A zero-test for σ-algebraic power series

Joris van der Hoeven and Gleb Pogudin, MAX team, LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris

IHP, Groupe de travail "Transcendance et Combinatoire"

Plan

- Introduction: what do we want?
- Our results: what can we do?
- Nuts and bolts: how do we do this?

Introduction: what do we want?

Big picture

We often deal with objects defined implicitly by equations, e.g:

- Algebraic equations \rightarrow numbers ($\sqrt{2}:=$ positive root of $x^{2}-2=0$);
- Differential equations \rightarrow functions ($f=e^{x}$ as $f^{\prime}=f$ with $f(0)=1$)

Big picture

We often deal with objects defined implicitly by equations, e.g:

- Algebraic equations \rightarrow numbers ($\sqrt{2}:=$ positive root of $x^{2}-2=0$);
- Differential equations \rightarrow functions ($f=e^{x}$ as $f^{\prime}=f$ with $f(0)=1$)

Fundamental question

Equality testing: are two such objects equal? (e.g. $\sqrt{2}-1=\frac{1}{1+\sqrt{2}}$)

Big picture

We often deal with objects defined implicitly by equations, e.g:

- Algebraic equations \rightarrow numbers ($\sqrt{2}:=$ positive root of $x^{2}-2=0$);
- Differential equations \rightarrow functions ($f=e^{x}$ as $f^{\prime}=f$ with $f(0)=1$)

Fundamental question

Equality testing: are two such objects equal? (e.g. $\sqrt{2}-1=\frac{1}{1+\sqrt{2}}$)
By $A=B \Longleftrightarrow A-B=0$ is often reduced to zero-testing.

Context

In symbolic computation:

- Polynomial equations \rightarrow algebraic numbers
- Linear differential equations \rightarrow D-finite power series
- Algebraic differential equations \rightarrow D-algebraic power series

Context

In symbolic computation:

- Polynomial equations \rightarrow algebraic numbers
- Linear differential equations \rightarrow D-finite power series
- Algebraic differential equations \rightarrow D-algebraic power series
- Algebraic difference equations

$$
\text { (e.g., } \left.f_{n+1}=f_{n}+f_{n-1} \text { or } \Gamma(z+1)=z \Gamma(z)\right) \text { : }
$$

Context

In symbolic computation:

- Polynomial equations \rightarrow algebraic numbers
- Linear differential equations \rightarrow D-finite power series
- Algebraic differential equations \rightarrow D-algebraic power series
- Algebraic difference equations (e.g., $f_{n+1}=f_{n}+f_{n-1}$ or $\left.\Gamma(z+1)=z \Gamma(z)\right)$:

1. σ-algebraic sequences
2. σ-algebraic power series

Context

In symbolic computation:

- Polynomial equations \rightarrow algebraic numbers Zero-test: Liouville's theorem
- Linear differential equations \rightarrow D-finite power series Zero-test: folklore?
- Algebraic differential equations \rightarrow D-algebraic power series Zero-test: Denef \& Lipshitz (1984), Shackell (1993), van der Hoeven $(2002,2019) \rightarrow$ Two weeks ago
- Algebraic difference equations

$$
\text { (e.g., } \left.f_{n+1}=f_{n}+f_{n-1} \text { or } \Gamma(z+1)=z \Gamma(z)\right):
$$

1. σ-algebraic sequences Zero-test: Kauers (2007) for a large class
2. σ-algebraic power series Zero-test: This talk!

Background: computable power series

Let K be a computable ground field (e.g., \mathbb{Q}).

Background: computable power series

Let K be a computable ground field (e.g., \mathbb{Q}).
Computable power series
A power series $f=\sum_{i=0}^{\infty} f_{i} t^{i} \in K \llbracket z \rrbracket$ is called computable if there exists an algorithm computing f_{n} given n as input.

Background: computable power series

Let K be a computable ground field (e.g., \mathbb{Q}).
Computable power series
A power series $f=\sum_{i=0}^{\infty} f_{i} t^{i} \in K \llbracket z \rrbracket$ is called computable if there exists an algorithm computing f_{n} given n as input.

