

Notation

```
k \in \{0, 1, 2, \dots, \infty\}
```

I Real interval
$$I \subseteq \mathbb{R}$$

 $\mathscr{C}^k(I)$ Ring of real-valued functions of class \mathscr{C}^k on I

Notation

$$k \in \{0, 1, 2, \dots, \infty\}$$

I Real interval
$$I \subseteq \mathbb{R}$$

 $\mathscr{C}^k(I)$ Ring of real-valued functions of class \mathscr{C}^k on I

$$\mathscr{C}(I) := \mathscr{C}^{0}(I) \supseteq \mathscr{C}^{1}(I) \supseteq \mathscr{C}^{2}(I) \supseteq \cdots \supseteq \mathscr{C}^{\infty}(I)$$

Notation

$$k \in \{0, 1, 2, \dots, \infty, \omega\}$$

I Real interval
$$I \subseteq \mathbb{R}$$

$$\mathscr{C}^k(I)$$
 Ring of real-valued functions of class \mathscr{C}^k on I

$$\mathscr{C}^{\omega}(I)$$
 Ring of real-analytic functions on I

$$\mathscr{C}(I) := \mathscr{C}^{0}(I) \supseteq \mathscr{C}^{1}(I) \supseteq \mathscr{C}^{2}(I) \supseteq \cdots \supseteq \mathscr{C}^{\infty}(I) \supseteq \mathscr{C}^{\omega}(I)$$

Notation

$$k \in \{0, 1, 2, \dots, \infty, \omega\}$$

I Real interval
$$I \subseteq \mathbb{R}$$

$$\mathscr{C}^k(I)$$
 Ring of real-valued functions of class \mathscr{C}^k on I

$$\mathscr{C}^{\omega}(I)$$
 Ring of real-analytic functions on I

$$\mathscr{C}(I) := \mathscr{C}^{0}(I) \supseteq \mathscr{C}^{1}(I) \supseteq \mathscr{C}^{2}(I) \supseteq \cdots \supseteq \mathscr{C}^{\infty}(I) \supseteq \mathscr{C}^{\omega}(I)$$

Ordered ring structure. For $f, g \in \mathcal{C}^k(I)$, we define a **partial** ordering

$$f \leq g \iff (\forall x \in I) \ f(x) \leq g(x)$$

 $f < g \iff f \leq g \land f \neq g$

Notation

$$k \in \{0, 1, 2, \dots, \infty, \omega\}$$

a Real abcissa
$$a \in \mathbb{R}$$

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$

Notation

$$k \in \{0, 1, 2, \dots, \infty, \omega\}$$

a Real abcissa
$$a \in \mathbb{R}$$

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$

$$a < b \implies \mathscr{C}_a^k \supsetneq \mathscr{C}_b^k$$

Notation

$$k \in \{0, 1, 2, \dots, \infty, \omega\}$$

 $k \in \{0, 1, 2, \dots, \infty, \omega\}$
Real abcissa $a \in \mathbb{R}$

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$

$$a < b \implies \mathscr{C}_a^k \supseteq \mathscr{C}_b^k$$

Eventual relations. For $f \in \mathcal{C}_a^k$ and $g \in \mathcal{C}_b^k$, we define

$$f =_{\infty} g \iff (\exists c > a, b) \ (\forall x \ge c) \ f(x) = g(x)$$
$$f \leqslant_{\infty} g \iff (\exists c > a, b) \ (\forall x \ge c) \ f(x) \leqslant g(x)$$
$$f \leqslant_{\infty} g \iff (\exists c > a, b) \ (\forall x \ge c) \ f(x) \leqslant g(x)$$

Notation

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$ $f =_{\infty} g$ Eventual equality of $f, g \in \bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k$

Germs at infinity

$$\mathcal{G}^k := (\bigcup_{a \in \mathbb{R}} \mathcal{C}_a^k) / =_{\infty}$$

Notation

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$ $f =_{\infty} g$ Eventual equality of $f, g \in \bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k$

Germs at infinity

$$\mathscr{G}^k := (\bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k) / =_{\infty}$$

Abuse of notation: identify $f \in \mathcal{G}^k$ with $\check{f} \in \mathcal{C}_a^k$ that eventually represents f

Notation

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$ $f =_{\infty} g$ Eventual equality of $f, g \in \bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k$

