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HARDY fields 6/30
Let ¢ ' be the ring of germs at +co of continuously differentiable functions
(a,0) >R (aeR).
We denote the germ at +cc of a function f also by f, relying on context.

A HARDY field is a subring of ¢ ' which is a field that contains with each germ

of a function f also the germ of its derivative ' (where f" might be defined on
a smaller interval than f).

Examples. Q, R, R(x), R(x,e"), R(xe" logx), ]R(x,exz,erfx)
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HARDY fields capture the somewhat vague notion of functions with

“ ” at infinity (BOREL, DU BOIS-REYMOND, ...):
Let H be a HARDY field and f € H. Then
1 f(x)>0, eventually, or
f#0 = 7EH - {f(x) <0, eventually.

Consequently,
e [ carries an ordering making H an

f>0 <= f(x)>0eventually;
e fis , and

lim f(x)e R U{+o0}.

X—+00
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T := closure of R U {x} under exp, log and infinite summation

X | AX/2 x/3 2
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The field T of transseries 9/30
T =R[[21]]:= closure of IR U {x} under exp, log and infinite summation

X x/2 2
Y fum = e te 30X 5 (log ) + 42+ x4 2x 24 6x 34 e
m

x: positive infinite indeterminate m: transmonomial

supp f: well-based subset of 9
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With the natural ordering of transseries (via the leading coefficient),
T is a real closed ordered field extension of R.

Each f € T can be differentiated term by term (with x" =1):

/
oo 'ex B oo ' ex / - o0 ' ex ex B ex
Z”'F =) n ) T pa 7 e Ty
n=0

This yields a derivation f — f' on the field T:

f+'=f+g, (f-'=f-g+fg
Its constant field is {f € T: f' =0} = R.
Given f,g€ T, the equation v’ + fiy = ¢ admits a solution y#0 in T.
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Class On of ordinal numbers
For any set L of ordinal numbers, there is a smallest ordinal number « > L
Class No of surreal numbers (CONWAY)

For any sets L < R of surreal numbers, there is a simplest surreal number
{L|R} such that L<{L|R} <R.

We have On C No by taking R = 0:

0 = {l}

1 = {0}

2 = {0,1]}

w = {0,1,2,...]}
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Definition
If x = {x"|x"} and y = {y*|y"}, then
x+y = {x+y,x+yt Ry, + 5
(Idea: we want x“ +y < x+y < x*+y, ...)
Definition
If x = {x"|x"} and y = {y*|y"}, then
Xy = XYy +xy—xy, Xy +xy—Xy[Xy+xy—xy, Xy +xy—Xxyj,

where x' €x;, x" " €xg, y' €y, v EYr

Theorem (CONWAY)
No is a real closed field.
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e In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an expo-
nential function exp: No — No~" that extends x+— e* on R.

e In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and
SCHMELING) defined a derivation dgy; on No with

ker BBM = R, BBM(w) — 1, BBM (exp (f)) = BBM(f) -exp (f) fOI'f e No.

In a certain technical sense, it is the simplest such derivation that satis-
fies some natural further conditions.

e The BM-derivation on No behaves in many ways like the derivation
on T, with «w> R in the role of x > R. For instance, dg\i(log w) = %
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Let K be an ordered differential field with constant field

C={feK:f" =0}
We define
f<Xg := |fI<cl|glforsomece C’ (f is dominated by &)
f<g = |fI<clglfor allceC”! (f is negligible w.r.t. §)
f=g:= fg¢f (f is asymptotic to g)
f~g = f-g<g (f is equivalent to §)

Example. InT: 0 < e™ < x < 1 =100 < logx < x'/"Y < e* ~e"+x <

ee
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We call K an H-field if
Hl. f>C = f'>0;
H2. f=1 = f ~c forsomeceC.

Examples. HARDY fields containing IR; ordered differential subfields of T
or No that contain R.

T admits further elementary properties in addition to being an H-field. It

e has small derivation, thatis, f<1= f'<1; and

e is LIOUVILLE closed, thatis, itis real closed and for all f, g, there is some
y#0withy' + fy=g.
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We view T model-theoretically as a structure with the primitives

0, 1, +, x, d(derivation), < (ordering).

Theorem (Ann. of Math. Stud. vol. 195 + afterthought)

The elementary theory of T is completely axiomatized by:

® T isa LIOUVILLE closed H-field with small derivation;

® T satisfies the intermediate value property for differential polynomials:
Given PeT[Y,Y',....Y " and u<vin T with P(u) P(v) <0, there exists
aye T withu<y<vand P(y)=0

In particular: the theory of T is decidable.

