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Spaces of real functions 2/

Notation
k ke{0,1,2,...,00,w}
I Real interval ] CIR

0D Ring of real-valued functions of class €Fonl
&“(I) Ring of real-analytic functions on I

Tl = €% 2 €MD) 2 F%D) 2 - 2 F7U) 2 )

Ordered ring structure. For f,¢ € € (I), we define a partial ordering

f < g = (Vxel) f(x)<gx)
f<g§ge=f<gN[f#g
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Notation
k ke{0,1,2,...,00,w}
a Real abcissa n e R

@)= %€"([a,o0)) Ring of functions of class € on [, )
a<b= €2 E

Eventual relations. For f € €} and ¢ € €}, we define
f =« § & (Fc>a,b) (Vx=c) f(x)=g(x)
f €« § &= (Fec>a,b) (Vxzco) f(x)<g(x)
f <o § &= (Hc>a,b) (Vxzco) f(x)<gx)
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Germs of real functions at infinity 31

Notation
= €"([a, 0)) Ring of functions of class €* on [a oo)
f=wg Eventual equality of f,g€ U,

Germs at infinity
“ = Uper €D /=
Abuse of notation: identify f € ¥* with f € €\ that eventually represents f
€l 2% 266022 29
%" is a partially ordered ring for <.. / =.
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For f,g€ %, we define
f=0@ = f< g = 3ceR?) |f] < clgl
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frg=f-8</f
Here |f| € & is such that |f|(x) =|f(x)|, eventually
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For f,g€ %, we define
f=0©Q = f<g = FceR?) |f] < clgl
f=0@ = f<g e (VceER?) clfl <gl
f=g=f<gxf
frg=/f-8</f
Flatness relations. Assuming that ¢>1, we define

f X g 3ceR™ |fl < IgI° <= loglfl < loglgl
f < ¢ = (VceR™) IfF < Ig] = log|f] < loglgl
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For f,g€ %, we define
f=0@ = f< g = FceR™) |f]l < clgl
f=0g = f<g = (VceR™) clf] < g
f=g=f<gxf
frge=f-8<f
Flatness relations (general definition for g arbitrary)
f < g = loglfl < loglgl
f =X g = loglfl < loglgl
Example: with x:=1dr/=., we have logx < x<2x —x<x’<Ke " Ke™ <« x*
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A Hausdorff field is a subfield of the ring G. |
Proposition
Let K be a Hausdorff field. Then K is an ordered field.

Proof. Let f €K\ {0}. Then f “leKC ¥, so f(x)+#0, eventually.
Since f is continuous, this means that f(x) >0 or f(x) <0, eventually. O

Examples.

e Any subfield of R is a Hausdorft field
e [R(x)is a Hausdorff field, where x =1dr /=«
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Proposition
For any f € R(x)*°, we have f ~ cx*, for some c € R* and ke Z.

Proof. If f =P €R[x]*’, then
P = Pix%+---+Py, (P;#0)
= xT(Pj+Pj_qx '+ +Pyx~%
= x"(Py+0(1))
~ ded.




Monomial groups

Proposition
For any f € R(x)*°, we have f ~ cx*, for some c € R* and ke Z.

Proof. If f =P /Q with P,Q e R[x]?, then
P ~ Pyx?
Q ~ Qexe
P Pd d—e

_N_x

Q Q. 7
where d=deg P, e=deg Q. O




Monomial groups

Proposition

For any f € R(x)*°, we have f ~ cx*, for some c € R* and ke Z.

The Hausdorff field K =1R(x) has x* as a monomial group.

—
_

Definition
Let K be a Hausdorff field. We say that 9 C K7 is a monomial group if N is a totally
ordered subgroup of K for X such that any f € K* has a unique decomposition

f = cm+9,

where ceR*, meM, and 6 € K is such that 5 <m.




Asymptotic expansions

Proposition

Let K be a Hausdorff field with a monomial group 9.
Given f € K and n € N, there exists a unique expansion

f =cm+--+cme+p,
where
ci,...,cc € R#

mg > o0 > > p
withmy,..., meM, pEK, and k< n.
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Non-archimedean monomial groups

Proposition
If K is a Hausdorff field and g € G %, then Ko ¢:={ f o ¢: f €K} is a Hausdorff field.

Proof. The map f € K— foge Ko g is an isomorphism of ordered fields. O
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Proposition
If K is a Hausdorff field and g € G %, then Ko ¢:={ f o ¢: f €K} is a Hausdorff field.

Proposition

The field R(x, e*) = R(x)(e") is a Hausdorff field with monomial group x*e*".