Germs at infinity

$$\mathscr{G}^k := (\bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k) / =_{\infty}$$

Abuse of notation: identify $f \in \mathcal{G}^k$ with $\check{f} \in \mathcal{C}^k_a$ that eventually represents f

$$\mathscr{C}_a^k \supseteq \mathscr{C}_{a+1}^k \supseteq \mathscr{C}_{a+2}^k \supseteq \cdots \supseteq \mathscr{G}^k$$

Notation

$$\mathscr{C}_a^k := \mathscr{C}^k([a, \infty))$$
 Ring of functions of class \mathscr{C}^k on $[a, \infty)$ $f =_{\infty} g$ Eventual equality of $f, g \in \bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k$

Germs at infinity

$$\mathscr{G}^k := (\bigcup_{a \in \mathbb{R}} \mathscr{C}_a^k) / =_{\infty}$$

Abuse of notation: identify $f \in \mathcal{G}^k$ with $\check{f} \in \mathcal{C}^k_a$ that eventually represents f

$$\mathscr{C}_a^k \supseteq \mathscr{C}_{a+1}^k \supseteq \mathscr{C}_{a+2}^k \supseteq \cdots \supseteq \mathscr{G}^k$$

 \mathscr{G}^k is a **partially** ordered ring for $\leq_{\infty} / =_{\infty}$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Here $|f| \in \mathcal{G}$ is such that |f|(x) = |f(x)|, eventually

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \lessdot |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \lessdot |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations. Assuming that g > 1, we define

$$f \leq g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leq |g|^c$$

 $f \leq g \iff (\forall c \in \mathbb{R}^{>0}) |f|^c \leq |g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \lessdot |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations. Assuming that g > 1, we define

$$f \leq g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leq |g|^c \iff \log |f| \leq \log |g|$$

 $f \leq g \iff (\forall c \in \mathbb{R}^{>0}) |f|^c < |g| \iff \log |f| < \log |g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \lessdot |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log|f| < \log|g|$$

 $f \le g \iff \log|f| \leqslant \log|g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \lessdot |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log |f| < \log |g|$$

 $f \leq g \iff \log |f| \leq \log |g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log|f| < \log|g|$$

 $f \ll g \iff \log|f| \leqslant \log|g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \leqslant |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log |f| < \log |g|$$

 $f \leq g \iff \log |f| \leq \log |g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |c|f| \lessdot |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log |f| < \log |g|$$

 $f \leq g \iff \log |f| \leq \log |g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log|f| < \log|g|$$

 $f \ll g \iff \log|f| \leqslant \log|g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |f| \leqslant |g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log |f| < \log |g|$$

 $f \leq g \iff \log |f| \leq \log |g|$

For $f, g \in \mathcal{G}$, we define

$$f = \mathcal{O}(g) \iff f \leqslant g \iff (\exists c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f = \mathcal{O}(g) \iff f \lessdot g \iff (\forall c \in \mathbb{R}^{>0}) |f| \leqslant c|g|$$

$$f \approx g \iff f \leqslant g \leqslant f$$

$$f \sim g \iff f - g \lessdot f$$

Flatness relations (general definition for *g* arbitrary)

$$f \ll g \iff \log|f| < \log|g|$$

 $f \ll g \iff \log|f| \leqslant \log|g|$

Definition

A **Hausdorff field** is a subfield of the ring \mathcal{G} .

Hausdorff fields

Definition

A **Hausdorff field** is a subfield of the ring \mathcal{G} .

Proposition

Let *K* be a Hausdorff field. Then *K* is an ordered field.

Hausdorff fields

Definition

A **Hausdorff field** is a subfield of the ring \mathcal{G} .

Proposition

Let K be a Hausdorff field. Then K is an ordered field.

Proof. Let $f \in K \setminus \{0\}$. Then $f^{-1} \in K \subseteq \mathcal{G}$, so $f(x) \neq 0$, eventually.

Since f is continuous, this means that f(x) > 0 or f(x) < 0, eventually.

Hausdorff fields

Definition

A **Hausdorff field** is a subfield of the ring \mathcal{G} .

Proposition

Let K be a Hausdorff field. Then K is an ordered field.

Proof. Let $f \in K \setminus \{0\}$. Then $f^{-1} \in K \subseteq \mathcal{G}$, so $f(x) \neq 0$, eventually.