Remark

- sum, product, quotient, and composition (if well-defined) of computable power series are computable;

Background: computable power series

Let K be a computable ground field (e.g., \mathbb{Q}).
Computable power series
A power series $f=\sum_{i=0}^{\infty} f_{i} t^{i} \in K \llbracket z \rrbracket$ is called computable if there exists an algorithm computing f_{n} given n as input.

Remark

- sum, product, quotient, and composition (if well-defined) of computable power series are computable;
- BUT given computable f and g, it is not decidable whether $f=g$ (or, equivalently, whether $f-g=0$)

Background: computable power series

Let K be a computable ground field (e.g., \mathbb{Q}).
Computable power series
A power series $f=\sum_{i=0}^{\infty} f_{i} t^{i} \in K \llbracket z \rrbracket$ is called computable if there exists an algorithm computing f_{n} given n as input.

Remark

- sum, product, quotient, and composition (if well-defined) of computable power series are computable;
- BUT given computable f and g, it is not decidable whether $f=g$ (or, equivalently, whether $f-g=0$)

Wanted: zero-test

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

Definition

f is σ-algebraic of order r

$$
\Longleftrightarrow \exists P \in K\left[X_{0}, \ldots, X_{r}\right] \backslash\{0\}: P\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right)=0
$$

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

Definition
f is σ-algebraic of order r

$$
\Longleftrightarrow \exists P \in K\left[X_{0}, \ldots, X_{r}\right] \backslash\{0\}: P\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right)=0
$$

Examples

- $g=z+z^{2}, f=z \Longrightarrow \sigma(f)-f-f^{2}=0$

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

Definition
f is σ-algebraic of order r

$$
\Longleftrightarrow \exists P \in K\left[X_{0}, \ldots, X_{r}\right] \backslash\{0\}: P\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right)=0
$$

Examples

- $g=z+z^{2}, f=z \Longrightarrow \sigma(f)-f-f^{2}=0$
- Γ-function satisfies $\Gamma(n+1)=n \Gamma(n)$

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

Definition
f is σ-algebraic of order r

$$
\Longleftrightarrow \exists P \in K\left[X_{0}, \ldots, X_{r}\right] \backslash\{0\}: P\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right)=0
$$

Examples

- $g=z+z^{2}, f=z \Longrightarrow \sigma(f)-f-f^{2}=0$
- Γ-function satisfies $\Gamma(n+1)=n \Gamma(n)$,

BUT after $z:=\frac{1}{n}$ the shift $n \rightarrow n+1$ becomes $z \rightarrow \frac{z}{1+z}=z-\ldots$

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

Definition
f is σ-algebraic of order r

$$
\Longleftrightarrow \exists P \in K\left[X_{0}, \ldots, X_{r}\right] \backslash\{0\}: P\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right)=0
$$

Computability
σ-algebraic $f \in K \llbracket z \rrbracket$ is computable if represented by

- $P\left(X_{0}, \ldots, X_{r}\right)$ with $\frac{\partial P}{\partial X_{r}}\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right) \neq 0$
- sufficiently many initial terms.

σ-algebraic power series

Fix $g=z+\mathcal{O}\left(z^{2}\right) \in K \llbracket z \rrbracket$ and consider difference operator

$$
\sigma: f(z) \rightarrow f(g(z)) \text { for every } f(z) \in K \llbracket z \rrbracket
$$

Definition
f is σ-algebraic of order r

$$
\Longleftrightarrow \exists P \in K\left[X_{0}, \ldots, X_{r}\right] \backslash\{0\}: P\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right)=0
$$

Computability
σ-algebraic $f \in K \llbracket z \rrbracket$ is computable if represented by

- $P\left(X_{0}, \ldots, X_{r}\right)$ with $\frac{\partial P}{\partial X_{r}}\left(f, \sigma(f), \ldots, \sigma^{r}(f)\right) \neq 0$

Differential case: the latter not required but achieved;

- sufficiently many initial terms.

Our results: what can we do?