Proof. Assume f:P:Pdedx+ o4 Pie 4o + PyeR[x, e with 0£P;,..., Py e R[x].
For each i with P;+0, we have P; ~ ¢;x" for some ¢;€R** and k, € Z.

If i<d, then P;e™ ~ c;xMe™ < c jxMe®™ ~ Pye™,
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Non-archimedean monomial groups

Proposition
If K is a Hausdorff field and g € G %, then Ko ¢:={ f o ¢: f €K} is a Hausdorff field.

Proposition

The field R(x, e*) = R(x)(e") is a Hausdorff field with monomial group x*e**

Proof. Assume f=P =P e eR[x, e with 0£P,,..., Poe R[x].
For each i with P;+0, we have P; ~ ¢;x" for some ¢;€R** and k, € Z.

If i<d, then <cyxMe®™ < P,e? Hence P~ P,e" ~ ¢, xM e,

For f=P/Q€&R(x,e")?, it follows f ~cx kel forceR*, keZ, leZ. O



Non-archimedean monomial groups

Proposition
If K is a Hausdorff field and g € G %, then Ko ¢:={ f o ¢: f €K} is a Hausdorff field.

Proposition
The field R(x, e*) = R(x)(e") is a Hausdorff field with monomial group x*e*".

Proposition
Letgy,...,$,€G withg < -+ <K gy
Then R(gy, ..., y,) is a Hausdorff field with monomial group g7 - - - ¢
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Real closure 911

Theorem (Hausdorff, Boshernitzan)

Let KC 9" be a Hausdorff field. Then the set L of germs y € §* that are algebraic over K
form a real closed Hausdorff field, which is isomorphic to the real closure K™ of K.

Lemma (continuity of'roots)

Let IC R be an interval. Let P(X,Y) € €X)[Y] with gcd(P,0P/0Y)=1. Then
e The number n of solutions of P(x,y) =0 in y does not depend on x € .

o Ifyi(x)< --- <y,(x) are these solutions, then y,€ € () fori=1,...,n.
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Given xp€1, let y; < - -- <y, be the solutions of P(x,,y)=0.
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Continuity of roots — proof 10/11

Given xp€1, let y; < - -- <y, be the solutions of P(x,,y)=0.

By assumption, %(xo,yi) +0fori=1,...,n

|
|
|
|
|
|
O_+yn
|
+
|
|
|
0 ++y2
o
|
|
0 —e
:
|
|



Continuity of roots — proof 10/11

Given xp€1, let y; < - -- <y, be the solutions of P(x,,y)=0.
By assumption, %(xo,yi) +0fori=1,...,n

Take ¢ >0 with |g—§(x,y)| >0on [xg—¢&xo+e]lx[yi—¢,y;+ €] —

_|_

|
|
|
|
|
|
¢
|
|
|
|
|
|
L
|
|
I
|
I
4
|
|
|
|



Continuity of roots — proof 10/11

Given xp€1, let y; < - -- <y, be the solutions of P(x,,y)=0.
By assumption, %(xo,yi) +0fori=1,...,n
Take ¢ >0 with |g—1;(x,y)| >0on [xg—¢,xo+ €] x[y;—¢,y;+ €] —

For any x € [xo—¢,x0+ €],

P.(y):=P(x,y) is strictly monotonic on [y;— ¢,y + €]

_|_

/1

|
|
|
|
|
|
¢
|
|
|
|
|
|
&
|
|
I
|
I
4
|
|
|
|



Continuity of roots — proof 10/11

Given xp€1, let y; < - -- <y, be the solutions of P(x,,y)=0. B
By assumption, %(xo,yi) +0fori=1,...,n

|
|
|
|
|
|

Take ¢ >0 with |g—l;(x,y)| >0on [xg—¢ xo+elx[yi—¢€ yi+ €] — e
For any x € [xo—¢,x0+ €], :
|
P.(y):=P(x,y) is strictly monotonic on [y; — ¢,y + €] :

Take 0< 6 < e with [P(x, )| >0 on [xo— ,x0+ 8] x %, + o1

where % : =R\ ([y1—&y1+e]U---Ulyn—& yu+el) i
l
|
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|
|
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Continuity of roots — proof 10/11

Given xp€1, let y; < - -- <y, be the solutions of P(x,,y)=0. 3
By assumption, %(xo,yi) +0fori=1,...,n

|
|
|
|
|
|
Take ¢ >0 with |g—l;(x,y)| >0on [xg—¢,xo+ €] x[y;—¢,y;+ €] — ¢
For any x € [xo—¢,x0+ €], :
|
P.(y):=P(x,y) is strictly monotonic on [y; — ¢,y + €] |
Take 0< 6 <& with [P(x,y)|>0 on [xo— 8,0+ 6] x %, + 412
where % : =R\ ([y1—&y1+e]U---Ulyn—& yu+el) i
Given x € [xo—¢,xo+¢e]land ie{1,...,n}, l_:
Px,yi—e)P(x,y;i+e)<0= 3y ely;—¢&yi+e]) P(x,y) =0 — 9
|
P(x,y) #+0 whenever y € % |
|