Since f is continuous, this means that f(x) > 0 or f(x) < 0, eventually.

Examples.

Any subfield of R is a Hausdorff field

Definition

A **Hausdorff field** is a subfield of the ring \mathcal{G} .

Proposition

Let K be a Hausdorff field. Then K is an ordered field.

Proof. Let $f \in K \setminus \{0\}$. Then $f^{-1} \in K \subseteq \mathcal{G}$, so $f(x) \neq 0$, eventually.

Since f is continuous, this means that f(x) > 0 or f(x) < 0, eventually.

Examples.

- Any subfield of $\mathbb R$ is a Hausdorff field
- $\mathbb{R}(x)$ is a Hausdorff field, where $x = \mathrm{Id}_{\mathbb{R}}/=_{\infty}$

Proposition

For any $f \in \mathbb{R}(x)^{\neq 0}$, we have $f \sim c x^k$, for some $c \in \mathbb{R}^{\neq}$ and $k \in \mathbb{Z}$.

 $(P_d \neq 0)$

Monomial groups

Proposition

For any $f \in \mathbb{R}(x)^{\neq 0}$, we have $f \sim c x^k$, for some $c \in \mathbb{R}^{\neq}$ and $k \in \mathbb{Z}$.

Proof. If $f = P \in \mathbb{R}[x]^{\neq 0}$, then

$$P = P_{d}x^{d} + \dots + P_{0},$$

$$= x^{d}(P_{d} + P_{d-1}x^{-1} + \dots + P_{0}x^{-d})$$

$$= x^{d}(P_{d} + \mathcal{O}(1))$$

$$\sim P_{d}x^{d}.$$

Monomial groups

Proposition

For any $f \in \mathbb{R}(x)^{\neq 0}$, we have $f \sim c x^k$, for some $c \in \mathbb{R}^{\neq}$ and $k \in \mathbb{Z}$.

Proof. If f = P/Q with $P, Q \in \mathbb{R}[x]^{\neq 0}$, then

$$P \sim P_d x^d$$
 $Q \sim Q_e x^e$
 $\frac{P}{Q} \sim \frac{P_d}{Q_e} x^{d-e}$,

where $d = \deg P$, $e = \deg Q$.

Monomial groups

Proposition

For any $f \in \mathbb{R}(x)^{\neq 0}$, we have $f \sim c x^k$, for some $c \in \mathbb{R}^{\neq}$ and $k \in \mathbb{Z}$.

Corollary

The Hausdorff field $K = \mathbb{R}(x)$ has $x^{\mathbb{Z}}$ as a monomial group.

Definition

Let K be a Hausdorff field. We say that $\mathfrak{M} \subseteq K^{\neq}$ is a **monomial group** if \mathfrak{M} is a totally ordered subgroup of K for \leq such that any $f \in K^{\neq}$ has a unique decomposition

$$f = c \mathfrak{m} + \delta,$$

where $c \in \mathbb{R}^{\neq}$, $\mathfrak{m} \in \mathfrak{M}$, and $\delta \in K$ is such that $\delta < \mathfrak{m}$.

Asymptotic expansions

Proposition

Let K be a Hausdorff field with a monomial group \mathfrak{M} .

Given $f \in K$ and $n \in \mathbb{N}$, there exists a unique expansion

$$f = c_1 \mathfrak{m}_1 + \cdots + c_k \mathfrak{m}_k + \rho,$$

where

$$c_1,\ldots,c_k\in\mathbb{R}^{\neq 0}$$

$$\mathfrak{m}_1 > \cdots > \mathfrak{m}_k > \rho$$

with $\mathfrak{m}_1, \ldots, \mathfrak{m}_k \in \mathfrak{M}$, $\rho \in K$, and $k \leq n$.

Non-archimedean monomial groups

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Non-archimedean monomial groups

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proof. The map $f \in K \mapsto f \circ g \in K \circ g$ is an isomorphism of ordered fields.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Corollary

The field $K(e^x) = K(x) \circ e^x$ is a Hausdorff field with monomial group $e^{\mathbb{Z}x}$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}} e^{\mathbb{Z}x}$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}}e^{\mathbb{Z}x}$.

