Numeric-symbolic resolution Of Differential Equations

ANR PRME "NODE" - $320730 €-5$ years -150 p. months +2 PhDs

Joris van der Hoeven

MAX team (symbolic computation)
CNRS, LIX, École polytechnique

Marc Mezzarobba

Grégoire Lecerf
François Ollivier

Solving differential equations

$$
\begin{gathered}
\Phi_{1}\left(f_{1}(t), f_{1}^{\prime}(t), \ldots, f_{n}(t), f_{n}^{\prime}(t), \ldots\right)=0 \\
\ldots \\
\Phi_{n^{\prime}}\left(f_{1}(t), f_{1}^{\prime}(t), \ldots, f_{n}(t), f_{n}^{\prime}(t), \ldots\right)=0
\end{gathered}
$$

Solving differential equations

$$
\begin{gathered}
\Phi_{1}\left(f_{1}(t), f_{1}^{\prime}(t), \ldots, f_{n}(t), f_{n}^{\prime}(t), \ldots\right)=0 \\
\ldots \\
\Phi_{n^{\prime}}\left(f_{1}(t), f_{1}^{\prime}(t), \ldots, f_{n}(t), f_{n}^{\prime}(t), \ldots\right)=0
\end{gathered}
$$

State of the art

- Numerical solvers for machine precision
- Symbolic "solvers": closed form, simplified equations

Part I: numerical resolution

Problem

Computational cost of solving a system of differential equations ?

Part I: numerical resolution

Problem

Computational cost of solving a system of differential equations?

As a function of

- Precision (of the computations or of the guaranteed end-result)
- Type of equations (linear, special functions, stiff, singularities, ...)
- Computational model (sequential, parallel, hardware, ...)

Part I: numerical resolution

Problem

Computational cost of solving a system of differential equations?

As a function of

- Precision (of the computations or of the guaranteed end-result)
- Type of equations (linear, special functions, stiff, singularities, ...)
- Computational model (sequential, parallel, hardware, ...)

Applications

- New library for the fast and reliable integration of systems of odes
- Differential Galois theory
- Control theory, flatness

Part II: symbolic resolution

Goal

(see also OCCAM project by Gleb Pogudin)

Faster algorithms to solve/reduce systems of differential equations

Part II: symbolic resolution

Goal

(see also OCCAM project by Gleb Pogudin)

Faster algorithms to solve/reduce systems of differential equations
Representation through power series solutions (instead of equations)

$$
\begin{aligned}
& f_{1}(t)=c_{1,0}+c_{1,1} t+c_{1,2} t^{2}+c_{1,3} t^{3}+c_{1,4} t^{4}+\cdots \\
& f_{2}(t)=c_{2,0}+c_{2,1} t+c_{2,2} t^{2}+c_{2,3} t^{3}+c_{2,4} t^{4}+\cdots \\
& f_{3}(t)=c_{3,0}+c_{3,1} t+c_{3,2} t^{2}+c_{3,3} t^{3}+c_{3,4} t^{4}+\cdots
\end{aligned}
$$

$c_{i, j} \rightarrow$ free parameters (initial conditions)
$c_{i, j} \rightarrow$ constrained parameters (by polynomial equations)

Part II: symbolic resolution

Goal

(see also OCCAM project by Gleb Pogudin)
Faster algorithms to solve/reduce systems of differential equations
Representation through power series solutions (instead of equations)

$$
\begin{aligned}
& f_{1}(t)=c_{1,0}+c_{1,1} t+c_{1,2} t^{2}+c_{1,3} t^{3}+c_{1,4} t^{4}+\cdots \\
& f_{2}(t)=c_{2,0}+c_{2,1} t+c_{2,2} t^{2}+c_{2,3} t^{3}+c_{2,4} t^{4}+\cdots \\
& f_{3}(t)=c_{3,0}+c_{3,1} t+c_{3,2} t^{2}+c_{3,3} t^{3}+c_{3,4} t^{4}+\cdots
\end{aligned}
$$

$c_{i, j} \rightarrow$ free parameters (initial conditions)
$c_{i, j} \rightarrow$ constrained parameters (by polynomial equations)
Homotopy continuation for polynomial equations

- Solve simpler system that is similar (e.g. same degrees)
- Continuously deform into target system and follow solutions

Part II: symbolic resolution

Goal

(see also OCCAM project by Gleb Pogudin)
Faster algorithms to solve/reduce systems of differential equations
Representation through power series solutions (instead of equations)

$$
\begin{aligned}
& f_{1}(t)=c_{1,0}+c_{1,1} t+c_{1,2} t^{2}+c_{1,3} t^{3}+c_{1,4} t^{4}+\cdots \\
& f_{2}(t)=c_{2,0}+c_{2,1} t+c_{2,2} t^{2}+c_{2,3} t^{3}+c_{2,4} t^{4}+\cdots \\
& f_{3}(t)=c_{3,0}+c_{3,1} t+c_{3,2} t^{2}+c_{3,3} t^{3}+c_{3,4} t^{4}+\cdots
\end{aligned}
$$

$c_{i, j} \rightarrow$ free parameters (initial conditions)
$c_{i, j} \rightarrow$ constrained parameters (by polynomial equations)
Homotopy continuation for polynomial equations

- Solve simpler system that is similar (e.g. same degrees)
- Continuously deform into target system and follow solutions

Sparse interpolation

- Magic device to recover a sparse polynomial from evaluations

