3.** nested transseries are differentiated in the "natural" way.

Theorem (BERARDUCCI–MANTOVA, 2015)

No *is a field of transseries and* ∂_{BM} *is a transserial derivation.*

Corollary

Any H-field with constant field \mathbb{R} can be embedded in a field of transseries with a transserial derivation.

What next?

(surreal) Numbers

H-fields Transseries

Germs (in HARDY fields) 26/28

What next?

(surreal) Numbers

beyond H-fields Transseries

Germs (in HARDY fields)

What next?

(surreal) Numbers

beyond H-fields Hyperseries

Germs (in HARDY fields)

 $\log_{\omega}\log x = \log_{\omega} x - 1$

$$\log_{\omega} \log x = \log_{\omega} x - 1$$
$$\log_{\omega} x = \int \frac{1}{x \log x \log \log x \cdots}$$

$$og_{\omega} \log x = \log_{\omega} x - 1$$
$$log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

$$\log_{\omega} \log x = \log_{\omega} x - 1$$
$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Problem with ∂_{BM}

 $\partial_{BM}(\exp_{\omega}(\exp_{\omega}\omega)) = \exp'_{\omega}(\exp_{\omega}x) \neq \exp'_{\omega}(\exp_{\omega}x)\exp'_{\omega}x$

$$\log_{\omega} \log x = \log_{\omega} x - 1$$
$$\log_{\alpha} x = \int \prod_{\beta < \alpha} \frac{1}{\log_{\beta} x}$$

Problem with ∂_{BM}

 $\partial_{BM}(\exp_{\omega}(\exp_{\omega}\omega)) = \exp'_{\omega}(\exp_{\omega}x) \neq \exp'_{\omega}(\exp_{\omega}x)\exp'_{\omega}x$

Conjecture

For a suitable definition of the class **Hy** of hyperseries (including the nested ones), we have $No \cong Hy$ for the map $\phi: Hy \longrightarrow No; f \longmapsto f(\omega)$.

Thank you!

http://www.T_EX_{MACS}.org