Proof. Assume $f = P = P_d e^{dx} + \dots + P_i e^{ix} + \dots + P_0 \in \mathbb{R}[x, e^x]^{\neq 0}$ with $0 \neq P_d, \dots, P_0 \in \mathbb{R}[x]$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}}e^{\mathbb{Z}x}$.

Proof. Assume $f = P = P_d e^{dx} + \dots + P_i e^{ix} + \dots + P_0 \in \mathbb{R}[x, e^x]^{\neq 0}$ with $0 \neq P_d, \dots, P_0 \in \mathbb{R}[x]$.

For each *i* with $P_i \neq 0$, we have $P_i \sim c_i x^{k_i}$ for some $c_i \in \mathbb{R}^{\neq 0}$ and $k_i \in \mathbb{Z}$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}}e^{\mathbb{Z}x}$.

Proof. Assume $f = P = P_d e^{dx} + \dots + P_i e^{ix} + \dots + P_0 \in \mathbb{R}[x, e^x]^{\neq 0}$ with $0 \neq P_d, \dots, P_0 \in \mathbb{R}[x]$.

For each *i* with $P_i \neq 0$, we have $P_i \sim c_i x^{k_i}$ for some $c_i \in \mathbb{R}^{\neq 0}$ and $k_i \in \mathbb{Z}$.

If i < d, then $P_i e^{ix} \sim c_i x^{k_i} e^{ix} < c_d x^{k_d} e^{dx} \sim P_d e^{dx}$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}}e^{\mathbb{Z}x}$.

Proof. Assume $f = P = P_d e^{dx} + \dots + P_i e^{ix} + \dots + P_0 \in \mathbb{R}[x, e^x]^{\neq 0}$ with $0 \neq P_d, \dots, P_0 \in \mathbb{R}[x]$.

For each *i* with $P_i \neq 0$, we have $P_i \sim c_i x^{k_i}$ for some $c_i \in \mathbb{R}^{\neq 0}$ and $k_i \in \mathbb{Z}$.

If i < d, then $P_i e^{ix} \sim c_i x^{k_i} e^{ix} < c_d x^{k_d} e^{dx} \sim P_d e^{dx}$. Hence $P \sim P_d e^{dx} \sim c_d x^{k_d} e^{dx}$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}}e^{\mathbb{Z}x}$.

Proof. Assume $f = P = P_d e^{dx} + \dots + P_i e^{ix} + \dots + P_0 \in \mathbb{R}[x, e^x]^{\neq 0}$ with $0 \neq P_d, \dots, P_0 \in \mathbb{R}[x]$.

For each *i* with $P_i \neq 0$, we have $P_i \sim c_i x^{k_i}$ for some $c_i \in \mathbb{R}^{\neq 0}$ and $k_i \in \mathbb{Z}$.

If i < d, then $P_i e^{ix} \sim c_i x^{k_i} e^{ix} < c_d x^{k_d} e^{dx} \sim P_d e^{dx}$. Hence $P \sim P_d e^{dx} \sim c_d x^{k_d} e^{dx}$.

For $f = P/Q \in \mathbb{R}(x, e^x)^{\neq 0}$, it follows $f \sim c x^k e^{lx}$ for $c \in \mathbb{R}^{\neq}$, $k \in \mathbb{Z}$, $l \in \mathbb{Z}$.

Proposition

If K *is a Hausdorff field and* $g \in \mathcal{G}^{>\mathbb{R}}$ *, then* $K \circ g := \{ f \circ g : f \in K \}$ *is a Hausdorff field.*

Proposition

The field $\mathbb{R}(x, e^x) = \mathbb{R}(x)(e^x)$ is a Hausdorff field with monomial group $x^{\mathbb{Z}}e^{\mathbb{Z}x}$.

Proposition

Let $g_1, \ldots, g_n \in \mathcal{G}^{\neq 0}$ with $g_1 \ll \cdots \ll g_n$.

Then $\mathbb{R}(g_1,\ldots,g_n)$ is a Hausdorff field with monomial group $g_1^{\mathbb{Z}}\cdots g_n^{\mathbb{Z}}$.

