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Let C 1 be the ring of germs at +∞ of continuously differentiable functions
(a,∞)→ℝ (a∈ℝ).

We denote the germ at +∞ of a function f also by f , relying on context.

A HARDY field is a subring of C 1 which is a field that contains with each germ
of a function f also the germ of its derivative f ′ (where f ′ might be defined on
a smaller interval than f).

Definition

ℚ, ℝ, ℝ(x), ℝ(x, ex), ℝ(x, ex, log x), ℝ�x, ex2, erf x�

Examples
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HARDY fields capture the somewhat vague notion of functions with
“regular growth” at infinity (BOREL, DU BOIS-REYMOND, ...):
Let H be a HARDY field and f ∈H. Then

f ≠0 ⟹ 1
f ∈H ⟹ {{{{{{{{{{{{{{{{{{{{{{{{ f (t)>0, eventually, or

f (t)<0, eventually.
Consequently,
• H carries an ordering making H an ordered field:

f >0 ⟺ f (t)>0 eventually;

• f is eventually monotonic, and

lim
t→+∞

f (t)∈ℝ∪{±∞}.
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𝕋≔ closure of ℝ∪{x} under exp, log and infinite summation

eex+⋯ −3ex2 +5(log x)π +42+x−1 +⋯+e−x

Here one should think of x as a positive infinite indeterminate.
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𝕋≔ closure of ℝ∪{x} under exp, log and infinite summation

�
𝔪

f𝔪 𝔪 = eex+ex/2+⋯ −3ex2 +5(log x)π +42+x−1 +2x−2 +6x−3 +⋯+e−x

x: positive infinite indeterminate f𝔪: coefficent 𝔪: transmonomial

The formal definition of 𝕋 is inductive and somewhat lengthy. For each
transseries there is a finite bound on the “nesting” of exp and log among
its transmonomials: the following “transseries” are not in 𝕋:

1
x + 1

ex + 1
eex + 1

eeex +⋯ 1
x + 1

x log x + 1
x log x log log x +⋯
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• With the natural ordering of transseries (via the leading coefficient),
𝕋 is a real closed ordered field extension of ℝ.

• Each f ∈𝕋 can be differentiated term by term (with x′=1):

(((((((((((((((((�
n=0

∞
n! ex

xn)))))))))))))))))
′

= �
n=0

∞
n!((((((((((ex

xn))))))))))′ = �
n=0

∞
n!((((((((((ex

xn −n ex

xn+1)))))))))) = ex

x

• This yields a derivation f ↦ f ′ on the field 𝕋:

( f + g)′= f ′+ g′, ( f ⋅ g)′= f ′ ⋅ g+ f ⋅ g′

Its constant field is { f ∈𝕋: f ′=0}=ℝ.
• Given f , g∈𝕋, the equation y′+ f y= g admits a solution y≠0 in 𝕋.
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These are simply strings of +, − of arbitrary ordinal length. CONWAY turned
the class No of surreals into a real closed field extension of ℝ.
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• x∈No is simpler than y∈No :⟺ x is a prefix of y
• For subsets L<R of No, let {L|R} be the simplest x∈No with L<x<R.
• Any x∈No is of the form x={L|R} for suitable subsets L<R of No.

0={|}, 1={0|}, 2={0,1|}, 1
2 ={0|1}, 𝜔 ={0,1,…|}

Example

If x={xL |xR} and y={yL |yR}, then

x+y ≔ {xL +y,x+yL |xR +y,x+yR}.

(Idea: we want xL +y < x+y < xR +y, …)

Definition
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• In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an expo-
nential function exp:No→No>0 that extends x↦ex on ℝ.

• In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and
SCHMELING) defined a derivation ∂BM on No with

ker ∂BM =ℝ, ∂BM(𝜔)=1, ∂BM (exp( f ))=∂BM( f ) ⋅exp( f ) for f ∈No.

In a certain technical sense, it is the simplest such derivation that satis-
fies some natural further conditions.

• The BM-derivation on No behaves in many ways like the derivation
on 𝕋, with 𝜔 >ℝ in the role of x>ℝ. For instance, ∂BM(log 𝜔)= 1

𝜔 .



Towards a unified theory 12/28

Numbers
(surreal)

Germs
(in HARDY

fields)

Transseries



Towards a unified theory 12/28

Numbers
(surreal)

Germs
(in HARDY

fields)

Transseries?