Our algorithm

We give the first algorithm such that
Input: - a σ-algebraic power series f defined as above (annihilator $P+$ terms)

- polynomial Q in $f, \sigma(f), \sigma^{2}(f), \ldots$

Output: True if $Q=0$ and Fal se otherwise

Our algorithm

We give the first algorithm such that
Input: - a σ-algebraic power series f defined as above (annihilator $P+$ terms)

- polynomial Q in $f, \sigma(f), \sigma^{2}(f), \ldots$

Output: True if $Q=0$ and Fal se otherwise

Important remark

The annihilator P may be not over K but over $A \subset K \llbracket z \rrbracket$ such that

- A is a subalgebra closed under σ
- A has a zero test

Our algorithm

We give the first algorithm such that
Input: - a σ-algebraic power series f defined as above (annihilator $P+$ terms)

- polynomial Q in $f, \sigma(f), \sigma^{2}(f), \ldots$

Output: True if $Q=0$ and Fal se otherwise

Important remark

The annihilator P may be not over K but over $A \subset K \llbracket z \rrbracket$ such that

- A is a subalgebra closed under σ
- A has a zero test
\Longrightarrow One can build towers of extensions with zero-test (later in example)

Our algorithm

We give the first algorithm such that
Input: - a σ-algebraic power series f defined as above (annihilator $P+$ terms)

- polynomial Q in $f, \sigma(f), \sigma^{2}(f), \ldots$

Output: True if $Q=0$ and Fal se otherwise

Important remark

The annihilator P may be not over K but over $A \subset K \llbracket z \rrbracket$ such that

- A is a subalgebra closed under σ
- A has a zero test
\Longrightarrow One can build towers of extensions with zero-test (later in example)
We provide a proof-of-concept Julia implementation https://github.com/pogudingleb/DifferenceZeroTest (gives a good idea how one should not implement this)

Example (Legendre's duplication formula)

$$
\Gamma(n) \Gamma\left(n+\frac{1}{2}\right)=2^{1-2 n} \sqrt{\pi} \Gamma(2 n)
$$

Example (Legendre's duplication formula)

$$
\Gamma(n) \Gamma\left(n+\frac{1}{2}\right)=2^{1-2 n} \sqrt{\pi} \Gamma(2 n)
$$

How we represent 「-function?
Stirling's series: $\log \Gamma(n+1)=n \log n-n+\frac{1}{2} \log (2 \pi n)+\sum_{k=1}^{\infty} \frac{s_{k}}{n^{k}}$

Example (Legendre's duplication formula)

$$
\Gamma(n) \Gamma\left(n+\frac{1}{2}\right)=2^{1-2 n} \sqrt{\pi} \Gamma(2 n)
$$

How we represent 「-function?
Stirling's series: $\log \Gamma(n+1)=n \log n-n+\frac{1}{2} \log (2 \pi n)+\sum_{k=1}^{\infty} \frac{s_{k}}{n^{k}}$
For $S(z):=\sum_{k=1}^{\infty} s_{k} z^{k}$ and $\sigma(f(z))=f\left(\frac{z}{1+z}\right)$, we have

$$
z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0
$$

Example (Legendre's duplication formula)

$$
\Gamma(n) \Gamma\left(n+\frac{1}{2}\right)=2^{1-2 n} \sqrt{\pi} \Gamma(2 n)
$$

How we represent 「-function?
Stirling's series: $\log \Gamma(n+1)=n \log n-n+\frac{1}{2} \log (2 \pi n)+\sum_{k=1}^{\infty} \frac{s_{k}}{n^{k}}$
For $S(z):=\sum_{k=1}^{\infty} s_{k} z^{k}$ and $\sigma(f(z))=f\left(\frac{z}{1+z}\right)$, we have

$$
z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0
$$

Legendre's formula turns into

$$
z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}
$$

Example (Legendre's duplication formula)

Setup

- $S(z)$ is given by $z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0$ and enough terms;
- We want to check $z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}$

Example (Legendre's duplication formula)

Setup

- $S(z)$ is given by $z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0$ and enough terms;
- We want to check $z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}$

Building a zero-test
Starting with $\mathbb{Q}[z]$ (has zero-test!)

Example (Legendre's duplication formula)

Setup

- $S(z)$ is given by $z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0$ and enough terms;
- We want to check $z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}$

Building a zero-test

Starting with $\mathbb{Q}[z]$ (has zero-test!)

1. Adjoin $\log (1+z)$ and $\log \left(1+\frac{z}{1+z / 2}\right)(\sigma$-transcendental $)$

Example (Legendre's duplication formula)

Setup

- $S(z)$ is given by $z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0$ and enough terms;
- We want to check $z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}$

Building a zero-test

Starting with $\mathbb{Q}[z]$ (has zero-test!)

