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State of the art
• Numerical solvers for machine precision
• Symbolic “solvers”: closed form, simplified equations
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Applications
• New library for the fast and reliable integration of systems of odes
• Differential Galois theory
• Control theory, flatness
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Homotopy continuation for polynomial equations
• Solve simpler system that is similar (e.g. same degrees)
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Sparse interpolation
• Magic device to recover a sparse polynomial from evaluations