Real closure

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

Real closure

Theorem (Hausdorff, Boshernitzan)

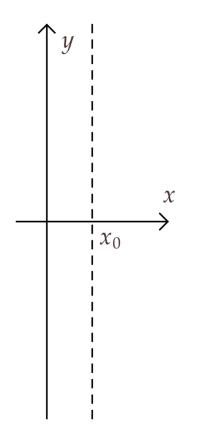
Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

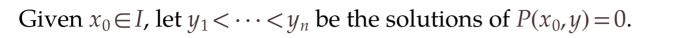
Lemma (continuity of roots)

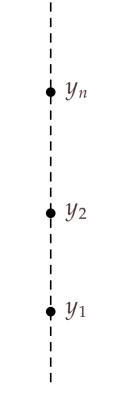
Let $I \subseteq \mathbb{R}$ be an interval. Let $P(X,Y) \in \mathscr{C}^k(I)[Y]$ with $\gcd(P,\partial P/\partial Y) = 1$. Then

- The number n of solutions of P(x,y) = 0 in y does not depend on $x \in I$.
- If $y_1(x) < \cdots < y_n(x)$ are these solutions, then $y_i \in \mathscr{C}^k(I)$ for $i = 1, \dots, n$.

Given $x_0 \in I$







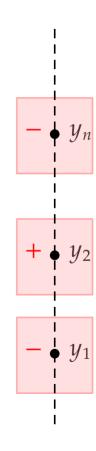
Given $x_0 \in I$, let $y_1 < \cdots < y_n$ be the solutions of $P(x_0, y) = 0$.

By assumption, $\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$ for $i = 1, \dots, n$

Given $x_0 \in I$, let $y_1 < \cdots < y_n$ be the solutions of $P(x_0, y) = 0$.

By assumption, $\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$ for i = 1, ..., n

Take $\varepsilon > 0$ with $\left| \frac{\partial P}{\partial Y}(x, y) \right| > 0$ on $[x_0 - \varepsilon, x_0 + \varepsilon] \times [y_i - \varepsilon, y_i + \varepsilon]$



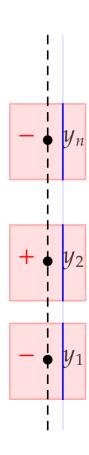
Given $x_0 \in I$, let $y_1 < \cdots < y_n$ be the solutions of $P(x_0, y) = 0$.

By assumption, $\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$ for i = 1, ..., n

Take
$$\varepsilon > 0$$
 with $\left| \frac{\partial P}{\partial Y}(x, y) \right| > 0$ on $[x_0 - \varepsilon, x_0 + \varepsilon] \times [y_i - \varepsilon, y_i + \varepsilon]$

For any $x \in [x_0 - \varepsilon, x_0 + \varepsilon]$,

 $P_x(y) := P(x, y)$ is strictly monotonic on $[y_i - \varepsilon, y_i + \varepsilon]$



Given $x_0 \in I$, let $y_1 < \cdots < y_n$ be the solutions of $P(x_0, y) = 0$.

By assumption, $\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$ for i = 1, ..., n

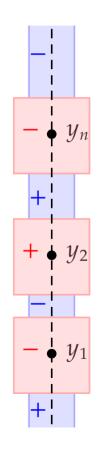
Take
$$\varepsilon > 0$$
 with $\left| \frac{\partial P}{\partial Y}(x, y) \right| > 0$ on $[x_0 - \varepsilon, x_0 + \varepsilon] \times [y_i - \varepsilon, y_i + \varepsilon]$

For any $x \in [x_0 - \varepsilon, x_0 + \varepsilon]$,

 $P_x(y) := P(x, y)$ is strictly monotonic on $[y_i - \varepsilon, y_i + \varepsilon]$

Take
$$0 < \delta < \varepsilon$$
 with $|P(x,y)| > 0$ on $[x_0 - \delta, x_0 + \delta] \times \mathcal{Y}$,

where
$$\mathcal{Y} := \mathbb{R} \setminus ([y_1 - \varepsilon, y_1 + \varepsilon] \cup \cdots \cup [y_n - \varepsilon, y_n + \varepsilon])$$



Given $x_0 \in I$, let $y_1 < \cdots < y_n$ be the solutions of $P(x_0, y) = 0$.

