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Let #'! be the ring of germs at +oo of continuously differentiable functions
(a,0) >R (aeR).

We denote the germ at +oco of a function f also by f, relying on context.
Definition
A HARDY field is a subring of ¢ ' which is a field that contains with each germ

of a function f also the germ of its derivative f' (where f" might be defined on
a smaller interval than f).

Examples

Q, R, R(x), R(x,e’), R(xe*logx), ]R(x,exz,erfx)
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HARDY fields capture the somewhat vague notion of functions with

“ ” at infinity (BOREL, DU BOIS-REYMOND, ...):
Let H be a HARDY field and f € H. Then
1 f(t) >0, eventually, or
f#0 = 76H — {f(t) <0, eventually.

Consequently,
e H carries an ordering making H an

f>0 <= f(t)>0eventually;
o fis , and

lim f(t)e RU{+o0}.

t—+o0
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The field T of transseries 6/28

T := closure of R U {x} under exp, log and infinite summation

et _3e¥ +5 (log x)™+42+x7 1+ +e7*

Here one should think of x as a positive infinite indeterminate.
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The field T of transseries 6/28

T := closure of R U {x} under exp, log and infinite summation

X x/2 2
Y m = et 3eY 15 (log ) + 42+ x4 2x 24 6x 04 e

m

x: positive infinite indeterminate m: transmonomial

The formal definition of T is inductive and somewhat lengthy. For each
transseries there is a finite bound on the “nesting” of exp and log among

its transmonomials: the following “transseries” are in T
1 1 1 1 1 1 1
—t =ttt — -
x e¥ e | e x xlogx xlogxloglogx



T as an ordered differential field 7/28

With the natural ordering of transseries (via the leading coefficient),
T is a real closed ordered field extension of R.

Each f € T can be differentiated term by term (with x" =1):

/
Oo'ex_oo'ex’_oolex e e
Z”'F —Z”'ﬁ =) n 7 e Ty
n=0

n=0 n=0

This yields a derivation f — f' on the field T:

f+'=f+g, (f-'=f-g+fg
Its constant field is {f € T: f' =0} = R.
Given f,¢ € T, the equation ' + fiy = ¢ admits a solution y#0 in T.
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Surreal numbers

These are simply strings of +, — of arbitrary ordinal length. CONWAY turned
the class No of surreals into a real closed field extension of R.

0 born on day 0

. \_1 1 / \
2 2  bornonday?2

_%/ \_% 1 / \% l%/ \ 3 day 3

%/ \% /N \, o s

_3/ \_1%
4 =% 13 -4 -3 —f -} -+ b } g %
/’ /N /N /N /N I /N N N /\\ 7 In Y % 3
o k 7 \_ ~ / \ \
—-w % % 1—=2 w2 e = w dayow
/ A e /\
~@+ 1) % & V2@ AR+E 40 il diyatl
I
: J’f \\\ ‘l
!
] ) \
I ll \ ‘\
@ w.2 day w.2



Addition of surreal numbers 10/28

e x&Noissimplerthan yeNo :< xisa prefixofy
e For subsets L. <R of No, let {L|R} be the simplest x & No with L <x <R.
e Any x € No is of the form x = {L|R} for suitable subsets L < R of No.

Example

0={}, 1={0}, 2={0, 11}, =011}, w={0,1,...)

Definition
If x= {x"1xR} and Y= {yL |yR}, then

x+y = {xh+y,x+yhxt +y, 0+ ¥R

(Idea: we want x"+y < x+y < x“+y, ...)



Exponentiation and differentiation 11/28

e In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an expo-
nential function exp: No — No~" that extends x+— e* on R.

e In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and
SCHMELING) defined a derivation dgy; on No with

kerdgy=R, opy(w)=1, JIpm (exp (f)) = BBM(f) -exp (f) fOI‘f e No.

In a certain technical sense, it is the simplest such derivation that satis-
fies some natural further conditions.

e The BM-derivation on No behaves in many ways like the derivation
on T, with > R in the role of x > R. For instance, dpy(log w) = %
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Asymptotic relations 13/28

Let K be an ordered differential field with constant field
C={feK:f' =0}.

We define
f<g := |fI<clglforsomece C>" (f is dominated by &)
f<g = |fI<clglforallce C" (f is negligible w.r.t. )
f=g = fg¢xf (f is asymptotic to g)
f~g = f-9<g (f is equivalent to g)

InT: 0 <e*<x<1=100<logx < x10 < e ~e*+x < e®



H-ﬁelds 14/28

We call K an H-field if
Hl. f>C = f'>0;
H2. f=1 = f ~c forsomeceC.

HARDY fields containing R; ordered differential subfields of T or No that
contain RR.

T admits further elementary properties in addition to being an H-field. It
e has small derivation, thatis, f<1= f'<1; and

e is LIOUVILLE closed, thatis, itis real closed and for all f, g, there is some
y#0withy' + fy=g.



One of our main results 15/28

We view T model-theoretically as a structure with the primitives

0, 1, +, x, 0 (derivation), < (ordering).

Theorem (Ann. of Math. Stud. vol. 195)

The elementary theory of T is completely axiomatized by:
©® T is a LIOUVILLE closed H-field with small derivation;
@ T satisfies the intermediate value property for differential polynomials.

Actually @ is a bit of an afterthought.
A corollary of the theorem: the theory of T is decidable.

We also prove a quantifier elimination result for T in a natural expansion
of the above language.
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Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.



Closure properties of HARDY fields 17/28

Theorem (HARDY 1910, BOURBAKI 1951)
Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Theorem (SINGER 1975)

Let H be a HARDY field and ® € H(Y') be a rational function. If y & ¢! satisfies
the differential equation y' = ®(y), then H(y)=H(y,y") is a HARDY field.