1. Adjoin $\log (1+z)$ and $\log \left(1+\frac{z}{1+z / 2}\right)$ (σ-transcendental)
2. Adjoin $\log (1+z / 2)$ (σ-algebraic)

Example (Legendre's duplication formula)

Setup

- $S(z)$ is given by $z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0$ and enough terms;
- We want to check $z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}$

Building a zero-test

Starting with $\mathbb{Q}[z]$ (has zero-test!)

1. Adjoin $\log (1+z)$ and $\log \left(1+\frac{z}{1+z / 2}\right)$ (σ-transcendental)
2. Adjoin $\log (1+z / 2)$ (σ-algebraic)
3. Adjoin $S(z), S\left(\frac{z}{2}\right)$, and $S\left(\frac{z}{1+z / 2}\right)$ (σ-algebraic)

Example (Legendre's duplication formula)

Setup

- $S(z)$ is given by $z \sigma(S)-z S-z+\left(1+\frac{z}{2}\right) \log (1+z)=0$ and enough terms;
- We want to check $z\left(S\left(\frac{z}{2}\right)-S(z)-S\left(\frac{z}{1+z / 2}\right)\right)=\log \left(1+\frac{z}{2}\right)-\frac{z}{2}$

Building a zero-test

Starting with $\mathbb{Q}[z]$ (has zero-test!)

1. Adjoin $\log (1+z)$ and $\log \left(1+\frac{z}{1+z / 2}\right)$ (σ-transcendental)
2. Adjoin $\log (1+z / 2)$ (σ-algebraic)
3. Adjoin $S(z), S\left(\frac{z}{2}\right)$, and $S\left(\frac{z}{1+z / 2}\right)$ (σ-algebraic)

And now we can perform the desired zero-test (well, implementation can).

Nuts and bolts: how do we do this?

Difference reduction

Main notions

- Difference polynomial over a difference ring A is an element of $A\left[X, \sigma(X), \sigma^{2}(X), \ldots\right]$.
- Let P be difference polynomial:
- Leader is $\sigma^{\ell} X$ appearing in P s.t. ℓ is maximal;
- let d be the degree of P in $\sigma^{\ell} X$;
- $(\ell, d):=$ Ritt rank of P.

Difference reduction

Main notions

- Difference polynomial over a difference ring A is an element of $A\left[X, \sigma(X), \sigma^{2}(X), \ldots\right]$.
- Let P be difference polynomial:
- Leader is $\sigma^{\ell} X$ appearing in P s.t. ℓ is maximal;
- let d be the degree of P in $\sigma^{\ell} X$;
- $(\ell, d):=$ Ritt rank of P.

Reduction

- P and Q have Ritt ranks $\left(\ell_{P}, d_{P}\right)$ and $\left(\ell_{Q}, d_{Q}\right)$;
- if $\ell_{P} \leqslant \ell_{Q}$ and $d_{P} \leqslant d_{Q}, Q$ is reducible w.r.t. P
\Longleftarrow pseudo-Euclidean division of Q by $\sigma^{\ell_{Q}-\ell_{P}} P$ w.r.t $\sigma^{\ell_{Q}} X$.

Difference reduction

Main notions

- Difference polynomial over a difference ring A is an element of $A\left[X, \sigma(X), \sigma^{2}(X), \ldots\right]$.
- Let P be difference polynomial:
- Leader is $\sigma^{\ell} X$ appearing in P s.t. ℓ is maximal;
- let d be the degree of P in $\sigma^{\ell} X$;
- $(\ell, d):=$ Ritt rank of P.