By assumption,
$$\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$$
 for $i = 1, ..., n$

Take
$$\varepsilon > 0$$
 with $\left| \frac{\partial P}{\partial Y}(x, y) \right| > 0$ on $[x_0 - \varepsilon, x_0 + \varepsilon] \times [y_i - \varepsilon, y_i + \varepsilon]$

For any
$$x \in [x_0 - \varepsilon, x_0 + \varepsilon]$$
,

$$P_x(y) := P(x, y)$$
 is strictly monotonic on $[y_i - \varepsilon, y_i + \varepsilon]$

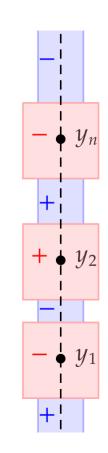
Take
$$0 < \delta < \varepsilon$$
 with $|P(x,y)| > 0$ on $[x_0 - \delta, x_0 + \delta] \times \mathcal{Y}$,

where
$$\mathcal{Y} := \mathbb{R} \setminus ([y_1 - \varepsilon, y_1 + \varepsilon] \cup \cdots \cup [y_n - \varepsilon, y_n + \varepsilon])$$

Given
$$x \in [x_0 - \varepsilon, x_0 + \varepsilon]$$
 and $i \in \{1, ..., n\}$,

$$P(x, y_i - \varepsilon) P(x, y_i + \varepsilon) < 0 \Longrightarrow (\exists ! y \in [y_i - \varepsilon, y_i + \varepsilon]) P(x, y) = 0$$

$$P(x,y) \neq 0$$
 whenever $y \in \mathcal{Y}$



Given
$$x_0 \in I$$
, let $y_1 < \cdots < y_n$ be the solutions of $P(x_0, y) = 0$.

By assumption,
$$\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$$
 for $i = 1, ..., n$

by assumption,
$$\frac{\partial P}{\partial Y}(x_0, y_i) \neq 0$$
 for $i = 1, ..., n$

Take
$$\varepsilon > 0$$
 with $\left| \frac{\partial P}{\partial Y}(x, y) \right| > 0$ on $[x_0 - \varepsilon, x_0 + \varepsilon] \times [y_i - \varepsilon, y_i + \varepsilon]$

For any
$$x \in [x_0 - \varepsilon, x_0 + \varepsilon]$$
,

$$P_x(y) := P(x, y)$$
 is strictly monotonic on $[y_i - \varepsilon, y_i + \varepsilon]$

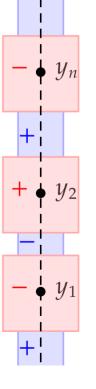
Take
$$0 < \delta < \varepsilon$$
 with $|P(x,y)| > 0$ on $[x_0 - \delta, x_0 + \delta] \times \mathcal{Y}$,

where
$$\mathcal{Y} := \mathbb{R} \setminus ([y_1 - \varepsilon, y_1 + \varepsilon] \cup \cdots \cup [y_n - \varepsilon, y_n + \varepsilon])$$

Given
$$x \in [x_0 - \varepsilon, x_0 + \varepsilon]$$
 and $i \in \{1, ..., n\}$,

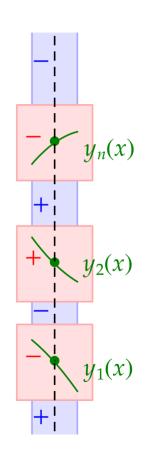
$$P(x, y_i - \varepsilon) P(x, y_i + \varepsilon) < 0 \Longrightarrow (\exists! y \in [y_i - \varepsilon, y_i + \varepsilon]) P(x, y) = 0$$

$$P(x,y) \neq 0$$
 whenever $y \in \mathcal{Y}$
Conclusion: number of roots of P_x constant on $[x_0 - \delta, x_0 + \delta]$



Given
$$x \in [x_0 - \varepsilon, x_0 + \varepsilon]$$
 and $i \in \{1, ..., n\}$,
Sign change $P(x, y_i - \varepsilon)P(x, y_i + \varepsilon) < 0$ implies
Unique $y_i(x) \in [y_i - \varepsilon, y_i + \varepsilon]$ with $P(x, y_i(x)) = 0$

- Since we may choose ε arbitrarily small, $y_i(x) \in \mathscr{C}(I)$
- Since $y_i'(x_0) = -\frac{\frac{\partial P}{\partial X}(x_0, y_i)}{\frac{\partial P}{\partial Y}(x_0, y_i)}$, we also have $y_i(x) \in \mathscr{C}^1(I)$
- Similarly for higher derivatives



Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L forms a Hausdorff field.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L forms a Hausdorff field.