We also prove a quantifier elimination result for T in a natural expansion
of the above language.
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Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.



Closure properties of HARDY fields 21/30

Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture
Let H be a maximal HARDY field. Then
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Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture
Let H be a maximal HARDY field. Then

© [ satisfies the differential intermediate value property.
® For countable subsets L < R of H, there exists an h € H with L <h <R.

Corollary

© H is elementarily equivalent to T as an ordered differential field.
® Under CH, all maximal HARDY fields are isomorphic.
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Theorem (JEMS 2019)
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Theorem (JEMS 2019)

Let x be an uncountable cardinal. The field No (x) of surreal numbers of length <i
is an elementary submodel of No.
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Theorem (JEMS 2019)

Every H-field with small derivation and constant field R can be embedded as an
ordered differential field into No.

Theorem (JEMS 2019)

Let x be an uncountable cardinal. The field No (k) of surreal numbers of length <ix
is an elementary submodel of No.

Corollary in progress
Under CH all maximal HARDY fields are isomorphic to No(w1).
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Definition (VAN DER HOEVEN 2000, SCHMELING 2001)
A field T=R[[IN]] with log: T~ — T is a field of transseries if ...

A transserial derivation on T is a derivation o: T — T such that ...

Theorem (BERARDUCCI-MANTOVA, 2015)

No is a field of transseries and Jg\; is a transserial derivation.

Corollary

Any H-field with constant field IR can be embedded in a field of transseries with
a transserial derivation.
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Iterated exponentials and logarithms

expu(x+1) = expexpy,x
exp2(x+1) = expy,expqx
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Transseries not completely closed...

Iterated exponentials and logarithms

expu(x+1) = expexpy,x
exp2(Xx+1) = expy,expe2x

— stronger growth that e*, e, ..., exp, x,e“P"
ger g p

Functional equations

f(X) — ﬁ_l_ef(logX) _ ﬁ+e‘/@+e Toglogx+.-

s €XPw €XPw X, -

27/30



Hyperlogarithms and hyperexponentials

exp exXpy X log,logx = log,x—1
eXPw €XP? X log2log,x = log,2x—1

expo(x+1)
exp2(x+1)



Hyperlogarithms and hyperexponentials

expo(x+1) exp eXpy X log ., log x log,x—1
exp2(x+1) = expyexpuwx log2log,x = log.2x—1

1
logwx o fxlogxloglogx---

log,x = f[!—[ log;x
<a




Hyperseries 28/30

Hyperlogarithms and hyperexponentials

exXpou(x+1) = expexpyx log,logx = log,x—1
exp2(x+1) = expyexpe2x log.2log,x = log2x—1
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Solutions de f(x) = /x + o/ (108%)
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Hyperlogarithms and hyperexponentials

expou(x+1) = expexpyx log,logx = log,x—1
exp2(x+1) = expyexpqx log.2log,x = log2x—1

1
lngx o Jxlogxloglogx---

log,x = Jn 1o;ﬁx

p<a

Nested hyperseries
Solutions de f(x) = /X + e/ (logx)

foa(x) < fog(x) < foay,(x) < fo(x) < fr,(x) < f1(x) < fa(x)
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Hyperlogarithms and hyperexponentials

expou(x+1) = expexpyx log,logx = log,x—1
exp2(x+1) = expyexpqx log.2log,x = log2x—1

1
lngx B Jxlogxloglogx---

log,x = Jn 1o;ﬁx

p<a

Nested hyperseries
Solutions de f(x) = /X + o/ (08 . — FNo (%)

<f_2(x) < v <f_1(x) < v <f0(x) < v <f1/2(x) < v <f1(x) <X <f2(x) <X
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For an appropriate definition of the class Hy of hyperseries, we have No = Hy for
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Conjecture (vdH 2006)

For an appropriate definition of the class Hy of hyperseries, we have No = Hy for
the map ¢:Hy — No; f — f(w).

Proof. By constructing a Conway bracket {|} on Hy.

Examples :
{x,e%e%, .|} = expux
(v, vx+eV%, |, yx+e?V8 2 x} = fo(x)
2 loo 210 x e‘lloglogx Jogx 1
{xz,elog X ee g,...‘...,ee e ,eﬁ} = expw(logwx+5)
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