Reduction

- P and Q have Ritt ranks $\left(\ell_{P}, d_{P}\right)$ and $\left(\ell_{Q}, d_{Q}\right)$;
- if $\ell_{P} \leqslant \ell_{Q}$ and $d_{P} \leqslant d_{Q}, Q$ is reducible w.r.t. P
\Longleftarrow pseudo-Euclidean division of Q by $\sigma^{\ell_{Q}-\ell_{P}} P$ w.r.t $\sigma^{\ell_{Q}} X$.
Oh lá lá!

$$
\begin{aligned}
& \text { differential reducibility } \rightarrow \text { total ordering } \\
& \text { difference reducibility } \rightarrow \text { partial ordering }
\end{aligned}
$$

Coherent autoreduced set

Autoreduced set
For $\left\{Q_{1}, \ldots, Q_{s}\right\}$, every Q_{i} is not reducible w.r.t. the rest
\Longrightarrow autoreduced set

Coherent autoreduced set

Autoreduced set

For $\left\{Q_{1}, \ldots, Q_{s}\right\}$, every Q_{i} is not reducible w.r.t. the rest
\Longrightarrow autoreduced set
Coherent autoreduced set ("minimal annihilator")
Autoreduced $\left\{Q_{1}, \ldots, Q_{s}\right\}$ is coherent if $\Delta\left(Q_{i}, Q_{j}\right)$ reducible to zero $\forall i, j$. (for a suitable notion of Δ-polynomial)

Coherent autoreduced set

Autoreduced set

For $\left\{Q_{1}, \ldots, Q_{s}\right\}$, every Q_{i} is not reducible w.r.t. the rest \Longrightarrow autoreduced set

Coherent autoreduced set ("minimal annihilator")
Autoreduced $\left\{Q_{1}, \ldots, Q_{s}\right\}$ is coherent if $\Delta\left(Q_{i}, Q_{j}\right)$ reducible to zero $\forall i, j$. (for a suitable notion of Δ-polynomial)

Issue

For a coherent autoreduced Q_{1}, \ldots, Q_{s} in a single indeterminate:

- differential case $\Longrightarrow s=1$;
- difference case: can be $s>1$.

Example

Let $\sigma: f(z) \rightarrow f\left(z-z^{2}\right)$ and we consider $f=z^{2}$.

Example

Let $\sigma: f(z) \rightarrow f\left(z-z^{2}\right)$ and we consider $f=z^{2}$.
The annihilator of the minimal order is:

$$
P_{1}=X^{4}-2 X^{3}-2 X^{2} \sigma(X)+X^{2}-2 X \sigma(X)+\sigma(X)^{2}
$$

Example

Let $\sigma: f(z) \rightarrow f\left(z-z^{2}\right)$ and we consider $f=z^{2}$.
The annihilator of the minimal order is:

$$
P_{1}=X^{4}-2 X^{3}-2 X^{2} \sigma(X)+X^{2}-2 X \sigma(X)+\sigma(X)^{2}
$$

But there is also:

$$
P_{2}=X \sigma(X)^{3}-2 X \sigma(X)^{2}+X \sigma(X)+\left(-2 X+\sigma(X)+X^{2}-X \sigma(X)\right) \sigma^{2}(X)
$$

Example

Let $\sigma: f(z) \rightarrow f\left(z-z^{2}\right)$ and we consider $f=z^{2}$.
The annihilator of the minimal order is:

$$
P_{1}=X^{4}-2 X^{3}-2 X^{2} \sigma(X)+X^{2}-2 X \sigma(X)+\sigma(X)^{2}
$$

But there is also:

$$
P_{2}=X \sigma(X)^{3}-2 X \sigma(X)^{2}+X \sigma(X)+\left(-2 X+\sigma(X)+X^{2}-X \sigma(X)\right) \sigma^{2}(X)
$$

None of P_{1} and P_{2} is reducible w.r.t. another!

Solution: one polynomial to rule them all

Key theoretical lemma
Let Q_{1}, \ldots, Q_{s} be coherent and autoreduced and Q_{1} be of minimal order. Then there exists M :

$$
\left(Q_{1}(\widetilde{f})=0 \& \forall i>2 Q_{i}(\widetilde{f})=\mathcal{O}\left(z^{M}\right)\right) \Longrightarrow Q_{1}(\widetilde{f})=\ldots=Q_{s}(\widetilde{f})=0
$$

Solution: one polynomial to rule them all

Key theoretical lemma

Let Q_{1}, \ldots, Q_{s} be coherent and autoreduced and Q_{1} be of minimal order. Then there exists M :

$$
\left(Q_{1}(\widetilde{f})=0 \& \forall i>2 Q_{i}(\widetilde{f})=\mathcal{O}\left(z^{M}\right)\right) \Longrightarrow Q_{1}(\widetilde{f})=\ldots=Q_{s}(\widetilde{f})=0
$$

So what?