It is classical that L is closed under addition and multiplication.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L forms a Hausdorff field.

It is classical that L is closed under addition and multiplication.

Let $P \in K[Y]$ be monic, irreducible. Assume that P(y) = 0 for some $y \in \mathcal{G}^k \setminus \{0\}$.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L forms a Hausdorff field.

It is classical that L is closed under addition and multiplication.

Let $P \in K[Y]$ be monic, irreducible. Assume that P(y) = 0 for some $y \in \mathcal{G}^k \setminus \{0\}$.

Since $Y \nmid P$, so $P_0 \neq 0$, we have $P_0(x) \neq 0$, eventually. Hence $y(x) \neq 0$, eventually.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L forms a Hausdorff field.

It is classical that L is closed under addition and multiplication.

- Let $P \in K[Y]$ be monic, irreducible. Assume that P(y) = 0 for some $y \in \mathcal{G}^k \setminus \{0\}$.
- Since $Y \nmid P$, so $P_0 \neq 0$, we have $P_0(x) \neq 0$, eventually. Hence $y(x) \neq 0$, eventually.
- Since y^{-1} is algebraic over K, it follows that L is a Hausdorff field.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Let $P \in L[Y]$ be monic, irreducible.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Let $P \in L[Y]$ be monic, irreducible.

Let $a \in \mathbb{R}$ be such that $\operatorname{Res}_{Y}(P, \partial P/\partial Y) \in L^{\neq 0}$ does not vanish on $[a, \infty)$.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Let $P \in L[Y]$ be monic, irreducible.

Let $a \in \mathbb{R}$ be such that $\operatorname{Res}_{Y}(P, \partial P/\partial Y) \in L^{\neq 0}$ does not vanish on $[a, \infty)$.

Lemma $\Longrightarrow P(x, Y)$ has a constant number n of roots $y_1(x) < \cdots < y_n(x)$ for $x \ge a$.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Let $P \in L[Y]$ be monic, irreducible.

Let $a \in \mathbb{R}$ be such that $\operatorname{Res}_{Y}(P, \partial P/\partial Y) \in L^{\neq 0}$ does not vanish on $[a, \infty)$.

Lemma $\Longrightarrow P(x, Y)$ has a constant number n of roots $y_1(x) < \cdots < y_n(x)$ for $x \geqslant a$.

$$y_1,\ldots,y_n\in\mathscr{C}^k([a,\infty))\subseteq\mathscr{G}^k$$
.

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Let $P \in L[Y]$ be monic, irreducible.

Let $a \in \mathbb{R}$ be such that $\operatorname{Res}_{Y}(P, \partial P/\partial Y) \in L^{\neq 0}$ does not vanish on $[a, \infty)$.

Lemma $\Longrightarrow P(x, Y)$ has a constant number n of roots $y_1(x) < \cdots < y_n(x)$ for $x \ge a$.

$$y_1,\ldots,y_n\in\mathscr{C}^k([a,\infty))\subseteq\mathscr{G}^k.$$

If $\deg_Y P(X, Y)$ is odd, then so is $\deg P(a, Y)$. Hence $n \ge 1$, so P has a root in \mathcal{G}^k .

Theorem (Hausdorff, Boshernitzan)

Let $K \subseteq \mathcal{G}^k$ be a Hausdorff field. Then the set L of germs $y \in \mathcal{G}^k$ that are algebraic over K form a real closed Hausdorff field, which is isomorphic to the real closure K^{rc} of K.

L is real closed.

Let $P \in L[Y]$ be monic, irreducible.

Let $a \in \mathbb{R}$ be such that $\operatorname{Res}_{Y}(P, \partial P/\partial Y) \in L^{\neq 0}$ does not vanish on $[a, \infty)$.

Lemma $\Longrightarrow P(x, Y)$ has a constant number n of roots $y_1(x) < \cdots < y_n(x)$ for $x \geqslant a$.

$$y_1, \ldots, y_n \in \mathscr{C}^k([a, \infty)) \subseteq \mathscr{G}^k$$
.

If $\deg_Y P(X, Y)$ is odd, then so is $\deg P(a, Y)$. Hence $n \ge 1$, so P has a root in \mathcal{G}^k .

If $P = Y^2 - f$, f > 0, then take a with f(a) > 0. Hence n = 2, so P has a root in \mathcal{G}^k .