Towards a unified theory 12/28

Numbers
(surreal)

Germs
(in HARDY

fields)

TransseriesH-fields



Towards a unified theory 12/28

Numbers
(surreal)

Germs
(in HARDY

fields)

TransseriesH-fields

Hardy

Hahn
Hausdorff



Asymptotic relations 13/28

Let K be an ordered differential field with constant field

C={ f ∈K : f ′=0}.
We define

f ≼ g :⟺ | f |⩽ c |g| for some c∈C>0 ( f is dominated by g)
f ≺ g :⟺ | f |⩽ c |g| for all c∈C>0 ( f is negligible w.r.t. g)
f ≍ g :⟺ f ≼ g≼ f ( f is asymptotic to g)
f ∼ g :⟺ f − g≺ g ( f is equivalent to g)

In 𝕋: 0 ≺ e−x ≺ x−10 ≺ 1 ≍ 100 ≺ log x ≺ x1/10 ≺ ex ∼ex +x ≺ eex

Example
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We call K an H-field if
H1. f >C ⟹ f ′>0;
H2. f ≍1 ⟹ f ∼ c for some c∈C.

Definition

HARDY fields containing ℝ; ordered differential subfields of 𝕋 or No that
contain ℝ.

Examples

𝕋 admits further elementary properties in addition to being an H-field. It
• has small derivation, that is, f ≺1⟹ f ′≺1; and
• is LIOUVILLE closed, that is, it is real closed and for all f ,g, there is some

y≠0 with y′+ f y= g.
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We view 𝕋 model-theoretically as a structure with the primitives

0, 1, +, ×, ∂ (derivation), ⩽ (ordering).

The elementary theory of 𝕋 is completely axiomatized by:
•1 𝕋 is a LIOUVILLE closed H-field with small derivation;

•2 𝕋 satisfies the intermediate value property for differential polynomials.

Theorem (Ann. of Math. Stud. vol. 195)

Actually •2 is a bit of an afterthought.
A corollary of the theorem: the theory of 𝕋 is decidable.
We also prove a quantifier elimination result for 𝕋 in a natural expansion
of the above language.



H-field elements as germs 16/28

Numbers
(surreal)

Germs
(in HARDY

fields)

TransseriesH-fields



H-field elements as germs 16/28

Numbers
(surreal)

Germs
(in HARDY

fields)

Transseries

H-fields



Closure properties of HARDY fields 17/28

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.
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Let H be a HARDY field and Φ∈H(Y) be a rational function. If y∈C 1 satisfies
the differential equation y′=Φ(y), then H⟨y⟩=H(y,y′) is a HARDY field.

Theorem (SINGER 1975)
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Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.
Theorem (HARDY 1910, BOURBAKI 1951)

Let H be a HARDY field and Φ∈H(Y) be a rational function. If y∈C 1 satisfies
the differential equation y′=Φ(y), then H⟨y⟩=H(y,y′) is a HARDY field.

Theorem (SINGER 1975)

Any solution y∈C 1 to
y′′+y=ex2

lies in a HARDY field, but any HARDY field contains at most one solution.

Remark (BOSHERNITZAN 1987)
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Let H be a maximal HARDY field. Then

•A H satisfies the differential intermediate value property.
•B For countable subsets A<B of H, there exists an h∈H with A<h<B.

Conjecture
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Let H be a maximal HARDY field. Then

•A H satisfies the differential intermediate value property.
•B For countable subsets A<B of H, there exists an h∈H with A<h<B.

Conjecture

•A H is elementarily equivalent to 𝕋 as an ordered differential field.
•B Under CH, all maximal HARDY fields are isomorphic.

Corollary
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The subfield 𝕋da of transseries that satisfy an algebraic differential equation
over ℝ can be embedded (as an ordered differential field) in a HARDY field.

Theorem (VAN DER HOEVEN 2009)
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The subfield 𝕋da of transseries that satisfy an algebraic differential equation
over ℝ can be embedded (as an ordered differential field) in a HARDY field.
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Work in progress on Conjecture A 19/28

The subfield 𝕋da of transseries that satisfy an algebraic differential equation
over ℝ can be embedded (as an ordered differential field) in a HARDY field.

Theorem (VAN DER HOEVEN 2009)

y = � (e−ex +y2)

= � e−ex +� �� e−ex�
2
+2� �� e−ex�

3
+⋯

✓ Any HARDY field has an ω-free HARDY field extension.
… Any ω-free HARDY field has a newtonian differentially algebraic HARDY

field extension.