We can focus on Q_{1} and mimic the strategy from the differential algorithm presented by Joris.

Outline of the algorithm

Fix σ-algebraic f. Describe algorithm $\operatorname{ZeroTest}\left(Q_{1}, \ldots, Q_{s}\right)$
Input Q_{1}, \ldots, Q_{s} - difference polynomials
Output YES if $Q_{1}(f)=\ldots=Q_{s}(f)=0$ and NO otherwise

Outline of the algorithm

Fix σ-algebraic f. Describe algorithm $\operatorname{ZeroTest}\left(Q_{1}, \ldots, Q_{s}\right)$
Input Q_{1}, \ldots, Q_{s} - difference polynomials
Output YES if $Q_{1}(f)=\ldots=Q_{s}(f)=0$ and NO otherwise
Steps (simplified)

1. If there exists Q - initial or a separant of Q_{1}, \ldots, Q_{s} not reducible to zero
1.1 if $\operatorname{ZeroTest}\left(Q, Q_{1}, \ldots, Q_{s}\right)$, return YES
1.2 find who among Q, Q_{1}, \ldots, Q_{s} does not vanish at f
1.3 if one of Q_{1}, \ldots, Q_{s}, return NO
(by this line, none of the initials and separants vanish at f)

Outline of the algorithm

Fix σ-algebraic f. Describe algorithm $\operatorname{ZeroTest}\left(Q_{1}, \ldots, Q_{s}\right)$
Input Q_{1}, \ldots, Q_{s} - difference polynomials
Output YES if $Q_{1}(f)=\ldots=Q_{s}(f)=0$ and NO otherwise

Steps (simplified)

1. If there exists Q - initial or a separant of Q_{1}, \ldots, Q_{s} not reducible to zero
1.1 if $\operatorname{ZeroTest}\left(Q, Q_{1}, \ldots, Q_{s}\right)$, return YES
1.2 find who among Q, Q_{1}, \ldots, Q_{s} does not vanish at f
1.3 if one of Q_{1}, \ldots, Q_{s}, return NO
(by this line, none of the initials and separants vanish at f)
2. If a pairwise reminder or a Δ-polynomial Q is not reducible to zero, return ZeroTest $\left(Q, Q_{1}, \ldots, Q_{s}\right)$
(by this line, Q_{1}, \ldots, Q_{s} can be assumed coherent autoreduced)

Outline of the algorithm

Fix σ-algebraic f. Describe algorithm $\operatorname{ZeroTest}\left(Q_{1}, \ldots, Q_{s}\right)$
Input Q_{1}, \ldots, Q_{s} - difference polynomials
Output YES if $Q_{1}(f)=\ldots=Q_{s}(f)=0$ and NO otherwise

Steps (simplified)

1. If there exists Q - initial or a separant of Q_{1}, \ldots, Q_{s} not reducible to zero
1.1 if $\operatorname{ZeroTest}\left(Q, Q_{1}, \ldots, Q_{s}\right)$, return YES
1.2 find who among Q, Q_{1}, \ldots, Q_{s} does not vanish at f
1.3 if one of Q_{1}, \ldots, Q_{s}, return NO
(by this line, none of the initials and separants vanish at f)
2. If a pairwise reminder or a Δ-polynomial Q is not reducible to zero, return $\operatorname{ZeroTest}\left(Q, Q_{1}, \ldots, Q_{s}\right)$
(by this line, Q_{1}, \ldots, Q_{s} can be assumed coherent autoreduced)
3. Compute special N (Joris talk + lemma from prev slide)
4. If $Q_{1}(f)=\ldots=Q_{s}(f)=\mathcal{O}\left(z^{N}\right)$, return YES. Otherwise, NO.

Summary and outlook

We have

- the first zero-test algorithm for σ-algebraic power series
- and it actually works

Summary and outlook

We have

- the first zero-test algorithm for σ-algebraic power series
- and it actually works

We do not have (yet)

- implementation handling both σ and differential equations (we have the theory)
- automatic transform of shift into σ (like $\Gamma \rightarrow S$ in the example)
- more examples (e.g., fractional special functions)
- other σ 's like $z \rightarrow z^{k}$