Continuity of roots — proof 10/11

Given xo€1, lety; < --- <y, be the solutions of P(x,,y)=0.
By assumption, %(xo,yi) +0fori=1,...,n

|
|
|
|
|
|
Take ¢ >0 with |g—l;(x,y)| >0on [xg—¢,xo+ €] x[y;—¢,y;+ €] — ¢
For any x € [xo—¢,x0+ €], :
|
P.(y):=P(x,y) is strictly monotonic on [y; — ¢,y + €] |
Take 0 < 0 <e with [P(x, )| >0 on [xo— &, %+ 0] x %, +4 Y2
where % : =R\ ([y1—&y1+e]U---Ulyn—& yu+el) i
Given x€[xg—¢,xp+¢landie{1,...,n}, :
P(x,y;—€) P(x,yi+€) <0= 3y E[y;— &,y + €]) P(x, ) =0 — 9
|
P(x,y) #+0 whenever y € % |
|

Conclusion: number of roots of P, constant on [xg— &, xq+ d]



Continuity of roots — proof 10/11

Givenx e [xg—¢,xo+€elandie{1,...,n}, B
Sign change P(x,y;—¢) P(x,y; + €) <0 implies |
Unique y:(x) € [yi— &, y;+ €] with P(x, y,(x)) =0 |

e Since we may choose ¢ arbitrarily small, y,(x) € € (I)

+
a—P(xo Vi) :
e Since y/(xo) = —25———, we also have y;(x) € € '(]) PN 15(0)
v (X0, Y1) :
e Similarly for higher derivatives =]
|
I
| y1(x)
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Theorem (Hausdorff, Boshernitzan)

Let KC 9" be a Hausdorff field. Then the set L of germs y € §* that are algebraic over K
form a real closed Hausdorff field, which is isomorphic to the real closure K™ of K.

L forms a Hausdorff field.
It is classical that L is closed under addition and multiplication.

Let P € K[Y] be monic, irreducible. Assume that P(y) =0 for some y € Gk {0]}.
Since Y | P, so Py # 0, we have Py(x) #0, eventually. Hence y(x) #0, eventually.
Since vy~ is algebraic over K, it follows that L is a Hausdorff field.
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Theorem (Hausdorff, Boshernitzan)

Let KC 9" be a Hausdorff field. Then the set L of germs y € §* that are algebraic over K
form a real closed Hausdorff field, which is isomorphic to the real closure K™ of K.

L is real closed.
Let P L[Y] be monic, irreducible.
Let a € R be such that Resy(P,9P/9Y) e L*" does not vanish on [a, ).

Lemma = P(x,Y) has a constant number 7 of roots y1(x) < --- <vy,(x) for x >a.
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Theorem (Hausdorff, Boshernitzan)

Let KC 9" be a Hausdorff field. Then the set L of germs y € §* that are algebraic over K
form a real closed Hausdorff field, which is isomorphic to the real closure K™ of K.

L is real closed.

Let P L[Y] be monic, irreducible.

Let a € R be such that Resy(P,9P/9Y) e L*" does not vanish on [a, ).

Lemma = P(x,Y) has a constant number 7 of roots y1(x) < --- <vy,(x) for x >a.
Y1, ..., Yn € €X([a, ) C G*

If degy P(X,Y) is odd, then so is deg P(a,Y). Hence n > 1, so P has a root in Gk



Real closure — proot 1/

Theorem (Hausdorff, Boshernitzan)

Let KC 9" be a Hausdorff field. Then the set L of germs y € §* that are algebraic over K
form a real closed Hausdorff field, which is isomorphic to the real closure K™ of K.

L is real closed.
Let P L[Y] be monic, irreducible.
Let a € R be such that Resy(P,9P/9Y) e L*" does not vanish on [a, ).
Lemma = P(x,Y) has a constant number 7 of roots y1(x) < --- <vy,(x) for x >a.
Y1, ..., Yn € €X([a, ) C G*
If degy P(X,Y) is odd, then so is deg P(a,Y). Hence n > 1, so P has a root in Gk
If P=Y?— f, f>0, then take a with f(a)>0. Hence n=2,s0 Phasarootin ¥*. O
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