Closure properties of HARDY fields 17/28

Theorem (HARDY 1910, BOURBAKI 1951)
Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Theorem (SINGER 1975)

Let H be a HARDY field and ® € H(Y') be a rational function. If y & ¢! satisfies
the differential equation y' = ®(y), then H(y)=H(y,y") is a HARDY field.

Remark (BOSHERNITZAN 1987)
Any solution y € 7! to

2
y'+y=e'

lies in a HARDY field, but any HARDY field contains at most one solution.
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Let H be a maximal HARDY field. Then

© H satisfies the differential intermediate value property.
® For countable subsets A < B of H, there exists an h € H with A <h <B.
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Conjecture
Let H be a maximal HARDY field. Then

© H satisfies the differential intermediate value property.
® For countable subsets A < B of H, there exists an h € H with A <h <B.

Corollary

® H is elementarily equivalent to T as an ordered differential field.
® Under CH, all maximal HARDY fields are isomorphic.
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Theorem (VAN DER HOEVEN 2009)

The subfield T of transseries that satisfy an algebraic differential equation
over R can be embedded (as an ordered differential field) in a HARDY field.
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Theorem (VAN DER HOEVEN 2009)

The subfield T of transseries that satisfy an algebraic differential equation
over R can be embedded (as an ordered differential field) in a HARDY field.
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Theorem (VAN DER HOEVEN 2009)

The subfield T of transseries that satisfy an algebraic differential equation
over R can be embedded (as an ordered differential field) in a HARDY field.

y — ( (e_ex+]/2)

- P (o2l (fe) e

R
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rk in progress on Conjecture A 19/28

Theorem (VAN DER HOEVEN 2009)

The subfield T of transseries that satisfy an algebraic differential equation
over R can be embedded (as an ordered differential field) in a HARDY field.

"

y:

Jv

2

JJ

r (e—ex + yZ)

e ()2l (s

Theorem in progress

v Any HARDY field has an w-free HARDY field extension.
... Any w-free HARDY field has a newtonian differentially algebraic HARDY

field extension.
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Any y e R[[x']] is the asymptotic expansion of a germ ij in 7.
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y=x""+2!lx 2 +3!lx 7 + ... is differentially transcendental over R
— the differential field R(y) =R (,7',7",...) is a HARDY field.
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Theorem (BOREL 1895)
Any y e R[[x']] is the asymptotic expansion of a germ ij in ¢,

Example

y=x""+2!lx 2 +3!lx 7 + ... is differentially transcendental over R
— the differential field R(y) =R (,7',7",...) is a HARDY field.

Theorem in progress

v Every pseudocauchy sequence (1) in a HARDY field H has a pseudolimit in
some HARDY field extension of H.

v Conjecture ® for countable A and B=( (SJODIN 1970).
. General case.
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Theorem (to appear in JEMS)

Every H-field with small derivation and constant field R can be embedded as an
ordered differential field into No.
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ordered differential field into No.
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Let x be an uncountable cardinal. The field No (x) of surreal numbers of length <i
is an elementary submodel of No.



Embedding H-fields into the surreals 22/28

Theorem (to appear in JEMS)

Every H-field with small derivation and constant field R can be embedded as an
ordered differential field into No.

Theorem (to appear in JEMS)

Let x be an uncountable cardinal. The field No (x) of surreal numbers of length <i
is an elementary submodel of No.

Corollary in progress
Under CH all maximal HARDY fields are isomorphic to No(cw).
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Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

A field T = R[[9]] with partial log: T — T is a field of transseries if
T1. The domain of log is T~

T2. for each m €M and n € supp log m, we have n >1;

T3.log (1 +¢) =€—%€2+%83+ ., for all e € T with e < 1;

T4. for every sequence (m,,)) €M™ with m,, . Esupp logm,, for all n, there exists
an index ng such that for all n >ng and all n € supp log m,;, we have n > m,, 4
and (log m,)m, ., = +1.
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How to generalize transseries 24/28

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

A field T = R[[9]] with partial log: T — T is a field of transseries if
T1. The domain of log is T~

T2. for each m €M and n € supp log m, we have n >1;

T3.log (1+¢) :e—%€2+%e3+ ., for all e € T with e < 1;

T4. for every sequence (m,,)) €M™ with m,, . Esupp logm,, for all n, there exists
an index ng such that for all n >ng and all n € supp log m,;, we have n > m,, 4
and (log m,)m, ., = +1.

loglogx+e..- ﬁ + . 1ng+e +1Og10gx

Jx +eviogrte +log x
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A transserial derivation on T is a derivation 9: T — T such that
TD1. 0 is strong (i.e., it preserves infinite summation);

TD2. dlog f=90f/fforall f €T,
TD3. nested transseries are differentiated in the “natural” way.
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Surreal numbers as transseries 25/28

Definition

A transserial derivation on T is a derivation o: T — T such that
TD1. 9 is strong (i.e., it preserves infinite summation);

TD2. dlog f=90f/fforall f €T,

TD3. nested transseries are differentiated in the “natural” way.

Theorem (BERARDUCCI-MANTOVA, 2015)

No is a field of transseries and Jg\; is a transserial derivation.

Corollary

Any H-field with constant field R can be embedded in a field of transseries with
a transserial derivation.
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Solving functional equations ~ lack of hyperlogarithms

log,logx = log,x—-1

log,x = fn 1o;5x

p<a

Problem with dgpp
OBM(EXP W (EXPw W) = eXP(eXPwX) £ eXPio(EXPw X) €XPe X

For a suitable definition of the class Hy of hyperseries (including the nested ones),
we have No = Hy for the map ¢: Hy — No; f — f(w).



Thank you!

http://wuw.TeXmcs . org