Theorem in progress
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Any y∈ℝ[[x−1]] is the asymptotic expansion of a germ ỹ in C ∞.
Theorem (BOREL 1895)
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Any y∈ℝ[[x−1]] is the asymptotic expansion of a germ ỹ in C ∞.
Theorem (BOREL 1895)

y=x−1 +2!!x−2 +3!!x−3 +⋯ is differentially transcendental over ℝ
⟹ the differential field ℝ⟨ỹ⟩=ℝ(ỹ, ỹ′, ỹ′′,…) is a HARDY field.

Example



Work in progress on Conjecture B 20/28

Any y∈ℝ[[x−1]] is the asymptotic expansion of a germ ỹ in C ∞.
Theorem (BOREL 1895)

y=x−1 +2!!x−2 +3!!x−3 +⋯ is differentially transcendental over ℝ
⟹ the differential field ℝ⟨ỹ⟩=ℝ(ỹ, ỹ′, ỹ′′,…) is a HARDY field.

Example

✓ Every pseudocauchy sequence (yn) in a HARDY field H has a pseudolimit in
some HARDY field extension of H.

✓ Conjecture •B for countable A and B=∅ (SJÖDIN 1970).
… General case.

Theorem in progress
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Every H-field with small derivation and constant field ℝ can be embedded as an
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Theorem (to appear in JEMS)
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Every H-field with small derivation and constant field ℝ can be embedded as an
ordered differential field into No.

Theorem (to appear in JEMS)

Let 𝜅 be an uncountable cardinal. The field No(𝜅) of surreal numbers of length <𝜅
is an elementary submodel of No.

Theorem (to appear in JEMS)
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Every H-field with small derivation and constant field ℝ can be embedded as an
ordered differential field into No.

Theorem (to appear in JEMS)

Let 𝜅 be an uncountable cardinal. The field No(𝜅) of surreal numbers of length <𝜅
is an elementary submodel of No.

Theorem (to appear in JEMS)

Under CH all maximal HARDY fields are isomorphic to No(𝜔1).
Corollary in progress
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A field 𝐓=ℝ[[𝔐]] with partial log:𝐓−−−→𝐓 is a field of transseries if
T1. The domain of log is 𝐓>0;
T2. for each 𝔪∈𝔐 and 𝔫∈supp log 𝔪, we have 𝔫≻1;
T3. log (1+𝜀)=𝜀− 1

2 𝜀2 + 1
3 𝜀3 +⋯, for all 𝜀∈𝐓 with 𝜀≺1;

T4. for every sequence (𝔪n)∈𝔐ℕ with 𝔪n+1∈supp log 𝔪n for all n, there exists
an index n0 such that for all n>n0 and all 𝔫∈supp log 𝔪n, we have 𝔫≽𝔪n+1
and (log 𝔪n)𝔪n+1 =±1.

Definition (VAN DER HOEVEN 2000, SCHMELING 2001)
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A transserial derivation on 𝐓 is a derivation ∂:𝐓→𝐓 such that
TD1. ∂ is strong (i.e., it preserves infinite summation);
TD2. ∂ log f =∂ f / f for all f ∈𝐓>0;
TD3. nested transseries are differentiated in the “natural” way.

Definition
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Surreal numbers as transseries 25/28

A transserial derivation on 𝐓 is a derivation ∂:𝐓→𝐓 such that
TD1. ∂ is strong (i.e., it preserves infinite summation);
TD2. ∂ log f =∂ f / f for all f ∈𝐓>0;
TD3. nested transseries are differentiated in the “natural” way.

Definition

No is a field of transseries and ∂BM is a transserial derivation.
Theorem (BERARDUCCI–MANTOVA, 2015)

Any H-field with constant field ℝ can be embedded in a field of transseries with
a transserial derivation.

Corollary
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Solving functional equations ↝ lack of hyperlogarithms

log𝜔 log x = log𝜔 x−1
log𝛼 x = � �

𝛽<𝛼

1
log𝛽 x

Problem with ∂BM

∂BM(exp𝜔(exp𝜔 𝜔)) = exp𝜔′ (exp𝜔 x) ≠ exp𝜔′ (exp𝜔 x)exp𝜔′ x

For a suitable definition of the class Hy of hyperseries (including the nested ones),
we have No≅Hy for the map 𝜙:Hy⟶No; f ⟼ f (𝜔).

Conjecture
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